Sample records for bedded crack model

  1. Field evidence for control of quarrying by rock bridges in jointed bedrock

    NASA Astrophysics Data System (ADS)

    Hooyer, T. S.; Cohen, D. O.; Iverson, N. R.

    2011-12-01

    Quarrying is generally thought to be the most important mechanism by which glaciers erode bedrock. In quarrying models it is assumed that slow, subcritical, growth of pre-existing cracks rate-limits the process and occurs where there are large stress differences in the bed, such as near rock bumps where ice separates from the bed to form water-filled cavities. Owing to the direction of principal stresses in rocks associated with sliding and resultant cavity formation, models predict that quarrying will occur along cracks oriented perpendicular to the ice flow direction or parallel to zones of ice-bed contact. Preglacial cracks in rocks will tend to propagate mainly downward, and in sedimentary or some metamorphic rocks will merge with bedding planes, thereby helping to isolate rock blocks for dislodgement. In contrast to these model assumptions, new measurements of quarried surface orientations in the deglaciated forefield of nine glaciers in Switzerland and Canada indicate a strong correlation between orientations of pre-existing joints and quarried bedrock surfaces, independent of ice flow direction or ice-water contact lines. The strong correlation persists across all rock types, and rocks devoid of major joints lack quarried surfaces. We propose a new conceptual model of quarrying that idealizes the bedrock as a series of blocks separated by discontinuous preglacial joints containing intact rock bridges. Bridges concentrate stress differences caused by normal and shear forces acting at the rock surface. Failure of bridges is caused by slow subcritical crack growth enhanced by water pressure fluctuations. To lend credibility to this new model, we show field evidence of failed rock bridges in quarried surfaces and of rib marks on plumose structures that we interpret as arrest fracture fronts due to transient subglacial water-pressure fluctuations.

  2. Crack classification and evolution in anisotropic shale during cyclic loading tests by acoustic emission

    NASA Astrophysics Data System (ADS)

    Wang, Miaomiao; Tan, Chengxuan; Meng, Jing; Yang, Baicun; Li, Yuan

    2017-08-01

    Characterization and evolution of the cracking mode in shale formation is significant, as fracture networks are an important element in shale gas exploitation. In this study we determine the crack modes and evolution in anisotropic shale under cyclic loading using the acoustic emission (AE) parameter-analysis method based on the average frequency and RA (rise-time/amplitude) value. Shale specimens with bedding-plane orientations parallel and perpendicular to the axial loading direction were subjected to loading cycles with increasing peak values until failure occurred. When the loading was parallel to the bedding plane, most of the cracks at failure were shear cracks, while tensile cracks were dominant in the specimens that were loaded normal to the bedding direction. The evolution of the crack mode in the shale specimens observed in the loading-unloading sequence except for the first cycle can be divided into three stages: (I) no or several cracks (AE events) form as a result of the Kaiser effect, (II) tensile and shear cracks increase steadily at nearly equal proportions, (III) tensile cracks and shear cracks increase abruptly, with more cracks forming in one mode than in the other. As the dominant crack motion is influenced by the bedding, the failure mechanism is discussed based on the evolution of the different crack modes. Our conclusions can increase our understanding of the formation mechanism of fracture networks in the field.

  3. Too much FCC catalyst activity can cut yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichers, W.R.; Upson, L.

    1984-03-19

    For many people working in the field of catalytic cracking, high equilibrium catalyst activity is inherently good. It is surprising how many times this line of reasoning is accepted by the refiner. There also seems to be something psychologically satisfying in seeing an equilibrium catalyst report where the catalyst activity is reported as a high number. Generally, everyone is happy when the reported activity of equilibrium catalyst is increasing and unhappy when it is going down. In the past, increasing catalyst activity did result in improved operations. For units that operated with substantial amounts of bed cracking, higher activity catalystmore » allowed the amount of bed cracking to be reduced and the relative amount of cracking that occurred in the riser to be increased. The switch from bed to riser cracking decreased catalytic coke make and gasoline overcracking, thus reducing regenerator temperature and improving gasoline yields.« less

  4. Influence of Grid Reinforcement Placed In Masonry Bed Joints on Its Flexural Strength

    NASA Astrophysics Data System (ADS)

    Piekarczyk, Adam

    2017-10-01

    The paper presents the test results of the flexural strength of masonry when plane of failure is perpendicular to the bed joints. Comparison tests of unreinforced specimens and specimens reinforced with steel wire, glass and basalt fibre grids applied in masonry bed joints showed the higher flexural strength and crack resistance of masonry reinforced in this manner and so loaded. Reinforced masonry exposed plastic character after cracking allow for large horizontal displacements and transfer the considerable loads perpendicular to their surface. The strengthening of masonry was observed in most tests of reinforced specimens leading to occurrence of the maximum load in after cracking phase.

  5. Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions

    USGS Publications Warehouse

    Cohen, D.; Hooyer, T.S.; Iverson, N.R.; Thomason, J.F.; Jackson, M.

    2006-01-01

    Probably the most important mechanism of glacial erosion is quarrying: the growth and coalescence of cracks in subglacial bedrock and dislodgement of resultant rock fragments. Although evidence indicates that erosion rates depend on sliding speed, rates of crack growth in bedrock may be enhanced by changing stresses on the bed caused by fluctuating basal water pressure in zones of ice-bed separation. To study quarrying in real time, a granite step, 12 cm high with a crack in its stoss surface, was installed at the bed of Engabreen, Norway. Acoustic emission sensors monitored crack growth events in the step as ice slid over it. Vertical stresses, water pressure, and cavity height in the lee of the step were also measured. Water was pumped to the lee of the step several times over 8 days. Pumping initially caused opening of a leeward cavity, which then closed after pumping was stopped and water pressure decreased. During cavity closure, acoustic emissions emanating mostly from the vicinity of the base of the crack in the step increased dramatically. With repeated pump tests this crack grew with time until the step's lee surface was quarried. Our experiments indicate that fluctuating water pressure caused stress thresholds required for crack growth to be exceeded. Natural basal water pressure fluctuations should also concentrate stresses on rock steps, increasing rates of crack growth. Stress changes on the bed due to water pressure fluctuations will increase in magnitude and duration with cavity size, which may help explain the effect of sliding speed on erosion rates. Copyright 2006 by the American Geophysical Union.

  6. Phase field modeling of crack propagations in fluid-saturated porous media with anisotropic surface energy

    NASA Astrophysics Data System (ADS)

    Na, S.; Sun, W.; Yoon, H.; Choo, J.

    2016-12-01

    Directional mechanical properties of layered geomaterials such as shale are important on evaluating the onset and growth of fracture for engineering applications such as hydraulic fracturing, geologic carbon storage, and geothermal recovery. In this study, a continuum phase field modeling is conducted to demonstrate the initiation and pattern of cracks in fluid-saturated porous media. The discontinuity of sharp cracks is formulated using diffusive crack phase field modeling and the anisotropic surface energy is incorporated to account for the directional fracture toughness. In particular, the orientation of bedding in geomaterials with respect to the loading direction is represented by the directional critical energy release rate. Interactions between solid skeleton and fluid are also included to analyze the mechanical behavior of fluid-saturated geologic materials through the coupled hydro-mechanical model. Based on the linear elastic phase field modeling, we also addressed how the plasticity in crack phase field influences the crack patterns by adopting the elasto-plastic model with Drucker-Prager yield criterion. Numerical examples exhibit the features of anisotropic surface energy, the interactions between solid and fluid and the effects of plasticity on crack propagations.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Sensing fluid pressure during plucking events in a natural bedrock channel and experimental flume

    NASA Astrophysics Data System (ADS)

    Wilkinson, C.; Harbor, D. J.; Keel, D.; Levy, S.; Kuehner, J. P.

    2016-12-01

    River channel erosion by plucking is believed to be the dominant erosional process in channels with fractured or jointed bedrock. However, despite its significance as an erosional mechanism, plucking is poorly studied in both laboratory and natural channels. In previous flume studies, model bedrock was plucked by fluid forces alone in nonuniform flow near jumps and waves even where blocks do not protrude into the flow. Here we develop sensor systems to test the hypothesis that bed fluid pressure gradients lift "pluckable" bedrock blocks in a natural field setting and a hydraulic flume. The field setting closely mimics the previous flume setup; the instrumented block is downstream of a roughly 1m step and exhibits no protrusion into the flow. The presence of the step promotes nonuniform flow which changes pressure in the bedrock crack network; slabs of bedrock that have slid downstream and sediment that has been pushed upstream 3-4 m under the bed and in the cracks suggest the influence of pressure differences throughout the crack network and below the bed. In this initial deployment, we evaluate a sensor that monitors movement and simultaneous pressure above and below the block. Sensors are emplaced in a 26kg, 45-cm-long, 20-cm-wide block broken from a 4.5-m-long, 11-cm-thick sandstone bed with a dense network of cracks nearly parallel to flow direction and include a tri-axial accelerometer/gyroscope and two fluid pressure sensors. The electronics are housed in a custom-designed 3D-printed ABS waterproof capsule that is mounted in a vertical hole through the rock. A concurrent flume study develops the sensors necessary to investigate the longitudinal pressure difference below a step using multiple analog sensors (0-1 psi gauge pressure) mounted flush to a false floor under the center of a 30x14-cm test zone. The 15-mm-wide sensors are aligned along the flow centerline and are placed under 25 1-cm-thick "pluckable" bedrock blocks constructed with a proprietary plaster cement. Measured mean pressure and transmission of pressure pulses under the test bed are compared to the visual record of plucking. In addition, conducting runs with blocks removed permits simulation of the mean and varying pressure conditions above the modeled "pluckable" layer as a hydraulic jump is moved downstream through the step.

  8. Efficacy of three different steamers for control of bed bugs (Cimex lectularius L.).

    PubMed

    Wang, Desen; Wang, Changlu; Wang, Guohong; Zha, Chen; Eiden, Amanda L; Cooper, Richard

    2018-04-15

    Bed bugs, Cimex lectularius L., have become one of the most difficult urban pests to control. Steam treatment is reported to be an effective method to kill bed bugs and is considered to be an important component of bed bug integrated pest management (IPM). We evaluated and compared the efficacy of two affordable consumer-grade commercial steamers to a commonly used professional-grade steamer for killing bed bugs. In laboratory experiments, the consumer-grade steamer at an affordable price achieved the same high control efficacy as the professional-grade steamer for treating bed bugs exposed on mattresses (100% bed bug mortality), located beneath a fabric cover (>89% bed bug mortality), or hiding in cracks (100% bed bug mortality). Bed bugs located behind a leather cover did not suffer significant mortality from steam treatment regardless of the type of steamers used and treatment duration. Proper use of steamers can kill all life stages of bed bugs. Affordable consumer-grade steamers are as effective as professional-grade steam machines for eliminating bed bugs resting on mattresses, hiding behind fabric materials, or in cracks. This article is protected by copyright. All rights reserved.

  9. Experimental and numerical investigation of slabs on ground subjected to concentrated loads

    NASA Astrophysics Data System (ADS)

    Øverli, Jan

    2014-09-01

    An experimental program is presented where a slab on ground is subjected to concentrated loading at the centre, the edges and at the corners. Analytical solutions for the ultimate load capacity fit well with the results obtained in the tests. The non-linear behaviour of the slab is captured by performing nonlinear finite element analyses. The soil is modelled as a no-tension bedding and a smeared crack approach is employed for the concrete. Through a parametric study, the finite element model has been used to assess the influence of subgrade stiffness and shrinkage. The results indicate that drying shrinkage can cause severe cracking in slabs on grade.

  10. Numerical modelling of the formation of fibrous bedding-parallel veins

    NASA Astrophysics Data System (ADS)

    Torremans, Koen; Muchez, Philippe; Sintubin, Manuel

    2014-05-01

    Bedding-parallel veins with a fibrous infill oriented orthogonal to the vein wall, are often observed in fine-grained metasedimentary sequences. Several mechanisms have been proposed for their formation, mostly with respect to effects of fluid overpressures and anisotropy of the host-rock fabric in order to explain the inferred extensional failure with sub-vertical opening. Abundant pre-folding, bedding-parallel fibrous dolomite veins are found associated with the Nkana-Mindola stratiform Cu-Co deposit in Zambia. The goal of this study is to better understand the formation mechanisms of these veins and to explain their particular spatial and thickness distribution, with respect to failure of transversely isotropic rocks. The spatial distribution and thickness variation of these veins was quantified during a field campaign in thirteen line transects perpendicular to undeformed veins in underground crosscuts. The fibrous dolomite veins studied are not related to lithological contrasts, but to a strong bedding-parallel shaly fabric, typical for the black shale facies of the Copperbelt Orebody Member. The host rock can hence be considered as transversely isotropic. Growth morphologies vary from antitaxial with a pronounced median surface to asymmetric syntaxial, always with small but quantifiable growth competition. A microstructural fabric study reveals that the undeformed dolomite veins show low-tortuosity vein walls and quantifiable growth competition. Here, we use a Discrete Element Method numerical modelling approach with ESyS-Particle (http://launchpad.net/esys-particle) to simulate the observed properties of the veins. Calibrated numerical specimens with a transversely isotropic matrix are repeatedly brought to failure under constant strain rates by changing the effective strain rates at model boundaries. After each fracture event, fractures in the numerical model are filled with cohesive vein material and the experiment is repeated. By systematically varying stress states, fluid pressures and mechanical properties of materials (host rock, vein infill and interface), we attempt to reproduce the characteristics of spatial distribution and thickness variation of the veins. Four parameter sets of mechanical micro-properties are defined in the models, essentially yielding (1) a competent and (2) incompetent matrix, (3) a vein material and (4) a vein-matrix interface. Each combination of parameters and particle packings is calibrated to fit a predetermined Mohr-Coulomb type failure envelope, via an automated calibration procedure. Preliminary tests already show that by varying these parameters, we are able to simulate realistically distributed cracking through crack-seal processes. Different types of veins and vein generations can be modelled, ranging from single veins, over crack-seal veins to anastomosing veins, by varying the mechanical strength of competent and incompetent matrix, vein and interface material. Further results of this approach will be presented. We will discuss our results with respect to mechanisms proposed in the literature for bedding-parallel, fibrous veins in metasedimentary rock sequences.

  11. Attrition of fluid cracking catalyst in fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boerefijn, R.; Ghadiri, M.

    1996-12-31

    Particle attrition in fluid catalytic cracking units causes loss of catalyst, which could amount to a few tonnes per day! The dependence of attrition on the process conditions and catalyst properties is therefore of great industrial interest, but it is however not well established at present. The process of attrition in the jetting area of fluidised beds is addressed and the attrition test method of Forsythe & Hertwig is analysed in this paper. This method is used commonly to assess the attrition propensity of FCC powder, whereby the attrition rate in a single jet at very high orifice velocity (300more » m s{sup -1}) is measured. There has been some concern on the relevance of this method to attrition in FCC units. Therefore, a previously-developed model of attrition in the jetting region is employed in an attempt to establish a solid basis of interpretation of the Forsythe & Hertwig test and its application as an industrial standard test. The model consists of two parts. The first part predicts the solids flow patterns in the jet region, simulating numerically the Forsythe & Hertwig test. The second part models the breakage of single particles upon impact. Combining these two models, thus linking single particle mechanical properties to macroscopic flow phenomena, results in the modelling of the attrition rate of particles entrained into a single high speed jet. High speed video recordings are made of a single jet in a two-dimensional fluidised bed, at up to 40500 frames per second, in order to quantify some of the model parameters. Digital analysis of the video images yields values for particle velocities and entrainment rates in the jet, which can be compared to model predictions. 15 refs., 8 figs.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only overmore » the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.« less

  13. Geoenvironmental studies on conservation of archaeological sites at Siwa oasis, Egypt

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hani A. M.; Kamh, Gamal E.

    2006-02-01

    Siwa oasis is located in the extreme western part of the Egyptian western desert. There are several archaeological sites in the oasis; the most distinct ones are Alexander the Great temple at Aghormi hill and the Gebel El Mota tomb excavations. They have suffered due to deterioration and cracks of different kinds and some parts are getting worse as rock falls occur. From field inspection and lab analysis, it is clear that lithology plays an important role on the extent of damage. Alexander the Great temple was built over the northern edge of Aghormi hill, which consists of two distinct beds—an upper limestone bed and a lower shale one. From field survey and laboratory analysis, the shale is considered as a high expanded bed and weak in its bearing capacity, as its clay content (mainly smectite) experienced swelling due to wetting from the ground water spring underneath. Consequently, the upper limestone bed suffered from map cracking associated with rock falls due to the differential settlement of the swelled lower shale one. The temple was threatened by slope instability and had experienced many cracks. At Gabal El Mota tomb excavations, it was noticed that a comparison of tombs of the same opening size revealed that those that excavated on shale beds had cracked much more than those that excavated on limestone. This may be attributed to the low bearing capacity of excavated shale walls. The remedial measures suggested to overcome the stability problems on these archaeological sites are grouting or construction of retaining walls.

  14. Thermal fatigue and oxidation data for alloy/braze combinations

    NASA Technical Reports Server (NTRS)

    Hill, V. L.; Humphreys, V. E.

    1977-01-01

    Thermal fatigue and oxidation data were obtained for 62 brazed specimens of 3 iron-, 3 nickel-, and 1 cobalt-base alloy. Fluidized bed thermal cycling was conducted over the range 740/25 C employing 10 cm long single-edge wedge specimens. Immersion time was always 4 minutes in each bed. Types of test specimens employed in the program include those with brazed overlays on the specimen radius, those butt brazed at midspan and those with a brazed foil overlay on the specimen radius. Of the 18 braze overlay specimens, 5 generated fatigue cracks by 7000 cycles. Thermal cracking of butt brazed specimens occurred exclusively through the butt braze. Of the 23 butt brazed specimens, 7 survived 11,000 thermal cycles without cracking. Only 2 of the 21 foil overlaid specimens exhibiting cracking in 7,000 cycles. Blistering of the foil did occur for 2 alloys by 500 cycles. Oxidation of the alloy/braze combination was limited at the test maximum test temperature of 740 C.

  15. A CFD model for biomass fast pyrolysis in fluidized-bed reactors

    NASA Astrophysics Data System (ADS)

    Xue, Qingluan; Heindel, T. J.; Fox, R. O.

    2010-11-01

    A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.

  16. Dynamic Burning Effects in the Combustion of Solid Propellants with Cracks, and the Use of Granular Bed Combustion Models

    DTIC Science & Technology

    1980-12-01

    Detachment, White Oak Laboratory, Silver Spring Code 240, Sigmund Jacobs (1) G. B. Wilmot (1) 1 Naval Underwater Systems Center, Newport (Code 5B331...Models by Kenneth K. Kuo and Mridul Kumar Systems Associates DTIC Pennsylvanir State University ELECTE for the APR 8 1981 Research Department B...ACTIVTY OF THE NAVAL MATERIAL COMMAND FOREWORD This is the final report for a research program conducted by Systems Associates, Pennsylvania State

  17. Packed-bed catalytic cracking of oak derived pyrolytic vapors

    USDA-ARS?s Scientific Manuscript database

    Catalytic upgrading of pyrolysis vapors derived from oak was carried out using a fixed-bed catalytic column at 425 deg C. The vapors were drawn by splitting a fraction from the full stream of vapors produced at 500 deg C in a 5 kg/hr bench-scale fast pyrolysis reactor system downstream the cyclone s...

  18. Study of the Microstructure and Cracking Mechanisms of Hastelloy X Produced by Laser Powder Bed Fusion.

    PubMed

    Marchese, Giulio; Basile, Gloria; Bassini, Emilio; Aversa, Alberta; Lombardi, Mariangela; Ugues, Daniele; Fino, Paolo; Biamino, Sara

    2018-01-11

    Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions typically less than 1 µm, coupled with the formation of sub-micrometric carbides, the largest ones were mainly distributed along the interdendritic regions and grain boundaries. From the microstructural analyses, it appeared that the formation of intergranular carbides provided weaker zones, which combined with high thermal residual stresses resulted in hot cracks formation along the grain boundaries. The carbides were extracted from the austenitic matrix and characterized by combining different techniques, showing the formation of various types of Mo-rich carbides, classified as M₆C, M 12 C and M n C m type. The first two types of carbides are typically found in HX alloy, whereas the last one is a metastable carbide probably generated by the very high cooling rates of the process.

  19. Study of the Microstructure and Cracking Mechanisms of Hastelloy X Produced by Laser Powder Bed Fusion

    PubMed Central

    Basile, Gloria; Bassini, Emilio; Ugues, Daniele; Fino, Paolo

    2018-01-01

    Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions typically less than 1 µm, coupled with the formation of sub-micrometric carbides, the largest ones were mainly distributed along the interdendritic regions and grain boundaries. From the microstructural analyses, it appeared that the formation of intergranular carbides provided weaker zones, which combined with high thermal residual stresses resulted in hot cracks formation along the grain boundaries. The carbides were extracted from the austenitic matrix and characterized by combining different techniques, showing the formation of various types of Mo-rich carbides, classified as M6C, M12C and MnCm type. The first two types of carbides are typically found in HX alloy, whereas the last one is a metastable carbide probably generated by the very high cooling rates of the process. PMID:29324658

  20. Investigation of failure mechanism of thermal barrier coatings (TBCs) deposited by EB-PVD technique

    NASA Astrophysics Data System (ADS)

    Shahid, M. R.; Abbas, Musharaf

    2013-06-01

    Failure mechanism of thermal barrier coatings (TBCs) prepared by electron beam physical vapor deposition (EB-PVD) technique owing to formation of micro cracks was investigated. The TBCs were deposited on the Ni-based super alloy IN-100 and the micro cracks were observed within the top ceramic coat of thermally cycled TBCs at 1050°C. It was observed that these cracks propagate in the ceramic coat in the direction normal to interface while no cracks were observed in the bond coat. SEM/EDS studies revealed that some non-uniform oxides were formed on the interface between ceramic top and metallic bond coat just below the cracks. Study proposed that the cracks were initiated due to stress owing to big difference in Pilling-Bed worth ratio of non-uniform oxides as well as thermal stress, which caused the formation of cracks in top ceramic coat leading to failure of TBCs

  1. Thermal fatigue performance of integrally cast automotive turbine wheels

    NASA Technical Reports Server (NTRS)

    Humphreys, V. E.; Hofer, K. E.

    1980-01-01

    Fluidized bed thermal fatigue testing was conducted on 16 integrally cast automotive turbine wheels for 1000-10,000 (600 sec total) thermal cycles at 935/50 C. The 16 wheels consisted of 14 IN-792 + 1% Hf and 2 gatorized AF2-1DA wheels; 6 of the IN-792 + Hf wheels contained crack arrest pockets inside the blade root flange. Temperature transients during the thermal cycling were measured in three calibration tests using either 18 or 30 thermocouples per wheel. Thermal cracking based on crack length versus accumulated cycles was greatest for unpocketed wheels developing cracks in 8-13 cycles compared to 75-250 cycles for unpocketed wheels. However, pocketed wheels survived up to 10,000 cycles with crack lengths less than 20 mm, whereas two unpocketed wheels developed 45 mm long cracks in 1000-2000 cycles.

  2. Fracture Anisotropy and Toughness in the Mancos Shale: Implications for crack-growth geometry

    NASA Astrophysics Data System (ADS)

    Chandler, M. R.; Meredith, P. G.; Brantut, N.; Crawford, B. R.

    2013-12-01

    The hydraulic fracturing of gas-shales has drawn attention to the fundamental fracture properties of shales. Fracture propagation is dependent on a combination of the in-situ stress field, the fracturing fluid and pressure, and the mechanical properties of the shale. However, shales are strongly anisotropic, and there is a general paucity of available experimental data on the anisotropic mechanical properties of shales in the scientific literature. The mode-I stress intensity factor, KI, quantifies the concentration of stress at crack tips. The Fracture Toughness of a linear elastic material is then defined as the critical value of this stress intensity factor; KIc, beyond which rapid catastrophic crack growth occurs. However, shales display significant non-linearity, which produces hysteresis during experimental cyclic loading. This allows for the calculation of a ductility coefficient using the residual displacement after successive loading cycles. From this coefficient, a ductility corrected Fracture Toughness value, KIcc can be determined. In the Mancos Shale this ductility correction can be as large as 60%, giving a Divider orientation KIcc value of 0.8 MPa.m0.5. Tensile strength and mode-I Fracture Toughness have been experimentally determined for the Mancos Shale using the Brazil Disk and Short-Rod methodologies respectively. The three principal fracture orientations; Arrester, Divider and Short-Transverse were all analysed. A significant anisotropy is observed in the tensile strength, with the Arrester value being 1.5 times higher than the Short-Transverse value. Even larger anisotropy is observed in the Fracture Toughness, with KIcc in the Divider and Arrester orientations being around 1.8 times that in the Short-Transverse orientation. For both tensile strength and fracture toughness, the Short-Transverse orientation, where the fracture propagates in the bedding plane in a direction parallel to the bedding, is found to have significantly lower values than the other two orientations. This anisotropy and variability in fracture properties is seen to cause deviation of the fracture direction during experiments on Arrester and Short-Transverse oriented samples, and can be expected to influence the geometry of propagating fractures. A comparison between the anisotropic tensile strength of the material and the crack-tip stress field in a transversely isotropic material has been used to develop a crack-tip deflection criterion in terms of the elasticity theory of cracks. This criterion suggests that a small perturbation in the incident angle of a mode-I crack propagating perpendicular to the bedding is likely to lead to a substantial deflection towards bedding-parallel (Short-Transverse) propagation. Further experimental work is currently underway on anisotropic Fracture Toughness measurements at elevated pressures and temperatures, simulating conditions in Shale Gas reservoirs at depths up to around 4km.

  3. Protecting Your Home from Bed Bugs

    EPA Pesticide Factsheets

    Take precautions such as checking secondhand furniture for signs of infestation before bringing it home, using mattress encasements, sealing cracks, installing door sweeps, and maintaining cleanliness.

  4. Evaluation of Inelastic Constitutive Models for Nonlinear Structural Analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1983-01-01

    The influence of inelastic material models on computed stress-strain states, and therefore predicted lives, was studied for thermomechanically loaded structures. Nonlinear structural analyses were performed on a fatigue specimen which was subjected to thermal cycling in fluidized beds and on a mechanically load cycled benchmark notch specimen. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic-kinematic, combined plus transient creep) were exercised. Of the plasticity models, kinematic hardening gave results most consistent with experimental observations. Life predictions using the computed strain histories at the critical location with a Strainrange Partitioning approach considerably overpredicted the crack initiation life of the thermal fatigue specimen.

  5. Effects of temperature, pressure, and carrier gas on the cracking of coal tar over a char-dolomite mixtures and calcined dolomite in a fixed-bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadri, K.; Shamsi, A.

    1998-10-01

    A distillation fraction of a coal-derived liquid (tar) was cracked over a char-dolomite mixture, calcined dolomite, and silicon carbide in a fixed-bed reactor. The char-dolomite mixture (FWC) was produced from Pittsburgh No. 8 coal and dolomite in a Foster Wheeler carbonizer. The experiments were conducted under nitrogen and simulated coal gas (SCG), which was a mixture of CO, CO{sub 2}, H{sub 2}S, CH{sub 4}, N{sub 2}, and steam, at 1 and 17 atm. The conversion over these materials under nitrogen was much higher at 17 atm than at 1 atm. At higher pressures, tar molecules were trapped in the poresmore » of the bed material and underwent secondary reactions, resulting in the formation of excess char. However, when nitrogen was replaced by SCG, the reactions that induce char formation were suppressed, thus increasing the yield of gaseous products. The analysis of the gaseous products and the spent bed materials for organic and inorganic carbons suggested that the product distribution can be altered by changing the carrier gas, temperature, and pressure.« less

  6. Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing

    DOE PAGES

    An, Ke; Yuan, Lang; Dial, Laura; ...

    2017-09-11

    Severe residual stresses in metal parts made by laser powder bed fusion additive manufacturing processes (LPBFAM) can cause both distortion and cracking during the fabrication processes. Limited data is currently available for both iterating through process conditions and design, and in particular, for validating numerical models to accelerate process certification. In this work, residual stresses of a curved thin-walled structure, made of Ni-based superalloy Inconel 625™ and fabricated by LPBFAM, were resolved by neutron diffraction without measuring the stress-free lattices along both the build and the transverse directions. The stresses of the entire part during fabrication and after cooling downmore » were predicted by a simplified layer-by-layer finite element based numerical model. The simulated and measured stresses were found in good quantitative agreement. The validated simplified simulation methodology will allow to assess residual stresses in more complex structures and to significantly reduce manufacturing cycle time.« less

  7. Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Ke; Yuan, Lang; Dial, Laura

    Severe residual stresses in metal parts made by laser powder bed fusion additive manufacturing processes (LPBFAM) can cause both distortion and cracking during the fabrication processes. Limited data is currently available for both iterating through process conditions and design, and in particular, for validating numerical models to accelerate process certification. In this work, residual stresses of a curved thin-walled structure, made of Ni-based superalloy Inconel 625™ and fabricated by LPBFAM, were resolved by neutron diffraction without measuring the stress-free lattices along both the build and the transverse directions. The stresses of the entire part during fabrication and after cooling downmore » were predicted by a simplified layer-by-layer finite element based numerical model. The simulated and measured stresses were found in good quantitative agreement. The validated simplified simulation methodology will allow to assess residual stresses in more complex structures and to significantly reduce manufacturing cycle time.« less

  8. Model-Based Structural Health Monitoring of Fatigue Damage Test-Bed Specimens

    DTIC Science & Technology

    2011-11-15

    the hull welds or notches along component edges are good initial candidates for the hypothetical damage initiation areas. The branching process adds...to it off-center. The base plate and the stiffener plate are rigidly welded by a tungsten inert gas ( TIG ) weld . Three different crack paths...shown in Figure 9(a), an 18 in long stiffener plate has been welded to each of the tested plates with 0.625 in long discrete TIG welds at 5 locations

  9. Kinetics of bed fracturing around mine workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veksler, Yu.A.

    1988-03-01

    A failure of the bed near the walls of the workings of a mine away from the face occurs gradually over time and in this paper the authors take a kinetic approach to evaluating its development. The influence of certain mine engineering factors on the pattern of bed fracturing is discussed. The effect of the depth of mining is shown. Cracking occurs in the portion of the seam at the face near the ground at some distance from it on the interface between soft and hard coal. The density of the fractured rocks and their response affect the bed fracturingmore » near the stope face.« less

  10. Killer tans: state, feds crack down on indoor tanning.

    PubMed

    Conde, Crystal

    2010-05-01

    The American Cancer Society says that using a tanning bed before age 35 increases a person's risk of developing melanoma by 75 percent. Physicians hope that recent actions by the FTC, along with TMA-supported state legislation placing age restrictions on minors' use of tanning beds, will spur the tanning industry to operate more responsibly and stop spreading false information to the public.

  11. Thermal Cracking of Tars in a Continuously Fed Reactor with Steam

    DTIC Science & Technology

    2011-05-01

    Fluidized Bed using biomass 8 Tars  Mixture of organic components present in gasification product gas with high molecular weight hydrocarbons [MW...Disable sulfur removal systems FoulingPlugging [Ref. 3: Biomass Gasification – Tar and Particles in Product Gases Sampling and Analysis”, European...P., and Nussbaumer T., “Gas Cleaning Requirements for Internal Combustion Engine Applications of Fixed Bed Biomass Gasification ”, Biomass and

  12. Glacial Erosion Driven by Seasonal Shifts in Meltwater Drainage

    NASA Astrophysics Data System (ADS)

    Ugelvig, S. V.; Egholm, D. L.

    2017-12-01

    Subglacial erosion processes, like abrasion and quarrying, have been studied for decades. While models for abrasion clearly points to sliding speed as a primary control on abrasion rates, quarrying rates are thought to be governed by more complex combinations of sliding speed, effective pressure, bedrock slope and short-term water pressure fluctuations. Early models for quarrying focused on the deviatoric stress needed for growth of small isolated cracks in otherwise homogeneous intact bedrock. The rate-limiting factor for quarrying was thus the subcritical crack growth. Later studies have included effects of pre-existing fractures in the bedrock that weaken the rock. Here the strength distribution in the rock is based on the assumption that larger rock bodies have lower strength, because they have a higher probability of containing a weak fracture. However, this approach has been hampered by the assumption of steady-state cavity configuration. Here we attempt to combine previous model efforts in a model that tracks the temporal evolution of cavities while including a statistical treatment of bedrock strength. Using a two-dimensional finite-difference model, we simulate the spatial and temporal evolution of the hydrological system at the base of a glacier, while simultaneously computing rates of abrasion and quarrying. Cavity lengths and channel cross-sections evolve through time, which allow us to study how temporal shifts in ice-bed contact area and deviatoric stress influence quarrying rates over the course of a year. Furthermore, we use the temporal evolution of contact area between ice and bed to predict basal sliding speed and scale abrasion rates. Our results suggest that ice-bed contact area is a key variable in controlling sliding speed and rates of glacial erosion on seasonal time scales, where the subglacial drainage system reorganizes to accommodate the variations in surface melt rates. However, on diurnal timescales cavities and channels cannot adjust to the relatively rapid changes in meltwater input, which causes large fluctuations in water pressure. This in turn elevates the deviatoric stress in the bedrock and pressure fluctuations are thus on diurnal timescales found to dictate quarrying rates as well as abrasion rates.

  13. Conversion of Small Algal Oil Sample to JP-8

    DTIC Science & Technology

    2012-01-01

    cracking of Algal Oil to SPK Hydroprocessing Lab Plant uop Nitrogen Hydrogen Product ., __ Small Scale Lab Hydprocessing plant - Down flow trickle ... bed configuration - Capable of retaining 25 cc of catalyst bed Meter UOP ·CONFIDENTIAL File Number The catalytic deoxygenation stage of the...content which combined with the samples acidity, is a challenge to reactor metallurgy. None the less, an attempt was made to convert this sample to

  14. Thermal fatigue and oxidation data of TAZ-8A and M22 alloys and variations

    NASA Technical Reports Server (NTRS)

    Hofer, K. E.; Humphreys, V. E.

    1981-01-01

    Thermal fatigue and oxidation data were obtained on 36 specimens, representing 18 distinct variations (including the base systems) of TAZ-8A and M22 alloys. Double-edge wedge specimens for these systems were cycled between fluidized beds maintained at 1088 C and 316 C with a 180 s immersion in each bed. The systems included alloys TAZ-8A, M22, and 16 variations of these alloys. Each alloy variation consisted of a unique composition with an alternation in the percentage of carbon (C1 and C2), molydenum (M1 and M2), tungsten (W1 and W2), columbium (CB1, CB2, and CB3), tantalium (T1, T2, and T3), or boron (B1, B2, and B3) present. All of the alloys showed little weight change due to oxidation compared with other alloys previously tested in fluidized beds. Only both C1 alloy variation specimens survived 3500 cycles without cracking in the small radius, although substantial cracks were present, emanating from the end notches which were used for holding the specimens.

  15. Mud cracks and dedolomitization in the Wittenoom Dolomite, Hamersley Group, Western Australia

    USGS Publications Warehouse

    Kargel, J.S.; Schreiber, J.F.; Sonett, C.P.

    1996-01-01

    Several impure dolomitic limestone beds in an outcrop of the latest Archean Wittenoom Dolomite (Hamersley Group, Western Australia) are polygonally cracked. The cracks appear to be sub-aerial desiccation features, suggesting that the known area of shallow water and locally emergent conditions extended from the far eastern part of the basin (the Carawine Dolomite) over 270 km farther west. This finding places shallow- water or emergent conditions either (1) near the middle of what Trendall (1983) defined as the probable original limits of the Hamersley Basin (Trendall's 'Pilbara Egg') or (2) near the southern edge of what Morris (1993) thought to be a broad carbonate platform which fed a deeper water sequence to the south. In any case, the Hamersley Basin in the area of Bee Gorge and eastward to the Carawine Dolomite may have been a carbonate mudflat in part with restricted circulation of sea water. The Carawine Dolomite and the Wittenoom Dolomite near Bee Gorge may have been affected by carbonate buildups along a shelf edge. Regardless of whether shallow water was widespread or local in the Hamersley basin, shallow water verging on emergence is supported by evidence of diagenetic dedolomitization under conditions of low atmospheric and hydrospheric P(O2) and precipitation of strontianite in the mud-cracked sample. Evidence of shallow water at Bee Gorge is consistent with Trendall's broad evaporite-basin model and with Morris' barred-platform model for the origin of Hamersley carbonates and banded iron-formations.

  16. The influence of total suction on the brittle failure characteristics of clay shales

    NASA Astrophysics Data System (ADS)

    Amann, F.; Linda, W.; Zimmer, S.; Thoeny, R.

    2013-12-01

    Clay shale testing is challenging and the results obtained from standard laboratory tests may not always reflect the strength of the clay shale in-situ. This is to a certain extend associated with the sensitivity of these rock types to desaturation processes during drilling, sample storage, and sample preparation. In this study the relationship between total suction, uniaxial compressive strength and Brazilian tensile (BTS) strength of cylindrical samples of Opalinus Clay was established in a systematic manner. Unconfined uniaxial compression and BTS tests were performed utilizing a servo-controlled testing procedure. Total suctions in the specimens was generated in air tight desiccators using supersaturated saline solutions which establish a relative humidity ranging from 20% to 99%. For unconfined compressive strength tests loading of the specimens occurred parallel to bedding. For BTS tests loading was either oriented normal or perpendicular to bedding. Both, the crack initiation and volumetric strain reversal threshold values were determined using volumetric and radial stress-strain methods. The results of BTS tests show that the tensile strength normal and perpendicular to bedding increases by a factor of approximately 3 when total suction is increased from 0 to 90 MPa (i.e. saturation decreases from 1.0 to 0.7) . Beyond 90 MPa total suction no further increase in tensile strength was observed, most probably due to shrinkage cracks which alter the tensile strength of the clay shale. Results obtained from UCS tests suggest that higher total suctions result in higher UCS values. Between total suctions of 0 to 90 MPa, the strength increase is almost linear (i.e. the UCS increases by a factor of 1.5 MPa). Beyond 90 MPa total suction no further strength increase was observed. A similar trend can be observed for crack initiation and crack damage values. In the same range of total suction the crack initiation stress increases by a factor of 5 (from 2 MPa to 10 MPa), and the crack damage stress increases by a factor of 2 (from 6 to 12 MPa). In addition to UCS tests, the water retention curve of intact and disturbed specimens was established. Here, results indicate that the drying path remains nearly unaffected by mechanical damage. However, the wetting path is considerably affected by mechanical damage.

  17. Comparative thermal fatigue resistances of twenty-six nickel and cobalt base alloys

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Spera, D. A.

    1975-01-01

    Thermal fatigue resistances were determined from fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials with directional solidification and surface protection of definite benefit. The alloy-coating combination with the highest thermal fatigue resistance was directionally solidified NASA TAZ-8A with an RT-XP coating. It oxidation resistance was excellent, showing almost no weight change after 15 000 fluidized bed cycles.

  18. Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Modeling, Microstructural Characterization, and Process Control

    NASA Astrophysics Data System (ADS)

    Acharya, Ranadip; Das, Suman

    2015-09-01

    This article describes additive manufacturing (AM) of IN100, a high gamma-prime nickel-based superalloy, through scanning laser epitaxy (SLE), aimed at the creation of thick deposits onto like-chemistry substrates for enabling repair of turbine engine hot-section components. SLE is a metal powder bed-based laser AM technology developed for nickel-base superalloys with equiaxed, directionally solidified, and single-crystal microstructural morphologies. Here, we combine process modeling, statistical design-of-experiments (DoE), and microstructural characterization to demonstrate fully metallurgically bonded, crack-free and dense deposits exceeding 1000 μm of SLE-processed IN100 powder onto IN100 cast substrates produced in a single pass. A combined thermal-fluid flow-solidification model of the SLE process compliments DoE-based process development. A customized quantitative metallography technique analyzes digital cross-sectional micrographs and extracts various microstructural parameters, enabling process model validation and process parameter optimization. Microindentation measurements show an increase in the hardness by 10 pct in the deposit region compared to the cast substrate due to microstructural refinement. The results illustrate one of the very few successes reported for the crack-free deposition of IN100, a notoriously "non-weldable" hot-section alloy, thus establishing the potential of SLE as an AM method suitable for hot-section component repair and for future new-make components in high gamma-prime containing crack-prone nickel-based superalloys.

  19. Preparing for Treatment Against Bed Bugs

    EPA Pesticide Factsheets

    Whether hiring a pest management professional or trying to eliminate the bugs yourself, taking these first steps will increase effectiveness and speed: reduce clutter, use encasements on your mattress and box spring, vacuum and heat treat, and seal cracks.

  20. Zonal disintegration of rocks around underground workings. Part II. Rock fracture simulated in equivalent materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shemyakin, E.I.; Fisenko, G.L.; Kurlenya, M.V.

    1987-05-01

    For a detailed testing of the effects discovered in situ, analysis of the patterns and origination conditions of fractured rock zones inside the bed around workings, and ways explosions affect the surrounding rocks, a program and a method of study on models of equivalent materials have been developed. The method of simulation on two- and three-dimensional models involved building in a solid or fissured medium a tunnel of a circular or arched cross section. The tests were done for elongate adit-type workings. At the first stage, three models were tested with different working support systems: anchor supports, concrete-spray supports andmore » no supports. Zone formation is shown and described. Tests were continued on two groups of three-dimensional models to bring the model closer to in situ conditions. The presence of gaping cracks and heavily fractured zones deep in the interior of the bed with a quasicylindrical symmetry indicates that the common views concerning the stressed-strained state of rocks around underground workings are at variance with the actual patterns of deformation and destruction of rocks near the workings in deep horizons.« less

  1. Modes of supraglacial lake drainage and dynamic ice sheet response

    NASA Astrophysics Data System (ADS)

    Das, S. B.; Behn, M. D.; Joughin, I. R.

    2011-12-01

    We investigate modes of supraglacial lake drainage using geophysical, ground, and remote sensing observations over the western margin of the Greenland ice sheet. Lakes exhibit a characteristic life cycle defined by a pre-drainage, drainage, and post-drainage phase. In the pre-drainage phase winter snow fills pre-existing cracks and stream channels, efficiently blocking past drainage conduits. As temperatures increase in the spring, surface melting commences, initially saturating the snow pack and subsequently forming a surface network of streams that fills the lake basins. Basins continue to fill until lake drainage commences, which for individual lakes occurs at different times depending on the previous winter snow accumulation and summer temperatures. Three styles of drainage behavior have been observed: (1) no drainage, (2) slow drainage over the side into an adjacent pre-existing crack, and (3) rapid drainage through a new crack formed beneath the lake basin. Moreover, from year-to-year individual lakes exhibit different drainage behaviors. Lakes that drain slowly often utilize the same outflow channel for multiple years, creating dramatic canyons in the ice. Ultimately, these surface channels are advected out of the lake basin and a new channel forms. In the post-drainage phase, melt water continues to access the bed typically through a small conduit (e.g. moulin) formed near a local topographic minimum along the main drainage crack, draining the lake catchment throughout the remainder of the melt season. This melt water input to the bed leads to continued basal lubrication and enhanced ice flow compared to background velocities. Lakes that do not completely drain freeze over to form a surface ice layer that persists into the following year. Our results show that supraglacial lakes show a spectrum of drainage behaviors and that these styles of drainage lead to varying rates and timing of surface meltwater delivery to the bed resulting in different dynamic ice responses.

  2. Cross-bedding related anisotropy and its interplay with various boundary conditions in the formation and orientation of joints in an aeolian sandstone

    NASA Astrophysics Data System (ADS)

    Deng, Shang; Cilona, Antonino; Morrow, Carolyn; Mapeli, Cesar; Liu, Chun; Lockner, David; Prasad, Manika; Aydin, Atilla

    2015-08-01

    Previous research revealed that the cross-bedding related anisotropy in Jurassic aeolian Aztec Sandstone cropping out in the Valley of Fire State Park, Nevada, affects the orientation of compaction bands, also known as anti-cracks or closing mode structures. We hypothesize that cross-bedding should have a similar influence on the orientation of the opening mode joints within the same rock at the same location. To test this hypothesis, we investigated the relationship between the orientation of cross-beds and the orientation of different categories of joint sets including cross-bed package confined joints and joint zones in the Aztec Sandstone. The field data show that the cross-bed package confined joints occur at high-angle to bedding and trend roughly parallel to the dip direction of the cross-beds. In comparison, the roughly N-S trending joint zones appear not to be influenced by the cross-beds in any significant way but frequently truncate against the dune boundaries. To characterize the anisotropy due to cross-bedding in the Aztec Sandstone, we measured the P-wave velocities parallel and perpendicular to bedding from 11 samples and determined an average P-wave anisotropy to be slightly larger than 13%. From these results, a model based on the generalized Hooke's law for anisotropic materials is used to analyze deformation of cross-bedded sandstone as a transversely isotropic material. In the analysis, the dip angle of cross-beds is assumed to be constant and the strike orientation varying from 0° to 359° in the east (x), north (y), and up (z) coordinate system. We find qualitative agreement between most of the model results and the observed field relations between cross-beds and the corresponding joint sets. The results also suggest that uniaxial extension (εzz > εxx = εyy = 0) and axisymmetric extension (εxx = εyy < εzz and εxx = εyy > εzz) would amplify the influence of cross-bedding associated anisotropy on the joint orientation whereas a triaxial extension (εxx > εyy > εzz) would mitigate this influence. We suggest that the potential implication of different categories of joint sets (i.e., cross-bed package confined joints and joint zones) forming in response to the variation of the boundary conditions (axisymmetric extension and triaxial extension, respectively) and the interplay with the rock anisotropy is significant. These results have important implications for fluid flow through aeolian sandstones in reservoirs and aquifers.

  3. Rapid starting methanol reactor system

    DOEpatents

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  4. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  5. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, John A.; Turner, Clarence B.; Johnson, Irving

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  6. Thermal-stress fatigue behavior of twenty-six superalloys

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Spera, D. A.

    1976-01-01

    The comparative thermal-stress fatigue resistances of 26 nickeland cobalt-base alloys were determined by fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials, with directional solidification and surface protection showing definite benefit. The alloy-coating combination with the highest thermal-stress fatigue resistance was directionally solidified NASA TAZ-8A with an RT-SP coating. Its oxidation resistance was also excellent, showing approximately a 1/2 percent weight loss after 14,000 fluidized bed cycles.

  7. Effects of underground mining and mine collapse on the hydrology of selected basins in West Virginia

    USGS Publications Warehouse

    Hobba, William A.

    1993-01-01

    The effects of underground mining and mine collapse on areal hydrology were determined at one site where the mined bed of coal lies above major streams and at two sites where the bed of coal lies below major streams. Subsidence cracks observed at land surface generally run parallel to predominant joint sets in the rocks. The mining and subsidence cracks increase hydraulic conductivity and interconnection of water-bearing rock units, which in turn cause increased infiltration of precipitation and surface water, decreased evapotranspiration, and higher base flows in some small streams. Water levels in observation wells in mined areas fluctuate as much as 100 ft annually. Both gaining and losing streams are found in mined areas. Mine pumpage and drainage can cause diversion of water underground from one basin to another. Areal and single-well aquifer tests indicated that near-surface rocks have higher transmissivity in a mine-subsided basin than in unmined basins. Increased infiltration and circulation through shallow subsurface rocks increase dissolved mineral loads in streams, as do treated and untreated contributions from mine pumpage and drainage. Abandoned and flooded underground mines make good reservoirs because of their increased transmissivity and storage. Subsidence cracks were not detectable by thermal imagery, but springs and seeps were detectable.

  8. Microwave-induced cracking of pyrolytic tars coupled to microwave pyrolysis for syngas production.

    PubMed

    Beneroso, D; Bermúdez, J M; Montes-Morán, M A; Arenillas, A; Menéndez, J A

    2016-10-01

    Herein a new process is proposed to produce a syngas-rich gas fraction (>80vol% H2+CO) from biowaste based on microwave heating within two differentiated steps in order to avoid tars production. The first step consists of the microwave pyrolysis of biowaste induced by a char-based susceptor at 400-800°C; tars, char and syngas-rich gas fractions being produced. The tars are then fed into the second step where a portion of the char from the first step is used as a bed material in a 0.3:1wt% ratio. This bed is heated up by microwaves up to 800°C, allowing thermal cracking of tars and additional syngas (>90vol% H2+CO) being then produced. This new concept arises as an alternative technology to the gasification of biowastes for producing syngas with no need for catalysts or gasifying reagents to minimise tars production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Catalytic cracking of Mayan gas oil and selected hydrotreated products: Topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, J.W.; Zagula, E.J.; Brinkman, D.W.

    1988-01-01

    The catalytic cracking of a Mayan vacuum gas oil and the products from mild, moderate, and severe hydrotreating of this gas oil was evaluated over a low-metal equilibrium catalyst in a microconfined bed unit (MCBU). Results obtained with the Mayan feedstocks are compared with those of an earlier study conducted with similar feedstocks obtained from a Wilmington (CA) crude oil. Two levels of catalytic cracking severity were used in the evaluation. Performance and product analysis showed that hydrotreating improves the yields obtained from catalytic cracking and the quality of the resultant products. In contrast to results obtained with the Wilmingtonmore » feedstocks, conversion and gasoline yield do not improve with severity of the hydrotreating of the Mayan vacuum gas oils. The insensitivity of the cracking performance to hydrotreating severity may reflect the more facile removal of polar compounds (heteroatom compounds) on hydrotreating of the Mayan gas oil in comparison to the Wilmington. Sulfur and nitrogen contents of the liquid products (gasoline, light cycle oil, heavy cycle oil) decreased as the severity of the feed hydrotreating increased. 7 refs., 12 figs., 15 tabs.« less

  10. Scrap tyre pyrolysis: Modified chemical percolation devolatilization (M-CPD) to describe the influence of pyrolysis conditions on product yields.

    PubMed

    Tan, Vincent; De Girolamo, Anthony; Hosseini, Tahereh; Alhesan, Jameel Aljariri; Zhang, Lian

    2018-03-16

    This paper attempts to develop a modified chemical percolation devolatilization (M-CPD) model that can include heat transfer, primary pyrolysis and the secondary cracking reactions of volatiles together to describe the pyrolysis of waste scrap tyre chip, as well as to examine the influence of operating conditions on the scrap tyre pyrolysis product yields. Such a study has yet to be conducted in the past, thereby leading to a large knowledge gap failing to understand the pyrolysis of the coarse feedstock appropriately. To validate the developed model, a number of operating parameters including reactor configurations, carrier gas compositions (argon and argon blended with CO 2 and/or steam), scrap tyre chip size (0.5-15.0 mm), terminal pyrolysis temperature (400-800 °C) and heating rate (10 °C/min and 110 °C/min) were examined in a lab-scale fixed-bed pyrolyser, with a particular focus on the secondary cracking extents of the liquid tar. Through both experimental investigation and modelling approach, it was found that significant secondary cracking extent occurred upon the increase in the feedstock size, heating rate and residence time. Upon the fast pyrolysis, the average temperature gap between the centres of the coarse particle and reactor wall could reach a maximum of 115 °C for the tyre chips of 6-15 mm. Consequently, its primary volatiles underwent the secondary cracking reaction at an overall extent of 17% at a terminal temperature of 600 °C and a fast heating rate of 110 °C/min. Consequently, the yield of light gases including methane was increased remarkably. The flow rate of inert carrier gas was also influential in the secondary cracking, in which a maximum tar yield (54 wt%) was reached at a carrier gas flow rate of 1.5  L/min. This indicates the occurrence of secondary cracking has been largely minimised. At a pyrolysis temperature of 600 °C, the addition of CO 2 in the carrier gas had an insignificant effect on the product yield distribution under the slow heating scheme. In contrast, the addition of steam resulted in a slight increase of carbon monoxide, presumably due to the occurrence of gasification reaction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A probable martian analogue in muttom in southern india

    NASA Astrophysics Data System (ADS)

    Wankhede, Tushar; Rajesh, V. J.; Charri, Abhishek

    2012-07-01

    Mars, a terrestrial planet fourth from the Sun in the solar system, is widely known as the red planet. The iron oxide sand/dust is predominant on its surface and gives the reddish appearance. Recent explorations have exposed abundance of haematite-rich loose materials in the surface of Mars especially at Meridiani Planum. Sedimentary structures like bedding, cross-bedding, ripple marks, gullies, mud cracks etc. are identified in this area. It is essential to look for some terrestrial analogues for the iron oxide rich sand/dust in order to explore their genetic mechanisms in Martian surface. Red sand beds occur above the crystalline basement or younger calcareous sandstone/limestone as isolated patches of partly indurated or unindurated dunes and sheets fringing the south western coastal lands of Tamil Nadu. Calcretes, source of carbonates, also occur at places within these red sand beds. Muttom soils are dark red in color on fresh surfaces. The red sand beds are dominated by iron-bearing minerals such as hematite and ilmenite. Local patches of heavy mineral deposition by the action of wind and water were also observed in the Muttom area. Preliminary spectral analyses confirmed the presence of iron bearing minerals like hematite and ilmenite which are also present in Mars. Many sedimentary structures like gullies, channels, polygonal mud cracks, erosion pits and dunes were present in Muttom area similar to those observed on Martian surface. Meridiani planum outcrops are composed of some siliciclastics grains, and hematite, and only few deposits on Earth match this description. The siliciclastics grains are primarily quartz grain coated with hematite. Quartz is also found in Muttom which, may have been transported by the action of wind while in the Mars siliciclastics is the alteration product of basalt. The structures are more or less similar to those observed at Meridiani Planum. Previous workers interpreted these red sands as `unique' formed either by a mixed beach and dune environment, or as similar to colluvium (formed by mass wasting and fluvial processes). Comparative studies between the red sand beds formations on Martian surface and southern Tamil Nadu can provide valuable insights on the origin, weathering pattern, tectonics and depositional environment of red sand beds in Mars.

  12. Environmental degradation of Opalinus Clay with cyclic variations in relative humidity

    NASA Astrophysics Data System (ADS)

    Wild, Katrin; Walter, Patric; Madonna, Claudio; Amann, Florian

    2016-04-01

    Clay shales are considered as favorable host rocks for nuclear waste repositories due to their low permeability, high sorption capacity and the potential for self-sealing. However, the favorable characteristics of the rock mass may change during tunnel excavation. Excavation is accompanied by stress redistribution and the development of an excavation damage zone. Furthermore, unloading and exposure to atmospheric conditions with a lower relative humidity (RH) causes desaturation of the rock mass close to the tunnel. This leads to shrinkage and the formation of desiccation cracks. During the open drift stage, seasonal atmospheric changes, especially RH variations, may alter the rock mass and influence the long-term crack evolution. This contribution discusses the influence of RH variation on the mechanical behavior of OPA. A series of specimens were exposed to short-term and long-term, stepwise cyclic RH variations between about 60 and 95% at constant temperature. Strains were measured using strain gauges to monitor the volumetric response during RH cycles. After each applied RH cycle, Brazilian tensile strength (BTS) tests were performed to identify whether there is a change in tensile strength due to environmental damage caused by the change in RH. Swelling and shrinkage of the specimens accompanied by irreversible volumetric expansion was observed as a consequence of the exposure to RH cycles. However, the irreversible strain was limited to the direction normal to bedding suggesting that internal damage is restricted along the bedding planes. No significant effect of cyclic RH variations on the BTS of the specimens was observed. The strength parallel to bedding remained constant over several cycles while the strength normal to bedding shows a slightly decreasing trend after 2 cycles. Furthermore, the water retention characteristics of the specimens were not altered significantly during stepwise RH cycling as the evolution of the water content was reversible throughout the cycles. For the RH variation used, the results suggest that the long-term crack evolution around excavations in OPA is not expected to be significantly influenced by environmental degradation but dominated by other processes such as consolidation and creep.

  13. Hydrocarbon liquid production via the bioCRACK process and catalytic hydroprocessing of the product oil

    DOE PAGES

    Schwaiger, Nickolaus; Elliott, Douglas C.; Ritzberger, Jurgen; ...

    2015-01-01

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen rangedmore » from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.« less

  14. Investigation of Dynamic Crack Coalescence Using a Gypsum-Like 3D Printing Material

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Zhao, Gao-Feng; Zhu, Jianbo; Zhao, Yi-Xin; Shen, Luming

    2016-10-01

    Dynamic crack coalescence attracts great attention in rock mechanics. However, specimen preparation in experimental study is a time-consuming and difficult procedure. In this work, a gypsum-like material by powder bed and inkjet 3D printing technique was applied to produce specimens with preset cracks for split Hopkinson pressure bar (SHPB) test. From micro X-ray CT test, it was found that the 3D printing technique could successfully prepare specimens that contain preset cracks with width of 0.2 mm. Basic mechanical properties of the 3D printing material, i.e., the elastic modulus, the Poisson's ratio, the density, the compressive strength, the indirect tensile strength, and the fracture toughness, were obtained and reported. Unlike 3D printed specimens using polylactic acid, these gypsum-like specimens can produce failure patterns much closer to those observed in classical rock mechanical tests. Finally, the dynamic crack coalescence of the 3D printed specimens with preset cracks were captured using a high-speed camera during SHPB tests. Failure patterns of these 3D printed specimens are similar to the specimens made by Portland cement concrete. Our results indicate that sample preparation by 3D printing is highly competitive due to its quickness in prototyping, precision and flexibility on the geometry, and high material homogeneity.

  15. Demonstrating the Effect of Interphase Mass Transfer in a Transparent Fluidized Bed Reactor

    ERIC Educational Resources Information Center

    Saayman, Jean; Nicol, Willie

    2011-01-01

    A demonstration experiment is described that employs the ozone decomposition reaction at ambient conditions on Fe2O3 impregnated Fluidized Catalytic Cracking (FCC) catalyst. Using a two-dimensional see-through column the importance of interphase mass transfer is clearly illustrated by the significant difference in ozone conversion between the…

  16. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    NASA Astrophysics Data System (ADS)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2018-05-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  17. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    NASA Astrophysics Data System (ADS)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2017-12-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT ) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  18. The influence of modifications of a fatigue loading history program on fatigue lifetime

    NASA Technical Reports Server (NTRS)

    Branger, J.

    1972-01-01

    Rectangular specimens of 7075 and 2014 aluminum alloys with two holes (stress concentration factor of 3.24) have been tested under axial fatigue loading on a six-rod test bed with modifications of the loading program, the surface particulars, and the frequency. The length of the precrack stage was investigated by use of a new crack detector. In most cases the two alloys behaved similarly, with similar life to crack start under the same loading. Some overloads lengthened the life. Truncation by omission of the lowest peak loads should be limited to about 20 percent of the ultimate load. Simplifying counting methods gave misleading results. Very thin surface layers of anodizing, protection by vinyl, dry nitrogen atmosphere, as well as stepwise reaming or grinding the surface of the holes, lengthened the life; thick anodized layers shortened the life. Compressing the hole surface by rolling had no influence. Frequencies at about 210 to 240 cpm produced shorter lives than those at 40 cpm. At 5.4 cpm the life was considerably longer. A model to better understand the precrack-stage fatigue mechanism is discussed.

  19. Evaluation of Mobil OCTGAIN{trademark} technology for the manufacture of reformulated gasoline via LP modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poddar, S.K.; Chum, K.; Ragsdale, R.

    1995-09-01

    Sulfur and olefins content of gasoline come primarily from the cat-cracked blendstock. Therefore hydrotreating cat cracked naphtha is a straight forward approach to reduce sulfur and olefin contents of gasoline and thereby reduce auto exhaust emission. However, this approach reduces the Octane number of gasoline which requires addition of Octane enhancer like MTBE to meet the stringent requirement of 1990 Clean Air Act Amendments and to produce Reformulated Gasoline (RFG). The paper examines the economic incentives of an innovative process technology which was developed and commercialized by Mobil known as OCTGAIN. The process utilizes fixed bed low pressure hardware andmore » uses a Mobil proprietary catalyst system to produce catalytically cracked (CC) gasoline component with thorough desulfurization and olefin reduction and practically no loss in Octane number. The economic evaluation of the OCTGAIN technology was conducted with Bechtel`s proprietary linear programming software, Process Industry Modeling System by introducing an OCTGAIN process block to a typical PADD-3 refinery configuration for gasoline production and satisfying RFG specifications. The results of the evaluation which involved twenty case studies, show that within the limitations of the study scope, the introduction of OCTGAIN technology creates a definite economic incentive over conventional hydrofinishing of CC naphtha. The profitability of OCTGAIN technology is dependent on the aromatics component of the gasoline pool. The economic advantage of OCTGAIN technology is realized primarily by higher production of premium gasoline and the ability to process lower cost high sulfur crude. The process also allows a better utilization of the FCCU and hydrocracker, if the refinery operation permits.« less

  20. Process for magnetic beneficiating petroleum cracking catalyst

    DOEpatents

    Doctor, R.D.

    1993-10-05

    A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.

  1. Process for magnetic beneficiating petroleum cracking catalyst

    DOEpatents

    Doctor, Richard D.

    1993-01-01

    A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.

  2. Lower Cretaceous paleo-Vertisols and sedimentary interrelationships in stacked alluvial sequences, Utah, USA

    NASA Astrophysics Data System (ADS)

    Joeckel, R. M.; Ludvigson, G. A.; Kirkland, J. I.

    2017-11-01

    The Yellow Cat Member of the Cedar Mountain Formation in Poison Strip, Utah, USA, consists of stacked, erosionally bounded alluvial sequences dominated by massive mudstones (lithofacies Fm) with paleo-Vertisols. Sediment bodies within these sequences grade vertically and laterally into each other at pedogenic boundaries, across which color, texture, and structures (sedimentary vs. pedogenic) change. Slickensides, unfilled (sealed) cracks, carbonate-filled cracks, and deeper cracks filled with sandstone; the latter features suggest thorough desiccation during aridification. Thin sandstones (Sms) in some sequences, typically as well as laminated to massive mudstones (Flm) with which they are interbedded in some cases, are interpreted as avulsion deposits. The termini of many beds of these lithofacies curve upward, parallel to nearby pedogenic slickensides, as the features we call ;turnups.; Turnups are overlain or surrounded by paleosols, but strata sheltered underneath beds with turnups retain primary sedimentary fabrics. Turnups were produced by movement along slickensides during pedogenesis, by differential compaction alongside pre-existing gilgai microhighs, or by a combination of both. Palustrine carbonates (lithofacies C) appear only in the highest or next-highest alluvial sequences, along with a deep paleo-Vertisol that exhibits partially preserved microrelief at the base of the overlying Poison Strip Member. The attributes of the Yellow Cat Member suggest comparatively low accommodation, slow accumulation, long hiatuses in clastic sedimentation, and substantial time intervals of subaerial exposure and pedogenesis; it appears to be distinct among the members of the Cedar Mountain Formation in these respects.

  3. Subcritical growth of natural hydraulic fractures

    NASA Astrophysics Data System (ADS)

    Garagash, D.

    2014-12-01

    Joints are the most common example of brittle tensile failure in the crust. Their genesis at depth is linked to the natural hydraulic fracturing, which requires pore fluid pressure in excess of the minimum in situ stress [Pollard and Aidyn, JSG1988]. Depending on the geological setting, high pore pressure can result form burial compaction of interbedded strata, diagenesis, or tectonics. Common to these loading scenarios is slow build-up of pore pressure over a geological timescale, until conditions for initiation of crack growth are met on favorably oriented/sized flaws. The flaws can vary in size from grain-size cracks in igneous rocks to a fossil-size flaws in clastic rock, and once activated, are inferred to propagate mostly subcritically [Segall JGR 1984; Olson JGR 1993]. Despite many observational studies of natural hydraulic fractures, the modeling attempts appear to be few [Renshaw and Harvey JGR 1994]. Here, we use boundary integral formulation for the pore fluid inflow from the permeable rock into a propagating joint [Berchenko et al. IJRMMS 1997] coupled with the criteria for subcritical propagation assisted by the environmental effects of pore fluid at the crack tip to solve for the evolution of a penny-shape joint, which, in interbedded rock, may eventually evolve to short-blade geometry (propagation confined to a bed). Initial growth is exceedingly slow, paced by the stress corrosion reaction kinetics at the crack tip. During this stage the crack is fully-drained (i.e. the fluid pressure in the crack is equilibrated with the ambient pore pressure). This "slow" stage is followed by a rapid acceleration, driven by the increase of the mechanical stress intensity factor with the crack length, towards the terminal joint velocity. We provide an analytical expression for the latter as a function of the rock diffusivity, net pressure loading at the initiation (or flaw lengthscale), and parameters describing resistance to fracture growth. Due to a much slower rate of the crack volume expansion of short-blade joints compared to that of penny-shape joints, the former would propagate much faster than the latter under otherwise identical conditions. Finally, we speculate about possible relation of the predicted patterns of joint development with morphology of joint fracture surfaces observed in sedimentary rock.

  4. Spherocylindrical microplane constitutive model for shale and other anisotropic rocks

    NASA Astrophysics Data System (ADS)

    Li, Cunbao; Caner, Ferhun C.; Chau, Viet T.; Bažant, Zdeněk P.

    2017-06-01

    Constitutive equations for inelastic behavior of anisotropic materials have been a challenge for decades. Presented is a new spherocylindrical microplane constitutive model that meets this challenge for the inelastic fracturing behavior of orthotropic materials, and particularly the shale, which is transversely isotropic and is important for hydraulic fracturing (aka fracking) as well as many geotechnical structures. The basic idea is to couple a cylindrical microplane system to the classical spherical microplane system. Each system is subjected to the same strain tensor while their stress tensors are superposed. The spherical phase is similar to the previous microplane models for concrete and isotropic rock. The integration of stresses over spherical microplanes of all spatial orientations relies on the previously developed optimal Gaussian integration over a spherical surface. The cylindrical phase, which is what creates the transverse isotropy, involves only microplanes that are normal to plane of isotropy, or the bedding layers, and enhance the stiffness and strength in that plane. Unlike all the microplane models except the spectral one, the present one can reproduce all the five independent elastic constants of transversely isotropic shales. Vice versa, from these constants, one can easily calculate all the microplane elastic moduli, which are all positive if the elastic in-to-out-of plane moduli ratio is not too big (usually less than 3.75, which applies to all shales). Oriented micro-crack openings, frictional micro-slips and bedding plane behavior can be modeled more intuitively than with the spectral approach. Data fitting shows that the microplane resistance depends on the angle with the bedding layers non-monotonically, and compressive resistance reaches a minimum at 60°. A robust algorithm for explicit step-by-step structural analysis is formulated. Like all microplane models, there are many material parameters, but they can be identified sequentially. Finally, comparisons with extensive test data for shale validate the model.

  5. Catalytic cracking of a Wilmington vacuum oil gas and selected hydrotreated products: Topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, J.W.; Zagula, E.J.

    1987-05-01

    The catalytic cracking of a Wilmington vacuum gas oil and the products from mild hydrotreating and severe hydrotreating of this gas oil was evaluated over a low metal equilibrium catalyst in a microconfined bed unit (MCBU). Two levels of catalytic cracking severity were evaluated for these three samples. The performance and product analysis showed that hydrotreating improves the quality of catalytic cracker feedstock and the resultant products. The results also indicated that a level of hydrotreating exists above which the quality of the liquid products and the yields of coke and heavy oil are not affected significantly by the severitymore » of the catalytic cracking process. As expected, the sulfur and nitrogen content of the liquid products (gasolines, light cycle oil, and heavy cycle oil) were found to decrease as the severity of the feed hydrotreating increased. The distribution of sulfur and nitrogen in the liquid products was found to be independent of cracking conditions or product yields for a given level of hydrogenation. Analysis of the gas products shows that the degree of hydrogen transfer increases with the severity of hydrogenation. As cracking severity increases, the apparent degree of hydrogen transfer decreases, and the concentration of olefinic compounds increases relative to the saturated compounds. In the future, these results will be compared to similar results from a Mayan vacuum gas oil. 10 refs., 17 figs., 10 tabs.« less

  6. On the finite element modeling of the asymmetric cracked rotor

    NASA Astrophysics Data System (ADS)

    AL-Shudeifat, Mohammad A.

    2013-05-01

    The advanced phase of the breathing crack in the heavy duty horizontal rotor system is expected to be dominated by the open crack state rather than the breathing state after a short period of operation. The reason for this scenario is the expected plastic deformation in crack location due to a large compression stress field appears during the continuous shaft rotation. Based on that, the finite element modeling of a cracked rotor system with a transverse open crack is addressed here. The cracked rotor with the open crack model behaves as an asymmetric shaft due to the presence of the transverse edge crack. Hence, the time-varying area moments of inertia of the cracked section are employed in formulating the periodic finite element stiffness matrix which yields a linear time-periodic system. The harmonic balance method (HB) is used for solving the finite element (FE) equations of motion for studying the dynamic behavior of the system. The behavior of the whirl orbits during the passage through the subcritical rotational speeds of the open crack model is compared to that for the breathing crack model. The presence of the open crack with the unbalance force was found only to excite the 1/2 and 1/3 of the backward critical whirling speed. The whirl orbits in the neighborhood of these subcritical speeds were found to have nearly similar behavior for both open and breathing crack models. While unlike the breathing crack model, the subcritical forward whirling speeds have not been observed for the open crack model in the response to the unbalance force. As a result, the behavior of the whirl orbits during the passage through the forward subcritical rotational speeds is found to be enough to distinguish the breathing crack from the open crack model. These whirl orbits with inner loops that appear in the neighborhood of the forward subcritical speeds are then a unique property for the breathing crack model.

  7. Modeling of crack bridging in a unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1991-01-01

    The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches; the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(sup eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(sup eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.

  8. Modeling of crack bridging in a unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1992-01-01

    The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches: the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.

  9. A preliminary study of crack initiation and growth at stress concentration sites

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Gallagher, J. P.; Hartman, G. A.; Rajendran, A. M.

    1982-01-01

    Crack initiation and propagation models for notches are examined. The Dowling crack initiation model and the E1 Haddad et al. crack propagation model were chosen for additional study. Existing data was used to make a preliminary evaluation of the crack propagation model. The results indicate that for the crack sizes in the test, the elastic parameter K gave good correlation for the crack growth rate data. Additional testing, directed specifically toward the problem of small cracks initiating and propagating from notches is necessary to make a full evaluation of these initiation and propagation models.

  10. Modeling the Interactions Between Multiple Crack Closure Mechanisms at Threshold

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Riddell, William T.; Piascik, Robert S.

    2003-01-01

    A fatigue crack closure model is developed that includes interactions between the three closure mechanisms most likely to occur at threshold; plasticity, roughness, and oxide. This model, herein referred to as the CROP model (for Closure, Roughness, Oxide, and Plasticity), also includes the effects of out-of plane cracking and multi-axial loading. These features make the CROP closure model uniquely suited for, but not limited to, threshold applications. Rough cracks are idealized here as two-dimensional sawtooths, whose geometry induces mixed-mode crack- tip stresses. Continuum mechanics and crack-tip dislocation concepts are combined to relate crack face displacements to crack-tip loads. Geometric criteria are used to determine closure loads from crack-face displacements. Finite element results, used to verify model predictions, provide critical information about the locations where crack closure occurs.

  11. A new fracture mechanics model for multiple matrix cracks of SiC fiber reinforced brittle-matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okabe, T.; Takeda, N.; Komotori, J.

    1999-11-26

    A new model is proposed for multiple matrix cracking in order to take into account the role of matrix-rich regions in the cross section in initiating crack growth. The model is used to predict the matrix cracking stress and the total number of matrix cracks. The model converts the matrix-rich regions into equivalent penny shape crack sizes and predicts the matrix cracking stress with a fracture mechanics crack-bridging model. The estimated distribution of matrix cracking stresses is used as statistical input to predict the number of matrix cracks. The results show good agreement with the experimental results by replica observations.more » Therefore, it is found that the matrix cracking behavior mainly depends on the distribution of matrix-rich regions in the composite.« less

  12. Durability and life prediction modeling in polyimide composites

    NASA Technical Reports Server (NTRS)

    Binienda, Wieslaw K.

    1995-01-01

    Sudden appearance of cracks on a macroscopically smooth surface of brittle materials due to cooling or drying shrinkage is a phenomenon related to many engineering problems. Although conventional strength theories can be used to predict the necessary condition for crack appearance, they are unable to predict crack spacing and depth. On the other hand, fracture mechanics theory can only study the behavior of existing cracks. The theory of crack initiation can be summarized into three conditions, which is a combination of a strength criterion and laws of energy conservation, the average crack spacing and depth can thus be determined. The problem of crack initiation from the surface of an elastic half plane is solved and compares quite well with available experimental evidence. The theory of crack initiation is also applied to concrete pavements. The influence of cracking is modeled by the additional compliance according to Okamura's method. The theoretical prediction by this structural mechanics type of model correlates very well with the field observation. The model may serve as a theoretical foundation for future pavement joint design. The initiation of interactive cracks of quasi-brittle material is studied based on a theory of cohesive crack model. These cracks may grow simultaneously, or some of them may close during certain stages. The concept of crack unloading of cohesive crack model is proposed. The critical behavior (crack bifurcation, maximum loads) of the cohesive crack model are characterized by rate equations. The post-critical behavior of crack initiation is also studied.

  13. Unified risk analysis of fatigue failure in ductile alloy components during all three stages of fatigue crack evolution process.

    PubMed

    Patankar, Ravindra

    2003-10-01

    Statistical fatigue life of a ductile alloy specimen is traditionally divided into three stages, namely, crack nucleation, small crack growth, and large crack growth. Crack nucleation and small crack growth show a wide variation and hence a big spread on cycles versus crack length graph. Relatively, large crack growth shows a lesser variation. Therefore, different models are fitted to the different stages of the fatigue evolution process, thus treating different stages as different phenomena. With these independent models, it is impossible to predict one phenomenon based on the information available about the other phenomenon. Experimentally, it is easier to carry out crack length measurements of large cracks compared to nucleating cracks and small cracks. Thus, it is easier to collect statistical data for large crack growth compared to the painstaking effort it would take to collect statistical data for crack nucleation and small crack growth. This article presents a fracture mechanics-based stochastic model of fatigue crack growth in ductile alloys that are commonly encountered in mechanical structures and machine components. The model has been validated by Ray (1998) for crack propagation by various statistical fatigue data. Based on the model, this article proposes a technique to predict statistical information of fatigue crack nucleation and small crack growth properties that uses the statistical properties of large crack growth under constant amplitude stress excitation. The statistical properties of large crack growth under constant amplitude stress excitation can be obtained via experiments.

  14. Analysis of cracks induced by elevated temperature in rock using micro-focus X-ray CT

    NASA Astrophysics Data System (ADS)

    Cheon, D. S.; Park, E. S.

    2016-12-01

    Thermal energy storage facilities and deep borehole nuclear waste disposal in the underground are repeatedly applied by heat. The thermal stress induced by heat can generate micro-cracks and extend the existing micro-cracks of rocks. For long-term stabilities of the above facilities, the features of thermal induced cracks should be investigated. In this paper, we investigated occurred the features of thermal cracks using micro-focus X-ray CT before and after thermal experiments. Two different kinds of rock core specimens (limestone, granite) were heated within the furnace with the elevated temperatures of 250 °C, 400 °C and 550 °C. In thermal experiments, we heated rocks with the speed of 1.5 ºC /min to avoid thermal shock. Total 16 cases were subjected to X-ray imaging and post-processing to observe thermally induced fractures. Micro-cracks induced by thermal loading may not be extractable by a thresholding method such that the manual tracking within the ROI (Region of Interest) was implemented by using the VG Studio Software. Identified fractures were grouped by each object whose orientation was fitted by 3D plane. And then, its normal vector was computed and visualized. Nominal fractures (less than 10 voxel size) were excluded. Each fracture was projected on the 3D sphere and its volume was represented by color map. Thermal induced cracks in the limestone observed on CT images were very small. On the other hand, they could be more clearly observed in the granite. In case of limestone, the number of cracks is only 4 after heating up 550 °C and most of them occurred within the mineral. In case of granite, 157 cracks are detected both at the boundaries of minerals and within the mineral. In both rocks, the development of thermal cracks within a certain mineral was superior to them that occurred along the interface between minerals. After heating up to 550 °C the occurred cracks significantly increased. Crack volume was also similar pattern to the number of cracks. However the average volume of cracks in limestone is larger than granite. The normal vector of the cracks is similar to the bedding plane of limestone and texture of granite. These cracks affected the physical(density, elastic wave velocity) and mechanical properties(uniaxial compression strength , elastic modulus.

  15. Catalytic and thermal cracking processes of waste cooking oil for bio-gasoline synthesis

    NASA Astrophysics Data System (ADS)

    Dewanto, Muhammad Andry Rizki; Januartrika, Aulia Azka; Dewajani, Heny; Budiman, Arief

    2017-03-01

    Non-renewable energy resources such as fossil fuels, and coal were depleted as the increase of global energy demand. Moreover, environmental aspect becomes a major concern which recommends people to utilize bio-based resources. Waste cooking oil is one of the economical sources for biofuel production and become the most used raw material for biodiesel production. However, the products formed during frying, can affect the trans-esterification reaction and the biodiesel properties. Therefore, it needs to convert low-quality cooking oil directly into biofuel by both thermal and catalytic cracking processes. Thermal and catalytic cracking sometimes are regarded as prospective bio-energy conversion processes. This research was carried out in the packed bed reactor equipped with 2 stages preheater with temperature of reactor was variated in the range of 450-550°C. At the same temperature, catalytic cracking had been involved in this experiment, using activated ZSM-5 catalyst with 1 cm in length. The organic liquid product was recovered by three stages of double pipe condensers. The composition of cracking products were analyzed using GC-MS instrument and the caloric contents were analyzed using Bomb calorimeter. The results reveal that ZSM-5 was highly selective toward aromatic and long aliphatic compounds formation. The percentage recovery of organic liquid product from the cracking process varies start from 8.31% and the optimal results was 54.08%. The highest heating value of liquid product was resulted from catalytic cracking process at temperature of 450°C with value of 10880.48 cal/gr and the highest product yield with 54.08% recovery was achieved from thermal cracking process with temperature of 450°C.

  16. Low cost silicon solar array project silicon materials task: Establishment of the feasibility of a process capable of low-cost, high volume production of silane (step 1) and the pyrolysis of silane to semiconductor-grade silicon (step 2)

    NASA Technical Reports Server (NTRS)

    Breneman, W. C.; Farrier, E. G.; Rexer, J.

    1977-01-01

    Extended operation of a small process-development unit routinely produced high quality silane in 97+% yield from dichlorosilane. The production rate was consistent with design loadings for the fractionating column and for the redistribution reactor. A glass fluid-bed reactor was constructed for room temperature operation. The behavior of a bed of silcon particles was observed as a function of various feedstocks, component configurations, and operating conditions. For operating modes other than spouting, the bed behaved in an erratic and unstable manner. A method was developed for casting molten silicon powder into crack-free solid pellets for process evaluation. The silicon powder was melted and cast into thin walled quartz tubes that sacrificially broke on cooling.

  17. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics

    NASA Astrophysics Data System (ADS)

    Li, C. James; Lee, Hyungdae

    2005-07-01

    This paper presents a model-based method that predicts remaining useful life of a gear with a fatigue crack. The method consists of an embedded model to identify gear meshing stiffness from measured gear torsional vibration, an inverse method to estimate crack size from the estimated meshing stiffness; a gear dynamic model to simulate gear meshing dynamics and determine the dynamic load on the cracked tooth; and a fast crack propagation model to forecast the remaining useful life based on the estimated crack size and dynamic load. The fast crack propagation model was established to avoid repeated calculations of FEM and facilitate field deployment of the proposed method. Experimental studies were conducted to validate and demonstrate the feasibility of the proposed method for prognosis of a cracked gear.

  18. Modeling Transverse Cracking in Laminates With a Single Layer of Elements Per Ply

    NASA Technical Reports Server (NTRS)

    Van Der Meer, Frans P.; Davila, Carlos G.

    2012-01-01

    The objective of the present paper is to investigate the ability of mesolevel X-FEM models with a single layer of elements per ply to capture accurately all aspects of matrix cracking. In particular, we examine whether the model can predict the insitu ply thickness effect on crack initiation and propagation, the crack density as a function of strain, the strain for crack saturation, and the interaction between delamination and transverse cracks. Results reveal that the simplified model does not capture correctly the shear-lag relaxation of the stress field on either side of a crack, which leads to an overprediction of the crack density. It is also shown, however, that after onset of delamination many of the inserted matrix cracks close again, and that the density of open cracks becomes similar to the density predicted by the detailed model. The degree to which the spurious cracks affect the global response is quantified and the reliability of the mesolevel approach with a single layer of elements per ply is discussed.

  19. Identification of cracks in thick beams with a cracked beam element model

    NASA Astrophysics Data System (ADS)

    Hou, Chuanchuan; Lu, Yong

    2016-12-01

    The effect of a crack on the vibration of a beam is a classical problem, and various models have been proposed, ranging from the basic stiffness reduction method to the more sophisticated model involving formulation based on the additional flexibility due to a crack. However, in the damage identification or finite element model updating applications, it is still common practice to employ a simple stiffness reduction factor to represent a crack in the identification process, whereas the use of a more realistic crack model is rather limited. In this paper, the issues with the simple stiffness reduction method, particularly concerning thick beams, are highlighted along with a review of several other crack models. A robust finite element model updating procedure is then presented for the detection of cracks in beams. The description of the crack parameters is based on the cracked beam flexibility formulated by means of the fracture mechanics, and it takes into consideration of shear deformation and coupling between translational and longitudinal vibrations, and thus is particularly suitable for thick beams. The identification procedure employs a global searching technique using Genetic Algorithms, and there is no restriction on the location, severity and the number of cracks to be identified. The procedure is verified to yield satisfactory identification for practically any configurations of cracks in a beam.

  20. Recent advances in the modelling of crack growth under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Dekoning, A. U.; Tenhoeve, H. J.; Henriksen, T. K.

    1994-01-01

    Fatigue crack growth associated with cyclic (secondary) plastic flow near a crack front is modelled using an incremental formulation. A new description of threshold behaviour under small load cycles is included. Quasi-static crack extension under high load excursions is described using an incremental formulation of the R-(crack growth resistance)- curve concept. The integration of the equations is discussed. For constant amplitude load cycles the results will be compared with existing crack growth laws. It will be shown that the model also properly describes interaction effects of fatigue crack growth and quasi-static crack extension. To evaluate the more general applicability the model is included in the NASGRO computer code for damage tolerance analysis. For this purpose the NASGRO program was provided with the CORPUS and the STRIP-YIELD models for computation of the crack opening load levels. The implementation is discussed and recent results of the verification are presented.

  1. An elastic-plastic fracture mechanics analysis of weld-toe surface cracks in fillet welded T-butt joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, B.

    1994-12-31

    This paper describes an elastic-plastic fracture mechanics (EPFM) study of shallow weld-toe cracks. Two limiting crack configurations, plane strain edge crack and semi-circular surface crack in fillet welded T-butt plate joint, were analyzed using the finite element method. Crack depth ranging from 2 to 40% of plate thickness were considered. The elastic-plastic analysis, assuming power-law hardening relationship and Mises yield criterion, was based on incremental plasticity theory. Tension and bending loads applied were monotonically increased to a level causing relatively large scale yielding at the crack tip. Effects of weld-notch geometry and ductile material modeling on prediction of fracture mechanicsmore » characterizing parameter were assessed. It was found that the weld-notch effect reduces and the effect of material modeling increases as crack depth increases. Material modeling is less important than geometric modeling in analysis of very shallow cracks but is more important for relatively deeper cracks, e.g. crack depth more than 20% of thickness. The effect of material modeling can be assessed using a simplified structural model. Weld magnification factors derived assuming linear elastic conditions can be applied to EPFM characterization.« less

  2. A low diversity, seasonal tropical landscape dominated by conifers and peltasperms: Early Permian Abo Formation, New Mexico

    USGS Publications Warehouse

    DiMichele, W.A.; Chaney, D.S.; Nelson, W.J.; Lucas, S.G.; Looy, C.V.; Quick, K.; Jun, W.

    2007-01-01

    Walchian conifers (Walchia piniformis Sternberg, 1825) and peltasperms similar to Supaia thinnfeldioides White and cf. Supaia anomala White dominate floodplain deposits of a narrow stratigraphic interval of the middle Abo Formation, Lower Permian of central New Mexico. The plant fossils occur in thinly bedded units up to two meters thick, consisting of coarse siltstone to very fine sandstone with clay partings. Bedding is primarily tabular, thin, and bears rare ripple marks and trough cross beds. Bedding surfaces display mud cracks, raindrop imprints, horizontal and vertical burrows of invertebrates, and footprints of terrestrial vertebrates. These features indicate intermittent and generally unchannelized stream flow, with repeated exposure to air. Channels appear to have cannibalized one another on a slowly subsiding coastal plain. Conifers are dominant at three collecting sites and at three others Supaia dominates. Although each of these genera occurs in assemblages dominated by the other, there are no truly co-dominant assemblages. This pattern suggests alternative explanations. Landscapes could have consisted of a small-scale vegetational patchwork dominated almost monospecifically in any one patch, meaning that these plants could have coexisted across the landscape. On the other hand, conifer and supaioid dominance could have been temporally distinct, occurring during different episodes of sedimentation; although in the field there are no noticeable sedimentological differences between conifer-dominated and Supaia-dominated channel deposits, they may represent slightly different climatic regimes. The considerable morphological differences between conifers and Supaia suggest that the floristic patterns are not a taphonomic effect of the loss of a significant part of the original biodiversity. In general, the climate under which this vegetation developed appears to have been relatively warm and arid, based on the geology (pervasive red color [oxidation], calcrete in paleosols, and abundant mud cracks evidencing ephemeral flow in streams) and biology (low floristic diversity, xeromorphic plant physiognomies). ?? 2006 Elsevier B.V. All rights reserved.

  3. Growth rate models for short surface cracks in AI 2219-T851

    NASA Astrophysics Data System (ADS)

    Morris, W. L.; James, M. R.; Buck, O.

    1981-01-01

    Rates of fatigue propagation of short Mode I surface cracks in Al 2219-T851 are measured as a function of crack length and of the location of the surface crack tips relative to the grain boundaries. The measured rates are then compared to values predicted from crack growth models. The crack growth rate is modeled with an underlying assumption that slip responsible for early propagation does not extend in significant amounts beyond the next grain boundary in the direction of crack propagation. Two models that contain this assumption are combined: 1) cessation of propagation into a new grain until a mature plastic zone is developed; 2) retardation of propagation by crack closure stress, with closure stress calculated from the location of a crack tip relative to the grain boundary. The transition from short to long crack growth behavior is also discussed.

  4. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  5. Theoretical predicting of permeability evolution in damaged rock under compressive stress

    NASA Astrophysics Data System (ADS)

    Vu, M. N.; Nguyen, S. T.; To, Q. D.; Dao, N. H.

    2017-05-01

    This paper outlines an analytical model of crack growth induced permeability changes. A theoretical solution of effective permeability of cracked porous media is derived. The fluid flow obeys Poisseuille's law along the crack and Darcy's law in the porous matrix. This solution exhibits a percolation threshold for any type of crack distribution apart from a parallel crack distribution. The physical behaviour of fluid flow through a cracked porous material is well reproduced by the proposed model. The presence of this effective permeability coupling to analytical expression of crack growth under compression enables the modelling of the permeability variation due to stress-induced cracking in a porous rock. This incorporation allows the prediction of the permeability change of a porous rock embedding an anisotropic crack distribution from any initial crack density, that is, lower, around or upper to percolation threshold. The interaction between cracks is not explicitly taken into account. The model is well applicable both to micro- and macrocracks.

  6. Discrete statistical model of fatigue crack growth in a Ni-base superalloy, capable of life prediction

    NASA Astrophysics Data System (ADS)

    Boyd-Lee, Ashley; King, Julia

    1992-07-01

    A discrete statistical model of fatigue crack growth in a nickel base superalloy Waspaloy, which is quantitative from the start of the short crack regime to failure, is presented. Instantaneous crack growth rate distributions and persistence of arrest distributions are used to compute fatigue lives and worst case scenarios without extrapolation. The basis of the model is non-material specific, it provides an improved method of analyzing crack growth rate data. For Waspaloy, the model shows the importance of good bulk fatigue crack growth resistance to resist early short fatigue crack growth and the importance of maximizing crack arrest both by the presence of a proportion of small grains and by maximizing grain boundary corrugation.

  7. A crack-closure model for predicting fatigue-crack growth under aircraft spectrum loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1981-01-01

    The development and application of an analytical model of cycle crack growth is presented that includes the effects of crack closure. The model was used to correlate crack growth rates under constant amplitude loading and to predict crack growth under aircraft spectrum loading on 2219-T851 aluminum alloy sheet material. The predicted crack growth lives agreed well with experimental data. The ratio of predicted to experimental lives ranged from 0.66 to 1.48. These predictions were made using data from an ASTM E24.06.01 Round Robin.

  8. Two compounds in bed bug feces are sufficient to elicit off-host aggregation by bed bugs, Cimex lectularius.

    PubMed

    Olson, Joelle F; Vers, Leonard M Ver; Moon, Roger D; Kells, Stephen A

    2017-01-01

    After feeding, bed bugs aggregate in cracks and crevices near a host. Aggregation and arrestment are mediated by tactile and chemical stimuli associated with the bugs' feces and exuviae. Volatiles derived from fecally stained filter papers were analyzed by solid-phase microextraction (SPME) and evaluated using a multichoice behavioral assay to determine their impact on bed bug aggregation. In addition, crude fecal extracts were collected in methanol, analyzed by gas chromatography coupled with electroantennogram detection (GC-EAD) and mass spectrometry (GC-MS) and evaluated in open-air multichoice behavioral assays. The SPME method was used to detect (E)-2-hexenal and (E)-2-octenal in heated bed bug feces. The presence of these two volatile components did not affect aggregation. Analysis of the crude fecal extracts revealed several semi-volatile nitrogenous compounds, a carboxylic acid and a sulfur-based compound. Adult antennae responded to compounds eluted from three regions of the crude extract using GC-EAD. A combination of two compounds, dimethyl trisulfide and methyldiethanolamine, resulted in aggregation responses equivalent to the original crude extract. Bed bug aggregation is mediated by semi-volatile compounds derived from fecal extracts, and two compounds are sufficient to elicit aggregation. The two compounds identified here could be used to enhance the effectiveness of insecticidal applications or improve monitoring techniques. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Interaction of part-through cracks in a flat plate

    NASA Technical Reports Server (NTRS)

    Aksel, B.; Erdogan, F.

    1985-01-01

    The accuracy of the line spring model is determined. The effect of interaction between two and three cracks is investigated, and extensive numerical results which may be useful in applications are provided. Line spring model with Reissner's plate theory is formulated to be used for any number and configurations of cracks provided that there is symmetry. This model is used to find stress intensity factors for elliptic internal cracks, elliptic edge cracks and two opposite elliptic edge cracks. Despite the simplicity of the line spring model, the results are found to be close.

  10. Application of the cohesive zone model for the evaluation of stiffness losses in a rotor with a transverse breathing crack

    NASA Astrophysics Data System (ADS)

    Toni Liong, Rugerri; Proppe, Carsten

    2013-04-01

    The breathing mechanism of a transversely cracked rotor and its influence on a rotor system that appears due to shaft weight and inertia forces is studied. A method is proposed for the evaluation of the stiffness losses in the cross-section that contains the crack. This method is based on a cohesive zone model (CZM) instead of linear elastic fracture mechanics (LEFM). The CZM is developed for mode-I plane strain conditions and accounts explicitly for triaxiality of the stress state by using constitutive relations. The breathing crack is modelled by a parabolic shape. As long as the relative crack depth is small, a crack closure straight line model may be used, while the crack closure parabolic line should be used in the case of a deep crack. The CZM is also implemented in a one-dimensional continuum rotor model by means of finite element (FE) discretisation in order to predict and to analyse the dynamic behavior of a cracked rotor. The proposed method provides a useful tool for the analysis of rotor systems containing cracks.

  11. A re-evaluation of finite-element models and stress-intensity factors for surface cracks emanating from stress concentrations

    NASA Technical Reports Server (NTRS)

    Tan, P. W.; Raju, I. S.; Shivakumar, K. N.; Newman, J. C., Jr.

    1988-01-01

    A re-evaluation of the 3-D finite-element models and methods used to analyze surface crack at stress concentrations is presented. Previous finite-element models used by Raju and Newman for surface and corner cracks at holes were shown to have ill-shaped elements at the intersection of the hole and crack boundaries. These ill-shaped elements tended to make the model too stiff and, hence, gave lower stress-intensity factors near the hole-crack intersection than models without these elements. Improved models, without these ill-shaped elements, were developed for a surface crack at a circular hole and at a semi-circular edge notch. Stress-intensity factors were calculated by both the nodal-force and virtual-crack-closure methods. Both methods and different models gave essentially the same results. Comparisons made between the previously developed stress-intensity factor equations and the results from the improved models agreed well except for configurations with large notch-radii-to-plate-thickness ratios. Stress-intensity factors for a semi-elliptical surface crack located at the center of a semi-circular edge notch in a plate subjected to remote tensile loadings were calculated using the improved models. The ratio of crack depth to crack length ranged form 0.4 to 2; the ratio of crack depth to plate thickness ranged from 0.2 to 0.8; and the ratio of notch radius to the plate thickness ranged from 1 to 3. The models had about 15,000 degrees-of-freedom. Stress-intensity factors were calculated by using the nodal-force method.

  12. Development of an In-Situ Decommissioning Sensor Network Test Bed for Structural Condition Monitoring - 12156

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeigler, Kristine E.; Ferguson, Blythe A.

    2012-07-01

    The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials andmore » condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors installed on the P Reactor Building blocks define the baseline materials condition of the P Reactor ISD external concrete structure. Continued monitoring of the blocks will enable evaluation of the effects of aging on the P Reactor ISD structure. The collected data will support validation of the material degradation model and assessment of the condition of the ISD structure over time. The following are recommendations for continued development of the ISD Sensor Network Test Bed: - Establish a long-term monitoring program using the concrete blocks with existing sensor and/or additional sensors for trending the concrete materials and structural condition; - Continue development of a stand-alone test bed sensor system that is self-powered and provides wireless transmission of data to a user-accessible dashboard; - Develop and implement periodic NDE/DE characterization of the concrete blocks to provide verification and validation for the measurements obtained through the sensor system and concrete degradation model(s). (authors)« less

  13. Microstructural characterization of pressed HMX material sets at differing densities

    NASA Astrophysics Data System (ADS)

    Molek, C. D.; Welle, E. J.; Wixom, R. R.; Ritchey, M. B.; Samuels, P.; Horie, Y.

    2017-01-01

    The detonation physics community has embraced the idea that initiation of high explosives (HE) proceeds from an ignition event through subsequent growth to steady detonation. A weakness of all the commonly used ignition and growth models is the microstructural characteristics of the HE are not explicitly incorporated in their ignition and growth terms. This is the case in spite of a demonstrated, but not well-understood, empirical link between particle morphology and initiation of HE. Morphological effects have been parametrically studied in many ways, the majority of efforts focus on establishing a tie between bulk powder metrics and initiation of the pressed beds. More recently, there has been a shift toward characterizing the microstructure of pressed beds in order to understand the underlying mechanisms governing initiation behavior. In this work, we have characterized the microstructures of two HMX classes pressed at three densities using ion bombardment techniques. We find more significant compaction associated with the larger crystalline material - Class 3 - than the smaller fluid energy milled material. The Class 3 material exhibits evidence of crystal cracking. Finally, we discuss this evidence and our attempt to correlate microstructural features to observed changes in continuum level initiation behavior.

  14. Natural glide slab avalanches, Glacier National Park, USA: A unique hazard and forecasting challenge

    USGS Publications Warehouse

    Reardon, Blase; Fagre, Daniel B.; Dundas, Mark; Lundy, Chris

    2006-01-01

    In a museum of avalanche phenomena, glide cracks and glide avalanches might be housed in the “strange but true” section. These oddities are uncommon in most snow climates and tend to be isolated to specific terrain features such as bedrock slabs. Many glide cracks never result in avalanches, and when they do, the wide range of time between crack formation and slab failure makes them highly unpredictable. Despite their relative rarity, glide cracks and glide avalanches pose a regular threat and complex forecasting challenge during the annual spring opening of the Going-to-the-Sun Road in Glacier National Park, U.S.A. During the 2006 season, a series of unusual glide cracks delayed snow removal operations by over a week and provided a unique opportunity to record detailed observations of glide avalanches and characterize their occurrence and associated weather conditions. Field observations were from snowpits, crown profiles and where possible, measurements of slab thickness, bed surface slope angle, substrate and other physical characteristics. Weather data were recorded at one SNOTEL site and two automated stations located from 0.6-10 km of observed glide slab avalanches. Nearly half (43%) of the 35 glide slab avalanches recorded were Class D2-2.5, with 15% Class D3-D3.5. The time between glide crack opening and failure ranged from 2 days to over six weeks, and the avalanches occurred in cycles associated with loss of snow water equivalent and spikes in temperature and radiation. We conclude with suggest ions for further study.

  15. A dynamic model of a cantilever beam with a closed, embedded horizontal crack including local flexibilities at crack tips

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhu, W. D.; Charalambides, P. G.; Shao, Y. M.; Xu, Y. F.; Fang, X. M.

    2016-11-01

    As one of major failure modes of mechanical structures subjected to periodic loads, embedded cracks due to fatigue can cause catastrophic failure of machineries. Understanding the dynamic characteristics of a structure with an embedded crack is helpful for early crack detection and diagnosis. In this work, a new three-segment beam model with local flexibilities at crack tips is developed to investigate the vibration of a cantilever beam with a closed, fully embedded horizontal crack, which is assumed to be not located at its clamped or free end or distributed near its top or bottom side. The three-segment beam model is assumed to be a linear elastic system, and it does not account for the nonlinear crack closure effect; the top and bottom segments always stay in contact at their interface during the beam vibration. It can model the effects of local deformations in the vicinity of the crack tips, which cannot be captured by previous methods in the literature. The middle segment of the beam containing the crack is modeled by a mechanically consistent, reduced bending moment. Each beam segment is assumed to be an Euler-Bernoulli beam, and the compliances at the crack tips are analytically determined using a J-integral approach and verified using commercial finite element software. Using compatibility conditions at the crack tips and the transfer matrix method, the nature frequencies and mode shapes of the cracked cantilever beam are obtained. The three-segment beam model is used to investigate the effects of local flexibilities at crack tips on the first three natural frequencies and mode shapes of the cracked cantilever beam. A stationary wavelet transform (SWT) method is used to process the mode shapes of the cracked cantilever beam; jumps in single-level SWT decomposition detail coefficients can be used to identify the length and location of an embedded horizontal crack.

  16. Additional thermal fatigue data on nickel- and cobalt-base superalloys, part 1

    NASA Technical Reports Server (NTRS)

    Howes, M. A. H.

    1973-01-01

    The fluidized bed technique was used to measure the relative thermal fatigue resistance of twenty-one superalloys. Among the thirty-six variations of composition, solidification method, and surface protection the cycles to cracking differed by two to three orders of magnitude. Some alloys suffered serious weight losses and oxidation. Thermal fatigue data, oxidation, and dimensional changes are reported. The types of superalloys are identified.

  17. Modelling and measurement of crack closure and crack growth following overloads and underloads

    NASA Technical Reports Server (NTRS)

    Dexter, R. J.; Hudak, S. J.; Davidson, D. L.

    1989-01-01

    Ignoring crack growth retardation following overloads can result in overly conservative life predictions in structures subjected to variable amplitude fatigue loading. Crack closure is believed to contribute to the crack growth retardation, although the specific closure mechanism is dabatable. The delay period and corresponding crack growth rate transients following overload and overload/underload cycles were systematically measured as a function of load ratio and overload magnitude. These responses are correlated in terms of the local 'driving force' for crack growth, i.e. the effective stress intensity factor range. Experimental results are compared with the predictions of a Dugdale-type (1960) crack closure model, and improvements in the model are suggested.

  18. Ply cracking in composite laminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Youngmyong.

    1989-01-01

    Ply cracking behavior and accompanying stiffness changes in thermoset as well as thermoplastic matrix composites under various loading conditions are investigated. Specific topics addressed are: analytical model development for property degradations due to ply cracking under general in-plane loading; crack initiation and multiplication under static loading; and crack multiplication under cyclic loading. A model was developed to calculate the energy released due to ply cracking in a composite laminate subjected to general in-plane loading. The method is based on the use of a second order polynomial to represent the crack opening displacement and the concept of a through-the-thickness inherent flaw.more » The model is then used in conjunction with linear elastic fracture mechanics to predict the progressive ply cracking as well as first ply cracking. A resistance curve for crack multiplication is proposed as a means of characterizing the resistance to ply cracking in composite laminates. A methodology of utilizing the resistance curve to assess the crack density or overloading is also discussed. The method was applied to the graphite/thermoplastic polyimide composite to predict progressive ply cracking. However, unlike the thermoset matrix composites, a strength model is found to fit the experimental results better than the fracture mechanics based model. A set of closed form equations is also developed to calculate the accompanying stiffness changes due to the ply cracking. The effect of thermal residual stress is included in the analysis. A new method is proposed to characterize transverse ply cracking of symmetric balanced laminates under cyclic loading. The method is based on the concept of a through-the-thickness inherent flaw, the Paris law, and the resistance curve. Only two constants are needed to predict the crack density as a function of fatigue cycles.« less

  19. Fluidized-bed pyrolysis of oil shale: oil yield, composition, and kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, J H; Huss, E B; Ott, L L

    1982-09-01

    A quartz isothermal fluidized-bed reactor has been used to measure kinetics and oil properties relevant to surface processing of oil shale. The rate of oil formation has been described with two sequential first-order rate equations characterized by two rate constants, k/sub 1/ = 2.18 x 10/sup 10/ exp(-41.6 kcal/RT) s/sup -1/ and k/sub 2/ = 4.4 x 10/sup 6/ exp(-29.7 kcal/RT) s/sup -1/. These rate constants together with an expression for the appropriate weighting coefficients describe approximately 97/sup +/% of the total oil produced. A description is given of the results of different attempts to mathematically describe the data inmore » a manner suitable for modeling applications. Preliminary results are also presented for species-selective kinetics of methane, ethene, ethane and hydrogen, where the latter is clearly distinguished as the product of a distinct intermediate. Oil yields from Western oil shale are approximately 100% Fischer assay. Oil composition is as expected based on previous work and the higher heating rates (temperatures) inherent in fluidized-bed pyrolysis. Neither the oil yield, composition nor the kinetics varied with particle size between 0.2 and 2.0 mm within experimental error. The qualitatively expected change in oil composition due to cracking was observed over the temperature range studied (460 to 540/sup 0/C). Eastern shale exhibited significantly faster kinetics and higher oil yields than did Western shale.« less

  20. Evaluation of Elber's Crack Closure Model as an Explanation of Train Load Sequence Effects on Crack Growth Rates

    DOT National Transportation Integrated Search

    1990-06-01

    Elber's crack closure model is studied in relation to the results of laboratory spectrum crack growth tests on compact tension specimens (CTS) fabricated from rail effected by mean of an analysis of a center cracked panel (CCP) subjected to an equiva...

  1. A Martian analog in Kansas: Comparing Martian strata with Permian acid saline lake deposits

    NASA Astrophysics Data System (ADS)

    Benison, Kathleen C.

    2006-05-01

    An important result of the Mars Exploration Rover's (MER) mission has been the images of sedimentary structures and diagenetic features in the Burns Formation at Meridiani Planum. Bedding, cross-bedding, ripple marks, mud cracks, displacive evaporite crystal molds, and hematite concretions are contained in these Martian strata. Together, these features are evidence of past saline groundwater and ephemeral shallow surface waters on Mars. Geochemical analyses of these Martian outcrops have established the presence of sulfates, iron oxides, and jarosite, which strongly suggests that these waters were also acidic. The same assemblage of sedimentary structures and diagenetic features is found in the salt-bearing terrestrial red sandstones and shales of the middle Permian (ca. 270 Ma) Nippewalla Group of Kansas, which were deposited in and around acid saline ephemeral lakes. These striking sedimentological and mineralogical similarities make these Permian red beds and evaporites the best-known terrestrial analog for the Martian sedimentary rocks at Meridiani Planum.

  2. Corrosion fatigue crack propagation in metals

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1990-01-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  3. Mode I stress intensity factors of slanted cracks in plates

    NASA Astrophysics Data System (ADS)

    Ismail, Al Emran; Ghazali, Mohd Zubir Mohd; Nor, Nik Hisyamudin Muhd

    2017-01-01

    This paper presents the roles of slanted cracks on the stress intensity factors (SIF) under mode I tension and bending loading. Based on the literature survey, lack of solution of SIFs of slanted cracks in plain strain plates are available. In this work, the cracks are modelled numerically using ANSYS finite element program. There are two important parameters such as slanted angles and relative crack length. SIFs at the crack tips are calculated according to domain integral method. Before the model is further used, it is validated with the existing model. It is found that the present model is well agreed with the previous model. According to finite element analysis, there are not only mode I SIFs produced but also mode II. As expected the SIFs increased as the relative crack length increased. However, when slanted angles are introduced (slightly higher than normal crack), the SIFs increased. Once the angles are further increased, the SIFs decreased gradually however they are still higher than the SIFs of normal cracks. For mode II SIFs, higher the slanted angels higher the SIFs. This is due to the fact that when the cracks are slanted, the cracked plates are not only failed due to mode I but a combination between both modes I and II.

  4. Residual stress prediction in a powder bed fusion manufactured Ti6Al4V hip stem

    NASA Astrophysics Data System (ADS)

    Barrett, Richard A.; Etienne, Titouan; Duddy, Cormac; Harrison, Noel M.

    2017-10-01

    Powder bed fusion (PBF) is a category of additive manufacturing (AM) that is particularly suitable for the production of 3D metallic components. In PBF, only material in the current build layer is at the required melt temperature, with the previously melted and solidified layers reducing in temperature, thus generating a significant thermal gradient within the metallic component, particularly for laser based PBF components. The internal thermal stresses are subsequently relieved in a post-processing heat-treatment step. Failure to adequately remove these stresses can result in cracking and component failure. A prototype hip stem was manufactured from Ti6Al4V via laser PBF but was found to have fractured during over-seas shipping. This study examines the evolution of thermal stresses during the laser PBF manufacturing and heat treatment processes of the hip stem in a 2D finite element analysis (FEA) and compares it to an electron beam PBF process. A custom written script for the automatic conversion of a gross geometry finite element model into a thin layer- by-layer finite element model was developed. The build process, heat treatment (for laser PBF) and the subsequent cooling were simulated at the component level. The results demonstrate the effectiveness of the heat treatment in reducing PBF induced thermal stresses, and the concentration of stresses in the region that fractured.

  5. Additive Manufacturing of Single-Crystal Superalloy CMSX-4 Through Scanning Laser Epitaxy: Computational Modeling, Experimental Process Development, and Process Parameter Optimization

    NASA Astrophysics Data System (ADS)

    Basak, Amrita; Acharya, Ranadip; Das, Suman

    2016-08-01

    This paper focuses on additive manufacturing (AM) of single-crystal (SX) nickel-based superalloy CMSX-4 through scanning laser epitaxy (SLE). SLE, a powder bed fusion-based AM process was explored for the purpose of producing crack-free, dense deposits of CMSX-4 on top of similar chemistry investment-cast substrates. Optical microscopy and scanning electron microscopy (SEM) investigations revealed the presence of dendritic microstructures that consisted of fine γ' precipitates within the γ matrix in the deposit region. Computational fluid dynamics (CFD)-based process modeling, statistical design of experiments (DoE), and microstructural characterization techniques were combined to produce metallurgically bonded single-crystal deposits of more than 500 μm height in a single pass along the entire length of the substrate. A customized quantitative metallography based image analysis technique was employed for automatic extraction of various deposit quality metrics from the digital cross-sectional micrographs. The processing parameters were varied, and optimal processing windows were identified to obtain good quality deposits. The results reported here represent one of the few successes obtained in producing single-crystal epitaxial deposits through a powder bed fusion-based metal AM process and thus demonstrate the potential of SLE to repair and manufacture single-crystal hot section components of gas turbine systems from nickel-based superalloy powders.

  6. Dislocation mechanism based model for stage II fatigue crack propagation rate

    NASA Technical Reports Server (NTRS)

    Mazumdar, P. K.

    1986-01-01

    Repeated plastic deformation, which of course depends on dislocation mechanism, at or near the crack tip leads to the fatigue crack propagation. By involving the theory of thermally activated flow and the cumulative plastic strain criterion, an effort is made here to model the stage II fatigue crack propagation rate in terms of the dislocation mechanism. The model, therefore, provides capability to ascertain: (1) the dislocation mechanism (and hence the near crack tip microstructures) assisting the crack growth, (2) the relative resistance of dislocation mechanisms to the crack growth, and (3) the fracture surface characteristics and its interpretation in terms of the dislocation mechanism. The local microstructure predicted for the room temperature crack growth in copper by this model is in good agreement with the experimental results taken from the literature. With regard to the relative stability of such dislocation mechanisms as the cross-slip and the dislocation intersection, the model suggests an enhancement of crack growth rate with an ease of cross-slip which in general promotes dislocation cell formation and is common in material which has high stacking fault energy (produces wavy slips). Cross-slip apparently enhances crack growth rate by promoting slip irreversibility and fracture surface brittleness to a greater degree.

  7. Desert and groundwater dynamics of the Jurassic Navajo Sandstone, southeast Utah

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Hasiotis, S. T.; Parrish, J. T.

    2017-12-01

    The Jurassic Navajo Sandstone of southeastern Utah is a rich archive of a desert complex with an active groundwater system, influenced by climate changes and recharge from the Uncompahgre Uplift of the Ancestral Rocky Mountains. This eastern erg margin was dominated by dune deposits of large (>10 m thick) and small (m-scale) crossbedded sandstone sets. Within these porous deposits, common soft sediment deformation is expressed as contorted and upturned bedding, fluid escape structures, concentrations of clastic pipes with ring faults, and thick intervals of massive sandstone embedded in crossbedded sandstone. Collectively, these deformation features reflect changes and/or overpressure in the groundwater system. Interdune deposits record laterally variable bounding surfaces, resulting from the change in position of and proximity to the water table. Interdune modification by pedogenesis from burrows, roots, and trees suggest stable periods of moisture and water supply, as well as periodic drying expressed as polygonal cracked mud- to sand-cracked layers. Freshwater bedded and platy limestone beds represent lakes of decameter to kilometer extent, common in the upper part of the formation. Some carbonate springs that fed the lakes are preserved as limestone buildups (tufa mounds) with microbial structures. Extradunal deposits of rivers to small ephemeral streams show channelized and lenticular, subhorizontal, cm- to m-scale sandstone bodies with basal scours and rip-up clasts. Proxy records of the active hydrology imply a changing landscape at the Navajo desert's edge, punctuated by periods of significant rainfall, runoff, rivers, lakes, and springs, fed by high water table conditions to sustain periods of flourishing communities of plants, arthropods, reptiles, mammals, and dinosaurs. Strong ground motion perturbations periodically disrupted porous, water-saturated sands with possible surface eruptions, adding to the dynamic activity of the desert regime.

  8. Small fatigue cracks; Proceedings of the Second International Conference/Workshop, Santa Barbara, CA, Jan. 5-10, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, R.O.; Lankford, J.

    Topics discussed in this volume include crack initiation and stage I growth, microstructure effects, crack closure, environment effects, the role of notches, analytical modeling, fracture mechanics characterization, experimental techniques, and engineering applications. Papers are presented on fatigue crack initiation along slip bands, the effect of microplastic surface deformation on the growth of small cracks, short fatigue crack behavior in relation to three-dimensional aspects and the crack closure effect, the influence of crack depth on crack electrochemistry and fatigue crack growth, and nondamaging notches in fatigue. Consideration is also given to models of small fatigue cracks, short crack theory, assessment ofmore » the growth of small flaws from residual strength data, the relevance of short crack behavior to the integrity of major rotating aero engine components, and the relevance of short fatigue crack growth data to the durability and damage tolerance analyses of aircraft.« less

  9. A Crack Growth Evaluation Method for Interacting Multiple Cracks

    NASA Astrophysics Data System (ADS)

    Kamaya, Masayuki

    When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e. g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks.

  10. Quantifying the impact of lithology upon the mechanical properties of rock

    NASA Astrophysics Data System (ADS)

    Weatherley, Dion

    2013-04-01

    The physical characteristics of rock, its lithology, undoubtedly influences its deformation under natural or engineering loads. Mineral texture, micro-damage, joints, bedding planes, inclusions, unconformities and faults are all postulated to alter the mechanical response of rock on different scales and under different stressing conditions. Whilst laboratory studies have elucidated some aspects of the relationship between lithology and mechanical properties, these small-scale results are difficult to extrapolate to lithospheric scales. To augment laboratory-derived knowledge, physics-based numerical modelling is a promising avenue [3]. Bonded particle models implemented using the Discrete Element Method (DEM [1]) are a practical numerical laboratory to investigate the interplay between lithology and the mechanical response of rock specimens [4]. Numerical rock specimens are represented as an assembly of indivisible spherical particles connected to nearest neighbours via brittle-elastic beams which impart forces and moments upon one-another as particles move relative to each other. By applying boundary forces and solving Newton's Laws for each particle, elastic deformation and brittle failure may be simulated [2]. Each beam interaction is defined by four model parameters: Young's modulus, Poisson's ratio, cohesive strength and internal friction angle. Beam interactions in different subvolumes of the specimen are assigned different parameters to model different rock types or mineral assemblages. Micro-cracks, joints, unconformities and faults are geometrically incorporated by fitting particles to either side of triangulated surfaces [5]. The utility of this modelling approach is verified by reproducing analytical results from fracture mechanics (Griffith crack propagation and wing-crack formation) and results of controlled laboratory investigations. To quantify the impact of particular lithologic structures on mechanical response, a range of control experiments are conducted in which samples with differing structure are subjected to triaxial compression tests to measure the mechanical response. By systematically varying the geometry and statistical properties of the structures, insight is obtained on how such structures influence mechanical response. The goal of this research is to develop constitutive relations for the mechanical response of rock that are functions of measurable lithological characteristics. Such relations will find utility in tectonic stress field reconstructions, seismic hazard assessment and underground mine engineering. References [1] Cundall, P.A, and Strack, O.D.L (1979), A discrete numerical model for granular assemblies, Geotechnique, 29, No. 1, 47-65. [2] Potyondy, D.O, and Cundall, P.A (2004), A bonded particle model for rock, International Journal of Rock Mechanics and Mining Science, 41, No. 8, 1329-1364. [3] Schopfer, M.P.J, Abe, S., Childs, C. and Walsh, J.J. (2009), The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: Insights from DEM modelling, Int. J. Rock Mech. Min. Sci., 46, 250-261. [4] Weatherley, D. (2011), Investigations on the role of microstructure in brittle failure using discrete element simulations, Geophysical Research Abstracts, 13, EGU2011-9476. [5] Weatherley, D. and Ayton, T. (2012), Numerical investigations on the role of micro-cracks in determining the compressive and tensile strength of rocks, Geophysical Research Abstracts, 14, EGU2012-8294.

  11. A Crack Closure Model and Its Application to Vibrothermography Nondestructive Evaluation

    NASA Astrophysics Data System (ADS)

    Schiefelbein, Bryan Edward

    Vibrothermography nondestructive evaluation (NDE) is in the early stages of research and development, and there exists uncertainty in the fundamental mechanisms and processes by which heat generation occurs. Holland et al. have developed a set of tools which simulate and predict the outcome of a vibrothermography inspection by breaking the inspection into three distinct processes: vibrational excitation, heat generation, and thermal imaging. The stage of vibrothermography which is not well understood is the process by which vibrations are converted to heat at the crack surface. It has been shown that crack closure and closure state impact the resulting heat generation. Despite this, research into the link between partial crack closure and vibrothermography is limited. This work seeks to rectify this gap in knowledge by modeling the behavior of a partially closed crack in response to static external loading and a dynamic vibration. The residual strains left by the plastic wake during fatigue crack growth manifest themselves as contact stresses acting at the crack surface interface. In response to an applied load below the crack opening stress, the crack closure state will evolve, but the crack will remain partially closed. The crack closure model developed in this work is based in linear elastic fracture mechanics (LEFM) and describes the behavior of a partially closed crack in response to a tensile external load and non-uniform closure stress distribution. The model builds on work by Fleck to describe the effective length, crack opening displacement, and crack tip stress field for a partially closed crack. These quantities are solved for by first establishing an equilibrium condition which governs the effective or apparent length of the partially closed crack. The equilibrium condition states that, under any external or crack surface loading, the effective crack tip will be located where the effective stress intensity factor is zero. In LEFM, this is equivalent to saying that the effective crack tip is located where the stress singularity vanishes. If the closure stresses are unknown, the model provides an algorithm with which to solve for the distribution, given measurements of the effective crack length as a function of external load. Within literature, a number of heating mechanisms have been proposed as being dominant in vibrothermography. These include strain hysteresis, adhesion hysteresis, plastic flow, thermoelasticity, and sliding friction. Based on experimental observation and theory, this work eliminates strain hysteresis, thermoelasticity, and plastic flow as plausible heating mechanisms. This leaves friction and adhesion hysteresis as the only plausible mechanisms. Frictional heating is based on the classical Coulomb friction model, while adhesion hysteresis heating comes from irreversibility in surface adhesion. Adhesion hysteresis only satisfies the experimental observation that heating vanishes for high compressive loading if surface roughness and the instability of surface adhesion is considered. By understanding the fundamental behavior of a partially closed crack in response to non-uniform loading, and the link between crack surface motion and heat generation, we are one step closer to a fully predictive vibrothermography heat generation model. Future work is needed to extend the crack closure model to a two-dimensional semi-elliptical surface crack and better understand the distinction between frictional and adhesion heating.

  12. Crack deflection: Implications for the growth of long and short fatigue cracks

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    1983-11-01

    The influences of crack deflection on the growth rates of nominally Mode I fatigue cracks are examined. Previous theoretical analyses of stress intensity solutions for kinked elastic cracks are reviewed. Simple elastic deflection models are developed to estimate the growth rates of nonlinear fatigue cracks subjected to various degrees of deflection, by incorporating changes in the effective driving force and in the apparent propagation rates. Experimental data are presented for intermediate-quenched and step-quenched conditions of Fe/2Si/0.1C ferrite-martensite dual phase steel, where variations in crack morphology alone influence considerably the fatigue crack propagation rates and threshold stress intensity range values. Such results are found to be in good quantitative agreement with the deflection model predictions of propagation rates for nonlinear cracks. Experimental information on crack deflection, induced by variable amplitude loading, is also provided for 2020-T651 aluminum alloy. It is demonstrated with the aid of elastic analyses and experiments that crack deflection models offer a physically-appealing rationale for the apparently slower growth rates of long fatigue cracks subjected to constant and variable amplitude loading and for the apparent deceleration and/or arrest of short cracks. The changes in the propagation rates of deflected fatigue cracks are discussed in terms of the local mode of crack advance, microstructure, effective driving force, growth mechanisms, mean stress, slip characteristics, and crack closure.

  13. Discrete Element Model for Simulations of Early-Life Thermal Fracturing Behaviors in Ceramic Nuclear Fuel Pellets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hai Huang; Ben Spencer; Jason Hales

    2014-10-01

    A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to themore » formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.« less

  14. Investigation of wing crack formation with a combined phase-field and experimental approach

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyun; Reber, Jacqueline E.; Hayman, Nicholas W.; Wheeler, Mary F.

    2016-08-01

    Fractures that propagate off of weak slip planes are known as wing cracks and often play important roles in both tectonic deformation and fluid flow across reservoir seals. Previous numerical models have produced the basic kinematics of wing crack openings but generally have not been able to capture fracture geometries seen in nature. Here we present both a phase-field modeling approach and a physical experiment using gelatin for a wing crack formation. By treating the fracture surfaces as diffusive zones instead of as discontinuities, the phase-field model does not require consideration of unpredictable rock properties or stress inhomogeneities around crack tips. It is shown by benchmarking the models with physical experiments that the numerical assumptions in the phase-field approach do not affect the final model predictions of wing crack nucleation and growth. With this study, we demonstrate that it is feasible to implement the formation of wing cracks in large scale phase-field reservoir models.

  15. Evaluation of finite-element models and stress-intensity factors for surface cracks emanating from stress concentrations

    NASA Technical Reports Server (NTRS)

    Tan, P. W.; Raju, I. S.; Shivakumar, K. N.; Newman, J. C., Jr.

    1990-01-01

    A re-evaluation of the 3-D finite-element models and methods used to analyze surface crack at stress concentrations is presented. Previous finite-element models used by Raju and Newman for surface and corner cracks at holes were shown to have ill-shaped elements at the intersection of the hole and crack boundaries. Improved models, without these ill-shaped elements, were developed for a surface crack at a circular hole and at a semi-circular edge notch. Stress-intensity factors were calculated by both the nodal-force and virtual-crack-closure methods. Comparisons made between the previously developed stress-intensity factor equations and the results from the improved models agreed well except for configurations with large notch-radii-to-plate-thickness ratios. Stress-intensity factors for a semi-elliptical surface crack located at the center of a semi-circular edge notch in a plate subjected to remote tensile loadings were calculated using the improved models.

  16. Empirical Approach to Understanding the Fatigue Behavior of Metals Made Using Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Witkin, David B.; Albright, Thomas V.; Patel, Dhruv N.

    2016-08-01

    High-cycle fatigue measurements were performed on alloys prepared by powder-bed fusion additive manufacturing techniques. Selective laser melted (SLM) nickel-based superalloy 625 and electron beam melted (EBM) Ti-6Al-4V specimens were prepared as round fatigue specimens and tested with as-built surfaces at stress ratios of -1, 0.1 and 0.5. Data collected at R = -1 were used to construct Goodman diagrams that correspond closely to measured experimental data collected at R > 0. A second way to interpret the HCF data is based on the influence of surface roughness on fatigue, and approximate the surface feature size as a notch. On this basis, the data were interpreted using the fatigue notch factor k f and average stress models relating k f and stress concentration factor K t. The depth and root radius of surface features associated with fatigue crack initiation were used to estimate a K t of 2.8 for SLM 625. For Ti-6Al-4V, a direct estimate of K t from HCF data was not possible, but approximate values of k f based on HCF data and K t from crack initiation site geometry are found to explain other published EBM Ti-6Al-4V.

  17. Proof test and fatigue crack growth modeling on 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Poe, C. C., Jr.; Dawicke, D. S.

    1990-01-01

    Pressure proof testing of aircraft fuselage structures has been suggested as a means of screening critical crack sizes and of extending their useful life. The objective of this paper is to study the proof-test concept and to model the crack-growth process on a ductile material. Simulated proof and operational fatigue life tests have been conducted on cracked panels made of 2024-T3 aluminum alloy sheet material. A fatigue crack-closure model was modified to simulate the proof test and operational fatigue cycling. Using crack-growth rate and resistance-curve data, the model was able to predict crack growth during and after the proof load. These tests and analyses indicate that the proof test increases fatigue life; but the beneficial life, after a 1.33 or 1.5 proof, was less than a few hundred cycles.

  18. Simulation of fatigue crack growth under large scale yielding conditions

    NASA Astrophysics Data System (ADS)

    Schweizer, Christoph; Seifert, Thomas; Riedel, Hermann

    2010-07-01

    A simple mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack-tip opening displacement (ΔCTOD) and the crack growth increment (da/dN). The objective of this work is to compare analytical estimates of ΔCTOD with results of numerical calculations under large scale yielding conditions and to verify the physical basis of the model by comparing the predicted and the measured evolution of the crack length in a 10%-chromium-steel. The material is described by a rate independent cyclic plasticity model with power-law hardening and Masing behavior. During the tension-going part of the cycle, nodes at the crack-tip are released such that the crack growth increment corresponds approximately to the crack-tip opening. The finite element analysis performed in ABAQUS is continued for so many cycles until a stabilized value of ΔCTOD is reached. The analytical model contains an interpolation formula for the J-integral, which is generalized to account for cyclic loading and crack closure. Both simulated and estimated ΔCTOD are reasonably consistent. The predicted crack length evolution is found to be in good agreement with the behavior of microcracks observed in a 10%-chromium steel.

  19. DUCTILE-PHASE TOUGHENED TUNGSTEN FOR PLASMA-FACING MATERIALS IN FUSION REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, Charles H.; Setyawan, Wahyu; Roosendaal, Timothy J.

    2017-05-01

    Tungsten (W) and W-alloys are the leading candidates for plasma-facing components in nuclear fusion reactor designs because of their high melting point, strength retention at high temperatures, high thermal conductivity, and low sputtering yield. However, tungsten is brittle and does not exhibit the required fracture toughness for licensing in nuclear applications. A promising approach to increasing fracture toughness of W-alloys is by ductile-phase toughening (DPT). In this method, a ductile phase is included in a brittle matrix to prevent on inhibit crack propagation by crack blunting, crack bridging, crack deflection, and crack branching. Model examples of DPT tungsten are exploredmore » in this study, including W-Cu and W-Ni-Fe powder product composites. Three-point and four-point notched and/or pre-cracked bend samples were tested at several strain rates and temperatures to help understand deformation, cracking, and toughening in these materials. Data from these tests are used for developing and calibrating crack-bridging models. Finite element damage mechanics models are introduced as a modeling method that appears to capture the complexity of crack growth in these materials.« less

  20. Line spring model and its applications to part-through crack problems in plates and shells

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Aksel, Bulent

    1988-01-01

    The line spring model is described and extended to cover the problem of interaction of multiple internal and surface cracks in plates and shells. The shape functions for various related crack geometries obtained from the plane strain solution and the results of some multiple crack problems are presented. The problems considered include coplanar surface cracks on the same or opposite sides of a plate, nonsymmetrically located coplanar internal elliptic cracks, and in a very limited way the surface and corner cracks in a plate of finite width and a surface crack in a cylindrical shell with fixed end.

  1. Line Spring Model and Its Applications to Part-Through Crack Problems in Plates and Shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Aksel, B.

    1986-01-01

    The line spring model is described and extended to cover the problem of interaction of multiple internal and surface cracks in plates and shells. The shape functions for various related crack geometries obtained from the plane strain solution and the results of some multiple crack problems are presented. The problems considered include coplanar surface cracks on the same or opposite sides of a plate, nonsymmetrically located coplanar internal elliptic cracks, and in a very limited way the surface and corner cracks in a plate of finite width and a surface crack in a cylindrical shell with fixed end.

  2. Stress Intensity Factors of Slanted Cracks in Bi-Material Plates

    NASA Astrophysics Data System (ADS)

    Ismail, Al Emran; Azhar Kamarudin, Kamarul; Nor, Nik Hisyamudin Muhd

    2017-10-01

    In this study, the stress intensity factors (SIF) of slanted cracks in bi-material plates subjected to mode I loading is numerically solved. Based on the literature survey, tremendous amount of research works are available studying the normal cracks in both similar and dissimilar plates. However, lack of SIF behavior for slanted cracks especially when it is embedded in bi-material plates. The slanted cracks are then modelled numerically using ANSYS finite element program. Two plates of different in mechanical properties are firmly bonded obliquely and then slanted edge cracks are introduced at the lower inclined edge. Isoparametric singular element is used to model the crack tip and the SIF is determined which is based on the domain integral method. Three mechanical mismatched and four slanted angles are used to model the cracks. According to the present results, the effects of mechanical mismatch on the SIF for normal cracks are not significant. However, it is played an important role when slanted angles are introduced. It is suggested that higher SIF can be obtained when the cracks are inclined comparing with the normal cracks. Consequently, accelerating the crack growth at the interface between two distinct materials.

  3. A probabilistic fatigue analysis of multiple site damage

    NASA Technical Reports Server (NTRS)

    Rohrbaugh, S. M.; Ruff, D.; Hillberry, B. M.; Mccabe, G.; Grandt, A. F., Jr.

    1994-01-01

    The variability in initial crack size and fatigue crack growth is incorporated in a probabilistic model that is used to predict the fatigue lives for unstiffened aluminum alloy panels containing multiple site damage (MSD). The uncertainty of the damage in the MSD panel is represented by a distribution of fatigue crack lengths that are analytically derived from equivalent initial flaw sizes. The variability in fatigue crack growth rate is characterized by stochastic descriptions of crack growth parameters for a modified Paris crack growth law. A Monte-Carlo simulation explicitly describes the MSD panel by randomly selecting values from the stochastic variables and then grows the MSD cracks with a deterministic fatigue model until the panel fails. Different simulations investigate the influences of the fatigue variability on the distributions of remaining fatigue lives. Six cases that consider fixed and variable conditions of initial crack size and fatigue crack growth rate are examined. The crack size distribution exhibited a dominant effect on the remaining fatigue life distribution, and the variable crack growth rate exhibited a lesser effect on the distribution. In addition, the probabilistic model predicted that only a small percentage of the life remains after a lead crack develops in the MSD panel.

  4. Analytical and numerical solutions for heat transfer and effective thermal conductivity of cracked media

    NASA Astrophysics Data System (ADS)

    Tran, A. B.; Vu, M. N.; Nguyen, S. T.; Dong, T. Q.; Le-Nguyen, K.

    2018-02-01

    This paper presents analytical solutions to heat transfer problems around a crack and derive an adaptive model for effective thermal conductivity of cracked materials based on singular integral equation approach. Potential solution of heat diffusion through two-dimensional cracked media, where crack filled by air behaves as insulator to heat flow, is obtained in a singular integral equation form. It is demonstrated that the temperature field can be described as a function of temperature and rate of heat flow on the boundary and the temperature jump across the cracks. Numerical resolution of this boundary integral equation allows determining heat conduction and effective thermal conductivity of cracked media. Moreover, writing this boundary integral equation for an infinite medium embedding a single crack under a far-field condition allows deriving the closed-form solution of temperature discontinuity on the crack and particularly the closed-form solution of temperature field around the crack. These formulas are then used to establish analytical effective medium estimates. Finally, the comparison between the developed numerical and analytical solutions allows developing an adaptive model for effective thermal conductivity of cracked media. This model takes into account both the interaction between cracks and the percolation threshold.

  5. Application of the bridged crack model for evaluation of materials repairing and self-healing

    NASA Astrophysics Data System (ADS)

    Perelmuter, M.

    2017-12-01

    The bridged crack model is used for analysis of repairing and self-healing of cracked structures. Material repairing is treated as insertions of external ligaments into cracks or placement of the reinforcing patches over cracks. Bonds destruction and regeneration at the crack bridged zone is evaluated by the thermo-fluctuation kinetic theory. The healing time is dependent on the chemical reaction rate of the healing agent, the crack size and the external loads. The decreasing of the stress intensity factors is used as the measure of the repairing and healing effects. The mathematical background of the problem solution is based on the methods of the singular integral-differential equations. The model can be used for the evaluation of composite materials durability.

  6. A penny-shaped crack in a filament-reinforced matrix. I - The filament model. II - The crack problem

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Pacella, A. H.

    1974-01-01

    The study deals with the elastostatic problem of a penny-shaped crack in an elastic matrix which is reinforced by filaments or fibers perpendicular to the plane of the crack. An elastic filament model is first developed, followed by consideration of the application of the model to the penny-shaped crack problem in which the filaments of finite length are asymmetrically distributed around the crack. Since the primary interest is in the application of the results to studies relating to the fracture of fiber or filament-reinforced composites and reinforced concrete, the main emphasis of the study is on the evaluation of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. Using the filament model developed, the elastostatic interaction problem between a penny-shaped crack and a slender inclusion or filament in an elastic matrix is formulated.

  7. Surface-crack growth: Models, experiments, and structures; Proceedings of the Symposium, Sparks, NV, Apr. 25, 1988

    NASA Technical Reports Server (NTRS)

    Reuter, Walter G. (Editor); Underwood, John H. (Editor); Newman, James C., Jr. (Editor)

    1990-01-01

    The present volume on surface-crack growth modeling, experimental methods, and structures, discusses elastoplastic behavior, the fracture analysis of three-dimensional bodies with surface cracks, optical measurements of free-surface effects on natural surfaces and through cracks, an optical and finite-element investigation of a plastically deformed surface flaw under tension, fracture behavior prediction for rapidly loaded surface-cracked specimens, and surface cracks in thick laminated fiber composite plates. Also discussed are a novel study procedure for crack initiation and growth in thermal fatigue testing, the growth of surface cracks under fatigue and monotonically increasing load, the subcritical growth of a surface flaw, surface crack propagation in notched and unnotched rods, and theoretical and experimental analyses of surface cracks in weldments.

  8. Growth model for large branched three-dimensional hydraulic crack system in gas or oil shale

    PubMed Central

    Chau, Viet T.

    2016-01-01

    Recent analysis of gas outflow histories at wellheads shows that the hydraulic crack spacing must be of the order of 0.1 m (rather than 1 m or 10 m). Consequently, the existing models, limited to one or several cracks, are unrealistic. The reality is 105–106 almost vertical hydraulic cracks per fracking stage. Here, we study the growth of two intersecting near-orthogonal systems of parallel hydraulic cracks spaced at 0.1 m, preferably following pre-existing rock joints. One key idea is that, to model lateral cracks branching from a primary crack wall, crack pressurization, by viscous Poiseuille-type flow, of compressible (proppant-laden) frac water must be complemented with the pressurization of a sufficient volume of micropores and microcracks by Darcy-type water diffusion into the shale, to generate tension along existing crack walls, overcoming the strength limit of the cohesive-crack or crack-band model. A second key idea is that enforcing the equilibrium of stresses in cracks, pores and water, with the generation of tension in the solid phase, requires a new three-phase medium concept, which is transitional between Biot’s two-phase medium and Terzaghi’s effective stress and introduces the loading of the solid by pressure gradients of diffusing pore water. A computer program, combining finite elements for deformation and fracture with volume elements for water flow, is developed to validate the new model. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597791

  9. Growth model for large branched three-dimensional hydraulic crack system in gas or oil shale.

    PubMed

    Chau, Viet T; Bažant, Zdeněk P; Su, Yewang

    2016-10-13

    Recent analysis of gas outflow histories at wellheads shows that the hydraulic crack spacing must be of the order of 0.1 m (rather than 1 m or 10 m). Consequently, the existing models, limited to one or several cracks, are unrealistic. The reality is 10(5)-10(6) almost vertical hydraulic cracks per fracking stage. Here, we study the growth of two intersecting near-orthogonal systems of parallel hydraulic cracks spaced at 0.1 m, preferably following pre-existing rock joints. One key idea is that, to model lateral cracks branching from a primary crack wall, crack pressurization, by viscous Poiseuille-type flow, of compressible (proppant-laden) frac water must be complemented with the pressurization of a sufficient volume of micropores and microcracks by Darcy-type water diffusion into the shale, to generate tension along existing crack walls, overcoming the strength limit of the cohesive-crack or crack-band model. A second key idea is that enforcing the equilibrium of stresses in cracks, pores and water, with the generation of tension in the solid phase, requires a new three-phase medium concept, which is transitional between Biot's two-phase medium and Terzaghi's effective stress and introduces the loading of the solid by pressure gradients of diffusing pore water. A computer program, combining finite elements for deformation and fracture with volume elements for water flow, is developed to validate the new model.This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).

  10. Fatigue crack growth with single overload - Measurement and modeling

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J., Jr.; Dexter, R. J.

    1987-01-01

    This paper compares experiments with an analytical model of fatigue crack growth under variable amplitude. The stereoimaging technique was used to measure displacements near the tips of fatigue cracks undergoing simple variations in load amplitude-single overloads and overload/underload combinations. Measured displacements were used to compute strains, and stresses were determined from the strains. Local values of crack driving force (Delta-K effective) were determined using both locally measured opening loads and crack tip opening displacements. Experimental results were compared with simulations made for the same load variation conditions using Newman's FAST-2 model. Residual stresses caused by overloads, crack opening loads, and growth retardation periods were compared.

  11. Modeling the dynamic stiffness of cracked reinforced concrete beams under low-amplitude vibration loads

    NASA Astrophysics Data System (ADS)

    Xu, Tengfei; Castel, Arnaud

    2016-04-01

    In this paper, a model, initially developed to calculate the stiffness of cracked reinforced concrete beams under static loading, is used to assess the dynamic stiffness. The model allows calculating the average inertia of cracked beams by taking into account the effect of bending cracks (primary cracks) and steel-concrete bond damage (i.e. interfacial microcracks). Free and forced vibration experiments are used to assess the performance of the model. The respective influence of bending cracks and steel-concrete bond damage on both static and dynamic responses is analyzed. The comparison between experimental and simulated deflections confirms that the effects of both bending cracks and steel-concrete bond loss should be taken into account to assess reinforced concrete stiffness under service static loading. On the contrary, comparison of experimental and calculated dynamic responses reveals that localized steel-concrete bond damages do not influence significantly the dynamic stiffness and the fundamental frequency.

  12. Crack Damage Detection Method via Multiple Visual Features and Efficient Multi-Task Learning Model.

    PubMed

    Wang, Baoxian; Zhao, Weigang; Gao, Po; Zhang, Yufeng; Wang, Zhe

    2018-06-02

    This paper proposes an effective and efficient model for concrete crack detection. The presented work consists of two modules: multi-view image feature extraction and multi-task crack region detection. Specifically, multiple visual features (such as texture, edge, etc.) of image regions are calculated, which can suppress various background noises (such as illumination, pockmark, stripe, blurring, etc.). With the computed multiple visual features, a novel crack region detector is advocated using a multi-task learning framework, which involves restraining the variability for different crack region features and emphasizing the separability between crack region features and complex background ones. Furthermore, the extreme learning machine is utilized to construct this multi-task learning model, thereby leading to high computing efficiency and good generalization. Experimental results of the practical concrete images demonstrate that the developed algorithm can achieve favorable crack detection performance compared with traditional crack detectors.

  13. Fracture Analysis of Semi-Elliptical Surface Cracks in Ductile Materials

    NASA Technical Reports Server (NTRS)

    Daniewicz, S. R.; Newman, J. C., Jr.; Leach, A. M.

    2004-01-01

    Accurate life assessment of structural components may require advanced life prediction criteria and methodologies. Structural components often exhibit several different types of defects, among the most prevalent being surface cracks. A semi-elliptical surface crack subjected to monotonic loading will exhibit stable crack growth until the crack has reached a critical size, at which the crack loses stability and fracture ensues (Newman, 2000). The shape and geometry of the flaw are among the most influential factors. When considering simpler crack configurations, such as a through-the-thickness crack, a three-dimensional (3D) geometry may be modeled under the approximation of two-dimensional (2D) plane stress or plane strain. The more complex surface crack is typically modeled numerically with the Finite Element Method (FEM). A semi-elliptical surface crack is illustrated in Figure 1-1.

  14. Probabilistic Mesomechanical Fatigue Model

    NASA Technical Reports Server (NTRS)

    Tryon, Robert G.

    1997-01-01

    A probabilistic mesomechanical fatigue life model is proposed to link the microstructural material heterogeneities to the statistical scatter in the macrostructural response. The macrostructure is modeled as an ensemble of microelements. Cracks nucleation within the microelements and grow from the microelements to final fracture. Variations of the microelement properties are defined using statistical parameters. A micromechanical slip band decohesion model is used to determine the crack nucleation life and size. A crack tip opening displacement model is used to determine the small crack growth life and size. Paris law is used to determine the long crack growth life. The models are combined in a Monte Carlo simulation to determine the statistical distribution of total fatigue life for the macrostructure. The modeled response is compared to trends in experimental observations from the literature.

  15. Estimating the volume of supra-glacial melt lakes across Greenland: A study of uncertainties derived from multi-platform water-reflectance models

    NASA Astrophysics Data System (ADS)

    Cordero-Llana, L.; Selmes, N.; Murray, T.; Scharrer, K.; Booth, A. D.

    2012-12-01

    Large volumes of water are necessary to propagate cracks to the glacial bed via hydrofractures. Hydrological models have shown that lakes above a critical volume can supply the necessary water for this process, so the ability to measure water depth in lakes remotely is important to study these processes. Previously, water depth has been derived from the optical properties of water using data from high resolution optical satellite images, as such ASTER, (Advanced Spaceborne Thermal Emission and Reflection Radiometer), IKONOS and LANDSAT. These studies used water-reflectance models based on the Bouguer-Lambert-Beer law and lack any estimation of model uncertainties. We propose an optimized model based on Sneed and Hamilton's (2007) approach to estimate water depths in supraglacial lakes and undertake a robust analysis of the errors for the first time. We used atmospherically-corrected data from ASTER and MODIS data as an input to the water-reflectance model. Three physical parameters are needed: namely bed albedo, water attenuation coefficient and reflectance of optically-deep water. These parameters were derived for each wavelength using standard calibrations. As a reference dataset, we obtained lake geometries using ICESat measurements over empty lakes. Differences between modeled and reference depths are used in a minimization model to obtain parameters for the water-reflectance model, yielding optimized lake depth estimates. Our key contribution is the development of a Monte Carlo simulation to run the water-reflectance model, which allows us to quantify the uncertainties in water depth and hence water volume. This robust statistical analysis provides better understanding of the sensitivity of the water-reflectance model to the choice of input parameters, which should contribute to the understanding of the influence of surface-derived melt-water on ice sheet dynamics. Sneed, W.A. and Hamilton, G.S., 2007: Evolution of melt pond volume on the surface of the Greenland Ice Sheet. Geophysical Research Letters, 34, 1-4.

  16. Anisotropic storage medium development in a full-scale, sodium alanate-based, hydrogen storage system

    DOE PAGES

    Jorgensen, Scott W.; Johnson, Terry A.; Payzant, E. Andrew; ...

    2016-06-11

    Deuterium desorption in an automotive-scale hydrogen storage tube was studied in-situ using neutron diffraction. Gradients in the concentration of the various alanate phases were observed along the length of the tube but no significant radial anisotropy was present. In addition, neutron radiography and computed tomography showed large scale cracks and density fluctuations, confirming the presence of these structures in an undisturbed storage system. These results demonstrate that large scale storage structures are not uniform even after many absorption/desorption cycles and that movement of gaseous hydrogen cannot be properly modeled by a simple porous bed model. In addition, the evidence indicatesmore » that there is slow transformation of species at one end of the tube indicating loss of catalyst functionality. These observations explain the unusually fast movement of hydrogen in a full scale system and shows that loss of capacity is not occurring uniformly in this type of hydrogen-storage system.« less

  17. Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products.

    PubMed

    Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren

    2016-12-23

    The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent.

  18. Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products

    PubMed Central

    Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren

    2016-01-01

    The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent. PMID:28772367

  19. Evaluation of cracks with different hidden depths and shapes using surface magnetic field measurements based on semi-analytical modelling

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Liu, Shulin

    2018-03-01

    In this paper, we present a feasibility study for detecting cracks with different hidden depths and shapes using information contained in the magnetic field excited by a rectangular coil with a rectangular cross section. First, we solve for the eigenvalues and the unknown coefficients of the magnetic vector potential by imposing artificial and natural boundary conditions. Thus, a semi-analytical solution for the magnetic field distribution around the surface of a conducting plate that contains a long hidden crack is formulated. Next, based on the proposed modelling, the influences of the different hidden depth cracks on the surface magnetic field are analysed. The results show that the horizontal and vertical components of the magnetic field near the crack are becoming weaker and that the phase information of the magnetic field can be used to qualitatively determine the hidden depth of the crack. In addition, the model is optimised to improve its accuracy in classifying crack types. The relationship between signal features and crack shapes is subsequently established. The modified model is validated by using finite element simulations, visually indicating the change in the magnetic field near the crack.

  20. Multiaxial Fatigue Life Prediction Based on Short Crack Propagation Model with Equivalent Strain Parameter

    NASA Astrophysics Data System (ADS)

    Zhao, Xiang-Feng; Shang, De-Guang; Sun, Yu-Juan; Song, Ming-Liang; Wang, Xiao-Wei

    2018-01-01

    The maximum shear strain and the normal strain excursion on the critical plane are regarded as the primary parameters of the crack driving force to establish a new short crack model in this paper. An equivalent strain-based intensity factor is proposed to correlate the short crack growth rate under multiaxial loading. According to the short crack model, a new method is proposed for multiaxial fatigue life prediction based on crack growth analysis. It is demonstrated that the method can be used under proportional and non-proportional loadings. The predicted results showed a good agreement with experimental lives in both high-cycle and low-cycle regions.

  1. Theoretical model of impact damage in structural ceramics

    NASA Technical Reports Server (NTRS)

    Liaw, B. M.; Kobayashi, A. S.; Emery, A. G.

    1984-01-01

    This paper presents a mechanistically consistent model of impact damage based on elastic failures due to tensile and shear overloading. An elastic axisymmetric finite element model is used to determine the dynamic stresses generated by a single particle impact. Local failures in a finite element are assumed to occur when the primary/secondary principal stresses or the maximum shear stress reach critical tensile or shear stresses, respectively. The succession of failed elements thus models macrocrack growth. Sliding motions of cracks, which closed during unloading, are resisted by friction and the unrecovered deformation represents the 'plastic deformation' reported in the literature. The predicted ring cracks on the contact surface, as well as the cone cracks, median cracks, radial cracks, lateral cracks, and damage-induced porous zones in the interior of hot-pressed silicon nitride plates, matched those observed experimentally. The finite element model also predicted the uplifting of the free surface surrounding the impact site.

  2. Changes in geophysical properties caused by fluid injection into porous rocks: analytical models: Geophysical changes in porous rocks

    DOE PAGES

    Pride, Steven R.; Berryman, James G.; Commer, Michael; ...

    2016-08-30

    Analytical models are provided that describe how the elastic compliance, electrical conductivity, and fluid-flow permeability of rocks depend on stress and fluid pressure. In order to explain published laboratory data on how seismic velocities and electrical conductivity vary in sandstones and granites, the models require a population of cracks to be present in a possibly porous host phase. The central objective is to obtain a consistent mean-field analytical model that shows how each modeled rock property depends on the nature of the crack population. We describe the crack populations by a crack density, a probability distribution for the crack aperturesmore » and radii, and the averaged orientation of the cracks. The possibly anisotropic nature of the elasticity, conductivity, and permeability tensors is allowed for; however, only the isotropic limit is used when comparing to laboratory data. For the transport properties of conductivity and permeability, the percolation effect of the crack population linking up to form a connected path across a sample is modeled. But, this effect is important only in crystalline rock where the host phase has very small conductivity and permeability. In general, the importance of the crack population to the transport properties increases as the host phase becomes less conductive and less permeable.« less

  3. Fatigue crack growth theory and experiment: A comparative analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sananda, K.

    A number of theoretical models have been proposed in the literature which explain the second or the fourth power dependence of fatigue crack growth rate on ..delta..K, the stress intensity factor range in the Paris-Erdogan relation da/dN = C ..delta..K /SUP m/ . All of these models pertain to the intermediate range of crack growth rates where the m values are relatively low in the range of 2 to 4. The values of m for many metals and alloys can be much larger than 4 at near threshold crack growth rates or at stress intensities close to the fast fracture,more » and in some cases throughout the range of ..delta..K when the faceted mode of crack growth occurs. For such cases, the models appear to have no relevance. In this report predictions of different theoretical models are critically examined in comparison to experimentally determined crack growth rates in a MA 956, oxide dispersion strengthened alloy. Cumulative damage models predict crack growth rates reasonably well except in the range where ductile striations are observed. Lack of agreement with any particular model in this range is related to the fact that at different regions across the specimen thickness different mechanisms, either plastic blunting or cumulative damage, control the crack growth.« less

  4. Changes in geophysical properties caused by fluid injection into porous rocks: analytical models: Geophysical changes in porous rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pride, Steven R.; Berryman, James G.; Commer, Michael

    Analytical models are provided that describe how the elastic compliance, electrical conductivity, and fluid-flow permeability of rocks depend on stress and fluid pressure. In order to explain published laboratory data on how seismic velocities and electrical conductivity vary in sandstones and granites, the models require a population of cracks to be present in a possibly porous host phase. The central objective is to obtain a consistent mean-field analytical model that shows how each modeled rock property depends on the nature of the crack population. We describe the crack populations by a crack density, a probability distribution for the crack aperturesmore » and radii, and the averaged orientation of the cracks. The possibly anisotropic nature of the elasticity, conductivity, and permeability tensors is allowed for; however, only the isotropic limit is used when comparing to laboratory data. For the transport properties of conductivity and permeability, the percolation effect of the crack population linking up to form a connected path across a sample is modeled. But, this effect is important only in crystalline rock where the host phase has very small conductivity and permeability. In general, the importance of the crack population to the transport properties increases as the host phase becomes less conductive and less permeable.« less

  5. Two dimensional modeling of elastic wave propagation in solids containing cracks with rough surfaces and friction - Part II: Numerical implementation.

    PubMed

    Delrue, Steven; Aleshin, Vladislav; Truyaert, Kevin; Bou Matar, Olivier; Van Den Abeele, Koen

    2018-01-01

    Our study aims at the creation of a numerical toolbox that describes wave propagation in samples containing internal contacts (e.g. cracks, delaminations, debondings, imperfect intergranular joints) of known geometry with postulated contact interaction laws including friction. The code consists of two entities: the contact model and the solid mechanics module. Part I of the paper concerns an in-depth description of a constitutive model for realistic contacts or cracks that takes into account the roughness of the contact faces and the associated effects of friction and hysteresis. In the crack model, three different contact states can be recognized: contact loss, total sliding and partial slip. Normal (clapping) interactions between the crack faces are implemented using a quadratic stress-displacement relation, whereas tangential (friction) interactions were introduced using the Coulomb friction law for the total sliding case, and the Method of Memory Diagrams (MMD) in case of partial slip. In the present part of the paper, we integrate the developed crack model into finite element software in order to simulate elastic wave propagation in a solid material containing internal contacts or cracks. We therefore implemented the comprehensive crack model in MATLAB® and introduced it in the Structural Mechanics Module of COMSOL Multiphysics®. The potential of the approach for ultrasound based inspection of solids with cracks showing acoustic nonlinearity is demonstrated by means of an example of shear wave propagation in an aluminum sample containing a single crack with rough surfaces and friction. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cross-sectional study of the prevalence of and risk factors for hoof disorders in horses in The Netherlands.

    PubMed

    Holzhauer, M; Bremer, R; Santman-Berends, I; Smink, O; Janssens, I; Back, W

    2017-05-01

    Information is scarce on the prevalence of hoof disorders in horses. In this study, we examined the prevalence of and risk factors for hoof disorders in a population of horses in The Netherlands. In a group of 942 randomly selected horses, hoof health was scored during regular foot trimming (one horse/farm). Hooves were assessed for the occurrence of one of 12 hoof disorders by a group of 21 certified farriers in two periods i.e. winter and summer of 2015. The mean age of the group of horses was 11.2±5.6years. They were mainly used for recreation (28.2%), dressage (26.8%), other disciplines (such as carriage driving and breeding) (18.7%), showjumping (17.6%) or combinations of these activities (8.6%). The horse farms studied were evenly distributed throughout the country. The horses were housed on different types of bedding, including straw (51.0%), shavings (17.5%), flax (16.1%) or other materials (11.0%), or were kept at pasture (4.4%). In 85% of the horses, at least one hoof disorder was observed during regular foot trimming. Most of the lesions were mild. The most frequently diagnosed hoof disorders were: thrush (T; 45.0%); superficial hoof wall cracks (SHWC; 30.4%); growth rings (GR; 26.3%); and sole bruises (SB; 24.7%). Less frequently observed hoof disorders included: perforating hoof wall cracks (PHWC; 16.4%); white line disease (WLD; 17.8%); and white line widening (WLW; 11.8%). Horizontal hoof cracks (5.2%), chronic laminitis (3.9%), quarter cracks (2.7%), keratoma (1.8%) and frog cancer (1.0%) were less frequently observed. Factors significantly associated with the occurrence of thrush comprised a wet stable floor (OR 1.6 and 2.9, for somewhat wet to wet respectively, compared to dry), the use of straw as bedding (OR=1.5, compared to flax), the housing strategy (e.g. permanent housing in contrast to permanent pasturing) (OR=1.7) and poor horn quality (OR=3.4). A higher prevalence of WLD was associated with less frequent hoof picking (OR=2.1 if performed weekly instead of daily), the use of flax bedding (OR=2.1, compared to straw) and poor horn quality (OR=8.1). A higher prevalence of SB was observed in horses used for multiple disciplines (OR=3.5, compared to dressage), with white-coloured hooves (OR=5.0, compared to black hooves), with longer intervals between trimming sessions (OR=4.8 in case of 8-10 weeks compared to weekly) and with poor horn quality (OR=5.4). A higher prevalence of WLW was observed in older horses (OR=15.5 for horses >19years, compared to <5years), in those with longer intervals between trimming sessions (OR=1.8 in case of 8-10 weeks compared to weekly), and in certain breeds (OR=3.2 for Friesian horses, 2.9 for Welsh ponies and 13.1 for Shetland ponies, all compared to Dutch Warmblood). In conclusion, although most of the hoof disorders identified were only in a mild stage, still an unexpectedly high prevalence of hoof disorders was observed during regular hoof trimming. Analysis of the data showed that some parameters, such as the use of flax bedding, may be protective for certain hoof disorders but a risk factor for others. This study provides useful guidelines for monitoring hoof health, reducing lameness and optimizing equine welfare. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A nonlinear fracture mechanics approach to the growth of small cracks

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1983-01-01

    An analytical model of crack closure is used to study the crack growth and closure behavior of small cracks in plates and at notches. The calculated crack opening stresses for small and large cracks, together with elastic and elastic plastic fracture mechanics analyses, are used to correlate crack growth rate data. At equivalent elastic stress intensity factor levels, calculations predict that small cracks in plates and at notches should grow faster than large cracks because the applied stress needed to open a small crack is less than that needed to open a large crack. These predictions agree with observed trends in test data. The calculations from the model also imply that many of the stress intensity factor thresholds that are developed in tests with large cracks and with load reduction schemes do not apply to the growth of small cracks. The current calculations are based upon continuum mechanics principles and, thus, some crack size and grain structure exist where the underlying fracture mechanics assumptions become invalid because of material inhomogeneity (grains, inclusions, etc.). Admittedly, much more effort is needed to develop the mechanics of a noncontinuum. Nevertheless, these results indicate the importance of crack closure in predicting the growth of small cracks from large crack data.

  8. Cyclic plasticity models and application in fatigue analysis

    NASA Technical Reports Server (NTRS)

    Kalev, I.

    1981-01-01

    An analytical procedure for prediction of the cyclic plasticity effects on both the structural fatigue life to crack initiation and the rate of crack growth is presented. The crack initiation criterion is based on the Coffin-Manson formulae extended for multiaxial stress state and for inclusion of the mean stress effect. This criterion is also applied for the accumulated damage ahead of the existing crack tip which is assumed to be related to the crack growth rate. Three cyclic plasticity models, based on the concept of combination of several yield surfaces, are employed for computing the crack growth rate of a crack plane stress panel under several cyclic loading conditions.

  9. Crack problems involving nonhomogeneous interfacial regions in bonded materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1990-01-01

    Consideration is given to two classes of fracture-related solid mechanics problems in which the model leads to some physically anomalous results. The first is the interface crack problem associated with the debonding process in which the corresponding elasticity solution predicts severe oscillations of stresses and the crack surface displacements vary near the crack tip. The second deals with crack intersecting the interface. The nature of the solutions around the crack tips arising from these problems is reviewed. The rationale for introducing a new interfacial zone model is discussed, its analytical consequences within the context of the two crack-problem classes are described, and some examples are presented.

  10. Evaluation of the C* Model for Addressing Short Fatigue Crack Growth

    DTIC Science & Technology

    2008-10-01

    FASTRAN/CGAP, the internal solution which evaluates the crack growth independently in the thickness and width direction was used . The analysis ...that used for the FASTRAN/CGAP analysis . The initial crack size used for all the models is 77 μm, as per [8]. From the viewpoint of engineering...Haddad Model, a0=0.05 mm El Haddad Model, a0=0.103 mm Figure 17: Comparison of crack growth analysis using modified El Haddad approach with

  11. Fatigue crack growth in fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.

    1979-01-01

    Fatigue crack growth in fiber composites occurs by such complex modes as to frustrate efforts at developing comprehensive theories and models. Under certain loading conditions and with certain types of reinforcement, simpler modes of fatigue crack growth are observed. These modes are more amenable to modeling efforts, and the fatigue crack growth rate can be predicted in some cases. Thus, a formula for prediction of ligamented mode fatigue crack growth rate is available.

  12. Comparing the floquet stability of open and breathing fatigue cracks in an overhung rotordynamic system

    NASA Astrophysics Data System (ADS)

    Varney, Philip; Green, Itzhak

    2017-11-01

    Rotor cracks represent an uncommon but serious threat to rotating machines and must be detected early to avoid catastrophic machine failure. An important aspect of analyzing rotor cracks is understanding their influence on the rotor stability. It is well-known that the extent of rotor instability versus shaft speed is exacerbated by deeper cracks. Consequently, crack propagation can eventually result in an unstable response even if the shaft speed remains constant. Most previous investigations of crack-induced rotor instability concern simple Jeffcott rotors. This work advances the state-of-the-art by (a) providing a novel inertial-frame model of an overhung rotor, and (b) assessing the stability of the cracked overhung rotor using Floquet stability analysis. The rotor Floquet stability analysis is performed for both an open crack and a breathing crack, and conclusions are drawn regarding the importance of appropriately selecting the crack model. The rotor stability is analyzed versus crack depth, external viscous damping ratio, and rotor inertia. In general, this work concludes that the onset of instability occurs at lower shaft speeds for thick rotors, lower viscous damping ratios, and deeper cracks. In addition, when comparing commensurate cracks, the breathing crack is shown to induce more regions of instability than the open crack, though the open crack generally predicts an unstable response for shallower cracks than the breathing crack. Keywords: rotordynamics, stability, rotor cracks.

  13. Fatigue crack growth in unidirectional and cross-ply SCS-6/Timetal 21S titanium matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, D.J.

    1994-01-01

    Fatigue crack growth in unidirectional and cross-ply SCS-6/ Timetal(R) 21S titanium matrix composite was investigated. Fatigue crack growth tests were performed on (0){sub 4}, (90){sub 4}, and (0/90){sub s} center notch specimens. The (0){sub 4} and (0/90){sub s} fatigue crack growth rates decreased initially. Specimens removed prior to failure were polished to the first row of fibers and intact fibers in the wake of the matrix crack were observed. These bridging fibers reduced the stress intensity range that the matrix material was subjected to, thus reducing the crack growth rate. The crack growth rate eventually increased as fibers failed inmore » the crack wake but the fatigue crack growth rate was still much slower than that of unreinforced Timetal(R) 21S. A model was developed to study the mechanics of a cracked unidirectional composite with any combination of intact and broken fibers in the wake of a matrix crack. The model was correlated to fatigue crack growth rate tests. The model was verified by comparing predicted displacements near the crack surface with Elber gage (1.5 mm gage length extensometer) measurements. The fatigue crack growth rate for the (90){sub 4} specimens was faster than that of unreinforced Timetal(registered trademark) 21S. Elber gage displacement measurements were in agreement with linear elastic fracture mechanics predictions, suggesting that linear elastic fracture mechanics may be applicable to transversely loaded titanium matrix composites.« less

  14. 3D ductile crack propagation within a polycrystalline microstructure using XFEM

    NASA Astrophysics Data System (ADS)

    Beese, Steffen; Loehnert, Stefan; Wriggers, Peter

    2018-02-01

    In this contribution we present a gradient enhanced damage based method to simulate discrete crack propagation in 3D polycrystalline microstructures. Discrete cracks are represented using the eXtended finite element method. The crack propagation criterion and the crack propagation direction for each point along the crack front line is based on the gradient enhanced damage variable. This approach requires the solution of a coupled problem for the balance of momentum and the additional global equation for the gradient enhanced damage field. To capture the discontinuity of the displacements as well as the gradient enhanced damage along the discrete crack, both fields are enriched using the XFEM in combination with level sets. Knowing the crack front velocity, level set methods are used to compute the updated crack geometry after each crack propagation step. The applied material model is a crystal plasticity model often used for polycrystalline microstructures of metals in combination with the gradient enhanced damage model. Due to the inelastic material behaviour after each discrete crack propagation step a projection of the internal variables from the old to the new crack configuration is required. Since for arbitrary crack geometries ill-conditioning of the equation system may occur due to (near) linear dependencies between standard and enriched degrees of freedom, an XFEM stabilisation technique based on a singular value decomposition of the element stiffness matrix is proposed. The performance of the presented methodology to capture crack propagation in polycrystalline microstructures is demonstrated with a number of numerical examples.

  15. Application of fiber bridging models to fatigue crack growth in unidirectional titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Johnson, W. S.

    1992-01-01

    Several fiber bridging models were reviewed and applied to study the matrix fatigue crack growth behavior in center notched (0)(sub 8) SCS-6/Ti-15-3 and (0)(sub 4) SCS-6/Ti-6Al-4V laminates. Observations revealed that fatigue damage consisted primarily of matrix cracks and fiber matrix interfacial failure in the (0)(sub 8) SCS-6/Ti-15-3 laminates. Fiber-matrix interface failure included fracture of the brittle reaction zone and cracking between the two carbon rich fiber coatings. Intact fibers in the wake of the matrix cracks reduce the stress intensity factor range. Thus, an applied stress intensity factor range is inappropriate to characterize matrix crack growth behavior. Fiber bridging models were used to determine the matrix stress intensity factor range in titanium metal matrix composites. In these models, the fibers in the wake of the crack are idealized as a closure pressure. An unknown constant frictional shear stress is assumed to act along the debond or slip length of the bridging fibers. The frictional shear stress was used as a curve fitting parameter to available data (crack growth data, crack opening displacement data, and debond length data). Large variations in the frictional shear stress required to fit the experimental data indicate that the fiber bridging models in their present form lack predictive capabilities. However, these models provide an efficient and relatively simple engineering method for conducting parametric studies of the matrix growth behavior based on constituent properties.

  16. Effect of Chamber Pressurization Rate on Combustion and Propagation of Solid Propellant Cracks

    NASA Astrophysics Data System (ADS)

    Yuan, Wei-Lan; Wei, Shen; Yuan, Shu-Shen

    2002-01-01

    area of the propellant grain satisfies the designed value. But cracks in propellant grain can be generated during manufacture, storage, handing and so on. The cracks can provide additional surface area for combustion. The additional combustion may significantly deviate the performance of the rocket motor from the designed conditions, even lead to explosive catastrophe. Therefore a thorough study on the combustion, propagation and fracture of solid propellant cracks must be conducted. This paper takes an isolated propellant crack as the object and studies the effect of chamber pressurization rate on the combustion, propagation and fracture of the crack by experiment and theoretical calculation. deformable, the burning inside a solid propellant crack is a coupling of solid mechanics and combustion dynamics. In this paper, a theoretical model describing the combustion, propagation and fracture of the crack was formulated and solved numerically. The interaction of structural deformation and combustion process was included in the theoretical model. The conservation equations for compressible fluid flow, the equation of state for perfect gas, the heat conducting equation for the solid-phase, constitutive equation for propellant, J-integral fracture criterion and so on are used in the model. The convective burning inside the crack and the propagation and fracture of the crack were numerically studied by solving the set of nonlinear, inhomogeneous gas-phase governing equations and solid-phase equations. On the other hand, the combustion experiments for propellant specimens with a precut crack were conducted by RTR system. Predicted results are in good agreement with experimental data, which validates the reasonableness of the theoretical model. Both theoretical and experimental results indicate that the chamber pressurization rate has strong effects on the convective burning in the crack, crack fracture initiation and fracture pattern.

  17. Analytical determination of critical crack size in solar cells

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1988-01-01

    Although solar cells usually have chips and cracks, no material specifications concerning the allowable crack size on solar cells are available for quality assurance and engineering design usage. Any material specifications that the cell manufacturers use were developed for cosmetic reasons that have no technical basis. Therefore, the Applied Solar Energy Corporation (ASEC) has sponsored a continuing program for the fracture mechanics evaluation of GaAs. Fracture mechanics concepts were utilized to develop an analytical model that can predict the critical crack size of solar cells. This model indicates that the edge cracks of a solar cell are more critical than its surface cracks. In addition, the model suggests that the material specifications on the allowable crack size used for Si solar cells should not be applied to GaAs solar cells. The analytical model was applied to Si and GaAs solar cells, but it would also be applicable to the semiconductor wafers of other materials, such as a GaAs thin film on a Ge substrate, using appropriate input data.

  18. Magnetic-saturation zone model for two semipermeable cracks in magneto-electro-elastic medium

    NASA Astrophysics Data System (ADS)

    Jangid, Kamlesh

    2018-03-01

    Extension of the PS model (Gao et al. [1]) in piezoelectric materials and the SEMPS model (Fan and Zhao [2]) in MEE materials, is proposed for two semi-permeable cracks in a MEE medium. It is assumed that the magnetic yielding occurs at the continuation of the cracks due to the prescribed loads. We have model these crack continuations as the zones with cohesive saturation limit magnetic induction. Stroh's formalism and complex variable techniques are used to formulate the problem. Closed form analytical expressions are derived for various fracture parameters. A numerical case study is presented for BaTiO3 - CoFe2O4 ceramic cracked plate.

  19. A penny-shaped crack in a filament reinforced matrix. 1: The filament model

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Pacella, A. H.

    1973-01-01

    The electrostatic problem of a penny-shaped crack in an elastic matrix which reinforced by filaments or fibers perpendicular to the plane of the crack was studied. The elastic filament model was developed for application to evaluation studies of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. The requirements expected of the model are a sufficiently accurate representation of the filament and applicability to the interaction problems involving a cracked elastic continuum with multi-filament reinforcements. The technique for developing the model and numerical examples of it are shown.

  20. Assessment and prediction of drying shrinkage cracking in bonded mortar overlays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beushausen, Hans, E-mail: hans.beushausen@uct.ac.za; Chilwesa, Masuzyo

    2013-11-15

    Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing wasmore » found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.« less

  1. Method of producing pyrolysis gases from carbon-containing materials

    DOEpatents

    Mudge, Lyle K.; Brown, Michael D.; Wilcox, Wayne A.; Baker, Eddie G.

    1989-01-01

    A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.

  2. Decrepitation and crack healing of fluid inclusions in San Carlos olivine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanamaker, B.J.; Wong, Tengfong; Evans, B.

    1990-09-10

    Fluid inclusions break, or decrepitate, when the fluid pressure exceeds the least principal lithostatic stress by a critical amount. After decrepitation, excess fluid pressure is relaxed, resulting in crack arrest; subsequently, crack healing may occur. The authors developed a linear elastic fracture mechanics model to analyze new data on decrepitation and crack arrest in San Carlos Olivine, compared the model with previous fluid inclusion investigations, and used it to interpret some natural decrepitation microstructures. The common experimental observation that smaller inclusions may sustain higher internal fluid pressures without decrepitating may be rationalized by assuming that flaws associated with the inclusionmore » scale with the inclusion size. According to the model, the length of the crack formed by decrepitation depends on the lithostatic pressure at the initiation of cracking, the initial sizes of the flaw and the inclusion, and the critical stress intensity factor. Further experiments show that microcracks in San Carlos olivine heal within several days at 1,280 to 1,400{degree}C; healing rates depend on the crack geometry, temperature, and chemistry of the buffering gas. The regression distance of the crack tip during healing can be related to time through a power law with exponent n = 0.6. Chemical changes which become apparent after extremely long heat-treatments significantly affect the healing rates. Many of the inclusions in the San Carlos xenoliths stretched, decrepitated, and finally healed during uplift. The crack arrest model indicates that completely healed cracks had an initial fluid pressure of the order of 1 GPa. Using the crack arrest model and the healing kinetics, they estimate the ascent rate of these xenoliths to be between 0.001 and 0.1 m/s.« less

  3. Buckling and postbuckling of size-dependent cracked microbeams based on a modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Akbarzadeh Khorshidi, M.; Shariati, M.

    2017-07-01

    The elastic buckling analysis and the static postbuckling response of the Euler-Bernoulli microbeams containing an open edge crack are studied based on a modified couple stress theory. The cracked section is modeled by a massless elastic rotational spring. This model contains a material length scale parameter and can capture the size effect. The von Kármán nonlinearity is applied to display the postbuckling behavior. Analytical solutions of a critical buckling load and the postbuckling response are presented for simply supported cracked microbeams. This parametric study indicates the effects of the crack location, crack severity, and length scale parameter on the buckling and postbuckling behaviors of cracked microbeams.

  4. Numerical simulations of microcrack-related damage and ignition behavior of mild-impacted polymer bonded explosives.

    PubMed

    Yang, Kun; Wu, Yanqing; Huang, Fenglei

    2018-08-15

    A physical model is developed to describe the viscoelastic-plastic deformation, cracking damage, and ignition behavior of polymer-bonded explosives (PBXs) under mild impact. This model improves on the viscoelastic-statistical crack mechanical model (Visco-SCRAM) in several respects. (i) The proposed model introduces rate-dependent plasticity into the framework which is more suitable for explosives with relatively high binder content. (ii) Damage evolution is calculated by the generalized Griffith instability criterion with the dominant (most unstable) crack size rather than the averaged crack size over all crack orientations. (iii) The fast burning of cracks following ignition and the effects of gaseous products on crack opening are considered. The predicted uniaxial and triaxial stress-strain responses of PBX9501 sample under dynamic compression loading are presented to illustrate the main features of the materials. For an uncovered cylindrical PBX charge impacted by a flat-nosed rod, the simulated results show that a triangular-shaped dead zone is formed beneath the front of the rod. The cracks in the dead zone are stable due to friction-locked stress state, whereas the cracks near the front edges of dead zone become unstable and turn into hotspots due to high-shear effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Analytical insight into "breathing" crack-induced acoustic nonlinearity with an application to quantitative evaluation of contact cracks.

    PubMed

    Wang, Kai; Liu, Menglong; Su, Zhongqing; Yuan, Shenfang; Fan, Zheng

    2018-08-01

    To characterize fatigue cracks, in the undersized stage in particular, preferably in a quantitative and precise manner, a two-dimensional (2D) analytical model is developed for interpreting the modulation mechanism of a "breathing" crack on guided ultrasonic waves (GUWs). In conjunction with a modal decomposition method and a variational principle-based algorithm, the model is capable of analytically depicting the propagating and evanescent waves induced owing to the interaction of probing GUWs with a "breathing" crack, and further extracting linear and nonlinear wave features (e.g., reflection, transmission, mode conversion and contact acoustic nonlinearity (CAN)). With the model, a quantitative correlation between CAN embodied in acquired GUWs and crack parameters (e.g., location and severity) is obtained, whereby a set of damage indices is proposed via which the severity of the crack can be evaluated quantitatively. The evaluation, in principle, does not entail a benchmarking process against baseline signals. As validation, the results obtained from the analytical model are compared with those from finite element simulation, showing good consistency. This has demonstrated accuracy of the developed analytical model in interpreting contact crack-induced CAN, and spotlighted its application to quantitative evaluation of fatigue damage. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Evaluation of strength and failure of brittle rock containing initial cracks under lithospheric conditions

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhao; Qi, Chengzhi; Shao, Zhushan; Ma, Chao

    2018-02-01

    Natural brittle rock contains numerous randomly distributed microcracks. Crack initiation, growth, and coalescence play a predominant role in evaluation for the strength and failure of brittle rocks. A new analytical method is proposed to predict the strength and failure of brittle rocks containing initial microcracks. The formulation of this method is based on an improved wing crack model and a suggested micro-macro relation. In this improved wing crack model, the parameter of crack angle is especially introduced as a variable, and the analytical stress-crack relation considering crack angle effect is obtained. Coupling the proposed stress-crack relation and the suggested micro-macro relation describing the relation between crack growth and axial strain, the stress-strain constitutive relation is obtained to predict the rock strength and failure. Considering different initial microcrack sizes, friction coefficients and confining pressures, effects of crack angle on tensile wedge force acting on initial crack interface are studied, and effects of crack angle on stress-strain constitutive relation of rocks are also analyzed. The strength and crack initiation stress under different crack angles are discussed, and the value of most disadvantaged angle triggering crack initiation and rock failure is founded. The analytical results are similar to the published study results. Rationality of this proposed analytical method is verified.

  7. Coke formation in the thermal cracking of hydrocarbons. 4: Modeling of coke formation in naphtha cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyniers, G.C.; Froment, G.F.; Kopinke, F.D.

    1994-11-01

    An extensive experimental program has been carried out in a pilot unit for the thermal cracking of hydrocarbons. On the basis of the experimental information and the insight in the mechanisms for coke formation in pyrolysis reactors, a mathematical model describing the coke formation has been derived. This model has been incorporated in the existing simulation tools at the Laboratorium voor Petrochemische Techniek, and the run length of an industrial naphtha cracking furnace has been accurately simulated. In this way the coking model has been validated.

  8. Floating Node Method and Virtual Crack Closure Technique for Modeling Matrix Cracking-Delamination Interaction

    NASA Technical Reports Server (NTRS)

    DeCarvalho, N. V.; Chen, B. Y.; Pinho, S. T.; Baiz, P. M.; Ratcliffe, J. G.; Tay, T. E.

    2013-01-01

    A novel approach is proposed for high-fidelity modeling of progressive damage and failure in composite materials that combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. In this study, the approach is applied to the modeling of delamination migration in cross-ply tape laminates. Delamination, matrix cracking, and migration are all modeled using fracture mechanics based failure and migration criteria. The methodology proposed shows very good qualitative and quantitative agreement with experiments.

  9. Floating Node Method and Virtual Crack Closure Technique for Modeling Matrix Cracking-Delamination Migration

    NASA Technical Reports Server (NTRS)

    DeCarvalho, Nelson V.; Chen, B. Y.; Pinho, Silvestre T.; Baiz, P. M.; Ratcliffe, James G.; Tay, T. E.

    2013-01-01

    A novel approach is proposed for high-fidelity modeling of progressive damage and failure in composite materials that combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. In this study, the approach is applied to the modeling of delamination migration in cross-ply tape laminates. Delamination, matrix cracking, and migration are all modeled using fracture mechanics based failure and migration criteria. The methodology proposed shows very good qualitative and quantitative agreement with experiments.

  10. Modeling crack propagation in polycrystalline microstructure using variational multiscale method

    DOE PAGES

    Sun, Shang; Sundararaghavan, Veera

    2016-01-01

    Crack propagation in a polycrystalline microstructure is analyzed using a novel multiscale model. The model includes an explicit microstructural representation at critical regions (stress concentrators such as notches and cracks) and a reduced order model that statistically captures the microstructure at regions far away from stress concentrations. Crack propagation is modeled in these critical regions using the variational multiscale method. In this approach, a discontinuous displacement field is added to elements that exceed the critical values of normal or tangential tractions during loading. Compared to traditional cohesive zone modeling approaches, the method does not require the use of any specialmore » interface elements in the microstructure and thus can model arbitrary crack paths. As a result, the capability of the method in predicting both intergranular and transgranular failure modes in an elastoplastic polycrystal is demonstrated under tensile and three-point bending loads.« less

  11. Influence of Shear Stiffness Degradation on Crack Paths in Uni-Directional Composite Laminates

    NASA Technical Reports Server (NTRS)

    Satyanarayana, Arunkumar; Bogert, Phil B.

    2017-01-01

    Influence of shear stiffness degradation in an element, due to damage, on crack paths in uni-directional laminates has been demonstrated. A new shear stiffness degradation approach to improve crack path prediction has been developed and implemented in an ABAQUS/Explicit frame work using VUMAT. Three progressive failure analysis models, built-in ABAQUS (TradeMark), original COmplete STress Reduction (COSTR) and the modified COSTR damage models have been utilized in this study to simulate crack paths in five unidirectional notched laminates, 15deg, 30deg, 45deg, 60deg and 75deg under uniaxial tension load. Results such as crack paths and load vs. edge displacement curves are documented in this report. Modified COSTR damage model shows better accuracy in predicting crack paths in all the uni-directional laminates compared to the ABAQUS (TradeMark) and the original COSTR damage models.

  12. Micromechanical predictions of crack propagation and fracture energy in a single fiber boron/aluminum model composite

    NASA Technical Reports Server (NTRS)

    Adams, D. F.; Mahishi, J. M.

    1982-01-01

    The axisymmetric finite element model and associated computer program developed for the analysis of crack propagation in a composite consisting of a single broken fiber in an annular sheath of matrix material was extended to include a constant displacement boundary condition during an increment of crack propagation. The constant displacement condition permits the growth of a stable crack, as opposed to the catastropic failure in an earlier version. The finite element model was refined to respond more accurately to the high stresses and steep stress gradients near the broken fiber end. The accuracy and effectiveness of the conventional constant strain axisymmetric element for crack problems was established by solving the classical problem of a penny-shaped crack in a thick cylindrical rod under axial tension. The stress intensity factors predicted by the present finite element model are compared with existing continuum results.

  13. Analytical and experimental investigation of fatigue in lap joints

    NASA Astrophysics Data System (ADS)

    Swenson, Daniel V.; Chih-Chien, Chia; Derber, Thomas G.

    A finite element model is presented that can simulate crack growth in layered structures such as lap joints. The layers can be joined either by rivets or adhesives. The crack is represented discretely in the mesh, and automatic remeshing is performed as the crack grows. Because of the connections between the layers, load is transferred to the uncracked layer as the crack grows. This reduces the stress intensity and slows the crack growth rate. The model is used to analyze tests performed on a section of a wing spanwise lap joint. The crack was initiated at a rivet and grown under constant amplitude cyclic loads. Both experimentally observed crack growth rates and the analysis show the retardation that occurs as a result of load transfer between layers. A good correlation is obtained between predicted and observed crack growth rates for the fullly developed through-thickness crack.

  14. Fatigue life and crack growth prediction methodology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1993-01-01

    The capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials are reviewed. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta(K(sub eff))) under constant-amplitude loading. Some modifications to the delta(K(sub eff))-rate relations were needed in the near threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.

  15. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law

    PubMed Central

    Toribio, Jesús; Matos, Juan-Carlos; González, Beatriz

    2017-01-01

    In this paper, a Paris law-based model is presented whereby crack propagation occurs under cyclic loading in air (fatigue) and in an aggressive environment (corrosion-fatigue) for the case of corner cracks (with a wide range of aspect ratios in the matter of the initial cracks) in finite-thickness plates of 316L austenitic stainless steel subjected to tension, bending, or combined (tension + bending) loading. Results show that the cracks tend during their growth towards a preferential propagation path, exhibiting aspect ratios slightly lower than unity only for the case of very shallow cracks, and diminishing as the crack grows (increasing the relative crack depth)—more intensely in the case of bending than in the case of tension (the mixed loading tension/bending representing an intermediate case). In addition, the crack aspect ratios during fatigue propagation evolution are lower in fatigue (in air) than in corrosion-fatigue (in aggressive environment). PMID:28772798

  16. Crack Modelling for Radiography

    NASA Astrophysics Data System (ADS)

    Chady, T.; Napierała, L.

    2010-02-01

    In this paper, possibility of creation of three-dimensional crack models, both random type and based on real-life radiographic images is discussed. Method for storing cracks in a number of two-dimensional matrices, as well algorithm for their reconstruction into three-dimensional objects is presented. Also the possibility of using iterative algorithm for matching simulated images of cracks to real-life radiographic images is discussed.

  17. Small Crack Growth and Fatigue Life Predictions for High-Strength Aluminium Alloys. Part 1; Experimental and Fracture Mechanics Analysis

    NASA Technical Reports Server (NTRS)

    Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.

    1998-01-01

    The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.

  18. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambliss, K.; Diwan, M.; Simos, N.

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for allmore » measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.« less

  19. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    DOE PAGES

    Chambliss, K.; Diwan, M.; Simos, N.; ...

    2014-10-09

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for allmore » measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.« less

  20. Effects of microscale inertia on dynamic ductile crack growth

    NASA Astrophysics Data System (ADS)

    Jacques, N.; Mercier, S.; Molinari, A.

    2012-04-01

    The aim of this paper is to investigate the role of microscale inertia in dynamic ductile crack growth. A constitutive model for porous solids that accounts for dynamic effects due to void growth is proposed. The model has been implemented in a finite element code and simulations of crack growth in a notched bar and in an edge cracked specimen have been performed. Results are compared to predictions obtained via the Gurson-Tvergaard-Needleman (GTN) model where micro-inertia effects are not accounted for. It is found that microscale inertia has a significant influence on the crack growth. In particular, it is shown that micro-inertia plays an important role during the strain localisation process by impeding void growth. Therefore, the resulting damage accumulation occurs in a more progressive manner. For this reason, simulations based on the proposed modelling exhibit much less mesh sensitivity than those based on the viscoplastic GTN model. Microscale inertia is also found to lead to lower crack speeds. Effects of micro-inertia on fracture toughness are evaluated.

  1. Geopressured-geothermal test of the EDNA Delcambre No. 1 well, Tigre Lagoon Field, Vermilion Parish, Louisiana: geology of the Tigre Lagoon Field, Planulina Basin. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-10-01

    The geology and hydrology of the Tigre Lagoon Gas Field and the structural and depositional basin in which it occurs, as described, define a hydrodynamic system which has been in operation for millions of years. Fluid entrapment and geopressuring of the deposits has resulted in steepened geothermal gradients, accelerated maturation and thermal degradation (cracking) of fluid hydrocarbons, thermal diagenesis of certain clay minerals with release of much bound and intracrystalline water as free pore water, and a systematic fluid migration history controlled by the sand-bed aquifers in the basin, and by upward leakage at growth faults wherever fluid pressures approachedmore » or exceeded rock pressures. Observed geotemperature, geopressure, water salinity, and natural gas occurrence in the study area conform with the conceptual model developed.« less

  2. A statistical model of brittle fracture by transgranular cleavage

    NASA Astrophysics Data System (ADS)

    Lin, Tsann; Evans, A. G.; Ritchie, R. O.

    A MODEL for brittle fracture by transgranular cleavage cracking is presented based on the application of weakest link statistics to the critical microstructural fracture mechanisms. The model permits prediction of the macroscopic fracture toughness, KI c, in single phase microstructures containing a known distribution of particles, and defines the critical distance from the crack tip at which the initial cracking event is most probable. The model is developed for unstable fracture ahead of a sharp crack considering both linear elastic and nonlinear elastic ("elastic/plastic") crack tip stress fields. Predictions are evaluated by comparison with experimental results on the low temperature flow and fracture behavior of a low carbon mild steel with a simple ferrite/grain boundary carbide microstructure.

  3. Fault feature analysis of cracked gear based on LOD and analytical-FE method

    NASA Astrophysics Data System (ADS)

    Wu, Jiateng; Yang, Yu; Yang, Xingkai; Cheng, Junsheng

    2018-01-01

    At present, there are two main ideas for gear fault diagnosis. One is the model-based gear dynamic analysis; the other is signal-based gear vibration diagnosis. In this paper, a method for fault feature analysis of gear crack is presented, which combines the advantages of dynamic modeling and signal processing. Firstly, a new time-frequency analysis method called local oscillatory-characteristic decomposition (LOD) is proposed, which has the attractive feature of extracting fault characteristic efficiently and accurately. Secondly, an analytical-finite element (analytical-FE) method which is called assist-stress intensity factor (assist-SIF) gear contact model, is put forward to calculate the time-varying mesh stiffness (TVMS) under different crack states. Based on the dynamic model of the gear system with 6 degrees of freedom, the dynamic simulation response was obtained for different tooth crack depths. For the dynamic model, the corresponding relation between the characteristic parameters and the degree of the tooth crack is established under a specific condition. On the basis of the methods mentioned above, a novel gear tooth root crack diagnosis method which combines the LOD with the analytical-FE is proposed. Furthermore, empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) are contrasted with the LOD by gear crack fault vibration signals. The analysis results indicate that the proposed method performs effectively and feasibility for the tooth crack stiffness calculation and the gear tooth crack fault diagnosis.

  4. Model based Inverse Methods for Sizing Cracks of Varying Shape and Location in Bolt hole Eddy Current (BHEC) Inspections (Postprint)

    DTIC Science & Technology

    2016-02-10

    using bolt hole eddy current (BHEC) techniques. Data was acquired for a wide range of crack sizes and shapes, including mid- bore , corner and through...to select the most appropriate VIC-3D surrogate model for subsequent crack sizing inversion step. Inversion results for select mid- bore , through and...the flaw. 15. SUBJECT TERMS Bolt hole eddy current (BHEC); mid- bore , corner and through-thickness crack types; VIC-3D generated surrogate models

  5. A Study of Failure in Small Pressurized Cylindrical Shells Containing a Crack

    NASA Technical Reports Server (NTRS)

    Barwell, Craig A.; Eber, Lorenz; Fyfe, Ian M.

    1998-01-01

    The deformation in the vicinity of axial cracks in thin pressurized cylinders is examined using small experimental The deformation in the vicinity of axial cracks in thin pressurized cylinders is examined using small experimental models. The loading applied was either symmetric or unsymmetric about the crack plane, the latter being caused by structural constraints such as stringers. The objective was two fold - one, to provide the experimental results which will allow computer modeling techniques to be evaluated for deformations that are significantly different from that experienced by flat plates, and the other to examine the deformations and conditions associated with the onset of crack kinking which often precedes crack curving. The stresses which control crack growth in a cylindrical geometry depend on conditions introduced by the axial bulging, which is an integral part of this type of failure. For the symmetric geometry, both the hoop and radial strain just ahead off the crack, r = a, were measured and these results compared with those obtained from a variety of structural analysis codes, in particular STAGS [1], ABAQUS and ANSYS. In addition to these measurements, the pressures at the onset of stable and unstable crack growth were obtained and the corresponding crack deformations measured as the pressures were increased to failure. For the unsymmetric cases, measurements were taken of the crack kinking angle, and the displacements in the vicinity of the crack. In general, the strains ahead of the crack showed good agreement between the three computer codes and between the codes and the experiments. In the case of crack behavior, it was determined that modeling stable tearing with a crack-tip opening displacement fracture criterion could be successfully combined with the finite-element analysis techniques as used in structural analysis codes. The analytic results obtained in this study were very compatible with the experimental observations of crack growth. Measured crack kinking angles also showed good agreement with theories based on the maximum principle stress criterion.

  6. Recent evaluations of crack-opening-area in circumferentially cracked pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, S.; Brust, F.; Ghadiali, N.

    1997-04-01

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessingmore » temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.« less

  7. Extracting real-crack properties from non-linear elastic behaviour of rocks: abundance of cracks with dominating normal compliance and rocks with negative Poisson ratios

    NASA Astrophysics Data System (ADS)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Pasternak, Elena; Dyskin, Arcady

    2017-09-01

    Results of examination of experimental data on non-linear elasticity of rocks using experimentally determined pressure dependences of P- and S-wave velocities from various literature sources are presented. Overall, over 90 rock samples are considered. Interpretation of the data is performed using an effective-medium description in which cracks are considered as compliant defects with explicitly introduced shear and normal compliances without specifying a particular crack model with an a priori given ratio of the compliances. Comparison with the experimental data indicated abundance (˜ 80 %) of cracks with the normal-to-shear compliance ratios that significantly exceed the values typical of conventionally used crack models (such as penny-shaped cuts or thin ellipsoidal cracks). Correspondingly, rocks with such cracks demonstrate a strongly decreased Poisson ratio including a significant (˜ 45 %) portion of rocks exhibiting negative Poisson ratios at lower pressures, for which the concentration of not yet closed cracks is maximal. The obtained results indicate the necessity for further development of crack models to account for the revealed numerous examples of cracks with strong domination of normal compliance. Discovering such a significant number of naturally auxetic rocks is in contrast to the conventional viewpoint that occurrence of a negative Poisson ratio is an exotic fact that is mostly discussed for artificial structures.

  8. Environmental fatigue of an Al-Li-Cu alloy. Part 3: Modeling of crack tip hydrogen damage

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Environmental fatigue crack propagation rates and microscopic damage modes in Al-Li-Cu alloy 2090 (Parts 1 and 2) are described by a crack tip process zone model based on hydrogen embrittlement. Da/dN sub ENV equates to discontinuous crack advance over a distance, delta a, determined by dislocation transport of dissolved hydrogen at plastic strains above a critical value; and to the number of load cycles, delta N, required to hydrogenate process zone trap sites that fracture according to a local hydrogen concentration-tensile stress criterion. Transgranular (100) cracking occurs for process zones smaller than the subgrain size, and due to lattice decohesion or hydride formation. Intersubgranular cracking dominates when the process zone encompasses one or more subgrains so that dislocation transport provides hydrogen to strong boundary trapping sites. Multi-sloped log da/dN-log delta K behavior is produced by process zone plastic strain-hydrogen-microstructure interactions, and is determined by the DK dependent rates and proportions of each parallel cracking mode. Absolute values of the exponents and the preexponential coefficients are not predictable; however, fractographic measurements theta sub i coupled with fatigue crack propagation data for alloy 2090 established that the process zone model correctly describes fatigue crack propagation kinetics. Crack surface films hinder hydrogen uptake and reduce da/dN and alter the proportions of each fatigue crack propagation mode.

  9. Nonlocal modeling and buckling features of cracked nanobeams with von Karman nonlinearity

    NASA Astrophysics Data System (ADS)

    Akbarzadeh Khorshidi, Majid; Shaat, Mohamed; Abdelkefi, Abdessattar; Shariati, Mahmoud

    2017-01-01

    Buckling and postbuckling behaviors of cracked nanobeams made of single-crystalline nanomaterials are investigated. The nonlocal elasticity theory is used to model the nonlocal interatomic effects on the beam's performance accounting for the beam's axial stretching via von Karman nonlinear theory. The crack is then represented as torsional spring where the crack severity factor is derived accounting for the nonlocal features of the beam. By converting the beam into an equivalent infinite long plate with an edge crack subjected to a tensile stress at the far field, the crack energy release rate, intensity factor, and severity factor are derived according to the nonlocal elasticity theory. An analytical solution for the buckling and the postbuckling responses of cracked nonlocal nanobeams accounting for the beam axial stretching according to von Karman nonlinear theory of kinematics is derived. The impacts of the nonlocal parameter on the critical buckling loads and the static nonlinear postbuckling responses of cracked nonlocal nanobeams are studied. The results indicate that the buckling and postbuckling behaviors of cracked nanobeams are strongly affected by the crack location, crack depth, nonlocal parameter, and length-to-thickness ratio.

  10. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE PAGES

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  11. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yanfei

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  12. An electro-mechanical impedance model of a cracked composite beam with adhesively bonded piezoelectric patches

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Cai, J. B.; Chen, W. Q.

    2011-01-01

    A model of a laminated composite beam including multiple non-propagating part-through surface cracks as well as installed PZT transducers is presented based on the method of reverberation-ray matrix (MRRM) in this paper. Toward determining the local flexibility characteristics induced by the individual cracks, the concept of the massless rotational spring is applied. A Timoshenko beam theory is then used to simulate the behavior of the composite beam with open cracks. As a result, transverse shear and rotatory inertia effects are included in the model. Only one-dimensional axial vibration of the PZT wafer is considered and the imperfect interfacial bonding between PZT patches and the host beam is further investigated based on a Kelvin-type viscoelastic model. Then, an accurate electro-mechanical impedance (EMI) model can be established for crack detection in laminated beams. In this model, the effects of various parameters such as the ply-angle, fibre volume fraction, crack depth and position on the EMI signatures are highlighted. Furthermore, comparison with existent numerical results is presented to validate the present analysis.

  13. Synergistic Effects of Temperature and Oxidation on Matrix Cracking in Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2017-06-01

    In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.

  14. Factors limiting the domestic density of Triatoma infestans in north-west Argentina: a longitudinal study.

    PubMed Central

    Cecere, M. C.; Gürtler, R. E.; Chuit, R.; Cohen, J. E.

    1998-01-01

    Reported are the environmental and demographic risk factors associated with the domestic infestation and density of Triatoma infestans in three heavily infested rural villages in Santiago del Estero Province, Argentina. In a one-factor unadjusted analysis, the number of T. infestans captured per person-hour was associated significantly and negatively with the use of domestic insecticides by householders, type of thatch used in the roofs and the age of the house; and positively with the following: degree of cracking of the indoor walls and presence of hens nesting indoors. In one model, using multiple linear regression and a backward stepwise elimination procedure, most of the variation in the overall abundance of T. infestans was explained by insecticide use and the presence of hens nesting indoors; in another model using the same procedure it was explained by insecticide use, bug density in 1988 and previous spraying with deltamethrin in 1985. Variations in bug density per capture stratum (household goods, beds, walls and roof) were explained by the bug density in other strata and by one or two of the following risk factors: hens nesting indoors, type of roof, presence of cracks in the walls and number of people living in the house. Bug density might be locally controlled by the availability of refuges in the roofs and walls, by the presence of hens nesting indoors and by the use of domestic insecticides. Certain local materials, such as a grass known as simbol, could be successfully used in rural housing improvement programmes aimed at reducing the availability of refuges for insects in the roof. PMID:9803588

  15. Factors limiting the domestic density of Triatoma infestans in north-west Argentina: a longitudinal study.

    PubMed

    Cecere, M C; Gürtler, R E; Chuit, R; Cohen, J E

    1998-01-01

    Reported are the environmental and demographic risk factors associated with the domestic infestation and density of Triatoma infestans in three heavily infested rural villages in Santiago del Estero Province, Argentina. In a one-factor unadjusted analysis, the number of T. infestans captured per person-hour was associated significantly and negatively with the use of domestic insecticides by householders, type of thatch used in the roofs and the age of the house; and positively with the following: degree of cracking of the indoor walls and presence of hens nesting indoors. In one model, using multiple linear regression and a backward stepwise elimination procedure, most of the variation in the overall abundance of T. infestans was explained by insecticide use and the presence of hens nesting indoors; in another model using the same procedure it was explained by insecticide use, bug density in 1988 and previous spraying with deltamethrin in 1985. Variations in bug density per capture stratum (household goods, beds, walls and roof) were explained by the bug density in other strata and by one or two of the following risk factors: hens nesting indoors, type of roof, presence of cracks in the walls and number of people living in the house. Bug density might be locally controlled by the availability of refuges in the roofs and walls, by the presence of hens nesting indoors and by the use of domestic insecticides. Certain local materials, such as a grass known as simbol, could be successfully used in rural housing improvement programmes aimed at reducing the availability of refuges for insects in the roof.

  16. A Hybrid Numerical Analysis Method for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Staroselsky, Alexander

    2001-01-01

    A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.

  17. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Inamullah; François, Raoul; Castel, Arnaud

    2014-02-15

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a givenmore » opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.« less

  18. Simulating the effect of slab features on vapor intrusion of crack entry

    PubMed Central

    Yao, Yijun; Pennell, Kelly G.; Suuberg, Eric M.

    2012-01-01

    In vapor intrusion screening models, a most widely employed assumption in simulating the entry of contaminant into a building is that of a crack in the building foundation slab. Some modelers employed a perimeter crack hypothesis while others chose not to identify the crack type. However, few studies have systematically investigated the influence on vapor intrusion predictions of slab crack features, such as the shape and distribution of slab cracks and related to this overall building foundation footprint size. In this paper, predictions from a three-dimensional model of vapor intrusion are used to compare the contaminant mass flow rates into buildings with different foundation slab crack features. The simulations show that the contaminant mass flow rate into the building does not change much for different assumed slab crack shapes and locations, and the foundation footprint size does not play a significant role in determining contaminant mass flow rate through a unit area of crack. Moreover, the simulation helped reveal the distribution of subslab contaminant soil vapor concentration beneath the foundation, and the results suggest that in most cases involving no biodegradation, the variation in subslab concentration should not exceed an order of magnitude, and is often significantly less than this. PMID:23359620

  19. A study of fiber volume fraction effects in notched unidirectional SCS-6/Ti-15V-3Cr-3Al-3Sn composite. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Covey, Steven J.

    1993-01-01

    Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip. Plastic zone sizes were directly measured using a metallographic technique and allow prediction of an effective matrix stress intensity which agrees with the fiber pressure model if residual stresses are considered. The sophisticated macro/micro finite element models of the 0.15 and 0.37 fiber volume fractions presented show good agreement with experimental data and the fiber pressure model when an estimated effective fiber/matrix debond length is used.

  20. Growth Life of Surface Cracks in the Rail Web

    DOT National Transportation Integrated Search

    1989-01-01

    The results of a theoretical study of the propagation behavior of surface cracks in the web of railroad rails are presented. Two fracture mechanics models are presented: (1) a conventional LEFM model of an elliptical surface crack of constant aspect ...

  1. Crack Growth Prediction Methodology for Multi-Site Damage: Layered Analysis and Growth During Plasticity

    NASA Technical Reports Server (NTRS)

    James, Mark Anthony

    1999-01-01

    A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.

  2. Application of the line-spring model to a cylindrical shell containing a circumferential or axial part-through crack

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    An approximate solution was obtained for a cylindrical shell containing a part-through surface crack. It was assumed that the shell contains a circumferential or axial semi-elliptic internal or external surface crack and was subjected to a uniform membrane loading or a uniform bending moment away from the crack region. A Reissner type theory was used to account for the effects of the transverse shear deformations. The stress intensity factor at the deepest penetration point of the crack was tabulated for bending and membrane loading by varying three dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided by the results of the elasticity solution obtained from the axisymmetric crack problem for the circumferential crack, and that found from the plane strain problem for a circular ring having a radial crack for the axial crack. The line-spring model gives the expected results in comparison with the elasticity solutions. Results also compare well with the existing finite element solution of the pressurized cylinder containing an internal semi-elliptic surface crack.

  3. Analytical and experimental studies on detection of longitudinal, L and inverted T cracks in isotropic and bi-material beams based on changes in natural frequencies

    NASA Astrophysics Data System (ADS)

    Ravi, J. T.; Nidhan, S.; Muthu, N.; Maiti, S. K.

    2018-02-01

    An analytical method for determination of dimensions of longitudinal crack in monolithic beams, based on frequency measurements, has been extended to model L and inverted T cracks. Such cracks including longitudinal crack arise in beams made of layered isotropic or composite materials. A new formulation for modelling cracks in bi-material beams is presented. Longitudinal crack segment sizes, for L and inverted T cracks, varying from 2.7% to 13.6% of length of Euler-Bernoulli beams are considered. Both forward and inverse problems have been examined. In the forward problems, the analytical results are compared with finite element (FE) solutions. In the inverse problems, the accuracy of prediction of crack dimensions is verified using FE results as input for virtual testing. The analytical results show good agreement with the actual crack dimensions. Further, experimental studies have been done to verify the accuracy of the analytical method for prediction of dimensions of three types of crack in isotropic and bi-material beams. The results show that the proposed formulation is reliable and can be employed for crack detection in slender beam like structures in practice.

  4. Modeling of heat flow and effective thermal conductivity of fractured media: Analytical and numerical methods

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Vu, M.-H.; Vu, M. N.; Tang, A. M.

    2017-05-01

    The present work aims to modeling the thermal conductivity of fractured materials using homogenization-based analytical and pattern-based numerical methods. These materials are considered as a network of cracks distributed inside a solid matrix. Heat flow through such media is perturbed by the crack system. The problem of heat flow across a single crack is firstly investigated. The classical Eshelby's solution, extended to the thermal conduction problem of an ellipsoidal inclusion embedding in an infinite homogeneous matrix, gives an analytical solution of temperature discontinuity across a non-conducting penny-shaped crack. This solution is then validated by the numerical simulation based on the finite elements method. The numerical simulation allows analyzing the effect of crack conductivity. The problem of a single crack is then extended to a medium containing multiple cracks. Analytical estimations for effective thermal conductivity, that take into account the interaction between cracks and their spatial distribution, are developed for the case of non-conducting cracks. Pattern-based numerical method is then employed for both cases non-conducting and conducting cracks. In the case of non-conducting cracks, numerical and analytical methods, both account for the spatial distribution of the cracks, fit perfectly. In the case of conducting cracks, the numerical analyzing of crack conductivity effect shows that highly conducting cracks weakly affect heat flow and the effective thermal conductivity of fractured media.

  5. Numerical simulations of electric potential field for alternating current potential drop associated with surface cracks in low-alloy steel nuclear material

    NASA Astrophysics Data System (ADS)

    Yeh, Chun-Ping; Huang, Jiunn-Yuan

    2018-04-01

    Low-alloy steels used as structural materials in nuclear power plants are subjected to cyclic stresses during power plant operations. As a result, cracks may develop and propagate through the material. The alternating current potential drop technique is used to measure the lengths of cracks in metallic components. The depth of the penetration of the alternating current is assumed to be small compared to the crack length. This assumption allows the adoption of the unfolding technique to simplify the problem to a surface Laplacian field. The numerical modelling of the electric potential and current density distribution prediction model for a compact tension specimen and the unfolded crack model are presented in this paper. The goal of this work is to conduct numerical simulations to reduce deviations occurring in the crack length measurements. Numerical simulations were conducted on AISI 4340 low-alloy steel with different crack lengths to evaluate the electric potential distribution. From the simulated results, an optimised position for voltage measurements in the crack region was proposed.

  6. Anisotropic Poroelasticity in a Rock With Cracks

    NASA Astrophysics Data System (ADS)

    Wong, Teng-Fong

    2017-10-01

    Deformation of a saturated rock in the field and laboratory may occur in a broad range of conditions, ranging from undrained to drained. The poromechanical response is often anisotropic, and in a brittle rock, closely related to preexisting and stress-induced cracks. This can be modeled as a rock matrix embedded with an anisotropic system of cracks. Assuming microisotropy, expressions for three of the poroelastic coefficients of a transversely isotropic rock were derived in terms of the crack density tensor. Together with published results for the five effective elastic moduli, this provides a complete micromechanical description of the eight independent poroelastic coefficients of such a cracked rock. Relatively simple expressions were obtained for the Skempton pore pressure tensor, which allow one to infer the crack density tensor from undrained measurement in the laboratory, and also to infer the Biot-Willis effective stress coefficients. The model assumes a dilute concentration of noninteractive penny-shaped cracks, and it shows good agreement with experimental data for Berea sandstone, with crack density values up to 0.6. Whereas predictions on the storage coefficient and normal components of the elastic stiffness tensor also seem reasonable, significant discrepancy between model and measurement was observed regarding the off-diagonal and shear components of the stiffness. A plausible model had been proposed for development of very strong anisotropy in the undrained response of a fault zone, and the model here placed geometric constraints on the associated fracture system.

  7. Slow crack growth: Models and experiments

    NASA Astrophysics Data System (ADS)

    Santucci, S.; Vanel, L.; Ciliberto, S.

    2007-07-01

    The properties of slow crack growth in brittle materials are analyzed both theoretically and experimentally. We propose a model based on a thermally activated rupture process. Considering a 2D spring network submitted to an external load and to thermal noise, we show that a preexisting crack in the network may slowly grow because of stress fluctuations. An analytical solution is found for the evolution of the crack length as a function of time, the time to rupture and the statistics of the crack jumps. These theoretical predictions are verified by studying experimentally the subcritical growth of a single crack in thin sheets of paper. A good agreement between the theoretical predictions and the experimental results is found. In particular, our model suggests that the statistical stress fluctuations trigger rupture events at a nanometric scale corresponding to the diameter of cellulose microfibrils.

  8. Interlaboratory study for nickel alloy 625 made by laser powder bed fusion to quantify mechanical property variability.

    PubMed

    Brown, Christopher U; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan

    2016-08-01

    Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser-powder-bed-fusion additive manufacturing machines. The tensile specimens were heat treated and tensile tests conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to 4 times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure.

  9. Interlaboratory study for nickel alloy 625 made by laser powder bed fusion to quantify mechanical property variability

    PubMed Central

    Brown, Christopher U.; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan

    2017-01-01

    Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser-powder-bed-fusion additive manufacturing machines. The tensile specimens were heat treated and tensile tests conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to 4 times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure. PMID:28243032

  10. Interlaboratory Study for Nickel Alloy 625 Made by Laser Powder Bed Fusion to Quantify Mechanical Property Variability

    NASA Astrophysics Data System (ADS)

    Brown, Christopher U.; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan

    2016-08-01

    Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser powder bed fusion-additive manufacturing machines. The tensile specimens were heat treated and tensile tests were conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to four times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure.

  11. Modelling explicit fracture of nuclear fuel pellets using peridynamics

    NASA Astrophysics Data System (ADS)

    Mella, R.; Wenman, M. R.

    2015-12-01

    Three dimensional models of explicit cracking of nuclear fuel pellets for a variety of power ratings have been explored with peridynamics, a non-local, mesh free, fracture mechanics method. These models were implemented in the explicitly integrated molecular dynamics code LAMMPS, which was modified to include thermal strains in solid bodies. The models of fuel fracture, during initial power transients, are shown to correlate with the mean number of cracks observed on the inner and outer edges of the pellet, by experimental post irradiation examination of fuel, for power ratings of 10 and 15 W g-1 UO2. The models of the pellet show the ability to predict expected features such as the mid-height pellet crack, the correct number of radial cracks and initiation and coalescence of radial cracks. This work presents a modelling alternative to empirical fracture data found in many fuel performance codes and requires just one parameter of fracture strain. Weibull distributions of crack numbers were fitted to both numerical and experimental data using maximum likelihood estimation so that statistical comparison could be made. The findings show P-values of less than 0.5% suggesting an excellent agreement between model and experimental distributions.

  12. The effect of an East Pacific Rise offset on the formation of secondary cracks ahead of the Cocos-Nazca Rift at the Galapagos Triple Junction

    NASA Astrophysics Data System (ADS)

    Smith, D. K.; Montesi, L. G.; Schouten, H.; Zhu, W.

    2011-12-01

    A succession of short-lived, E-W trending cracks at the Galapagos Triple Junction north and south of the Cocos-Nazca (C-N) Rift, has been explained by a simple crack interaction model. The locations of where the cracks initiate are controlled by tensile stresses generated at the East Pacific Rise (EPR) by two interacting cracks: One representing the north-south trending EPR, and the other the large, westward propagating C-N Rift, whose tip is separated from the EPR by a distance D. The model predicts symmetric cracking at the EPR north and south of the C-N Rift tip. Symmetry in the distribution of cracks north and south of the C-N Rift is observed and especially remarkable between 2.5 and 1.5 Ma when the rapid jumping of cracks toward the C-N Rift appears synchronous. The rapid jumping can be explained by decreasing D, which means that the tip of the C-N Rift was moving closer to the EPR. Symmetry of cracking breaks down at 1.5 Ma, however, with the establishment of the Dietz Deep Rift, the southern boundary of the Galapagos microplate. Symmetry of cracking also breaks down on older crust to the east between about 100 35'W and 100 45'W (about 2.6 Ma) where a rapid jumping of cracks toward the C-N Rift is observed in the south cracking region. There is no evidence of similar rapid jumping in the north cracking region. It could be simply that the response to changing the value of D is not always as predicted. It could also be that the shape of the EPR has not always been symmetric about the C-N Rift, as assumed in the model. Currently, an overlapping spreading center with a 15 km east-west offset between the limbs of the EPR has formed at 1 50'N. We assess the importance of the geometry of the EPR on the crack interaction model. The model has been modified to include a ridge offset similar to what is observed today. We find that the region of stress enhancement at the EPR (where cracks initiate) is subdued south of the C-N Rift tip because of the EPR offset. It is possible, therefore, that the asymmetry in cracking observed since about 1.5 Ma may be explained in part by the presence of a ridge offset south of the C-N Rift tip.

  13. A Linearized Model for Wave Propagation through Coupled Volcanic Conduit-crack Systems Filled with Multiphase Magma

    NASA Astrophysics Data System (ADS)

    Liang, C.; Dunham, E. M.; OReilly, O. J.; Karlstrom, L.

    2015-12-01

    Both the oscillation of magma in volcanic conduits and resonance of fluid-filled cracks (dikes and sills) are appealing explanations for very long period signals recorded at many active volcanoes. While these processes have been studied in isolation, real volcanic systems involve interconnected networks of conduits and cracks. The overall objective of our work is to develop a model of wave propagation and ultimately eruptive fluid dynamics through this coupled system. Here, we present a linearized model for wave propagation through a conduit with multiple cracks branching off of it. The fluid is compressible and viscous, and is comprised of a mixture of liquid melt and gas bubbles. Nonequilibrium bubble growth and resorption (BGR) is quantified by introducing a time scale for mass exchange between phases, following the treatment in Karlstrom and Dunham (2015). We start by deriving the dispersion relation for crack waves travelling along the multiphase-magma-filled crack embedded in an elastic solid. Dissipation arises from magma viscosity, nonequilibrium BGR, and radiation of seismic waves into the solid. We next introduce coupling conditions between the conduit and crack, expressing conservation of mass and the balance of forces across the junction. Waves in the conduit, like those in the crack, are influenced by nonequilibrium BGR, but the deformability of the surrounding solid is far less important than for cracks. Solution of the coupled system of equations provides the evolution of pressure and fluid velocity within the conduit-crack system. The system has various resonant modes that are sensitive to fluid properties and to the geometry of the conduit and cracks. Numerical modeling of seismic waves in the solid allows us to generate synthetic seismograms.

  14. A probabilistic method for determining the volume fraction of pre-embedded capsules in self-healing materials

    NASA Astrophysics Data System (ADS)

    Lv, Zhong; Chen, Huisu

    2014-10-01

    Autonomous healing of cracks using pre-embedded capsules containing healing agent is becoming a promising approach to restore the strength of damaged structures. In addition to the material properties, the size and volume fraction of capsules influence crack healing in the matrix. Understanding the crack and capsule interaction is critical in the development and design of structures made of self-healing materials. Assuming that the pre-embedded capsules are randomly dispersed we theoretically model flat ellipsoidal crack interaction with capsules and determine the probability of a crack intersecting the pre-embedded capsules i.e. the self-healing probability. We also develop a probabilistic model of a crack simultaneously meeting with capsules and catalyst carriers in two-component self-healing system matrix. Using a risk-based healing approach, we determine the volume fraction and size of the pre-embedded capsules that are required to achieve a certain self-healing probability. To understand the effect of the shape of the capsules on self-healing we theoretically modeled crack interaction with spherical and cylindrical capsules. We compared the results of our theoretical model with Monte-Carlo simulations of crack interaction with capsules. The formulae presented in this paper will provide guidelines for engineers working with self-healing structures in material selection and sustenance.

  15. Crack Extension and Possibility of Debonding in Encapsulation-Based Self-Healing Materials.

    PubMed

    Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong

    2017-05-27

    The breakage of capsules upon crack propagation is crucial for achieving crack healing in encapsulation-based self-healing materials. A mesomechanical model was developed in this study to simulate the process of crack propagation in a matrix and the potential of debonding. The model used the extended finite element method (XFEM) combined with a cohesive zone model (CZM) in a two-dimensional (2D) configuration. The configuration consisted of an infinite matrix with an embedded crack and a capsule nearby, all subjected to a uniaxial remote tensile load. A parametric study was performed to investigate the effect of geometry, elastic parameters and fracture properties on the fracture response of the system. The results indicated that the effect of the capsule wall on the fracture behavior of the matrix is insignificant for t c / R c ≤ 0.05. The matrix strength influenced the ultimate crack length, while the Young's modulus ratio E c / E m only affected the rate of crack propagation. The potential for capsule breakage or debonding was dependent on the comparative strength between capsule and interface (S c /S int ), provided the crack could reach the capsule. The critical value of S c ,cr /S int,cr was obtained using this model for materials design.

  16. Visual simulation of fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Wang, Shuanzhu; Margolin, Harold; Lin, Fengbao

    1998-07-01

    An attempt has been made to visually simulate fatigue crack propagation from a precrack. An integrated program was developed for this purpose. The crack-tip shape was determined at four load positions in the first load cycle. The final shape was a blunt front with an “ear” profile at the precrack tip. A more general model, schematically illustrating the mechanism of fatigue crack growth and striation formation in a ductile material, was proposed based on this simulation. According to the present model, fatigue crack growth is an intermittent process; cyclic plastic shear strain is the driving force applied to both state I and II crack growth. No fracture mode transition occurs between the two stages in the present study. The crack growth direction alternates, moving up and down successively, producing fatigue striations. A brief examination has been made of the crack growth path in a ductile two-phase material.

  17. Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code

    NASA Astrophysics Data System (ADS)

    Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia

    2015-04-01

    Keywords: dessication-crack-induced-salinization, preferential flow, conceptual model, numerical model, vadose zone, vertisols, soil water retention function, HYDRUS 2D/3D Vertisols cover a hydrologically very significant area of semi-arid regions often through which water infiltrates to groundwater aquifers. Understanding of water flow and solute accumulation is thus very relevant to agricultural activity and water resources management. Previous works suggest a conceptual model of dessication-crack-induced-salinization where salinization of sediment in the deep section of the vadose zone (up to 4 m) is induced by subsurface evaporation due to convective air flow in the dessication cracks. It suggests that the salinization is induced by the hydraulic gradient between the dry sediment in the vicinity of cracks (low potential) and the relatively wet sediment further from the main cracks (high potential). This paper presents a modified previously suggested conceptual model and a numerical model. The model uses a simple uniform flow approach but unconventionally prescribes the boundary conditions and the hydraulic parameters of soil. The numerical model is bound to one location close to a dairy farm waste lagoon, but the application of the suggested conceptual model could be possibly extended to all semi-arid regions with vertisols. Simulations were conducted using several modeling approaches with an ultimate goal of fitting the simulation results to the controlling variables measured in the field: temporal variation in water content across thick layer of unsaturated clay sediment (>10 m), sediment salinity and salinity the water draining down the vadose zone to the water table. The development of the model was engineered in several steps; all computed as forward solutions by try-and-error approach. The model suggests very deep instant infiltration of fresh water up to 12 m, which is also supported by the field data. The paper suggests prescribing a special atmospheric boundary to the wall of the crack (so that the solute can accumulate due to evaporation on the crack block wall, and infiltrating fresh water can push the solute further down) - in order to do so, HYDRUS 2D/3D code had to be modified by its developers. Unconventionally, the main fitting parameters were: parameter a and n in the soil water retention curve and saturated hydraulic conductivity. The amount of infiltrated water (within a reasonable range), the infiltration function in the crack and the actual evaporation from the crack were also used as secondary fitting parameters. The model supports the previous findings that significant amount (~90%) of water from rain events must infiltrate through the crack. It was also noted that infiltration from the crack has to be increasing with depth and that the highest infiltration rate should be somewhere between 1-3m. This paper suggests a new way how to model vertisols in semi-arid regions. It also supports the previous findings about vertisols: especially, the utmost importance of soil cracks as preferential pathways for water and contaminants and soil cracks as deep evaporators.

  18. Simulating Fatigue Crack Growth in Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Spievak, Lisa E.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    2000-01-01

    The majority of helicopter transmission systems utilize spiral bevel gears to convert the horizontal power from the engine into vertical power for the rotor. Due to the cyclical loading on a gear's tooth, fatigue crack propagation can occur. In rotorcraft applications, a crack's trajectory determines whether the gear failure will be benign or catastrophic for the aircraft. As a result, the capability to predict crack growth in gears is significant. A spiral bevel gear's complex shape requires a three dimensional model of the geometry and cracks. The boundary element method in conjunction with linear elastic fracture mechanics theories is used to predict arbitrarily shaped three dimensional fatigue crack trajectories in a spiral bevel pinion under moving load conditions. The predictions are validated by comparison to experimental results. The sensitivity of the predictions to variations in loading conditions and crack growth rate model parameters is explored. Critical areas that must be understood in greater detail prior to predicting more accurate crack trajectories and crack growth rates in three dimensions are identified.

  19. Analytical Modeling of Pressure Wall Hole Size and Maximum Tip-to-Tip Crack Length for Perforating Normal and Oblique Orbital Debris Impacts

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Mohamed, Essam

    1997-01-01

    This report presents the results of a study whose objective was to develop first-principles-based models of hole size and maximum tip-to-tip crack length for a spacecraft module pressure wall that has been perforated in an orbital debris particle impact. The hole size and crack length models are developed by sequentially characterizing the phenomena comprising the orbital debris impact event, including the initial impact, the creation and motion of a debris cloud within the dual-wall system, the impact of the debris cloud on the pressure wall, the deformation of the pressure wall due to debris cloud impact loading prior to crack formation, pressure wall crack initiation, propagation, and arrest, and finally pressure wall deformation following crack initiation and growth. The model development has been accomplished through the application of elementary shock physics and thermodynamic theory, as well as the principles of mass, momentum, and energy conservation. The predictions of the model developed herein are compared against the predictions of empirically-based equations for hole diameters and maximum tip-to-tip crack length for three International Space Station wall configurations. The ISS wall systems considered are the baseline U.S. Lab Cylinder, the enhanced U.S. Lab Cylinder, and the U.S. Lab Endcone. The empirical predictor equations were derived from experimentally obtained hole diameters and crack length data. The original model predictions did not compare favorably with the experimental data, especially for cases in which pressure wall petalling did not occur. Several modifications were made to the original model to bring its predictions closer in line with the experimental results. Following the adjustment of several empirical constants, the predictions of the modified analytical model were in much closer agreement with the experimental results.

  20. A Continuum-Atomistic Analysis of Transgranular Crack Propagation in Aluminum

    NASA Technical Reports Server (NTRS)

    Yamakov, V.; Saether, E.; Glaessgen, E.

    2009-01-01

    A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain is used to study plastic processes at a crack tip in a single crystal of aluminum. The case of mode I loading is studied. A transition from deformation twinning to full dislocation emission from the crack tip is found when the crack plane is rotated around the [111] crystallographic axis. When the crack plane normal coincides with the [112] twinning direction, the crack propagates through a twinning mechanism. When the crack plane normal coincides with the [011] slip direction, the crack propagates through the emission of full dislocations. In intermediate orientations, a transition from full dislocation emission to twinning is found to occur with an increase in the stress intensity at the crack tip. This finding confirms the suggestion that the very high strain rates, inherently present in MD simulations, which produce higher stress intensities at the crack tip, over-predict the tendency for deformation twinning compared to experiments. The present study, therefore, aims to develop a more realistic and accurate predictive modeling of fracture processes.

  1. The detectability of cracks using sonic IR

    NASA Astrophysics Data System (ADS)

    Morbidini, Marco; Cawley, Peter

    2009-05-01

    This paper proposes a methodology to study the detectability of fatigue cracks in metals using sonic IR (also known as thermosonics). The method relies on the validation of simple finite-element thermal models of the cracks and specimens in which the thermal loads have been defined by means of a priori measurement of the additional damping introduced in the specimens by each crack. This estimate of crack damping is used in conjunction with a local measurement of the vibration strain during ultrasonic excitation to retrieve the power released at the crack; these functions are then input to the thermal model of the specimens to find the resulting temperature rises (sonic IR signals). The method was validated on mild steel beams with two-dimensional cracks obtained in the low-cycle fatigue regime as well as nickel-based superalloy beams with three-dimensional "thumbnail" cracks generated in the high-cycle fatigue regime. The equivalent 40kHz strain necessary to obtain a desired temperature rise was calculated for cracks in the nickel superalloy set, and the detectability of cracks as a function of length in the range of 1-5mm was discussed.

  2. Fatigue Analyses Under Constant- and Variable-Amplitude Loading Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily "crack growth" from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using "small-crack theory" under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta-Keff) under constant-amplitude loading. Modifications to the delta-Keff-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small-and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  3. Three-dimensional CTOA and constraint effects during stable tearing in a thin-sheet material

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Newman, J. C., Jr.; Bigelow, C. A.

    1995-01-01

    A small strain theory, three-dimensional elastic-plastic finite element analysis was used to simulate fracture in thin sheet 2024-T3 aluminum alloy in the T-L orientation. Both straight and tunneled cracks were modeled. The tunneled crack front shapes as a function of applied stress were obtained from the fracture surface of tested specimens. The stable crack growth behavior was measured at the specimen surface as a function of applied stress. The fracture simulation modeled the crack tunneling and extension as a function of applied stress. The results indicated that the global constraint factor, alpha(sub g), initially dropped during stable crack growth. After peak applied stress was achieved, alpha(sub g) began to increase slightly. The effect of crack front shape on alpha(sub g) was small, but the crack front shape did greatly influence the local constraint and through-thickness crack-tip opening angle (CTOA) behavior. The surface values of CTOA for the tunneled crack front model agreed well with experimental measurements, showing the same initial decrease from high values during the initial 3mm of crack growth at the specimen's surface. At the same time, the interior CTOA values increased from low angles. After the initial stable tearing region, the CTOA was constant through the thickness. The three-dimensional analysis appears to confirm the potential of CTOA as a two-dimensional fracture criterion.

  4. State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems

    NASA Astrophysics Data System (ADS)

    Lyczkowski, R. W.; Bouillard, J. X.; Ding, J.; Chang, S. L.; Burge, S. W.

    1994-05-01

    As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBR's) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBR's and pneumatic and slurry components are computed by ANL's EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale, and biomass as energy sources; to retain energy security; and to remediate waste and ecological problems.

  5. Mechanical and Fatigue Properties of Additively Manufactured Metallic Materials

    NASA Astrophysics Data System (ADS)

    Yadollahi, Aref

    This study aims to investigate the mechanical and fatigue behavior of additively manufactured metallic materials. Several challenges associated with different metal additive manufacturing (AM) techniques (i.e. laser-powder bed fusion and direct laser deposition) have been addressed experimentally and numerically. Experiments have been carried out to study the effects of process inter-layer time interval--i.e. either building the samples one-at-a-time or multi-at-a-time (in-parallel)--on the microstructural features and mechanical properties of 316L stainless steel samples, fabricated via a direct laser deposition (DLD). Next, the effect of building orientation--i.e. the orientation in which AM parts are built--on microstructure, tensile, and fatigue behaviors of 17-4 PH stainless steel, fabricated via a laser-powder bed fusion (L-PBF) method was investigated. Afterwards, the effect of surface finishing--here, as-built versus machined--on uniaxial fatigue behavior and failure mechanisms of Inconel 718 fabricated via a laser-powder bed fusion technique was sought. The numerical studies, as part of this dissertation, aimed to model the mechanical behavior of AM materials, under monotonic and cyclic loading, based on the observations and findings from the experiments. Despite significant research efforts for optimizing process parameters, achieving a homogenous, defect-free AM product--immediately after fabrication--has not yet been fully demonstrated. Thus, one solution for ensuring the adoption of AM materials for application should center on predicting the variations in mechanical behavior of AM parts based on their resultant microstructure. In this regard, an internal state variable (ISV) plasticity-damage model was employed to quantify the damage evolution in DLD 316L SS, under tensile loading, using the microstructural features associated with the manufacturing process. Finally, fatigue behavior of AM parts has been modeled based on the crack-growth concept. Using the FASTRAN code, the fatigue-life of L-PBF Inconel 718 was accurately calculated using the size and shape of process-induced voids in the material. In addition, the maximum valley depth of the surface profile was found to be an appropriate representative of the initial surface flaw for fatigue-life prediction of AM materials in an as-built surface condition.

  6. Crack Opening Displacement Behavior in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sevener, Kathy; Tracy, Jared; Chen, Zhe; Daly, Sam; Kiser, Doug

    2017-01-01

    Ceramic Matrix Composites (CMC) modeling and life prediction strongly depend on oxidation, and therefore require a thorough understanding of when matrix cracks occur, the extent of cracking for given conditions (time-temperature-environment-stress), and the interactions of matrix cracks with fibers and interfaces. In this work, the evolution of matrix cracks in a melt-infiltrated Silicon Carbide/Silicon Carbide (SiC/SiC) CMC under uniaxial tension was examined using scanning electron microscopy (SEM) combined with digital image correlation (DIC) and manual crack opening displacement (COD) measurements. Strain relaxation due to matrix cracking, the relationship between COD's and applied stress, and damage evolution at stresses below the proportional limit were assessed. Direct experimental observation of strain relaxation adjacent to regions of matrix cracking is presented and discussed. Additionally, crack openings were found to increase linearly with increasing applied stress, and no crack was found to pass fully through the gage cross-section. This observation is discussed in the context of the assumption of through-cracks for all loading conditions and fiber architectures in oxidation modeling. Finally, the combination of SEM with DIC is demonstrated throughout to be a powerful means for damage identification and quantification in CMC's at stresses well below the proportional limit.

  7. Damage Mechanisms and Controlled Crack Propagation in a Hot Pressed Silicon Nitride Ceramic. Ph.D. Thesis - Northwestern Univ., 1993

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony Martin

    1994-01-01

    The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input parameters. It was demonstrated that a single critical parameter does not characterize the conditions required for dynamic initiation. Experimental measurements for critical crack lengths, and the energy release rates exhibit significant scatter. The resulting output of the model produces good agreement with both the average values and scatter of experimental measurements.

  8. The use of roving discs and orthogonal natural frequencies for crack identification and location in rotors

    NASA Astrophysics Data System (ADS)

    Haji, Zyad N.; Olutunde Oyadiji, S.

    2014-11-01

    A variety of approaches that have been developed for the identification and localisation of cracks in a rotor system, which exploit natural frequencies, require a finite element model to obtain the natural frequencies of the intact rotor as baseline data. In fact, such approaches can give erroneous results about the location and depth of a crack if an inaccurate finite element model is used to represent an uncracked model. A new approach for the identification and localisation of cracks in rotor systems, which does not require the use of the natural frequencies of an intact rotor as a baseline data, is presented in this paper. The approach, named orthogonal natural frequencies (ONFs), is based only on the natural frequencies of the non-rotating cracked rotor in the two lateral bending vibration x-z and y-z planes. The approach uses the cracked natural frequencies in the horizontal x-z plane as the reference data instead of the intact natural frequencies. Also, a roving disc is traversed along the rotor in order to enhance the dynamics of the rotor at the cracked locations. At each spatial location of the roving disc, the two ONFs of the rotor-disc system are determined from which the corresponding ONF ratio is computed. The ONF ratios are normalised by the maximum ONF ratio to obtain normalised orthogonal natural frequency curves (NONFCs). The non-rotating cracked rotor is simulated by the finite element method using the Bernoulli-Euler beam theory. The unique characteristics of the proposed approach are the sharp, notched peaks at the crack locations but rounded peaks at non-cracked locations. These features facilitate the unambiguous identification and locations of cracks in rotors. The effects of crack depth, crack location, and mass of a roving disc are investigated. The results show that the proposed method has a great potential in the identification and localisation of cracks in a non-rotating cracked rotor.

  9. Stochastic model for fatigue crack size and cost effective design decisions. [for aerospace structures

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Uppaluri, B.

    1975-01-01

    This paper describes a methodology for making cost effective fatigue design decisions. The methodology is based on a probabilistic model for the stochastic process of fatigue crack growth with time. The development of a particular model for the stochastic process is also discussed in the paper. The model is based on the assumption of continuous time and discrete space of crack lengths. Statistical decision theory and the developed probabilistic model are used to develop the procedure for making fatigue design decisions on the basis of minimum expected cost or risk function and reliability bounds. Selections of initial flaw size distribution, NDT, repair threshold crack lengths, and inspection intervals are discussed.

  10. Numerical determination of Paris law constants for carbon steel using a two-scale model

    NASA Astrophysics Data System (ADS)

    Mlikota, M.; Staib, S.; Schmauder, S.; Božić, Ž.

    2017-05-01

    For most engineering alloys, the long fatigue crack growth under a certain stress level can be described by the Paris law. The law provides a correlation between the fatigue crack growth rate (FCGR or da/dN), the range of stress intensity factor (ΔK), and the material constants C and m. A well-established test procedure is typically used to determine the Paris law constants C and m, considering standard specimens, notched and pre-cracked. Definition of all the details necessary to obtain feasible and comparable Paris law constants are covered by standards. However, these cost-expensive tests can be replaced by appropriate numerical calculations. In this respect, this paper deals with the numerical determination of Paris law constants for carbon steel using a two-scale model. A micro-model containing the microstructure of a material is generated using the Finite Element Method (FEM) to calculate the fatigue crack growth rate at a crack tip. The model is based on the Tanaka-Mura equation. On the other side, a macro-model serves for the calculation of the stress intensity factor. The analysis yields a relationship between the crack growth rates and the stress intensity factors for defined crack lengths which is then used to determine the Paris law constants.

  11. Modeling Micro-cracking Behavior of Bukit Timah Granite Using Grain-Based Model

    NASA Astrophysics Data System (ADS)

    Peng, Jun; Wong, Louis Ngai Yuen; Teh, Cee Ing; Li, Zhihuan

    2018-01-01

    Rock strength and deformation behavior has long been recognized to be closely related to the microstructure and the associated micro-cracking process. A good understanding of crack initiation and coalescence mechanisms will thus allow us to account for the variation of rock strength and deformation properties from a microscopic view. This paper numerically investigates the micro-cracking behavior of Bukit Timah granite by using a grain-based modeling approach. First, the principles of grain-based model adopted in the two-dimensional Particle Flow Code and the numerical model generation procedure are reviewed. The micro-parameters of the numerical model are then calibrated to match the macro-properties of the rock obtained from tension and compression tests in the laboratory. The simulated rock properties are in good agreement with the laboratory test results with the errors less than ±6%. Finally, the calibrated model is used to study the micro-cracking behavior and the failure modes of the rock under direct tension and under compression with different confining pressures. The results reveal that when the numerical model is loaded in direct tension, only grain boundary tensile cracks are generated, and the simulated macroscopic fracture agrees well with the results obtained in laboratory tests. When the model is loaded in compression, the ratio of grain boundary tensile cracks to grain boundary shear cracks decreases with the increase in confining pressure. In other words, the results show that as the confining pressure increases, the failure mechanism changes from tension to shear. The simulated failure mode of the model changes from splitting to shear as the applied confining pressure gradually increases, which is comparable with that observed in laboratory tests. The grain-based model used in this study thus appears promising for further investigation of microscopic and macroscopic behavior of crystalline rocks under different loading conditions.

  12. Advanced reactors and novel reactions for the conversion of triglyceride based oils into high quality renewable transportation fuels

    NASA Astrophysics Data System (ADS)

    Linnen, Michael James

    Sustainable energy continues to grow more important to all societies, leading to the research and development of a variety of alternative and renewable energy technologies. Of these, renewable liquid transportation fuels may be the most visible to consumers, and this visibility is further magnified by the long-term trend of increasingly expensive petroleum fuels that the public consumes. While first-generation biofuels such as biodiesel and fuel ethanol have been integrated into the existing fuel infrastructures of several countries, the chemical differences between them and their petroleum counterparts reduce their effectiveness. This gives rise to the development and commercialization of second generation biofuels, many of which are intended to have equivalent properties to those of their petroleum counterparts. In this dissertation, the primary reactions for a second-generation biofuel process, known herein as the University of North Dakota noncatalytic cracking process (NCP), have been studied at the fundamental level and improved. The NCP is capable of producing renewable fuels and chemicals that are virtually the same as their petroleum counterparts in performance and quality (i.e., petroleum-equivalent). In addition, a novel analytical method, FIMSDIST was developed which, within certain limitations, can increase the elution capabilities of GC analysis and decrease sample processing times compared to other high resolution methods. These advances are particularly useful for studies of highly heterogeneous fuel and/or organic chemical intermediates, such as those studied for the NCP. However the data from FIMSDIST must be supplemented with data from other methods such as for certain carboxylic acid, to provide accurate, comprehensive results, From a series of TAG cracking experiments that were performed, it was found that coke formation during cracking is most likely the result of excessive temperature and/or residence time in a cracking reactor. Based on this, a tubular cracking reactor was developed that could operate continuously without coke formation. The design also was proven to be scalable. Yields from the reactor were determined under a variety of conditions in order to predict the outputs from the NCP and to establish relationships/correlations between operating parameters and the product distribution. These studies led to the conclusion that the most severe operating conditions which do not induce coking are optimal over the experimental domain. In order to develop economical deoxygenation catalysts for use within the NCP, a series of experiments were performed using nickel catalysts, demonstrating that nickel catalysts could outperform their predecessor, a high cost palladium-based catalyst. A nickel catalyst was then tested in a packed bed reactor in order to determine suitable operating conditions for its commercial utilization in packed bed reactors.

  13. Removal of hazardous gaseous pollutants from industrial flue gases by a novel multi-stage fluidized bed desulfurizer.

    PubMed

    Mohanty, C R; Adapala, Sivaji; Meikap, B C

    2009-06-15

    Sulfur dioxide and other sulfur compounds are generated as primary pollutants from the major industries such as sulfuric acid plants, cupper smelters, catalytic cracking units, etc. and cause acid rain. To remove the SO(2) from waste flue gas a three-stage counter-current multi-stage fluidized bed adsorber was developed as desulfurization equipment and operated in continuous bubbling fluidization regime for the two-phase system. This paper represents the desulfurization of gas mixtures by chemical sorption of sulfur dioxide on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of the multi-stage fluidized bed reactor are of high mass transfer and high gas-solid residence time that can enhance the removal of acid gas at low temperature by dry method. Experiments were carried out in the bubbling fluidization regime supported by visual observation. The effects of the operating parameters such as sorbent (lime) flow rate, superficial gas velocity, and the weir height on SO(2) removal efficiency in the multistage fluidized bed are reported. The results have indicated that the removal efficiency of the sulfur dioxide was found to be 65% at high solid flow rate (2.0 kg/h) corresponding to lower gas velocity (0.265 m/s), wier height of 70 mm and SO(2) concentration of 500 ppm at room temperature.

  14. Analysis of the Influence of Cracked Sleepers under Static Loading on Ballasted Railway Tracks

    PubMed Central

    Montalbán Domingo, Laura; Zamorano Martín, Clara; Palenzuela Avilés, Cristina; Real Herráiz, Julia I.

    2014-01-01

    The principal causes of cracking in prestressed concrete sleepers are the dynamic loads induced by track irregularities and imperfections in the wheel-rail contact and the in-phase and out-of-phase track resonances. The most affected points are the mid-span and rail-seat sections of the sleepers. Central and rail-seat crack detection require visual inspections, as legislation establishes, and involve sleepers' renewal even though European Normative considers that thicknesses up to 0.5 mm do not imply an inadequate behaviour of the sleepers. For a better understanding of the phenomenon, the finite element method constitutes a useful tool to assess the effects of cracking from the point of view of structural behaviour in railway track structures. This paper intends to study how the cracks at central or rail-seat section in prestressed concrete sleepers influence the track behaviour under static loading. The track model considers three different sleeper models: uncracked, cracked at central section, and cracked at rail-seat section. These models were calibrated and validated using the frequencies of vibration of the first three bending modes obtained from an experimental modal analysis. The results show the insignificant influence of the central cracks and the notable effects of the rail-seat cracks regarding deflections and stresses. PMID:25530998

  15. Dynamic fracture and hot-spot modeling in energetic composites

    NASA Astrophysics Data System (ADS)

    Grilli, Nicolò; Duarte, Camilo A.; Koslowski, Marisol

    2018-02-01

    Defects such as cracks, pores, and particle-matrix interface debonding affect the sensitivity of energetic materials by reducing the time-to-ignition and the threshold pressure to initiate an explosion. Frictional sliding of preexisting cracks is considered to be one of the most important causes of localized heating. Therefore, understanding the dynamic fracture of crystalline energetic materials is of extreme importance to assess the reliability and safety of polymer-bonded explosives. Phase field damage model simulations, based on the regularization of the crack surface as a diffuse delta function, are used to describe crack propagation in cyclotetramethylene-tetranitramine crystals embedded in a Sylgard matrix. A thermal transport model that includes heat generation by friction at crack interfaces is coupled to the solution of crack propagation. 2D and 3D dynamic compression simulations are performed with different boundary velocities and initial distributions of cracks and interface defects to understand their effect on crack propagation and heat generation. It is found that, at an impact velocity of 400 m/s, localized damage at the particle-binder interface is of key importance and that the sample reaches temperatures high enough to create a hot-spot that will lead to ignition. At an impact velocity of 10 m/s, preexisting cracks advanced inside the particle, but the increase of temperature will not cause ignition.

  16. Fracture of a composite reinforced by unidirectional fibers

    NASA Astrophysics Data System (ADS)

    Hasanov, F. F.

    2014-11-01

    An elastic medium weakened by a periodic system of circular holes filled with homogeneous elastic fibers whose surface is coated with a homogeneous film is considered. A fracture model for a medium with a periodic structure is proposed, which is based on an analysis of the fracture zone near the crack tip. It is assumed that the fracture zone is a layer of finite length containing a material with partially broken bonds between separate structural elements (end zone). The fracture zone is considered as part of the crack. The bonds between crack faces in the end zone are modeled by applying the cohesive forces caused by the presence of bonds to the crack surface. An analysis of the limit equilibrium of shear cracks in the end zone of the model is performed on the basis of a nonlocal fracture criterion together with a force condition for the motion of crack tip and a deformation condition for determining the motion of faces of end-zone cracks. In the analysis, relationships between the cohesive forces and the shear of crack faces are established, the stress state near the crack is assessed with account of external loading, cohesive forces, and fiber arrangement, and the critical external loads as functions of geometric parameters of the composite are determined.

  17. Numerical simulation of stress amplification induced by crack interaction in human femur bone

    NASA Astrophysics Data System (ADS)

    Alia, Noor; Daud, Ruslizam; Ramli, Mohammad Fadzli; Azman, Wan Zuki; Faizal, Ahmad; Aisyah, Siti

    2015-05-01

    This research is about numerical simulation using a computational method which study on stress amplification induced by crack interaction in human femur bone. Cracks in human femur bone usually occur because of large load or stress applied on it. Usually, the fracture takes longer time to heal itself. At present, the crack interaction is still not well understood due to bone complexity. Thus, brittle fracture behavior of bone may be underestimated and inaccurate. This study aims to investigate the geometrical effect of double co-planar edge cracks on stress intensity factor (K) in femur bone. This research focuses to analyze the amplification effect on the fracture behavior of double co-planar edge cracks, where numerical model is developed using computational method. The concept of fracture mechanics and finite element method (FEM) are used to solve the interacting cracks problems using linear elastic fracture mechanics (LEFM) theory. As a result, this study has shown the identification of the crack interaction limit (CIL) and crack unification limit (CUL) exist in the human femur bone model developed. In future research, several improvements will be made such as varying the load, applying thickness on the model and also use different theory or method in calculating the stress intensity factor (K).

  18. Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grutzik, Scott Joseph; Reedy, Jr., E. D.

    Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less

  19. Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen

    DOE PAGES

    Grutzik, Scott Joseph; Reedy, Jr., E. D.

    2017-08-04

    Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less

  20. Measurement and Modeling of the Ability of Crack Fillers to Prevent Chloride Ingress into Mortar.

    PubMed

    Jones, Scott Z; Bentz, Dale P; Davis, Jeffrey M; Hussey, Daniel S; Jacobson, David L; Molloy, John L; Sieber, John R

    2017-09-01

    A common repair procedures applied to damaged concrete is to fill cracks with an organic polymer. This operation is performed to increase the service life of the concrete by removing a preferential pathway for the ingress of water, chlorides, and other deleterious species. To effectively fulfill its mission of preventing chloride ingress, the polymer must not only fully fill the macro-crack, but must also intrude the damage zone surrounding the crack perimeter. Here, the performance of two commonly employed crack fillers, one epoxy, and one methacrylate, are investigated using a combined experimental and computer modeling approach. Neutron tomography and microbeam X-ray fluorescence spectrometry (μXRF) measurements are employed on pre-cracked and chloride-exposed specimens to quantify the crack filling and chloride ingress limiting abilities, respectively, of the two polymers. A two-dimensional model of chloride transport is derived from a mass balance and solved by the finite element method. Crack images provided by μXRF are used to generate the input microstructure for the simulations. When chloride binding and a time-dependent mortar diffusivity are both included in the computer model, good agreement with the experimental results is obtained. Both crack fillers significantly reduce chloride ingress during the 21 d period of the present experiments; however, the epoxy itself contains approximately 4 % by mass chlorine. Leaching studies were performed assess the epoxy as a source of deleterious ions for initiating corrosion of the steel reinforcement in concrete structures.

  1. Application of the line-spring model to a cylindrical shell containing a circumferential or axial part-through crack

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    The line-spring model developed by Rice and Levy (1972) is used to obtain an approximate solution for a cylindrical shell containing a part-through surface crack. A Reissner type theory is used to account for the effects of the transverse shear deformations, and the stress intensity factor at the deepest penetration point of the crack is tabulated for bending and membrane loading by varying three-dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided, and qualitatively the line-spring model gives the expected results in comparison with elasticity solutions.

  2. Fatigue creep damage at the cement-bone interface: an experimental and a micro-mechanical finite element study

    PubMed Central

    Waanders, Daan; Janssen, Dennis; Miller, Mark A.; Mann, Kenneth A.; Verdonschot, Nico

    2009-01-01

    The goal of this study was to quantify the micromechanics of the cement-bone interface under tensile fatigue loading using finite element analysis (FEA) and to understand the underlying mechanisms that play a role in the fatigue behavior of this interface. Laboratory cement-bone specimens were subjected to a tensile fatigue load, while local displacements and crack growth on the specimen's surface were monitored. FEA models were created from these specimens based upon micro-computed tomography data. To accurately model interfacial gaps at the interface between the bone and cement, a custom-written erosion algorithm was applied to the bone model. A fatigue load was simulated in the FEA models while monitoring the local displacements and crack propagation. The results showed the FEA models were able to capture the general experimental creep damage behavior and creep stages of the interface. Consistent with the experiments, the majority of the deformation took place at the contact interface. Additionally, the FEA models predicted fatigue crack patterns similar to experimental findings. Experimental surface cracks correlated moderately with FEA surface cracks (r2=0.43), but did not correlate with the simulated crack volume fraction (r2=0.06). Although there was no relationship between experimental surface cracks and experimental creep damage displacement (r2=0.07), there was a strong relationship between the FEA crack volume fraction and the FEA creep damage displacement (r2=0.76). This study shows the additional value of FEA of the cement-bone interface relative to experimental studies and can therefore be used to optimize its mechanical properties. PMID:19682690

  3. Development of Predictive Model for bridge deck cracking : final report.

    DOT National Transportation Integrated Search

    2017-04-01

    Early-age bridge deck cracking has been found to be a prevalent problem worldwide. While early-age : cracking will not cause failure of a bridge deck system independently, the penetration of deleterious substances : through the early-age cracks into ...

  4. Uncertainty quantification methodologies development for stress corrosion cracking of canister welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dingreville, Remi Philippe Michel; Bryan, Charles R.

    2016-09-30

    This letter report presents a probabilistic performance assessment model to evaluate the probability of canister failure (through-wall penetration) by SCC. The model first assesses whether environmental conditions for SCC – the presence of an aqueous film – are present at canister weld locations (where tensile stresses are likely to occur) on the canister surface. Geometry-specific storage system thermal models and weather data sets representative of U.S. spent nuclear fuel (SNF) storage sites are implemented to evaluate location-specific canister surface temperature and relative humidity (RH). As the canister cools and aqueous conditions become possible, the occurrence of corrosion is evaluated. Corrosionmore » is modeled as a two-step process: first, pitting is initiated, and the extent and depth of pitting is a function of the chloride surface load and the environmental conditions (temperature and RH). Second, as corrosion penetration increases, the pit eventually transitions to a SCC crack, with crack initiation becoming more likely with increasing pit depth. Once pits convert to cracks, a crack growth model is implemented. The SCC growth model includes rate dependencies on both temperature and crack tip stress intensity factor, and crack growth only occurs in time steps when aqueous conditions are predicted. The model suggests that SCC is likely to occur over potential SNF interim storage intervals; however, this result is based on many modeling assumptions. Sensitivity analyses provide information on the model assumptions and parameter values that have the greatest impact on predicted storage canister performance, and provide guidance for further research to reduce uncertainties.« less

  5. Grain boundary oxidation and fatigue crack growth at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1986-01-01

    Fatigue crack growth rate at elevated temperatures can be accelerated by grain boundary oxidation. Grain boundary oxidation kinetics and the statistical distribution of grain boundary oxide penetration depth were studied. At a constant delta K-level and at a constant test temperature, fatigue crack growth rate, da/dN, is a function of cyclic frequency, nu. A fatigue crack growth model of intermittent micro-ruptures of grain boundary oxide is constructed. The model is consistent with the experimental observations that, in the low frequency region, da/dN is inversely proportional to nu, and fatigue crack growth is intergranular.

  6. NSTS Orbiter auxiliary power unit turbine wheel cracking risk assessment

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Mcclung, R. C.; Torng, T. Y.

    1992-01-01

    The present investigation of turbine-wheel cracking problems in the hydrazine-fueled APU turbine wheel of the Space Shuttle Orbiter's Main Engines has indicated the efficacy of systematic probabilistic risk assessment in flight certification and safety resolution. Nevertheless, real crack-initiation and propagation problems do not lend themselves to purely analytical studies. The high-cycle fatigue problem is noted to generally be unsuited to probabilistic modeling, due to its extremely high degree of intrinsic scatter. In the case treated, the cracks appear to trend toward crack arrest in a low cycle fatigue mode, due to a detuning of the resonance model.

  7. Experimental model of the role of cracks in the mechanism of explosive eruption of St. Helens-80

    NASA Astrophysics Data System (ADS)

    Kedrinskii, V. K.; Skulkin, A. A.

    2017-07-01

    A unique mini model of explosive volcano eruption through a formed system of cracks is developed. The process of crack formation and development is simulated by electric explosion of a conductor in a plate of optically transparent organic glass submerged into water. The explosion of a wire aligned with a through hole in the plate generates shock-wave loading along the plate and forms cracks. The fundamental role of high velocity flow in crack wedging by a high power hydrodynamic flow of a pulsating explosion cavity has been demonstrated.

  8. Risk factors of visceral leishmaniasis: a case control study in north-western Ethiopia.

    PubMed

    Yared, Solomon; Deribe, Kebede; Gebreselassie, Araya; Lemma, Wessenseged; Akililu, Essayas; Kirstein, Oscar D; Balkew, Meshesha; Warburg, Alon; Gebre-Michael, Teshome; Hailu, Asrat

    2014-10-14

    Visceral leishmaniasis (VL, also called ''kala-azar"), is a life threatening neglected tropical infectious disease which mainly affects the poorest of the poor. VL is prevalent in Ethiopia particularly in the northwest of the country. Understanding the risk factors of VL infection helps in its prevention and control. The aim of the present study was to identify the factors associated with VL. A case-control study was carried out during the period of January-July 2013 in northwest Ethiopia. Cases and controls were diagnosed using clinical presentation, the rk39 rapid diagnostic test and Direct Agglutination Test (DAT). A total of 283 (84.8% males versus 15.2% females) participants were interviewed. 90 cases and 193 controls were involved, matched by age, sex and geographical location with a ratio of 1:2 (case: controls). Univariate and backward multivariate conditional logistic regression were used to identify risk factors of VL. Elevated odds of VL was associated with goat ownership (OR = 6.4; 95%: confidence interval [Cl]: 1.5-28.4), living in houses with cracked wall (OR = 6.4; 95% Cl: 1.6-25.6), increased family size (OR = 1.3; 95% Cl: 1.0-1.8) and the number of days spent in the farm field (OR = 1.1; 95% Cl: 1.0-1.2). However, daily individual activities around the home and farm fields, mainly sleeping on a bed (OR = 0.2; 95%: Cl 0.03-0.9), sleeping outside the house under a bed net (OR = 0.1; 95% Cl: 0.02-0.36)] and smoking plant parts in the house during the night time (OR = 0.1; 95% Cl: 0.01-0.6) were associated with decreased odds of being VL case. Our findings showed that use of bed net and smoke could be helpful for the prevention of VL in the area particularly among individuals who spend most of their time in the farm. VL control effort could be focused on improving housing conditions, such as sealing cracks and crevices inside and outside houses. Further research is warranted to elucidate the role of goats in the transmission of L. donovani, assess the impact of bed nets and the role of the traditional practice of smoking plants.

  9. Analysis of crack propagation in roller bearings using the boundary integral equation method - A mixed-mode loading problem

    NASA Technical Reports Server (NTRS)

    Ghosn, L. J.

    1988-01-01

    Crack propagation in a rotating inner raceway of a high-speed roller bearing is analyzed using the boundary integral method. The model consists of an edge plate under plane strain condition upon which varying Hertzian stress fields are superimposed. A multidomain boundary integral equation using quadratic elements was written to determine the stress intensity factors KI and KII at the crack tip for various roller positions. The multidomain formulation allows the two faces of the crack to be modeled in two different subregions, making it possible to analyze crack closure when the roller is positioned on or close to the crack line. KI and KII stress intensity factors along any direction were computed. These calculations permit determination of crack growth direction along which the average KI times the alternating KI is maximum.

  10. The effect of the interaction of cracks in orthotropic layered materials under compressive loading.

    PubMed

    Winiarski, B; Guz, I A

    2008-05-28

    The non-classical problem of fracture mechanics of composites compressed along the layers with interfacial cracks is analysed. The statement of the problem is based on the model of piecewise homogeneous medium, the most accurate within the framework of the mechanics of deformable bodies as applied to composites. The condition of plane strain state is examined. The layers are modelled by a transversally isotropic material (a matrix reinforced by continuous parallel fibres). The frictionless Hertzian contact of the crack faces is considered. The complex fracture mechanics problem is solved using the finite-element analysis. The shear mode of stability loss is studied. The results are obtained for the typical dispositions of cracks. It was found that the interacting crack faces, the crack length and the mutual position of cracks influence the critical strain in the composite.

  11. Fracture analysis of a central crack in a long cylindrical superconductor with exponential model

    NASA Astrophysics Data System (ADS)

    Zhao, Yu Feng; Xu, Chi

    2018-05-01

    The fracture behavior of a long cylindrical superconductor is investigated by modeling a central crack that is induced by electromagnetic force. Based on the exponential model, the stress intensity factors (SIFs) with the dimensionless parameter p and the length of the crack a/R for the zero-field cooling (ZFC) and field-cooling (FC) processes are numerically simulated using the finite element method (FEM) and assuming a persistent current flow. As the applied field Ba decreases, the dependence of p and a/R on the SIFs in the ZFC process is exactly opposite to that observed in the FC process. Numerical results indicate that the exponential model exhibits different characteristics for the trend of the SIFs from the results obtained using the Bean and Kim models. This implies that the crack length and the trapped field have significant effects on the fracture behavior of bulk superconductors. The obtained results are useful for understanding the critical-state model of high-temperature superconductors in crack problem.

  12. 78 FR 37160 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... fold cuff assembly for a crack. If there is a crack, this proposed AD would require replacing the cracked part. If there is no crack, this AD would require applying white paint to the inspection area to enhance the existing inspection procedure. This proposed AD is prompted by the discovery of cracks in the...

  13. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size

    PubMed Central

    Wang, Qiang; Zhang, Wei; Jiang, Shan

    2015-01-01

    Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS) concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V) under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given. PMID:28793625

  14. Role of multiple cusps in tooth fracture.

    PubMed

    Barani, Amir; Bush, Mark B; Lawn, Brian R

    2014-07-01

    The role of multiple cusps in the biomechanics of human molar tooth fracture is analysed. A model with four cusps at the bite surface replaces the single dome structure used in previous simulations. Extended finite element modelling, with provision to embed longitudinal cracks into the enamel walls, enables full analysis of crack propagation from initial extension to final failure. The cracks propagate longitudinally around the enamel side walls from starter cracks placed either at the top surface (radial cracks) or from the tooth base (margin cracks). A feature of the crack evolution is its stability, meaning that extension occurs steadily with increasing applied force. Predictions from the model are validated by comparison with experimental data from earlier publications, in which crack development was followed in situ during occlusal loading of extracted human molars. The results show substantial increase in critical forces to produce longitudinal fractures with number of cuspal contacts, indicating a capacity for an individual tooth to spread the load during mastication. It is argued that explicit critical force equations derived in previous studies remain valid, at the least as a means for comparing the capacity for teeth of different dimensions to sustain high bite forces. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Modeling crack growth during Li insertion in storage particles using a fracture phase field approach

    NASA Astrophysics Data System (ADS)

    Klinsmann, Markus; Rosato, Daniele; Kamlah, Marc; McMeeking, Robert M.

    2016-07-01

    Fracture of storage particles is considered to be one of the major reasons for capacity fade and increasing power loss in many commercial lithium ion batteries. The appearance of fracture and cracks in the particles is commonly ascribed to mechanical stress, which evolves from inhomogeneous swelling and shrinkage of the material when lithium is inserted or extracted. Here, a coupled model of lithium diffusion, mechanical stress and crack growth using a phase field method is applied to investigate how the formation of cracks depends on the size of the particle and the presence or absence of an initial crack, as well as the applied flux at the boundary. The model shows great versatility in that it is free of constraints with respect to particle geometry, dimension or crack path and allows simultaneous observation of the evolution of lithium diffusion and crack growth. In this work, we focus on the insertion process. In particular, we demonstrate the presence of intricate fracture phenomena, such as, crack branching or complete breakage of storage particles within just a single half cycle of lithium insertion, a phenomenon that was only speculated about before.

  16. Nonlinear Response and Residual Strength of Damaged Stiffened Shells Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Britt, Vicki O.; Rose, Cheryl A.; Rankin, Charles C.

    1996-01-01

    The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy and analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Fuselage skins, frames stringers and failsafe straps are included in the models. Results are presented for various combinations of internal pressure and mechanical bending, vertical shear and torsion loads, and the effects of crack orientation and location on the shell response are described. These results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell, and the stress-intensity factors associated with a crack that are used to predict residual strength. The effects of representative combined loading conditions on the stress-intensity factors associated with a crack are presented. The effects of varying structural parameters on the stress-intensity factors associated with a crack, and on self-similar and non-self-similar crack-growth are also presented.

  17. Residual Strength Analyses of Riveted Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Seshadri, B. R.; Newman, J. C., Jr.

    2000-01-01

    The objective of this paper was to analyze the crack-linkup behavior in riveted-stiffened lap-splice joint panels with small multiple-site damage (MSD) cracks at several adjacent rivet holes. Analyses are based on the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. To account for high constraint around a crack front, the "plane strain core" option in STAGS was used. The importance of modeling rivet flexibility with fastener elements that accurately model load transfer across the joint is discussed. Fastener holes are not modeled but rivet connectivity is accounted for by attaching rivets to the sheet on one side of the cracks that simulated both the rivet diameter and MSD cracks. Residual strength analyses made on 2024-T3 alloy (1.6-mm thick) riveted-lap-splice joints with a lead crack and various size MSD cracks were compared with test data from Boeing Airplane Company. Analyses were conducted for both restrained and unrestrained buckling conditions. Comparison of results from these analyses and results from lap-splice-joint test panels, which were partially restrained against buckling indicate that the test results were bounded by the failure loads predicted by the analyses with restrained and unrestrained conditions.

  18. 75 FR 12667 - Airworthiness Directives; Learjet Inc. Model 45 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... certain Model 45 airplanes. This AD requires a general visual inspection for cracked and missing ballscrew... sleeve or flap actuator for cracks, and replacement or modification of the flap actuator if necessary. This AD results from reports of cracked and missing ballscrew assembly sleeves of the flap actuators...

  19. Towards a better understanding of the cracking behavior in soils

    USDA-ARS?s Scientific Manuscript database

    Understanding and modeling shrinkage-induced cracks helps bridge the gap between flow problem in the laboratory and at the field. Modeling flow at the field scale with Darcian fluxes developed at the laboratory scales is challenged with preferential flows attributed to the cracking behavior of soils...

  20. A fracture criterion for widespread cracking in thin-sheet aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Dawicke, D. S.; Sutton, M. A.; Bigelow, C. A.

    1993-01-01

    An elastic-plastic finite-element analysis was used with a critical crack-tip-opening angle (CTOA) fracture criterion to model stable crack growth in thin-sheet 2024-T3 aluminum alloy panels with single and multiple-site damage (MSD) cracks. Comparisons were made between critical angles determined from the analyses and those measured with photographic methods. Calculated load against crack extension and load against crack-tip displacement on single crack specimens agreed well with test data even for large-scale plastic deformations. The analyses were also able to predict the stable tearing behavior of large lead cracks in the presence of stably tearing MSD cracks. Small MSD cracks significantly reduced the residual strength for large lead cracks.

  1. Strength anisotropy of shales deformed under uppermost crustal conditions

    NASA Astrophysics Data System (ADS)

    Bonnelye, Audrey; Schubnel, Alexandre; David, Christian; Henry, Pierre; Guglielmi, Yves; Gout, Claude; Fauchille, Anne-Laure; Dick, Pierre

    2017-01-01

    Conventional triaxial tests were performed on three sets of samples of Tournemire shale along different orientations relative to bedding (0°, 45°, and 90°). Experiments were carried out up to failure at increasing confining pressures ranging from 2.5 to 160 MPa, at strain rates ranging between 3 × 10-7s-1 and 3 × 10-5s-1. This allowed us to determine the entire anisotropic elastic compliance matrix as a function of confining pressure. Results show that the orientation of principal stress relative to bedding plays an important role on the brittle strength, with 45° orientation being the weakest. We fit our results with a wing crack micromechanical model and an anisotropic fracture toughness. We found low values of internal friction coefficient and apparent friction coefficient in agreement with friction coefficient of clay minerals (between 0.2 and 0.3) and values of KIc comparable to that already published in the literature. We also showed that strain rate has a strong impact on peak stress and that dilatancy appears right before failure and hence highlighting the importance of plasticity mechanisms. Although brittle failure was systematically observed, stress drops and associated slips were slow and deformation always remained aseismic (no acoustic emission were detected). This confirms that shales are good lithological candidates for shallow crust aseismic creep and slow slip events.

  2. Attrition resistant fluidizable reforming catalyst

    DOEpatents

    Parent, Yves O [Golden, CO; Magrini, Kim [Golden, CO; Landin, Steven M [Conifer, CO; Ritland, Marcus A [Palm Beach Shores, FL

    2011-03-29

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  3. Correlating bilayer tablet delamination tendencies to micro-environmental thermodynamic conditions during pan coating.

    PubMed

    Zacour, Brian M; Pandey, Preetanshu; Subramanian, Ganeshkumar; Gao, Julia Z; Nikfar, Faranak

    2014-06-01

    The objective of this study was to determine the impact that the micro-environment, as measured by PyroButton data loggers, experienced by tablets during the pan coating unit operation had on the layer adhesion of bilayer tablets in open storage conditions. A full factorial design of experiments (DOE) with three center points was conducted to study the impact of final tablet hardness, film coating spray rate and film coating exhaust temperature on the delamination tendencies of bilayer tablets. PyroButton data loggers were placed (fixed) at various locations in a pan coater and were also allowed to freely move with the tablet bed to measure the micro-environmental temperature and humidity conditions of the tablet bed. The variance in the measured micro-environment via PyroButton data loggers accounted for 75% of the variance in the delamination tendencies of bilayer tablets on storage (R(2 )= 0.75). A survival analysis suggested that tablet hardness and coating spray rate significantly impacted the delamination tendencies of the bilayer tablets under open storage conditions. The coating exhaust temperature did not show good correlation with the tablets' propensity to crack indicating that it was not representative of the coating micro-environment. Models created using data obtained from the PyroButton data loggers outperformed models created using primary DOE factors in the prediction of bilayer tablet strength, especially upon equipment or scale transfers. The coating micro-environment experienced by tablets during the pan coating unit operation significantly impacts the strength of the bilayer interface of tablets on storage.

  4. The Recycling and Reclamation of Used Tank Track Pins

    DTIC Science & Technology

    1985-08-01

    dislocation models that show crack formation as the accumu- lation of defects and subsequent loss of coherency across a slip plane; and, models based on...specifications, thus removing any damage that has occurred. The success of this project is based on the ability of the reheat treatment to eliminate the...develop into cracks 8 . The general models of fatigue crack nucleation have been grouped into five main categories which are: models which consider the

  5. Molecular dynamics simulation of propagating cracks

    NASA Technical Reports Server (NTRS)

    Mullins, M.

    1982-01-01

    Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.

  6. Sex-for-Crack exchanges: associations with risky sexual and drug use niches in an urban Canadian city

    PubMed Central

    2013-01-01

    Background While crack cocaine has been associated with elevated sexual risks and transmission of HIV/STIs, particularly in the context of street-based sex work, few empirical studies have examined correlates of direct sex-for-crack exchanges. This study longitudinally examined the correlates of sex-for-crack exchanges and associated effects on sexual risk outcomes among street-based female sex workers (SW) who use drugs in Vancouver, Canada. Methods Data were drawn from a prospective cohort of street-based SWs (2006–2008), restricted to those who smoke crack cocaine. Multivariable generalized estimating equations (GEE) were employed to examine the correlates of exchanging sex for crack. A confounding model using GEE quasi-Poisson regression modeled the independent effect of exchanging sex for crack on number of clients/week. Results Of 206 SWs, 101 (49%) reported sex-for-crack exchanges over 18 months of follow-up. In multivariable GEE analyses, sharing a crack pipe with a client (aOR = 1.98; 95%CI: 1.27-3.08) and smoking crack in a group of strangers (e.g., in an alley or crackhouse) (aOR = 1.70; 95% CI: 1.13-2.58) were independently correlated with sex-for-crack exchanges. In our confounding model, exchanging sex for crack (aIRR = 1.34; 95% CI: 1.07-1.69) remained significantly associated with servicing a greater number (>10) of clients/week. Conclusions These findings reveal elevated sexual- and drug- risk patterns among those who exchange sex for crack. The physical and social environment featured prominently in our results as a driver of sex-for-crack exchanges, highlighting the need for gender-sensitive multilevel approaches to harm reduction, STI and HIV prevention that address SWs’ environment, individual level factors, and the interplay between them. PMID:24238367

  7. Cracked rocks with positive and negative Poisson's ratio: real-crack properties extracted from pressure dependence of elastic-wave velocities

    NASA Astrophysics Data System (ADS)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Dyskin, Arcady V.; Pasternak, Elena

    2017-04-01

    We report results of analysis of literature data on P- and S-wave velocities of rocks subjected to variable hydrostatic pressure. Out of about 90 examined samples, in more than 40% of the samples the reconstructed Poisson's ratios are negative for lowest confining pressure with gradual transition to the conventional positive values at higher pressure. The portion of rocks exhibiting negative Poisson's ratio appeared to be unexpectedly high. To understand the mechanism of negative Poisson's ratio, pressure dependences of P- and S-wave velocities were analyzed using the effective medium model in which the reduction in the elastic moduli due to cracks is described in terms of compliances with respect to shear and normal loading that are imparted to the rock by the presence of cracks. This is in contrast to widely used descriptions of effective cracked medium based on a specific crack model (e.g., penny-shape crack) in which the ratio between normal and shear compliances of such a crack is strictly predetermined. The analysis of pressure-dependences of the elastic wave velocities makes it possible to reveal the ratio between pure normal and shear compliances (called q-ratio below) for real defects and quantify their integral content in the rock. The examination performed demonstrates that a significant portion (over 50%) of cracks exhibit q-ratio several times higher than that assumed for the conventional penny-shape cracks. This leads to faster reduction of the Poisson's ratio with increasing the crack concentration. Samples with negative Poisson's ratio are characterized by elevated q-ratio and simultaneously crack concentration. Our results clearly indicate that the traditional crack model is not adequate for a significant portion of rocks and that the interaction between the opposite crack faces leading to domination of the normal compliance and reduced shear displacement discontinuity can play an important role in the mechanical behavior of rocks.

  8. Fatigue crack propagation behavior of stainless steel welds

    NASA Astrophysics Data System (ADS)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  9. Analysis and prediction of Multiple-Site Damage (MSD) fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Newman, J. C., Jr.

    1992-01-01

    A technique was developed to calculate the stress intensity factor for multiple interacting cracks. The analysis was verified through comparison with accepted methods of calculating stress intensity factors. The technique was incorporated into a fatigue crack growth prediction model and used to predict the fatigue crack growth life for multiple-site damage (MSD). The analysis was verified through comparison with experiments conducted on uniaxially loaded flat panels with multiple cracks. Configuration with nearly equal and unequal crack distribution were examined. The fatigue crack growth predictions agreed within 20 percent of the experimental lives for all crack configurations considered.

  10. Multiple use of waste catalysts with and without regeneration for waste polymer cracking.

    PubMed

    Salmiaton, A; Garforth, A A

    2011-06-01

    Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidized bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C(2)-C(7)) remained fairly constant. For the first time, these results indicate that "waste" FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. A risk assessment method for multi-site damage

    NASA Astrophysics Data System (ADS)

    Millwater, Harry Russell, Jr.

    This research focused on developing probabilistic methods suitable for computing small probabilities of failure, e.g., 10sp{-6}, of structures subject to multi-site damage (MSD). MSD is defined as the simultaneous development of fatigue cracks at multiple sites in the same structural element such that the fatigue cracks may coalesce to form one large crack. MSD is modeled as an array of collinear cracks with random initial crack lengths with the centers of the initial cracks spaced uniformly apart. The data used was chosen to be representative of aluminum structures. The structure is considered failed whenever any two adjacent cracks link up. A fatigue computer model is developed that can accurately and efficiently grow a collinear array of arbitrary length cracks from initial size until failure. An algorithm is developed to compute the stress intensity factors of all cracks considering all interaction effects. The probability of failure of two to 100 cracks is studied. Lower bounds on the probability of failure are developed based upon the probability of the largest crack exceeding a critical crack size. The critical crack size is based on the initial crack size that will grow across the ligament when the neighboring crack has zero length. The probability is evaluated using extreme value theory. An upper bound is based on the probability of the maximum sum of initial cracks being greater than a critical crack size. A weakest link sampling approach is developed that can accurately and efficiently compute small probabilities of failure. This methodology is based on predicting the weakest link, i.e., the two cracks to link up first, for a realization of initial crack sizes, and computing the cycles-to-failure using these two cracks. Criteria to determine the weakest link are discussed. Probability results using the weakest link sampling method are compared to Monte Carlo-based benchmark results. The results indicate that very small probabilities can be computed accurately in a few minutes using a Hewlett-Packard workstation.

  12. Bi-material plane with interface crack for the model of semi-linear material

    NASA Astrophysics Data System (ADS)

    Domanskaya, T. O.; Malkov, V. M.; Malkova, Yu. V.

    2018-05-01

    The singular plane problems of nonlinear elasticity (plane strain and plane stress) are considered for bi-material infinite plane with interface crack. The plane is formed of two half-planes. Mechanical properties of half-planes are described by the model of semi-linear material. Using model of this harmonic material has allowed to apply the theory of complex functions and to obtain exact analytical global solutions of some nonlinear problems. Among them the problem of bi-material plane with the stresses and strains jumps at an interface is considered. As an application of the problem of jumps, the problem of interface crack is solved. The values of nominal (Piola) and Cauchy stresses and displacements are founded. Based on the global solutions the asymptotic expansions are constructed for stresses and displacements in a vicinity of crack tip. As an example the case of a free crack in bi-material plane subjected to constant stresses at infinity is studied. As a special case, the analytical solution of the problem of a crack in a homogeneous plane is obtained from the problem for bi-material plane with interface crack.

  13. Assessment of crack opening area for leak rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharples, J.K.; Bouchard, P.J.

    1997-04-01

    This paper outlines the background to recommended crack opening area solutions given in a proposed revision to leak before break guidance for the R6 procedure. Comparisons with experimental and analytical results are given for some selected cases of circumferential cracks in cylinders. It is shown that elastic models can provide satisfactory estimations of crack opening displacement (and area) but they become increasingly conservative for values of L{sub r} greater than approximately 0.4. The Dugdale small scale yielding model gives conservative estimates of crack opening displacement with increasing enhancement for L{sub r} values greater than 0.4. Further validation of the elastic-plasticmore » reference stress method for up to L{sub r} values of about 1.0 is presented by experimental and analytical comparisons. Although a more detailed method, its application gives a best estimate of crack opening displacement which may be substantially greater than small scale plasticity models. It is also shown that the local boundary conditions in pipework need to be carefully considered when evaluating crack opening area for through-wall bending stresses resulting from welding residual stresses or geometry discontinuities.« less

  14. Detection, discrimination, and real-time tracking of cracks in rotating disks

    NASA Astrophysics Data System (ADS)

    Haase, Wayne C.; Drumm, Michael J.

    2002-06-01

    The purpose of this effort was to develop a system* to detect, discriminate and track fatigue cracks in rotating disks. Aimed primarily at jet engines in flight applications, the system also has value for detecting cracks in a spin pit during low cycle fatigue testing, and for monitoring the health of steam turbines and land-based gas turbine engines for maintenance purposes. The results of this effort produced: a physics-based model that describes the change in the center of mass of a rotating disk using damping ratio, initial unbalance and crack size as parameters; the development of a data acquisition and analysis system that can detect and discriminate a crack using a single cycle of data; and initial validation of the model through testing in a spin pit. The development of the physics-based model also pointed to the most likely regimes for crack detection; identified specific powers of (omega) search for in specific regimes; dictated a particular type of data acquisition for crack discrimination; and demonstrated a need for a higher signal-to-noise ratio in the measurement of the basic vibration signal.

  15. A Three-Stage Mechanistic Model for Solidification Cracking During Welding of Steel

    NASA Astrophysics Data System (ADS)

    Aucott, L.; Huang, D.; Dong, H. B.; Wen, S. W.; Marsden, J.; Rack, A.; Cocks, A. C. F.

    2018-03-01

    A three-stage mechanistic model for solidification cracking during TIG welding of steel is proposed from in situ synchrotron X-ray imaging of solidification cracking and subsequent analysis of fracture surfaces. Stage 1—Nucleation of inter-granular hot cracks: cracks nucleate inter-granularly in sub-surface where maximum volumetric strain is localized and volume fraction of liquid is less than 0.1; the crack nuclei occur at solute-enriched liquid pockets which remain trapped in increasingly impermeable semi-solid skeleton. Stage 2—Coalescence of cracks via inter-granular fracture: as the applied strain increases, cracks coalesce through inter-granular fracture; the coalescence path is preferential to the direction of the heat source and propagates through the grain boundaries to solidifying dendrites. Stage 3—Propagation through inter-dendritic hot tearing: inter-dendritic hot tearing occurs along the boundaries between solidifying columnar dendrites with higher liquid fraction. It is recommended that future solidification cracking criterion shall be based on the application of multiphase mechanics and fracture mechanics to the failure of semi-solid materials.

  16. Fatigue-Life Prediction Methodology Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newmann, James C., Jr.; Phillips, Edward P.; Swain, M. H.

    1997-01-01

    This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using 'small-crack theory' for various materials and loading conditions. Crack-tip constraint factors, to account for three-dimensional state-of-stress effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta K(eff)) under constant-amplitude loading. Some modifications to the delta k(eff)-rate relations were needed in the near-threshold regime to fit measured small-crack growth rate behavior and fatigue endurance limits. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens made of two aluminum alloys and a steel under constant-amplitude and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks for the aluminum alloys and steel for edge-notched specimens. An equivalent-initial-flaw-size concept was used to calculate fatigue lives in other cases. Results from the tests and analyses agreed well.

  17. Environment enhanced fatigue crack propagation in metals: Inputs to fracture mechanics life prediction models

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Kim, Sang-Shik

    1993-01-01

    This report is a critical review of both environment-enhanced fatigue crack propagation data and the predictive capabilities of crack growth rate models. This information provides the necessary foundation for incorporating environmental effects in NASA FLAGRO and will better enable predictions of aerospace component fatigue lives. The review presents extensive literature data on 'stress corrosion cracking and corrosion fatigue.' The linear elastic fracture mechanics approach, based on stress intensity range (Delta(K)) similitude with microscopic crack propagation threshold and growth rates, provides a basis for these data. Results are presented showing enhanced growth rates for gases (viz., H2 and H2O) and electrolytes (e.g. NaCl and H2O) in aerospace alloys including: C-Mn and heat treated alloy steels, aluminum alloys, nickel-based superalloys, and titanium alloys. Environment causes purely time-dependent accelerated fatigue crack growth above the monotonic load cracking threshold (KIEAC) and promotes cycle-time dependent cracking below (KIEAC). These phenomenon are discussed in terms of hydrogen embrittlement, dissolution, and film rupture crack tip damage mechanisms.

  18. Simulation model of fatigue crack opening/closing phenomena for predicting RPG load under arbitrary stress distribution field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyosada, M.; Niwa, T.

    1995-12-31

    In this paper, Newman`s calculation model is modified to solve his neglected effect of the change of stress distribution ahead of a crack, and to leave elastic plastic materials along the crack surface because of the compatibility of Dugdale model. In addition to above treatment, the authors introduce plastic shrinkage at an immediate generation of new crack surfaces due to emancipation of internal force with the magnitude of yield stress level during unloading process in the model. Moreover, the model is expanded to arbitrary stress distribution field. By using the model, RPG load is simulated for a center notched specimenmore » under constant amplitude loading with various stress ratios and decreased maximum load while keeping minimum load.« less

  19. Desiccation of a Sessile Drop of Blood: Cracks Formation and Delamination

    NASA Astrophysics Data System (ADS)

    Sobac, Benjamin; Brutin, David

    2011-11-01

    The evaporation of drops of biological fluids has been studied since few years du to several applications in medical fields such as medical tests, drug screening, biostabilization... The evaporation of a drop of whole blood leads to the formation of final typical pattern of cracks. Flow motion, adhesion, gelation and fracturation all occur during the evaporation of this complex matter. During the drying, a sol-gel transition develops. The drying kinetics is explained by a simple model of evaporation taking account of the evolution of the gelation front. The system solidifies and when stresses are too important, cracks nucleate. The cracks formation and the structure of the crack pattern are investigated. The initial crack spacing is found in good agreement with the implementation in open geometry of the model of cracks formation induced by evaporation proposed by Allain and Limat. Finally, the drop is still drying after the end of the formation of cracks which leads, like in the situation of colloid suspensions, to the observation of a delamination phenomenon.

  20. Torsional vibration of a cracked rod by variational formulation and numerical analysis

    NASA Astrophysics Data System (ADS)

    Chondros, T. G.; Labeas, G. N.

    2007-04-01

    The torsional vibration of a circumferentially cracked cylindrical shaft is studied through an "exact" analytical solution and a numerical finite element (FE) analysis. The Hu-Washizu-Barr variational formulation is used to develop the differential equation and the boundary conditions of the cracked rod. The equations of motion for a uniform cracked rod in torsional vibration are derived and solved, and the Rayleigh quotient is used to further approximate the natural frequencies of the cracked rod. Results for the problem of the torsional vibration of a cylindrical shaft with a peripheral crack are provided through an analytical solution based on variational formulation to derive the equation of motion and a numerical analysis utilizing a parametric three-dimensional (3D) solid FE model of the cracked rod. The crack is modelled as a continuous flexibility based on fracture mechanics principles. The variational formulation results are compared with the FE alternative. The sensitivity of the FE discretization with respect to the analytical results is assessed.

  1. The application of Newman crack-closure model to predicting fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Si, Erjian

    1994-09-01

    Newman crack-closure model and the relevant crack growth program were applied to the analysis of crack growth under constant amplitude and aircraft spectrum loading on a number of aluminum alloy materials. The analysis was performed for available test data of 2219-T851, 2024-T3, 2024-T351, 7075-T651, 2324-T39, and 7150-T651 aluminum materials. The results showed that the constraint factor is a significant factor in the method. The determination of the constraint factor is discussed. For constant amplitude loading, satisfactory crack growth lives could be predicted. For the above aluminum specimens, the ratio of predicted to experimental lives, Np/Nt, ranged from 0.74 to 1.36. The mean value of Np/Nt was 0.97. For a specified complex spectrum loading, predicted crack growth lives are not in very good agreement with the test data. Further effort is needed to correctly simulate the transition between plane strain and plane stress conditions, existing near the crack tip.

  2. Transverse cracking and stiffness reduction in composite laminates

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.; Selek, M. C.

    1993-01-01

    A study of transverse cracking mechanism in composite laminates is presented using a singular hybrid finite element model. The model provides the global structural response as well as the precise local crack-tip stress fields. An elasticity basis for the problem is established by employing Lekhnitskii's complex variable potentials and method of eigenfunction expansion. Stress singularities associated with the transverse crack are obtained by decomposing the deformation into the symmetric and antisymmetric modes and proper boundary conditions. A singular hybrid element is thereby formulated based on the variational principle of a modified hybrid functional to incorporate local crack singularities. Axial stiffness reduction due to transverse cracking is studied. The results are shown to be in very good agreement with the existing experimental data. Comparison with simple shear lag analysis is also given. The effects of stress intensity factors and strain energy density on the increase of crack density are analyzed. The results reveal that the parameters approach definite limits when crack densities are saturated, an evidence of the existence of characteristic damage state.

  3. Characterization of Pore Defects and Fatigue Cracks in Die Cast AM60 Using 3D X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2015-08-01

    AM60 high pressure die castings have been used in automobile applications to reduce the weight of vehicles. However, the pore defects that are inherent in die casting may negatively affect mechanical properties, especially the fatigue properties. Here we have studied damage ( e.g., pore defects, fatigue cracks) during strained-controlled fatigue using 3-dimensional X-ray computed tomography (XCT). The fatigue test was interrupted every 2000 cycles and the specimen was removed to be scanned using a desktop micro-CT system. XCT reveals pore defects, cracks, and fracture surfaces. The results show that pores can be accurately measured and modeled in 3D. Defect bands are found to be made of pores under 50 µm (based on volume-equivalent sphere diameter). Larger pores are randomly distributed in the region between the defect bands. Observation of fatigue cracks by XCT is performed in three ways such that the 3D model gives the best illustration of crack-porosity interaction while the other two methods, with the cracks being viewed on transverse or longitudinal cross sections, have better detectability on crack initiation and crack tip observation. XCT is also of value in failure analysis on fracture surfaces. By assessing XCT data during fatigue testing and observing fracture surfaces on a 3D model, a better understanding on the crack initiation, crack-porosity interaction, and the morphology of fracture surface is achieved.

  4. Lattice Modeling of Early-Age Behavior of Structural Concrete.

    PubMed

    Pan, Yaming; Prado, Armando; Porras, Rocío; Hafez, Omar M; Bolander, John E

    2017-02-25

    The susceptibility of structural concrete to early-age cracking depends on material composition, methods of processing, structural boundary conditions, and a variety of environmental factors. Computational modeling offers a means for identifying primary factors and strategies for reducing cracking potential. Herein, lattice models are shown to be adept at simulating the thermal-hygral-mechanical phenomena that influence early-age cracking. In particular, this paper presents a lattice-based approach that utilizes a model of cementitious materials hydration to control the development of concrete properties, including stiffness, strength, and creep resistance. The approach is validated and used to simulate early-age cracking in concrete bridge decks. Structural configuration plays a key role in determining the magnitude and distribution of stresses caused by volume instabilities of the concrete material. Under restrained conditions, both thermal and hygral effects are found to be primary contributors to cracking potential.

  5. Lattice Modeling of Early-Age Behavior of Structural Concrete

    PubMed Central

    Pan, Yaming; Prado, Armando; Porras, Rocío; Hafez, Omar M.; Bolander, John E.

    2017-01-01

    The susceptibility of structural concrete to early-age cracking depends on material composition, methods of processing, structural boundary conditions, and a variety of environmental factors. Computational modeling offers a means for identifying primary factors and strategies for reducing cracking potential. Herein, lattice models are shown to be adept at simulating the thermal-hygral-mechanical phenomena that influence early-age cracking. In particular, this paper presents a lattice-based approach that utilizes a model of cementitious materials hydration to control the development of concrete properties, including stiffness, strength, and creep resistance. The approach is validated and used to simulate early-age cracking in concrete bridge decks. Structural configuration plays a key role in determining the magnitude and distribution of stresses caused by volume instabilities of the concrete material. Under restrained conditions, both thermal and hygral effects are found to be primary contributors to cracking potential. PMID:28772590

  6. Analyses of Fatigue and Fatigue-Crack Growth under Constant- and Variable-Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily crack growth from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using small-crack theory under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta K(sub eff)) under constant-amplitude loading. Modifications to the delta K(sub eff)-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  7. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1989-01-01

    A major objective of the fatigue and fracture efforts under the NASA Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  8. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1988-01-01

    A major objective of the fatigue and fracture efforts under the Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  9. Stress-intensity factors for circumferential surface cracks in pipes and rods under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1985-01-01

    The purpose of this paper is to present stress-intensity factors for a wide range of nearly semi-elliptical surface cracks in pipes and rods. The configurations were subjected to either remote tension or bending loads. For pipes, the ratio of crack depth to crack length (a/c) ranged from 0.6 to 1; the ratio of crack depth to wall thickness (a/t) ranged from 0.2 to 0.8; and the ratio of internal radius to wall thickness (R/t) ranged from 1 to 10. For rods, the ratio of crack depth to crack length also ranged from 0.6 to 1; and the ratio of crack depth to rod diameter (a/D) ranged from 0.05 to 0.35. These particular crack configurations were chosen to cover the range of crack shapes (a/c) that have been observed in experiments conducted on pipes and rods under tension and bending fatigue loads. The stress-intensity factors were calculated by a three-dimensional finite-element method. The finite-element models employed singularity elements along the crack front and linear-strain elements elsewhere. The models had about 6500 degrees of freedom. The stress-intensity factors were evaluated using a nodal-force method.

  10. Fatigue reliability of deck structures subjected to correlated crack growth

    NASA Astrophysics Data System (ADS)

    Feng, G. Q.; Garbatov, Y.; Guedes Soares, C.

    2013-12-01

    The objective of this work is to analyse fatigue reliability of deck structures subjected to correlated crack growth. The stress intensity factors of the correlated cracks are obtained by finite element analysis and based on which the geometry correction functions are derived. The Monte Carlo simulations are applied to predict the statistical descriptors of correlated cracks based on the Paris-Erdogan equation. A probabilistic model of crack growth as a function of time is used to analyse the fatigue reliability of deck structures accounting for the crack propagation correlation. A deck structure is modelled as a series system of stiffened panels, where a stiffened panel is regarded as a parallel system composed of plates and are longitudinal. It has been proven that the method developed here can be conveniently applied to perform the fatigue reliability assessment of structures subjected to correlated crack growth.

  11. Effect of propellant deformation on ignition and combustion processes in solid propellant cracks

    NASA Technical Reports Server (NTRS)

    Kumar, M.; Kuo, K. K.

    1980-01-01

    A comprehensive theoretical model was formulated to study the development of convective burning in a solid propellant crack which continually deforms due to burning and pressure loading. In the theoretical model, the effect of interrelated structural deformation and combustion processes was taken into account by considering (1) transient, one dimensional mass, momentum, and energy conservation equations in the gas phase; (2) a transient, one dimensional heat conduction equation in the solid phase; and (3) quasi-static deformation of the two dimensional, linear viscoelastic propellant crack caused by pressure loading. Partial closures may generate substantial local pressure peaks along the crack, implying a strong coupling between chamber pressurization, crack combustion, and propellant deformation, especially when the cracks are narrow and the chamber pressurization rates high. The maximum pressure in the crack cavity is generally higher than that in the chamber. The initial flame-spreading process is not affected by propellant deformation.

  12. Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, U.S.A. 2. Mathematical modeling

    USGS Publications Warehouse

    Jackman, A.P.; Walters, R.A.; Kennedy, V.C.

    1984-01-01

    Three models describing solute transport of conservative ion species and another describing transport of species which adsorb linearly and reversibly on bed sediments are developed and tested. The conservative models are based on three different conceptual models of the transient storage of solute in the bed. One model assumes the bed to be a well-mixed zone with flux of solute into the bed proportional to the difference between stream concentration and bed concentration. The second model assumes solute in the bed is transported by a vertical diffusion process described by Fick's law. The third model assumes that convection occurs in a selected portion of the bed while the mechanism of the first model functions everywhere. The model for adsorbing species assumes that the bed consists of particles of uniform size with the rate of uptake controlled by an intraparticle diffusion process. All models are tested using data collected before, during and after a 24-hr. pulse injection of chloride, strontium, potassium and lead ions into Uvas Creek near Morgan Hill, California, U.S.A. All three conservative models accurately predict chloride ion concentrations in the stream. The model employing the diffusion mechanism for bed transport predicts better than the others. The adsorption model predicts both strontium and potassium ion concentrations well during the injection of the pulse but somewhat overestimates the observed concentrations after the injection ceases. The overestimation may be due to the convection of solute deep into the bed where it is retained longer than the 3-week post-injection observation period. The model, when calibrated for strontium, predicts potassium equally well when the adsorption equilibrium constant for strontium is replaced by that for potassium. ?? 1984.

  13. Numerical modeling of nonlinear modulation of coda wave interferometry in a multiple scattering medium with the presence of a localized micro-cracked zone

    NASA Astrophysics Data System (ADS)

    Chen, Guangzhi; Pageot, Damien; Legland, Jean-Baptiste; Abraham, Odile; Chekroun, Mathieu; Tournat, Vincent

    2018-04-01

    The spectral element method is used to perform a parametric sensitivity study of the nonlinear coda wave interferometry (NCWI) method in a homogeneous sample with localized damage [1]. The influence of a strong pump wave on a localized nonlinear damage zone is modeled as modifications to the elastic properties of an effective damage zone (EDZ), depending on the pump wave amplitude. The local change of the elastic modulus and the attenuation coefficient have been shown to vary linearly with respect to the excitation amplitude of the pump wave as in previous experimental studies of Zhang et al. [2]. In this study, the boundary conditions of the cracks, i.e. clapping effects is taken into account in the modeling of the damaged zone. The EDZ is then modeled with random cracks of random orientations, new parametric studies are established to model the pump wave influence with two new parameters: the change of the crack length and the crack density. The numerical results reported constitute another step towards quantification and forecasting of the nonlinear acoustic response of a cracked material, which proves to be necessary for quantitative non-destructive evaluation.

  14. Thermo-mechanical simulations of early-age concrete cracking with durability predictions

    NASA Astrophysics Data System (ADS)

    Havlásek, Petr; Šmilauer, Vít; Hájková, Karolina; Baquerizo, Luis

    2017-09-01

    Concrete performance is strongly affected by mix design, thermal boundary conditions, its evolving mechanical properties, and internal/external restraints with consequences to possible cracking with impaired durability. Thermo-mechanical simulations are able to capture those relevant phenomena and boundary conditions for predicting temperature, strains, stresses or cracking in reinforced concrete structures. In this paper, we propose a weakly coupled thermo-mechanical model for early age concrete with an affinity-based hydration model for thermal part, taking into account concrete mix design, cement type and thermal boundary conditions. The mechanical part uses B3/B4 model for concrete creep and shrinkage with isotropic damage model for cracking, able to predict a crack width. All models have been implemented in an open-source OOFEM software package. Validations of thermo-mechanical simulations will be presented on several massive concrete structures, showing excellent temperature predictions. Likewise, strain validation demonstrates good predictions on a restrained reinforced concrete wall and concrete beam. Durability predictions stem from induction time of reinforcement corrosion, caused by carbonation and/or chloride ingress influenced by crack width. Reinforcement corrosion in concrete struts of a bridge will serve for validation.

  15. Finite element model study of the effect of corner rounding on detectability of corner cracks using bolt hole eddy current

    NASA Astrophysics Data System (ADS)

    Underhill, P. R.; Krause, T. W.

    2017-02-01

    Recent work has shown that the detectability of corner cracks in bolt-holes is compromised when rounding of corners arises, as might occur during bolt-hole removal. Probability of Detection (POD) studies normally require a large number of samples of both fatigue cracks and electric discharge machined notches. In the particular instance of rounding of bolt-hole corners the generation of such a large set of samples representing the full spectrum of potential rounding would be prohibitive. In this paper, the application of Finite Element Method (FEM) modeling is used to supplement the study of detection of cracks forming at the rounded corners of bolt-holes. FEM models show that rounding of the corner of the bolt-hole reduces the size of the response to a corner crack to a greater extent than can be accounted for by loss of crack area. This reduced sensitivity can be ascribed to a lower concentration of eddy currents at the rounded corner surface and greater lift-off of pick-up coils relative to that of a straight-edge corner. A rounding with a radius of 0.4 mm (.016 inch) showed a 20% reduction in the strength of the crack signal. Assuming linearity of the crack signal with crack size, this would suggest an increase in the minimum detectable size by 25%.

  16. Finite element simulation of crack depth measurements in concrete using diffuse ultrasound

    NASA Astrophysics Data System (ADS)

    Seher, Matthias; Kim, Jin-Yeon; Jacobs, Laurence J.

    2012-05-01

    This research simulates the measurements of crack depth in concrete using diffuse ultrasound. The finite element method is employed to simulate the ultrasonic diffusion process around cracks with different geometrical shapes, with the goal of gaining physical insight into the data obtained from experimental measurements. The commercial finite element software Ansys is used to implement the two-dimensional concrete model. The model is validated with an analytical solution and experimental results. It is found from the simulation results that preliminary knowledge of the crack geometry is required to interpret the energy evolution curves from measurements and to correctly determine the crack depth.

  17. Time-dependent corrosion fatique crack propagation in 7000 series aluminum alloys. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mason, Mark E.

    1995-01-01

    The goal of this research is to characterize environmentally assisted subcritical crack growth for the susceptible short-longitudinal orientation of aluminum alloy 7075-T651, immersed in acidified and inhibited NaCl solution. This work is necessary in order to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA-FLAGRO (NASGRO). This effort concentrates on determining relevant inputs to a superposition model in order to more accurately model environmental fatigue crack propagation.

  18. Micro-mechanics of hydro-mechanical coupled processes during hydraulic fracturing in sandstone

    NASA Astrophysics Data System (ADS)

    Caulk, R.; Tomac, I.

    2017-12-01

    This contribution presents micro-mechanical study of hydraulic fracture initiation and propagation in sandstone. The Discrete Element Method (DEM) Yade software is used as a tool to model fully coupled hydro-mechanical behavior of the saturated sandstone under pressures typical for deep geo-reservoirs. Heterogeneity of sandstone strength tensile and shear parameters are introduced using statistical representation of cathodoluminiscence (CL) sandstone rock images. Weibull distribution of statistical parameter values was determined as a best match of the CL scans of sandstone grains and cement between grains. Results of hydraulic fracturing stimulation from the well bore indicate significant difference between models with the bond strengths informed from CL scans and uniform homogeneous representation of sandstone parameters. Micro-mechanical insight reveals formed hydraulic fracture typical for mode I or tensile cracking in both cases. However, the shear micro-cracks are abundant in the CL informed model while they are absent in the standard model with uniform strength distribution. Most of the mode II cracks, or shear micro-cracks, are not part of the main hydraulic fracture and occur in the near-tip and near-fracture areas. The position and occurrence of the shear micro-cracks is characterized as secondary effect which dissipates the hydraulic fracturing energy. Additionally, the shear micro-crack locations qualitatively resemble acoustic emission cloud of shear cracks frequently observed in hydraulic fracturing, and sometimes interpreted as re-activation of existing fractures. Clearly, our model does not contain pre-existing cracks and has continuous nature prior to fracturing. This observation is novel and interesting and is quantified in the paper. The shear particle contact forces field reveals significant relaxation compared to the model with uniform strength distribution.

  19. Modelling the Effect of Fruit Growth on Surface Conductance to Water Vapour Diffusion

    PubMed Central

    GIBERT, CAROLINE; LESCOURRET, FRANÇOISE; GÉNARD, MICHEL; VERCAMBRE, GILLES; PÉREZ PASTOR, ALEJANDRO

    2005-01-01

    • Background and Aims A model of fruit surface conductance to water vapour diffusion driven by fruit growth is proposed. It computes the total fruit conductance by integrating each of its components: stomata, cuticle and cracks. • Methods The stomatal conductance is computed from the stomatal density per fruit and the specific stomatal conductance. The cuticular component is equal to the proportion of cuticle per fruit multiplied by its specific conductance. Cracks are assumed to be generated when pulp expansion rate exceeds cuticle expansion rate. A constant percentage of cracks is assumed to heal each day. The proportion of cracks to total fruit surface area multiplied by the specific crack conductance accounts for the crack component. The model was applied to peach fruit (Prunus persica) and its parameters were estimated from field experiments with various crop load and irrigation regimes. • Key Results The predictions were in good agreement with the experimental measurements and for the different conditions (irrigation and crop load). Total fruit surface conductance decreased during early growth as stomatal density, and hence the contribution of the stomatal conductance, decreased from 80 to 20 % with fruit expansion. Cracks were generated for fruits exhibiting high growth rates during late growth and the crack component could account for up to 60 % of the total conductance during the rapid fruit growth. The cuticular contribution was slightly variable (around 20 %). Sensitivity analysis revealed that simulated conductance was highly affected by stomatal parameters during the early period of growth and by both crack and stomatal parameters during the late period. Large fruit growth rate leads to earlier and greater increase of conductance due to higher crack occurrence. Conversely, low fruit growth rate accounts for a delayed and lower increase of conductance. • Conclusions By predicting crack occurrence during fruit growth, this model could be helpful in managing cropping practices for integrated plant protection. PMID:15655107

  20. A crack-like rupture model for the 19 September 1985 Michoacan, Mexico, earthquake

    NASA Astrophysics Data System (ADS)

    Ruppert, Stanley D.; Yomogida, Kiyoshi

    1992-09-01

    Evidence supporting a smooth crack-like rupture process of the Michoacan earthquake of 1985 is obtained from a major earthquake for the first time. Digital strong motion data from three stations (Caleta de Campos, La Villita, and La Union), recording near-field radiation from the fault, show unusually simple ramped displacements and permanent offsets previously only seen in theoretical models. The recording of low frequency (0 to 1 Hz) near-field waves together with the apparently smooth rupture favors a crack-like model to a step or Haskell-type dislocation model under the constraint of the slip distribution obtained by previous studies. A crack-like rupture, characterized by an approximated dynamic slip function and systematic decrease in slip duration away from the point of rupture nucleation, produces the best fit to the simple ramped displacements observed. Spatially varying rupture duration controls several important aspects of the synthetic seismograms, including the variation in displacement rise times between components of motion observed at Caleta de Campos. Ground motion observed at Caleta de Campos can be explained remarkably well with a smoothly propagating crack model. However, data from La Villita and La Union suggest a more complex rupture process than the simple crack-like model for the south-eastern portion of the fault.

  1. Study on seepage characteristics of inclined wall dam after heavy drought

    NASA Astrophysics Data System (ADS)

    Wei, YE; Fuheng, MA

    2018-05-01

    For seepage of the dam slope with cracks after drought, there are two methods to study including the physical model test and numerical calculation. However, the physical model test can not visualize the seepage field in the dam body intuitively, and the mathematical model is not accurate because of the precision of the parameter. So in this paper, combined physical model with mathematical model, the surface crack development on the dam slope and the changes of pore water pressure were studied through the physical model test, and then numerical calculation was carried out to analyze the internal seepage of the dam body. The results showed that cracks were more likely to develop at middle of the upstream dam slope and dam heel, and cracks for different degrees appeared at different parts of the dam slope after drought. The development of cracks provided a preferential permeable channel which caused that the area near the crack was easily to become saturated. The saturated zone kept expanding leading the infiltration line to be close to the transition layer and the infiltration line was no longer a smooth curve. There were seepage damages and landslide hazards existing with such seepage characteristics, which would threaten the safety of the dam.

  2. Characterization of flaws in a tube bundle mock-up for reliability studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupperman, D.S.; Bakhtiari, S.

    1997-02-01

    As part of an assessment of in-service inspection of steam generator tubes, the authors will assemble a steam generator mock-up for round robin studies and use as a test bed in evaluating emerging technologies. Progress is reported on the characterization of flaws that will be part of the mock-up. Eddy current and ultrasonic techniques are being evaluated as a means to characterize the flaws in the mock-up tubes before final assembly. Twenty Inconel 600 tubes with laboratory-grown cracks, typical of those to be used in the mock-up, were provided by Pacific Northwest National Laboratory for laboratory testing. After the tubesmore » were inspected with eddy current and ultrasonic techniques, they were destructively analyzed to establish the actual depths, lengths, and profiles of the cracks. The analysis of the results will allow the best techniques to be used for characterizing the flaws in the mock-up tubes.« less

  3. Damage properties simulations of self-healing composites.

    PubMed

    Chen, Cheng; Ji, Hongwei; Wang, Huaiwen

    2013-10-01

    Self-healing materials are inspired by biological systems in which damage triggers an autonomic healing response. The damage properties of a self-healing polymer composite were investigated by numerical simulation in this paper. Unit cell models with single-edge centered crack and single-edge off-centered crack were employed to investigate the damage initiation and crack evolution by the extended finite element method (XFEM) modeling. The effect of microcapsule's Young's modulus on composites was investigated. Result indicates the microcapsule's Young's modulus has little effect on the unit cell's carrying capacity. It was found that during the crack propagation process, its direction is attracted toward the microcapsules, which makes it helpful for the microcapsules to be ruptured by the propagating crack fronts resulting in release of the healing agent into the cracks by capillary action.

  4. Improvements on FEA with a two-step simulation of experimental procedures in turbine blade crack detection in sonic IR NDE

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam; Favro, Lawrence D.; Thomas, Robert L.

    2013-01-01

    We showed our work on modeling turbine blade crack detection in Sonic Infrared (IR) Imaging with a method of creating flat crack surface in finite element analysis (FEA) in last year's QNDE paper. This modeling has been carried out continuously as part of model-assisted study on crack detection in aircraft engine turbine blades. We have presented that Sonic IR Imaging NDE is a viable method to detect defects in various structures. It combines ultrasound excitation for frictional heating in defects and infrared imaging to sense this heating, and thus to identify the defects. It is a fast wide-area imaging technology. It only takes a second to image a large area of a target sample. When an aircraft is in flight, the turbine engine blades operate under high temperature and high cyclic stresses. Thus, fatigue cracks can form after many hours of operation. Sonic IR Imaging can be used to detect such cracks. However, we still need to better understand contributions of parameters/factors in the crack detection process with Sonic IR Imaging. FEA modeling can help us to reveal certain aspects through the data it produces where experimental work cannot achieve. Upon the model we presented last year, a two-step simulation process was designed to simulate the important aspects in our experiments. These include a newly designed model for the ultrasound transducer which delivers mechanical energy to the sample and the implementation of static force while engaging the transducer to the sample. In this paper, we present the ideas and the results from the new model.

  5. A total life prediction model for stress concentration sites

    NASA Technical Reports Server (NTRS)

    Hartman, G. A.; Dawicke, D. S.

    1983-01-01

    Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate.

  6. A total life prediction model for stress concentration sites

    NASA Technical Reports Server (NTRS)

    Hartman, G. A.; Dawicke, D. S.

    1983-01-01

    Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter-K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate.

  7. Control of serpentinisation rate by reaction-induced cracking

    NASA Astrophysics Data System (ADS)

    Malvoisin, Benjamin; Brantut, Nicolas; Kaczmarek, Mary-Alix

    2017-10-01

    Serpentinisation of mantle rocks requires the generation and maintenance of transport pathways for water. The solid volume increase during serpentinisation can lead to stress build-up and trigger cracking, which ease fluid penetration into the rock. The quantitative effect of this reaction-induced cracking mechanism on reactive surface generation is poorly constrained, thus hampering our ability to predict serpentinisation rate in geological environments. Here we use a combined approach with numerical modelling and observations in natural samples to provide estimates of serpentinisation rate at mid-ocean ridges. We develop a micromechanical model to quantify the propagation of serpentinisation-induced cracks in olivine. The maximum crystallisation pressure deduced from thermodynamic calculations reaches several hundreds of megapascals but does not necessary lead to crack propagation if the olivine grain is subjected to high compressive stresses. The micromechanical model is then coupled to a simple geometrical model to predict reactive surface area formation during grain splitting, and thus bulk reaction rate. Our model reproduces quantitatively experimental kinetic data and the typical mesh texture formed during serpentinisation. We also compare the model results with olivine grain size distribution data obtained on natural serpentinised peridotites from the Marum ophiolite and the Papuan ultramafic belt (Papua New Guinea). The natural serpentinised peridotites show an increase of the number of olivine grains for a decrease of the mean grain size by one order of magnitude as reaction progresses from 5 to 40%. These results are in agreement with our model predictions, suggesting that reaction-induced cracking controls the serpentinisation rate. We use our model to estimate that, at mid-ocean ridges, serpentinisation occurs up to 12 km depth and reaction-induced cracking reduces the characteristic time of serpentinisation by one order of magnitude, down to values comprised between 10 and 1000 yr. The increase of effective pressure with depth also prevents cracking, which positions the peak in serpentinisation rate at shallower depths, 4 km above previous predictions.

  8. A Geometric Approach to Modeling Microstructurally Small Fatigue Crack Formation. 2; Simulation and Prediction of Crack Nucleation in AA 7075-T651

    NASA Technical Reports Server (NTRS)

    Hochhalter, Jake D.; Littlewood, David J.; Christ, Robert J., Jr.; Veilleux, M. G.; Bozek, J. E.; Ingraffea, A. R.; Maniatty, Antionette M.

    2010-01-01

    The objective of this paper is to develop further a framework for computationally modeling microstructurally small fatigue crack growth in AA 7075-T651 [1]. The focus is on the nucleation event, when a crack extends from within a second-phase particle into a surrounding grain, since this has been observed to be an initiating mechanism for fatigue crack growth in this alloy. It is hypothesized that nucleation can be predicted by computing a non-local nucleation metric near the crack front. The hypothesis is tested by employing a combination of experimentation and nite element modeling in which various slip-based and energy-based nucleation metrics are tested for validity, where each metric is derived from a continuum crystal plasticity formulation. To investigate each metric, a non-local procedure is developed for the calculation of nucleation metrics in the neighborhood of a crack front. Initially, an idealized baseline model consisting of a single grain containing a semi-ellipsoidal surface particle is studied to investigate the dependence of each nucleation metric on lattice orientation, number of load cycles, and non-local regularization method. This is followed by a comparison of experimental observations and computational results for microstructural models constructed by replicating the observed microstructural geometry near second-phase particles in fatigue specimens. It is found that orientation strongly influences the direction of slip localization and, as a result, in uences the nucleation mechanism. Also, the baseline models, replication models, and past experimental observation consistently suggest that a set of particular grain orientations is most likely to nucleate fatigue cracks. It is found that a continuum crystal plasticity model and a non-local nucleation metric can be used to predict the nucleation event in AA 7075-T651. However, nucleation metric threshold values that correspond to various nucleation governing mechanisms must be calibrated.

  9. Comninou contact zones for a crack parallel to an interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, P.F.; Gadi, K.S.; Erdogen, F.

    One of the interesting features in studying the state of stress in elastic solids near singular points, is the so called complex singularity that gives rise to an apparent local oscillatory behavior in the stress and displacement fields. The region in which this occurs is very small, much smaller than any plastic zone would be, and therefore the oscillations can be ignored in practical applications. Nevertheless, it is a matter of interesting theoretical investigation. The Comninou model of a small contact zone near the crack tip appears to correct for this anomaly within the framework of the linear theory. Thismore » model seems to make sense out of a {open_quotes}solution{close_quotes} that violates the boundary conditions. Erdogan and Joseph, showed (to themselves anyway) that the Comninou model actually has a physical basis. They considered a crack parallel to an interface where the order of the singularity is always real. With great care in solving the singular integral equations, it was shown that as the crack approaches the interface, a pinching effect is observed at the crack tip. This pinching effect proves that in the limit as the crack approaches the interface, the correct way to handle the problem is to consider crack surface contact. In this way, the issue of {open_quotes}oscillations{close_quotes} is never encountered for the interface crack problem. In the present study, the value of h/a that corresponds to crack closure (zero value of the stress intensity factor) will be determined for a given material pair for tensile loading. An asymptotic numerical method for the solution of singular integral equations making use of is used to obtain this result. Results for the crack opening displacement near the tip of the crack and the behavior of the stress intensity factor for cracks very close to the interface are presented. Among other interesting issues to be discussed, this solution shows that the semi-infinite crack parallel to an interface is closed.« less

  10. Stress-intensity factor calculations using the boundary force method

    NASA Technical Reports Server (NTRS)

    Tan, P. W.; Raju, I. S.; Newman, J. C., Jr.

    1987-01-01

    The Boundary Force Method (BFM) was formulated for the three fundamental problems of elasticity: the stress boundary value problem, the displacement boundary value problem, and the mixed boundary value problem. Because the BFM is a form of an indirect boundary element method, only the boundaries of the region of interest are modeled. The elasticity solution for the stress distribution due to concentrated forces and a moment applied at an arbitrary point in a cracked infinite plate is used as the fundamental solution. Thus, unlike other boundary element methods, here the crack face need not be modeled as part of the boundary. The formulation of the BFM is described and the accuracy of the method is established by analyzing a center-cracked specimen subjected to mixed boundary conditions and a three-hole cracked configuration subjected to traction boundary conditions. The results obtained are in good agreement with accepted numerical solutions. The method is then used to generate stress-intensity solutions for two common cracked configurations: an edge crack emanating from a semi-elliptical notch, and an edge crack emanating from a V-notch. The BFM is a versatile technique that can be used to obtain very accurate stress intensity factors for complex crack configurations subjected to stress, displacement, or mixed boundary conditions. The method requires a minimal amount of modeling effort.

  11. Fatigue Crack Growth and Crack Bridging in SCS-6/Ti-24-11

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1995-01-01

    Interfacial damage induced by relative fiber/matrix sliding was found to occur in the bridged zone of unidirectional SCS-6/Ti-24Al-11Nb intermetallic matrix composite specimens subjected to fatigue crack growth conditions. The degree of interfacial damage was not uniform along the bridged crack wake. Higher damage zones were observed near the machined notch in comparison to the crack tip. The interfacial friction shear strength tau(sub f) measured in the crack wake using pushout testing revealed lower values than the as-received interface. Interfacial wear also reduced the strength of the bridging fibers. The reduction in fiber strength is thought to be a function of the magnitude of relative fiber/matrix displacements ind the degree of interfacial damage. Furthermore, two different fiber bridging models were used to predict the influence of bridging on the fatigue crack driving force. The shear lag model required a variable tau(sub f) in the crack wake (reflecting the degradation of the interface) before its predictions agreed with trends exhibited by the experimental data. The fiber pressure model did an excellent job in predicting both the FCG data and the DeltaCOD in the bridged zone even though it does not require a knowledge of tau(sub f).

  12. Development of a relationship between external measurements and reinforcement stress

    NASA Astrophysics Data System (ADS)

    Brault, Andre; Hoult, Neil A.; Lees, Janet M.

    2015-03-01

    As many countries around the world face an aging infrastructure crisis, there is an increasing need to develop more accurate monitoring and assessment techniques for reinforced concrete structures. One of the challenges associated with assessing existing infrastructure is correlating externally measured parameters such as crack widths and surface strains with reinforcement stresses as this is dependent on a number of variables. The current research investigates how the use of distributed fiber optic sensors to measure reinforcement strain can be correlated with digital image correlation measurements of crack widths to relate external crack width measurements to reinforcement stresses. An initial set of experiments was undertaken involving a series of small-scale beam specimens tested in three-point bending with variable reinforcement properties. Relationships between crack widths and internal reinforcement strains were observed including that both the diameter and number of bars affected the measured maximum strain and crack width. A model that uses measured crack width to estimate reinforcement strain was presented and compared to the experimental results. The model was found to provide accurate estimates of load carrying capacity for a given crack width, however, the model was potentially less accurate when crack widths were used to estimate the experimental reinforcement strains. The need for more experimental data to validate the conclusions of this research was also highlighted.

  13. Regulated fracture in tooth enamel: a nanotechnological strategy from nature.

    PubMed

    Ghadimi, Elnaz; Eimar, Hazem; Song, Jun; Marelli, Benedetto; Ciobanu, Ovidiu; Abdallah, Mohamed-Nur; Stähli, Christoph; Nazhat, Showan N; Vali, Hojatollah; Tamimi, Faleh

    2014-07-18

    Tooth enamel is a very brittle material; however it has the ability to sustain cracks without suffering catastrophic failure throughout the lifetime of mechanical function. We propose that the nanostructure of enamel can play a significant role in defining its unique mechanical properties. Accordingly we analyzed the nanostructure and chemical composition of a group of teeth, and correlated it with the crack resistance of the same teeth. Here we show how the dimensions of apatite nanocrystals in enamel can affect its resistance to crack propagation. We conclude that the aspect ratio of apatite nanocrystals in enamel determines its resistance to crack propagation. According to this finding, we proposed a new model based on the Hall-Petch theory that accurately predicts crack propagation in enamel. Our new biomechanical model of enamel is the first model that can successfully explain the observed variations in the behavior of crack propagation of tooth enamel among different humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Velocity mode transition of dynamic crack propagation in hyperviscoelastic materials: A continuum model study

    PubMed Central

    Kubo, Atsushi; Umeno, Yoshitaka

    2017-01-01

    Experiments of crack propagation in rubbers have shown that a discontinuous jump of crack propagation velocity can occur as energy release rate increases, which is known as the “mode transition” phenomenon. Although it is believed that the mode transition is strongly related to the mechanical properties, the nature of the mode transition had not been revealed. In this study, dynamic crack propagation on an elastomer was investigated using the finite element method (FEM) with a hyperviscoelastic material model. A series of pure shear test was carried out numerically with FEM simulations and crack velocities were measured under various values of tensile strain. As a result, our FEM simulations successfully reproduced the mode transition. The success of realising the mode transition phenomenon by a simple FEM model, which was achieved for the first time ever, helped to explain that the phenomenon occurs owing to a characteristic non-monotonic temporal development of principal stress near the crack tip. PMID:28186205

  15. Velocity mode transition of dynamic crack propagation in hyperviscoelastic materials: A continuum model study

    NASA Astrophysics Data System (ADS)

    Kubo, Atsushi; Umeno, Yoshitaka

    2017-02-01

    Experiments of crack propagation in rubbers have shown that a discontinuous jump of crack propagation velocity can occur as energy release rate increases, which is known as the “mode transition” phenomenon. Although it is believed that the mode transition is strongly related to the mechanical properties, the nature of the mode transition had not been revealed. In this study, dynamic crack propagation on an elastomer was investigated using the finite element method (FEM) with a hyperviscoelastic material model. A series of pure shear test was carried out numerically with FEM simulations and crack velocities were measured under various values of tensile strain. As a result, our FEM simulations successfully reproduced the mode transition. The success of realising the mode transition phenomenon by a simple FEM model, which was achieved for the first time ever, helped to explain that the phenomenon occurs owing to a characteristic non-monotonic temporal development of principal stress near the crack tip.

  16. Velocity mode transition of dynamic crack propagation in hyperviscoelastic materials: A continuum model study.

    PubMed

    Kubo, Atsushi; Umeno, Yoshitaka

    2017-02-10

    Experiments of crack propagation in rubbers have shown that a discontinuous jump of crack propagation velocity can occur as energy release rate increases, which is known as the "mode transition" phenomenon. Although it is believed that the mode transition is strongly related to the mechanical properties, the nature of the mode transition had not been revealed. In this study, dynamic crack propagation on an elastomer was investigated using the finite element method (FEM) with a hyperviscoelastic material model. A series of pure shear test was carried out numerically with FEM simulations and crack velocities were measured under various values of tensile strain. As a result, our FEM simulations successfully reproduced the mode transition. The success of realising the mode transition phenomenon by a simple FEM model, which was achieved for the first time ever, helped to explain that the phenomenon occurs owing to a characteristic non-monotonic temporal development of principal stress near the crack tip.

  17. Internal state variable approach for predicting stiffness reductions in fibrous laminated composites with matrix cracks

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, D. H.; Harris, C. E.

    1989-01-01

    A mathematical model utilizing the internal state variable concept is proposed for predicting the upper bound of the reduced axial stiffnesses in cross-ply laminates with matrix cracks. The axial crack opening displacement is explicitly expressed in terms of the observable axial strain and the undamaged material properties. A crack parameter representing the effect of matrix cracks on the observable axial Young's modulus is calculated for glass/epoxy and graphite/epoxy material systems. The results show that the matrix crack opening displacement and the effective Young's modulus depend not on the crack length, but on its ratio to the crack spacing.

  18. Axial crack propagation and arrest in pressurized fuselage

    NASA Technical Reports Server (NTRS)

    Kosai, M.; Shimamoto, A.; Yu, C.-T.; Walker, S. I.; Kobayashi, A. S.; Tan, P.

    1994-01-01

    The crack arrest capability of a tear strap in a pressurized precracked fuselage was studied through instrumented axial rupture tests of small scale models of an idealized fuselage. Upon pressurization, rapid crack propagation initiated at an axial through crack along the stringer and immediately kinked due to the mixed modes 1 and 2 state caused by the one-sided opening of the crack flap. The diagonally running crack further turned at the tear straps. Dynamic finite element analysis of the rupturing cylinder showed that the crack kinked and also ran straight in the presence of a mixed mode state according to a modified two-parameter crack kinking criterion.

  19. A study on the influence of microstructure on small fatigue cracks

    NASA Astrophysics Data System (ADS)

    Castelluccio, Gustavo M.

    In spite of its significance in industrial applications, the prediction of the influence of microstructure on the early stages of crack formation and growth in engineering alloys remains underdeveloped. The formation and early growth of fatigue cracks in the high cycle fatigue regime lasts for much of the fatigue life, and it is strongly influenced by microstructural features such as grain size, twins and morphological and crystallographic texture. However, most fatigue models do not predict the in uence of the microstructure on early stages of crack formation, or they employ parameters that should be calibrated with experimental data from specimens with microstructures of interest. These post facto strategies are adequate to characterize materials, but they are not fully appropriate to aid in the design of fatigue-resistant engineering alloys. This thesis considers finite element computational models that explicitly render the microstructure of selected FCC metallic systems and introduces a fatigue methodology that estimates transgranular and intergranular fatigue growth for microstructurally small cracks. The driving forces for both failure modes are assessed by means of fatigue indicators, which are used along with life correlations to estimate the fatigue life. Furthermore, cracks with meandering paths are modeled by considering crack growth on a grain-by-grain basis with a damage model embedded analytically to account for stress and strain redistribution as the cracks extend. The methodology is implemented using a crystal plasticity constitutive model calibrated for studying the effect of microstructure on early fatigue life of a powder processed Ni-base RR1000 superalloy at elevated temperature under high cycle fatigue conditions. This alloy is employed for aircraft turbine engine disks, which undergo a thermomechanical production process to produce a controlled bimodal grain size distribution. The prediction of the fatigue life for this complex microstructure presents particular challenges that are discussed and addressed. The conclusions of this work describe the mechanistic of microstructural small crack. In particular, the fatigue crack growth driving force has been characterized as it evolves within grains and crosses to other grains. Furthermore, the computational models serve as a tool to assess the effects of microstructural features on early stages of fatigue crack formation and growth, such as distributions of grain size and twins.

  20. Separation of crack extension modes in orthotropic delamination models

    NASA Technical Reports Server (NTRS)

    Beuth, Jack L.

    1995-01-01

    In the analysis of an interface crack between dissimilar elastic materials, the mode of crack extension is typically not unique, due to oscillatory behavior of near-tip stresses and displacements. This behavior currently limits the applicability of interfacial fracture mechanics as a means to predict composite delamination. The Virtual Crack Closure Technique (VCCT) is a method used to extract mode 1 and mode 2 energy release rates from numerical fracture solutions. The mode of crack extension extracted from an oscillatory solution using the VCCT is not unique due to the dependence of mode on the virtual crack extension length, Delta. In this work, a method is presented for using the VCCT to extract Delta-independent crack extension modes for the case of an interface crack between two in-plane orthotropic materials. The method does not involve altering the analysis to eliminate its oscillatory behavior. Instead, it is argued that physically reasonable, Delta-independent modes of crack extension can be extracted from oscillatory solutions. Knowledge of near-tip fields is used to determine the explicit Delta dependence of energy release rate parameters. Energy release rates are then defined that are separated from the oscillatory dependence on Delta. A modified VCCT using these energy release rate definitions is applied to results from finite element analyses, showing that Delta-independent modes of crack extension result. The modified technique has potential as a consistent method for extracting crack extension modes from numerical solutions. The Delta-independent modes extracted using this technique can also serve as guides for testing the convergence of finite element models. Direct applications of this work include the analysis of planar composite delamination problems, where plies or debonded laminates are modeled as in-plane orthotropic materials.

  1. A modified Brownian force for ultrafine particle penetration through building crack modeling

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Zhao, Bin

    2017-12-01

    Combustion processes related to industry, traffic, agriculture, and waste treatment and disposal increase the amount of outdoor ultrafine particles (UFPs), which have adverse effects on human health. Given that people spend the majority of their time indoors, it is critical to understand the penetration of outdoor UFPs through building cracks in order to estimate human exposure to outdoor-originated UFPs. Lagrangian tracking is an efficient approach for modeling particle penetration. However, the Brownian motion for Lagrangian tracking in ANSYS Fluent®, a widely used software for particle dispersion modeling, is not able to model UFP dispersion accurately. In this study, we modified the Brownian force by rewriting the Brownian diffusion coefficient and particle integration time step with a user-defined function in ANSYS Fluent® to model particle penetration through building cracks. The results obtained using the modified model agree much better with the experimental results, with the averaged relative error less than 14% for the smooth crack cases and 21% for the rough crack case. We expect the modified Brownian force model proposed herein to be applied for UFP dispersion modeling in more indoor air quality studies.

  2. An EMTP system level model of the PMAD DC test bed

    NASA Technical Reports Server (NTRS)

    Dravid, Narayan V.; Kacpura, Thomas J.; Tam, Kwa-Sur

    1991-01-01

    A power management and distribution direct current (PMAD DC) test bed was set up at the NASA Lewis Research Center to investigate Space Station Freedom Electric Power Systems issues. Efficiency of test bed operation significantly improves with a computer simulation model of the test bed as an adjunct tool of investigation. Such a model is developed using the Electromagnetic Transients Program (EMTP) and is available to the test bed developers and experimenters. The computer model is assembled on a modular basis. Device models of different types can be incorporated into the system model with only a few lines of code. A library of the various model types is created for this purpose. Simulation results and corresponding test bed results are presented to demonstrate model validity.

  3. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soria, José, E-mail: jose.soria@probien.gob.ar; Gauthier, Daniel; Flamant, Gilles

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with themore » flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.« less

  4. A Relationship Between Constraint and the Critical Crack Tip Opening Angle

    NASA Technical Reports Server (NTRS)

    Johnston, William M.; James, Mark A.

    2009-01-01

    Of the various approaches used to model and predict fracture, the Crack Tip Opening Angle (CTOA) fracture criterion has been successfully used for a wide range of two-dimensional thin-sheet and thin plate applications. As thicker structure is considered, modeling the full three-dimensional fracture process will become essential. This paper investigates relationships between the local CTOA evaluated along a three-dimensional crack front and the corresponding local constraint. Previously reported tunneling crack front shapes were measured during fracture by pausing each test and fatigue cycling the specimens to mark the crack surface. Finite element analyses were run to model the tunneling shape during fracture, with the analysis loading conditions duplicating those tests. The results show an inverse relationship between the critical fracture value and constraint which is valid both before maximum load and after maximum load.

  5. A film-rupture model of hydrogen-induced, slow crack growth in alpha-beta titanium

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1975-01-01

    The appearance of the terrace like fracture morphology of gaseous hydrogen induced crack growth in acicular alpha-beta titanium alloys is discussed as a function of specimen configuration, magnitude of applied stress intensity, test temperature, and hydrogen pressure. Although the overall appearance of the terrace structure remained essentially unchanged, a distinguishable variation is found in the size of the individual terrace steps, and step size is found to be inversely dependent upon the rate of hydrogen induced slow crack growth. Additionally, this inverse relationship is independent of all the variables investigated. These observations are quantitatively discussed in terms of the formation and growth of a thin hydride film along the alpha-beta boundaries and a qualitative model for hydrogen induced slow crack growth is presented, based on the film-rupture model of stress corrosion cracking.

  6. Fnk Model of Cracking Rate Calculus for a Variable Asymmetry Coefficient

    NASA Astrophysics Data System (ADS)

    Roşca, Vâlcu; Miriţoiu, Cosmin Mihai

    2017-12-01

    In the process of materials fracture, a very important parameter to study is the cracking rate growth da/dN. This paper proposes an analysis of the cracking rate, in a comparative way, by using four mathematical models:1 - polynomial method, by using successive iterations according to the ASTM E647 standard; 2 - model that uses the Paris formula; 3 - Walker formula method; 4 - NASGRO model or Forman - Newman - Konig equation, abbreviated as FNK model. This model is used in the NASA programs studies. For the tests, CT type specimens were made from stainless steel, V2A class, 10TiNiCr175 mark, and loaded to a variable tensile test axial - eccentrically, with the asymmetry coefficients: R= 0.1, 0.3 and 0.5; at the 213K (-60°C) temperature. There are analyzed the cracking rates variations according to the above models, especially through FNK method, highlighting the asymmetry factor variation.

  7. Lifetime prediction for the subsurface crack propagation using three-dimensional dynamic FEA model

    NASA Astrophysics Data System (ADS)

    Yin, Yuan; Chen, Yun-Xia; Liu, Le

    2017-03-01

    The subsurface crack propagation is one of the major interests for gear system research. The subsurface crack propagation lifetime is the number of cycles remaining for a spall to appear, which can be obtained through either stress intensity factor or accumulated plastic strain analysis. In this paper, the heavy loads are applied to the gear system. When choosing stress intensity factor, the high compressive stress suppresses Mode I stress intensities and severely reduces Mode II stress intensities in the heavily loaded lubricated contacts. Such that, the accumulated plastic strain is selected to calculate the subsurface crack propagation lifetime from the three-dimensional FEA model through ANSYS Workbench transient analysis. The three-dimensional gear FEA dynamic model with the subsurface crack is built through dividing the gears into several small elements. The calculation of the total cycles of the elements is proposed based on the time-varying accumulated plastic strain, which then will be used to calculate the subsurface crack propagation lifetime. During this process, the demonstration from a subsurface crack to a spall can be uncovered. In addition, different sizes of the elements around the subsurface crack are compared in this paper. The influences of the frictional coefficient and external torque on the crack propagation lifetime are also discussed. The results show that the lifetime of crack propagation decreases significantly when the external load T increasing from 100 N m to 150 N m. Given from the distributions of the accumulated plastic strain, the lifetime shares no significant difference when the frictional coefficient f ranging in 0.04-0.06.

  8. Study of the Effects of Metallurgical Factors on the Growth of Fatigue Microcracks.

    DTIC Science & Technology

    1987-11-25

    polycrystalline) yield stress. 8. The resulting model, predicated on the notion of orientation-dependent microplastic grains, predicts quantitatively the entire...Figure 5. Predicted crack growth curves for small cracks propagating from a microplastic grain into elastic-plastic, contiguous grains; Ao is defined as...or the crack tip opening *displacement, 6. Figure 5. Predicted crack growth curves for small cracks propagating from a microplastic grain into

  9. [Monitoring of Crack Propagation in Repaired Structures Based on Characteristics of FBG Sensors Reflecting Spectra].

    PubMed

    Yuan, Shen-fang; Jin, Xin; Qiu, Lei; Huang, Hong-mei

    2015-03-01

    In order to improve the security of aircraft repaired structures, a method of crack propagation monitoring in repaired structures is put forward basing on characteristics of Fiber Bragg Grating (FBG) reflecting spectra in this article. With the cyclic loading effecting on repaired structure, cracks propagate, while non-uniform strain field appears nearby the tip of crack which leads to the FBG sensors' reflecting spectra deformations. The crack propagating can be monitored by extracting the characteristics of FBG sensors' reflecting spectral deformations. A finite element model (FEM) of the specimen is established. Meanwhile, the distributions of strains which are under the action of cracks of different angles and lengths are obtained. The characteristics, such as main peak wavelength shift, area of reflecting spectra, second and third peak value and so on, are extracted from the FBGs' reflecting spectral which are calculated by transfer matrix algorithm. An artificial neural network is built to act as the model between the characteristics of the reflecting spectral and the propagation of crack. As a result, the crack propagation of repaired structures is monitored accurately and the error of crack length is less than 0.5 mm, the error of crack angle is less than 5 degree. The accurately monitoring problem of crack propagation of repaired structures is solved by taking use of this method. It has important significance in aircrafts safety improvement and maintenance cost reducing.

  10. Mechanics of the Delayed Fracture of Viscoelastic Bodies with Cracks: Theory and Experiment (Review)

    NASA Astrophysics Data System (ADS)

    Kaminsky, A. A.

    2014-09-01

    Theoretical and experimental studies on the deformation and delayed fracture of viscoelastic bodies due to slow subcritical crack growth are reviewed. The focus of this review is on studies of subcritical growth of cracks with well-developed fracture process zones, the conditions that lead to their critical development, and all stages of slow crack growth from initiation to the onset of catastrophic growth. Models, criteria, and methods used to study the delayed fracture of viscoelastic bodies with through and internal cracks are analyzed. Experimental studies of the fracture process zones in polymers using physical and mechanical methods as well as theoretical studies of these zones using fracture mesomechanics models that take into account the structural and rheological features of polymers are reviewed. Particular attention is given to crack growth in anisotropic media, the effect of the aging of viscoelastic materials on their delayed fracture, safe external loads that do not cause cracks to propagate, the mechanism of multiple-flaw fracture of viscoelastic bodies with several cracks and, especially, processes causing cracks to coalesce into a main crack, which may result in a break of the body. Methods and results of solving two- and three-dimensional problems of the mechanics of delayed fracture of aging and non-aging viscoelastic bodies with cracks under constant and variable external loads, wedging, and biaxial loads are given

  11. Variations of a global constraint factor in cracked bodies under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Crews, J. H., Jr.; Bigelow, C. A.; Dawicke, D. S.

    1994-01-01

    Elastic-plastic finite-element analyses were used to calculate stresses and displacements around a crack in finite-thickness plates for an elastic-perfectly plastic material. Middle- and edge-crack specimens were analyzed under tension and bending loads. Specimens were 1.25 to 20 mm thick with various widths and crack lengths. A global constraint factor alpha(sub g), an averaged normal-stress to flow-stress ratio over the plastic region, was defined to simulate three-dimensional (3D) effects in two-dimensional (2D) models. For crack lengths and uncracked ligament lengths greater than four times the thickness, the global constraint factor was found to be nearly a unique function of a normalized stress-intensity factor (related to plastic-zone size to thickness ratio) from small- to large-scale yielding conditions for various specimen types and thickness. For crack length-to-thickness ratios less than four, the global constraint factor was specimen type, crack length and thickness dependent. Using a 2D strip-yield model and the global constraint factors, plastic-zone sizes and crack-tip displacements agreed reasonably well with the 3D analyses. For a thin sheet aluminum alloy, the critical crack-tip-opening angle during stable tearing was found to be independent of specimen type and crack length for crack length-to-thickness ratios greater than 4.

  12. Damage Tolerant Analysis of Cracked Al 2024-T3 Panels repaired with Single Boron/Epoxy Patch

    NASA Astrophysics Data System (ADS)

    Mahajan, Akshay D.; Murthy, A. Ramachandra; Nanda Kumar, M. R.; Gopinath, Smitha

    2018-06-01

    It is known that damage tolerant analysis has two objectives, namely, remaining life prediction and residual strength evaluation. To achieve the these objectives, determination of accurate and reliable fracture parameter is very important. XFEM methodologies for fatigue and fracture analysis of cracked aluminium panels repaired with different patch shapes made of single boron/epoxy have been developed. Heaviside and asymptotic crack tip enrichment functions are employed to model the crack. XFEM formulations such as displacement field formulation and element stiffness matrix formulation are presented. Domain form of interaction integral is employed to determine Stress Intensity Factor of repaired cracked panels. Computed SIFs are incorporated in Paris crack growth model to predict the remaining fatigue life. The residual strength has been computed by using the remaining life approach, which accounts for both crack growth constants and no. of cycles to failure. From the various studies conducted, it is observed that repaired panels have significant effect on reduction of the SIF at the crack tip and hence residual strength as well as remaining life of the patched cracked panels are improved significantly. The predicted remaining life and residual strength will be useful for design of structures/components under fatigue loading.

  13. Critical stresses for extension of filament-bridged matrix cracks in ceramic-matrix composites: An assessment with a model composite with tailored interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danchaivijit, S.; Shetty, D.K.; Eldridge, J.

    Matrix cracking was studied in a model unidirectional composite of SiC filaments in an epoxy-bonded alumina matrix. The residual clamping stress on the filaments due to the shrinkage of the epoxy was moderated with the addition of the alumina filler, and the filament surface was coated with a releasing agent to produce unbonded frictional interfaces. Uniaxial tension specimens with controlled through-cracks with bridging filaments were fabricated by a two-step casting technique. Critical stresses for extension of the filament-bridged cracks of various lengths were measured in uniaxial tension using a high-sensitivity extensometer. The measured crack-length dependence of the critical stress wasmore » in good agreement with the prediction of a stress-intensity analysis that employed a new force-displacement law for the bridging filaments. The analysis required independent experimental evaluation of the matrix fracture toughness, the interfacial sliding friction stress, and the residual tension in the matrix. The matrix-cracking stress for the test specimens without the deliberately introduced cracks was significantly higher than the steady-state cracking stress measured for the long, filament-bridged cracks.« less

  14. Physically Based Failure Criteria for Transverse Matrix Cracking

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.

    2003-01-01

    A criterion for matrix failure of laminated composite plies in transverse tension and in-plane shear is developed by examining the mechanics of transverse matrix crack growth. Matrix cracks are assumed to initiate from manufacturing defects and can propagate within planes parallel to the fiber direction and normal to the ply mid-plane. Fracture mechanics models of cracks in unidirectional laminates, embedded plies and outer plies are developed to determine the onset and direction of propagation for unstable crack growth. The models for each ply configuration relate ply thickness and ply toughness to the corresponding in-situ ply strength. Calculated results for several materials are shown to correlate well with experimental results.

  15. Crack healing in cross-ply composites observed by dynamic mechanical analysis

    NASA Astrophysics Data System (ADS)

    Nielsen, Christian; Nemat-Nasser, Sia

    2015-03-01

    Cross-ply composites with healable polymer matrices are characterized using dynamic mechanical analysis (DMA). The [90,0]s samples are prepared by embedding layers of unidirectional glass or carbon fibers in 2MEP4FS, a polymer with thermally reversible covalent cross-links, which has been shown to be capable of healing internal cracks and fully recovering fracture toughness when the crack surfaces are kept in contact. After fabrication, cracks in the composites' transverse plies are observed due to residual thermal stresses introduced during processing. Single cantilever bending DMA measurements show the samples exhibit periods of increasing storage moduli with increasing temperature. These results are accurately modeled as a one-dimensional composite, which captures the underlying physics of the phenomenon. The effect of cracks on the stiffness is accounted for by a shear-lag model. The predicted crack density of the glass fiber composite is shown to fall within a range observed from microscopy images. Crack healing occurs as a function of temperature, with chemistry and mechanics-based rationales given for the onset and conclusion of healing. The model captures the essential physics of the phenomenon and yields results in accord with experimental observations.

  16. The initiation and persistence of cracks in Enceladus' ice shell

    NASA Astrophysics Data System (ADS)

    Rudolph, M. L.; Jordan, J.; Manga, M.; Hawkins, E. K.; Grannan, A. M.; Reinhard, A.; Farough, A.; Mittal, T.; Hernandez, J. A.

    2016-12-01

    The eruption of water from a global ocean underlying Enceladus' ice shell requires; i. a mechanism to create stresses sufficient to produce cracks that reach the ocean, ii. that the ascent of water through the crack must be fast enough to keep the crack from freezing. We develop models for the evolution of stresses in the ice shell and overpressure in the ocean, the propagation of cracks into the ice shell, and the melting of ice caused by the eruption of water through the cracks. We show that modest cooling of Enceladus' interior can produce extensional stresses in the ice shell sufficient to overcome the tensile strength of ice. We show that the resultant ice shell cracks can penetrate to depths greater than 10 km. Cracks of 10 km are required to reach the interior oceans of Enceladus in the polar regions. After crack formation, we show that the present eruption rate is sufficient to keep cracks from freezing below the water-table, at which water boils and subsequently erupts. The ascent of warm water from Enceladus' ocean widens the cracks and thins the ice shell in the South Polar Terrain (SPT). Model predictions show that a crack with the minimum, sufficient heat flow to persist without freezing, would thin the surrounding ice shell by about a factor of two. This calculation for heat flow is consistent with observed heat fluxes at the surface and recent inferences of the ice shell thickness in the SPT based on the shape and gravity of Enceladus.

  17. Influence of material ductility and crack surface roughness on fracture instability

    NASA Astrophysics Data System (ADS)

    Khezrzadeh, Hamed; Wnuk, Michael P.; Yavari, Arash

    2011-10-01

    This paper presents a stability analysis for fractal cracks. First, the Westergaard stress functions are proposed for semi-infinite and finite smooth cracks embedded in the stress fields associated with the corresponding self-affine fractal cracks. These new stress functions satisfy all the required boundary conditions and according to Wnuk and Yavari's (2003 Eng. Fract. Mech. 70 1659-74) embedded crack model they are used to derive the stress and displacement fields generated around a fractal crack. These results are then used in conjunction with the final stretch criterion to study the quasi-static stable crack extension, which in ductile materials precedes the global failure. The material resistance curves are determined by solving certain nonlinear differential equations and then employed in predicting the stress levels at the onset of stable crack growth and at the critical point, where a transition to the catastrophic failure occurs. It is shown that the incorporation of the fractal geometry into the crack model, i.e. accounting for the roughness of the crack surfaces, results in (1) higher threshold levels of the material resistance to crack propagation and (2) higher levels of the critical stresses associated with the onset of catastrophic fracture. While the process of quasi-static stable crack growth (SCG) is viewed as a sequence of local instability states, the terminal instability attained at the end of this process is identified with the global instability. The phenomenon of SCG can be used as an early warning sign in fracture detection and prevention.

  18. Overload retardation due to plasticity-induced crack closure

    NASA Technical Reports Server (NTRS)

    Fleck, N. A.; Shercliff, H. R.

    1989-01-01

    Experiments are reported which show that plasticity-induced crack closure can account for crack growth retardation following an overload. The finite element method is used to provide evidence which supports the experimental observations of crack closure. Finally, a simple model is presented which predicts with limited success the retardation transient following an overload.

  19. 76 FR 22316 - Airworthiness Directives; Pacific Aerospace Limited Model 750XL Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... pedal assemblies for cracks and incorporating a modification repair scheme if any cracks are found. You... cracks and incorporating a modification repair scheme if any cracks are found. You may obtain further... intervals not to exceed 300 hours time-in-service (TIS) until the modification repair scheme required in...

  20. 76 FR 58416 - Airworthiness Directives; Lockheed Martin Corporation/Lockheed Martin Aeronautics Company Model L...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... specifies a bolt hole eddy current inspection to verify the cracking. The corrective actions for cracking... specified in paragraph (k) of this AD, do eddy current non-destructive inspections (NDI) and detailed... secondary eddy current inspection to detect cracking of fastener holes with suspected crack indications; in...

  1. A pressurized cylindrical shell with a fixed end which contains an axial part-through or through crack

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1983-01-01

    A cylindrical shell having a very stiff and plate or a flange is considered. It is assumed that near the end the cylinder contains an axial flaw which may be modeled as a part through surface crack or a through crack. The effect of the end constraining on the stress intensity factor which is the main fracture mechanics parameter is studied. The applied loads acting on the cylinder are assumed to be axisymmetric. Thus the crack problem under consideration is symmetric with respect to the plane of the crack and consequently only the Mode 1 stress intensity factors are nonzero. With this limitation, the general perturbation problem for a cylinder with a built in end containing an axial crack is considered. Reissner's shell theory is used to formulate the problem. The part through crack problem is treated by using a line spring model. In the case of a crack tip terminating at the fixed end it is shown that the integral equations of the shell problem has the same generalized Cauchy kernel as the corresponding plane stress elasticity problem.

  2. Microstructurally-sensitive fatigue crack nucleation in Ni-based single and oligo crystals

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Jiang, Jun; Dunne, Fionn P. E.

    2017-09-01

    An integrated experimental, characterisation and computational crystal plasticity study of cyclic plastic beam loading has been carried out for nickel single crystal (CMSX4) and oligocrystal (MAR002) alloys in order to assess quantitatively the mechanistic drivers for fatigue crack nucleation. The experimentally validated modelling provides knowledge of key microstructural quantities (accumulated slip, stress and GND density) at experimentally observed fatigue crack nucleation sites and it is shown that while each of these quantities is potentially important in crack nucleation, none of them in its own right is sufficient to be predictive. However, the local (elastic) stored energy density, measured over a length scale determined by the density of SSDs and GNDs, has been shown to predict crack nucleation sites in the single and oligocrystals tests. In addition, once primary nucleated cracks develop and are represented in the crystal model using XFEM, the stored energy correctly identifies where secondary fatigue cracks are observed to nucleate in experiments. This (Griffith-Stroh type) quantity also correctly differentiates and explains intergranular and transgranular fatigue crack nucleation.

  3. A physical model study of scattering of waves by aligned cracks: Comparison between experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ass'ad, J.M.; McDonald, J.A.; Kusky, T.M.

    1993-04-01

    An approximation to plane-wave propagation through a composite material is examined using a physical model with oriented but randomly distributed penny-shaped rubber inclusions within an isotropic epoxy resin matrix. A pulse transmission method is used to determine velocities of shear and compressional waves as a function of angle of incidence and crack density. The experimental and theoretical results of Hudson were compared and limitations within the crack parameters used in this study have been determined. Results from both polarized shear waves (S1, S2) compare favorably with the theory for a composite with up to 7% crack density, but theory andmore » experiment diverge at higher crack densities. On the other hand, compressional-wave velocities at low crack densities (1% and 3%) compare favorably with the theory. It is also shown that the velocity ratio V[sub p]/V[sub s] for two extreme cases, i.e. propagation normal and parallel to the cracks, as a function of crack density and porosity, has a strong directional dependence.« less

  4. Discrete Dislocation Modeling of Fatigue

    NASA Astrophysics Data System (ADS)

    Needleman, Alan

    2004-03-01

    In joint work with V.S. Deshpande of Cambridge University and E. Van der Giessen of the University of Groningen a framework has been developed for the analysis of crack growth under cyclic loading conditions where plastic flow arises from the motion of large numbers of discrete dislocations and the fracture properties are embedded in a cohesive surface constitutive relation. The material model is independent of the presence of a crack and the only distinction between an analysis of monotonic crack growth and fatigue crack growth is that in fatigue the remote loading is specified to be an oscillating function of time. Thus, a basic question is: within this framework, do cracks grow at a lower driving force under cyclic loading than under monotonic loading, and if so, what features of fatigue crack growth emerge? Fatigue does emerge from the calculations as a consequence of the evolution of internal stresses associated with the irreversibility of the dislocation motion. A fatigue threshold, Paris law behavior, striations and the accelerated growth of short cracks are outcomes of the simulations. Also, scaling predictions obtained for the fatigue threshold and the fatigue crack growth rate are discussed.

  5. Analysis of kidney-shaped indentation cracks in 4Y-PSZ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pajares, A.; Guiberteau, F.; Cumbrera, F.L.

    1996-11-01

    Vickers indentation cracks in zirconia containing ceramics very often exhibit two non-connected mirror symmetric branches with kidney-shaped morphology. Kidney cracks, generated with different indentation loads (98--490 N) in 4 mol.% yttria-partially-stabilized-zirconia (4Y-PSZ), are described and analyzed by proposing a model which combines the observed geometrical features with residual stress considerations. The crack shape is affected by a radial decreasing hydrostatic stress field originating in the plastic deformation zone underneath the impression and with its center at a certain depth from the surface. The hydrostatic stresses modify the generally assumed point force residual stress field. The model provides a self-similar descriptionmore » of the residual stress intensity factor for kidney cracks from different indentation loads. Furthermore, the experimental observation that one single half-penny crack rather than the two kidney cracks forms at higher indentation loads is explained by the model. For 4Y-PSZ a reasonably good agreement between the theoretically calculated and the experimentally observed critical transition load from kidney to half-penny geometry, P*, is obtained. The transition load varies with toughness, K{sub R} and hardness, H, according to P* {approximately} K{sub R}{sup 4}/H{sup 3}, indicating the relative influence of deformation and fracture characteristics on crack morphology. It must be concluded that the kidney-shaped contour is the dominant geometry of elastic/plastic contact cracks in tough zirconia-containing ceramics.« less

  6. Structural Health Monitoring System Trade Space Analysis Tool with Consideration for Crack Growth, Sensor Degradation and a Variable Detection Threshold

    DTIC Science & Technology

    2014-09-18

    Erdogan , 1963). 26 Paris’s Law Under a fatigue stress regime Paris’s Law relates sub-critical crack growth to stress intensity factor. The basic...Paris and Erdogan , 1963). After takeoff, the model generates a probability distribution for the crack length in that specific sortie based on the...Law is one of the most widely used fatigue crack growth models and was used in this research effort (Paris and Erdogan , 1963). Paris’s Law Under a

  7. The Dugdale model for the compact specimen

    NASA Technical Reports Server (NTRS)

    Mall, S.; Newman, J. C., Jr.

    1983-01-01

    Plastic zone size and crack tip opening displacement (CTOD) equations were developed. Boundary collocation analyses were used to analyze the compact specimen subjected to various loading conditions (pin loads, concentrated forces, and uniform pressure acting on the crack surface). Stress intensity factor and crack surface displacement equations for some of these loadings were developed and used to obtain the Dugdale model. The results from the equations for plastic zone size and CTOD agreed well with numerical values calculated by Terada for crack length to width ratios greater than 0.4.

  8. Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins

    NASA Astrophysics Data System (ADS)

    Beuth, J. L., Jr.; Hutchinson, John W.

    1992-07-01

    Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included for the effect of residual stress due to the riveting process itself.

  9. Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins

    NASA Technical Reports Server (NTRS)

    Beuth, J. L., Jr.; Hutchinson, John W.

    1992-01-01

    Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included for the effect of residual stress due to the riveting process itself.

  10. Simulating Fatigue Crack Growth in Spiral Bevel Pinion

    NASA Technical Reports Server (NTRS)

    Ural, Ani; Wawrzynek, Paul A.; Ingraffe, Anthony R.

    2003-01-01

    This project investigates computational modeling of fatigue crack growth in spiral bevel gears. Current work is a continuation of the previous efforts made to use the Boundary Element Method (BEM) to simulate tooth-bending fatigue failure in spiral bevel gears. This report summarizes new results predicting crack trajectory and fatigue life for a spiral bevel pinion using the Finite Element Method (FEM). Predicting crack trajectories is important in determining the failure mode of a gear. Cracks propagating through the rim may result in catastrophic failure, whereas the gear may remain intact if one tooth fails and this may allow for early detection of failure. Being able to predict crack trajectories is insightful for the designer. However, predicting growth of three-dimensional arbitrary cracks is complicated due to the difficulty of creating three-dimensional models, the computing power required, and absence of closed- form solutions of the problem. Another focus of this project was performing three-dimensional contact analysis of a spiral bevel gear set incorporating cracks. These analyses were significant in determining the influence of change of tooth flexibility due to crack growth on the magnitude and location of contact loads. This is an important concern since change in contact loads might lead to differences in SIFs and therefore result in alteration of the crack trajectory. Contact analyses performed in this report showed the expected trend of decreasing tooth loads carried by the cracked tooth with increasing crack length. Decrease in tooth loads lead to differences between SIFs extracted from finite element contact analysis and finite element analysis with Hertz contact loads. This effect became more pronounced as the crack grew.

  11. Evaluation of a numerical model's ability to predict bed load transport observed in braided river experiments

    NASA Astrophysics Data System (ADS)

    Javernick, Luke; Redolfi, Marco; Bertoldi, Walter

    2018-05-01

    New data collection techniques offer numerical modelers the ability to gather and utilize high quality data sets with high spatial and temporal resolution. Such data sets are currently needed for calibration, verification, and to fuel future model development, particularly morphological simulations. This study explores the use of high quality spatial and temporal data sets of observed bed load transport in braided river flume experiments to evaluate the ability of a two-dimensional model, Delft3D, to predict bed load transport. This study uses a fixed bed model configuration and examines the model's shear stress calculations, which are the foundation to predict the sediment fluxes necessary for morphological simulations. The evaluation is conducted for three flow rates, and model setup used highly accurate Structure-from-Motion (SfM) topography and discharge boundary conditions. The model was hydraulically calibrated using bed roughness, and performance was evaluated based on depth and inundation agreement. Model bed load performance was evaluated in terms of critical shear stress exceedance area compared to maps of observed bed mobility in a flume. Following the standard hydraulic calibration, bed load performance was tested for sensitivity to horizontal eddy viscosity parameterization and bed morphology updating. Simulations produced depth errors equal to the SfM inherent errors, inundation agreement of 77-85%, and critical shear stress exceedance in agreement with 49-68% of the observed active area. This study provides insight into the ability of physically based, two-dimensional simulations to accurately predict bed load as well as the effects of horizontal eddy viscosity and bed updating. Further, this study highlights how using high spatial and temporal data to capture the physical processes at work during flume experiments can help to improve morphological modeling.

  12. Environmental Barrier Coating (EBC) Durability Modeling; An Overview and Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, A.; Bhatt, R. T.; Grady, J. E.; Zhu, D.

    2012-01-01

    A study outlining a fracture mechanics based model that is being developed to investigate crack growth and spallation of environmental barrier coating (EBC) under thermal cycling conditions is presented. A description of the current plan and a model to estimate thermal residual stresses in the coating and preliminary fracture mechanics concepts for studying crack growth in the coating are also discussed. A road map for modeling life and durability of the EBC and the results of FEA model(s) developed for predicting thermal residual stresses and the cracking behavior of the coating are generated and described. Further initial assessment and preliminary results showed that developing a comprehensive EBC life prediction model incorporating EBC cracking, degradation and spalling mechanism under stress and temperature gradients typically seen in turbine components is difficult. This is basically due to mismatch in thermal expansion difference between sub-layers of EBC as well as between EBC and substrate, diffusion of moisture and oxygen though the coating, and densification of the coating during operating conditions as well as due to foreign object damage, the EBC can also crack and spall from the substrate causing oxidation and recession and reducing the design life of the EBC coated substrate.

  13. Vibration based algorithm for crack detection in cantilever beam containing two different types of cracks

    NASA Astrophysics Data System (ADS)

    Behzad, Mehdi; Ghadami, Amin; Maghsoodi, Ameneh; Michael Hale, Jack

    2013-11-01

    In this paper, a simple method for detection of multiple edge cracks in Euler-Bernoulli beams having two different types of cracks is presented based on energy equations. Each crack is modeled as a massless rotational spring using Linear Elastic Fracture Mechanics (LEFM) theory, and a relationship among natural frequencies, crack locations and stiffness of equivalent springs is demonstrated. In the procedure, for detection of m cracks in a beam, 3m equations and natural frequencies of healthy and cracked beam in two different directions are needed as input to the algorithm. The main accomplishment of the presented algorithm is the capability to detect the location, severity and type of each crack in a multi-cracked beam. Concise and simple calculations along with accuracy are other advantages of this method. A number of numerical examples for cantilever beams including one and two cracks are presented to validate the method.

  14. Analytical model for effects of capsule shape on the healing efficiency in self-healing materials

    PubMed Central

    Li, Songpeng; Chen, Huisu

    2017-01-01

    The fundamental requirement for the autonomous capsule-based self-healing process to work is that cracks need to reach the capsules and break them such that the healing agent can be released. Ignoring all other aspects, the amount of healing agents released into the crack is essential to obtain a good healing. Meanwhile, from the perspective of the capsule shapes, spherical or elongated capsules (hollow tubes/fibres) are the main morphologies used in capsule-based self-healing materials. The focus of this contribution is the description of the effects of capsule shape on the efficiency of healing agent released in capsule-based self-healing material within the framework of the theory of geometrical probability and integral geometry. Analytical models are developed to characterize the amount of healing agent released per crack area from capsules for an arbitrary crack intersecting with capsules of various shapes in a virtual capsule-based self-healing material. The average crack opening distance is chosen to be a key parameter in defining the healing potential of individual cracks in the models. Furthermore, the accuracy of the developed models was verified by comparison to the data from a published numerical simulation study. PMID:29095862

  15. Modeling fatigue crack growth in cross ply titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Johnson, W. S.

    1993-01-01

    In this study, the fatigue crack growth behavior of fiber bridging matrix cracks in cross-ply SCS-6/Ti-15-3 and SCS-6/Timetal-21S laminates containing center holes was investigated. Experimental observations revealed that matrix cracking was far more extensive and wide spread in the SCS-6/Ti-15-3 laminates compared to that in the SCS-6/Timetal-21S laminates. In addition, the fatigue life of the SCS-6/Ti-15-3 laminates was significantly longer than that of the SCS-6/Timetal-21S laminates. The matrix cracking observed in both material systems was analyzed using a fiber bridging (FB) model which was formulated using the boundary correction factors and weight functions for center hole specimen configurations. A frictional shear stress is assumed in the FB model and was used as a curve fitting parameter to model matrix crack growth data. The higher frictional shear stresses calculated in the SCS-6/Timetal-21S laminates resulted in lower stress intensity factors in the matrix and higher axial stresses in the fibers compared to those in the SCS-6/Ti-15-3 laminates at the same applied stress levels.

  16. Electromechanical Impedance Response of a Cracked Timoshenko Beam

    PubMed Central

    Zhang, Yuxiang; Xu, Fuhou; Chen, Jiazhao; Wu, Cuiqin; Wen, Dongdong

    2011-01-01

    Typically, the Electromechanical Impedance (EMI) technique does not use an analytical model for basic damage identification. However, an accurate model is necessary for getting more information about any damage. In this paper, an EMI model is presented for predicting the electromechanical impedance of a cracked beam structure quantitatively. A coupled system of a cracked Timoshenko beam with a pair of PZT patches bonded on the top and bottom surfaces has been considered, where the bonding layers are assumed as a Kelvin-Voigt material. The shear lag model is introduced to describe the load transfer between the PZT patches and the beam structure. The beam crack is simulated as a massless torsional spring; the dynamic equations of the coupled system are derived, which include the crack information and the inertial forces of both PZT patches and adhesive layers. According to the boundary conditions and continuity conditions, the analytical expression of the admittance of PZT patch is obtained. In the case study, the influences of crack and the inertial forces of PZT patches are analyzed. The results show that: (1) the inertial forces affects significantly in high frequency band; and (2) the use of appropriate frequency range can improve the accuracy of damage identification. PMID:22164017

  17. Mathematical modelling of anisotropy of illite-rich shale

    USGS Publications Warehouse

    Chesnokov, E.M.; Tiwary, D.K.; Bayuk, I.O.; Sparkman, M.A.; Brown, R.L.

    2009-01-01

    The estimation of illite-rich shale anisotropy to account for the alignment of clays and gas- or brine-filled cracks is presented via mathematical modelling. Such estimation requires analysis to interpret the dominance of one effect over another. This knowledge can help to evaluate the permeability in the unconventional reservoir, stress orientation, and the seal capacity for the conventional reservoir. Effective media modelling is used to predict the elastic properties of the illite-rich shale and to identify the dominant contributions to the shale anisotropy. We consider two principal reasons of the shale anisotropy: orientation of clay platelets and orientation of fluid-filled cracks. In reality, both of these two factors affect the shale anisotropy. The goal of this study is, first, to separately analyse the effect of these two factors to reveal the specific features in P- and S-wave velocity behaviour typical of each of the factors, and, then, consider a combined effect of the factors when the cracks are horizontally or vertically aligned. To do this, we construct four models of shale. The behaviour of P- and S-wave velocities is analysed when gas- and water-filled cracks embedded in a host matrix are randomly oriented, or horizontally or vertically aligned. The host matrix can be either isotropic or anisotropic (of VTI symmetry). In such a modelling, we use published data on mineralogy and clay platelet alignment along with other micromechanical measurements. In the model, where the host matrix is isotropic, the presence of a singularity point (when the difference VS1 - VS2 changes its sign) in shear wave velocities is an indicator of brine-filled aligned cracks. In the model with the VTI host matrix and horizontally aligned cracks filled with gas, an increase in their volume concentration leads to that the azimuth at which the singularity is observed moves toward the symmetry axis. In this case, if the clay content is small (around 20 per cent), the singularity point may even vanish. The Thomsen parameters are helpful in fluid type indication in shale. An indicator of gas-filled aligned cracks is ?? > ??. If aligned cracks in illite-rich shale are brine-filled, ?? < ??. Negative value of ?? indicates brine-filled cracks in illite-rich shale. A shale with brine-filled cracks exhibits higher Vp/Vs ratio in the vertical direction as compared to the gas-filled shale. A disorientation of clay platelets and brine-filled cracks may lead to that the singularity point is absent for brine-saturated shale as well. In this case one can also observe ?? > ?? and decreased values of Vp/Vs in the vertical direction as in the case of gas-filled cracks. In the presence of vertically aligned cracks, shales exhibit distinctly revealed features of orthorhombic symmetry. The results have important applications where seismic measurements are applied to predict the maturity state of the shale. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  18. Experimental investigation on the fracture behaviour of black shale by acoustic emission monitoring and CT image analysis during uniaxial compression

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, C. H.; Hu, Y. Z.

    2018-04-01

    Plenty of mechanical experiments have been done to investigate the deformation and failure characteristics of shale; however, the anisotropic failure mechanism has not been well studied. Here, laboratory Uniaxial Compressive Strength tests on cylindrical shale samples obtained by drilling at different inclinations to bedding plane were performed. The failure behaviours of the shale samples were studied by real-time acoustic emission (AE) monitoring and post-test X-ray computer tomography (CT) analysis. The experimental results suggest that the pronounced bedding planes of shale have a great influence on the mechanical properties and AE patterns. The AE counts and AE cumulative energy release curves clearly demonstrate different morphology, and the `U'-shaped curve relationship between the AE counts, AE cumulative energy release and bedding inclination was first documented. The post-test CT image analysis shows the crack patterns via 2-D image reconstructions, an index of stimulated fracture density is defined to represent the anisotropic failure mode of shale. What is more, the most striking finding is that the AE monitoring results are in good agreement with the CT analysis. The structural difference in the shale sample is the controlling factor resulting in the anisotropy of AE patterns. The pronounced bedding structure in the shale formation results in an anisotropy of elasticity, strength and AE information from which the changes in strength dominate the entire failure pattern of the shale samples.

  19. Investigation of the effects of manufacturing variations and materials on fatigue crack detection methods in gear teeth

    NASA Technical Reports Server (NTRS)

    Wheitner, Jeffrey A.; Houser, Donald R.

    1994-01-01

    The fatigue life of a gear tooth can be thought of as the sum of the number of cycles required to initiate a crack, N(sub i), plus the number of cycles required to propagate the crack to such a length that fracture occurs, N(sub p). The factors that govern crack initiation are thought to be related to localized stress or strain at a point, while propagation of a fatigue crack is a function of the crack tip parameters such as crack shape, stress state, and stress intensity factor. During a test there is no clear transition between initiation and propagation. The mechanisms of initiation and propagation are quite different and modeling them separately produces a higher degree of accuracy, but then the question that continually arises is 'what is a crack?' The total life prediction in a fracture mechanics model presently hinges on the assumption of an initial crack length, and this length can significantly affect the total life prediction. The size of the initial crack is generally taken to be in the range of 0.01 in. to 0.2 in. Several researchers have used various techniques to determine the beginning of the crack propagation stage. Barhorst showed the relationship between dynamic stiffness changes and crack propagation. Acoustic emissions, which are stress waves produced by the sudden movement of stressed materials, have also been successfully used to monitor the growth of cracks in tensile and fatigue specimens. The purpose of this research is to determine whether acoustic emissions can be used to define the beginning of crack propagation in a gear using a single-tooth bending fatigue test.

  20. On crack initiation in notched, cross-plied polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Yang, Q. D.; Schesser, D.; Niess, M.; Wright, P.; Mavrogordato, M. N.; Sinclair, I.; Spearing, S. M.; Cox, B. N.

    2015-05-01

    The physics of crack initiation in a polymer matrix composite are investigated by varying the modeling choices made in simulations and comparing the resulting predictions with high-resolution in situ images of cracks. Experimental data were acquired using synchrotron-radiation computed tomography (SRCT) at a resolution on the order of 1 μm, which provides detailed measurement of the location, shape, and size of small cracks, as well as the crack opening and shear displacements. These data prove sufficient to discriminate among competing physical descriptions of crack initiation. Simulations are executed with a high-fidelity formulation, the augmented finite element method (A-FEM), which permits consideration of coupled damage mechanisms, including both discrete cracks and fine-scale continuum damage. The discrete cracks are assumed to be nonlinear fracture events, governed by reasonably general mixed-mode cohesive laws. Crack initiation is described in terms of strength parameters within the cohesive laws, so that the cohesive law provides a unified model for crack initiation and growth. Whereas the cracks investigated are typically 1 mm or less in length, the fine-scale continuum damage refers to irreversible matrix deformation occurring over gauge lengths extending down to the fiber diameter (0.007 mm). We find that the location and far-field stress for crack initiation are predicted accurately only if the variations of local stress within plies and in the presence of stress concentrators (notches, etc.) are explicitly computed and used in initiation criteria; stress redistribution due to matrix nonlinearity that occurs prior to crack initiation is accounted for; and a mixed-mode criterion is used for crack initiation. If these factors are not all considered, which is the case for commonly used failure criteria, predictions of the location and far-field stress for initiation are not accurate.

  1. Microstructural indicators of transition mechanisms in time-dependent fatigue crack growth in nickel base superalloys

    NASA Astrophysics Data System (ADS)

    Heeter, Ann E.

    Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible and require higher operating temperatures than ever seen before in previous generations. These higher temperatures place more stringent requirements on the material crack growth performance under creep and time dependent conditions. Typically the types of components which are subject to these requirements are rotating disk components which are made from advanced materials such as nickel base superalloys. Traditionally crack growth models have looked at high temperature crack growth purely as a function of temperature and assumed that all crack growth was either controlled by a cycle dependent or time dependent mechanism. This new analysis is trying to evaluate the transition between cycle-dependent and time-dependent mechanism and the microstructural markers that characterize this transitional behavior. The physical indications include both the fracture surface morphology as well as the shape of the crack front. The research will evaluate whether crack tunneling occurs and whether it consistently predicts a transition from cycle-dependent crack growth to time-dependent crack growth. The study is part of a larger research program trying to include the effects of geometry, mission profile and environmental effects, in addition to temperature effects, as a part of the overall crack growth system. The outcome will provide evidence for various transition types and correlate those physical attributes back to the material mechanisms to improve predictive modeling capability.

  2. Numerical simulation of dune-flat bed transition and stage‐discharge relationship with hysteresis effect

    USGS Publications Warehouse

    Shimizu, Yasuyuki; Giri, Sanjay; Yamaguchi, Satomi; Nelson, Jonathan M.

    2009-01-01

    This work presents recent advances on morphodynamic modeling of bed forms under unsteady discharge. This paper includes further development of a morphodynamic model proposed earlier by Giri and Shimizu (2006a). This model reproduces the temporal development of river dunes and accurately replicates the physical properties associated with bed form evolution. Model results appear to provide accurate predictions of bed form geometry and form drag over bed forms for arbitrary steady flows. However, accurate predictions of temporal changes of form drag are key to the prediction of stage‐discharge relation during flood events. Herein, the model capability is extended to replicate the dune–flat bed transition, and in turn, the variation of form drag produced by the temporal growth or decay of bed forms under unsteady flow conditions. Some numerical experiments are performed to analyze hysteresis of the stage‐discharge relationship caused by the transition between dune and flat bed regimes during rising and falling stages of varying flows. The numerical model successfully simulates dune–flat bed transition and the associated hysteresis of the stage‐discharge relationship; this is in good agreement with physical observations but has been treated in the past only using empirical methods. A hypothetical relationship for a sediment parameter (the mean step length) is proposed to a first level of approximation that enables reproduction of the dune–flat bed transition. The proposed numerical model demonstrates its ability to address an important practical problem associated with bed form evolution and flow resistance in varying flows.

  3. Analysis of the progressive failure of brittle matrix composites

    NASA Technical Reports Server (NTRS)

    Thomas, David J.

    1995-01-01

    This report investigates two of the most common modes of localized failures, namely, periodic fiber-bridged matrix cracks and transverse matrix cracks. A modification of Daniels' bundle theory is combined with Weibull's weakest link theory to model the statistical distribution of the periodic matrix cracking strength for an individual layer. Results of the model predictions are compared with experimental data from the open literature. Extensions to the model are made to account for possible imperfections within the layer (i.e., nonuniform fiber lengths, irregular crack spacing, and degraded in-situ fiber properties), and the results of these studies are presented. A generalized shear-lag analysis is derived which is capable of modeling the development of transverse matrix cracks in material systems having a general multilayer configuration and under states of full in-plane load. A method for computing the effective elastic properties for the damaged layer at the global level is detailed based upon the solution for the effects of the damage at the local level. This methodology is general in nature and is therefore also applicable to (0(sub m)/90(sub n))(sub s) systems. The characteristic stress-strain response for more general cases is shown to be qualitatively correct (experimental data is not available for a quantitative evaluation), and the damage evolution is recorded in terms of the matrix crack density as a function of the applied strain. Probabilistic effects are introduced to account for the statistical nature of the material strengths, thus allowing cumulative distribution curves for the probability of failure to be generated for each of the example laminates. Additionally, Oh and Finney's classic work on fracture location in brittle materials is extended and combined with the shear-lag analysis. The result is an analytical form for predicting the probability density function for the location of the next transverse crack occurrence within a crack bounded region. The results of this study verified qualitatively the validity of assuming a uniform crack spacing (as was done in the shear-lag model).

  4. Effect of a Diffusion Zone on Fatigue Crack Propagation in Layered FGMs

    NASA Astrophysics Data System (ADS)

    Hauber, Brett; Brockman, Robert; Paulino, Glaucio

    2008-02-01

    Research into functionally graded materials (FGMs) has led to advances in our ability to analyze cracks. However, two prominent aspects remain relatively unexplored: 1) development and validation of modeling methods for fatigue crack propagation in FGMs, and 2) experimental validation of stress intensity models in engineered materials such as two phase monolithic and graded materials. This work addresses some of these problems for a limited set of conditions, material systems (e.g., Ti/TiB), and material gradients. Numerical analyses are conducted for single edge notch bend (SENB) specimens. Stress intensity factors are computed using the specialized finite element code I-Franc (Illinois Fracture Analysis Code), which is tailored for both homogeneous and graded materials, as well as Franc2DL and ABAQUS. Crack extension is considered by means of specified crack increments, together with fatigue evaluations to predict crack propagation life. Results will be used to determine linear material gradient parameters that are significant for prediction of fatigue crack growth behavior.

  5. Structural and leakage integrity of tubes affected by circumferential cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernalsteen, P.

    1997-02-01

    In this paper the author deals with the notion that circumferential cracks are generally considered unacceptable. He argues for the need to differentiate two facets of such cracks: the issue of the size and growth rate of a crack; and the issue of the structural strength and leakage potential of the tube in the presence of the crack. In this paper the author tries to show that the second point is not a major concern for such cracks. The paper presents data on the structural strength or burst pressure characteristics of steam generator tubes derived from models and data basesmore » of experimental work. He also presents a leak rate model, and compares the performance of circumferential and axial cracks as far as burst strength and leak rate. The final conclusion is that subject to improvement in NDE capabilities (sizing, detection, growth), that Steam Generator Defect Specific Management can be used to allow circumferentially degraded tubes to remain in service.« less

  6. A conductive grating sensor for online quantitative monitoring of fatigue crack.

    PubMed

    Li, Peiyuan; Cheng, Li; Yan, Xiaojun; Jiao, Shengbo; Li, Yakun

    2018-05-01

    Online quantitative monitoring of crack damage due to fatigue is a critical challenge for structural health monitoring systems assessing structural safety. To achieve online quantitative monitoring of fatigue crack, a novel conductive grating sensor based on the principle of electrical potential difference is proposed. The sensor consists of equidistant grating channels to monitor the fatigue crack length and conductive bars to provide the circuit path. An online crack monitoring system is established to verify the sensor's capability. The experimental results prove that the sensor is suitable for online quantitative monitoring of fatigue crack. A finite element model for the sensor is also developed to optimize the sensitivity of crack monitoring, which is defined by the rate of sensor resistance change caused by the break of the first grating channel. Analysis of the model shows that the sensor sensitivity can be enhanced by reducing the number of grating channels and increasing their resistance and reducing the resistance of the conductive bar.

  7. A conductive grating sensor for online quantitative monitoring of fatigue crack

    NASA Astrophysics Data System (ADS)

    Li, Peiyuan; Cheng, Li; Yan, Xiaojun; Jiao, Shengbo; Li, Yakun

    2018-05-01

    Online quantitative monitoring of crack damage due to fatigue is a critical challenge for structural health monitoring systems assessing structural safety. To achieve online quantitative monitoring of fatigue crack, a novel conductive grating sensor based on the principle of electrical potential difference is proposed. The sensor consists of equidistant grating channels to monitor the fatigue crack length and conductive bars to provide the circuit path. An online crack monitoring system is established to verify the sensor's capability. The experimental results prove that the sensor is suitable for online quantitative monitoring of fatigue crack. A finite element model for the sensor is also developed to optimize the sensitivity of crack monitoring, which is defined by the rate of sensor resistance change caused by the break of the first grating channel. Analysis of the model shows that the sensor sensitivity can be enhanced by reducing the number of grating channels and increasing their resistance and reducing the resistance of the conductive bar.

  8. 3D multiscale crack propagation using the XFEM applied to a gas turbine blade

    NASA Astrophysics Data System (ADS)

    Holl, Matthias; Rogge, Timo; Loehnert, Stefan; Wriggers, Peter; Rolfes, Raimund

    2014-01-01

    This work presents a new multiscale technique to investigate advancing cracks in three dimensional space. This fully adaptive multiscale technique is designed to take into account cracks of different length scales efficiently, by enabling fine scale domains locally in regions of interest, i.e. where stress concentrations and high stress gradients occur. Due to crack propagation, these regions change during the simulation process. Cracks are modeled using the extended finite element method, such that an accurate and powerful numerical tool is achieved. Restricting ourselves to linear elastic fracture mechanics, the -integral yields an accurate solution of the stress intensity factors, and with the criterion of maximum hoop stress, a precise direction of growth. If necessary, the on the finest scale computed crack surface is finally transferred to the corresponding scale. In a final step, the model is applied to a quadrature point of a gas turbine blade, to compute crack growth on the microscale of a real structure.

  9. Simulation of Low Velocity Impact Induced Inter- and Intra-Laminar Damage of Composite Beams Based on XFEM

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Guan, Zhidong; Li, Zengshan

    2017-12-01

    In this paper, the Inter-Fiber Fracture (IFF) criterion of Puck failure theory based on the eXtended Finite Element Method (XFEM) was implemented in ABAQUS code to predict the intra-laminar crack initiation of unidirectional (UD) composite laminate. The transverse crack path in the matrix can be simulated accurately by the presented method. After the crack initiation, the propagation of the crack is simulated by Cohesive Zoom Model (CZM), in which the displacement discontinuities and stress concentration caused by matrix crack is introduced into the finite element (FE) model. Combined with the usage of the enriched element interface, which can be used to simulate the inter-laminar delamination crack, the Low Velocity Impact (LVI) induced damage of UD composite laminate beam with a typical stacking of composite laminates [05/903]S is studied. A complete crack initiation and propagation process was simulated and the numerical results obtained by the XFEM are consistent with the experimental results.

  10. Fatigue crack growth model RANDOM2 user manual. Appendix 1: Development of advanced methodologies for probabilistic constitutive relationships of material strength models

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Lovelace, Thomas B.

    1989-01-01

    FORTRAN program RANDOM2 is presented in the form of a user's manual. RANDOM2 is based on fracture mechanics using a probabilistic fatigue crack growth model. It predicts the random lifetime of an engine component to reach a given crack size. Details of the theoretical background, input data instructions, and a sample problem illustrating the use of the program are included.

  11. Final Report: Multi-Scale Analysis of Deformation and Failure in Polycrystalline Titanium Alloys Under High Strain-Rates

    DTIC Science & Technology

    2015-12-28

    Masoud Anahid, Mahendra K. Samal , and Somnath Ghosh. Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of...induced crack nucleation in polycrystals. Model. Simul. Mater. Sci. Eng., 17, 064009. 19. Anahid, M., Samal , M. K. & Ghosh, S. (2011). Dwell fatigue...Jour. Plas., 24:428–454, 2008. 4. M. Anahid, M. K. Samal , and S. Ghosh. Dwell fatigue crack nucleation model based on crystal plasticity finite

  12. The influence of acetabular bone cracks in the press-fit hip replacement: Numerical and experimental analysis.

    PubMed

    Ramos, A; Duarte, R J; Relvas, C; Completo, A; Simões, J A

    2013-07-01

    The press-fit hip acetabular prosthesis implantation can cause crack formation in the thin regions surrounding the acetabular. As a consequence the presence of cracks in this region can lead to poor fixation and fibrous tissue formation. Numerical and experimental models of commercial press-fit hip replacements were developed to compare the behavior between the intact and implanted joints. Numerical models with an artificial crack and without crack were considered. The iliac and the femur were created through 3D geometry acquisition based on composite human replicas and 3D-Finite Element models were generated. The mechanical behavior was assessed numerically and experimentally considering the principal strains. The comparison between Finite Element model predictions and experimental measurements revealed a maximum difference of 9%. Similar distribution of the principal strains around the acetabular cavity was obtained for the intact and implanted models. When comparing the Von Mises stresses, it is possible to observe that the intact model is the one that presents the highest stress values in the entire acetabular cavity surface. The crack in the posterior side changes significantly the principal strain distribution, suggesting bone loss after hip replacement. Relatively to micromotions, these were higher on the superior side of the acetabular cavity and can change the implant stability and bone ingrowth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    NASA Astrophysics Data System (ADS)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  14. Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Tung; Réthoré, Julien; Yvonnet, Julien; Baietto, Marie-Christine

    2017-08-01

    A new multi-phase-field method is developed for modeling the fracture of polycrystals at the microstructural level. Inter and transgranular cracking, as well as anisotropic effects of both elasticity and preferential cleavage directions within each randomly oriented crystal are taken into account. For this purpose, the proposed phase field formulation includes: (a) a smeared description of grain boundaries as cohesive zones avoiding defining an additional phase for grains; (b) an anisotropic phase field model; (c) a multi-phase field formulation where each preferential cleavage direction is associated with a damage (phase field) variable. The obtained framework allows modeling interactions and competition between grains and grain boundary cracks, as well as their effects on the effective response of the material. The proposed model is illustrated through several numerical examples involving a full description of complex crack initiation and propagation within 2D and 3D models of polycrystals.

  15. Cohesive Modeling of Transverse Cracking in Laminates with a Single Layer of Elements per Ply

    NASA Technical Reports Server (NTRS)

    VanDerMeer, Frans P.; Davila, Carlos G.

    2013-01-01

    This study aims to bridge the gap between classical understanding of transverse cracking in cross-ply laminates and recent computational methods for the modeling of progressive laminate failure. Specifically, the study investigates under what conditions a finite element model with cohesive X-FEM cracks can reproduce the in situ effect for the ply strength. It is shown that it is possible to do so with a single element across the thickness of the ply, provided that the interface stiffness is properly selected. The optimal value for this interface stiffness is derived with an analytical shear lag model. It is also shown that, when the appropriate statistical variation of properties has been applied, models with a single element through the thickness of a ply can predict the density of transverse matrix cracks

  16. Random polycrystals of grains containing cracks: Model ofquasistatic elastic behavior for fractured systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, James G.; Grechka, Vladimir

    2006-07-08

    A model study on fractured systems was performed using aconcept that treats isotropic cracked systems as ensembles of crackedgrains by analogy to isotropic polycrystalline elastic media. Theapproach has two advantages: (a) Averaging performed is ensembleaveraging, thus avoiding the criticism legitimately leveled at mosteffective medium theories of quasistatic elastic behavior for crackedmedia based on volume concentrations of inclusions. Since crack effectsare largely independent of the volume they occupy in the composite, sucha non-volume-based method offers an appealingly simple modelingalternative. (b) The second advantage is that both polycrystals andfractured media are stiffer than might otherwise be expected, due tonatural bridging effects ofmore » the strong components. These same effectshave also often been interpreted as crack-crack screening inhigh-crack-density fractured media, but there is no inherent conflictbetween these two interpretations of this phenomenon. Results of thestudy are somewhat mixed. The spread in elastic constants observed in aset of numerical experiments is found to be very comparable to the spreadin values contained between the Reuss and Voigt bounds for thepolycrystal model. However, computed Hashin-Shtrikman bounds are much tootight to be in agreement with the numerical data, showing thatpolycrystals of cracked grains tend to violate some implicit assumptionsof the Hashin-Shtrikman bounding approach. However, the self-consistentestimates obtained for the random polycrystal model are nevertheless verygood estimators of the observed average behavior.« less

  17. Post-cracking characteristics of high performance fiber reinforced cementitious composites

    NASA Astrophysics Data System (ADS)

    Suwannakarn, Supat W.

    The application of high performance fiber reinforced cement composites (HPFRCC) in structural systems depends primarily on the material's tensile response, which is a direct function of fiber and matrix characteristics, the bond between them, and the fiber content or volume fraction. The objective of this dissertation is to evaluate and model the post-cracking behavior of HPFRCC. In particular, it focused on the influential parameters controlling tensile behavior and the variability associated with them. The key parameters considered include: the stress and strain at first cracking, the stress and strain at maximum post-cracking, the shape of the stress-strain or stress-elongation response, the multiple cracking process, the shape of the resistance curve after crack localization, the energy associated with the multiple cracking process, and the stress versus crack opening response of a single crack. Both steel fibers and polymeric fibers, perceived to have the greatest potential for current commercial applications, are considered. The main variables covered include fiber type (Torex, Hooked, PVA, and Spectra) and fiber volume fraction (ranging from 0.75% to 2.0%). An extensive experimental program is carried out using direct tensile tests and stress-versus crack opening displacement tests on notched tensile prisms. The key experimental results were analysed and modeled using simple prediction equations which, combined with a composite mechanics approach, allowed for predicting schematic simplified stress-strain and stress-displacement response curves for use in structural modeling. The experimental data show that specimens reinforced with Torex fibers performs best, follows by Hooked and Spectra fibers, then PVA fibers. Significant variability in key parameters was observed througout suggesting that variability must be studied further. The new information obtained can be used as input for material models for finite element analysis and can provide greater confidence in using the HPFRC composites in structural applications. It also provides a good foundation to integrate these composites in conventional structural analysis and design.

  18. Updraft Fixed Bed Gasification Aspen Plus Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2007-09-27

    The updraft fixed bed gasification model provides predictive modeling capabilities for updraft fixed bed gasifiers, when devolatilization data is available. The fixed bed model is constructed using Aspen Plus, process modeling software, coupled with a FORTRAN user kinetic subroutine. Current updraft gasification models created in Aspen Plus have limited predictive capabilities and must be "tuned" to reflect a generalized gas composition as specified in literature or by the gasifier manufacturer. This limits the applicability of the process model.

  19. Detection and characterization of fatigue cracks in thin metal plates by low frequency resonant model analysis

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Namkung, M.; Birt, E. A.

    1992-01-01

    Low-frequency resonant model analysis, a technique for the detection and characterization of fatigue cracks in thin metal plates, which could be adapted to rapid scan or large area testing, is considered. Experimental data displaying a direct correlation between fatigue crack geometry and resonance frequency for the second vibrational plate mode are presented. FEM is used to calculate the mechanical behavior of the plates, and provides a comparison basis for the experimentally determined resonance frequency values. The waveform of the acoustic emission generated at the resonant frequency is examined; it provides the basis for a model of the interaction of fatigue crack faces during plate vibration.

  20. The upper bounds of reduced axial and shear moduli in cross-ply laminates with matrix cracks

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, D. H.; Harris, C. E.

    1991-01-01

    The present study proposes a mathematical model utilizing the internal state variable concept for predicting the upper bounds of the reduced axial and shear stiffnesses in cross-ply laminates with matrix cracks. The displacement components at the matrix crack surfaces are explicitly expressed in terms of the observable axial and shear strains and the undamaged material properties. The reduced axial and shear stiffnesses are predicted for glass/epoxy and graphite/epoxy laminates. Comparison of the model with other theoretical and experimental studies is also presented to confirm direct applicability of the model to angle-ply laminates with matrix cracks subjected to general in-plane loading.

  1. Ultrasound data for laboratory calibration of an analytical model to calculate crack depth on asphalt pavements.

    PubMed

    Franesqui, Miguel A; Yepes, Jorge; García-González, Cándida

    2017-08-01

    This article outlines the ultrasound data employed to calibrate in the laboratory an analytical model that permits the calculation of the depth of partial-depth surface-initiated cracks on bituminous pavements using this non-destructive technique. This initial calibration is required so that the model provides sufficient precision during practical application. The ultrasonic pulse transit times were measured on beam samples of different asphalt mixtures (semi-dense asphalt concrete AC-S; asphalt concrete for very thin layers BBTM; and porous asphalt PA). The cracks on the laboratory samples were simulated by means of notches of variable depths. With the data of ultrasound transmission time ratios, curve-fittings were carried out on the analytical model, thus determining the regression parameters and their statistical dispersion. The calibrated models obtained from laboratory datasets were subsequently applied to auscultate the evolution of the crack depth after microwaves exposure in the research article entitled "Top-down cracking self-healing of asphalt pavements with steel filler from industrial waste applying microwaves" (Franesqui et al., 2017) [1].

  2. Predicting overload-affected fatigue crack growth in steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorupa, M.; Skorupa, A.; Ladecki, B.

    1996-12-01

    The ability of semi-empirical crack closure models to predict the effect of overloads on fatigue crack growth in low-alloy steels has been investigated. With this purpose, the CORPUS model developed for aircraft metals and spectra has been checked first through comparisons between the simulated and observed results for a low-alloy steel. The CORPUS predictions of crack growth under several types of simple load histories containing overloads appeared generally unconservative which prompted the authors to formulate a new model, more suitable for steels. With the latter approach, the assumed evolution of the crack opening stress during the delayed retardation stage hasmore » been based on experimental results reported for various steels. For all the load sequences considered, the predictions from the proposed model appeared to be by far more accurate than those from CORPUS. Based on the analysis results, the capability of semi-empirical prediction concepts to cover experimentally observed trends that have been reported for sequences with overloads is discussed. Finally, possibilities of improving the model performance are considered.« less

  3. Surface and through crack problems in orthotropic plates

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Wu, B.-H.

    1988-01-01

    The present treatment of the general mode I crack problem in bending- and membrane-loaded orthotropic plates proceeds by formulating the bending problem for a series of planar and through-cracks; by independently varying the six independent constants, the effect of material orthotropy on the stress intensity factor is determined. The surface-crack problem is then formulated by means of the line-spring model, using a transverse-shear theory of plate bending. Attention is given to composite laminates with through-cracks or semielliptic surface cracks. A significant effect is noted for material orthotropy.

  4. Investigation of the stress distribution around a mode 1 crack with a novel strain gradient theory

    NASA Astrophysics Data System (ADS)

    Lederer, M.; Khatibi, G.

    2017-01-01

    Stress concentrations at the tip of a sharp crack have extensively been investigated in the past century. According to the calculations of Inglis, the stress ahead of a mode 1 crack shows the characteristics of a singularity. This solution is exact in the framework of linear elastic fracture mechanics (LEFM). From the viewpoint of multiscale modelling, however, it is evident that the stress at the tip of a stable crack cannot be infinite, because the strengths of atomic bonds are finite. In order to prevent the problem of this singularity, a new version of strain gradient elasticity is employed here. This theory is implemented in the commercial FEM code ABAQUS through user subroutine UEL. Convergence of the model is proved through consecutive mesh refinement. In consequence, the stresses ahead of a mode 1 crack become finite. Furthermore, the model predicts a size effect in the sense “smaller is stronger”.

  5. The effect of crack blunting on the competition between dislocation nucleation and cleavage

    NASA Astrophysics Data System (ADS)

    Fischer, Lisa L.; Beltz, Glenn E.

    2001-03-01

    To better understand the ductile versus brittle fracture behavior of crystalline materials, attention should be directed towards physically realistic crack geometries. Currently, continuum models of ductile versus brittle behavior are typically based on the analysis of a pre-existing sharp crack in order to use analytical solutions for the stress fields around the crack tip. This paper examines the effects of crack blunting on the competition between dislocation nucleation and atomic decohesion using continuum methods. We accomplish this by assuming that the crack geometry is elliptical, which has the primary advantage that the stress fields are available in closed form. These stress field solutions are then used to calculate the thresholds for dislocation nucleation and atomic decohesion. A Peierls-type framework is used to obtain the thresholds for dislocation nucleation, in which the region of the slip plane ahead of the crack develops a distribution of slip discontinuity prior to nucleation. This slip distribution increases as the applied load is increased until an instability is reached and the governing integral equation can no longer be solved. These calculations are carried out for various crack tip geometries to ascertain the effects of crack tip blunting. The thresholds for atomic decohesion are calculated using a cohesive zone model, in which the region of the crack front develops a distribution of opening displacement prior to atomic decohesion. Again, loading of the elliptical crack tip eventually results in an instability, which marks the onset of crack advance. These calculations are carried out for various crack tip geometries. The results of these separate calculations are presented as the critical energy release rates versus the crack tip radius of curvature for a given crack length. The two threshold curves are compared simultaneously to determine which failure mode is energetically more likely at various crack tip curvatures. From these comparisons, four possible types of material fracture behavior are identified: intrinsically brittle, quasi-brittle, intrinsically ductile, and quasi-ductile. Finally, real material examples are discussed.

  6. A hybrid genetic algorithm-queuing multi-compartment model for optimizing inpatient bed occupancy and associated costs.

    PubMed

    Belciug, Smaranda; Gorunescu, Florin

    2016-03-01

    Explore how efficient intelligent decision support systems, both easily understandable and straightforwardly implemented, can help modern hospital managers to optimize both bed occupancy and utilization costs. This paper proposes a hybrid genetic algorithm-queuing multi-compartment model for the patient flow in hospitals. A finite capacity queuing model with phase-type service distribution is combined with a compartmental model, and an associated cost model is set up. An evolutionary-based approach is used for enhancing the ability to optimize both bed management and associated costs. In addition, a "What-if analysis" shows how changing the model parameters could improve performance while controlling costs. The study uses bed-occupancy data collected at the Department of Geriatric Medicine - St. George's Hospital, London, period 1969-1984, and January 2000. The hybrid model revealed that a bed-occupancy exceeding 91%, implying a patient rejection rate around 1.1%, can be carried out with 159 beds plus 8 unstaffed beds. The same holding and penalty costs, but significantly different bed allocations (156 vs. 184 staffed beds, and 8 vs. 9 unstaffed beds, respectively) will result in significantly different costs (£755 vs. £1172). Moreover, once the arrival rate exceeds 7 patient/day, the costs associated to the finite capacity system become significantly smaller than those associated to an Erlang B queuing model (£134 vs. £947). Encoding the whole information provided by both the queuing system and the cost model through chromosomes, the genetic algorithm represents an efficient tool in optimizing the bed allocation and associated costs. The methodology can be extended to different medical departments with minor modifications in structure and parameterization. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A Micromechanics-Based Damage Model for [+/- Theta/90n]s Composite Laminates

    NASA Technical Reports Server (NTRS)

    Mayugo, Joan-Andreu; Camanho, Pedro P.; Maimi, Pere; Davila, Carlos G.

    2006-01-01

    A new damage model based on a micromechanical analysis of cracked [+/- Theta/90n]s laminates subjected to multiaxial loads is proposed. The model predicts the onset and accumulation of transverse matrix cracks in uniformly stressed laminates, the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate. The model also accounts for the effect of the ply thickness on the ply strength. Predictions relating the elastic properties of several laminates and multiaxial loads are presented.

  8. Matrix fatigue crack development in a notched continuous fiber SCS-6/Ti-15-3 composite

    NASA Technical Reports Server (NTRS)

    Hillberry, B. M.; Johnson, W. S.

    1990-01-01

    In this study the extensive matrix fatigue cracking that has been observed in notched SCS-6/Ti-15-3 composites is investigated. Away from the notch uniform spacing of the fatigue cracks develops. Closer to the notch, fiber-matrix debonding which occurs increases the crack spacing. Crack spacing and debond length determined from shear-lag cylinder models compare favorably with experimental observations. Scanning electron microscope (SEM) fractography showed that the principal fatigue crack initiation occurred around the zero degree fibers. Interface failure in the 90 degree plies does not lead to the development of the primary fatigue cracking.

  9. Matrix fatigue crack development in a notched continuous fiber SCS-6/Ti-15-3 composite

    NASA Technical Reports Server (NTRS)

    Hillberry, B. M.; Johnson, W. S.

    1990-01-01

    In this study the extensive matrix fatigue cracking that has been observed in notched SCS-6/Ti-15-3 composites is investigated. Away from the notch a uniform spacing of the fatigue cracks develops. Closer to the notch, fiber-matrix debonding which occurs increases the crack spacing. Crack spacing and debond length determined from shear-lag cylinder models compare favorably with experimental observations. Scanning electron microscope (SEM) fractography showed that the principal fatigue crack initiation occurred around the zero degree fibers. Interface failure in the 90 degree plies does not lead to the development of the primary fatigue cracking.

  10. Crack-shape effects for indentation fracture toughness measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.M.; Scattergood, R.O.

    1992-02-01

    Various methods to measure fracture toughness using indentation precracks were compared using soda-lime glass as a test material. In situ measurements of crack size as a function of applied stress allow both the toughness K[sub c] and the residual-stress factor [chi] to be independently determined. Analysis of the data showed that stress intensity factors based on classical half-penny crack shapes overestimate toughness values and produce an apparent R-curve effect. This is due to a constraint on crack shape imposed by primary lateral cracks in soda-lime glass. Models based on elliptical cracks were developed to account for the crack-shape effects.

  11. 75 FR 7945 - Airworthiness Directives; Augustair, Inc. Models 2150, 2150A, and 2180 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... inspect the vertical stabilizer front spar for cracks and loose fasteners, repair any cracks and loose fasteners found, and reinforce the vertical stabilizer spar regardless if cracks are found. This AD results from six reports of airplanes with a cracked vertical stabilizer front spar. We are issuing this AD to...

  12. 76 FR 36395 - Airworthiness Directives; Piper Aircraft, Inc. Models PA-24, PA-24-250, and PA-24-260 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... stabilator horn assembly or repetitive inspection of the stabilator horn assembly for corrosion or cracks with replacement of the stabilator horn assembly if any corrosion or cracks are found. This proposed AD... to detect and correct corrosion or cracks in the stabilator horn assembly. Corrosion or cracks could...

  13. Initiation and growth of multiple-site damage in the riveted lap joint of a curved stiffened fuselage panel: An experimental and analytical study

    NASA Astrophysics Data System (ADS)

    Ahmed, Abubaker Ali

    As part of the structural integrity research of the National Aging Aircraft Research Program, a comprehensive study on multiple-site damage (MSD) initiation and growth in a pristine lap-joint fuselage panel has been conducted. The curved stiffened fuselage panel was tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center. A strain survey test was conducted to verify proper load application. The panel was then subjected to a fatigue test with constant-amplitude cyclic loading. The applied loading spectrum included underload marker cycles so that crack growth history could be reconstructed from post-test fractographic examinations. Crack formation and growth were monitored via nondestructive and high-magnification visual inspections. Strain gage measurements recorded during the strain survey tests indicated that the inner surface of the skin along the upper rivet row of the lap joint experienced high tensile stresses due to local bending. During the fatigue loading, cracks were detected by eddy-current inspections at multiple rivet holes along the upper rivet row. Through-thickness cracks were detected visually after about 80% of the fatigue life. Once MSD cracks from two adjacent rivet holes linked up, there was a quick deterioration in the structural integrity of the lap joint. The linkup resulted in a 2.87" (72.9-mm) lead fatigue crack that rapidly propagated across 12 rivet holes and crossed over into the next skin bay, at which stage the fatigue test was terminated. A post-fatigue residual strength test was then conducted by loading the panel quasi-statically up to final failure. The panel failed catastrophically when the crack extended instantaneously across three additional bays. Post-test fractographic examinations of the fracture surfaces in the lap joint of the fuselage panel were conducted to characterize subsurface crack initiation and growth. Results showed evidence of fretting damage and crack initiation at multiple locations near the rivet holes along the faying surface of the skin. The subsurface cracks grew significantly along the faying surface before reaching the outer surface of the skin, forming elliptical crack fronts. A finite element model (FE) of the panel was constructed and geometrically-nonlinear analyses conducted to determine strain distribution under the applied loads. The FE model was validated by comparing the analysis results with the strain gage measurements recorded during the strain survey test. The validated FE model was then used to determine stress-intensity factors at the crack tips. Stress-intensity factor results indicated that crack growth in the lap joint was under mixed-mode; however, the opening-mode stress intensity factor was dominant. The stress-intensity factors computed from the FE analysis were used to conduct cycle-by-cycle integration of fatigue crack growth. In the cycle-by-cycle integration, the NASGRO crack growth model was used with its parameters selected to account for the effects of plasticity-induced crack closure and the test environment on crack growth rate. Fatigue crack growth predictions from cycle-by-cycle computation were in good agreement with the experimental measured crack growth data. The results of the study provide key insights into the natural development and growth of MSD cracks in the pristine lap joint. The data provided by the study represent a valuable source for the evaluation and validation of analytical methodologies used for predicting MSD crack initiation and growth.

  14. Fatigue crack growth and life prediction under mixed-mode loading

    NASA Astrophysics Data System (ADS)

    Sajith, S.; Murthy, K. S. R. K.; Robi, P. S.

    2018-04-01

    Fatigue crack growth life as a function of crack length is essential for the prevention of catastrophic failures from damage tolerance perspective. In damage tolerance design approach, principles of fracture mechanics are usually applied to predict the fatigue life of structural components. Numerical prediction of crack growth versus number of cycles is essential in damage tolerance design. For cracks under mixed mode I/II loading, modified Paris law (d/a d N =C (ΔKe q ) m ) along with different equivalent stress intensity factor (ΔKeq) model is used for fatigue crack growth rate prediction. There are a large number of ΔKeq models available for the mixed mode I/II loading, the selection of proper ΔKeq model has significant impact on fatigue life prediction. In the present investigation, the performance of ΔKeq models in fatigue life prediction is compared with respect to the experimental findings as there are no guidelines/suggestions available on the selection of these models for accurate and/or conservative predictions of fatigue life. Within the limitations of availability of experimental data and currently available numerical simulation techniques, the results of present study attempt to outline models that would provide accurate and conservative life predictions. Such a study aid the numerical analysts or engineers in the proper selection of the model for numerical simulation of the fatigue life. Moreover, the present investigation also suggests a procedure to enhance the accuracy of life prediction using Paris law.

  15. Inclusion models of tensile fracture in fiber-reinforced brittle-matrix composites. Ph.D. Thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, W.

    1993-12-31

    Inclusion models of tensile fracture in fiber-reinforced brittle-matrix composites are proposed in this study. Three stages of matrix cracking including initiation of microcracks, propagation of a bridged crack and multiplication of periodic cracks are modeled using the unique approach - Eshelby`s equivalent inclusion method. Moreover, the interfacial debonding may occur during matrix cracking and is taken into account by the present analysis. After interfacial debonding initiates, the fiber slides against the friction which is assumed to be constant in chapter 2 and chapter 3. However, the fiber-matrix interfaces are assumed to be Coulomb`s friction controlled in chapter 4. Energy releasemore » rate and crack resistance are obtained analytically. From the fracture criterion, the equivalence of energy release rate and crack resistance, the critical applied stress is also obtained. On the critical applied stress the effects of material parameters such as interfacial frictional stress, interfacial surface energy, volume fraction of fibers, misfit strain are evaluated. These evaluations are important for the purpose of material design. Finally, it is attempted in chapter 5 to solve the crack-inhomogeneity interaction problem inhomogeneities. First, the formulation of two inhomogeneities without overlapping is derived in detail. When one of the inhomogeneities is the penny-shape crack and the other one is the ellipsoidal inhomogeneity, the interaction energy between the crack and the applied stress and the energy release rate of the crack are evaluated. Based on the framework of this chapter, one can deal with the real configuration including many inhomogeneities in the similar way. Also, the misfit strains due to thermal mismatch, phase transformation et al. can be included in the present analysis with no difficulty.« less

  16. A nonlinear interface model applied to masonry structures

    NASA Astrophysics Data System (ADS)

    Lebon, Frédéric; Raffa, Maria Letizia; Rizzoni, Raffaella

    2015-12-01

    In this paper, a new imperfect interface model is presented. The model includes finite strains, micro-cracks and smooth roughness. The model is consistently derived by coupling a homogenization approach for micro-cracked media and arguments of asymptotic analysis. The model is applied to brick/mortar interfaces. Numerical results are presented.

  17. Unusual properties of high-compliance porosity extracted from measurements of pressure-dependent wave velocities in rocks

    NASA Astrophysics Data System (ADS)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Pasternak, Elena; Dyskin, Arcady

    2016-04-01

    Conventionally the interpretation of wave velocities and their variations under load is conducted assuming that closable cracks have simple planar shapes, like the popular model of penny-shape cracks. For such cracks, the proportion between complementary variations in different elastic parameters of rocks (such as S- and P-wave velocities) is strictly pre-determined, in particular, it is independent of the crack aspect ratio and rather weakly dependent on the Poisson's ratio of the intact rock. Real rocks, however, contain multitude of cracks of different geometry. Faces of such cracks can exhibit complex modes of interaction when closed by external load, which may result in very different ratios between normal- and shear compliances of such defects. In order to describe the reduction of different elastic moduli, we propose a model in which the compliances of crack-like defects are explicitly decoupled and are not predetermined, so that the ratio q between total normal- and shear- compliances imparted to the rock mass (as well as individual values of these compliances) can be estimated from experimental data on reduction of different elastic moduli (e.g., pressure dependences of P- and S-wave velocities). Physically, the so-extracted ratio q can be interpreted as intrinsic property of individual crack-like defects similar to each other, or as a characteristic of proportion between concentrations of pure normal cracks with very large q and pure shear cracks with q→0. The latter case can correspond, e.g., to saturated cracks in which weakly-compressible liquid prevents crack closing under normal loading. It can be shown that for conventional dry planar cracks, the compliance ratio is q ˜2. The developed model applied to the data on wave-velocity variations with external pressure indicates that elastic properties of the real crack-like defects in rocks can differ considerably from the usually assumed ones. Comparison with experimental data on variations P- and S-wave velocities with hydrostatic compression of different dry and saturated rocks (sandstones, Westerly granite and Webatuck dolomite, etc.) shows that our model is accurate in a wide range of pressures with constant (i.e., pressure-independent) values of parameter q. Furthermore, the determined values of the latter are considerably different from those of conventional cracks. In particular, although all saturated samples have values q <1, the simplified approximation q=0 (i.e., the absence of normal compressibility that is often assumed for wet cracks) leads to large errors in the prediction of complementary variations in the shear- and bulk elastic moduli. Among dry sandstones, the majority have q >2 and many sandstones exhibit unusually high q»1 suggesting quite rough and tortoise nature of real cracks in those rocks. We demonstrate that in such cases, the use of the conventional assumption q ˜2 typical of penny-shape cracks leads to striking inconsistency between the predicted and experimentally observed crack-induced complementary variations in different elastic moduli. Furthermore, among samples with q»1, we revealed numerous examples that demonstrate negative Poisson's ratio at low pressures. VYZ and AVR acknowledge the financial support by RFBR grant No 15-05-05143.

  18. Synergistic erosion/corrosion of superalloys in PFB coal combustor effluent

    NASA Technical Reports Server (NTRS)

    Benford, S. M.; Zellars, G. R.; Lowell, C. E.

    1981-01-01

    Two Ni-based superalloys were exposed to the high velocity effluent of a pressurized fluidized bed coal combustor. Targets were 15 cm diameter rotors operating at 40,000 rpm and small flat plate specimens. Above an erosion rate threshold, the targets were eroded to bare metal. The presence of accelerated oxidation at lower erosion rates suggests erosion/corrosion synergism. Various mechanisms which may contribute to the observed oxide growth enhancement include erosive removal of protective oxide layers, oxide and subsurface cracking, and chemical interaction with sulfur in the gas and deposits through damaged surface layers.

  19. Research on Crack Formation in Gypsum Partitions with Doorway by Means of FEM and Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Kania, Tomasz; Stawiski, Bohdan

    2017-10-01

    Cracking damage in non-loadbearing internal partition walls is a serious problem that frequently occurs in new buildings within the short term after putting them into service or even before completion of construction. Damage in partition walls is sometimes so great that they cannot be accepted by their occupiers. This problem was illustrated by the example of damage in a gypsum partition wall with doorway attributed to deflection of the slabs beneath and above it. In searching for the deflection which causes damage in masonry walls, fracture mechanics applied to the Finite Element Method (FEM) have been used. For a description of gypsum behaviour, the smeared cracking material model has been selected, where stresses are transferred across the narrowly opened crack until its width reaches the ultimate value. Cracks in the Finite Element models overlapped the real damage observed in the buildings. In order to avoid cracks under the deflection of large floor slabs, the model of a wall with reinforcement in the doorstep zone and a 40 mm thick elastic junction between the partition and ceiling has been analysed.

  20. Simplified modelling and analysis of a rotating Euler-Bernoulli beam with a single cracked edge

    NASA Astrophysics Data System (ADS)

    Yashar, Ahmed; Ferguson, Neil; Ghandchi-Tehrani, Maryam

    2018-04-01

    The natural frequencies and mode shapes of the flapwise and chordwise vibrations of a rotating cracked Euler-Bernoulli beam are investigated using a simplified method. This approach is based on obtaining the lateral deflection of the cracked rotating beam by subtracting the potential energy of a rotating massless spring, which represents the crack, from the total potential energy of the intact rotating beam. With this new method, it is assumed that the admissible function which satisfies the geometric boundary conditions of an intact beam is valid even in the presence of a crack. Furthermore, the centrifugal stiffness due to rotation is considered as an additional stiffness, which is obtained from the rotational speed and the geometry of the beam. Finally, the Rayleigh-Ritz method is utilised to solve the eigenvalue problem. The validity of the results is confirmed at different rotational speeds, crack depth and location by comparison with solid and beam finite element model simulations. Furthermore, the mode shapes are compared with those obtained from finite element models using a Modal Assurance Criterion (MAC).

  1. Material Characterization for the Analysis of Skin/Stiffener Separation

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Leone, Frank A.; Song, Kyongchan; Ratcliffe, James G.; Rose, Cheryl A.

    2017-01-01

    Test results show that separation failure in co-cured skin/stiffener interfaces is characterized by dense networks of interacting cracks and crack path migrations that are not present in standard characterization tests for delamination. These crack networks result in measurable large-scale and sub-ply-scale R curve toughening mechanisms, such as fiber bridging, crack migration, and crack delving. Consequently, a number of unknown issues exist regarding the level of analysis detail that is required for sufficient predictive fidelity. The objective of the present paper is to examine some of the difficulties associated with modeling separation failure in stiffened composite structures. A procedure to characterize the interfacial material properties is proposed and the use of simplified models based on empirical interface properties is evaluated.

  2. Predict the fatigue life of crack based on extended finite element method and SVR

    NASA Astrophysics Data System (ADS)

    Song, Weizhen; Jiang, Zhansi; Jiang, Hui

    2018-05-01

    Using extended finite element method (XFEM) and support vector regression (SVR) to predict the fatigue life of plate crack. Firstly, the XFEM is employed to calculate the stress intensity factors (SIFs) with given crack sizes. Then predicetion model can be built based on the function relationship of the SIFs with the fatigue life or crack length. Finally, according to the prediction model predict the SIFs at different crack sizes or different cycles. Because of the accuracy of the forward Euler method only ensured by the small step size, a new prediction method is presented to resolve the issue. The numerical examples were studied to demonstrate the proposed method allow a larger step size and have a high accuracy.

  3. Matrix cracking in laminated composites under monotonic and cyclic loadings

    NASA Technical Reports Server (NTRS)

    Allen, David H.; Lee, Jong-Won

    1991-01-01

    An analytical model based on the internal state variable (ISV) concept and the strain energy method is proposed for characterizing the monotonic and cyclic response of laminated composites containing matrix cracks. A modified constitution is formulated for angle-ply laminates under general in-plane mechanical loading and constant temperature change. A monotonic matrix cracking criterion is developed for predicting the crack density in cross-ply laminates as a function of the applied laminate axial stress. An initial formulation for a cyclic matrix cracking criterion for cross-ply laminates is also discussed. For the monotonic loading case, a number of experimental data and well-known models are compared with the present study for validating the practical applicability of the ISV approach.

  4. Role of sulphur atoms on stress relaxation and crack propagation in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Wang, Baoming; Islam, Zahabul; Zhang, Kehao; Wang, Ke; Robinson, Joshua; Haque, Aman

    2017-09-01

    We present in-situ transmission electron microscopy of crack propagation in a freestanding monolayer MoS2 and molecular dynamic analysis of the underlying mechanisms. Chemical vapor deposited monolayer MoS2 was transferred from sapphire substrate using interfacial etching for defect and contamination minimization. Atomic resolution imaging shows crack tip atoms sustaining 14.5% strain before bond breaking, while the stress field decays at unprecedented rate of 2.15 GPa Å-1. Crack propagation is seen mostly in the zig-zag direction in both model and experiment, suggesting that the mechanics of fracture is not brittle. Our computational model captures the mechanics of the experimental observations on crack propagation in MoS2. While molybdenum atoms carry most of the mechanical load, we show that the sliding motion of weakly bonded sulphur atoms mediate crack tip stress relaxation, which helps the tip sustain very high, localized stress levels.

  5. Development of an Improved Crack Propagation Model for Corrosion-Induced Cover Cracking in RC Structures

    NASA Astrophysics Data System (ADS)

    Hilyati, S.; Nizam, Z. M.; Zurisman, M. A. A.; Azhar, A. T. S.

    2017-06-01

    During the last two decades, reinforced concrete (RC) has been extensively used in most of the world as one of the common construction material due to its advantages and durability. However, RC structures exposed to marine environments are subjected to chloride attack. Chlorides from seawater penetrate into RC structures are not only causing severe corrosion problems but also affect the durability and serviceability of such structures. This paper investigates the influence of transverse reinforcement and spacing of reinforcing bars on concrete cover cracking of two-way RC slab specimens using accelerated corrosion tests. The experimental program involved the testing of four RC slab specimens and was generally designed to observe the crack width and the time of crack to propagate. An improved model for predicting the timing of crack propagation based on the experimental data was then developed.

  6. Laboratory Production of Biofuels and Biochemicals from a Rapeseed Oil through Catalytic Cracking Conversion.

    PubMed

    Ng, Siauw H; Shi, Yu; Heshka, Nicole E; Zhang, Yi; Little, Edward

    2016-09-02

    The work is based on a reported study which investigates the processability of canola oil (bio-feed) in the presence of bitumen-derived heavy gas oil (HGO) for production of transportation fuels through a fluid catalytic cracking (FCC) route. Cracking experiments are performed with a fully automated reaction unit at a fixed weight hourly space velocity (WHSV) of 8 hr(-1), 490-530 °C, and catalyst/oil ratios of 4-12 g/g. When a feed is in contact with catalyst in the fluid-bed reactor, cracking takes place generating gaseous, liquid, and solid products. The vapor produced is condensed and collected in a liquid receiver at -15 °C. The non-condensable effluent is first directed to a vessel and is sent, after homogenization, to an on-line gas chromatograph (GC) for refinery gas analysis. The coke deposited on the catalyst is determined in situ by burning the spent catalyst in air at high temperatures. Levels of CO2 are measured quantitatively via an infrared (IR) cell, and are converted to coke yield. Liquid samples in the receivers are analyzed by GC for simulated distillation to determine the amounts in different boiling ranges, i.e., IBP-221 °C (gasoline), 221-343 °C (light cycle oil), and 343 °C+ (heavy cycle oil). Cracking of a feed containing canola oil generates water, which appears at the bottom of a liquid receiver and on its inner wall. Recovery of water on the wall is achieved through washing with methanol followed by Karl Fischer titration for water content. Basic results reported include conversion (the portion of the feed converted to gas and liquid product with a boiling point below 221 °C, coke, and water, if present) and yields of dry gas (H2-C2's, CO, and CO2), liquefied petroleum gas (C3-C4), gasoline, light cycle oil, heavy cycle oil, coke, and water, if present.

  7. Nonlinear Structural Health Monitoring of the Responsive Space Satellite Systems Using Magneto Elastic Active Sensors (MEAS)

    DTIC Science & Technology

    2011-11-30

    detection of fatigue damage at early stage, well before onset of fracture and crack development. Analytical and numerical models of MEAS and MMI are...stage, well before onset of fracture and crack development. Analytical and numerical models of MEAS and MMI are suggested. Finally, MEAS capability...47  2.4.1  Far-Field Crack Detection

  8. Mechanical Aspects of Interfaces and Surfaces in Ceramic Containing Systems.

    DTIC Science & Technology

    1984-12-14

    of a computer model to simulate the crack damage. The model is based on the fracture mechanics of cracks engulfed by the short stress pulse generated...by drop impact. Inertial effects of the crack faces are a particularly important aspect of the model. The computer scheme thereby allows the stress...W. R. Beaumont, "On the Toughness of Particulate Filled Polymers." Water Drop Impact X. E. D. Case and A. G. Evans, "A Computer -Generated Simulation

  9. Plates and shells containing a surface crack under general loading conditions

    NASA Technical Reports Server (NTRS)

    Joseph, Paul F.; Erdogan, Fazil

    1987-01-01

    Various through and part-through crack problems in plates and shells are considered. The line-spring model of Rice and Levy is generalized to the skew-symmetric case to solve surface crack problems involving mixed-mode, coplanar crack growth. Compliance functions are introduced which are valid for crack depth to thickness ratios at least up to .95. This includes expressions for tension and bending as well as expressions for in-plane shear, out-of-plane shear, and twisting. Transverse shear deformation is taken into account in the plate and shell theories and this effect is shown to be important in comparing stress intensity factors obtained from the plate theory with three-dimensional solutions. Stress intensity factors for cylinders obtained by the line-spring model also compare well with three-dimensional solution. By using the line-spring approach, stress intensity factors can be obtained for the through crack and for part-through crack of any crack front shape, without recalculation integrals that take up the bulk of the computer time. Therefore, parameter studies involving crack length, crack depth, shell type, and shell curvature are made in some detail. The results will be useful in brittle fracture and in fatigue crack propagation studies. All problems considered are of the mixed boundary value type and are reducted to strongly singular integral equations which make use of the finite-part integrals of Hadamard. The equations are solved numerically in a manner that is very efficient.

  10. Subcritical crack propagation due to chemical rock weakening: macroscale chemo-plasticity and chemo-elasticity modeling

    NASA Astrophysics Data System (ADS)

    Hueckel, T.; Hu, M.

    2015-12-01

    Crack propagation in a subcritically stressed rock subject to chemically aggressive environment is analyzed and numerically simulated. Chemically induced weakening is often encountered in hydraulic fracturing of low-permeability oil/gas reservoirs and heat reservoirs, during storage of CO2 and nuclear waste corroding canisters, and other circumstances when rock matrix acidizing is involved. Upon acidizing, mineral mass dissolution is substantially enhanced weakening the rock and causing crack propagation and eventually permeability changes in the medium. The crack process zone is modeled mathematically via a chemo-plastic coupling and chemo-elastic coupling model. In plasticity a two-way coupling is postulated between mineral dissolution and a yield limit of rock matrix. The rate of dissolution is described by a rate law, but the mineral mass removal per unit volume is also a function of a variable internal specific surface area, which is in turn affected by the micro-cracking (treated as a plastic strain). The behavior of the rock matrix is modeled as rigid-plastic adding a chemical softening capacity to Cam-Clay model. Adopting the Extended Johnson's approximation of processes around the crack tip, the evolution of the stress field and deformation as a function of the chemically enhanced rock damage is modeled in a simplified way. In addition, chemical reactive transport is made dependent on plastic strain representing micro-cracking. Depending on mechanical and chemical boundary conditions, the area of enhanced chemical softening is near or somewhat away from the crack tip.In elasticity, chemo-mechanical effect is postulated via a chemical volumetric shrinkage strain proportional to mass removal variable, conceived analogously to thermal expansion. Two versions are considered: of constant coefficient of shrinkage and a variable one, coupled to deviatoric strain. Airy Potential approach used for linear elasticity is extended considering an extra term, which is uncoupled or coupled to strain. The later case requires iterations with solution of reactive transport equation. A decrease of stress intensity factor with time of reaction is well reproduced.

  11. Unified continuum damage model for matrix cracking in composite rotor blades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system undermore » various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.« less

  12. A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve.

    PubMed

    Mohammadi, H; Klassen, R J; Wan, W-K

    2008-10-01

    Pyrolytic carbon mechanical heart valves (MHVs) are widely used to replace dysfunctional and failed heart valves. As the human heart beats around 40 million times per year, fatigue is the prime mechanism of mechanical failure. In this study, a finite element approach is implemented to develop a model for fatigue analysis of MHVs due to the impact force between the leaflet and the stent and cavitation in the aortic position. A two-step method to predict crack propagation in the leaflets of MHVs has been developed. Stress intensity factors (SIFs) are computed at a small initiated crack located on the leaflet edge (the worst case) using the boundary element method (BEM). Static analysis of the crack is performed to analyse the stress distribution around the front crack zone when the crack is opened; this is followed by a dynamic crack analysis to consider crack propagation using the finite element approach. Two factors are taken into account in the calculation of the SIFs: first, the effect of microjet formation due to cavitation in the vicinity of leaflets, resulting in water hammer pressure; second, the effect of the impact force between the leaflet and the stent of the MHVs, both in the closing phase. The critical initial crack length, the SIFs, the water hammer pressure, and the maximum jet velocity due to cavitation have been calculated. With an initial crack length of 35 microm, the fatigue life of the heart valve is greater than 60 years (i.e. about 2.2 x 10(9) cycles) and, with an initial crack length of 170 microm, the fatigue life of the heart valve would be around 2.5 years (i.e. about 9.1 x 10(7) cycles). For an initial crack length greater than 170 microm, there is catastrophic failure and fatigue cracking no longer occurs. A finite element model of fatigue analysis using Patran command language (PCL custom code) in MSC software can be used to evaluate the useful lifespan of MHVs. Similar methodologies can be extended to other medical devices under cyclic loads.

  13. How Do Cracks Initiate and Grow in a Thin Glass Plate? A Peridynamic Analysis

    DTIC Science & Technology

    2014-06-17

    evolution of these cracks, and confirm these results with fractography experiments of post-mortem samples. The results provide evidence of the predictive...face Questions to be answered  Can we understand how and why each type of crack system forms?  Crack surface fractography can give indication of...Symmetrical cracks form on the lower-right quarter of the plate. Jared Wright (ARL) fractography results Conclusions • The simplest peridynamic model

  14. Generation Mechanism of Nonlinear Rayleigh Surface Waves for Randomly Distributed Surface Micro-Cracks.

    PubMed

    Ding, Xiangyan; Li, Feilong; Zhao, Youxuan; Xu, Yongmei; Hu, Ning; Cao, Peng; Deng, Mingxi

    2018-04-23

    This paper investigates the propagation of Rayleigh surface waves in structures with randomly distributed surface micro-cracks using numerical simulations. The results revealed a significant ultrasonic nonlinear effect caused by the surface micro-cracks, which is mainly represented by a second harmonic with even more distinct third/quadruple harmonics. Based on statistical analysis from the numerous results of random micro-crack models, it is clearly found that the acoustic nonlinear parameter increases linearly with micro-crack density, the proportion of surface cracks, the size of micro-crack zone, and the excitation frequency. This study theoretically reveals that nonlinear Rayleigh surface waves are feasible for use in quantitatively identifying the physical characteristics of surface micro-cracks in structures.

  15. Fracture mechanics criteria for turbine engine hot section components

    NASA Technical Reports Server (NTRS)

    Meyers, G. J.

    1982-01-01

    The application of several fracture mechanics data correlation parameters to predicting the crack propagation life of turbine engine hot section components was evaluated. An engine survey was conducted to determine the locations where conventional fracture mechanics approaches may not be adequate to characterize cracking behavior. Both linear and nonlinear fracture mechanics analyses of a cracked annular combustor liner configuration were performed. Isothermal and variable temperature crack propagation tests were performed on Hastelloy X combustor liner material. The crack growth data was reduced using the stress intensity factor, the strain intensity factor, the J integral, crack opening displacement, and Tomkins' model. The parameter which showed the most effectiveness in correlation high temperature and variable temperature Hastelloy X crack growth data was crack opening displacement.

  16. Generation Mechanism of Nonlinear Rayleigh Surface Waves for Randomly Distributed Surface Micro-Cracks

    PubMed Central

    Ding, Xiangyan; Li, Feilong; Xu, Yongmei; Cao, Peng; Deng, Mingxi

    2018-01-01

    This paper investigates the propagation of Rayleigh surface waves in structures with randomly distributed surface micro-cracks using numerical simulations. The results revealed a significant ultrasonic nonlinear effect caused by the surface micro-cracks, which is mainly represented by a second harmonic with even more distinct third/quadruple harmonics. Based on statistical analysis from the numerous results of random micro-crack models, it is clearly found that the acoustic nonlinear parameter increases linearly with micro-crack density, the proportion of surface cracks, the size of micro-crack zone, and the excitation frequency. This study theoretically reveals that nonlinear Rayleigh surface waves are feasible for use in quantitatively identifying the physical characteristics of surface micro-cracks in structures. PMID:29690580

  17. Surface cracks in a plate of finite width under tension or bending

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Boduroglu, H.

    1984-01-01

    The problem of a finite plate containing collinear surface cracks is considered and solved by using the line spring model with plane elasticity and Reissner's plate theory. The main focus is on the effect of interaction between two cracks or between cracks and stress-free plate boundaries on the stress intensity factors in an effort to provide extensive numerical results which may be useful in applications. Some sample results are obtained and are compared with the existing finite element results. Then the problem is solved for a single (internal) crack, two collinear cracks, and two corner cracks for wide range of relative dimensions. Particularly in corner cracks, the agreement with the finite element solution is surprisingly very good. The results are obtained for semi-elliptic and rectangular crack profiles which may, in practice, correspond to two limiting cases of the actual profile of a subcritically growing surface crack.

  18. Surface cracks in a plate of finite width under extension or bending

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Boduroglu, H.

    1984-01-01

    In this paper the problem of a finite plate containing collinear surface cracks is considered. The problem is solved by using the line spring model with plane elasticity and Reissner's plate theory. The main purpose of the study is to investigate the effect of interaction between two cracks or between cracks and stress-free plate boundaries on the stress intensity factors and to provide extensive numerical results which may be useful in applications. First, some sample results are obtained and are compared with the existing finite element results. Then the problem is solved for a single (internal) crack, two collinear cracks and two corner cracks for wide range of relative dimensions. Particularly in corner cracks the agreement with the finite element solution is surprisingly very good. The results are obtained for semielliptic and rectangular crack profiles which may, in practice, correspond to two limiting cases of the actual profile of a subcritically growing surface crack.

  19. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  20. Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin W.; Jiang, Wen; Dolbow, John E.

    As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of themore » cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply XFEM to model stress concentrations induced by fuel fractures at the fuel/cladding interface during pellet cladding mechanical interaction (PCMI). This is accomplished by enhancing the thermal and mechanical contact enforcement algorithms employed by BISON to permit their use in conjunction with XFEM. The results from this methodology are demonstrated to be equivalent to those from using meshed discrete cracks. While the results of the two methods are equivalent for the case of a stationary crack, it is demonstrated that XFEM provides the additional flexibility of allowing arbitrary crack initiation and propagation during the analysis, and minimizes model setup effort for cases with stationary cracks.« less

  1. Experimental and numerical investigation of crack initiation and propagation in silicon nitride ceramic under rolling and cyclic contact

    NASA Astrophysics Data System (ADS)

    Raga, Rahul; Khader, Iyas; Zdeněk, Chlup; Kailer, Andreas

    2017-05-01

    The focus of the work was to investigate crack initiation and propagation mechanisms in silicon nitride undergoing non-conforming hybrid contact under various tribological conditions. In order to understand the prevailing modes of damage in silicon nitride, two distinct model experiments were proposed, namely, rolling contact and cyclic contact experiments. The rolling contact experiment was designed in order to mimic the contact conditions appearing in hybrid bearings at contact pressures ranging from 3 to 6 GPa. On the other hand, cyclic contact experiments with stresses ranging from 4 to 15 GPa under different media were carried out to study damage under localised stresses. In addition, the experimentally observed cracks were implemented in a finite element model to study the stress redistribution and correlate the generated stresses with the corresponding mechanisms. Crack propagation under rolling contact was attributed to two different mechanisms, namely, fatigue induced fracture and lubricant driven crack propagation. The numerical simulations shed light on the tensile stress driven surface and subsurface crack propagation mechanisms. On the other hand, the cyclic contact experiments showed delayed crack formation for lubricated cyclic contact. Ceramographic cross-sectional analysis showed crack patterns similar to Hertzian crack propagation under cyclic contact load.

  2. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation

    PubMed Central

    Zhang, Wei; Bao, Zhangmin; Jiang, Shan; He, Jingjing

    2016-01-01

    In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc., it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN) is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF)-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects. PMID:28773606

  3. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation.

    PubMed

    Zhang, Wei; Bao, Zhangmin; Jiang, Shan; He, Jingjing

    2016-06-17

    In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc. , it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN) is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF)-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects.

  4. Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.

    PubMed

    Maugans, Clayton B; Akgerman, Aydin

    2003-01-01

    Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.

  5. Model calibration for a soft elastomeric capacitor sensor considering slippage under fatigue cracks

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxiong; Li, Jian; Bennett, Caroline; Collins, William; Laflamme, Simon

    2016-04-01

    A newly-developed soft elastomeric capacitor (SEC) strain sensor has shown promise in fatigue crack monitoring. The SECs exhibit high levels of ductility and hence do not break under excessive strain when the substrate cracks due to slippage or de-bonding between the sensor and epoxy. The actual strain experienced by a SEC depends on the amount of slippage, which is difficult to simulate numerically, making it challenging to accurately predict the response of a SEC near a crack. In this paper, a two-step approach is proposed to simulate the capacitance response of a SEC. First, a finite element (FE) model of a steel compact tension specimen was analyzed under cyclic loading while the cracking process was simulated based on an element removal technique. Second, a rectangular boundary was defined near the crack region. The SEC outside the boundary was assumed to have perfect bond with the specimen, while that inside the boundary was assumed to deform freely due to slippage. A second FE model was then established to simulate the response of the SEC within the boundary subject to displacements at the boundary from the first FE model. The total simulated capacitance was computed from the model results by combining the computed capacitance inside and outside the boundary. The performance of the simulation incorporating slippage was evaluated by comparing the model results with the experimental data from the test performed on a compact tension specimen. The FE model considering slippage showed results that matched the experimental findings more closely than the FE model that did not consider slippage.

  6. Molecular-dynamics Simulation-based Cohesive Zone Representation of Intergranular Fracture Processes in Aluminum

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin I.; Saether, Erik; Phillips, Dawn R.; Glaessgen, Edward H.

    2006-01-01

    A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics simulations. A molecular-dynamics model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat 99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element an atomistic analog to a continuum cohesive zone model element - the results from the molecular-dynamics simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion. Keywords: Crack-tip plasticity; Cohesive zone model; Grain boundary decohesion; Intergranular fracture; Molecular-dynamics simulation

  7. Implementation of thermal residual stresses in the analysis of fiber bridged matrix crack growth in titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, John G., Jr.; Johnson, W. Steven

    1994-01-01

    In this research, thermal residual stresses were incorporated in an analysis of fiber-bridged matrix cracks in unidirectional and cross-ply titanium matrix composites (TMC) containing center holes or center notches. Two TMC were investigated, namely, SCS-6/Timelal-21S laminates. Experimentally, matrix crack initiation and growth were monitored during tension-tension fatigue tests conducted at room temperature and at an elevated temperature of 200 C. Analytically, thermal residual stresses were included in a fiber bridging (FB) model. The local R-ratio and stress-intensity factor in the matrix due to thermal and mechanical loadings were calculated and used to evaluate the matrix crack growth behavior in the two materials studied. The frictional shear stress term, tau, assumed in this model was used as a curve-fitting parameter to matrix crack growth data. The scatter band in the values of tau used to fit the matrix crack growth data was significantly reduced when thermal residual stresses were included in the fiber bridging analysis. For a given material system, lay-up and temperature, a single value of tau was sufficient to analyze the crack growth data. It was revealed in this study that thermal residual stresses are an important factor overlooked in the original FB models.

  8. Stress interactions among arrays of tensile cracks in 3D: Implications for the nucleation of shear failure and the orientations of faults.

    NASA Astrophysics Data System (ADS)

    Healy, D.; Davis, T.

    2017-12-01

    In low porosity rocks it is widely believed that planes of shear failure nucleate through the interaction of arrays of smaller tensile microcracks. This model has been confirmed through laboratory rock deformation experiments and detailed microstructural analyses. In this contribution we use the Boundary Element Method (BEM) to model the interactions of arrays of tensile cracks, discretised as ellipsoidal voids in three dimensions (3D). We calculate the elastic stresses in the solid matrix surrounding the cracks resulting from an applied load and include the interaction effects of each crack upon all the others. We explore the role of variations in crack shape, size, position and orientation upon the total and locally perturbed stress fields. We calculate the average crack normal stress (CNS) acting over the area of each tensile crack, and then find the locus of the maximum value of this stress throughout the modelled volume. Following Reches & Lockner (1994) and Healy et al. (2006a, 2006b), we assert that planes of shear failure will most likely nucleate on surfaces parallel to the locus of maximum average CNS. These shear planes are oblique to all three principal stresses in the far field.

  9. Prediction of Fatigue Crack Growth in Rail Steels.

    DOT National Transportation Integrated Search

    1981-10-01

    Measures to prevent derailments due to fatigue failures of rails require adequate knowledge of the rate of propagation of fatigue cracks under service loading. The report presents a computational model for the prediction of crack growth in rails. The...

  10. Probabilistic Prognosis of Non-Planar Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    Leser, Patrick E.; Newman, John A.; Warner, James E.; Leser, William P.; Hochhalter, Jacob D.; Yuan, Fuh-Gwo

    2016-01-01

    Quantifying the uncertainty in model parameters for the purpose of damage prognosis can be accomplished utilizing Bayesian inference and damage diagnosis data from sources such as non-destructive evaluation or structural health monitoring. The number of samples required to solve the Bayesian inverse problem through common sampling techniques (e.g., Markov chain Monte Carlo) renders high-fidelity finite element-based damage growth models unusable due to prohibitive computation times. However, these types of models are often the only option when attempting to model complex damage growth in real-world structures. Here, a recently developed high-fidelity crack growth model is used which, when compared to finite element-based modeling, has demonstrated reductions in computation times of three orders of magnitude through the use of surrogate models and machine learning. The model is flexible in that only the expensive computation of the crack driving forces is replaced by the surrogate models, leaving the remaining parameters accessible for uncertainty quantification. A probabilistic prognosis framework incorporating this model is developed and demonstrated for non-planar crack growth in a modified, edge-notched, aluminum tensile specimen. Predictions of remaining useful life are made over time for five updates of the damage diagnosis data, and prognostic metrics are utilized to evaluate the performance of the prognostic framework. Challenges specific to the probabilistic prognosis of non-planar fatigue crack growth are highlighted and discussed in the context of the experimental results.

  11. Environmental fatigue in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.

    1992-01-01

    Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.

  12. 75 FR 18774 - Airworthiness Directives; McCauley Propeller Systems Model 4HFR34C653/L106FA Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... (ECI) of the propeller hub for cracks. That proposed AD resulted from reports of 3 hubs found cracked... NPRM results from reports of 7 additional hubs found cracked during propeller overhaul, totaling 10 cracked hubs. We are proposing this supplemental AD to prevent failure of the propeller hub, which could...

  13. Model behavior and sensitivity in an application of the cohesive bed component of the community sediment transport modeling system for the York River estuary, VA, USA

    USGS Publications Warehouse

    Fall, Kelsey A.; Harris, Courtney K.; Friedrichs, Carl T.; Rinehimer, J. Paul; Sherwood, Christopher R.

    2014-01-01

    The Community Sediment Transport Modeling System (CSTMS) cohesive bed sub-model that accounts for erosion, deposition, consolidation, and swelling was implemented in a three-dimensional domain to represent the York River estuary, Virginia. The objectives of this paper are to (1) describe the application of the three-dimensional hydrodynamic York Cohesive Bed Model, (2) compare calculations to observations, and (3) investigate sensitivities of the cohesive bed sub-model to user-defined parameters. Model results for summer 2007 showed good agreement with tidal-phase averaged estimates of sediment concentration, bed stress, and current velocity derived from Acoustic Doppler Velocimeter (ADV) field measurements. An important step in implementing the cohesive bed model was specification of both the initial and equilibrium critical shear stress profiles, in addition to choosing other parameters like the consolidation and swelling timescales. This model promises to be a useful tool for investigating the fundamental controls on bed erodibility and settling velocity in the York River, a classical muddy estuary, provided that appropriate data exists to inform the choice of model parameters.

  14. Analytical Modelling of Transverse Matrix Cracking of [plus or minus Theta/90(sub n)](sub s) Composite Laminates Under Multiaxial Loading

    NASA Technical Reports Server (NTRS)

    Mayugo, J A.; Camanho, P. P.; Maimi, P.; Davila, C. G.

    2010-01-01

    An analytical model based on the analysis of a cracked unit cell of a composite laminate subjected to multiaxial loads is proposed to predict the onset and accumulation of transverse matrix cracks in the 90(sub n) plies of uniformly stressed [plus or minus Theta/90(sub n)](sub s) laminates. The model predicts the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate, and it accounts for the effect of the ply thickness on the ply strength. Several examples describing the predictions of laminate response, from damage onset up to final failure under both uniaxial and multiaxial loads, are presented.

  15. Multiscale Modeling of Damage Processes in Aluminum Alloys: Grain-Scale Mechanisms

    NASA Technical Reports Server (NTRS)

    Hochhalter, J. D.; Veilleux, M. G.; Bozek, J. E.; Glaessgen, E. H.; Ingraffea, A. R.

    2008-01-01

    This paper has two goals related to the development of a physically-grounded methodology for modeling the initial stages of fatigue crack growth in an aluminum alloy. The aluminum alloy, AA 7075-T651, is susceptible to fatigue cracking that nucleates from cracked second phase iron-bearing particles. Thus, the first goal of the paper is to validate an existing framework for the prediction of the conditions under which the particles crack. The observed statistics of particle cracking (defined as incubation for this alloy) must be accurately predicted to simulate the stochastic nature of microstructurally small fatigue crack (MSFC) formation. Also, only by simulating incubation of damage in a statistically accurate manner can subsequent stages of crack growth be accurately predicted. To maintain fidelity and computational efficiency, a filtering procedure was developed to eliminate particles that were unlikely to crack. The particle filter considers the distributions of particle sizes and shapes, grain texture, and the configuration of the surrounding grains. This filter helps substantially reduce the number of particles that need to be included in the microstructural models and forms the basis of the future work on the subsequent stages of MSFC, crack nucleation and microstructurally small crack propagation. A physics-based approach to simulating fracture should ultimately begin at nanometer length scale, in which atomistic simulation is used to predict the fundamental damage mechanisms of MSFC. These mechanisms include dislocation formation and interaction, interstitial void formation, and atomic diffusion. However, atomistic simulations quickly become computationally intractable as the system size increases, especially when directly linking to the already large microstructural models. Therefore, the second goal of this paper is to propose a method that will incorporate atomistic simulation and small-scale experimental characterization into the existing multiscale framework. At the microscale, the nanoscale mechanics are represented within cohesive zones where appropriate, i.e. where the mechanics observed at the nanoscale can be represented as occurring on a plane such as at grain boundaries or slip planes at a crack front. Important advancements that are yet to be made include: 1. an increased fidelity in cohesive zone modeling; 2. a means to understand how atomistic simulation scales with time; 3. a new experimental methodology for generating empirical models for CZMs and emerging materials; and 4. a validation of simulations of the damage processes at the nano-micro scale. With ever-increasing computer power, the long-term ability to employ atomistic simulation for the prognosis of structural components will not be limited by computation power, but by our lack of knowledge in incorporating atomistic models into simulations of MSFC into a multiscale framework.

  16. A Discrete Event Simulation Model of Patient Flow in a General Hospital Incorporating Infection Control Policy for Methicillin-Resistant Staphylococcus Aureus (MRSA) and Vancomycin-Resistant Enterococcus (VRE).

    PubMed

    Shenoy, Erica S; Lee, Hang; Ryan, Erin E; Hou, Taige; Walensky, Rochelle P; Ware, Winston; Hooper, David C

    2018-02-01

    Hospitalized patients are assigned to available staffed beds based on patient acuity and services required. In hospitals with double-occupancy rooms, patients must be additionally matched by gender. Patients with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus (VRE) must be bedded in single-occupancy rooms or cohorted with other patients with similar MRSA/VRE flags. We developed a discrete event simulation (DES) model of patient flow through an acute care hospital. Patients are matched to beds based on acuity, service, gender, and known MRSA/VRE colonization. Outcomes included time to bed arrival, length of stay, patient-bed acuity mismatches, occupancy, idle beds, acuity-related transfers, rooms with discordant MRSA/VRE colonization, and transmission due to discordant colonization. Observed outcomes were well-approximated by model-generated outcomes for time-to-bed arrival (6.7 v. 6.2 to 6.5 h) and length of stay (3.3 v. 2.9 to 3.0 days), with overlapping 90% coverage intervals. Patient-bed acuity mismatches, where patient acuity exceeded bed acuity and where patient acuity was lower than bed acuity, ranged from 0.6 to 0.9 and 8.6 to 11.1 mismatches per h, respectively. Values for observed occupancy, total idle beds, and acuity-related transfers compared favorably to model-predicted values (91% v. 86% to 87% occupancy, 15.1 v. 14.3 to 15.7 total idle beds, and 27.2 v. 22.6 to 23.7 transfers). Rooms with discordant colonization status and transmission due to discordance were modeled without an observed value for comparison. One-way and multi-way sensitivity analyses were performed for idle beds and rooms with discordant colonization. We developed and validated a DES model of patient flow incorporating MRSA/VRE flags. The model allowed for quantification of the substantial impact of MRSA/VRE flags on hospital efficiency and potentially avoidable nosocomial transmission.

  17. Retardation analytical model to extend service life

    NASA Technical Reports Server (NTRS)

    Matejczyk, D.

    1984-01-01

    A fatigue crack growth model that incorporates crack growth retardation effects and is applicable to the materials characteristics and service environments of high performance LH2/LO2 engine systems was developed and tested.

  18. Analysis of Multiple Cracks in an Infinite Functionally Graded Plate

    NASA Technical Reports Server (NTRS)

    Shbeeb, N. I.; Binienda, W. K.; Kreider, K. L.

    1999-01-01

    A general methodology was constructed to develop the fundamental solution for a crack embedded in an infinite non-homogeneous material in which the shear modulus varies exponentially with the y coordinate. The fundamental solution was used to generate a solution to fully interactive multiple crack problems for stress intensity factors and strain energy release rates. Parametric studies were conducted for two crack configurations. The model displayed sensitivity to crack distance, relative angular orientation, and to the coefficient of nonhomogeneity.

  19. Assessment of the Effectiveness of Clay Soil Covers as Engineered Barriers in Waste Disposal Facilities with Emphasis on Modeling Cracking Behavior

    DTIC Science & Technology

    2008-06-01

    escaping the clay and keeping its compacted conditions constant. Other stabilizing additives such as surfactants or cement and applications such as foamed ...not a local phenomenon. Once a crack is formed, increasing the width of the crack at the surface by additional shrinkage will also extend the depth...at the surface, increasing the width of the crack by additional shrinkage will drive the crack deeper into the soil mass, expos- ing new surfaces to

  20. Health Monitoring and Diagnosis of Solid Rocket Motors with Bore Cracks

    DTIC Science & Technology

    2015-11-01

    Bore Cracks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Anhduong Q. Le, L. Z. Sun, and Timothy C. Miller 5d...element-based computational model is used to investigate the effects of bore cracking on the changes in stress distributions along the bondline of solid...between the crack depth and the sensor data to inversely estimate the size of bore cracks in the motor. It is shown that the proposed type of sensing

  1. A thermodynamic analysis of propagating subcritical cracks with cohesive zones

    NASA Technical Reports Server (NTRS)

    Allen, David H.

    1993-01-01

    The results of the so-called energetic approach to fracture with particular attention to the issue of energy dissipation due to crack propagation are applied to the case of a crack with cohesive zone. The thermodynamic admissibility of subcritical crack growth (SCG) is discussed together with some hypotheses that lead to the derivation of SCG laws. A two-phase cohesive zone model for discontinuous crack growth is presented and its thermodynamics analyzed, followed by an example of its possible application.

  2. Does the Interpersonal Model Generalize to Obesity Without Binge Eating?

    PubMed

    Lo Coco, Gianluca; Sutton, Rachel; Tasca, Giorgio A; Salerno, Laura; Oieni, Veronica; Compare, Angelo

    2016-09-01

    The interpersonal model has been validated for binge eating disorder (BED), but it is not yet known if the model applies to individuals who are obese but who do not binge eat. The goal of this study was to compare the validity of the interpersonal model in those with BED versus those with obesity, and normal weight samples. Data from a sample of 93 treatment-seeking women diagnosed with BED, 186 women who were obese without BED, and 100 controls who were normal weight were examined for indirect effects of interpersonal problems on binge eating psychopathology mediated through negative affect. Findings demonstrated the mediating role of negative affect for those with BED and those who were obese without BED. Testing a reverse model suggested that the interpersonal model is specific for BED but that this model may not be specific for those without BED. This is the first study to find support for the interpersonal model in a sample of women with obesity but who do not binge. However, negative affect likely plays a more complex role in determining overeating in those with obesity but who do not binge. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  3. Electrochemical model of local corrosion at the tip of a loaded crack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreikiv, O.E.; Tym`yak, N.I.

    1994-07-01

    A model of electrochemical processes near a crack tip in a stressed metal subjected to corrosion with hydrogen depolarization is suggested. It is shown that, in order to describe the kinetics of hydrogenation of the prefracture area, it is necessary to take into account the type of passivation layer on the newly formed metal surface near the crack tip and the mechanism of its formation.

  4. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology. Appendix C -- Finite Element Models Solution Database File, Appendix D -- Benchmark Finite Element Models Solution Database File

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  5. Analysis of crack propagation in human long bone by using finite element modeling

    NASA Astrophysics Data System (ADS)

    Salim, Mohammad Shahril; Salleh, Ahmad Faizal; Daud, Ruslizam

    2017-12-01

    The aim of this research is to present a numerical modeling of crack for human long bone specifically on femur shaft bone under mode I loading condition. Two - dimensional model (2D) of long bone was developed based on past research study. The finite element analysis and construction of the model are done using Mechanical APDL (ANSYS) v14.0 software. The research was conducted mainly based on two conditions that were at different crack lengths and different loading forces for male and female. In order to evaluate the stress intensity factor (KI) of the femur shaft of long bone, this research employed finite element method to predict the brittle fracture loading by using three-point bending test. The result of numerical test found that the crack was formed when the crack length reached 0.0022 m where KI values are proportional with the crack's length. Also, various loading forces in range of 400 N to 1000 N were applied in an attempt to study their effect on stress intensity factor and it was found that the female dimension has higher KI values compared to male. It was also observed that K values found by this method have good agreement with theoretical results based on previous research.

  6. Treatment of singularities in a middle-crack tension specimen

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1990-01-01

    A three-dimensional finite-element analysis of a middle-crack tension specimen subjected to mode I loading was performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements with collapsed nonsingular elements at the crack front. The displacements and stresses from the analysis were used to estimate the power of singularities, by a log-log regression analysis, along the crack front. Analyses showed that finite-sized cracked bodies have two singular stress fields. Because of two singular stress fields near the free surface and the classical square root singularity elsewhere, the strain energy release rate appears to be an appropriate parameter all along the crack front.

  7. Mechanics of tidally driven fractures in Europa's ice shell and implications for seismic and radar profiling

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pappalardo, R. T.; Makris, N. C.

    2005-12-01

    Among Europa's surface features, cycloidal cracks are probably the most important for proving the existence of a subsurface liquid ocean. This is because (1) there is strong evidence that they are caused by tidally induced stress [1], and (2) this stress likely only approaches the ice failure strength if an ocean is present. There are a number of outstanding issues, however, in quantitatively explaining cycloidal cracks. First, current estimates of the pure diurnal tidal stress necessary to cause cycloidal cracks even in the presence of an ocean [1,2] is well below the typical stress known to cause tensile failure in natural terrestrial ice [3]. Second, models of ridge formation suggest that cycloidal cracks penetrate through the entire brittle-ice layer [1,4], but current models limit the depth of tidally induced surface cracks to be less than 100 m even in the presence of an ocean [1,5]. Third, the 3-km/h crack propagation speed determined by [1] is three orders of magnitude lower than the roughly 2-km/s speed at which cracks are known to propagate in ice. Our goal is to quantitatively address these issues in a unified manner. To do this, a fracture mechanics model is developed for the initiation and propagation of a crack through an ice layer of finite thickness in the presence of gravitational overburden and porosity. It is shown that Europa's ice shell may be highly porous and salt-rich. This implies that the strength of Europa's outer ice shell may be sufficiently low to make the crack initiation strengths arrived at by current kinematic models [1,2] highly plausible, even though they are much lower than those typically measured for terrestrial ice. A model is developed for the stress intensity factor at a crack tip in an ice shell with finite thickness, gravitational overburden, and depth-dependent porosity. This leads to the conclusion that cycloids are generated as a sequence of discrete and near instantaneous fracture events, each of which penetrates through the entire brittle layer with horizontal length on the order of the brittle layer thickness. This mechanism yields an apparent propagation speed that is consistent with the 3 km/h crack propagation speed necessary to generate cycloids in current kinematic models [1,2]. An implication of this model is that the level of seismic activity should be higher by orders of magnitude in the presence of an ocean. High correlation is then expected between the level of seismic activity and the tidal period in the presence but not in the absence of an ocean. The cracks associated with cycloids that fully penetrate the brittle layer should be at least 106 times more energetic than the shallow, roughly 100-m deep, surface cracks. We show that this greatly improves the signal-to-noise ratio for the type of seismic profiling discussed in [6] if fully penetrating cracks are used as sources of opportunity. Although Europa's ice is likely highly porous, the size of vacuous pores is likely on the order of a millimeter. Since the pore size is at least three orders of magnitude smaller than the ice-penetrating radar wavelength, our calculations show that porosity-induced scattering should not be significant. [1] Hoppa et al. 1999, Science 285. [2] Crawford et al. 2005, LPSC XXXVI #2042. [3] Weeks and Cox 1984, Ocean Sci. Eng. 9. [4] Pappalardo et al. 1999, J. Geophys. Res. 97. [5] Crawford and Stevenson 1988, Icarus 73. [6] Lee et al. 2003, Icarus 165.

  8. Continuous Probabilistic Modeling of Tracer Stone Dispersal in Upper Regime

    NASA Astrophysics Data System (ADS)

    Hernandez Moreira, R. R.; Viparelli, E.

    2017-12-01

    Morphodynamic models that specifically account for the non-uniformity of the bed material are generally based on some form of the active layer approximation. These models have proven to be useful tools in the study of transport, erosion and deposition of non-uniform bed material in the case of channel bed aggradation and degradation. However, when local spatial effects over short time scales compared to those characterizing the changes in mean bed elevation dominate the vertical sediment fluxes, as is the presence of bedforms, active layer models cannot capture key details of the sediment transport process. To overcome the limitations of active layer based models, Parker, Paola and Leclair (PPL) proposed a continuous probabilistic modeling frameworks in which the sediment exchange between the bedload transport and the mobile bed is described in terms of probability density functions of bed elevation, entrainment and deposition. Here we present the implementation of a modified version of the PPL modeling framework for the study of tracer stones dispsersal in upper regime bedload transport conditions (i.e. upper regime plane bed at the transition between dunes and antidunes, downstream migrating antidunes and upper regime plane bed with bedload transport in sheet flow mode) in which the probability functions are based on measured time series of bed elevation fluctuations. The extension to the more general case of mixtures of sediments differing in size is the future development of the proposed work.

  9. Effective properties of a poroelastic medium containing a distribution of aligned cracks

    NASA Astrophysics Data System (ADS)

    Galvin, R. J.; Gurevich, B.

    2009-07-01

    We simulate the effect of fractures by considering them to be thin circular cracks in a poroelastic background. Using the solution of the scattering problem for a single-crack and multiple-scattering theory, we estimate the attenuation and dispersion of elastic waves in a porous medium containing a sparse distribution of cracks. When comparing with a similar model, in which multiple-scattering effects are neglected, we find that there is agreement at high frequencies and discrepancies at low frequencies. We conclude that the interaction between cracks should not be neglected at low frequencies, even in the limit of weak crack density. Since the models only agree with each other at high frequencies, when the time available for fluid diffusion is small, we conclude that the interaction between cracks, which is a result of fluid diffusion, is negligible at high frequencies. We also compare our results with a model for spherical inclusions and find that the attenuation for spherical inclusions has exactly the same dependence upon frequency but a difference in magnitude, which depends upon frequency. Since the attenuation curves are very close at low frequencies, we conclude that the effective medium properties are not sensitive to the shape of an inclusion at wavelengths that are large compared with the inclusion size. However, at frequencies such that the wavelength is comparable to or smaller than the inclusion size, the effective properties are sensitive to the greater compliance of the flat cracks, and more attenuation occurs at a given frequency as a result.

  10. Deep particle bed dryout model based on flooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuan, P.

    1987-01-01

    Examination of the damaged Three Mile island Unit 2 (TMI-2) reactor indicates that a deep (approx. 1-m) bed of relatively large (approx. 1-mm) particles was formed in the core. Cooling of such beds is crucial to the arrest of core damage progression. The Lipinski model, based on flows in the bed, has been used to predict the coolability, but uncertainties exist in the turbulent permeability. Models based on flooding at the top of the bed either have a dimensional viscosity term, or no viscosity dependence, thus limiting their applicability. This paper presents a dimensionless correlation based on flooding data thatmore » involves a liquid Reynolds number. The derived dryout model from this correlation is compared with data for deep beds of large particles at atmospheric pressure, and with other models over a wide pressure range. It is concluded that the present model can give quite accurate predictions for the dryout heat flux of particle beds formed during a light water reactor accident and it is easy to use and agrees with the Lipinski n = 5 model, which requires iterative calculations.« less

  11. Resonance of a fluid-driven crack: radiation properties and implications for the source of long-period events and harmonic tremor.

    USGS Publications Warehouse

    Chouet, B.

    1988-01-01

    A dynamic source model is presented, in which a 3-D crack containing a viscous compressible fluid is excited into resonance by an impulsive pressure transient applied over a small area DELTA S of the crack surface. The crack excitation depends critically on two dimensionless parameters called the crack stiffness and viscous damping loss. According to the model, the long-period event and harmonic tremor share the same source but differ in the boundary conditions for fluid flow and in the triggering mechanism setting up the resonance of the source, the former being viewed as the impulse response of the tremor generating system and the later representing the excitation due to more complex forcing functions.-from Author

  12. Crack-tip-opening angle measurements and crack tunneling under stable tearing in thin sheet 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Sutton, M. A.

    1993-01-01

    The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.

  13. Fracture of concrete caused by the reinforcement corrosion products

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. T.; Millard, A.; Caré, S.; L'Hostis, V.; Berthaud, Y.

    2006-11-01

    One of the most current degradations in reinforced concrete structures is related to the corrosion of the reinforcements. The corrosion products during active corrosion induce a mechanical pressure on the surrounding concrete that leads to cover cracking along the rebar. The objective of this work is to study the cracking of concrete due to the corrosion of the reinforcements. The phenomenon of corrosion/cracking is studied in experiments through tests of accelerated corrosion on plate and cylindrical specimens. A CCD camera is used to take images every hour and the pictures are analyzed by using the intercorrelation image technique (Correli^LMT) to derive the displacement and strain field. Thus the date of appearance of the first through crack is detected and the cinematic crack initiations are observed during the test. A finite element model that allows prediction of the mechanical consequences of the corrosion of steel in reinforced concrete structures is proposed. From the comparison between the test results and numerical simulations, it may be concluded that the model is validated in term of strains up to the moment when the crack becomes visible, and in terms of crack pattern.

  14. Analysis of Interface Properties of Hybrid Pre-stressed Strengthening RC Beams with Crack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Zhihong; Huang Peiyan; Guo Yongchang

    2010-05-21

    A finite element (FE) analysis model of interface layer is established for the pre-stressed CFS-GFS hybrid strengthened beams. An elastic solution for the interfacial stress in the adhesive layer of the retrofitted beams is developed as well. The analytical results were compared with the FE results of interfacial stresses in the beams with different thickness of the adhesive and the fibre sheet. Different heights of Cracks in the interfacial layer of the concrete beam are considered in FE Model. Analysis results show the strengthening pattern is of excellent interface performance and the strength of the fiber sheet can be effectivelymore » utilized. The results also indicate the shear and normal stresses in the interfacial layer of the concrete beam release at the locations of the cracks and reach the maximal value before the concrete cracked. The shear and normal stresses in the adhesive layer increase abruptly, and the cracks in the adhesive layer then appear. The axial stresses of hybrid fiber sheet near the cracks decrease locally at the sites of the concrete cracks.« less

  15. Modeling Fatigue Damage Onset and Progression in Composites Using an Element-Based Virtual Crack Closure Technique Combined With the Floating Node Method

    NASA Technical Reports Server (NTRS)

    De Carvalho, Nelson V.; Krueger, Ronald

    2016-01-01

    A new methodology is proposed to model the onset and propagation of matrix cracks and delaminations in carbon-epoxy composites subject to fatigue loading. An extended interface element, based on the Floating Node Method, is developed to represent delaminations and matrix cracks explicitly in a mesh independent fashion. Crack propagation is determined using an element-based Virtual Crack Closure Technique approach to determine mixed-mode energy release rates, and the Paris-Law relationship to obtain crack growth rate. Crack onset is determined using a stressbased onset criterion coupled with a stress vs. cycle curve and Palmgren-Miner rule to account for fatigue damage accumulation. The approach is implemented in Abaqus/Standard® via the user subroutine functionality. Verification exercises are performed to assess the accuracy and correct implementation of the approach. Finally, it was demonstrated that this approach captured the differences in failure morphology in fatigue for two laminates of identical stiffness, but with layups containing ?deg plies that were either stacked in a single group, or distributed through the laminate thickness.

  16. Dynamic calibration and analysis of crack tip propagation in energetic materials using real-time radiography

    NASA Astrophysics Data System (ADS)

    Butt, Ali

    Crack propagation in a solid rocket motor environment is difficult to measure directly. This experimental and analytical study evaluated the viability of real-time radiography for detecting bore regression and propellant crack propagation speed. The scope included the quantitative interpretation of crack tip velocity from simulated radiographic images of a burning, center-perforated grain and actual real-time radiographs taken on a rapid-prototyped model that dynamically produced the surface movements modeled in the simulation. The simplified motor simulation portrayed a bore crack that propagated radially at a speed that was 10 times the burning rate of the bore. Comparing the experimental image interpretation with the calibrated surface inputs, measurement accuracies were quantified. The average measurements of the bore radius were within 3% of the calibrated values with a maximum error of 7%. The crack tip speed could be characterized with image processing algorithms, but not with the dynamic calibration data. The laboratory data revealed that noise in the transmitted X-Ray intensity makes sensing the crack tip propagation using changes in the centerline transmitted intensity level impractical using the algorithms employed.

  17. Virtual hybrid test control of sinuous crack

    NASA Astrophysics Data System (ADS)

    Jailin, Clément; Carpiuc, Andreea; Kazymyrenko, Kyrylo; Poncelet, Martin; Leclerc, Hugo; Hild, François; Roux, Stéphane

    2017-05-01

    The present study aims at proposing a new generation of experimental protocol for analysing crack propagation in quasi brittle materials. The boundary conditions are controlled in real-time to conform to a predefined crack path. Servo-control is achieved through a full-field measurement technique to determine the pre-set fracture path and a simple predictor model based on linear elastic fracture mechanics to prescribe the boundary conditions on the fly so that the actual crack path follows at best the predefined trajectory. The final goal is to identify, for instance, non-local damage models involving internal lengths. The validation of this novel procedure is performed via a virtual test-case based on an enriched damage model with an internal length scale, a prior chosen sinusoidal crack path and a concrete sample. Notwithstanding the fact that the predictor model selected for monitoring the test is a highly simplified picture of the targeted constitutive law, the proposed protocol exhibits a much improved sensitivity to the sought parameters such as internal lengths as assessed from the comparison with other available experimental tests.

  18. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied loads may be either tensile or compressive. Several standardized aircraft flight-load histories, such as TWIST, Mini-TWIST, FALSTAFF, Inverted FALSTAFF, Felix and Gaussian, are included as options. FASTRAN II also includes two other methods that will help the user input spectrum load histories. The two methods are: (1) a list of stress points, and (2) a flight-by-flight history of stress points. Examples are provided in the user manual. Developed as a research program, FASTRAN II has successfully predicted crack growth in many metallic materials under various aircraft spectrum loading. A computer program DKEFF which is a part of the FASTRAN II package was also developed to analyze crack growth rate data from laboratory specimens to obtain the effective stress-intensity factor against crack growth rate relations used in FASTRAN II. FASTRAN II is written in standard FORTRAN 77. It has been successfully compiled and implemented on Sun4 series computers running SunOS and on IBM PC compatibles running MS-DOS using the Lahey F77L FORTRAN compiler. Sample input and output data are included with the FASTRAN II package. The UNIX version requires 660K of RAM for execution. The standard distribution medium for the UNIX version (LAR-14865) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. The standard distribution medium for the MS-DOS version (LAR-14944) is a 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The program was developed in 1984 and revised in 1992. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a trademark of International Business Machines Corp. MS-DOS is a trademark of Microsoft, Inc. F77L is a trademark of the Lahey Computer Systems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories. PKWARE and PKUNZIP are trademarks of PKWare, Inc.

  19. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied loads may be either tensile or compressive. Several standardized aircraft flight-load histories, such as TWIST, Mini-TWIST, FALSTAFF, Inverted FALSTAFF, Felix and Gaussian, are included as options. FASTRAN II also includes two other methods that will help the user input spectrum load histories. The two methods are: (1) a list of stress points, and (2) a flight-by-flight history of stress points. Examples are provided in the user manual. Developed as a research program, FASTRAN II has successfully predicted crack growth in many metallic materials under various aircraft spectrum loading. A computer program DKEFF which is a part of the FASTRAN II package was also developed to analyze crack growth rate data from laboratory specimens to obtain the effective stress-intensity factor against crack growth rate relations used in FASTRAN II. FASTRAN II is written in standard FORTRAN 77. It has been successfully compiled and implemented on Sun4 series computers running SunOS and on IBM PC compatibles running MS-DOS using the Lahey F77L FORTRAN compiler. Sample input and output data are included with the FASTRAN II package. The UNIX version requires 660K of RAM for execution. The standard distribution medium for the UNIX version (LAR-14865) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. The standard distribution medium for the MS-DOS version (LAR-14944) is a 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The program was developed in 1984 and revised in 1992. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a trademark of International Business Machines Corp. MS-DOS is a trademark of Microsoft, Inc. F77L is a trademark of the Lahey Computer Systems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories. PKWARE and PKUNZIP are trademarks of PKWare, Inc.

  20. A Numerical Method for Simulating the Microscopic Damage Evolution in Composites Under Uniaxial Transverse Tension

    NASA Astrophysics Data System (ADS)

    Zhi, Jie; Zhao, Libin; Zhang, Jianyu; Liu, Zhanli

    2016-06-01

    In this paper, a new numerical method that combines a surface-based cohesive model and extended finite element method (XFEM) without predefining the crack paths is presented to simulate the microscopic damage evolution in composites under uniaxial transverse tension. The proposed method is verified to accurately capture the crack kinking into the matrix after fiber/matrix debonding. A statistical representative volume element (SRVE) under periodic boundary conditions is used to approximate the microstructure of the composites. The interface parameters of the cohesive models are investigated, in which the initial interface stiffness has a great effect on the predictions of the fiber/matrix debonding. The detailed debonding states of SRVE with strong and weak interfaces are compared based on the surface-based and element-based cohesive models. The mechanism of damage in composites under transverse tension is described as the appearance of the interface cracks and their induced matrix micro-cracking, both of which coalesce into transversal macro-cracks. Good agreement is found between the predictions of the model and the in situ experimental observations, demonstrating the efficiency of the presented model for simulating the microscopic damage evolution in composites.

  1. On-line Bayesian model updating for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Rocchetta, Roberto; Broggi, Matteo; Huchet, Quentin; Patelli, Edoardo

    2018-03-01

    Fatigue induced cracks is a dangerous failure mechanism which affects mechanical components subject to alternating load cycles. System health monitoring should be adopted to identify cracks which can jeopardise the structure. Real-time damage detection may fail in the identification of the cracks due to different sources of uncertainty which have been poorly assessed or even fully neglected. In this paper, a novel efficient and robust procedure is used for the detection of cracks locations and lengths in mechanical components. A Bayesian model updating framework is employed, which allows accounting for relevant sources of uncertainty. The idea underpinning the approach is to identify the most probable crack consistent with the experimental measurements. To tackle the computational cost of the Bayesian approach an emulator is adopted for replacing the computationally costly Finite Element model. To improve the overall robustness of the procedure, different numerical likelihoods, measurement noises and imprecision in the value of model parameters are analysed and their effects quantified. The accuracy of the stochastic updating and the efficiency of the numerical procedure are discussed. An experimental aluminium frame and on a numerical model of a typical car suspension arm are used to demonstrate the applicability of the approach.

  2. Dynamics of diffusive bubble growth and pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.; Nakano, Masaru

    2006-01-01

    We present a model of gas exsolution and bubble expansion in a melt supersaturated in response to a sudden pressure drop. In our model, the melt contains a suspension of gas bubbles of identical sizes and is encased in a penny-shaped crack embedded in an elastic solid. The suspension is modeled as a three-dimensional lattice of spherical cells with slight overlap, where each elementary cell consists of a gas bubble surrounded by a shell of volatile-rich melt. The melt is then subjected to a step drop in pressure, which induces gas exsolution and bubble expansion, resulting in the compression of the melt and volumetric expansion of the crack. The dynamics of diffusion-driven bubble growth and volumetric crack expansion span 9 decades in time. The model demonstrates that the speed of the crack response depends strongly on volatile diffusivity in the melt and bubble number density and is markedly sensitive to the ratio of crack thickness to crack radius and initial bubble radius but is relatively insensitive to melt viscosity. The net drop in gas concentration in the melt after pressure recovery represents only a small fraction of the initial concentration prior to the drop, suggesting the melt may undergo numerous pressure transients before becoming significantly depleted of gases. The magnitude of pressure and volume recovery in the crack depends sensitively on the size of the input-pressure transient, becoming relatively larger for smaller-size transients in a melt containing bubbles with initial radii less than 10-5 m. Amplification of the input transient may be large enough to disrupt the crack wall and induce brittle failure in the rock matrix surrounding the crack. Our results provide additional basis for the interpretation of volume changes in the magma conduit under Popocatépetl Volcano during Vulcanian degassing bursts in its eruptive activity in April–May 2000.

  3. The surface and through crack problems in layered orthotropic plates

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Wu, Binghua

    1991-01-01

    An analytical method is developed for a relatively accurate calculation of Stress Intensity Factors in a laminated orthotropic plate containing a through or part-through crack. The laminated plate is assumed to be under bending or membrane loading and the mode 1 problem is considered. First three transverse shear deformation plate theories (Mindlin's displacement based first-order theory, Reissner's stress-based first-order theory, and a simple-higher order theory due to Reddy) are reviewed and examined for homogeneous, laminated and heterogeneous orthotropic plates. Based on a general linear laminated plate theory, a method by which the stress intensity factors can be obtained in orthotropic laminated and heterogeneous plates with a through crack is developed. Examples are given for both symmetrically and unsymmetrically laminated plates and the effects of various material properties on the stress intensity factors are studied. In order to implement the line-spring model which is used later to study the surface crack problem, the corresponding plane elasticity problem of a two-bonded orthotropic plated containing a crack perpendicular to the interface is also considered. Three different crack profiles: an internal crack, an edge crack, and a crack terminating at the interface are considered. The effect of the different material combinations, geometries, and material orthotropy on the stress intensity factors and on the power of stress singularity for a crack terminating at the interface is fully examined. The Line Spring model of Rice and Levy is used for the part-through crack problem. The surface crack is assumed to lie in one of the two-layered laminated orthotropic plates due to the limitation of the available plane strain results. All problems considered are of the mixed boundary value type and are reduced to Cauchy type of singular integral equations which are then solved numerically.

  4. Stress-dependent permeability and wave dispersion in tight cracked rocks: Experimental validation of simple effective medium models

    NASA Astrophysics Data System (ADS)

    Sarout, Joel; Cazes, Emilie; Delle Piane, Claudio; Arena, Alessio; Esteban, Lionel

    2017-08-01

    We experimentally assess the impact of microstructure, pore fluid, and frequency on wave velocity, wave dispersion, and permeability in thermally cracked Carrara marble under effective pressure up to 50 MPa. The cracked rock is isotropic, and we observe that (1) P and S wave velocities at 500 kHz and the low-strain (<10-5) mechanical moduli at 0.01 Hz are pressure-dependent, (2) permeability decreases asymptotically toward a small value with increasing pressure, (3) wave dispersion between 0.01 Hz and 500 MHz in the water-saturated rock reaches a maximum of 26% for S waves and 9% for P waves at 1 MPa, and (4) wave dispersion virtually vanishes above 30 MPa. Assuming no interactions between the cracks, effective medium theory is used to model the rock's elastic response and its permeability. P and S wave velocity data are jointly inverted to recover the crack density and effective aspect ratio. The permeability data are inverted to recover the cracks' effective radius. These parameters lead to a good agreement between predicted and measured wave velocities, dispersion and permeability up to 50 MPa, and up to a crack density of 0.5. The evolution of the crack parameters suggests that three deformation regimes exist: (1) contact between cracks' surface asperities up to 10 MPa, (2) progressive crack closure between 10 and 30 MPa, and (3) crack closure effectively complete above 30 MPa. The derived crack parameters differ significantly from those obtained by analysis of 2-D electron microscope images of thin sections or 3-D X-ray microtomographic images of millimeter-size specimens.

  5. The static breaking technique for sustainable and eco-environmental coal mining.

    PubMed

    Bing-yuan, Hao; Hui, Huang; Zi-jun, Feng; Kai, Wang

    2014-01-01

    The initiating explosive devices are prohibited in rock breaking near the goaf of the highly gassy mine. It is effective and applicable to cracking the hard roof with static cracking agent. By testing the static cracking of cubic limestone (size: 200 × 200 × 200 mm) with true triaxial rock mechanics testing machine under the effect of bidirectional stress and by monitoring the evolution process of the cracks generated during the acoustic emission experiment of static cracking, we conclude the following: the experiment results of the acoustic emission show that the cracks start from the lower part of the hole wall until they spread all over the sample. The crack growth rate follows a trend of "from rapidness to slowness." The expansion time is different for the two bunches of cracks. The growth rates can be divided into the rapid increasing period and the rapid declining period, of which the growth rate in declining period is less than that in the increasing period. Also, the growth rate along the vertical direction is greater than that of the horizontal direction. Then the extended model for the static cracking is built according to the theories of elastic mechanics and fracture mechanics. Thus the relation formula between the applied forces of cracks and crack expansion radius is obtained. By comparison with the test results, the model proves to be applicable. In accordance with the actual geological situation of Yangquan No. 3 Mine, the basic parameters of manpower manipulated caving breaking with static crushing are settled, which reaps bumper industrial effects.

  6. A pressurized cylindrical shell with a fixed end which contains an axial part-through or through crack

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1985-01-01

    In this paper a cylindrical shell having a very stiff end plate or a flange is considered. It is assumed that near the end the cylinder contains an axial flow which may be modeled as a part-through surface crack or through crack. The primary objective is to study the effect of the end constraining on the stress intensity factor which is the main fracture mechanics parameter. The applied loads acting on the cylinder are assumed to be axisymmetric. Thus the crack problem under consideration is symmetric with respect to the plane of the crack and consequently only the mode I stress intensity factors are nonzero. With this limitation, the general perturbation problem for a cylinder with a built-in end containing an axial crack is considered. Reissner's shell theory is used to formulate the problem. The part-through crack problem is treated by using a line-spring model. In the case of a crack tip terminating at the fixed end it is shown that the integral equation of the shell problem has the same generalized Cauchy kernel as the corresponding plane stress elasticity problem. Even though the problem is formulated for a general surface crack profile and arbitrary crack surface tractions, the numerical results are obtained only for a semielliptic part-through axial crack located at the inside or outside surface of the cylinder and for internal pressure acting on the cylinder. The stress intensity factors are calculated and presented for a relatively wide range of dimensionless length parameters of the problem.

  7. 75 FR 70101 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-70A and S-70C Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... test (UT) inspection of the tail gearbox output bevel gear (gear) for a crack. If you find a crack... gear cracking incidents, one of which resulted in the tail rotor separating from the helicopter. The actions specified by this AD are intended to detect a crack in the gear to prevent a tail rotor separating...

  8. 75 FR 26888 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-70A and S-70C Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... (gear) for a crack. If you find a crack, replacing the gear with an airworthy gear before further flight would be required. This proposal is prompted by three gear cracking incidents, one of which resulted in... to detect a crack in the gear to prevent a tail rotor separating, loss of tail rotor control, and...

  9. Four Bed Molecular Sieve - Exploration (4BMS-X) Virtual Heater Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schunk, R. Gregory; Peters, Warren T.; Thomas, John T., Jr.

    2017-01-01

    A 4BMS-X (Four Bed Molecular Sieve - Exploration) design and heater optimization study for CO2 sorbent beds in proposed exploration system architectures is presented. The primary objectives of the study are to reduce heater power and thermal gradients within the CO2 sorbent beds while minimizing channeling effects. Some of the notable changes from the ISS (International Space Station) CDRA (Carbon Dioxide Removal Assembly) to the proposed exploration system architecture include cylindrical beds, alternate sorbents and an improved heater core. Results from both 2D and 3D sorbent bed thermal models with integrated heaters are presented. The 2D sorbent bed models are used to optimize heater power and fin geometry while the 3D models address end effects in the beds for more realistic thermal gradient and heater power predictions.

  10. Airframe integrity based on Bayesian approach

    NASA Astrophysics Data System (ADS)

    Hurtado Cahuao, Jose Luis

    Aircraft aging has become an immense challenge in terms of ensuring the safety of the fleet while controlling life cycle costs. One of the major concerns in aircraft structures is the development of fatigue cracks in the fastener holes. A probabilistic-based method has been proposed to manage this problem. In this research, the Bayes' theorem is used to assess airframe integrity by updating generic data with airframe inspection data while such data are compiled. This research discusses the methodology developed for assessment of loss of airframe integrity due to fatigue cracking in the fastener holes of an aging platform. The methodology requires a probability density function (pdf) at the end of SAFE life. Subsequently, a crack growth regime begins. As the Bayesian analysis requires information of a prior initial crack size pdf, such a pdf is assumed and verified to be lognormally distributed. The prior distribution of crack size as cracks grow is modeled through a combined Inverse Power Law (IPL) model and lognormal relationships. The first set of inspections is used as the evidence for updating the crack size distribution at the various stages of aircraft life. Moreover, the materials used in the structural part of the aircrafts have variations in their properties due to their calibration errors and machine alignment. A Matlab routine (PCGROW) is developed to calculate the crack distribution growth through three different crack growth models. As the first step, the material properties and the initial crack size are sampled. A standard Monte Carlo simulation is employed for this sampling process. At the corresponding aircraft age, the crack observed during the inspections, is used to update the crack size distribution and proceed in time. After the updating, it is possible to estimate the probability of structural failure as a function of flight hours for a given aircraft in the future. The results show very accurate and useful values related to the reliability and integrity of airframes in aging aircrafts. Inspection data shown in this dissertation are not the actual data from known aircrafts and are only used to demonstrate the methodologies.

  11. Measurement and analysis of critical crack tip processes during fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J.; Dexter, R. J.

    1985-01-01

    The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied.

  12. Simulation of 90{degrees} ply fatigue crack growth along the width of cross-ply carbon-epoxy coupons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henaff-Gardin, C.; Urwald, E.; Lafarie-Frenot, M.C.

    1994-07-01

    We study the mechanism of fatigue cracking of the matrix of cross-ply carbon-epoxy laminates. Primary attention is given to the study of the influence of the specimen width on the evolution of damage. On the basis of shear lag analysis, we determine the strain energy release rate in the processes of initiation and growth of transverse fatigue cracks. We also present results of experimental research on the evolution of the edge crack density per ply, the average length of the cracks, and the crack propagation rate under transverse fatigue cracking. It is shown that these characteristics are independent of themore » specimen width. At the same time, as soon as the edge crack density reaches its saturation value, the average crack growth rate becomes constant. All the experimental results are in good agreement with results obtained by using the theoretical model.« less

  13. Fracture-Based Mesh Size Requirements for Matrix Cracks in Continuum Damage Mechanics Models

    NASA Technical Reports Server (NTRS)

    Leone, Frank A.; Davila, Carlos G.; Mabson, Gerald E.; Ramnath, Madhavadas; Hyder, Imran

    2017-01-01

    This paper evaluates the ability of progressive damage analysis (PDA) finite element (FE) models to predict transverse matrix cracks in unidirectional composites. The results of the analyses are compared to closed-form linear elastic fracture mechanics (LEFM) solutions. Matrix cracks in fiber-reinforced composite materials subjected to mode I and mode II loading are studied using continuum damage mechanics and zero-thickness cohesive zone modeling approaches. The FE models used in this study are built parametrically so as to investigate several model input variables and the limits associated with matching the upper-bound LEFM solutions. Specifically, the sensitivity of the PDA FE model results to changes in strength and element size are investigated.

  14. Bed composition generation for morphodynamic modeling: Case study of San Pablo Bay in California, USA

    USGS Publications Warehouse

    van der Wegen, M.; Dastgheib, A.; Jaffe, B.E.; Roelvink, D.

    2011-01-01

    Applications of process-based morphodynamic models are often constrained by limited availability of data on bed composition, which may have a considerable impact on the modeled morphodynamic development. One may even distinguish a period of "morphodynamic spin-up" in which the model generates the bed level according to some ill-defined initial bed composition rather than describing the realistic behavior of the system. The present paper proposes a methodology to generate bed composition of multiple sand and/or mud fractions that can act as the initial condition for the process-based numerical model Delft3D. The bed composition generation (BCG) run does not include bed level changes, but does permit the redistribution of multiple sediment fractions over the modeled domain. The model applies the concept of an active layer that may differ in sediment composition above an underlayer with fixed composition. In the case of a BCG run, the bed level is kept constant, whereas the bed composition can change. The approach is applied to San Pablo Bay in California, USA. Model results show that the BCG run reallocates sand and mud fractions over the model domain. Initially, a major sediment reallocation takes place, but development rates decrease in the longer term. Runs that take the outcome of a BCG run as a starting point lead to more gradual morphodynamic development. Sensitivity analysis shows the impact of variations in the morphological factor, the active layer thickness, and wind waves. An important but difficult to characterize criterion for a successful application of a BCG run is that it should not lead to a bed composition that fixes the bed so that it dominates the "natural" morphodynamic development of the system. Future research will focus on a decadal morphodynamic hindcast and comparison with measured bathymetries in San Pablo Bay so that the proposed methodology can be tested and optimized. ?? 2010 The Author(s).

  15. An analytical approach for the Propagation Saw Test

    NASA Astrophysics Data System (ADS)

    Benedetti, Lorenzo; Fischer, Jan-Thomas; Gaume, Johan

    2016-04-01

    The Propagation Saw Test (PST) [1, 2] is an experimental in-situ technique that has been introduced to assess crack propagation propensity in weak snowpack layers buried below cohesive snow slabs. This test attracted the interest of a large number of practitioners, being relatively easy to perform and providing useful insights for the evaluation of snow instability. The PST procedure requires isolating a snow column of 30 centimeters of width and -at least-1 meter in the downslope direction. Then, once the stratigraphy is known (e.g. from a manual snow profile), a saw is used to cut a weak layer which could fail, potentially leading to the release of a slab avalanche. If the length of the saw cut reaches the so-called critical crack length, the onset of crack propagation occurs. Furthermore, depending on snow properties, the crack in the weak layer can initiate the fracture and detachment of the overlying slab. Statistical studies over a large set of field data confirmed the relevance of the PST, highlighting the positive correlation between test results and the likelihood of avalanche release [3]. Recent works provided key information on the conditions for the onset of crack propagation [4] and on the evolution of slab displacement during the test [5]. In addition, experimental studies [6] and simplified models [7] focused on the qualitative description of snowpack properties leading to different failure types, namely full propagation or fracture arrest (with or without slab fracture). However, beside current numerical studies utilizing discrete elements methods [8], only little attention has been devoted to a detailed analytical description of the PST able to give a comprehensive mechanical framework of the sequence of processes involved in the test. Consequently, this work aims to give a quantitative tool for an exhaustive interpretation of the PST, stressing the attention on important parameters that influence the test outcomes. First, starting from a pure mechanical point of view, a broad phenomenology of the main failure types of the PST is outlined. Then, the Euler-Bernoulli beam theory is applied to the test setup, allowing an easy description of the snowpack stress state in the quasi-static regime. We assume an elastic-perfectly brittle model as constitutive law for the snow slab. Besides, considering the weak layer as a rigid bed of crystals with an a priori inclination, a local instability problem is formulated in order to take into account the combined effect of compressive and shear loading. As a result, the onset of slab and weak layer fracture is described in terms of cut length, slab dimensions and the main mechanical parameters. A condition on the possible propagation of the crack is proposed as well. References [1] C. Sigrist and J. Schweizer, "Critical energy release rates of weak snowpack layers determined in field experiments", Geophysical Research Letters, Volume 34, L03502, 2007. [2] D. Gauthier and B. Jamieson, "Evaluation of a prototype field test for fracture and failure propagation propensity in weak snowpack layers". Cold Regions Science and Technology, Volume 51, Issue 2, Pages 87-97, 2008. [3] R. Simenhois and K.W. Birkeland. "The extended column test: Test effectiveness, spatial variability, and comparison with the propagation saw test." Cold Regions Science and Technology, Volume 59, Issue 23, Pages 210-216, 2009. [4] J. Heierli, P. Gumbsch, M. Zaiser, "Anticrack Nucleation as Triggering Mecchanism for Snow Slab Avalanches", Science, Volume 321, Pages 240-243, 2008. [5] A. van Herwijnen, J. Schweizer, J. Heierli, "Measurement of the deformation field associated with fracture propagation in weak snowpack layers", Journal of Geophysical Research, Volume 115, F03042, 2010. [6] K. W. Birkeland, A. van Herwijnen, E. Knoff, M. Staples, E. Bair, R. Simenhois, "The role of slabs and weak layers in fracture arrest", Proceedings of the International Snow Science Workshop, Banff, 2014. [7] J. Schweizer, B. Reuter, A. van Herwijnen, B. Jamieson, "On how the tensile strength of the slab affects crack propagation propensity", Proceedings of the International Snow Science Workshop, Banff, 2014. [8] J. Gaume, A. van Herwijnen, G. Chambon, K. W. Birkeland, J. Schweizer. "Modeling of crack propagation in weak snowpack layers using the discrete element method", The Cryosphere, Volume 9, Pages 1915-1932, 2015.

  16. Counter-intuitive quasi-periodic motion in the autonomous vibration of cracked Timoshenko beams

    NASA Astrophysics Data System (ADS)

    Brandon, J. A.; Abraham, O. N. L.

    1995-08-01

    The time domain behaviour of a cracked Timoshenko beam is constructed by alternation of two linear models corresponding to the open and closed condition of the crack. It might be expected that a response which is composed of the alternation of two systems with different properties would extinguish the periodicities of the constituent sub-models. The numerical studies presented illustrate the perpetuation of these features without showing any evidence for the creation of periodicities based on a common assumption of the mean period of a bilinear model.

  17. Oxidation of Carbon/Carbon through Coating Cracks

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Roth, d. J.; Rauser, R. W.; Cawley, J. D.; Curry, D. M.

    2008-01-01

    Reinforced carbon/carbon (RCC) is used to protect the wing leading edge and nose cap of the Space Shuttle Orbiter on re-entry. It is composed of a lay-up of carbon/carbon fabric protected by a SiC conversion coating. Due to the thermal expansion mismatch of the carbon/carbon and the SiC, the SiC cracks on cool-down from the processing temperature. The cracks act as pathways for oxidation of the carbon/carbon. A model for the diffusion controlled oxidation of carbon/carbon through machined slots and cracks is developed and compared to laboratory experiments. A symmetric cylindrical oxidation cavity develops under the slots, confirming diffusion control. Comparison of cross sectional dimensions as a function of oxidation time shows good agreement with the model. A second set of oxidation experiments was done with samples with only the natural craze cracks, using weight loss as an index of oxidation. The agreement of these rates with the model is quite reasonab

  18. Stability analysis and backward whirl investigation of cracked rotors with time-varying stiffness

    NASA Astrophysics Data System (ADS)

    AL-Shudeifat, Mohammad A.

    2015-07-01

    The dynamic stability of dynamical systems with time-periodic stiffness is addressed here. Cracked rotor systems with time-periodic stiffness are well-known examples of such systems. Time-varying area moments of inertia at the cracked element cross-section of a cracked rotor have been used to formulate the time-periodic finite element stiffness matrix. The semi-infinite coefficient matrix obtained by applying the harmonic balance (HB) solution to the finite element (FE) equations of motion is employed here to study the dynamic stability of the system. Consequently, the sign of the determinant of a scaled version of a sub-matrix of this semi-infinite coefficient matrix at a finite number of harmonics in the HB solution is found to be sufficient for identifying the major unstable zones of the system in the parameter plane. Specifically, it is found that the negative determinant always corresponds to unstable zones in all of the systems considered. This approach is applied to a parametrically excited Mathieu's equation, a two degree-of-freedom linear time-periodic dynamical system, a cracked Jeffcott rotor and a finite element model of the cracked rotor system. Compared to the corresponding results obtained by Floquet's theory, the sign of the determinant of the scaled sub-matrix is found to be an efficient tool for identifying the major unstable zones of the linear time-periodic parametrically excited systems, especially large-scale FE systems. Moreover, it is found that the unstable zones for a FE cracked rotor with an open transverse crack model only appear at the backward whirl. The theoretical and experimental results have been found to agree well for verifying that the open crack model excites the backward whirl amplitudes at the critical backward whirling rotational speeds.

  19. An enigmatic source of hematitic carbonate beds containing vast amounts of iron oxidizers in a paleozoic metamorphic complex, South Hungary, Geresd-Hills, Ófalu.

    NASA Astrophysics Data System (ADS)

    Jáger, Viktor; Dabi, Gergely; Menyhárt, Adrienn

    2013-04-01

    Near the village of Ófalu, in the Geresd Hills, South Hungary, within the "Mecsekalja tectonic belt", low and intermediate grade paleozoic metamorphic complex (phyllite, gneiss) contains vein-like hematitic carbonate beds, up to 30 cm in thickness. The carbonate mineral is calcite. These hematitic carbonate beds cross-cut the foliation of the phyllite, and show no signs of any metamorphic alteration. In the studied section the red carbonate beds are associated with a vein system filled with multiple generations of vein carbonates(Dabi et al., 2011). The red carbonate beds contain a vaste number of twisted stalks of the iron oxidizing taxon of Gallionella. Rarely in some siliceous parts, Leptothrix-like microbial fossils can be found and these beds also contain numerous unidentifiable, hematitic foraminifers. According to ICP-AES measurements, the hematitic carbonate beds contains 8 % Fe, 0.86 % Mn and 0.12 % Ba. XRD and Raman measurements proved that the iron phase is hematite. The SEM observations revealed that the bacterial microfossils and foraminifers are built up of micron-submicron sized pseudohexagonal platy hematite. The bacterial microfossils of the Gallionella iron oxidizer are very well preserved and reaches about 80 µm length and about 2-3 µm width. The above observations raise the following issues: 1. how did these non metamorphic hematitic-carbonatic beds get inside into the metamorphic complex?, 2. what is the age of the formation of these beds?, and 3. what was the source of the iron? If we consider that the hematitic beds contain foraminifers and iron oxidizing bacteria, and no signs of metamorphic alteration nor foliations can be observed in these beds, the only answer for the first question is that the formations are fractures filled with lime-mud, i.e. neptunian dykes, which penetrated into the cracks of the phyllite. The presence of foraminifers and the geotectonic situation of the unit imply marine origin. Considering that these beds are neptunian dykes, their age must be younger than the paleozoic metamorphic event. They must be older than the Early Cretaceous dyke emplacement in the region, based on cross-cutting relation with limonite stained calcite veins, related to the volcanic activity (Dabi et al., 2011) In this region (Tisza-megaunit) continental rift-related alkali basaltic submarine volcanism was widespread during the Early Cretaceous epoch, when hypabyssal basaltic bodies (intrusive pillow basalts) intruded into unconsolidated sediments. Along these magmatic bodies low temperature hydrothermal circulation of seawater hydrolyzed basaltic glass and mafic minerals, and huge amount of Fe(II) was released and got into the lime mud that was saturated with anaerobic water, where iron oxidizing microorganisms thrived (Jáger et al., 2012).We propose a very similar paleoenvironmental model for Ófalu occurence, where low temperature, reductive iron-rich hydrothermal fluids penetrated soft sediments and contributed to the flourishing of iron-oxidizers. Due to subsequent tectonic events, these iron-rich sediments got into the fissures of the Ófalu metamorphic complex. This model is strenghtened by some borehole and outcrops where the Lower Cretaceous interpillow sediments and hyaloclastites rich in iron oxydes and intrusive pillow basalt can be found close to our investigated section. (Hetényi et al., 1976) This study was supported by the Developing Competitiveness of Universities in the South Transdanubian Region (SROP-4.2.1.B-10/2/KONV-2010-0002). Dabi, G., Siklósy, Z., Schubert, F., Bajnóczi, B., M. Tóth, T., 2011. The relevance of vein texture in understanding the past hydraulic behaviour of a crystalline rock mass: reconstruction of the palaeohydrology of the Mecsekalja Zone, South Hungary. Geofluids, 11, 309-327. Hetényi, R., Földi, M., Hámor, G., Nagy, I., Bilik, I., Jantsky, B. 1976. Magyarázó a Mecsek hegység földtani térképéhez 10 000-es sorozat. MÁFI Budapest (in hungarian). Jáger, V., Molnár, F., Buchs, D. & Koděra, P. 2012: The connection between iron ore formations and "mud-shrimp" colonizations around sunken wood debris and hydrothermal sediments in a Lower Cretaceous continental rift basin, Mecsek Mts., Hungary. — Earth-Science Reviews 114/3-4, 250-278.

  20. Line-spring model for surface cracks in a Reissner plate

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    In this paper the line-spring model developed by Rice and Levy for a surface crack in elastic plates is reconsidered. The problem is formulated by using Reissner's plate bending theory. For the plane strain problem of a strip containing an edge crack and subjected to tension and bending new expressions for stress intensity factors are used which are valid up to a depth-to-thickness ratio of 0.8. The stress intensity factors for a semi-elliptic and a rectangular crack are calculated. Considering the simplicity of the technique and the severity of the underlying assumptions, the results compare rather well with the existing finite element solutions.

  1. Oxidation Through Coating Cracks of SiC-Protected Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Roth, Don J.; Rauser, Richard W.; Cawley, James D.; Curry, Donald M.

    2008-01-01

    The oxidation of SiC-protected carbon/carbon through machined slots and naturally occurring craze cracks in the SiC was studied. The slot and crack geometries were characterized, and the subsurface oxidation of the carbon/carbon substrate at temperatures of 1000 to 1300 C in air was assessed using weight change, x-ray computed tomography, and optical microscopy of sections. Rate constants were derived from these measurements and compared with a two-step diffusion control model of carbon oxidation. Oxidation kinetic measurements on both the specimens with machined slots and with naturally occurring craze cracks showed good agreement with the model.

  2. Scaled boundary finite element simulation and modeling of the mechanical behavior of cracked nanographene sheets

    NASA Astrophysics Data System (ADS)

    Honarmand, M.; Moradi, M.

    2018-06-01

    In this paper, by using scaled boundary finite element method (SBFM), a perfect nanographene sheet or cracked ones were simulated for the first time. In this analysis, the atomic carbon bonds were modeled by simple bar elements with circular cross-sections. Despite of molecular dynamics (MD), the results obtained from SBFM analysis are quite acceptable for zero degree cracks. For all angles except zero, Griffith criterion can be applied for the relation between critical stress and crack length. Finally, despite the simplifications used in nanographene analysis, obtained results can simulate the mechanical behavior with high accuracy compared with experimental and MD ones.

  3. Oxidation Through Coating Cracks of SiC-Protected Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Roth, Don J.; Rauser, Richard W.; Curry, Donald M.

    2007-01-01

    The oxidation of SiC-protected carbon/carbon through machined slots and naturally occurring craze cracks in the SiC was studied. The slot and crack geometries were characterized, and the subsurface oxidation of the carbon/carbon substrate at temperatures of 1000 to 1300 C in air was assessed using weight change, x-ray computed tomography, and optical microscopy of sections. Rate constants were derived from these measurements and compared with a two-step diffusion control model of carbon oxidation. Oxidation kinetic measurements on both the specimens with machined slots and with naturally occurring craze cracks showed good agreement with the model.

  4. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.

    PubMed

    Wang, Hongxun; Zhang, Weifang; Sun, Fuqiang; Zhang, Wei

    2017-05-18

    The relationships between the fatigue crack growth rate ( d a / d N ) and stress intensity factor range ( Δ K ) are not always linear even in the Paris region. The stress ratio effects on fatigue crack growth rate are diverse in different materials. However, most existing fatigue crack growth models cannot handle these nonlinearities appropriately. The machine learning method provides a flexible approach to the modeling of fatigue crack growth because of its excellent nonlinear approximation and multivariable learning ability. In this paper, a fatigue crack growth calculation method is proposed based on three different machine learning algorithms (MLAs): extreme learning machine (ELM), radial basis function network (RBFN) and genetic algorithms optimized back propagation network (GABP). The MLA based method is validated using testing data of different materials. The three MLAs are compared with each other as well as the classical two-parameter model ( K * approach). The results show that the predictions of MLAs are superior to those of K * approach in accuracy and effectiveness, and the ELM based algorithms show overall the best agreement with the experimental data out of the three MLAs, for its global optimization and extrapolation ability.

  5. Residual Strength Prediction of Fuselage Structures with Multiple Site Damage

    NASA Technical Reports Server (NTRS)

    Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1999-01-01

    This paper summarizes recent results on simulating full-scale pressure tests of wide body, lap-jointed fuselage panels with multiple site damage (MSD). The crack tip opening angle (CTOA) fracture criterion and the FRANC3D/STAGS software program were used to analyze stable crack growth under conditions of general yielding. The link-up of multiple cracks and residual strength of damaged structures were predicted. Elastic-plastic finite element analysis based on the von Mises yield criterion and incremental flow theory with small strain assumption was used. A global-local modeling procedure was employed in the numerical analyses. Stress distributions from the numerical simulations are compared with strain gage measurements. Analysis results show that accurate representation of the load transfer through the rivets is crucial for the model to predict the stress distribution accurately. Predicted crack growth and residual strength are compared with test data. Observed and predicted results both indicate that the occurrence of small MSD cracks substantially reduces the residual strength. Modeling fatigue closure is essential to capture the fracture behavior during the early stable crack growth. Breakage of a tear strap can have a major influence on residual strength prediction.

  6. Multiscale Sediment-Laden Flow Theory and Its Application in Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Cao, Z. X.; Pender, G.; Hu, P.

    2011-09-01

    Sediment-laden flows over erodible bed normally feature multiple time scales. The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity regime in line with local flow scenario and the bed deforms as compared to the flow, which literally dictate if a capacity based and/or decoupled model is justified. This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed, with bed load and suspended load transport respectively. It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable, whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity. Physically coupled modeling is critical for cases characterized by rapid bed variation. Applications are outlined on flash floods and landslide dam break floods.

  7. Universal Shapes formed by Interacting Cracks

    NASA Astrophysics Data System (ADS)

    Fender, Melissa; Lechenault, Frederic; Daniels, Karen

    2011-03-01

    Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated curvature and stress geometries, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths known in the geologic literature as en passant cracks. While the fragmentation of solids via many interacting cracks has seen wide investigation, less attention has been paid to the details of individual crack-crack interactions. We investigate the origins of this widely observed crack pattern using a rectangular elastic plate which is notched on each long side and then subjected to quasistatic uniaxial strain from the short side. The two cracks propagate along approximately straight paths until the pass each other, after which they curve and release a lenticular fragment. We find that, for materials with diverse mechanical properties, the shape of this fragment has an aspect ratio of 2:1, with the length scale set by the initial cracks offset s and the time scale set by the ratio of s to the pulling velocity. The cracks have a universal square root shape, which we understand by using a simple geometric model and the crack-crack interaction.

  8. A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling

    NASA Astrophysics Data System (ADS)

    Aldakheel, Fadi; Wriggers, Peter; Miehe, Christian

    2017-12-01

    The modeling of failure in ductile materials must account for complex phenomena at the micro-scale, such as nucleation, growth and coalescence of micro-voids, as well as the final rupture at the macro-scale, as rooted in the work of Gurson (J Eng Mater Technol 99:2-15, 1977). Within a top-down viewpoint, this can be achieved by the combination of a micro-structure-informed elastic-plastic model for a porous medium with a concept for the modeling of macroscopic crack discontinuities. The modeling of macroscopic cracks can be achieved in a convenient way by recently developed continuum phase field approaches to fracture, which are based on the regularization of sharp crack discontinuities, see Miehe et al. (Comput Methods Appl Mech Eng 294:486-522, 2015). This avoids the use of complex discretization methods for crack discontinuities, and can account for complex crack patterns. In this work, we develop a new theoretical and computational framework for the phase field modeling of ductile fracture in conventional elastic-plastic solids under finite strain deformation. It combines modified structures of Gurson-Tvergaard-Needelman GTN-type plasticity model outlined in Tvergaard and Needleman (Acta Metall 32:157-169, 1984) and Nahshon and Hutchinson (Eur J Mech A Solids 27:1-17, 2008) with a new evolution equation for the crack phase field. An important aspect of this work is the development of a robust Explicit-Implicit numerical integration scheme for the highly nonlinear rate equations of the enhanced GTN model, resulting with a low computational cost strategy. The performance of the formulation is underlined by means of some representative examples, including the development of the experimentally observed cup-cone failure mechanism.

  9. Implementation of a Smeared Crack Band Model in a Micromechanics Framework

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Bednarcyk, Brett A.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    The smeared crack band theory is implemented within the generalized method of cells and high-fidelity generalized method of cells micromechanics models to capture progressive failure within the constituents of a composite material while retaining objectivity with respect to the size of the discretization elements used in the model. An repeating unit cell containing 13 randomly arranged fibers is modeled and subjected to a combination of transverse tension/compression and transverse shear loading. The implementation is verified against experimental data (where available), and an equivalent finite element model utilizing the same implementation of the crack band theory. To evaluate the performance of the crack band theory within a repeating unit cell that is more amenable to a multiscale implementation, a single fiber is modeled with generalized method of cells and high-fidelity generalized method of cells using a relatively coarse subcell mesh which is subjected to the same loading scenarios as the multiple fiber repeating unit cell. The generalized method of cells and high-fidelity generalized method of cells models are validated against a very refined finite element model.

  10. A discontinuous finite element approach to cracking in coupled poro-elastic fluid flow models

    NASA Astrophysics Data System (ADS)

    Wilson, C. R.; Spiegelman, M. W.; Evans, O.; Ulven, O. I.; Sun, W.

    2016-12-01

    Reaction-driven cracking is a coupled process whereby fluid-induced reactions drive large volume changes in the host rock which produce stresses leading to crack propagation and failure. This in turn generates new surface area and fluid-flow pathways for subsequent reaction in a potentially self-sustaining system. This mechanism has has been proposed for the pervasive serpentinization and carbonation of peridotite, as well as applications to mineral carbon sequestration and hydrocarbon extraction. The key computational issue in this problem is implementing algorithms that adequately model the formation of discrete fractures. Here we present models using a discontinuous finite element method for modeling fracture formation (Radovitsky et al., 2011). Cracks are introduced along facets of the mesh by the relaxation of penalty parameters once a failure criterion is met. It is fully described in the weak form of the equations, requiring no modification of the underlying mesh structure and allowing fluid properties to be easily adjusted along cracked facets. To develop and test the method, we start by implementing the algorithm for the simplified Biot equations for poro-elasticity using the finite element model assembler TerraFERMA. We consider hydro-fracking around a borehole (Grassl et al., 2015), where elevated fluid pressure in the poro-elastic solid causes it to fail radially in tension. We investigate the effects of varying the Biot coefficient and adjusting the fluid transport properties in the vicinity of the crack and compare our results to related dual-graph models (Ulven & Sun, submitted). We discuss issues arising from this method, including the formation of null spaces and appropriate preconditioning and solution strategies. Initial results suggest that this method provides a promising way to incorporate cracking into our reactive fluid flow models and future work aims to integrate the mechanical and chemical aspects of this process.

  11. Variability of bed drag on cohesive beds under wave action

    USGS Publications Warehouse

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 -4">−4 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  12. Modeling of slow crack propagation in heterogeneous rocks

    NASA Astrophysics Data System (ADS)

    Lengliné, Olivier; Stormo, Arne; Hansen, Alex; Schmittbuhl, Jean

    2015-04-01

    Crack propagation in heterogeneous media is a rich problem which involves the interplay of various physical processes. The problem has been intensively investigated theoretically, numerically, and experimentally, but a unifying model capturing all the experimental features has not been entirely achieved despite its broad range of implications in Earth sciences problems. The slow propagation of a crack front where long range elastic interactions are dominant, is of crucial importance to fill the gap between experiments and models. Several theoretical and numerical works have been devoted to quasi-static models. Such models give rise to an intermittent local activity characterized by a depinning transition and can be viewed as a critical phenomenon. However these models fail to reproduce all experimental conditions, notably the front morphology does not display any cross-over length with two different roughness exponents above and below the cross-over as observed experimentally. Here, we compare experimental observations of a slow interfacial crack propagation along an heterogeneous interface to numerical simulations from a cantilever fiber bundle model. The model consists of a planar set of brittle fibers between an elastic half-space and a rigid square root shaped plate which loads the system in a cantilever configuration. The latter is shown to provide an improved opening and stress field in the process zone around the crack tip. The model shares a similar scale invariant roughening of the crack front both at small and large scales and a similar power law distribution of the local velocity of the crack front to experiments. Implications for induced seismicity at the brittle-creep transition are discussed. We show that a creep route for induced seismicity is possible when heterogeneities exist along the fault. Indeed, seismic event occurrences in time and space are in strong relation with the development of the aseismic motion recorded during the experiment and the model. We also infer the statistical properties of the organization of the seismicity that shows strong space-time clustering. We conclude that aseismic processes might drive seismicity in the brittle-creep regime.

  13. Numerical computation of central crack growth in an active particle of electrodes influenced by multiple factors

    NASA Astrophysics Data System (ADS)

    Zhang, Yuwei; Guo, Zhansheng

    2018-03-01

    Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithium-ion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evolution, and damage mechanics to simulate the growth of central cracks in cathode particles (LiMn2O4) by an extended finite element method by considering the influence of multiple factors. The simulation shows that particles are likely to crack at a high discharge rate, when the particle radius is large, or when the initial central crack is longer. It also shows that the maximum principal tensile stress decreases and cracking becomes more difficult when the influence of crack surface diffusion is considered. The fracturing process occurs according to the following stages: no crack growth, stable crack growth, and unstable crack growth. Changing the charge/discharge strategy before unstable crack growth sets in is beneficial to prevent further capacity fading during electrochemical cycling.

  14. [Mechanism of the dentino-enamel junction on the resist-crack propagation of human teeth by the finite element method].

    PubMed

    Jingjing, Zheng; Tiezhou, Hou; Hong, Tao; Xueyan, Guo; Cui, Wu

    2014-10-01

    This study aims to identify the crack tip stress intensity factor of the propagation process, crack propagation path, and the changes in the shape of the crack tip by the finite element method. The finite element model of dentino-enamel junction was established with ANSYS software, and the length of the initial crack in the single edge was set to 0.1 mm. The lower end of the sample was fixed. The tensile load of 1 MPa with frequency of 5 Hz was applied to the upper end. The stress intensity factor, deflection angle, and changes in the shape of the crack tip in the crack propagation were calculated by ANSYS. The stress intensity factor suddenly and continuously decreased in dentino-enamel junction as the crack extended. A large skewed angle appeared, and the stress on crack tip was reduced. The dentino-enamel junction on human teeth may resist crack propagation through stress reduction.

  15. Fracture mechanics and surface chemistry investigations of environment-assisted crack growth

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Klier, K.; Simmons, G. W.; Chou, Y. T.

    1984-01-01

    It is pointed out that environment-assisted subcritical crack growth in high-strength steels and other high-strength alloys (particularly in hydrogen and in hydrogenous environments) is an important technological problem of long standing. This problem is directly related to issues of structural integrity, durability, and reliability. The terms 'hydrogen embrittlement' and 'stress corrosion cracking' have been employed to describe the considered phenomenon. This paper provides a summary of contributions made during the past ten years toward the understanding of environmentally assisted crack growth. The processes involved in crack growth are examined, and details regarding crack growth and chemical reactions are discussed, taking into account crack growth in steels exposed to water/water vapor, the effect of hydrogen, reactions involving hydrogen sulfide, and aspects of fracture surface morphology and composition. Attention is also given to the modeling of crack growth response, crack growth in gas mixtures, and the interaction of solute atoms with the crack-tip stress field.

  16. A CFD model for biomass combustion in a packed bed furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karim, Md. Rezwanul; Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704; Ovi, Ifat Rabbil Qudrat

    Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is themore » most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.« less

  17. Retardation analytical model to extend service life

    NASA Technical Reports Server (NTRS)

    Matejczyk, J.

    1984-01-01

    A fatigue crack growth model that incorporates crack growth retardation effects and is applicable to the materials characteristics and service environments of high performance LH2/LO2 engine systems is discussed. Future Research plans are outlined.

  18. Phase 1 report on the development of predictive model for bridge deck cracking and strength development.

    DOT National Transportation Integrated Search

    2009-01-01

    Early-age cracking, typically caused by drying shrinkage (and often coupled with autogenous and thermal : shrinkage), can have several detrimental effects on long-term behavior and durability. Cracking can also provide : ingress of water that can dri...

  19. GENSURF: A mesh generator for 3D finite element analysis of surface and corner cracks in finite thickness plates subjected to mode-1 loadings

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1992-01-01

    A computer program that generates three-dimensional (3D) finite element models for cracked 3D solids was written. This computer program, gensurf, uses minimal input data to generate 3D finite element models for isotropic solids with elliptic or part-elliptic cracks. These models can be used with a 3D finite element program called surf3d. This report documents this mesh generator. In this manual the capabilities, limitations, and organization of gensurf are described. The procedures used to develop 3D finite element models and the input for and the output of gensurf are explained. Several examples are included to illustrate the use of this program. Several input data files are included with this manual so that the users can edit these files to conform to their crack configuration and use them with gensurf.

  20. An energy-consistent fracture model for ferroelectrics

    NASA Astrophysics Data System (ADS)

    Miao, Hongchen; Li, Faxin

    2017-02-01

    The fracture behavior of ferroelectrics has been intensively studied in recent decades, though currently a widely accepted fracture mechanism is still lacking. In this work, enlightened by previous experimental observations that crack propagation in ferroelectrics is always accompanied by domain switching, we propose a micromechanical model in which both crack propagation and domain switching are controlled by energy-based criteria. Both electric energy and mechanical energy can induce domain switching, while only mechanical energy can drive crack propagation. Furthermore, constrained domain switching is considered in this model, leading to the gradient domain switching zone near the crack tip. Analysis results show that stress-induced ferroelastic switching always has a toughening effect as the mechanical energy release rate serves as the driving force for both fracture and domain switching. In comparison, the electric-field-induced switching may have either a toughening or detoughening effect. The proposed model can qualitatively agree with the existing experimental results.

Top