Science.gov

Sample records for bedside ultrasound measurement

  1. [Application of bedside ultrasound in measuring gastric residual volume in neurosurgical critical patients with enteral nutrition support].

    PubMed

    Cao, L; Ye, X H; Li, J; Zhang, L N; Li, L; Zhang, W Y; Deng, L L

    2017-03-07

    Objective: To explore the effect of bedside ultrasound in measuring gastric residual volume in neurosurgical critical patients with enteral nutrition support. Method: From March to August 2016, 70 critically neurological patients with continues enteral nutrition who admitted in Intensive Care Unit (ICU) were randomized into two groups. The observation group applied the bedside ultrasound monitoring gastric residual volume every day to guide the implementation of enteral nutrition. The control group used syringes withdrawing every 8 hours to measure the gastric residual volume. Results: There was no statistically significant difference in the incidence of complications include regurgitation and aspiration in this two group patients (P=0.356; P=1.000), while the times of interrupting enteral nutrition was lower in the observation group(25.7% vs 5.7%, 74.3% vs 94.3%, P=0.045), the length of target feeding time and the length of ICU stay, the operation time was shortened, with a statistically significant difference[(2.37±0.69) d vs (3.49±0.74) d, P=0.028; (8.52±5.45) d vs (6.40±2.71) d, P=0.022; (58.29±11.22)s vs (67.60±7.05) s, P=0.000]. Conclusion: The application of bedside ultrasound to measure gastric residual volume can be a scientific method to guide enteral nutrition in neurosurgical critical patients, which can reduce the times of interrupting enteral nutrition and shorten the length of target feeding time and ICU length of stay, reduce the workload of nurses.

  2. Acquiring credentials in bedside ultrasound: a cross-sectional survey

    PubMed Central

    Lewiss, Resa E; Saul, Turandot; Del Rios, Marina

    2013-01-01

    Objective Although there are training guidelines to credential emergency physicians in bedside ultrasound, many faculty groups have members who completed residency without a mandatory curriculum. These physicians are therefore required to learn bedside ultrasound while out in practice. The objective of this descriptive report is to illustrate a single academic facility's experience with acquiring credentials for emergency physicians in bedside ultrasound and the faculty's impressions on the motivators of and barriers to completion of the requirements. Design Cross-sectional survey. Setting Two urban teaching hospitals with a combined volume of 170 000 visits a year. Participants 41 emergency medicine attending physicians. Intervention Emergency medicine attending physicians underwent training and credentialing in the applications of aorta and pelvic ultrasound over a 9-month period. Outcome measure After the credentialing period, we conducted a survey to evaluate the physicians’ perceptions of this process. Results There were 41 faculty members during the credentialing survey period. 11 of the faculty members were exempt from ultrasound training. We asked attending physicians (N=41 exempt and non-exempt) to complete a web-based survey after the completion of the credentialing period. Questions about the potential barriers and incentives were listed and responders were asked to rank answers on a five-point Likert scale. Of the 31 respondents, 21 (67.7%) completed the credentialing requirements by the 9-month deadline. 19 of 26 emergency medicine residency trained physicians completed the requirements compared with 2/5 of those that were not emergency medicine residency trained. Our pilot study data suggest an association between fewer years in practice and completion of the requirements. Conclusions This is a report on a single academic institution's experience with a faculty credentialing programme in bedside ultrasound for physicians with a diversity of prior

  3. Bedside Ultrasound Measurement of Rectus Femoris: A Tutorial for the Nutrition Support Clinician

    PubMed Central

    Monares Zepeda, Enrique; Lescas Méndez, Octavio Augusto

    2017-01-01

    Intensive care unit acquired weakness is a long-term consequence after critical illness; it has been related to muscle atrophy and can be considered as one of the main nutritional support challenges at the intensive care unit. Measuring muscle mass by image techniques has become a new area of research for the nutritional support field, extending our knowledge about muscle wasting and the impact of nutritional approaches in the critical care setting, although currently there is no universally accepted technique to perform muscle measurements by ultrasound. Because of this, we present this tutorial for nutrition support clinicians, in order to understand and perform muscle measurements by this reliable, accessible, low-cost, and easy-to-use technique. Reviewing issues such as quadriceps muscle anatomy, correct technique (do's and don'ts), identification of structures, and measurement of the rectus femoris and vastus intermedius muscles helps to acquire the basic concepts of this technique and encouraging more research in this field. PMID:28386479

  4. Bedside ultrasound in pediatric emergency medicine.

    PubMed

    Levy, Jason A; Noble, Vicki E

    2008-05-01

    Bedside emergency ultrasound has been used by emergency physicians for >20 years for a variety of conditions. In adult centers, emergency ultrasound is routinely used in the management of victims of blunt abdominal trauma, in patients with abdominal aortic aneurysm and biliary disease, and in women with first-trimester pregnancy complications. Although its use has grown dramatically in the last decade in adult emergency departments, only recently has this tool been embraced by pediatric emergency physicians. As the modality advances and becomes more available, it will be important for primary care pediatricians to understand its uses and limitations and to ensure that pediatric emergency physicians have access to the proper training, equipment, and experience. This article is meant to review the current literature relating to emergency ultrasound in pediatric emergency medicine, as well as to describe potential pediatric applications.

  5. Clinical review: Bedside lung ultrasound in critical care practice

    PubMed Central

    Bouhemad, Bélaïd; Zhang, Mao; Lu, Qin; Rouby, Jean-Jacques

    2007-01-01

    Lung ultrasound can be routinely performed at the bedside by intensive care unit physicians and may provide accurate information on lung status with diagnostic and therapeutic relevance. This article reviews the performance of bedside lung ultrasound for diagnosing pleural effusion, pneumothorax, alveolar-interstitial syndrome, lung consolidation, pulmonary abscess and lung recruitment/derecruitment in critically ill patients with acute lung injury. PMID:17316468

  6. Identification of unanticipated pelvic pathology on renal bedside ultrasound.

    PubMed

    Thorpe, Elizabeth L; Marin, Jennifer R

    2013-04-01

    Bedside emergency ultrasound can be a useful initial test in children who present with abdominal pain. Our case describes a teenager who presented to the emergency department with back pain and right lower quadrant pain, suspicious for nephrolithiasis. The use of bedside ultrasound enabled timely diagnosis and management of an unanticipated condition.

  7. Bedside ultrasound procedures: musculoskeletal and non-musculoskeletal.

    PubMed

    Sahlani, Lydia; Thompson, Laura; Vira, Amar; Panchal, Ashish R

    2016-04-01

    The widespread availability of ultrasound (US) technology has increased its use for point of care applications in many health care settings. Focused (point of care) US is defined as the act of bringing US evaluation to the bedside for real-time performance. These images are collected immediately by the practitioner, allowing for direct integration into the physician's medical decision-making process. The real-time bedside diagnostic ability of US becomes a key tool for the management of patients. The purpose of this review is to (1) provide a general description of the use of focused US for bedside procedures; (2) specify the indications and common techniques used in bedside US procedures; and (3) describe the techniques used for each bedside intervention.

  8. Bedside Ultrasound in Resuscitation and the Rapid Ultrasound in Shock Protocol

    PubMed Central

    Seif, Dina; Perera, Phillips; Mailhot, Thomas; Riley, David; Mandavia, Diku

    2012-01-01

    Assessment of hemodynamic status in a shock state remains a challenging issue in Emergency Medicine and Critical Care. As the use of invasive hemodynamic monitoring declines, bedside-focused ultrasound has become a valuable tool in the evaluation and management of patients in shock. No longer a means to simply evaluate organ anatomy, ultrasound has expanded to become a rapid and noninvasive method for the assessment of patient physiology. Clinicians caring for critical patients should strongly consider integrating ultrasound into their resuscitation pathways. PMID:23133747

  9. Update on bedside ultrasound (US) diagnosis of acute cholecystitis (AC).

    PubMed

    Zenobii, Maria Francesca; Accogli, Esterita; Domanico, Andrea; Arienti, Vincenzo

    2016-03-01

    Acute cholecystitis (AC) represents a principal cause of morbidity worldwide and is one of the most frequent reasons for hospitalization due to gastroenteric tract diseases. AC should be suspected in presence of clinical signs and of gallstones on an imaging study. Upper abdominal US represents the first diagnostic imaging step in the case of suspected AC. Computed tomography (CT) with intravenous contrast (IV) or magnetic resonance imaging (MRI) with gadolinium contrast and technetium hepatobiliary iminodiacetic acid (Tc-HIDA) can be employed to exclude complications. US examination should be performed with right subcostal oblique, with longitudinal and intercostal scans. Normal gallbladder US findings and AC major and minor US signs are described. Polyps, sludge and gallbladder wall thickening represent the more frequent pitfalls and they must be differentiated from stones, duodenal artifacts and many other non-inflammatory conditions that cause wall thickening, respectively. By means of bedside ultrasound, the finding of gallstones in combination with acute pain, when the clinician presses the gallbladder with the US probe (the sonographic Murphy's sign), has a 92.2 % positive predictive value for AC. In our preliminary experience, bedside US-performed by echoscopy (ES) and/or point-of-care US (POCUS) demonstrated good reliability in detecting signs of AC, and was always integrated with physical examination and performed by a skilled operator.

  10. Predicting Fluid Responsiveness Using Bedside Ultrasound Measurements of the Inferior Vena Cava and Physician Gestalt in the Emergency Department of an Urban Public Hospital in Sub-Saharan Africa

    PubMed Central

    Haeffele, Cathryn; Mfinanga, Juma A.; Mwafongo, Victor G.; Reynolds, Teri A.

    2016-01-01

    Background Bedside inferior vena cava (IVC) ultrasound has been proposed as a non-invasive measure of volume status. We compared ultrasound measurements of the caval index (CI) and physician gestalt to predict blood pressure response in patients requiring intravenous fluid resuscitation. Methods This was a prospective study of adult emergency department patients requiring fluid resuscitation. A structured data sheet was used to record serial vital signs and the treating clinician’s impression of patient volume status and cause of hypotension. Bedside ultrasound CI measurements were performed at baseline and after each 500mL of fluid. Receiver operating characteristic (ROC) curve analysis was performed to characterize the relationship between CI and Physician gestalt, and the change in mean arterial pressure (MAP). Results We enrolled 364 patients, 52% male, mean age 36 years. Indications for fluid resuscitation were haemorrhage (54%), dehydration (30%), and sepsis (17%). Receiver operating characteristic curve analysis found optimal CI cut-off values of 45%, 52% and 53% to predict a MAP rise of 5, 8 and 10 mmHg per litre of fluid, respectively. The sensitivity and specificity of CI of 50% for predicting a 10mmHg increase in MAP per litre were 88% (95%CI 81–93%) and 73% (95%CI 67–79%), respectively, area under the curve (AUC) = 0.85 (0.81–0.89). The sensitivity and specificity of physician gestalt estimate of volume depletion severity were 68% (95%CI 60–75%) and 86% (95%CI 80–90%), respectively, AUC = 0.83 (95% CI: 0.79–0.87). Those with a baseline CI ≥ 50% (51% of patients) had a 2.8-fold greater fluid responsiveness than those with a baseline CI<50% (p<0.0001). Conclusion Ultrasound measurement of the CI can predict blood pressure response among patients requiring intravenous fluid resuscitation and may be useful in early identification of patients who will benefit most from volume resuscitation, and those who will likely require other

  11. Cardiac Limited Ultrasound Examination Techniques to Augment the Bedside Cardiac Physical Examination.

    PubMed

    Kimura, Bruce J; Shaw, David J; Amundson, Stan A; Phan, James N; Blanchard, Daniel G; DeMaria, Anthony N

    2015-09-01

    The current practice of physical diagnosis is dependent on physician skills and biases, inductive reasoning, and time efficiency. Although the clinical utility of echocardiography is well known, few data exist on how to integrate 2-dimensional screening "quick-look" ultrasound applications into a novel, modernized cardiac physical examination. We discuss the evidence basis behind ultrasound "signs" pertinent to the cardiovascular system and elemental in synthesis of bedside diagnoses and propose the application of a brief cardiac limited ultrasound examination based on these signs. An ultrasound-augmented cardiac physical examination can be taught in traditional medical education and has the potential to improve bedside diagnosis and patient care.

  12. Incidental Identification of Right Atrial Mass Using Bedside Ultrasound: Cardiac Angiosarcoma

    PubMed Central

    Pourmand, Ali; Boniface, Keith

    2011-01-01

    Background Emergency ultrasound is now used in both community and academic hospitals for rapid diagnosis and treatment of life-threatening conditions. Bedside emergency echocardiography can rapidly identify significant pathology such as pericardial effusions and tamponade, right ventricle dilatation due to pulmonary embolism, and cardiac hypokinesis, and aid in the diagnosis and management of patients in emergency department (ED). Case Report A 41-year-old man presented twice to the ED with history of abdominal pain and was diagnosed with primary cardiac angiosarcoma with point-of-care ultrasound. Conclusion This case is illustrative of how bedside cardiac ultrasound in the ED can dramatically change a patient's hospital course. PMID:22224142

  13. Point-of-care cardiac ultrasound techniques in the physical examination: better at the bedside.

    PubMed

    Kimura, Bruce J

    2017-03-04

    The development of hand-carried, battery-powered ultrasound devices has created a new practice in ultrasound diagnostic imaging, called 'point-of-care' ultrasound (POCUS). Capitalising on device portability, POCUS is marked by brief and limited ultrasound imaging performed by the physician at the bedside to increase diagnostic accuracy and expediency. The natural evolution of POCUS techniques in general medicine, particularly with pocket-sized devices, may be in the development of a basic ultrasound examination similar to the use of the binaural stethoscope. This paper will specifically review how POCUS improves the limited sensitivity of the current practice of traditional cardiac physical examination by both cardiologists and non-cardiologists. Signs of left ventricular systolic dysfunction, left atrial enlargement, lung congestion and elevated central venous pressures are often missed by physical techniques but can be easily detected by POCUS and have prognostic and treatment implications. Creating a general set of repetitive imaging skills for these entities for application on all patients during routine examination will standardise and reduce heterogeneity in cardiac bedside ultrasound applications, simplify teaching curricula, enhance learning and recollection, and unify competency thresholds and practice. The addition of POCUS to standard physical examination techniques in cardiovascular medicine will result in an ultrasound-augmented cardiac physical examination that reaffirms the value of bedside diagnosis.

  14. Accuracy of emergency physician performed bedside ultrasound in determining gestational age in first trimester pregnancy

    PubMed Central

    2012-01-01

    Background Patient reported menstrual history, physician clinical evaluation, and ultrasonography are used to determine gestational age in the pregnant female. Previous studies have shown that pregnancy dating by last menstrual period (LMP) and physical examination findings can be inaccurate. An ultrasound performed in the radiology department is considered the standard for determining an accurate gestational age. The aim of this study is to determine the accuracy of emergency physician performed bedside ultrasound as an estimation of gestational age (EDUGA) as compared to the radiology department standard. Methods A prospective convenience sample of ED patients presenting in the first trimester of pregnancy (based upon self-reported LMP) regardless of their presenting complaint were enrolled. EDUGA was compared to gestational age estimated by ultrasound performed in the department of radiology (RGA) as the gold standard. Pearson’s product moment correlation coefficient was used to determine the correlation between EDUGA compared to RGA. Results Sixty-eight pregnant patients presumed to be in the 1st trimester of pregnancy based upon self-reported LMP consented to enrollment. When excluding the cases with no fetal pole, the median discrepancy of EDUGA versus RGA was 2 days (interquartile range (IQR) 1 to 3.25). The correlation coefficient of EDUGA with RGA was 0.978. When including the six cases without a fetal pole in the data analysis, the median discrepancy of EDUGA compared with RGA was 3 days (IQR 1 to 4). The correlation coefficient of EDUGA with RGA was 0.945. Conclusion Based on our comparison of EDUGA to RGA in patients presenting to the ED in the first trimester of pregnancy, we conclude that emergency physicians are capable of accurately performing this measurement. Emergency physicians should consider using ultrasound to estimate gestational age as it may be useful for the future care of that pregnant patient. PMID:23216683

  15. Bedside ultrasound diagnosis of atraumatic bladder rupture in an alcohol-intoxicated patient: a case report

    PubMed Central

    2012-01-01

    Most commonly, patients who present to the emergency department with a history and physical examination suggestive of urinary bladder rupture report a preceding traumatic event. Spontaneous atraumatic bladder rupture is relatively uncommon, but can occur in the context of a recent alcohol binge. The alcohol-intoxicated patient presents diagnostic and therapeutic challenges to the emergency physician (EP) that take on additional urgency given the high mortality of unrecognized bladder rupture. This case report reviews bladder anatomy, the unique physiological changes in the alcohol-intoxicated patient, and the high mortality rate of a ruptured urinary bladder. We review the historical diagnostic imaging options followed by a discussion of how bedside ultrasound could expedite diagnosis and management. We present the case of a patient with spontaneous atraumatic rupture of the urinary bladder after a recent alcohol binge. Bedside ultrasound was utilized by the EP to determine the need for emergent surgical consultation and intervention. We recommend that EPs consider bladder rupture in their initial evaluation of patients presenting with nonspecific abdominal pain in the context of recent alcohol intoxication. When using bedside ultrasound to evaluate the pelvis, the presence of anterior or posterior vesicular fluid collections, the loss of normal pelvic landmarks, or irregularities in the bladder wall may increase the EPs suspicion for this disease entity and expedite time-sensitive management. PMID:22870918

  16. A hand-held ultrasound machine vs. conventional ultrasound machine in the bedside assessment of post-liver transplant patients.

    PubMed

    Trinquart, Ludovic; Bruno, Onorina; Angeli, Maria Luigia; Belghiti, Jacques; Chatellier, Gilles; Vilgrain, Valérie

    2009-10-01

    The purpose was to assess the diagnostic accuracy of a hand-held Doppler ultrasound (US) machine for the bedside detection of liver and vascular abnormalities after liver transplantation in the intensive care unit. The IRB approved this study, and written informed consent was obtained from all patients or the patient's legal representative. Any liver transplant recipient at our institution who needed a bedside Doppler US examination in the intensive care unit was eligible. Patients underwent routine grey-scale, colour, and spectral Doppler US examinations of the liver with a conventional machine, which was taken as the reference method, and with a hand-held machine on the same day. Examinations followed one another and were performed in a blinded fashion by two radiologists. Over a 4-month period, 24 consecutive patients (16 men, median age 54 years old; 16 cadaveric and 8 living related right liver transplantations) underwent 43 examinations with both conventional and hand-held machines. Image quality and overall satisfaction scores of grey-scale were lower with the hand-held than with the conventional machine. The hand-held was similar to the conventional machine for assessing the patency of portal veins, hepatic veins and the IVC in all patients but one. The hand-held machine failed to detect signals in the right branch of the hepatic artery and in the hilum in two and one cases, respectively. There was no abnormal hepatic arterial flow with the conventional machine in any of the patients, and the results were the same with the hand-held machine. Total examination time was significantly longer with the hand-held machine. The hand-held US machine had a high diagnostic accuracy for both parenchymal and vascular analyses compared with a conventional US machine in the bedside assessment of post-liver transplant patients.

  17. Three-view bedside ultrasound for the differentiation of acute respiratory distress syndrome from cardiogenic pulmonary edema.

    PubMed

    Mantuani, Daniel; Nagdev, Arun; Stone, Michael

    2012-09-01

    Bedside ultrasound is being increasingly used by emergency physicians (EPs) for the differentiation of acute dyspnea in critically ill patients. Lung ultrasound is emerging as a highly sensitive tool in diagnosing alveolar interstitial edema with the presence of diffuse “B-lines” arising from the pleural line. However, when used independently, lung ultrasound is unable to differentiate between cardiogenic and noncardiogenic causes of pulmonary edema. This case report describes a rapid 3-view or “triple scan” sonographic examination to differentiate acute respiratory distress syndrome (ARDS) from cardiogenic pulmonary edema.

  18. Three-view bedside ultrasound to differentiate acute decompensated heart failure from chronic obstructive pulmonary disease.

    PubMed

    Mantuani, Daniel; Nagdev, Arun

    2013-04-01

    Identifying the cause of acute dyspnea in the emergency department is often challenging, even for the most experienced provider. Distinguishing chronic obstructive pulmonary disease from acute decompensated heart failure in the acutely dyspneic patient who presents in respiratory distress is often difficult. Patients are often unable to give a detailed history when in extremis, yet primary management needs to be initiated before further testing can be completed. Bedside diagnostic ultrasound has emerged as a tool for emergency physicians to rapidly evaluate the cardiopulmonary status in patients presenting with undifferentiated shortness of breath [1-3]. A rapid 3-view sonographic evaluation of the heart, lungs, and inferior vena cava or “Triple Scan” may be a useful tool in identifying the cause of acute dyspnea and may aid the clinician in the initial management of the critically ill dyspneic patient. We present a case where a 3-view ultrasound examination, the “Triple Scan,” allowed for detection of new onset congestive heart failure and initiation of appropriate medical therapy without waiting for further standard diagnostic testing.

  19. [Focused surgical bedside ultrasound: E-FAST (focused assessment with sonography in trauma) - abdominal aortic aneurysm - cholecystolithiasis - acute appendicitis].

    PubMed

    Studer, Maria; Studer, Peter

    2014-06-04

    Ultrasound is an easy to learn and highly efficient diagnostic tool to complete the clinical examination and improve bedside decision-making. In the trauma room, surgeons are often required to make a quick decision as to whether or not a patient needs an emergency intervention or whether further diagnostics are required. For this reason, education of surgeons in performing focused emergency ultrasound is pivotal. The goal of ICAN is to improve and expand the education of surgeons in Switzerland. This article provides a short review of the most frequent surgical pathologies encountered in the emergency room.

  20. Assessment of the safety and efficacy of bedside ultrasound guidance for inferior vena cava filter placement in critically ill intensive care unit patients.

    PubMed

    Liu, Ying; Zhou, Hong; Chen, ChangYu; Cui, Chi; Liu, XiPin; Liu, Qinwen; Ye, Ming; Wang, Jing

    2015-04-01

    Inferior vena cava filters (IVCFs) have been used clinically for approximately 45 y, but only a few studies of these devices have involved intensive care unit (ICU) patients who were critically ill and had multiple-organ dysfunction or were otherwise too unstable for transport. The purpose of this research was to assess the tolerability and efficacy of bedside ultrasound-guided IVCF placement in ICU patients. A retrospective analysis of both bedside ultrasound-guided and X-ray-guided ICVF placement was performed from November of 2011 to August of 2013. The total success rate for ultrasound-guided IVCF placement was 93.4%, which included a 96.0% success rate in 25 ICU patients with an average age of 69.46 y. Six-month follow-up studies revealed no significant differences in long-term complications between the ultrasound- and X-ray-guided groups. IVCFs may be safely implanted under ultrasound guidance in a monitored ICU environment. Our conclusion is that patients should be fasting and should receive an enema and that pre-operative surface marking and dynamic monitoring should be employed. Further research is needed to develop specific ultrasound guidelines.

  1. A practical method of serial bedside measurement of cerebral blood flow and metabolism during neurointensive care.

    PubMed Central

    Sharples, P M; Stuart, A G; Aynsley-Green, A; Heaviside, D; Pay, D A; McGann, A; Crawford, P J; Harpin, R; Eyre, J A

    1991-01-01

    Acute encephalopathy is a major cause of death and neurological handicap in children. The principle aims of treatment are to provide adequate cerebral blood flow for the brain's metabolic needs and to prevent intracranial pressure rising above the level at which brain herniation occurs. Rational management requires an understanding of the pathophysiological changes in cerebral blood flow and metabolism which occur. The paucity of data on this subject reflects the perceived difficulty of measuring cerebral blood flow and cerebral metabolism in children. A modification of the Kety Schmidt technique of measuring cerebral blood flow and cerebral metabolism is described. This modification makes it possible to perform serial bedside measurements in children receiving intensive care. This method was used to perform 348 measurements in 58 children. The method was reproducible and no significant complications were encountered. The results indicated that appreciable changes in cerebral blood flow and metabolism could occur in individual patients over time, emphasising the importance of serial measurements. This technique may provide a practical means of monitoring cerebral blood flow and metabolism in very sick children receiving neurointensive care and evaluating the efficacy of treatment. PMID:1755648

  2. Ultrasound, normal fetus - head measurements (image)

    MedlinePlus

    ... Many health care providers like to have fetal measurements to verify the size of the fetus and ... any abnormalities. This ultrasound is of a head measurement, indicated by the cross hairs and dotted lines.

  3. Ultrasound, normal fetus - abdomen measurements (image)

    MedlinePlus

    ... Many health care providers like to have fetal measurements to verify the size of the fetus and ... any abnormalities. This ultrasound is of an abdominal measurement. It shows a cross-section of the abdomen, ...

  4. Bedside ultrasonography in the ICU: part 2.

    PubMed

    Beaulieu, Yanick; Marik, Paul E

    2005-09-01

    This is the second of a two-part review on the application of bedside ultrasonography in the ICU. In this part, the following procedures will be covered: (1) echocardiography and cardiovascular diagnostics (second part); (2) the use of bedside ultrasound to facilitate central-line placement and to aid in the care of patients with pleural effusions and intra-abdominal fluid collections; (3) the role of hand-carried ultrasound in the ICU; and (4) the performance of bedside ultrasound by the intensivist. The safety and utility of bedside ultrasonography performed by adequately trained intensivists has now been well demonstrated. This technology, as a powerful adjunct to the physical examination, will become an indispensable tool in the management of critically ill patients.

  5. Validity of bedside blood glucose measurement in critically ill patients with intensive insulin therapy

    PubMed Central

    Mahmoodpoor, Ata; Hamishehkar, Hadi; Shadvar, Kamran; Sanaie, Sarvin; Iranpour, Afshin; Fattahi, Vahid

    2016-01-01

    Background and Aims: There have been variable results on the practice of tight glycemic control, and studies have demonstrated that point-of-care (POC) glucometers have variable accuracy. Glucometers must be accurate, and many variables can affect blood glucose levels. The purpose of this study was to determine the difference between blood glucose concentrations obtained from POC glucometers and laboratory results in critically ill patients with intensive insulin therapy. Materials and Methods: This was a descriptive study which enrolled 300 critically ill patients. Four samples of arterial blood were collected and analyzed at the bedside with the POC glucometer and also in the central laboratory to obtain the blood glucose level. To define the effect of various factors on this relation, we noted the levels of hemoglobin (Hb), PaO2, body temperature, bilirubin, history of drug usage, and sepsis. Results: There were not any significant differences between blood sugar levels using laboratory and glucometer methods of measurements. There was a good and significant correlation between glucose levels between two methods (r = 0.81, P < 0.001). Among evaluated factors (body temperature, bilirubin level, blood pressure, Hb level, PaO2, sepsis, and drugs) which added one by one in model, just drugs decreased the correlation more than others (r = 0.78). Conclusions: The results of POC glucometer differ from laboratory glucose concentrations, especially in critically ill patients with unstable hemodynamic status while receiving several drugs. This may raise the concern about using POC devices for tight glycemic control in critically ill patients. These results should be interpreted with caution because of the large variation of accuracy among different glucometer devices. PMID:27994380

  6. Ultrasound physics.

    PubMed

    Shriki, Jesse

    2014-01-01

    Bedside ultrasound has become an important modality for obtaining critical information in the acute care of patients. It is important to understand the physics of ultrasound in order to perform and interpret images at the bedside. The physics of both continuous wave and pulsed wave sound underlies diagnostic ultrasound. The instrumentation, including transducers and image processing, is important in the acquisition of appropriate sonographic images. Understanding how these concepts interplay with each other enables practitioners to obtain the best possible images.

  7. Ultrasound propagation measurements and applications

    NASA Technical Reports Server (NTRS)

    Lynnworth, L. C.; Papadakis, E. P.; Fowler, K. A.

    1977-01-01

    This paper reviews three systems designed for accurately measuring the propagation of ultrasonic pulses. The three systems are presented in order of velocity-measuring precision: + or - 100 ns, + or - 1 ns, + or - 0.2 ns. Also included is a brief discussion of phase and group velocities, with reference to dispersive, highly attenuating materials. Measurement of attenuation by pulse-echo buffer rod techniques is described briefly. These techniques and instruments have been used to measure sound velocity and attenuation in a variety of materials and shapes, over a wide temperature range.

  8. In vitro enamel thickness measurements with ultrasound.

    PubMed

    Sindi, Khalid Hussain; Bubb, Nigel Lawrence; Gutteridge, Diana Lynn; Evans, Joseph Anthony

    2015-01-01

    In the work described here, agreement between ultrasound and histologic measurements of enamel thickness in vitro was investigated. Fifteen extracted human premolars were sectioned coronally to produce 30 sections. The enamel thickness of each specimen was measured with a 15-MHz hand-held ultrasound probe and verified with histology. The speed of sound in enamel was established. Bland-Altman analysis, intra-class correlation coefficient and Wilcoxon sign rank test were used to assess agreement. The mean speed of sound in enamel was 6191 ± 199 m s(-1). Bland-Altman limits of agreement were -0.16 to 0.18 mm when the speed of sound for each specimen was used, and -0.17 to 0.21 mm when the mean speed of sound was used. Intra-class correlation coefficient agreement was 0.97, and the Wilcoxon sign rank test yielded a p-value of 0.55. Using the speed of sound for each specimen results in more accurate measurement of enamel thickness. Ultrasound measurements were in good agreement with histology, which highlights its potential for monitoring the progressive loss of enamel thickness in erosive tooth surface loss.

  9. Resonant ultrasound spectroscopy for elastic constant measurements

    SciTech Connect

    Dixon, R.D.; Migliori, A.; Roe, L.H.

    1993-12-31

    All objects exhibit vibrational resonances when mechanically excited. These resonant frequencies are determined by density, geometry, and elastic moduli. Resonant ultrasound spectroscopy (RUS) takes advantage of the known relationship between the parameters. In particular, for a freely suspended object, with three of the four parameters (vibrational spectra, density, geometry, or elastic moduli) known the remaining one can be calculated. From a materials characterization standpoint it is straight-forward to measure density and geometry but less so to measure all the elastic moduli. It has recently become possible to quickly and accurately measure vibrational spectra, and using code written at Los Alamos, calculate all the elastic moduli simultaneously. This is done to an accuracy of better than one percent for compression and 0.1 percent for shear. RUS provides rapid acquisition of materials information here-to-fore obtainable only with difficulty. It will greatly facilitate the use of real materials properties in models and thus make possible more realistic modeling results. The technique is sensitive to phase changes and microstructure. This offers a change to input real data into microstructure and phase change models. It will also enable measurement of moduli at locations in and about a weld thus providing information for a validating coupled thermomechanical calculations.

  10. Ultrasound image velocimetry for rheological measurements

    NASA Astrophysics Data System (ADS)

    Gurung, A.; Haverkort, J. W.; Drost, S.; Norder, B.; Westerweel, J.; Poelma, C.

    2016-09-01

    Ultrasound image velocimetry (UIV) allows for the non-intrusive measurement of a wide range of flows without the need for optical transparency. In this study, we used UIV to measure the local velocity field of a model drilling fluid that exhibits yield stress flow behavior. The radial velocity profile was used to determine the yield stress and the Herschel-Bulkley model flow index n and the consistency index k. Reference data were obtained using the conventional offline Couette rheometry. A comparison showed reasonable agreement between the two methods. The discrepancy in model parameters could be attributed to inherent differences between the methods, which cannot be captured by the three-parameter model used. Overall, with a whole flow field measurement technique such as UIV, we were able to quantify the complex rheology of a model drilling fluid. These preliminary results show that UIV can be used as a non-intrusive diagnostic for in situ, real-time measurement of complex opaque flow rheology.

  11. Ultrasound field measurement using a binary lens

    PubMed Central

    Clement, G.T.; Nomura, H.; Kamakura, T.

    2014-01-01

    Field characterization methods using a scattering target in the absence of a point-like receiver have been well described in which scattering is recorded by a relatively large receiver located outside the field of measurement. Unfortunately, such methods are prone to artifacts due to averaging across the receiver surface. To avoid this problem while simultaneously increasing the gain of a received signal, the present study introduces a binary plate lens designed to focus spherically-spreading waves onto a planar region having a nearly-uniform phase proportional to that of the target location. The lens is similar to a zone plate, but modified to produce a biconvex-like behavior, such that it focuses both planar and spherically spreading waves. A measurement device suitable for characterizing narrowband ultrasound signals in air is designed around this lens by coupling it to a target and planar receiver. A prototype device is constructed and used to characterize the field of a highly-focused 400 kHz air transducer along 2 radial lines. Comparison of the measurements with numeric predictions formed from nonlinear acoustic simulation showed good relative pressure correlation, with mean differences of 10% and 12% over center 3dB FWHM drop and 12% and 17% over 6dB. PMID:25643084

  12. Capillary bedside blood glucose measurement in neonates: missing a diagnosis of galactosemia.

    PubMed

    Özbek, Mehmet Nuri; Öcal, Murat; Tanrıverdi, Sibel; Baysal, Birsen; Deniz, Ahmet; Öncel, Kahraman; Demirbilek, Hüseyin

    2015-03-01

    A number of factors may lead to inaccuracy in measurement of capillary blood glucose with a glucometer. Measurement of other carbohydrate molecules such as galactose and fructose along with glucose can potentially be a cause of error. We report a newborn patient who was referred to our hospital with conjugated bilirubinemia, hepatomegaly and high capillary blood glucose levels measured with a glucometer. Simultaneous biochemical measurements revealed normal blood glucose levels. Further investigation led to a diagnosis of classical galactosemia. Capillary blood glucose level measured with glucometer also dropped to normal values following cessation of breastfeeding and initiation of feeding with a lactose-free formula.

  13. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    NASA Astrophysics Data System (ADS)

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  14. Ultrasound

    MedlinePlus

    ... your test will be done. Alternative Names Sonogram Images Abdominal ultrasound Ultrasound in pregnancy 17 week ultrasound ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  15. Ultrasound

    MedlinePlus

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  16. Two-dimensional ultrasound measurement of thyroid gland volume: a new equation with higher correlation with 3-D ultrasound measurement.

    PubMed

    Ying, Michael; Yung, Dennis M C; Ho, Karen K L

    2008-01-01

    This study aimed to develop a new two-dimensional (2-D) ultrasound thyroid volume estimation equation using three-dimensional (3-D) ultrasound as the standard of reference, and to compare the thyroid volume estimation accuracy of the new equation with three previously reported equations. 2-D and 3-D ultrasound examinations of the thyroid gland were performed in 150 subjects with normal serum thyrotropin (TSH, thyroid-stimulating hormone) and free thyroxine (fT4) levels (63 men and 87 women, age range: 17 to 71 y). In each subject, the volume of both thyroid lobes was measured by 3-D ultrasound. On 2-D ultrasound, the craniocaudal (CC), lateromedial (LM) and anteroposterior (AP) dimensions of the thyroid lobes were measured. The equation was derived by correlating the volume of the thyroid lobes measured with 3-D ultrasound and the product of the three dimensions measured with 2-D ultrasound using linear regression analysis, in 75 subjects without thyroid nodule. The accuracy of thyroid volume estimation of the new equation and the three previously reported equations was evaluated and compared in another 75 subjects (without thyroid nodule, n = 30; with thyroid nodule, n = 45). It is suggested that volume of thyroid lobe may be estimated as: volume of thyroid lobe = 0.38.(CC.LM.AP) + 1.76. Result showed that the new equation (16.9% to 36.1%) had a significantly smaller thyroid volume estimation error than the previously reported equations (20.8% to 54.9%) (p < 0.05). There was a significantly larger thyroid volume estimation error when thyroid glands with nodules were examined (p < 0.05). With the use of the appropriate thyroid volume equation, 2-D ultrasound can be a useful alternative in thyroid volume measurement when 3-D ultrasound is not available.

  17. Cracks measurement using fiber-phased array laser ultrasound generation

    NASA Astrophysics Data System (ADS)

    Pei, Cuixiang; Demachi, Kazuyuki; Fukuchi, Tetsuo; Koyama, Kazuyoshi; Uesaka, Mitsuru

    2013-04-01

    A phased array laser ultrasound generation system by using fiber optic delivery and a custom-designed focusing objective lens has been developed for crack inspection. The enhancement of crack tip diffraction by using phased array laser ultrasound is simulated with finite element method and validated by experiment. A non-contact and non-destructive measurement of inner-surface cracks by time-of-flight diffraction method using fiber-phased array laser ultrasound generation and electromagnetic acoustic transducer detection has been studied.

  18. Clinical workflow for spinal curvature measurement with portable ultrasound

    NASA Astrophysics Data System (ADS)

    Tabanfar, Reza; Yan, Christina; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor

    2016-03-01

    PURPOSE: Spinal curvature monitoring is essential in making treatment decisions in scoliosis. Monitoring entails radiographic examinations, however repeated ionizing radiation exposure has been shown to increase cancer risk. Ultrasound does not emit ionizing radiation and is safer for spinal curvature monitoring. We investigated a clinical sonography protocol and challenges associated with position-tracked ultrasound in spinal curvature measurement in scoliosis. METHODS: Transverse processes were landmarked along each vertebra using tracked ultrasound snapshots. The transverse process angle was used to determine the orientation of each vertebra. We tested our methodology on five patients in a local pediatric scoliosis clinic, comparing ultrasound to radiographic curvature measurements. RESULTS: Despite strong correlation between radiographic and ultrasound curvature angles in phantom studies, we encountered new challenges in the clinical setting. Our main challenge was differentiating transverse processes from ribs and other structures during landmarking. We observed up to 13° angle variability for a single vertebra and a 9.85° +/- 10.81° difference between ultrasound and radiographic Cobb angles for thoracic curvatures. Additionally, we were unable to visualize anatomical landmarks in the lumbar region where soft tissue depth was 25-35mm. In volunteers with large Cobb angles (greater than 40° thoracic and 60° lumbar), we observed spinal protrusions resulting in incomplete probe-skin contact and partial ultrasound images not suitable for landmarking. CONCLUSION: Spinal curvature measurement using tracked ultrasound is viable on phantom spine models. In the clinic, new challenges were encountered which must be resolved before a universal sonography protocol can be developed.

  19. In vitro measurement of muscle volume with 3-dimensional ultrasound.

    PubMed

    Delcker, A; Walker, F; Caress, J; Hunt, C; Tegeler, C

    1999-05-01

    The aim was to test the accuracy of muscle volume measurements with a new 3-dimensional (3-D) ultrasound system, which allows a freehand scanning of the transducer with an improved quality of the ultrasound images and therefore the outlines of the muscles. Five resected cadaveric hand muscles were insonated and the muscle volumes calculated by 3-D reconstructions of the acquired 2-D ultrasound sections. Intra-reader, inter-reader and follow-up variability were calculated, as well as the volume of the muscle tissue measured by water displacement. In the results, 3-D ultrasound and water displacement measurements showed an average deviation of 10.1%; Data of 3-D ultrasound measurements were: intra-reader variability 2.8%; inter-reader variability 2.4% and follow-up variability 2.3%. 3-D measurements of muscle volume are valid and reliable. Serial sonographic measurements of muscle may be able to quantitate changes in muscle volume that occur in disease and recovery.

  20. Noninvasive measurement of local thermal diffusivity using backscattered ultrasound and focused ultrasound heating.

    PubMed

    Anand, Ajay; Kaczkowski, Peter J

    2008-09-01

    Previously, noninvasive methods of estimating local tissue thermal and acoustic properties using backscattered ultrasound have been proposed in the literature. In this article, a noninvasive method of estimating local thermal diffusivity in situ during focused ultrasound heating using beamformed acoustic backscatter data and applying novel signal processing techniques is developed. A high intensity focused ultrasound (HIFU) transducer operating at subablative intensities is employed to create a brief local temperature rise of no more than 10 degrees C. Beamformed radio-frequency (RF) data are collected during heating and cooling using a clinical ultrasound scanner. Measurements of the time-varying "acoustic strain", that is, spatiotemporal variations in the RF echo shifts induced by the temperature related sound speed changes, are related to a solution of the heat transfer equation to estimate the thermal diffusivity in the heated zone. Numerical simulations and experiments performed in vitro in tissue mimicking phantoms and excised turkey breast muscle tissue demonstrate agreement between the ultrasound derived thermal diffusivity estimates and independent estimates made by a traditional hot-wire technique. The new noninvasive ultrasonic method has potential applications in thermal therapy planning and monitoring, physiological monitoring and as a means of noninvasive tissue characterization.

  1. Measurement of corneal tangent modulus using ultrasound indentation.

    PubMed

    Wang, Li-Ke; Huang, Yan-Ping; Tian, Lei; Kee, Chea-Su; Zheng, Yong-Ping

    2016-09-01

    Biomechanical properties are potential information for the diagnosis of corneal pathologies. An ultrasound indentation probe consisting of a load cell and a miniature ultrasound transducer as indenter was developed to detect the force-indentation relationship of the cornea. The key idea was to utilize the ultrasound transducer to compress the cornea and to ultrasonically measure the corneal deformation with the eyeball overall displacement compensated. Twelve corneal silicone phantoms were fabricated with different stiffness for the validation of measurement with reference to an extension test. In addition, fifteen fresh porcine eyes were measured by the developed system in vitro. The tangent moduli of the corneal phantoms calculated using the ultrasound indentation data agreed well with the results from the tensile test of the corresponding phantom strips (R(2)=0.96). The mean tangent moduli of the porcine corneas measured by the proposed method were 0.089±0.026MPa at intraocular pressure (IOP) of 15mmHg and 0.220±0.053MPa at IOP of 30mmHg, respectively. The coefficient of variation (CV) and intraclass correlation coefficient (ICC) of tangent modulus were 14.4% and 0.765 at 15mmHg, and 8.6% and 0.870 at 30mmHg, respectively. The preliminary study showed that ultrasound indentation could be applied to the measurement of corneal tangent modulus with good repeatability and improved measurement accuracy compared to conventional surface displacement-based measurement method. The ultrasound indentation can be a potential tool for the corneal biomechanical properties measurement in vivo.

  2. Ultrasound-guided tunneled lower extremity peripherally inserted central catheter placement in infants.

    PubMed

    Subramanian, Subramanian; Moe, David C; Vo, Jack N

    2013-12-01

    Tunneled lower extremity peripherally inserted central catheters (PICCs) are placed in infants under combined ultrasound and fluoroscopic guidance in the interventional radiology suite. In infants requiring a bedside procedure, image guidance is limited, often using portable radiographs during the procedure. This report demonstrates feasibility of placing tunneled lower extremity PICCs using ultrasound as the sole imaging modality for vascular access, intravascular length measurement, and final confirmation of catheter tip position in a case series of 15 critically ill infants. The technique negates the need for added imaging confirmation methods that use ionizing radiation and can be performed at the bedside.

  3. Underestimation of access flow by ultrasound dilution flow measurements

    NASA Astrophysics Data System (ADS)

    Bos, Clemens; Smits, Johannes H. M.; Zijlstra, Jan J.; Blankestijn, Peter J.; Bakker, Chris J. G.; Viergever, Max A.

    2002-02-01

    For hemodialysis access surveillance, flow measurements are increasingly considered important because they identify accesses at risk of thrombosis. Usually these flow measurements are performed with the ultrasound dilution technique. In a previous patient study it was observed that the resulting flow values were systematically low as compared to magnetic resonance flow measurements, but a satisfactory explanation was lacking. In the present study, we will demonstrate by hemodynamic calculations and in vitro experiments that this discrepancy can be explained by a temporary reduction of the access flow rate, caused by the reversed needle configuration during ultrasound dilution flow measurements. In this configuration, blood is injected retrogressively at one needle and flow between the needles is increased, causing an increased dissipation of energy. The proposed explanation is subsequently confirmed in a patient with a loop graft, by measuring the blood velocity by Doppler ultrasound as a function of reversed dialyzer flow rate. Apart from the ultrasound dilution technique, these findings are applicable to other recently proposed methods for measuring access flow that employ the reversed needle configuration.

  4. Teaching Evidence-Based Physical Diagnosis: Six Bedside Lessons.

    PubMed

    McGee, Steven

    2016-12-01

    Evidence-based physical diagnosis is an essential part of the bedside curriculum. By using the likelihood ratio, a simple measure of diagnostic accuracy, teachers can quickly adapt this approach to their bedside teaching. Six recurring themes in evidence-based physical diagnosis are fully reviewed, with examples, in this article.

  5. Locally adaptive Nakagami-based ultrasound similarity measures.

    PubMed

    Wachinger, Christian; Klein, Tassilo; Navab, Nassir

    2012-04-01

    The derivation of statistically optimal similarity measures for intensity-based registration is possible by modeling the underlying image noise distribution. The parameters of these distributions are, however, commonly set heuristically across all images. In this article, we show that the estimation of the parameters on the present images largely improves the registration, which is a consequence of the more accurate characterization of the image noise. More precisely, instead of having constant parameters over the entire image domain, we estimate them on patches, leading to a local adaptation of the similarity measure. While this basic idea of creating locally adaptive metrics is interesting for various fields of application, we present the derivation for ultrasound imaging. The domain of ultrasound is particularly appealing for this approach, due to the inherent contamination with speckle noise. Furthermore, there exist detailed analyses of suitable noise distributions in the literature. We present experiments for applying a bivariate Nakagami distribution that facilitates modeling of several scattering scenarios prominent in medical ultrasound. Depending on the number of scatterers per resolution cell and the presence of coherent structures, different Nakagami parameters are required to obtain a valid approximation of the intensity statistics and to account for distributional locality. Our registration results on radio-frequency ultrasound data confirm the theoretical necessity for a spatial adaptation of similarity metrics.

  6. Efficacy of percutaneous pigtail catheters for thoracostomy at bedside

    PubMed Central

    Penupolu, Sudheer; Flores, David

    2012-01-01

    Objective Given the potential morbidity of traditional chest tube insertion, use of pigtail is desirable. The purpose of this case series is to determine the efficacy of bedside pigtail thoracostomy catheters in Adult population by using bedside ultrasound by the pulmonologists. Methods It is a retrospective case series, which describes the importance of bedside pigtail catheters placements for emergent symptomatic relief for the patients. Predicting a successful drainage, procedure is a complex and multifactorial process based on size, location, character and configuration of the abscess. Results Our experience shows that the use of standard size (7-8.5 F) pigtail catheters is usually very successful in draining of the pleural fluids. Less time consumption, lower cost and bedside technique makes it superior to conventional chest tube placement in many aspects. Conclusions Percutaneous pigtail catheters are useful in the drainage of pleural fluids. The pigtail catheters can be placed successful at bedside by the pulmonologists under ultrasound guidance with minimal complications and marked clinical improvement. The cost effectives of this procedure over the conventional chest tube placement, makes this procedure more desirable in most of the hospital settings. PMID:22754668

  7. Association between ultrasound measurements of muscle thickness, pennation angle, echogenicity and skeletal muscle strength in the elderly.

    PubMed

    Strasser, Eva Maria; Draskovits, Thomas; Praschak, Markus; Quittan, Michael; Graf, Alexandra

    2013-12-01

    The increase of elderly in our society requires simple tools for quantification of sarcopenia in inpatient and outpatient settings. The aim of this study was to compare parameters determined with musculoskeletal ultrasound (M-US) with muscle strength in young and elderly patients. In this prospective, randomised and observer blind study, 26 young (24.2 ± 3.7 years) and 26 old (age 67.8 ± 4.8 years) patients were included. Muscle thickness, pennation angle and echogenicity of all muscles of musculus quadriceps were measured by M-US and correlated with isometric maximum voluntary contraction force (MVC) of musculus quadriceps. Reproducibility of M-US measurements as well as simple and multiple regression models were calculated. Of all measured M-US variables the highest reproducibility was found for measurements of thickness (intraclass correlation coefficients, 85-97%). Simple regression analysis showed a highly significant correlation of thickness measurements of all muscles of musculus quadriceps with MVC in the elderly and in the young. Multiple regression analysis revealed that thickness of musculus vastus medialis had the best correlation with MVC in the elderly. This study showed that measurement of muscle thickness, especially of musculus vastus medialis, by M-US is a reliable, bedside method for monitoring the extent of sarcopenia.

  8. Estimation of Measurement Characteristics of Ultrasound Fetal Heart Rate Monitor

    NASA Astrophysics Data System (ADS)

    Noguchi, Yasuaki; Mamune, Hideyuki; Sugimoto, Suguru; Yoshida, Atsushi; Sasa, Hidenori; Kobayashi, Hisaaki; Kobayashi, Mitsunao

    1995-05-01

    Ultrasound fetal heart rate monitoring is very useful to determine the status of the fetus because it is noninvasive. In order to ensure the accuracy of the fetal heart rate (FHR) obtained from the ultrasound Doppler data, we measure the fetal electrocardiogram (ECG) directly and obtain the Doppler data simultaneously. The FHR differences of the Doppler data from the direct ECG data are concentrated at 0 bpm (beats per minute), and are practically symmetrical. The distribution is found to be very close to the Student's t distribution by the test of goodness of fit with the chi-square test. The spectral density of the FHR differences shows the white noise spectrum without any dominant peaks. Furthermore, the f-n (n>1) fluctuation is observed both with the ultrasound Doppler FHR and with the direct ECG FHR. Thus, it is confirmed that the FHR observation and observation of the f-n (n>1) fluctuation using the ultrasound Doppler FHR are as useful as the direct ECG.

  9. Measuring Residual Stress Using Nonlinear Ultrasound

    NASA Astrophysics Data System (ADS)

    Liu, M.; Kim, J.-Y.; Qu, J.; Jacobs, L. J.

    2010-02-01

    Near-surface compressive residual stresses, which are generated by shot peening, are known to retard crack initiation and thus extend the fatigue life of a metal component. The ability to effectively measure these near-surface residual stresses would greatly help predict the fatigue life of shot-peened components. This research uses the nonlinear surface acoustic wave technique to measure the residual stresses in a shot-peened component. Experiments are conducted on three different aluminum alloy (AA 7075) samples: as-received with no peeing, and shot-peened at the Almen intensities of 8A and 16A. Surface roughness measurements are also carried out for these three samples. The nonlinear ultrasonic results show that the measured acoustic nonlinearity parameter increases by 81% and 115% for the 8A and 16A samples. These large increases in measured acoustic nonlinearity clearly indicate the potential of the nonlinear ultrasonic technique as an NDE tool to measure the near-surface residual stresses. The effects of surface roughness on the ultrasonic measurement are briefly examined. Finally, a preliminary model prediction is presented to interpret the experimental results.

  10. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  11. Normal nipple position in term infants measured on breastfeeding ultrasound.

    PubMed

    Jacobs, Lorili Audrey; Dickinson, Jan E; Hart, Philip David; Doherty, Dorota A; Faulkner, Shani Jean

    2007-02-01

    Nipple position is believed to influence breastfeeding success. To investigate this belief, submental ultrasound images were obtained during breastfeeding of normal term infants. This study measured nipple to hard-soft palate distance (NHSPD) in 18 mother-infant pairs during the first and fourth weeks of life. Median NHSPD was 5 mm (interquartile: 4, 6 mm). There were no significant differences in median NHSPD between first, second, and fifth minutes of feeding (P = .675) or between week 1 and week 4 (P = .320). The nipple was not stationary during feeding, with mean nipple movement of 4.0 -/+ 1.3 mm. Further research is required with more infants to confirm the boundaries of normality for ultrasound measurements of nipple position during successful breastfeeding.

  12. Using Ultrasound to Measure Mud Rheological Properties

    NASA Astrophysics Data System (ADS)

    Maa, P. Y. P. Y.; Kwon, J. I.; Park, K. S.

    2015-12-01

    In order to predict the dynamic responses of newly consolidated cohesive sediment beds, a better understanding of the material rheological properties (bulk density, ρ, kinematic viscosity, ν, and shear modulus, G, assuming mud is a simple Voigt viscoelastic model) of these sediment beds is needed. An acoustic approach that uses a commercially available 250 kHz shear wave transducer and tone-burst waves has been developed to measure those properties. This approach uses a 86.3 mm long delay-line (DL) to separate the generated pressure and shear waves, and measures the reflected shear waves as well as the reflected pressure waves caused at the interface between the delay line and the mud to interpret these properties. By using materials (i.e., air, water, olive oil, and honey) with available rheological properties to establish a calibration relationship between the information carried by the measured reflected waves and those given material properties, the mud properties as well as thνe change of these properties during consolidation can be interpreted. Using jelly pudding as a check, a value of G ≈ 12310 N/m2 and ν ≈ 5 x 10-5 m2/s were estimated. For the consolidating kaolinite bed (with zero salinity and initial suspended sediment concentration about 420 g/cm3), the measurements show that the shear modulus developed after about 40 hours and approached a value on the order of 15000 N/m2 after about 100 hours. The initial kinematic viscosity was about 5 x 10-4 m2/s, and it decreased slowly with time and approached a low plateau between 10-6 and 10-7 m2/s after 300 hours. The measured bulk density showed a small increasing rate during the entire consolidation period, except at a short period between 80 and 90 hours after consolidation. Results from this study suggest a promising approach for developing an in-situ instrument to measure mud properties, as well as many other materials in other industries.

  13. Methods for blood flow measurements using ultrasound contrast agents

    NASA Astrophysics Data System (ADS)

    Fowlkes, J. Brian

    2003-10-01

    Blood flow measurements using ultrasound contrast agents are being investigated for myocardial perfusion and more recently in other organ systems. The methods are based largely on the relative increase in echogenicity due to the concentration of bubbles present in the ultrasound beam. In the simplest form, regional differences in blood volume can be inferred but the possibility exists to extract perfusion from the transit of contrast agent through tissue. Perfusion measurements rely on determining the flux of blood through a tissue volume and as such require knowledge of the fractional blood volume (FBV), i.e., ml blood/g tissue and the rate of exchange, commonly measured as the mean transit time (MTT). This presentation will discuss methods of determining each of these values and their combination to estimate tissue perfusion. Underlying principles of indicator-dilution theory will be provided in the context of ultrasound contrast agents. Current methods for determining MTT will include imaging of the intravenous bolus, in-plane contrast disruption with interval and real-time contrast recovery imaging, and control of contrast agent flow using arterial disruption (contrast interruption). The advantages and limitations of the methods will be examined along with current applications. [Work supported in part by NIH.

  14. Ultrasound measurements of the masseter muscle as predictors of cephalometric indices in orthodontics: a pilot study.

    PubMed

    Naser-Ud-Din, S; Sampson, W J; Dreyer, C W; Thoirs, K

    2010-09-01

    This study investigated the potential of ultrasound measurements of the masseter muscle to accurately predict indices normally derived from cephalograms. Masseter muscle measurements on 11 adults (22 to 30 y) were made using lateral cephalometrics and extended field-of-view ultrasound. The ultrasound technique was validated in a simulation pilot study using 12 dry skulls and raw chicken breasts. Twenty cephalometric variables were analyzed against four ultrasound measurements of the masseter muscle. Highly significant correlations (r = 0.81-0.85, p = 0.001-0.002) between ultrasound measurements of the masseter muscle and cephalometric measurements representing the length of the superficial masseter muscle, the length and shape of the mandible and vertical facial proportions were demonstrated. Predictive equations from regression analyses were constructed to deduce ramus length and shape from the ultrasound measurements. The results provide pilot data suggesting that ultrasound is a potential clinical tool for sequential evaluation of masseter muscle length in orthodontics and facial muscle growth studies.

  15. Ultrasound

    MedlinePlus

    ... called multiples) To screen for birth defects, like spina bifida or heart defects . Screening means seeing if your ... example, if the ultrasound shows your baby has spina bifida, she may be treated in the womb before ...

  16. Ultrasound

    MedlinePlus Videos and Cool Tools

    ... baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two-dimensional image of the baby while inside the mother's uterus. The sound waves bounce off solid structures in the body ...

  17. Improved self- and external assessment of the clinical abilities of medical students through structured improvement measures in an internal medicine bedside course

    PubMed Central

    Fünger, S. M.; Lesevic, H.; Rosner, S.; Ott, I.; Berberat, P.; Nikendei, C.; Sonne, C.

    2016-01-01

    Background: Bedside courses are of outstanding importance when training medical students. The fact that less and less teaching is taking place nowadays at the patient's bedside makes it all the more important that the available time be put to effective use. The aim of this study was to check whether structured improvement measures in the course (scripts, lecturer briefing, e-learning cases) would improve the abilities of the students on the basis of a subjective self-assessment as well as an external assessment by the lecturers with respect to clinical abilities. Methods: Bedside teaching takes place in the fourth study year in the Medical Clinics of the TU Munich. Both students and lecturers had the chance to hand in an anonymous, quantitative self- and external assessment of the clinical abilities of the students (German grading system) after every course date. This assessment took place online in the three categories "Medical history & examination", "Diagnosis" and "Therapy". An overall period of four semesters, each with 6 course dates, was investigated. After two of the total of four semesters in the study, the course was changed by introducing scripts, lecturer briefing as well as interactive e-learning cases. The self- and external assessment was compared both within the semester (date 1-3: A; date 4-6: B), during the course as well as before and after introducing the improvement measures ("before" (T0): SS 2012, SS 2013, "after" (T1): WS 2013/2014, SS 2014). Results: There was a significant improvement in one's own abilities on the basis of the self-assessment within each semester when comparing the first (A) and the last (B) course dates. Moreover, there was a significant improvement in the performances in all three categories when T0 was compared with T1, from both the point of view of the students ("Medical history & examination": T0 =2.5±0.9, T1=2.2±0.7, pp<0.001; "Diagnosis" T0=3.1±1.0, T1=2.8 ±0.9, pp<0.001; "Therapy": T0=3.8±1.3, T1=3.5±1.2, pp

  18. Phased-array ultrasound technology enhances accuracy of dual frequency ultrasound measurements - towards improved ultrasound bone diagnostics.

    PubMed

    Linder, Hans; Malo, Markus K H; Liukkonen, Jukka; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Overlying soft tissues attenuate ultrasound backscattered from bone, complicating diagnostics of osteoporosis at the most important fracture sites. Dual-frequency ultrasound technique (DFUS) has been proposed to solve this problem through determination of thickness and composition of overlying soft tissue. This study applies DFUS technique for the first time with a phased-array transducer to investigate if the thickness of two interfering layers (oil and water) can be accurately determined in a variety of configurations. Results indicate that DFUS may be used with phased-array ultrasound systems, making them a suitable combination to consider in future development of clinical in vivo ultrasound methodologies.

  19. Ultrasound Velocity Measurement in a Liquid Metal Electrode.

    PubMed

    Perez, Adalberto; Kelley, Douglas H

    2015-08-05

    A growing number of electrochemical technologies depend on fluid flow, and often that fluid is opaque. Measuring the flow of an opaque fluid is inherently more difficult than measuring the flow of a transparent fluid, since optical methods are not applicable. Ultrasound can be used to measure the velocity of an opaque fluid, not only at isolated points, but at hundreds or thousands of points arrayed along lines, with good temporal resolution. When applied to a liquid metal electrode, ultrasound velocimetry involves additional challenges: high temperature, chemical activity, and electrical conductivity. Here we describe the experimental apparatus and methods that overcome these challenges and allow the measurement of flow in a liquid metal electrode, as it conducts current, at operating temperature. Temperature is regulated within ±2 °C using a Proportional-Integral-Derivative (PID) controller that powers a custom-built furnace. Chemical activity is managed by choosing vessel materials carefully and enclosing the experimental setup in an argon-filled glovebox. Finally, unintended electrical paths are carefully prevented. An automated system logs control settings and experimental measurements, using hardware trigger signals to synchronize devices. This apparatus and these methods can produce measurements that are impossible with other techniques, and allow optimization and control of electrochemical technologies like liquid metal batteries.

  20. Ultrasound measurement of transcranial distance during head-down tilt

    NASA Technical Reports Server (NTRS)

    Torikoshi, S.; Wilson, M. H.; Ballard, R. E.; Watenpaugh, D. E.; Murthy, G.; Yost, W. T.; Cantrell, J. H.; Chang, D. S.; Hargens, A. R.

    1995-01-01

    Exposure to microgravity elevates blood pressure and flow in the head, which may increase intracranial volume (ICV) and intracranial pressure (ICP). Rhesus monkeys exposed to simulated microgravity in the form of 6 degree head-down tilt (HDT) experience elevated ICP. With humans, twenty-four hours of 6 degree HDT bed rest increases cerebral blood flow velocity relative to pre-HDT upright posture. Humans exposed to acute 6 degree HDT experiments increased ICP, measured with the tympanic membrane displacement (TMD) technique. Other studies suggest that increased ICP in humans and cats causes measurable cranial bone movement across the sagittal suture. Due to the slightly compliant nature of the cranium, elevation of the ICP will increase ICV and transcranial distance. Currently, several non-invasive approaches to monitor ICP are being investigated. Such techniques include TMD and modal analysis of the skull. TMD may not be reliable over a large range of ICP and neither method is capable of measuring the small changes in pressure. Ultrasound, however, may reliably measure small distance changes that accompany ICP fluctuations. The purpose of our study was to develop and evaluate an ultrasound technique to measure transcranial distance changes during HDT.

  1. Diagnostic image quality in gynaecological ultrasound: Who should measure it, what should we measure and how?

    PubMed

    Cantin, Peter; Knapp, Karen

    2014-02-01

    Assessment of diagnostic image quality in gynaecological ultrasound is an important aspect of imaging department quality assurance. This may be addressed through audit, but who should undertake the audit, what should be measured and how, remains contentious. The aim of this study was to identify whether peer audit is a suitable method of assessing the diagnostic quality of gynaecological ultrasound images. Nineteen gynaecological ultrasound studies were independently assessed by six sonographers utilising a pilot version of an audit tool. Outcome measures were levels of inter-rater agreement using different data collection methods (binary scores, Likert scale, continuous scale), effect of ultrasound study difficulty on study score and whether systematic differences were present between reviewers of different clinical grades and length of experience. Inter-rater agreement ranged from moderate to good depending on the data collection method. A continuous scale gave the highest level of inter-rater agreement with an intra-class correlation coefficient of 0.73. A strong correlation (r = 0.89) between study difficulty and study score was yielded. Length of clinical experience between reviewers had no effect on the audit scores, but individuals of a higher clinical grade gave significantly lower scores than those of a lower grade (p = 0.04). Peer audit is a promising tool in the assessment of ultrasound image quality. Continuous scales seem to be the best method of data collection implying a strong element of heuristically driven decision making by reviewing ultrasound practitioners.

  2. Measuring shape complexity of breast lesions on ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhang, Su; Chen, Yazhu; Li, Wenying; Chen, Yaqing

    2008-03-01

    The shapes of malignant breast tumors are more complex than the benign lesions due to their nature of infiltration into surrounding tissues. We investigated the efficacy of shape features and presented a method using polygon shape complexity to improve the discrimination of benign and malignant breast lesions on ultrasound. First, 63 lesions (32 benign and 31 malignant) were segmented by K-way normalized cut with the priori rules on the ultrasound images. Then, the shape measures were computed from the automatically extracted lesion contours. A polygon shape complexity measure (SCM) was introduced to characterize the complexity of breast lesion contour, which was calculated from the polygonal model of lesion contour. Three new statistical parameters were derived from the local integral invariant signatures to quantify the local property of the lesion contour. Receiver operating characteristic (ROC) analysis was carried on to evaluate the performance of each individual shape feature. SCM outperformed the other shape measures, the area under ROC curve (AUC) of SCM was 0.91, and the sensitivity of SCM could reach 0.97 with the specificity 0.66. The measures of shape feature and margin feature were combined in a linear discriminant classifier. The resubstitution and leave-one-out AUC of the linear discriminant classifier were 0.94 and 0.92, respectively. The distinguishing ability of SCM showed that it could be a useful index for the clinical diagnosis and computer-aided diagnosis to reduce the number of unnecessary biopsies.

  3. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering.

    PubMed

    Elvira, Luis; Vera, Pedro; Cañadas, Francisco Jesús; Shukla, Shiva Kant; Montero, Francisco

    2016-01-01

    This work proposes the use of an ultrasound based technique to measure the concentration of yeasts in liquid suspension. This measurement was achieved by the detection and quantification of ultrasonic echoes backscattered by the cells. More specifically, the technique was applied to the detection and quantification of Saccharomyces cerevisiae. A theoretical approach was proposed to get the average density and sound speed of the yeasts, which were found to be 1116 kg/m(3) and 1679 m/s, respectively. These parameters were needed to model the waves backscattered by each single cell. A pulse-echo arrangement working around 50 MHz, being able to detect echoes from single yeasts was used to characterize experimentally yeast solutions from 10(2) to 10(7)cells/ml. The Non-negative Matrix Factorization denoising technique was applied for data analysis. This technique required a previous learning of the spectral patterns of the echoes reflected from yeasts in solution and the base noise from the liquid medium. Comparison between pulse correlation (without denoising) and theoretical and experimental pattern learning was made to select the best signal processing. A linear relation between ultrasound output and concentration was obtained with correlation coefficient R(2)=0.996 for the experimental learning. Concentrations from 10(4) to 10(7)cells/ml were detected above the base noise. These results show the viability of using the ultrasound backscattering technique to detect yeasts and measure their concentration in liquid cultures, improving the sensitivity obtained using spectrophotometric methods by one order of magnitude.

  4. Ultrasound backscatter measurements of intact human proximal femurs--relationships of ultrasound parameters with tissue structure and mineral density.

    PubMed

    Malo, M K H; Töyräs, J; Karjalainen, J P; Isaksson, H; Riekkinen, O; Jurvelin, J S

    2014-07-01

    Ultrasound reflection and backscatter parameters are related to the mechanical and structural properties of bone in vitro. However, the potential of ultrasound reflection and backscatter measurements has not been tested with intact human proximal femurs ex vivo. We hypothesize that ultrasound backscatter can be measured from intact femurs and that the measured backscattered signal is associated with cadaver age, bone mineral density (BMD) and trabecular bone microstructure. In this study, human femoral bones of 16 male cadavers (47.0±16.1 years, range: 21-77 years) were investigated using pulse-echo ultrasound measurements at the femoral neck in the antero-posterior direction and at the trochanter major in the anteroposterior and lateromedial directions. Recently introduced ultrasound backscatter parameters, independent of cortical thickness, e.g., time slope of apparent integrated backscatter (TSAB) and mean of the backscatter difference technique (MBD) were obtained and compared with the structural properties of trabecular bone samples, extracted from the locations of ultrasound measurements. Moreover, more conventional backscatter parameters, e.g., apparent integrated backscatter (AIB) and frequency slope of apparent integrated backscatter (FSAB) were analyzed. Bone mineral density of the intact femurs was evaluated using dual energy X-ray absorptiometry (DXA). AIB and MDB measured from the femoral neck correlated significantly (p<0.01) with the neck BMD (R2=0.44 and 0.45), cadaver age (R2=0.61 and 0.41) and several structural parameters, e.g., bone volume fraction (R2=0.33 and 0.39, p<0.05 and p<0.01), respectively. To conclude, ultrasound backscatter parameters, measured from intact proximal femurs, are significantly related (p<0.05) to structural properties and mineral density of trabecular bone.

  5. Measurement of Mechanical Properties of Soft Tissue with Ultrasound Vibrometry

    NASA Astrophysics Data System (ADS)

    Nenadich, I.; Bernal, M.; Greenleaf, J. F.

    The cardiovascular diseases atherosclerosis, coronary artery disease, hypertension and heart failure have been related to stiffening of vessels and myocardium. Noninvasive measurements of mechanical properties of cardiovascular tissue would facilitate detection and treatment of disease in early stages, thus reducing mortality and possibly reducing cost of treatment. While techniques capable of measuring tissue elasticity have been reported, the knowledge of both elasticity and viscosity is necessary to fully characterize mechanical properties of soft tissues. In this article, we summarize the Shearwave Dispersion Ultrasound Vibrometry (SDUV) method developed by our group and report on advances made in characterizing stiffness of large vessels and myocardium. The method uses radiation forceFadiation force to excite shear waves in soft tissue and pulse echo ultrasound to measure the motion. The speed of propagation of shear waves at different frequencies is used to generate dispersions curves for excised porcine left-ventricular free-wall myocardium and carotid arteries. An antisymmetric Lamb wave model was fitted to the LV myocardium dispersion curves to obtain elasticity and viscosity moduli. The results suggest that the speed of shear wave propagation in four orthogonal directions on the surface of the excised myocardium is similar. These studies show that the SDUV method has potential for clinical application in noninvasive quantification of elasticity and viscosity of vessels and myocardium.

  6. Reliability of the inter-rectus distance measured by palpation. Comparison of palpation and ultrasound measurements.

    PubMed

    Mota, Patrícia; Pascoal, Augusto Gil; Sancho, Fátima; Carita, Ana Isabel; Bø, Kari

    2013-08-01

    An increased inter-rectus distance (IRD) is a common condition in late pregnancy and in the postnatal period. The condition is difficult to assess. Palpation is the most commonly used method to assess IRD. To date there is scant knowledge of intra and inter-tester reliability of palpation to measure IRD and how palpation compares with ultrasound measurements. The aims of this study were: 1) evaluate intra and inter-rater reliability of abdominal palpation; 2) validate abdominal palpation of IRD measurements using ultrasound imaging as a reference. Two physiotherapists (PTs) conducted the palpation study in random order, blinded to each other's assessments. IRD was measured as finger widths between the two rectus abdominis (RA) muscles. Ultrasound images were recorded at the same locations as the palpation test. A blinded investigator measured the IRD offline. Palpation showed good intra-rater reliability between days expressed by a weighted Kappa (wK) higher than 0.7 for both physiotherapists, and moderate inter-rater reliability (wK = 0.534). Ultrasound was found to be more responsive for differences in IRD compared with values obtained by palpation. The intra-rater reliability was higher than the inter-rater reliability. Besides the difference in experience with palpation testing between the PTs, this result may be due to differences in finger width and/or the subjective interpretation of abdominal soft-tissues pressure. Ultrasound measures are highly sensitive to changes of IRD, which is not possible to replicate by palpation assessment using a finger width scale. Palpation has sufficient reliability to be used in clinical practice. However, ultrasound is a more accurate and valid method and is recommended in future research of IRD.

  7. The Bedside Sherlock Holmes

    PubMed Central

    Fitzgerald, Faith T.; Tierney, Lawrence M.

    1982-01-01

    There are a multitude of diagnostic clues contained in clothing, jewelry, possessions and other extracorporeal attachments that each patient brings with him or her to a physician. Because of the emphasis of classic physical diagnosis on the body of a patient solely, and because of modern practices that may have patients stripped of these articles before the first encounter with their physician, these interesting and enlightening findings are often ignored or unavailable. Incorporation of these observations into the panoply of data obtained from the history and physical examination will enhance both the accuracy and adventure of differential diagnosis. Such exercises in observation, moreover, may increase general physical diagnostic skills as well as enliven bedside rounds. PMID:7135953

  8. The bedside Sherlock Holmes.

    PubMed

    Fitzgerald, F T; Tierney, L M

    1982-08-01

    There are a multitude of diagnostic clues contained in clothing, jewelry, possessions and other extracorporeal attachments that each patient brings with him or her to a physician. Because of the emphasis of classic physical diagnosis on the body of a patient solely, and because of modern practices that may have patients stripped of these articles before the first encounter with their physician, these interesting and enlightening findings are often ignored or unavailable. Incorporation of these observations into the panoply of data obtained from the history and physical examination will enhance both the accuracy and adventure of differential diagnosis. Such exercises in observation, moreover, may increase general physical diagnostic skills as well as enliven bedside rounds.

  9. Pharmacogenomics: bench to bedside.

    PubMed

    Weinshilboum, Richard; Wang, Liewei

    2004-09-01

    Pharmacogenetics is the study of the role of inheritance in inter-individual variation in drug response. Since its origins in the mid-twentieth century, a major driving force in pharmacogenetics research has been the promise of individualized drug therapy to maximize drug efficacy and minimize drug toxicity. In recent years, the convergence of advances in pharmacogenetics with rapid developments in human genomics has resulted in the evolution of pharmacogenetics into pharmacogenomics, and led to increasing enthusiasm for the 'translation' of this evolving discipline into clinical practice. Here, we briefly summarize the development of pharmacogenetics and pharmacogenomics, and then discuss the key factors that have had an influence on - and will continue to affect - the translation of pharmacogenomics from the research bench to the bedside, highlighting the challenges that need to be addressed to achieve this goal.

  10. Non-Invasive Measurement of Pulsatile Intracranial Pressures Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, Richard E.; Shuer, Lawrence M.; Cantrell, John H.; Cantrell, John H.; Hargens, Alan R.

    1997-01-01

    Early detection of elevated intracranial pressure (ICP) will aid clinical decision-making for head trauma, brain tumor and other cerebrovascular diseases. Conventional methods, however, require surgical procedures which take time and are accompanied by increased risk of infection. Accordingly we have developed and refined a new ultrasound device to measure skull movements which are known to occur in conjunction with altered ICP. The principle of this device is based upon pulse phase locked loop (PPLL), which enables us to detect changes in distance on the order of microns between an ultrasound transducer on one side of the skull and the opposite inner surface of the cranium. The present study was designed to verify this measurement technique in cadavera. Transcranial distance was increased in steps of 10 mmHg from zero to 50 mmHg by saline infusion into the lateral ventricle of two cadavera. In separate experiments, pulsations of ICP with the amplitudes of zero to 2 mmHg were generated by rhythmic injections of saline using a syringe. When the ICP was stepwise increased from zero to 50 mmHg, transcranial distance increased in proportion with the ICP increase (y=12 x - 76, r=0.938), where y is changes in transcranial distance in microns and x is ICP in mmHg. In the data recorded while ICP pulsations were generated, fast Fourier transform analysis demonstrated that cranial pulsations were clearly associated with ICP pulsations. The results indicate that changes in transcranial distance is linearly correlated with those in ICP, and also that the PPLL device has sufficient sensitivity to detect transcranial pulsations which occur in association with the cardiac cycle. By analyzing the magnitude of cranial pulsations, we may be able to estimate the pressure-volume index in the cranium. As a result, estimates of intracranial compliance may be possible by using the PPLL device. Further studies are necessary in normal subjects and patients.

  11. Comparative Performance Assessment of Point-of-Care Testing Devices for Measuring Glucose and Ketones at the Patient Bedside

    PubMed Central

    Ceriotti, Ferruccio; Kaczmarek, Ewa; Guerra, Elena; Mastrantonio, Fabrizio; Lucarelli, Fausto; Valgimigli, Francesco; Mosca, Andrea

    2014-01-01

    Background: Point-of-care (POC) testing devices for monitoring glucose and ketones can play a key role in the management of dysglycemia in hospitalized diabetes patients. The accuracy of glucose devices can be influenced by biochemical changes that commonly occur in critically ill hospital patients and by the medication prescribed. Little is known about the influence of these factors on ketone POC measurements. The aim of this study was to assess the analytical performance of POC hospital whole-blood glucose and ketone meters and the extent of glucose interference factors on the design and accuracy of ketone results. Methods: StatStrip glucose/ketone, Optium FreeStyle glucose/ketone, and Accu-Chek Performa glucose were also assessed and results compared to a central laboratory reference method. The analytical evaluation was performed according to Clinical and Laboratory Standards Institute (CLSI) protocols for precision, linearity, method comparison, and interference. Results: The interferences assessed included acetoacetate, acetaminophen, ascorbic acid, galactose, maltose, uric acid, and sodium. The accuracies of both Optium ketone and glucose measurements were significantly influenced by varying levels of hematocrit and ascorbic acid. StatStrip ketone and glucose measurements were unaffected by the interferences tested with exception of ascorbic acid, which reduced the higher level ketone value. The accuracy of Accu-Chek glucose measurements was affected by hematocrit, by ascorbic acid, and significantly by galactose. The method correlation assessment indicated differences between the meters in compliance to ISO 15197 and CLSI 12-A3 performance criteria. Conclusions: Combined POC glucose/ketone methods are now available. The use of these devices in a hospital setting requires careful consideration with regard to the selection of instruments not sensitive to hematocrit variation and presence of interfering substances. PMID:25519295

  12. Comparative performance assessment of point-of-care testing devices for measuring glucose and ketones at the patient bedside.

    PubMed

    Ceriotti, Ferruccio; Kaczmarek, Ewa; Guerra, Elena; Mastrantonio, Fabrizio; Lucarelli, Fausto; Valgimigli, Francesco; Mosca, Andrea

    2015-03-01

    Point-of-care (POC) testing devices for monitoring glucose and ketones can play a key role in the management of dysglycemia in hospitalized diabetes patients. The accuracy of glucose devices can be influenced by biochemical changes that commonly occur in critically ill hospital patients and by the medication prescribed. Little is known about the influence of these factors on ketone POC measurements. The aim of this study was to assess the analytical performance of POC hospital whole-blood glucose and ketone meters and the extent of glucose interference factors on the design and accuracy of ketone results. StatStrip glucose/ketone, Optium FreeStyle glucose/ketone, and Accu-Chek Performa glucose were also assessed and results compared to a central laboratory reference method. The analytical evaluation was performed according to Clinical and Laboratory Standards Institute (CLSI) protocols for precision, linearity, method comparison, and interference. The interferences assessed included acetoacetate, acetaminophen, ascorbic acid, galactose, maltose, uric acid, and sodium. The accuracies of both Optium ketone and glucose measurements were significantly influenced by varying levels of hematocrit and ascorbic acid. StatStrip ketone and glucose measurements were unaffected by the interferences tested with exception of ascorbic acid, which reduced the higher level ketone value. The accuracy of Accu-Chek glucose measurements was affected by hematocrit, by ascorbic acid, and significantly by galactose. The method correlation assessment indicated differences between the meters in compliance to ISO 15197 and CLSI 12-A3 performance criteria. Combined POC glucose/ketone methods are now available. The use of these devices in a hospital setting requires careful consideration with regard to the selection of instruments not sensitive to hematocrit variation and presence of interfering substances.

  13. Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography

    NASA Astrophysics Data System (ADS)

    Oyama, Seiji; Yasuda, Jun; Hanayama, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    A fast and accurate measurement of an ultrasound field with various exposure sequences is necessary to ensure the efficacy and safety of various ultrasound applications in medicine. The most common method used to measure an ultrasound pressure field, that is, hydrophone scanning, requires a long scanning time and potentially disturbs the field. This may limit the efficiency of developing applications of ultrasound. In this study, an optical phase contrast method enabling fast and noninterfering measurements is proposed. In this method, the modulated phase of light caused by the focused ultrasound pressure field is measured. Then, a computed tomography (CT) algorithm used to quantitatively reconstruct a three-dimensional (3D) pressure field is applied. For a high-intensity focused ultrasound field, a new approach that combines the optical phase contrast method and acoustic holography was attempted. First, the optical measurement of focused ultrasound was rapidly performed over the field near a transducer. Second, the nonlinear propagation of the measured ultrasound was simulated. The result of the new approach agreed well with that of the measurement using a hydrophone and was improved from that of the phase contrast method alone with phase unwrapping.

  14. Learning evaluation of ultrasound image segmentation using combined measures

    NASA Astrophysics Data System (ADS)

    Fang, Mengjie; Luo, Yongkang; Ding, Mingyue

    2016-03-01

    Objective evaluation of medical image segmentation is one of the important steps for proving its validity and clinical applicability. Although there are many researches presenting segmentation methods on medical image, while with few studying the evaluation methods on their results, this paper presents a learning evaluation method with combined measures to make it as close as possible to the clinicians' judgment. This evaluation method is more quantitative and precise for the clinical diagnose. In our experiment, the same data sets include 120 segmentation results of lumen-intima boundary (LIB) and media-adventitia boundary (MAB) of carotid ultrasound images respectively. And the 15 measures of goodness method and discrepancy method are used to evaluate the different segmentation results alone. Furthermore, the experimental results showed that compared with the discrepancy method, the accuracy with the measures of goodness method is poor. Then, by combining with the measures of two methods, the average accuracy and the area under the receiver operating characteristic (ROC) curve of 2 segmentation groups are higher than 93% and 0.9 respectively. And the results of MAB are better than LIB, which proved that this novel method can effectively evaluate the segmentation results. Moreover, it lays the foundation for the non-supervised segmentation evaluation system.

  15. IGBT-based kilovoltage pulsers for ultrasound measurement applications.

    PubMed

    Gammell, Paul M; Harris, Gerald R

    2003-12-01

    Two high-voltage pulser designs are presented that offer advantages in some ultrasound measurement applications, such as driving thick ultrasonic source transducers used for broadband measurements of attenuation or hydrophone frequency response and directivity. The pulsers use integrated gate bipolar transistors (IGBTs) as the switching devices, and in one design an output voltage pulse is produced that has a peak amplitude nearly twice that of the supply voltage. The pulsers are inexpensive and relatively easy to construct. The power supply need only provide the average current to charge the capacitors, as opposed to the much higher peak pulse current. With a 1200 V supply and a pulse repetition frequency of 200 Hz, the nondoubling and doubling pulsers provided peak voltages of greater than 1100 V and 2200 V, respectively, into loads ranging from 50 omega to 500 omega. For a 50 omega load, slewing rates of 38 V/ns and 23 V/ns were measured for the nondoubling and doubling pulsers, respectively. For a 500 omega load these values were 56 V/ns and 36 V/ns.

  16. Pleural ultrasound for clinicians.

    PubMed

    Porcel, J M

    2016-11-01

    Pleural ultrasonography is useful for identifying and characterising pleural effusions, solid pleural lesions (nodules, masses, swellings) and pneumothorax. Pleural ultrasonography is also considered the standard care for guiding interventionist procedures on the pleura at the patient's bedside (thoracentesis, drainage tubes, pleural biopsies and pleuroscopy). Hospitals should promote the acquisition of portable ultrasound equipment to increase the patient's safety.

  17. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network.

    PubMed

    Xing, Jida; Chen, Jie

    2015-06-23

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous

  18. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network

    PubMed Central

    Xing, Jida; Chen, Jie

    2015-01-01

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous

  19. Noninvasive measurement of pulsatile intracranial pressure using ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, T.; Ballard, R. E.; Shuer, L. M.; Cantrell, J. H.; Yost, W. T.; Hargens, A. R.

    1998-01-01

    The present study was designed to validate our noninvasive ultrasonic technique (pulse phase locked loop: PPLL) for measuring intracranial pressure (ICP) waveforms. The technique is based upon detecting skull movements which are known to occur in conjunction with altered intracranial pressure. In bench model studies, PPLL output was highly correlated with changes in the distance between a transducer and a reflecting target (R2 = 0.977). In cadaver studies, transcranial distance was measured while pulsations of ICP (amplitudes of zero to 10 mmHg) were generated by rhythmic injections of saline. Frequency analyses (fast Fourier transformation) clearly demonstrate the correspondence between the PPLL output and ICP pulse cycles. Although theoretically there is a slight possibility that changes in the PPLL output are caused by changes in the ultrasonic velocity of brain tissue, the decreased amplitudes of the PPLL output as the external compression of the head was increased indicates that the PPLL output represents substantial skull movement associated with altered ICP. In conclusion, the ultrasound device has sufficient sensitivity to detect transcranial pulsations which occur in association with the cardiac cycle. Our technique makes it possible to analyze ICP waveforms noninvasively and will be helpful for understanding intracranial compliance and cerebrovascular circulation.

  20. Comparison of portable and conventional ultrasound imaging in spinal curvature measurement

    NASA Astrophysics Data System (ADS)

    Yan, Christina; Tabanfar, Reza; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor

    2016-03-01

    PURPOSE: In scoliosis monitoring, tracked ultrasound has been explored as a safer imaging alternative to traditional radiography. The use of ultrasound in spinal curvature measurement requires identification of vertebral landmarks, but bones have reduced visibility in ultrasound imaging and high quality ultrasound machines are often expensive and not portable. In this work, we investigate the image quality and measurement accuracy of a low cost and portable ultrasound machine in comparison to a standard ultrasound machine in scoliosis monitoring. METHODS: Two different kinds of ultrasound machines were tested on three human subjects, using the same position tracker and software. Spinal curves were measured in the same reference coordinate system using both ultrasound machines. Lines were defined by connecting two symmetric landmarks identified on the left and right transverse process of the same vertebrae, and spinal curvature was defined as the transverse process angle between two such lines, projected on the coronal plane. RESULTS: Three healthy volunteers were scanned by both ultrasound configurations. Three experienced observers localized transverse processes as skeletal landmarks and obtained transverse process angles in images obtained from both ultrasounds. The mean difference per transverse process angle measured was 3.00 +/-2.1°. 94% of transverse processes visualized in the Sonix Touch were also visible in the Telemed. Inter-observer error in the Telemed was 4.5° and 4.3° in the Sonix Touch. CONCLUSION: Price, convenience and accessibility suggest the Telemed to be a viable alternative in scoliosis monitoring, however further improvements in measurement protocol and image noise reduction must be completed before implementing the Telemed in the clinical setting.

  1. Damage Detection in Concrete Using Diffuse Ultrasound Measurements

    NASA Astrophysics Data System (ADS)

    Deroo, Frederik; Jacobs, Laurence J.; Kim, Jin-Yeon; Qu, Jianmin; Sabra, Karim

    2010-02-01

    Heterogeneities in concrete caused by the random distribution of aggregate in the cement-paste matrix lead to strong scattering of ultrasonic waves at wavelengths on the order of the aggregate. Use of these high frequencies is necessary to detect damage at an early stage, something that is not possible with conventional ultrasonic methods. The ultrasound energy density in that regime can be described by the diffusion equation. The objective of this research is to develop a quantitative understanding of the effects of additional scattering sources, such as small cracks in the cement-paste matrix, on the parameters of the diffusion equation; these parameters are the diffusion and the dissipation coefficients. Applying diffusion theory, the diffusivity and dissipation coefficients are experimentally determined as functions of frequency using ultrasonic waves. The cuboid shaped samples employed are made of a Portland cement-paste matrix and regular aggregate, such as gravel and sand. The results provide a basic understanding of repeatability and consistency of diffusion measurements, with an emphasis on the nondestructive evaluation of concrete.

  2. Measuring Femoral Torsion In Vivo Using Freehand 3-D Ultrasound Imaging.

    PubMed

    Passmore, Elyse; Pandy, Marcus G; Graham, H Kerr; Sangeux, Morgan

    2016-02-01

    Despite variation in bone geometry, muscle and joint function is often investigated using generic musculoskeletal models. Patient-specific bone geometry can be obtained from computerised tomography, which involves ionising radiation, or magnetic resonance imaging (MRI), which is costly and time consuming. Freehand 3-D ultrasound provides an alternative to obtain bony geometry. The purpose of this study was to determine the accuracy and repeatability of 3-D ultrasound in measuring femoral torsion. Measurements of femoral torsion were performed on 10 healthy adults using MRI and 3-D ultrasound. Measurements of femoral torsion from 3-D ultrasound were, on average, smaller than those from MRI (mean difference = 1.8°; 95% confidence interval: -3.9°, 7.5°). MRI and 3-D ultrasound had Bland and Altman repeatability coefficients of 3.1° and 3.7°, respectively. Accurate measurements of femoral torsion were obtained with 3-D ultrasound offering the potential to acquire patient-specific bone geometry for musculoskeletal modelling. Three-dimensional ultrasound is non-invasive and relatively inexpensive and can be integrated into gait analysis.

  3. An automated in vitro model for the evaluation of ultrasound modalities measuring myocardial deformation

    PubMed Central

    2010-01-01

    Background Echocardiography is the method of choice when one wishes to examine myocardial function. Qualitative assessment of the 2D grey scale images obtained is subjective, and objective methods are required. Speckle Tracking Ultrasound is an emerging technology, offering an objective mean of quantifying left ventricular wall motion. However, before a new ultrasound technology can be adopted in the clinic, accuracy and reproducibility needs to be investigated. Aim It was hypothesized that the collection of ultrasound sample data from an in vitro model could be automated. The aim was to optimize an in vitro model to allow for efficient collection of sample data. Material & Methods A tissue-mimicking phantom was made from water, gelatin powder, psyllium fibers and a preservative. Sonomicrometry crystals were molded into the phantom. The solid phantom was mounted in a stable stand and cyclically compressed. Peak strain was then measured by Speckle Tracking Ultrasound and sonomicrometry. Results We succeeded in automating the acquisition and analysis of sample data. Sample data was collected at a rate of 200 measurement pairs in 30 minutes. We found good agreement between Speckle Tracking Ultrasound and sonomicrometry in the in vitro model. Best agreement was 0.83 ± 0.70%. Worst agreement was -1.13 ± 6.46%. Conclusions It has been shown possible to automate a model that can be used for evaluating the in vitro accuracy and precision of ultrasound modalities measuring deformation. Sonomicrometry and Speckle Tracking Ultrasound had acceptable agreement. PMID:20822532

  4. Viscoelastic Property Measurement in Thin Tissue Constructs Using Ultrasound

    PubMed Central

    Liu, Dalong; Ebbini, Emad S.

    2010-01-01

    We present a dual-element concave ultrasound transducer system for generating and tracking of localized tissue displacements in thin tissue constructs on rigid substrates. The system is comprised of a highly focused PZT-4 5-MHz acoustic radiation force (ARF) transducer and a confocal 25-MHz polyvinylidene fluoride imaging transducer. This allows for the generation of measurable displacements in tissue samples on rigid substrates with thickness values down to 500 µm. Impulse-like and longer duration sine-modulated ARF pulses are possible with intermittent M-mode data acquisition for displacement tracking. The operations of the ARF and imaging transducers are strictly synchronized using an integrated system for arbitrary waveform generation and data capture with a shared timebase. This allows for virtually jitter-free pulse-echo data well suited for correlation-based speckle tracking. With this technique we could faithfully capture the entire dynamics of the tissue axial deformation at pulse-repetition frequency values up to 10 kHz. Spatio-temporal maps of tissue displacements in response to a variety of modulated ARF beams were produced in tissue-mimicking elastography phantoms on rigid substrates. The frequency response was measured for phantoms with different modulus and thickness values. The frequency response exhibited resonant behavior with the resonance frequency being inversely proportional to the sample thickness. This resonant behavior can be used in obtaining high-contrast imaging using magnitude and phase response to sinusoidally modulated ARF beams. Furthermore, a second order forced harmonic oscillator (FHO) model was shown to capture this resonant behavior. Based on the FHO model, we used the extended Kalman filter (EKF) for tracking the apparent modulus and viscosity of samples subjected to dc and sinusoidally modulated ARF. The results show that the stiffness (apparent modulus) term in the FHO is largely time-invariant and can be estimated robustly

  5. Comparison of central corneal thickness measurements using ultrasound pachymetry, ultrasound biomicroscopy, and the Artemis-2 VHF scanner in normal eyes

    PubMed Central

    Al-Farhan, Haya M; Al-Otaibi, Wafa’a Majed

    2012-01-01

    Purpose To compare the precision of central corneal thickness (CCT) measurements taken with the handheld ultrasound pachymeter (USP), ultrasound biomicroscopy (UBM), and the Artemis-2 very high frequency ultrasound scanner (VHFUS) on normal subjects. Design Prospective study. Methods One eye from each of 61 normal subjects was randomly selected for this study. The measurements of the CCT were taken with the USP, VHFUS, and UBM. Results were compared statistically using repeated-measures analysis of variance (ANOVA), Pearson’s correlation coefficient, and limits of agreement. Results The average CCT (± standard deviation) was 530.1 ± 30.5 μm, 554.9 ± 31.7 μm, and 559.5 ± 30.7 μm for UBM, VHFUS, and USP respectively. The intraobserver repeatability analyses of variance are not significant for USP, UBM, and VHFUS. P-values were 0.17, 0.19, and 0.37 respectively. Repeated-measures ANOVA showed a significant difference between the three different methods of measuring CCT (P = 0.0001). The ANOVA test revealed no statistically significant difference between USP and VHFUS (P > 0.05), yet statistical significant differences with UBM versus USP and UBM versus VHFUS (P < 0.001). There were high correlations between the three instruments (P < 0.0001). The mean differences (and upper/lower limits of agreement) for CCT measurements were 29.4 ± 14.3 (2.7/56), 4.6 ± 8.6 (−14.7/23.8), and −24.8 ± 13.1 (−50.4/0.8) for USP versus UBM, USP versus VHFUS, and UBM versus VHFUS, respectively. Conclusion The UBM produces CCT measurements that vary significantly from those returned by the USP and the VHFUS, suggesting that the UBM may not be used interchangeably with either equipment for monitoring the CCT in the clinical setting. PMID:22848145

  6. Measurement of Thermal Effects of Doppler Ultrasound: An In Vitro Study

    PubMed Central

    Helmy, Samir; Bader, Yvonne; Koch, Marianne; Tiringer, Denise; Kollmann, Christian

    2015-01-01

    Objective Ultrasound is considered a safe imaging modality and is routinely applied during early pregnancy. However, reservations are expressed concerning the application of Doppler ultrasound in early pregnancy due to energy emission of the ultrasound probe and its conversion to heat. The objective of this study was to evaluate the thermal effects of emitted Doppler ultrasound of different ultrasound machines and probes by means of temperature increase of in-vitro test-media. Methods We investigated the energy-output of 5 vaginal and abdominal probes of 3 ultrasound machines (GE Healthcare, Siemens, Aloka). Two in-vitro test objects were developed at the Center for Medical Physics and Biomedical Engineering, Medical University Vienna (water bath and hydrogel bath). Temperature increase during Doppler ultrasound emission was measured via thermal sensors, which were placed inside the test objects or on the probes’ surface. Each probe was emitting for 5 minutes into the absorbing test object with 3 different TI/MI settings in Spectral Doppler mode. Results During water bath test, temperature increase varied between 0.1 and 1.0°C, depending on probe, setting and focus, and was found highest for spectral Doppler mode alone. Maximum temperature increase was found during the surface heating test, where values up to 2.4°C could be measured within 5 minutes of emission. Conclusions Activation of Doppler ultrasound in the waterbath model causes a significant increase of temperature within one minute. Thermally induced effects on the embryo cannot be excluded when using Doppler ultrasound in early pregnancy. PMID:26302465

  7. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness.

    PubMed

    Brandenburg, Joline E; Eby, Sarah F; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S; Chen, Shigao; An, Kai-Nan

    2014-11-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research.

  8. Validation of nipple diameter and tongue movement measurements with B-mode ultrasound during breastfeeding.

    PubMed

    McClellan, Holly L; Sakalidis, Vanessa S; Hepworth, Anna R; Hartmann, Peter E; Geddes, Donna T

    2010-11-01

    Infant feeding problems are extremely common during breastfeeding establishment. To objectively assess infant sucking, consistent methods to analyze ultrasound images of the infant's oral cavity are required. We developed and assessed the reliability of an extensive ultrasound measurement protocol by measuring nipple diameter and placement. Midline submental ultrasound scans of 30 term breastfed infants were analyzed by two raters. Nipple diameter, nipple hard-soft palate junction distance and tongue hard-soft palate junction distance were measured on two frames: tongue-up and tongue-down. No evidence of measurement bias was found between raters and inter-rater agreement and consistency scores were high. The changes in nipple diameter and placement were consistent with previous descriptions; however, the diameter of the nipple was not consistent in either position. This method provides objective measurements representative of tongue movement, and further investigation is required to ensure usefulness when examining sucking difficulties.

  9. Ultrasound pregnancy

    MedlinePlus

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  10. Transvaginal ultrasound

    MedlinePlus

    ... Uterine bleeding - transvaginal ultrasound; Menstrual bleeding - transvaginal ultrasound; Infertility - transvaginal ultrasound; Ovarian - transvaginal ultrasound; Abscess - transvaginal ultrasound

  11. The measurements of ultrasound parameters on calcaneus by two-sided interrogation techniques

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Jarn; Chen, Tainsong; Lu, Ming-Chang; Yao, Wei-Jen

    2005-06-01

    Recently, ultrasound techniques have become an important alternative in the assessment of osteoporosis. The speed of sound (SOS) and broadband ultrasound attenuation (BUA) on calcaneus are commonly used in an ultrasound densitometer for osteoporosis evaluation. However, the quantitative ultrasound (QUS) parameters provided by a densitometer using most commercial ultrasound instruments are based on the assumption of a fixed bone thickness. Information on bone thickness is a critical factor for accurate estimation of SOS through conventional approaches; yet, the thickness of bone tissue is not available through in vivo measurements and it is almost impossible to obtain the thickness of bone tissue via conventional approaches. Therefore, the SOS measurements will be incorrect. The purpose of this work is to develop a two-sided interrogation technique for the SOS measurements that is less susceptible to bone thickness. The results show that this proposed technique can obtain a better SOS estimation on bone tissue. Using bone phantoms that mimic actual tissue, the validity of the approach is confirmed with measurements showing high accuracy (>99%) and low standard deviation (<0.5%). Finally, the measurements of 14 healthy subjects are also reported. The results show that this technique can provide the bone thickness information to reduce the SOS estimation errors compared with the fixed bone thickness assumption.

  12. The influence of cortical end-plate on broadband ultrasound attenuation measurements at the human calcaneus using scanning confocal ultrasound

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Lin, Wei; Qin, Yi-Xian

    2005-09-01

    Quantitative ultrasound (QUS) assessment, including broadband ultrasound attenuation (BUA), is an efficient technique for assessing bone quality in various statuses, e.g., osteoporosis. While assessing trabecular bone loss is essential to bone quality, the existence of cortical bone can substantially reduce the accuracy of BUA measurement. In this study, we developed an approach to quantify the influence of the cortical end-plate in the QUS on 18 cadaver calcanei using both analytical and experimental analyses. A simplified cortical-trabecular-cortical sandwich model has been developed for simulation of wave propagations. Results show that the cortical end-plate has a significant effect on BUA (yielding 8.5+/-3.6 dB/MHz in cortical bone alone), approximately 15% of the BUA value over the whole bone BUA measurement (54.1+/-20.1 dB/MHz). The phenomenon has been predicted by the developed analytical model with a high correlation (r2=0.63,p<0.0001). The data have suggested that the mechanism of the BUA attributed to the cortical end-plate is primarily due to the ultrasonic wave transmission and reflection within the cortical layers. Therefore, the influence of the cortical end-plate in BUA can be quantified and incorporated into the QUS assessment for bone quality, which may provide insight into BUA measurement for accurate diagnosis of bone diseases.

  13. Are portable bladder scanning and real-time ultrasound accurate measures of bladder volume in postnatal women?

    PubMed

    Mathew, S; Horne, A W; Murray, L S; Tydeman, G; McKinley, C A

    2007-08-01

    Real-time ultrasound and portable bladder scanners are commonly used instead of catheterisation to determine bladder volumes in postnatal women but it is not known whether these are accurate. Change in bladder volumes measured by ultrasound and portable scanners were compared with actual voided volume (VV) in 100 postnatal women. The VV was on average 41 ml (CI 29 - 54 ml) higher than that measured by ultrasound, and 33 ml (CI 17 - 48 ml) higher than that measured by portable scanners. Portable scanner volumes were 9 ml (CI -8 - 26 ml) higher than those measured by ultrasound. Neither method is an accurate tool for detecting bladder volume in postnatal women.

  14. Instrumentation for bedside analysis of swallowing disorders.

    PubMed

    Greco, Catiuscia S S; Nunes, Luiz G Q; Melo, Pedro L

    2010-01-01

    Disordered swallowing, or dysphagia, is a common problem seen in patients undergoing treatment for cancer, stroke and neurodegenerative illnesses. This disease is associated with aspiration-induced chest infections. The methods currently used for diagnosis, however, are qualitative or based on expensive equipment. Swallowing accelerometry is a promising low-cost, quantitative and noninvasive tool for the evaluation of swallowing. This work describes the design and application of a bedside instrument able to evaluate swallowing mechanisms and to identify patients at risk of aspiration. Three-axis swallowing accelerometry was used to measure the neck vibrations associated with deglutition, providing analog signals to a virtual instrument developed in LabVIEW environment. In vivo tests in normal subjects as well as tests with disphagic patients showed that the system was able to easily and non-invasively detect changes in the swallowing acceleration pattern associated with increasing values of water volume (p < 0.02) and disphagia. We concluded that the developed system could be a useful tool for the objective bedside evaluation of patients at risk of aspiration.

  15. Ultrasound stylet for non-image-guided ventricular catheterization.

    PubMed

    Coulson, Nathaniel K; Chiarelli, Peter A; Su, David K; Chang, Jason J; MacConaghy, Brian; Murthy, Revathi; Toms, Peter; Robb, Terrence L; Ellenbogen, Richard G; Browd, Samuel R; Mourad, Pierre D

    2015-10-01

    OBJECT Urgent ventriculostomy placement can be a lifesaving procedure in the setting of hydrocephalus or elevated intracranial pressure. While external ventricular drain (EVD) insertion is common, there remains a high rate of suboptimal drain placement. Here, the authors seek to demonstrate the feasibility of an ultrasound-based guidance system that can be inserted into an existing EVD catheter to provide a linear ultrasound trace that guides the user toward the ventricle. METHODS The ultrasound stylet was constructed as a thin metal tube, with dimensions equivalent to standard catheter stylets, bearing a single-element, ceramic ultrasound transducer at the tip. Ultrasound backscatter signals from the porcine ventricle were processed by custom electronics to offer real-time information about ventricular location relative to the catheter. Data collected from the prototype device were compared with reference measurements obtained using standard clinical ultrasound imaging. RESULTS A study of porcine ventricular catheterization using the experimental device yielded a high rate of successful catheter placement after a single pass (10 of 12 trials), despite the small size of pig ventricles and the lack of prior instruction on porcine ventricular architecture. A characteristic double-peak signal was identified, which originated from ultrasound reflections off of the near and far ventricular walls. Ventricular dimensions, as obtained from the width between peaks, were in agreement with standard ultrasound reference measurements (p < 0.05). Furthermore, linear ultrasound backscatter data permitted in situ measurement of the stylet distance to the ventricular wall (p < 0.05), which assisted in catheter guidance. CONCLUSIONS The authors have demonstrated the ability of the prototype ultrasound stylet to guide ventricular access in the porcine brain. The alternative design of the device makes it potentially easy to integrate into the standard workflow for bedside EVD

  16. Clinical agreement between automated and calculated ultrasound measurements of bladder volume.

    PubMed

    Dudley, N J; Kirkland, M; Lovett, J; Watson, A R

    2003-11-01

    Non-invasive urine volume measurement is an important tool in the management of dysfunctional and neuropathic bladders in children. Ultrasound imaging devices have been used for many years for this purpose. An automated scanner (Bladderscan) is now available and has been recommended by a number of authors, but there is conflicting evidence in the literature regarding the accuracy and appropriate clinical application of the device. We aimed to assess the level of clinical agreement between the two methods. 36 urine volume measurements were made on 11 children using both instruments. Although there was a good correlation between the methods (r=0.97), the clinical agreement was poor (limits of agreement +/-77 ml). 13 voided volumes were directly measured and compared with the difference between pre- and post-void ultrasound measurements. The systematic errors were small but the mean absolute errors were 54 ml and 23 ml, respectively, for the automated and ultrasound imaging methods. If used correctly, ultrasound imaging provides more accurate results and can compete with the cost, convenience and ease of use of the automated method. Low cost, highly portable ultrasound imaging devices are now available and should be used in preference to the Bladderscan.

  17. The Use of 2D Ultrasound Elastography for Measuring Tendon Motion and Strain

    PubMed Central

    Slane, Laura Chernak; Thelen, Darryl G.

    2014-01-01

    The goal of the current study was to investigate the fidelity of a 2D ultrasound elastography method for the measurement of tendon motion and strain. Ultrasound phantoms and ex vivo porcine flexor tendons were cyclically stretched to 4% strain while cine ultrasound radiofrequency (RF) data and video data were simultaneously collected. 2D ultrasound elastography was used to estimate tissue motion and strain from RF data, and surface tissue motion and strain were separately estimated using digital image correlation (DIC). There were strong correlations (R2 > 0.97) between DIC and RF measurements of phantom displacement and strain, and good agreement in estimates of peak phantom strain (DIC: 3.5 ± 0.2%; RF: 3.7 ± 0.1%). For tendon, elastographic estimates of displacement profiles also correlated well with DIC measurements (R2 > 0.92), and exhibited similar estimated peak tendon strain (DIC: 2.6 ± 1.4%; RF: 2.2 ± 1.3%). Elastographic tracking with B-Mode images tended to under-predict peak strain for both the phantom and tendon. This study demonstrates the capacity to use quantitative elastographic techniques to measure tendon displacement and strain within an ultrasound image window. The approach may be extendible to in vivo use on humans, which would allow for the non-invasive analysis of tendon deformation in both normal and pathological states. PMID:24388164

  18. Quantitative Measurement of Highly Focused Ultrasound Pressure Field by Optical Shadowgraph

    NASA Astrophysics Data System (ADS)

    Miyasaka, R.; Harigane, S.; Yoshizawa, S.; Umemura, S.

    2014-06-01

    In the development of medical ultrasound techniques, fast and accurate pressure field measurement is important. The most common method to measure an ultrasound pressure field is mechanically scanning a hydrophone, which takes a long time and might disturb the acoustic field. In this study, we used an optical shadowgraph method. To perform this method quantitatively, it is important to define the optical propagation length precisely. For this purpose, a holographic diffuser was used as the imaging screen. Combined with a computed tomography (CT) algorithm, a pressure field was reconstructed, and the result was compared with that of hydrophone measurement. By using two shadowgraph data from short and long propagation lengths, the pressure field was successfully reconstructed even at a pressure level for high intensity focused ultrasound (HIFU) treatment.

  19. Use of serial ultrasound measures in the study of growth- and breed-related changes of ultrasonic measurements and relationship with carcass measurements in lean cattle breeds.

    PubMed

    Peña, F; Molina, A; Juárez, M; Requena, F; Avilés, C; Santos, R; Domenech, V; Horcada, A

    2014-01-01

    The growth and breed-related changes of rib and rump characteristics in lean beef cattle and the ability of ultrasound to predict carcass traits were investigated. Three hundred bulls from three breeds were scanned monthly (6-7 times) using real-time ultrasound with final scans taken <7 days prior to harvest. The rib and rump ultrasound measurements, except intramuscular fat content, increased (P<0.05) with live weight. Breed affected most of traits. The 12th rib ultrasound measurements showed a weak to high positive correlation (0.131 to 0.976, P>0.05 to P<0.001) with 12th rib measurements in the carcass. Regression equations developed with the ultrasound measurements, explained 97% of the variation in longissimus muscle area, 88% of the variation in fat thickness and 57% of the variation in intramuscular fat content. When last ultrasound scan measurements were excluded from prediction equations, the R(2) significantly decreased. Ultrasound measures "in vivo" are viable options for assessing carcass attributes of lean cattle.

  20. Mechanism modeling for phase fraction measurement with ultrasound attenuation in oil–water two-phase flow

    NASA Astrophysics Data System (ADS)

    Su, Qian; Tan, Chao; Dong, Feng

    2017-03-01

    When measuring the phase fraction of oil–water two-phase flow with the ultrasound attenuation, the phase distribution and fraction have direct influence on the attenuation coefficient. Therefore, the ultrasound propagation at various phase fractions and distributions were investigated. Mechanism models describing phase fraction with the ultrasound attenuation coefficient were established by analyzing the interaction between ultrasound and two-phase flow by considering the scattering, absorption and diffusion effect. Experiments were performed to verify the theoretical analysis, and the test results gave good agreement with the theoretical analysis. When the dispersed phase fraction is low, the relationship between ultrasound attenuation coefficient and phase fraction is of monotonic linearity; at higher dispersed phase fraction, ultrasound attenuation coefficient presents an irregular response to the dispersed phase fraction. The presented mechanism models give reasonable explanations about the trend of ultrasound attenuation.

  1. A Preponderance of Elastic Properties of Alpha Plutonium Measured Via Resonant Ultrasound Spectroscopy

    SciTech Connect

    Saleh, Tarik A.; Farrow, Adam M.; Freibert, Franz J.

    2012-06-06

    Samples of {alpha} plutonium were fabricated at the Los Alamos National Laboratory's Plutonium Facility. Cylindrical samples were machined from cast pucks. Precision immersion density and resonant ultrasound spectroscopy (RUS) measurements were completed on 27 new samples, yielding elastic moduli measurements. Mechanical tests were performed in compression yielding stress-strain curves as a function of rate, temperature and phase.

  2. Feasibility of Quantitative Ultrasound Measurement of the Heel Bone in People with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Mergler, S.; Lobker, B.; Evenhuis, H. M.; Penning, C.

    2010-01-01

    Low bone mineral density (BMD) and fractures are common in people with intellectual disabilities (ID). Reduced mobility in case of motor impairment and the use of anti-epileptic drugs contribute to the development of low BMD. Quantitative ultrasound (QUS) measurement of the heel bone is a non-invasive and radiation-free method for measuring bone…

  3. Direct Measurement of Basilar Membrane Motion Using Pulsed-Wave Doppler High-Frequency Ultrasound

    NASA Astrophysics Data System (ADS)

    Torbatian, Z.; Garland, P.; Adamson, R. B. A.; Bance, M.; Brown, J. A.

    2011-11-01

    We present a preliminary report on the use of a new technique for measuring the motion of the basilar membrane, high-frequency ultrasound Doppler vibrometry. Using a custom-built, 1 mm diameter probe, we collected ultrasonic reflections from intracochlear structures and applied pulsed-wave Doppler vibrometry to measure the basilar membrane response to pressure applied in the ear canal.

  4. Challenges and regulatory considerations in the acoustic measurement of high-frequency (>20 MHz) ultrasound.

    PubMed

    Nagle, Samuel M; Sundar, Guru; Schafer, Mark E; Harris, Gerald R; Vaezy, Shahram; Gessert, James M; Howard, Samuel M; Moore, Mary K; Eaton, Richard M

    2013-11-01

    This article examines the challenges associated with making acoustic output measurements at high ultrasound frequencies (>20 MHz) in the context of regulatory considerations contained in the US Food and Drug Administration industry guidance document for diagnostic ultrasound devices. Error sources in the acoustic measurement, including hydrophone calibration and spatial averaging, nonlinear distortion, and mechanical alignment, are evaluated, and the limitations of currently available acoustic measurement instruments are discussed. An uncertainty analysis of acoustic intensity and power measurements is presented, and an example uncertainty calculation is done on a hypothetical 30-MHz high-frequency ultrasound system. This analysis concludes that the estimated measurement uncertainty of the acoustic intensity is +73%/-86%, and the uncertainty in the mechanical index is +37%/-43%. These values exceed the respective levels in the Food and Drug Administration guidance document of 30% and 15%, respectively, which are more representative of the measurement uncertainty associated with characterizing lower-frequency ultrasound systems. Recommendations made for minimizing the measurement uncertainty include implementing a mechanical positioning system that has sufficient repeatability and precision, reconstructing the time-pressure waveform via deconvolution using the hydrophone frequency response, and correcting for hydrophone spatial averaging.

  5. Optical Scattering Measurement of Microbubble Cloud Dynamics in Ultrasound

    NASA Astrophysics Data System (ADS)

    Takashi Miwa,; Yoshiki Yamakoshi,; Tomoharu Mashiyama,

    2010-07-01

    The manipulation of microbubbles by ultrasonic waves has the potential to be a useful technique in therapeutic ultrasound, such as for drug delivery systems and gene delivery systems. The Bjerknes force, which is an acoustic radiation force produced by microbubbles, acts as a driving force on the microbubbles; however, the two types of Bjerknes force make the resultant bubble movement very complex. In this paper, the evaluation of microbubble dynamics under ultrasonic wave radiation based on a laser diffraction method is proposed. The relationship between the microbubble spatial distribution and the diffracted light intensity is discussed on the basis of both theoretical analysis and numerical simulations. Experiments are carried out using ultrasonic wave contrast agent as microbubbles.

  6. The effect of dead elements on the accuracy of Doppler ultrasound measurements.

    PubMed

    Vachutka, Jaromir; Dolezal, Ladislav; Kollmann, Christian; Klein, Jakob

    2014-01-01

    The objective of this study is to investigate the effect of multiple dead elements in an ultrasound probe on the accuracy of Doppler ultrasound measurements. For this work, we used a specially designed ultrasound imaging system, the Ultrasonix Sonix RP, that provides the user with the ability to disable selected elements in the probe. Using fully functional convex, linear, and phased array probes, we established a performance baseline by measuring the parameters of a laminar parabolic flow profile. These same parameters were then measured using probes with 1 to 10 disabled elements. The acquired velocity spectra from the functional probes and the probes with disabled elements were then analyzed to determine the overall Doppler power, maximum flow velocity, and average flow velocity. Color Flow Doppler images were also evaluated in a similar manner. The analysis of the Doppler spectra indicates that the overall Doppler power as well as the detected maximum and average velocities decrease with the increasing number of disabled elements. With multiple disabled elements, decreases in the detected maximum and average velocities greater than 20% were recorded. Similar results were also observed with Color Flow Doppler measurements. Our results confirmed that the degradation of the ultrasound probe through the loss of viable elements will negatively affect the quality of the Doppler-derived diagnostic information. We conclude that the results of Doppler measurements cannot be considered accurate or reliable if there are four or more contiguous dead elements in any given probe.

  7. Mantra meditation as a bedside spiritual intervention.

    PubMed

    Chan, Roxane Raffin

    2014-01-01

    The increased acceptance of integrative care allows nurses to investigate their role as active providers of spiritual care at the bedside. Lack of clear role expectations and interventions support the need for a simple, flexible spiritual bedside intervention. The use of a meditation mantra is discussed.

  8. Sonochemotherapy: from bench to bedside

    PubMed Central

    Lammertink, Bart H. A.; Bos, Clemens; Deckers, Roel; Storm, Gert; Moonen, Chrit T. W.; Escoffre, Jean-Michel

    2015-01-01

    The combination of microbubbles and ultrasound has emerged as a promising method for local drug delivery. Microbubbles can be locally activated by a targeted ultrasound beam, which can result in several bio-effects. For drug delivery, microbubble-assisted ultrasound is used to increase vascular- and plasma membrane permeability for facilitating drug extravasation and the cellular uptake of drugs in the treated region, respectively. In the case of drug-loaded microbubbles, these two mechanisms can be combined with local release of the drug following destruction of the microbubble. The use of microbubble-assisted ultrasound to deliver chemotherapeutic agents is also referred to as sonochemotherapy. In this review, the basic principles of sonochemotherapy are discussed, including aspects such as the type of (drug-loaded) microbubbles used, the routes of administration used in vivo, ultrasound devices and parameters, treatment schedules and safety issues. Finally, the clinical translation of sonochemotherapy is discussed, including the first clinical study using sonochemotherapy. PMID:26217226

  9. Visualizing and measuring the temperature field produced by medical diagnostic ultrasound using thermography

    NASA Astrophysics Data System (ADS)

    Vachutka, J.; Grec, P.; Mornstein, V.; Caruana, C. J.

    2008-11-01

    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and measured using thermography. Temperature data from the images were used to investigate the dependence of temperature increase within the model on ultrasound exposure time and distance from the transducer. The experiment will be used within a multi-professional biomedical physics teaching laboratory for enhancing learning regarding the principles of thermography and the thermal effects of ultrasound to medical and healthcare students and also for demonstrating the quantitative use of thermographic imaging to students of biophysics, medical physics and medical technology.

  10. A Multidimensional Investigation of Children's /r/ Productions: Perceptual, Ultrasound, and Acoustic Measures

    ERIC Educational Resources Information Center

    Klein, Harriet B.; McAllister Byun, Tara; Davidson, Lisa; Grigos, Maria I.

    2013-01-01

    Purpose: This study explored relationships among perceptual, ultrasound, and acoustic measurements of children's correct and misarticulated /r/ sounds. Longitudinal data documenting changes across these parameters were collected from 2 children who acquired /r/ over a period of intervention and were compared with data from children with typical…

  11. Easy Pulsatile Phantom for Teaching and Validation of Flow Measurements in Ultrasound

    PubMed Central

    Rominger, M. B.; Müller-Stuler, E.-M.; Pinto, M.; Becker, A. S.; Martini, K.; Frauenfelder, T.; Klingmüller, V.

    2016-01-01

    Purpose: To build a simple model to teach and validate non-pulsatile and pulsatile flow quantification in ultrasound. Materials and Methods: The setting consists of the following connected components: (1) medical syringe pump producing an adjustable constant flow (ml/min), (2) modulator modifying constant flow to a reproducible pulsatile flow, (3) water tank containing a diagonal running silicone tube (0.5 mm inner diameter), and (4) a fixated ultrasound probe (L9 Linear Array 9 MHz, GE Logiq E9) measuring the flow inside the tube. Commercially available microbubbles suspended with physiological saline solution were used for ultrasonic visibility. Spectral Doppler of different flow profiles is performed. Results: The syringe pump produces an adjustable, constant flow and serves as the reference standard. The filling volume of the tube system is 1.2 ml. Microbubbles are very well detected by ultrasound and can be used as an easy and clean blood mimicking substance. The modulator generates different physiological and pathological flow profiles. Velocities are similar to those found within human blood vessels. Thus, it is possible to train and validate flow measurements in ultrasound. Conclusion: The model produces non-pulsatile and various pulsatile flow profiles and allows validation of flow measurements. The compact size permits easy and economic setup for flow measurements in research, skills lab and continuing education. PMID:27689183

  12. Exploration Analysis of Carbon Dioxide Levels and Ultrasound Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Young, M.; Mason, S.; Schaefer, C.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Coble, C.; Gruschkus, S.; Law, J.; Alexander, D.; Meyers, V.; Van Baalen, M.

    2016-01-01

    Enhanced screening for the Visual Impairment/Intracranial Pressure (VIIP) Syndrome, including in-flight ultrasound, was implemented in 2010 to better characterize the changes in vision observed in some long-duration crewmembers. Suggested possible risk factors for VIIP include cardiovascular changes, diet, anatomical and genetic factors, and environmental conditions. As a potent vasodilator, carbon dioxide (CO (sub 2)), which is chronically elevated on the International Space Station (ISS) relative to typical indoor and outdoor ambient levels on Earth, seems a plausible contributor to VIIP. In an effort to understand the possible associations between CO (sub 2) and VIIP, this study analyzes the relationship between ambient CO (sub 2) levels on ISS and ultrasound measures of the eye obtained from ISS fliers. CO (sub 2) measurements will be pulled directly from Operational Data Reduction Complex for the Lab and Node 3 major constituent analyzers (MCAs) on ISS or from sensors located in the European Columbus module, as available. CO (sub 2) measures between ultrasound sessions will be summarized using standard time series class metrics in MATLAB including time-weighted means and variances. Cumulative CO (sub 2) exposure metrics will also be developed. Regression analyses will be used to quantify the relationships between the CO (sub 2) metrics and specific ultrasound measures. Generalized estimating equations will adjust for the repeated measures within individuals. Multiple imputation techniques will be used to adjust for any possible biases in missing data for either CO (sub 2) or ultrasound measures. These analyses will elucidate the possible relationship between CO (sub 2) and changes in vision and also inform future analysis of inflight VIIP data.

  13. A comparison of portable ultrasound and fully-equipped clinical ultrasound unit in the thyroid size measurement of the Indo-Pacific bottlenose dolphin.

    PubMed

    Kot, Brian C W; Ying, Michael T C; Brook, Fiona M

    2012-01-01

    Measurement of thyroid size and volume is a useful clinical parameter in both human and veterinary medicine, particularly for diagnosing thyroid diseases and guiding corrective therapy. Procuring a fully-equipped clinical ultrasound unit (FCUS) may be difficult in most veterinary settings. The present study evaluated the inter-equipment variability in dolphin thyroid ultrasound measurements between a portable ultrasound unit (PUS) and a FCUS; for both units, repeatability was also assessed. Thyroid ultrasound examinations were performed on 15 apparently healthy bottlenose dolphins with both PUS and FCUS under identical scanning conditions. There was a high level of agreement between the two ultrasound units in dolphin thyroid measurements (ICC = 0.859-0.976). A high intra-operator repeatability in thyroid measurements was found (PUS: ICC = 0.854-0.984, FCUS: ICC = 0.709-0.954). As a conclusion, no substantial inter-equipment variability was found between PUS and FCUS in dolphin thyroid size measurements under identical scanning conditions, supporting further application of PUS for quantitative analyses of dolphin thyroid gland in both research and clinical practices at aquarium settings.

  14. System and method for improving ultrasound image acquisition and replication for repeatable measurements of vascular structures

    NASA Technical Reports Server (NTRS)

    Selzer, Robert H. (Inventor); Hodis, Howard N. (Inventor)

    2006-01-01

    High resolution B-mode ultrasound images of the common carotid artery are obtained with an ultrasound transducer using a standardized methodology. Subjects are supine with the head counter-rotated 45 degrees using a head pillow. The jugular vein and carotid artery are located and positioned in a vertical stacked orientation. The transducer is rotated 90 degrees around the centerline of the transverse image of the stacked structure to obtain a longitudinal image while maintaining the vessels in a stacked position. A computerized methodology assists operators to accurately replicate images obtained over several spaced-apart examinations. The methodology utilizes a split-screen display in which the arterial ultrasound image from an earlier examination is displayed on one side of the screen while a real-time live ultrasound image from a current examination is displayed next to the earlier image on the opposite side of the screen. By viewing both images, whether simultaneously or alternately, while manually adjusting the ultrasound transducer, an operator is able to bring into view the real-time image that best matches a selected image from the earlier ultrasound examination. Utilizing this methodology, measurement of vascular dimensions such as carotid arterial IMT and diameter, the coefficient of variation is substantially reduced to values approximating from about 1.0% to about 1.25%. All images contain anatomical landmarks for reproducing probe angulation, including visualization of the carotid bulb, stacking of the jugular vein above the carotid artery, and initial instrumentation settings, used at a baseline measurement are maintained during all follow-up examinations.

  15. An Improved Tumour Temperature Measurement and Control Method for Superficial Tumour Ultrasound Hyperthermia Therapeutic System

    NASA Astrophysics Data System (ADS)

    Shen1, G. F.; Chen, Y. Z.; Ren, G. X.

    2006-10-01

    In tumour hyperthermia therapy, the research on measurement and control of tumour temperature is very important. Based on the hardware platform of superficial tumour ultrasound hyperthermia therapeutic system, an improved tumour temperature measurement and control method is presented in this paper. The experiment process, data and results are discussed in detail. The improved method will greatly reduce the pain and dread of the patients during the therapy period on the tumour temperature measurement and control by using the pinhead sensor.

  16. Measurement of the quadriceps femoris muscle using magnetic resonance and ultrasound imaging.

    PubMed Central

    Walton, J M; Roberts, N; Whitehouse, G H

    1997-01-01

    OBJECTIVES: To define a method for measurement of the cross sectional area and volume of the quadriceps femoris muscle using magnetic resonance imaging (MRI) in conjunction with stereology, and to compare the results of measurements obtained by the MRI method with those obtained by the conventional method of static B-mode ultrasound in order to evaluate whether MRI is a reliable alternative to ultrasound. METHODS: A preliminary MRI study was undertaken on a single female volunteer in order to optimise the scanning technique and sampling design for estimating the muscle volume using the Cavalieri method. Ten healthy volunteers participated in the method comparison study. Each volunteer underwent static B-mode ultrasonography, immediately followed by MRI. The cross sectional area of the quadriceps femoris was estimated at the junction of the proximal one third and distal two thirds of the thigh, and seven systematic sections of the thigh were obtained in order to estimate muscle volume by both modalities. RESULTS: Seven sections through the muscle are required to achieve a coefficient of error of 4-5%. There was no significant difference in the cross sectional area estimates or volume estimates when ultrasound and MRI were compared. CONCLUSION: Muscle cross sectional area and volume can be measured without bias by MRI in conjunction with stereological methods and the method is a reliable alternative to static B-mode ultrasound for this purpose. Images Figure 1 Figure 4 Figure 5 PMID:9132215

  17. Validity Study of Vertebral Rotation Measurement Using 3-D Ultrasound in Adolescent Idiopathic Scoliosis.

    PubMed

    Wang, Qian; Li, Meng; Lou, Edmond H M; Chu, Winnie C W; Lam, Tsz-Ping; Cheng, Jack C Y; Wong, Man-Sang

    2016-07-01

    This study aimed to assess the validity of 3-D ultrasound measurements on the vertebral rotation of adolescent idiopathic scoliosis (AIS) under clinical settings. Thirty curves (mean Cobb angle: 21.7° ± 15.9°) from 16 patients with AIS were recruited. 3-D ultrasound and magnetic resonance imaging scans were performed at the supine position. Each of the two raters measured the apical vertebral rotation using the center of laminae (COL) method in the 3-D ultrasound images and the Aaro-Dahlborn method in the magnetic resonance images. The intra- and inter-reliability of the COL method was demonstrated by the intra-class correlation coefficient (ICC) (both [2, K] >0.9, p < 0.05). The COL method showed no significant difference (p < 0.05) compared with the Aaro-Dahlborn method. Furthermore, the agreement between these two methods was demonstrated by the Bland-Altman method, and high correlation was found (r > 0.9, p < 0.05). These results validated the proposed 3-D ultrasound method in the measurements of vertebral rotation in the patients with AIS.

  18. Development of distance accuracy measurement program for quality control of diagnostic ultrasound system

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Min; Kim, Moon-Chan; Han, Dong-Kyoon; Cho, Jae-Hwan; Kim, Sang-Hyun

    2013-12-01

    Evaluating the performance of a diagnostic ultrasound system is important. Above all, establishing standards for such evaluations in an objective and systematic way is critical. However, quality control is currently measured based on subjective judgment of an observer. Against this background, this study intended to suggest quantified and objective data that would enable inter-observer variation to be overcome. Five radiological technologists used an ATS-539 multi-purpose ultrasound phantom to conduct measurements in the predetermined method. A digital imaging and communications in medicine (DICOM) standard image was obtained in an ultrasound system by using a self-developed software to measure the accuracy of the distance before the 95% confidence interval was calculated. In order to examine the accuracy of the distance in longitudinal and transverse measurements, we conducted t-tests to evaluate the significance for the results of quality control that was performed manually for the past one year and for the results of quality control that was performed by using software with the same equipment. For the longitudinal and the transverse measurements, the 95% confidence intervals were 100.96-101.29 mm and 83.18-84.26 mm, respectively. The computerized longitudinal measurement showed no significant difference from the manual measurement ( p > 0.05). The results of measurements using of software showed a higher reproducibility.

  19. Development and Validation of a Method to Measure Lumbosacral Motion Using Ultrasound Imaging.

    PubMed

    van den Hoorn, Wolbert; Coppieters, Michel W; van Dieën, Jaap H; Hodges, Paul W

    2016-05-01

    The study aim was to validate an ultrasound imaging technique to measure sagittal plane lumbosacral motion. Direct and indirect measures of lumbosacral angle change were developed and validated. Lumbosacral angle was estimated by the angle between lines through two landmarks on the sacrum and lowest lumbar vertebrae. Distance measure was made between the sacrum and lumbar vertebrae, and angle was estimated after distance was calibrated to angle. This method was tested in an in vitro spine and an in vivo porcine spine and validated to video and fluoroscopy measures, respectively. R(2), regression coefficients and mean absolute differences between ultrasound measures and validation measures were, respectively: 0.77, 0.982, 0.67° (in vitro, angle); 0.97, 0.992, 0.82° (in vitro, distance); 0.94, 0.995, 2.1° (in vivo, angle); and 0.95, 0.997, 1.7° (in vivo, distance). Lumbosacral motion can be accurately measured with ultrasound. This provides a basis to develop measurements for use in humans.

  20. A Comparative Study on the Influence of Probe Placement on Quality Assurance Measurements in B-mode Ultrasound by Means of Ultrasound Phantoms

    PubMed Central

    Scorza, A; Conforto, S; D'Anna, C; Sciuto, S.A

    2015-01-01

    To check or to prevent failures in ultrasound medical systems, some tests should be scheduled for both clinical suitability and technical functionality evaluation: among them, image quality assurance tests performed by technicians through ultrasound phantoms are widespread today and their results depend on issues related to scanner settings as well as phantom features and operator experience. In the present study variations on some features of the B-mode image were measured when the ultrasound probe is handled by the technician in a routine image quality test: ultrasound phantom images from two array transducers are processed to evaluate measurement dispersion in distance accuracy, high contrast spatial resolution and penetration depth when probe is handled by the operator. All measurements are done by means of an in-house image analysis software that minimizes errors due to operator’s visual acuity and subjective judgment while influences of ultrasound transducer position on quality assurance test results are estimated as expanded uncertainties on parameters above (measurement reproducibility at 95 percent confidence level): depending on the probe model, they ranged from ±0.1 to ±1.9 mm in high contrast spatial resolution, from ±0.1 to ±5.5 percent in distance measurements error and from ±1 to ±10 mm in maximum depth of signal visualization. Although numerical results are limited to the two examined probes, they confirm some predictions based on general working principles of diagnostic ultrasound systems: (a) measurements strongly depend on settings as well on phantoms features, probes and parameters investigated; (b) relative uncertainty due to probe manipulation on spatial resolution can be very high, i.e. from 10 to more than 30 percent; (c) Field of View settings must be taken into account for measurement reproducibility as well as Dynamic Range compression and phantom attenuation. PMID:26312078

  1. Accurate evaluation of viscoelasticity of radial artery wall during flow-mediated dilation in ultrasound measurement

    NASA Astrophysics Data System (ADS)

    Sakai, Yasumasa; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    In our previous study, the viscoelasticity of the radial artery wall was estimated to diagnose endothelial dysfunction using a high-frequency (22 MHz) ultrasound device. In the present study, we employed a commercial ultrasound device (7.5 MHz) and estimated the viscoelasticity using arterial pressure and diameter, both of which were measured at the same position. In a phantom experiment, the proposed method successfully estimated the elasticity and viscosity of the phantom with errors of 1.8 and 30.3%, respectively. In an in vivo measurement, the transient change in the viscoelasticity was measured for three healthy subjects during flow-mediated dilation (FMD). The proposed method revealed the softening of the arterial wall originating from the FMD reaction within 100 s after avascularization. These results indicate the high performance of the proposed method in evaluating vascular endothelial function just after avascularization, where the function is difficult to be estimated by a conventional FMD measurement.

  2. Measuring submicrometer displacement vectors using high-frame-rate ultrasound imaging.

    PubMed

    Kruizinga, Pieter; Mastik, Frits; Bosch, Johan G; de Jong, Nico; van der Steen, Anton F W; van Soest, Gijs

    2015-10-01

    Measuring the magnitude and direction of tissue displacement provides the basis for the assessment of tissue motion or tissue stiffness. Using conventional displacement tracking by ultrasound delay estimation, only one direction of tissue displacement can be estimated reliably. In this paper, we describe a new technique for estimating the complete two-dimensional displacement vector using high-frame-rate ultrasound imaging. We compute the displacement vector using phase delays that can be measured between pairs of elements within an array. By combining multiple element-pair solutions, we find a new robust estimate for the displacement vector. In this paper, we provide experimental proof that this method permits measurement of the displacement vector for isolated scatterers and diffuse scatterers with high (submicrometer) precision, without the need for beam steering. We also show that we can measure the axial and lateral distension of a carotid artery in a transverse view.

  3. Measurement of temperature decrease caused by blood flow in focused ultrasound irradiation by thermal imaging method

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takenobu; Hatano, Yuichi; Mori, Yashunori; Shen, Rakushin; Endoh, Nobuyuki

    2016-07-01

    In this study, to estimate the local temperature changes caused by a thick blood vessel, the temperature distribution in a tissue phantom with a thick blood vessel during focused ultrasound irradiation was measured by a thermal imaging method. The blood flow rate in the simulated blood vessel was varied and the relationship between flow rate and temperature decrease was examined. The phantom using the thermal imaging method is divided into two parts, and the increases in temperature distribution as a function of blood flow rate are measured using a thermocamera under constant ultrasound irradiation. The irradiation conditions of ultrasound waves were a central frequency of 1 MHz, a wave number length of 200 cycles, and a duty ratio of 0.2. The irradiation duration was 5 min, and the ultrasound intensity I SPTA was 36 W/cm2. The amount of temperature decrease caused by the cooling effect of blood flow increased with the blood flow rate and it became constant at a certain threshold of blood flow rate. The threshold of blood flow rate is about 250 ml/min.

  4. Time-resolved measurement of bubble cavitation by using power Doppler ultrasound image

    NASA Astrophysics Data System (ADS)

    Koda, Ren; Izumi, Yosuke; Nagai, Hayato; Yamakoshi, Yoshiki

    2017-04-01

    In this study, a novel measurement method for a secondary ultrasound wave irradiated by microbubble cavitation is proposed. High-intensity ultrasound (h-US, 1.0–1.5 MPa), which produces bubble cavitation, is irradiated with a fixed time delay after introducing imaging US, whose frequency is different from that of the h-US. The bubble cavitation signal (BCS) is detected by the signal-processing unit of an ultrasound power Doppler imaging instrument. By this method, both a spatially resolved bubble image (S-image) and the temporal transition of the BCS (T-image) are monitored simultaneously. A feature of the method is that the BCS is observed in situ with sub-µs time resolution. The accuracy of the method is evaluated and it is found that the maximum deviation of the amplitude of the simulated BCS is 4.80%. This method is applied to measure the BCS of ultrasound contrast agent microbubbles. As a result, the dependence of the inherent temporal transition of the BCS on the sound pressure of the h-US (0.6–1.2 MPa) is observed.

  5. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.

    PubMed

    Huang, Chih-Chung; Chou, Hung-Lung; Chen, Pay-Yu

    2015-02-01

    Measurement of the Doppler power of signals backscattered from flowing blood (henceforth referred to as the Doppler power of flowing blood) and the echogenicity of flowing blood have been used widely to assess the degree of red blood cell (RBC) aggregation for more than 20 y. Many studies have used Doppler flowmeters based on an analogue circuit design to obtain the Doppler shifts in the signals backscattered from flowing blood; however, some recent studies have mentioned that the analogue Doppler flowmeter exhibits a frequency-response problem whereby the backscattered energy is lost at higher Doppler shift frequencies. Therefore, the measured Doppler power of flowing blood and evaluations of RBC aggregation obtained using an analogue Doppler device may be inaccurate. To overcome this problem, the present study implemented a field-programmable gate array-based digital pulsed-wave Doppler flowmeter to measure the Doppler power of flowing blood, in the aim of providing more accurate assessments of RBC aggregation. A clinical duplex ultrasound imaging system that can acquire pulsed-wave Doppler spectrograms is now available, but its usefulness for estimating the ultrasound scattering properties of blood is still in doubt. Therefore, the echogenicity and Doppler power of flowing blood under the same flow conditions were measured using a laboratory pulser-receiver system and a clinical ultrasound system, respectively, for comparisons. The experiments were carried out using porcine blood under steady laminar flow with both RBC suspensions and whole blood. The experimental results indicated that a clinical ultrasound system used to measure the Doppler spectrograms is not suitable for quantifying Doppler power. However, the Doppler power measured using a digital Doppler flowmeter can reveal the relationship between backscattering signals and the properties of blood cells because the effects of frequency response are eliminated. The measurements of the Doppler power and

  6. Noncontact Measurement of Humidity and Temperature Using Airborne Ultrasound

    NASA Astrophysics Data System (ADS)

    Akihiko Kon,; Koichi Mizutani,; Naoto Wakatsuki,

    2010-04-01

    We describe a noncontact method for measuring humidity and dry-bulb temperature. Conventional humidity sensors are single-point measurement devices, so that a noncontact method for measuring the relative humidity is required. Ultrasonic temperature sensors are noncontact measurement sensors. Because water vapor in the air increases sound velocity, conventional ultrasonic temperature sensors measure virtual temperature, which is higher than dry-bulb temperature. We performed experiments using an ultrasonic delay line, an atmospheric pressure sensor, and either a thermometer or a relative humidity sensor to confirm the validity of our measurement method at relative humidities of 30, 50, 75, and 100% and at temperatures of 283.15, 293.15, 308.15, and 323.15 K. The results show that the proposed method measures relative humidity with an error rate of less than 16.4% and dry-bulb temperature with an error of less than 0.7 K. Adaptations of the measurement method for use in air-conditioning control systems are discussed.

  7. The influence of dairy consumption and physical activity on ultrasound bone measurements in Flemish children.

    PubMed

    De Smet, Stephanie; Michels, Nathalie; Polfliet, Carolien; D'Haese, Sara; Roggen, Inge; De Henauw, Stefaan; Sioen, Isabelle

    2015-03-01

    The study's aim was to analyse whether children's bone status, assessed by calcaneal ultrasound measurements, is influenced by dairy consumption and objectively measured physical activity (PA). Moreover, the interaction between dairy consumption and PA on bone mass was studied. Participants of this cross-sectional study were 306 Flemish children (6-12 years). Body composition was measured with air displacement plethysmography (BodPod), dairy consumption with a Food Frequency Questionnaire, PA with an accelerometer (only in 234 of the 306 children) and bone mass with quantitative ultrasound, quantifying speed of sound (SOS), broadband ultrasound attenuation (BUA) and Stiffness Index (SI). Regression analyses were used to study the associations between dairy consumption, PA, SOS, BUA and SI. Total dairy consumption and non-cheese dairy consumption were positively associated with SOS and SI, but no significant association could be demonstrated with BUA. In contrast, milk consumption, disregarding other dairy products, had no significant effect on calcaneal bone measurements. PA [vigorous PA, moderate to vigorous physical activity (MVPA) and counts per minute] was positively associated and sedentary time was negatively associated with BUA and SI, but no significant influence on SOS could be detected. Dairy consumption and PA (sedentary time and MVPA) did not show any interaction influencing bone measurements. In conclusion, even at young age, PA and dairy consumption positively influence bone mass. Promoting PA and dairy consumption in young children may, therefore, maximize peak bone mass, an important protective factor against osteoporosis later in life.

  8. Comparison between body fat measurements obtained by portable ultrasound and caliper in young adults.

    PubMed

    Ulbricht, L; Neves, E B; Ripka, W L; Romaneli, E F R

    2012-01-01

    The objective of this study was to compare and correlate the Portable Ultra Sound (US) measuring technique to the skinfold measuring technique (SF) to estimate body fat percentage (%F) in young adults. Sixty military were evaluated, all males, divided in two groups: Group 1 (normal) composed by 30 military with Body Mass Index (BMI) until 24.99 kg/m(2) and Group 2 (overweight) composed by 30 military with BMI > 25 kg/m(2). Weight, height, skinfolds and ultrasound were measured in 9 points (triceps, subscapular, biceps, chest, medium axillary, abdominal, suprailiac, thigh and calf). Body fat average values obtained by skinfold thickness and ultrasound measurements were 13.25 ± 6.32 % and 12.73 ± 5.95 % respectively. Despite significant differences in measurements of each anatomical site, it was possible to verify that the total final body fat percentage calculated by both techniques did not present significant differences and that overweight group presented greater similarity between the values obtained using caliper and ultrasound equipment.

  9. Reliability of ultrasound to measure morphology of the toe flexor muscles

    PubMed Central

    2013-01-01

    Background Measuring the strength of individual foot muscles is very challenging; however, measuring muscle morphology has been shown to be associated with strength. A reliable method of assessing foot muscle atrophy and hypertrophy would therefore be beneficial to researchers and clinicians. Thus, the aim of this study was to evaluate the test-retest intra-observer reliability of ultrasound to measure the morphology of the primary toe flexor muscles. Method The abductor hallucis, flexor hallucis brevis, flexor digitorum brevis, quadratus plantae and abductor digiti minimi muscles in the foot, and the flexor digitorum longus and flexor hallucis longus muscles in the shank were assessed in five males and five females (mean age = 32.1 ± 10.1 years). Muscles were imaged using a GE Venue 40 ultrasound (6-9 or 7.6-10.7 MHz transducer) in a random order, and on two occasions 1-6 days apart. Muscle thickness and cross-sectional area were measured using Image J software with the assessor blinded to muscle and day of scan. Intraclass correlation coefficients (ICC) and limits of agreement were calculated to assess day-to-day repeatability of the measurements. Results The method was found to have good reliability (ICC = 0.89-0.99) with limits of agreement between 8-28% of the relative muscle size. Conclusion The protocol described in this paper showed that ultrasound is a reliable method to measure morphology of the toe flexor muscles. The portability and advantages of ultrasound make it a useful tool for clinical and research settings. PMID:23557252

  10. Comparing portable computers with bedside computers when administering medications using bedside medication verification.

    PubMed

    Ludwig-Beymer, Patti; Williams, Phillip; Stimac, Ellen

    2012-01-01

    This research examined bedside medication verification administration in 2 adult critical care units, using portable computers and permanent bedside computers. There were no differences in the number of near-miss errors, the time to administer the medications, or nurse perception of ease of medication administration, care of patients, or reliability of technology. The percentage of medications scanned was significantly higher with the use of permanent bedside computers, and nurses using permanent bedside computers were more likely to agree that the computer was always available.

  11. Backfat thickness and longissimus dorsi real-time ultrasound measurements in light lambs.

    PubMed

    Esquivelzeta, C; Casellas, J; Fina, M; Piedrafita, J

    2012-12-01

    The aim of this study was to assess the accuracy of ultrasound measurements for predicting carcass traits in 124 Spanish pascual-type lambs (13 to 16 kg carcass weight). Ultrasound images were taken transversal and longitudinal to the vertebral column and at thoracic (TV; between 12th and 13th ribs) and lumbar (LV; between first and second lumbar vertebrae) locations. Skin thickness, subcutaneous backfat thickness (BFT), and depth (DLD), width (WLD), and area (ALD) of longissimus dorsi were obtained with ImageJ 1.42q software. After slaughter, BFT (TV, 2.30 ± 0.06 mm; LV, 2.46 ± 0.06 mm), DLD (TV, 2.47 ± 0.03 cm; LV, 2.48 ± 0.03 cm), WLD (TV, 4.50 ± 0.04 cm; LV, 4.60 ± 0.04 cm), and ALD (TV, 9.96 ± 0.12 cm(2); LV, 10.19 ± 0.13 cm(2)) were directly measured on the lamb carcass. Correlations between ultrasound and direct carcass measurements were greater than 0.61 for DLD, WLD, and ALD (P < 0.05) whereas they fluctuated between 0.32 and 0.60 for BFT (P < 0.05); moreover, correlations were significantly (P < 0.05) greater for transversal than for longitudinal views. In a similar way, linear regression analyses suggested a moderate underestimation for BFT and lumbar DLD when using real-time ultrasound technologies whereas WLD, ALD, and thoracic DLD suffered from under- and overestimation for small and large values of carcass traits, respectively. After decomposing the mean square prediction error (MSPE) for the different ultrasound measurements, we found that the error due to disturbance contributed most to the MSPE followed by the error of central tendency and the error due to regression. The SE of prediction (SEP) was also calculated as an additional precision indicator, obtaining estimates less than that in previous studies with larger lambs. In conclusion, transversal ultrasound measurements at the thoracic and lumbar levels could be a useful tool for predicting DLD, WLD, and ALD in light lambs, perhaps suffering from worse prediction properties when

  12. Cranial Ultrasound/Head Ultrasound

    MedlinePlus

    ... sickle cell disease. It is also used to measure conditions affecting blood flow to and within the brain, such as: Stenosis : ... saved. Doppler ultrasound, a special application of ultrasound, measures ... represent the flow of blood through the blood vessels. top of ...

  13. Correlation of pre-operative MRI and intra-operative 3D ultrasound to measure brain tissue shift

    NASA Astrophysics Data System (ADS)

    Gobbi, David G.; Comeau, Roch M.; Lee, Belinda K. H.; Peters, Terence M.

    2000-04-01

    The usefulness of stereotactic neurosurgery performed via a craniotomy is limited because the craniotomy leads to a brain tissue shift of 10 mm on average. We have recently completed an examination of 2D intra-operative ultrasound as a means of visualization and measurement of brain shift. A commercial 3D tracking system was used for real-time registration of the ultrasound video to pre-operative MR images, and annotation of the images was used to measure the shift. More than 15 surgical cases have been performed thus far with the 2D system. We are now undertaking phantom studies with tracked 3D ultrasound, and have developed sophisticated tools for real- time overlay of ultrasound and MRI volumes. These tools include a virtual-reality view of the ultrasound probe with live ultrasound video superimposed over a 3D -rendered MRI of the brain, as well as 3D ultrasound/MRI transparency overlay views. Algorithms to automatically extract landmarks from MRI and 3D ultrasound images are under development. We aim to use these landmarks to automatically generate nonlinear warp transformations to correct the pre-operative MRI as well as surgical target coordinates for brain shift. Portions of the C++ code developed for this project have been contributed to the open-source Visualization Toolkit (VTK).

  14. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines: Traditional ultrasound: This uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound: This ...

  15. Noninvasive Intracranial Volume and Pressure Measurements Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.

    1998-01-01

    Prevention of secondary brain injuries following head can be accomplished most easily when intracranial pressure (ICP) is monitored. However, current measurement techniques are invasive and thus not practical in the combat environment. The Pulsed Phase Lock Loop (PPLL) devise, which was developed and patented, uses a unique, noninvasive ultrasonic phase comparison method to measure slight changes in cranial volume which occur with changes in ICP. Year one studies involved instrument improvements and measurement of altered intracranial distance with altered ICP in fresh cadavera. Our software was improved to facilitate future studies of normal subjects and trauma patients. Our bench studies proved that PPLL output correlated highly with changes in path length across a model cranium. Cadaveric studies demonstrated excellent compact, noninvasive devise for monitoring changes in intracranial distance may aid in the early detection of elevated ICP, decreasing risk of secondary brain injury and infection, and returning head-injured patients to duty.

  16. Ultrasound cervical length measurement in prediction of labor induction outcome.

    PubMed

    Kehila, M; Abouda, H S; Sahbi, K; Cheour, H; Chanoufi, M Badis

    2016-05-17

    Induction of labor is one of the most common procedures in modern obstetrics, with an incidence of approximately 20% of all deliveries. Not all of these inductions result in vaginal delivery; some lead to cesarean sections, either for emergency reasons or for failed induction. That's why, It seems necessary to outline strategies for the improvement of the success rate of induced deliveries. Traditionally, the identification of women in whom labor induction is more likely to be successful is based on the Bishop score. However, several studies have shown it to be subjective, with high variation and a poor predictor of the outcome of labor induction. Transvaginal sonography for cervical measurement can be a more objective criterion in assessing the success of labor induction. Many studies have been done recently to compare cervical measurement and Bishop Score in labor induction.This paper reviewed the literature that evaluated sonographic cervical length measurement to predict induction of labor outcome.

  17. Doppler ultrasound in the measurement of pulse wave velocity: agreement with the Complior method

    PubMed Central

    2011-01-01

    Aortic stiffness is an independent predictor factor for cardiovascular risk. Different methods for determining pulse wave velocity (PWV) are used, among which the most common are mechanical methods such as SphygmoCor or Complior, which require specific devices and are limited by technical difficulty in obtaining measurements. Doppler guided by 2D ultrasound is a good alternative to these methods. We studied 40 patients (29 male, aged 21 to 82 years) comparing the Complior method with Doppler. Agreement of both devices was high (R = 0.91, 0.84-0.95, 95% CI). The reproducibility analysis revealed no intra-nor interobserver differences. Based on these results, we conclude that Doppler ultrasound is a reliable and reproducible alternative to other established methods for the measurement of aortic PWV. PMID:21496271

  18. Limited Accuracy of Colour Doppler Ultrasound Dynamic Tissue Perfusion Measurement in Diabetic Adults

    PubMed Central

    Stoperka, Felix; Karger, Claudia

    2016-01-01

    Dynamic tissue perfusion measurement (DTPM) is a pre-described and available method in pediatric ultrasound to quantify tissue perfusion in renal Doppler ultrasound by particular video analysis software. This study evaluates DTPM during single and between repeated visits after 6 months, calibrates repeated DTPM within different region of interest (ROI) and compares DTPM with kidney function markers in adult patients with early diabetic nephropathy (n = 17). During repeated measurements, no association of readings at the same patients in the same (n = 3 readings) as well as repeated visit (n = 2 visits) could be retrieved. No association between DTPM, MDRD-GFR, albuminuria, age and duration of diabetes was observed. These negative results are presumably related to inconsistency of DTPM due to non-fixed ROI position as could be shown in calibrating series. Further development of the method should be performed to enable reproducible DTPM readings in adults. PMID:28033403

  19. Can Anatomists Teach Living Anatomy Using Ultrasound as a Teaching Tool?

    ERIC Educational Resources Information Center

    Jurjus, Rosalyn A.; Dimorier, Kathryn; Brown, Kirsten; Slaby, Frank; Shokoohi, Hamid; Boniface, Keith; Liu, Yiju Teresa

    2014-01-01

    The utilization of bedside ultrasound by an increasing number of medical specialties has created the need for more ultrasound exposure and teaching in medical school. Although there is a widespread support for more vertical integration of ultrasound teaching throughout the undergraduate curriculum, little is known about whether the quality of…

  20. Crack depth measurement in concrete using diffuse ultrasound

    NASA Astrophysics Data System (ADS)

    In, Chi Won; Kim, Jin-Yeon; Jacobs, Laurence L.; Kurtis, Kimberly

    2012-05-01

    Cracking in concrete structures is problematic because these cracks can significantly influence the stability of a concrete structure and compromise its durability. The first step to evaluate the serviceability of an in-field concrete structure is to have accurate information on existing crack depth. It is thus of paramount importance to be able to accurately determine the depth of cracks in these concrete structures. This research employs a diffusive ultrasonic technique to measure the depth of surface cracks in concrete. Ultrasonic measurements on a 25.4 × 33 × 60.96 cm3 concrete block containing an artificial crack with varying depths from 2.54 to 10.16 cm are conducted. Contact transducers with one transmitting and the other receiving the ultrasonic signals are mounted on the concrete surface on opposite sides of the crack. A pulse signal with the duration of 2μs is transmitted. In this frequency regime, wavelengths are sufficiently short (comparable with the aggregate size) so that a diffuse ultrasonic signal is detected. The arrival of the diffuse ultrasonic energy at the receiver is delayed by the existence of the crack. This lag-time and the diffusivity of the concrete sample are measured, and a finite element model is employed to solve the inverse problem to determine the crack depth from these measured diffuse ultrasonic parameters.

  1. Development of Ultrasound to Measure In-Vivo Dynamic Cervical Spine Intervertebral Disc Mechanics

    DTIC Science & Technology

    2016-01-01

    system was validated ex-vivo using cadaveric C-spines mounted in a servo-hydraulic material testing machine by comparing dynamic US measurement to direct...in certain degree without loss of ultrasound images. Figure 2. Human volunteer performing repetitive jumping task with a geared helmet. Impact to...landing with both feet on force plate while maintaining upright posture for 4 minutes, wearing a helmet to simulate military head gear (Figure 2). The

  2. Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc Mechanics

    DTIC Science & Technology

    2015-01-01

    The capability of dual US to measure C-spine properties in-vivo in simulation environment is currently being tested. Biomechanics finite element(FE...and Integrity -9- 3.3 In-vivo Ultrasound Test in Simulated Environment -12- 3.4 FE Model Validaition and Modification and Simulate Operation...C-spine elastic and viscoelastic properties in-vivo under conditions simulating vibrations over a range of frequencies and amplitudes is currently

  3. Ultrasound Measurement of the Temperature Field in Thermal Convection of a Liquid Metal

    NASA Astrophysics Data System (ADS)

    Xu, Hongzhou; Fife, Sean; Andereck, C. David

    2002-11-01

    We exploit the temperature dependence of sound velocity and the ease of propagation of ultrasound through fluids and solids to non-intrusively probe the thermal field of a convecting liquid metal. The technique has been validated previously with Rayleigh-Bénard convection of glycerol in a transparent chamber by comparing simultaneous ultrasound temperature measurements with visualization using a suspension in the glycerol of thermochromic liquid crystals. We subsequently constructed a movable 1D array of ultrasound transducers and have used it to measure 2D temperature distributions over the cross section of a stainless steel cell filled with mercury also undergoing Rayleigh-Bénard convection. The data clearly reveal the formation of a cellular flow pattern as the temperature difference between the bottom and top plates was slowly increased. Measurements of cell wavelength and growth, and of the critical Rayleigh number, are close to the theoretically predicted values. Details of this and related experiments, and more on the technique itself, including its limitations and potential improvements, will be described.

  4. Exploratory Analysis of Carbon Dioxide Levels and Ultrasound Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Schaefer, C.; Young, M.; Mason, S.; Coble, C.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Law. J.; Alexander, D.; Ryder, V. Myers; Van Baalen, M.

    2016-01-01

    Carbon dioxide (CO2) levels on ISS have typically averaged 2.3 to 5.3mm Hg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow(CBF). Increased CBF leads to elevated intracranial pressure(ICP), which is a factor leading to visual disturbance, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve provides a surrogate measurement of ICP. Inflight ultrasounds were implemented as an enhanced screening tool for the Visual Impairment/Intracranial Pressure (VIIP) Syndrome. This analysis examines the relationships between ambient CO2 levels on ISS and ultrasound measures of the eye in an effort to understand how CO2 may be associated with VIIP and to inform future analysis of inflight VIIP data. Results as shown in Figure2, there was a large timeframe where CO2 readings were removed due to sensor fault errors(see Limitations), from June 2011 to January 2012. After extensive cleaning of the CO2 data, metrics for all of the data were calculated (Table2). Preliminary analyses showed possible associations between variability measures of CO2 and AP diameter (Figure3),and average CO2 exposure and ONSD(Figure4). Adjustments for multiple comparisons were not made due to the exploratory nature of the analysis.

  5. Venous elastography: validation of a novel high-resolution ultrasound method for measuring vein compliance using finite element analysis.

    PubMed

    Biswas, Rohan; Patel, Prashant; Park, Dae W; Cichonski, Thomas J; Richards, Michael S; Rubin, Jonathan M; Hamilton, James; Weitzel, William F

    2010-01-01

    Ultrasonography for the noninvasive assessment of tissue properties has enjoyed widespread success. With the growing emphasis in recent years on arteriovenous fistulae (AVFs) for dialysis vascular access in patients with end-stage renal disease, and on reducing AVF failures, there is increasing interest in ultrasound for the preoperative evaluation of the mechanical and elastic properties of arteries and veins. This study used high-resolution ultrasound with phase-sensitive speckle tracking to obtain in vivo vein elasticity measurements during dilation. The results of this novel ultrasound technique were then compared to a computer model of venous strain. The computer model and ultrasound analysis of the vessel wall demonstrated internally consistent positive and negative longitudinal strain values as the vein wall underwent dilation. These results support further investigation of the use of phase-sensitive speckle tracking for ultrasound venous mapping for preoperative vascular access evaluation.

  6. Noninvasive Ultrasound Imaging for Bone Quality Assessment Using Scanning Confocal Acoustic Diagnosis, μCT, DXA Measurements, and Mechanical Testing

    NASA Astrophysics Data System (ADS)

    Qin, Yi-Xian; Xia, Yi; Lin, Wei; Mittra, Erik; Rubin, Clint; Gruber, Barry

    Osteoporosis is a disease characterized by decreased bone mass and progressive deterioration of the microstructure, affecting both mineral density and bone's fragility. Current diagnoses are only measuring apparent bone mineral density (AppBMD). Using our newly developed scanning confocal acoustic diagnostic (SCAD) system, we evaluated the ability of quantitative ultrasound in noninvasively predicting bone's quantity and quality on 19 human cadaver calcanei. Results show that ultrasound attenuation image on intact calcaneus represents bone mass distribution. High correlation (R=0.82) exists between SCAD determined broadband ultrasound attenuation (BUA) and DXA determined AppBMD at the calcaneus, as well as in the AppBMD result at femoral neck (R=0.81). SCAD determined BUA and ultrasound velocity (UV) are highly correlated with the micro-CT and mechanical testing determined bone quantity and quality parameters. These results suggest that image-based quantitative ultrasound is able to identify ROI and predict both bone mass and strength.

  7. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement.

    PubMed

    Park, Dae Woo; Kruger, Grant H; Rubin, Jonathan M; Hamilton, James; Gottschalk, Paul; Dodde, Robert E; Shih, Albert J; Weitzel, William F

    2013-10-01

    This study investigated the use of ultrasound speckle decorrelation- and correlation-based lateral speckle-tracking methods for transverse and longitudinal blood velocity profile measurement, respectively. By studying the blood velocity gradient at the vessel wall, vascular wall shear stress, which is important in vascular physiology as well as the pathophysiologic mechanisms of vascular diseases, can be obtained. Decorrelation-based blood velocity profile measurement transverse to the flow direction is a novel approach, which provides advantages for vascular wall shear stress measurement over longitudinal blood velocity measurement methods. Blood flow velocity profiles are obtained from measurements of frame-to-frame decorrelation. In this research, both decorrelation and lateral speckle-tracking flow estimation methods were compared with Poiseuille theory over physiologic flows ranging from 50 to 1000 mm/s. The decorrelation flow velocity measurement method demonstrated more accurate prediction of the flow velocity gradient at the wall edge than the correlation-based lateral speckle-tracking method. The novelty of this study is that speckle decorrelation-based flow velocity measurements determine the blood velocity across a vessel. In addition, speckle decorrelation-based flow velocity measurements have higher axial spatial resolution than Doppler ultrasound measurements to enable more accurate measurement of blood velocity near a vessel wall and determine the physiologically important wall shear.

  8. Inter-Rectus Distance Measurement Using Ultrasound Imaging: Does the Rater Matter?

    PubMed

    Keshwani, Nadia; Hills, Nicole; McLean, Linda

    2016-01-01

    Purpose: To investigate the interrater reliability of inter-rectus distance (IRD) measured from ultrasound images acquired at rest and during a head-lift task in parous women and to establish the standard error of measurement (SEM) and minimal detectable change (MDC) between two raters. Methods: Two physiotherapists independently acquired ultrasound images of the anterior abdominal wall from 17 parous women and measured IRD at four locations along the linea alba: at the superior border of the umbilicus, at 3 cm and 5 cm above the superior border of the umbilicus, and at 3 cm below the inferior border of the umbilicus. The interrater reliability of the IRD measurements was determined using intra-class correlation coefficients (ICCs). Bland-Altman analyses were used to detect bias between the raters, and SEM and MDC values were established for each measurement site. Results: When the two raters performed their own image acquisition and processing, ICCs(3,5) ranged from 0.72 to 0.91 at rest and from 0.63 to 0.96 during head lift, depending on the anatomical measurement site. Bland-Altman analyses revealed no systematic bias between the raters. SEM values ranged from 0.23 cm to 0.71 cm, and MDC values ranged from 0.64 cm to 1.97 cm. Conclusion: When using ultrasound imaging to measure IRD in women, it is acceptable for different therapists to compare IRDs between patients and within patients over time if IRD is measured above or below the umbilicus. Interrater reliability of IRD measurement is poorest at the level of the superior border of the umbilicus.

  9. Pocket-size imaging devices allow for reliable bedside screening for femoral artery access site complications.

    PubMed

    Filipiak-Strzecka, Dominika; Michalski, Błażej; Kasprzak, Jarosław D; Lipiec, Piotr

    2014-12-01

    The aim of this study was to validate pocket-size imaging devices (PSIDs) as a fast screening tool for detecting complications after femoral artery puncture. Forty patients undergoing femoral artery puncture for arterial access related to percutaneous coronary intervention were enrolled. Twenty-four hours after percutaneous coronary intervention, the involved inguinal region was assessed with PSIDs enabling 2-D gray-scale and color Doppler imaging. Subsequently, examination with a stationary high-end ultrasound system was performed to verify the findings of bedside examination in all patients. In 37 patients, PSID imaging had good diagnostic quality. False aneurysms (one asymptomatic) occurred in four patients, and all were recognized during bedside screening with PSID. One case of femoral artery thrombosis was confirmed with PSID and during standard ultrasonographic examination. Physical examination augmented with the quick bedside PSID examination had a sensitivity of 100% and specificity of 91%. PSID facilitated rapid bedside detection of serious access site complications in the vast majority of patients, including asymptomatic cases.

  10. Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR)

    NASA Technical Reports Server (NTRS)

    Mehta, S.; Antich, P.; Blomqvist, C. G. (Principal Investigator)

    1997-01-01

    There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.

  11. A nondestructive diagnostic method based on swept-frequency ultrasound transmission-reflection measurements

    NASA Astrophysics Data System (ADS)

    Bramanti, Mauro

    1992-08-01

    A nondestructive diagnostic technique is proposed to measure depth and thickness of unwanted inclusions inside laminate-type materials (gaps, delaminations, and cracks, for example). The method is based on the frequency-domain analysis of transmission and reflection coefficient measured on the material under test when it is irradiated by a CW ultrasound beam whose frequency varies over a suitable frequency range. By measuring the frequency distance between two adjacent minima in the attenuation and reflection coefficients the thickness and depth of the inclusion can be obtained. A practical implementation of the technique is suggested, and the first experimental results obtained by a laboratory setup are reported.

  12. Heritability of calcaneal quantitative ultrasound measures in healthy adults from the Fels Longitudinal Study.

    PubMed

    Lee, Miryoung; Czerwinski, Stefan A; Choh, Audrey C; Towne, Bradford; Demerath, Ellen W; Chumlea, Wm Cameron; Sun, Shumei S; Siervogel, Roger M

    2004-11-01

    Quantitative ultrasound (QUS) measurements of bone have been reported to predict osteoporotic fracture risk in postmenopausal women and older men. Although many studies have examined the heritability of bone mineral density (BMD), few studies have estimated the heritability of calcaneal QUS phenotypes. In the present study, we examined the genetic regulation of calcaneal QUS parameters in individuals from nuclear and extended families. The study population includes 260 men and 295 women aged 18-91 years (mean+/-SD: 46+/-16 years) who belong to 111 pedigrees in the Fels Longitudinal Study. Three measures of calcaneal structure were collected from both the right and left heel using the Sahara bone sonometer. These measures included broadband ultrasound attenuation (BUA), speed of sound (SOS), and the quantitative ultrasound index (QUI). We used a variance components based maximum likelihood method to estimate the heritability of QUS parameters while simultaneously adjusting for covariate effects. Additionally, we used bivariate extensions of these methods to calculate additive genetic and random environmental correlations among QUS measures. All phenotypes demonstrated statistically significant heritabilities (P<0.0000001). Heritabilities in the right heel (h2+/-SE) were h2=0.59+/-0.10 for BUA, h2=0.73+/-0.09 for SOS, and h2=0.72+/-0.09 for QUI. Similarly, heritabilities for the left heel were h2=0.52+/-0.10, h2=0.75+/-0.10, and h2=0.70+/0.10, respectively. There was evidence for significant genetic and environmental correlations among these six QUS measures. Combinations of QUS measures in the right and left heel demonstrated genetic correlations of 0.94-0.99 and all were significantly different from one indicating at least a partially unique genetic architecture for each of these measures. This study demonstrates that QUS measures of the calcaneus among healthy men and women are heritable, and there are large shared additive genetic effects among all of the traits

  13. Ultrasound modulated light blood flow measurement using intensity autocorrelation function: a Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Tsalach, A.; Metzger, Y.; Breskin, I.; Zeitak, R.; Shechter, R.

    2014-03-01

    Development of techniques for continuous measurement of regional blood flow, and in particular cerebral blood flow (CBF), is essential for monitoring critical care patients. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133 Xe SPECT1 and laser Doppler2. Coherent light is introduced into the tissue concurrently with an Ultrasound (US) field. Displacement of scattering centers within the sampled volume induced by Brownian motion, blood flow and the US field affects the photons' temporal correlation. Hence, the temporal fluctuations of the obtained speckle pattern provide dynamic information about the blood flow. We developed a comprehensive simulation, combining the effects of Brownian motion, US and flow on the obtained speckle pattern. Photons trajectories within the tissue are generated using a Monte-Carlo based model. Then, the temporal changes in the optical path due to displacement of scattering centers are determined, and the corresponding interference pattern over time is derived. Finally, the light intensity autocorrelation function of a single speckle is calculated, from which the tissue decorrelation time is determined. The simulation's results are compared with in-vitro experiments, using a digital correlator, demonstrating decorrelation time prediction within the 95% confidence interval. This model may assist in the development of optical based methods for blood flow measurements and particularly, in methods using the acousto-optic effect.

  14. Ultrasound measurements of temperature profiles in Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Rahal, Samir; Andereck, C. David

    1999-11-01

    Sound velocity in a fluid is a function of the temperature of the fluid along the path of the sound propagation. We have exploited this fact in developing an experimental technique for the measurement of temperature profiles in fluids using ultrasound. As a first step in testing this concept we have set up a narrow rectangular test cell containing a transparent fluid. The fluid layer is heated from below and cooled above, resulting in a periodic Rayleigh-Bénard roll pattern forming above convective onset. An ultrasound transducer operating in pulse/echo mode is moved systematically from one location to another along the test cell. At each location the time-of-flight across the cell (parallel with the convection roll axes) of the ultrasound pulses is measured. Each time-of-flight is converted to a local temperature, averaged across the cell, using the known relationship between the time-of-flight, the sound speed and the fluid temperature. From these data a temperature profile is produced. The system has a temperature resolution of ~ 0.1C. The patterns have also been visualized using thermochromic liquid crystals and we find qualitative agreement between the two independent approaches.

  15. Measurement of the contrast agent intrinsic and native harmonic response with single transducer pulse waved ultrasound systems.

    PubMed

    Verbeek, X A; Willigers, J M; Brands, P J; Ledoux, L A; Hoeks, A P

    1999-01-01

    Ultrasound contrast agents, i.e., small gas filled microbubbles, enhance the echogenicity of blood and have the potential to be used for tissue perfusion assessment. The contrast agents scatter ultrasound in a nonlinear manner and thereby introduce harmonics in the ultrasound signal. This property is exploited in new ultrasound techniques like harmonic imaging, which aims to display only the contrast agent presence. Much attention has already been given to the physical properties of the contrast agent. The present study focuses on practical aspects of the measurement of the intrinsic harmonic response of ultrasound contrast agents with single transducer pulse waved ultrasound systems. Furthermore, the consequences of two other sources of harmonics are discussed. These sources are the nonlinear distortion of ultrasound in a medium generating native harmonics, and the emitted signal itself which might contain contaminating harmonics. It is demonstrated conceptually and by experiments that optimization of the contrast agent harmonic response measured with a single transducer is governed by the transducer spectral sensitivity distribution rather than the resonance properties of the contrast agent. Both native and contaminating harmonics may be of considerable strength and can be misinterpreted as intrinsic harmonics of the contrast agent. Practical difficulties to filter out the harmonic component selectively, without deteriorating the image, may cause misinterpretation of the fundamental as a harmonic.

  16. Attenuation measurements of ultrasound in a kaolin-water slurry. A linear dependence upon frequency

    SciTech Connect

    Greenwood, M.S.; Mai, J.L.; Good, M.S. )

    1993-08-01

    The attenuation of ultrasound through a kaolin-water slurry was measured for frequencies ranging from 0.5 to 3.0 MHz. The maximum concentration of the slurry was for a weight percentage of 44% (or a volume fraction of 0.24). The goal of these measurements was to assess the feasibility of using ultrasonic attenuation to determine the concentration of a slurry of known composition. The measurements were obtained by consecutively adding kaolin to the slurry and measuring the attenuation at each concentration. After reaching a maximum concentration a dilution technique was used, in which an amount of slurry was removed and water was added, to obtain the attenuation as a function of the concentration. The dilution technique was the more effective method to obtain calibration data. These measurements were carried out using two transducers, having a center frequency of 2.25 MHz, separated by 0.1016m (4.0 in.). The maximum attenuation measured in these experiments was about 100Np/m, but the experimental apparatus has the capability of measuring a larger attenuation if the distance between the two transducers is decreased. For a given frequency, the data show that ln V/V[sub 0] depends linearly upon the volume fraction (V is the received voltage for the slurry and V[sub 0] is that obtained for water). This indicated that each particle acts independently in attenuating ultrasound. 12 refs., 7 figs., 3 tabs.

  17. Numerical investigation of ultrasound reflection and backscatter measurements in cancellous bone on various receiving areas.

    PubMed

    Hosokawa, Atsushi

    2014-07-01

    In this study, new ultrasound reflection and backscatter measurements in cancellous bone using a membrane-type hydrophone are proposed. A membrane hydrophone made of a piezoelectric polymer film mounted on an annular frame allows an incident ultrasound wave to pass through its aperture because it has no backing material. Therefore, in measurements using the membrane hydrophone, the receiving area could be located independently from the transmitting area. In addition, the size and shape of the receiving area, which corresponded to those of the electrode deposited on the piezoelectric film, could be arranged in various ways. To investigate the validity of the proposed measurements, before bench-top experiments, the reflected and backscattered waves from cancellous bone were numerically simulated using a finite-difference time-domain method. The reflection and backscatter parameters were measured on various receiving areas, and their correlation coefficients with the structural parameters in the cancellous bone were derived. The simulated results suggested that appropriate receiving areas for the reflection and backscatter measurements could exist and that the proposed measurements could be more effective for evaluating bone properties than conventional measurements.

  18. Ultrasound annual, 1986

    SciTech Connect

    Sanders, R.C.; Hill, M.C.

    1986-01-01

    This book provides an analyses of developments in the field of diagnostic ultrasound. Endoscopic ultrasound and ultrasound-guided aspiration of ovarian follicles for in vitro fertilization are addressed. The use of Doppler ultrasound to measure blood flow in obstetrics is also examined.

  19. Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev

    2016-04-01

    In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.

  20. Quantitative muscle ultrasound measures rapid declines over time in children with SMA type 1.

    PubMed

    Ng, Kay W; Connolly, Anne M; Zaidman, Craig M

    2015-11-15

    Muscles are small in spinal muscular atrophy (SMA). It is not known if muscle size changes over time in SMA type 1. We quantified changes over time in muscle size and echointensity during two repeated ultrasound examinations of unilateral proximal (biceps brachii/brachialis and quadriceps) and distal (anterior forearm flexors and tibialis anterior) muscles in three children with SMA type 1. We compared muscle thickness (MT) to body weight-dependent normal reference values. Children were 1, 6, and 11months old at baseline and had 2, 2 and 4 months between ultrasound examinations, respectively. At baseline, MT was normal for weight in all muscles except an atrophic quadriceps in the oldest child. MT decreased and echointensity increased (worsened) over time. At follow up, MT was below normal for weight in the quadriceps in all three children, in the biceps/brachioradialis in two, and in the anterior forearm in one. Tibialis anterior MT remained normal for weight in all three children. Muscle echointensity increased over time in all muscles and, on average, more than doubled in two children. In children with SMA type 1, muscle atrophies and becomes hyperechoic over time. Quantitative muscle ultrasound measures disease progression in SMA type 1 that warrants additional study in more children.

  1. Toward predicting tensile strength of pharmaceutical tablets by ultrasound measurement in continuous manufacturing.

    PubMed

    Razavi, Sonia M; Callegari, Gerardo; Drazer, German; Cuitiño, Alberto M

    2016-06-30

    An ultrasound measurement system was employed as a non-destructive method to evaluate its reliability in predicting the tensile strength of tablets and investigate the benefits of incorporating it in a continuous line, manufacturing solid dosage forms. Tablets containing lactose, acetaminophen, and magnesium stearate were manufactured continuously and in batches. The effect of two processing parameters, compaction force and level of shear strain were examined. Young's modulus and tensile strength of tablets were obtained by ultrasound and diametrical mechanical testing, respectively. It was found that as the blend was exposed to increasing levels of shear strain, the speed of sound in the tablets decreased and the tablets became both softer and mechanically weaker. Moreover, the results indicate that two separate tablet material properties (e.g., relative density and Young's modulus) are necessary in order to predict tensile strength. A strategy for hardness prediction is proposed that uses the existing models for Young's modulus and tensile strength of porous materials. Ultrasound testing was found to be very sensitive in differentiating tablets with similar formulation but produced under different processing conditions (e.g., different level of shear strain), thus, providing a fast, and non-destructive method for hardness prediction that could be incorporated to a continuous manufacturing process.

  2. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography.

    PubMed

    Bossy, Emmanuel; Padilla, Frédéric; Peyrin, Françoise; Laugier, Pascal

    2005-12-07

    Three-dimensional numerical simulations of ultrasound transmission were performed through 31 trabecular bone samples measured by synchrotron microtomography. The synchrotron microtomography provided high resolution 3D mappings of bone structures, which were used as the input geometry in the simulation software developed in our laboratory. While absorption (i.e. the absorption of ultrasound through dissipative mechanisms) was not taken into account in the algorithm, the simulations reproduced major phenomena observed in real through-transmission experiments in trabecular bone. The simulated attenuation (i.e. the decrease of the transmitted ultrasonic energy) varies linearly with frequency in the MHz frequency range. Both the speed of sound (SOS) and the slope of the normalized frequency-dependent attenuation (nBUA) increase with the bone volume fraction. Twenty-five out of the thirty-one samples exhibited negative velocity dispersion. One sample was rotated to align the main orientation of the trabecular structure with the direction of ultrasonic propagation, leading to the observation of a fast and a slow wave. Coupling numerical simulation with real bone architecture therefore provides a powerful tool to investigate the physics of ultrasound propagation in trabecular structures. As an illustration, comparison between results obtained on bone modelled either as a fluid or a solid structure suggested the major role of mode conversion of the incident acoustic wave to shear waves in bone to explain the large contribution of scattering to the overall attenuation.

  3. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography

    NASA Astrophysics Data System (ADS)

    Bossy, Emmanuel; Padilla, Frédéric; Peyrin, Françoise; Laugier, Pascal

    2005-12-01

    Three-dimensional numerical simulations of ultrasound transmission were performed through 31 trabecular bone samples measured by synchrotron microtomography. The synchrotron microtomography provided high resolution 3D mappings of bone structures, which were used as the input geometry in the simulation software developed in our laboratory. While absorption (i.e. the absorption of ultrasound through dissipative mechanisms) was not taken into account in the algorithm, the simulations reproduced major phenomena observed in real through-transmission experiments in trabecular bone. The simulated attenuation (i.e. the decrease of the transmitted ultrasonic energy) varies linearly with frequency in the MHz frequency range. Both the speed of sound (SOS) and the slope of the normalized frequency-dependent attenuation (nBUA) increase with the bone volume fraction. Twenty-five out of the thirty-one samples exhibited negative velocity dispersion. One sample was rotated to align the main orientation of the trabecular structure with the direction of ultrasonic propagation, leading to the observation of a fast and a slow wave. Coupling numerical simulation with real bone architecture therefore provides a powerful tool to investigate the physics of ultrasound propagation in trabecular structures. As an illustration, comparison between results obtained on bone modelled either as a fluid or a solid structure suggested the major role of mode conversion of the incident acoustic wave to shear waves in bone to explain the large contribution of scattering to the overall attenuation.

  4. Absolute and relative reliability of lumbar interspinous process ultrasound imaging measurements

    PubMed Central

    Tozawa, Ryosuke; Katoh, Munenori; Aramaki, Hidefumi; Kawasaki, Tsubasa; Nishikawa, Yuichi; Kumamoto, Tsuneo; Fujinawa, Osamu

    2016-01-01

    [Purpose] The intra- and inter-examiner reliabilities of lumbar interspinous process distances measured by ultrasound imaging were examined. [Subjects and Methods] The subjects were 10 males who had no history of orthopedic diseases or dysfunctions. Ten lumbar interspinous images from 360 images captured from 10 subjects were selected. The 10 images were measured by nine examiners. The lumbar interspinous process distance measurements were performed five times by each examiner. In addition, four of the nine examiners measured the distances again after 4 days for test-retest analysis. In statistical analysis, the intraclass correlation coefficient was used to investigate relative reliability, and Bland-Altman analysis was used to investigate absolute reliability. [Results] The intraclass correlation coefficients (1, 1) for intra-examiner reliability ranged from 0.985 to 0.998. For inter-rater reliability, the intraclass correlation coefficient (2, 1) was 0.969. The intraclass correlation coefficients (1, 2) for test-retest reliability ranged from 0.991 to 0.999. The Bland-Altman analysis results indicated no systematic error. [Conclusion] The results indicate that ultrasound measurements of interspinous process distance are highly reliable even when measured only once by a single person. PMID:27630399

  5. Direct measurement of speed of sound in cartilage in situ using ultrasound and magnetic resonance images.

    PubMed

    Nitta, N; Aoki, T; Hyodo, K; Misawa, M; Homma, K

    2013-01-01

    This study verified the accuracy of the speed of sound (SOS) measured by the combination method, which calculates the ratio between the thickness values of cartilage measured by using the magnetic resonance imaging (MRI) and the ultrasonic pulse-echo imaging, and investigated in vivo application of this method. SOS specific to an ultrasound imaging device was used as a reference value to calculate the actual SOS from the ratio of cartilage thicknesses obtained from MR and ultrasound images. The accuracy of the thickness measurement was verified by comparing results obtained using MRI and a non-contact laser, and the accuracy of the calculated SOS was confirmed by comparing results of the pulse-echo and transmission methods in vitro. The difference between laser and MRI measurements was 0.05 ± 0.22 mm. SOS values in a human knee measured by the combination method in the medial and lateral femoral condyles were 1650 ± 79 and 1642 ± 78 m/s, respectively (p < 0.05). The results revealed the feasibility of in situ SOS measurement using the combination method.

  6. Pulse-echo ultrasound transit time spectroscopy: A comparison of experimental measurement and simulation prediction.

    PubMed

    Wille, Marie-Luise; Almualimi, Majdi A; Langton, Christian M

    2016-01-01

    Considering ultrasound propagation through complex composite media as an array of parallel sonic rays, a comparison of computer-simulated prediction with experimental data has previously been reported for transmission mode (where one transducer serves as transmitter, the other as receiver) in a series of 10 acrylic step-wedge samples, immersed in water, exhibiting varying degrees of transit time inhomogeneity. In this study, the same samples were used but in pulse-echo mode, where the same ultrasound transducer served as both transmitter and receiver, detecting both 'primary' (internal sample interface) and 'secondary' (external sample interface) echoes. A transit time spectrum was derived, describing the proportion of sonic rays with a particular transit time. A computer simulation was performed to predict the transit time and amplitude of various echoes created, and compared with experimental data. Applying an amplitude-tolerance analysis, 91.7% ± 3.7% of the simulated data were within ±1 standard deviation of the experimentally measured amplitude-time data. Correlation of predicted and experimental transit time spectra provided coefficients of determination (R(2)%) ranging from 100.0% to 96.8% for the various samples tested. The results acquired from this study provide good evidence for the concept of parallel sonic rays. Furthermore, deconvolution of experimental input and output signals has been shown to provide an effective method to identify echoes otherwise lost due to phase cancellation. Potential applications of pulse-echo ultrasound transit time spectroscopy include improvement of ultrasound image fidelity by improving spatial resolution and reducing phase interference artefacts.

  7. Has bedside teaching had its day?

    PubMed

    Qureshi, Zeshan; Maxwell, Simon

    2012-05-01

    Though a diverse array of teaching methods is now available, bedside teaching is arguably the most favoured. Students like it because it is patient-centred, and it includes a high proportion of relevant skills. It is on the decline, coinciding with declining clinical skills of junior doctors. Several factors might account for this: busier hospitals, broader roles of clinicians, competing teaching modalities, and the limited training of clinicians as medical educators. However, bedside teaching offers unique benefits. Students gain first-hand experience of the doctor patient relationship. They see the process of interacting with patients, investigative yet sensitive, demystified. Certain clinical skills, like the recognition of the tactile sensation of hepatosplenomegaly cannot be simulated elsewhere. We advocate the preservation of bedside learning experience. Teaching guidelines should be written to minimise disruption to ward work, and to ensure the preservation of patient autonomy. Greater emphasis should be placed on bedside skills in the undergraduate curriculum. For teachers, training in teaching methodology should begin at undergraduate level, with subsequent protected teaching time in job plans. This would increase not just the quantity, but also the quality of bedside teaching.

  8. Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach

    PubMed Central

    Canney, Michael S.; Bailey, Michael R.; Crum, Lawrence A.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.

    2008-01-01

    Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24 000 W∕cm2. The inputs to a Khokhlov–Zabolotskaya–Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W∕cm2, lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields. PMID:19062878

  9. Acoustic characterization of high intensity focused ultrasound fields: a combined measurement and modeling approach.

    PubMed

    Canney, Michael S; Bailey, Michael R; Crum, Lawrence A; Khokhlova, Vera A; Sapozhnikov, Oleg A

    2008-10-01

    Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24,000 W/cm(2). The inputs to a Khokhlov-Zabolotskaya-Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W/cm(2), lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields.

  10. Automatic segmentation and measurements of gestational sac using static B-mode ultrasound images

    NASA Astrophysics Data System (ADS)

    Ibrahim, Dheyaa Ahmed; Al-Assam, Hisham; Du, Hongbo; Farren, Jessica; Al-karawi, Dhurgham; Bourne, Tom; Jassim, Sabah

    2016-05-01

    Ultrasound imagery has been widely used for medical diagnoses. Ultrasound scanning is safe and non-invasive, and hence used throughout pregnancy for monitoring growth. In the first trimester, an important measurement is that of the Gestation Sac (GS). The task of measuring the GS size from an ultrasound image is done manually by a Gynecologist. This paper presents a new approach to automatically segment a GS from a static B-mode image by exploiting its geometric features for early identification of miscarriage cases. To accurately locate the GS in the image, the proposed solution uses wavelet transform to suppress the speckle noise by eliminating the high-frequency sub-bands and prepare an enhanced image. This is followed by a segmentation step that isolates the GS through the several stages. First, the mean value is used as a threshold to binarise the image, followed by filtering unwanted objects based on their circularity, size and mean of greyscale. The mean value of each object is then used to further select candidate objects. A Region Growing technique is applied as a post-processing to finally identify the GS. We evaluated the effectiveness of the proposed solution by firstly comparing the automatic size measurements of the segmented GS against the manual measurements, and then integrating the proposed segmentation solution into a classification framework for identifying miscarriage cases and pregnancy of unknown viability (PUV). Both test results demonstrate that the proposed method is effective in segmentation the GS and classifying the outcomes with high level accuracy (sensitivity (miscarriage) of 100% and specificity (PUV) of 99.87%).

  11. Bedside ultrasonography (US), Echoscopy and US point of care as a new kind of stethoscope for Internal Medicine Departments: the training program of the Italian Internal Medicine Society (SIMI).

    PubMed

    Arienti, Vincenzo; Di Giulio, Rosella; Cogliati, Chiara; Accogli, Esterita; Aluigi, Leonardo; Corazza, Gino Roberto

    2014-10-01

    In recent years, thanks to the development of miniaturized ultrasound devices, comparable to personal computers, tablets and even to smart phones, we have seen an increasing use of bedside ultrasound in internal medicine departments as a novel kind of ultrasound stethoscope. The clinical ultrasound-assisted approach has proved to be particularly useful in assessing patients with nodules of the neck, dyspnoea, abdominal pain, and with limb edema. In several cases, it has allowed a simple, rapid and precise diagnosis. Since 2005, the Italian Society of Internal Medicine and its Ultrasound Study Group has been holding a Summer School and training courses in ultrasound for residents in internal medicine. A national network of schools in bedside ultrasound was then organized for internal medicine specialists who want to learn this technique. Because bedside ultrasound is a user-dependent diagnostic method, it is important to define the limits and advantages of different new ultrasound devices, to classify them (i.e. Echoscopy and Point of Care Ultrasound), to establish appropriate different levels of competence and to ensure their specific training. In this review, we describe the point of view of the Italian Internal Medicine Society on these topics.

  12. Automated kidney morphology measurements from ultrasound images using texture and edge analysis

    NASA Astrophysics Data System (ADS)

    Ravishankar, Hariharan; Annangi, Pavan; Washburn, Michael; Lanning, Justin

    2016-04-01

    In a typical ultrasound scan, a sonographer measures Kidney morphology to assess renal abnormalities. Kidney morphology can also help to discriminate between chronic and acute kidney failure. The caliper placements and volume measurements are often time consuming and an automated solution will help to improve accuracy, repeatability and throughput. In this work, we developed an automated Kidney morphology measurement solution from long axis Ultrasound scans. Automated kidney segmentation is challenging due to wide variability in kidney shape, size, weak contrast of the kidney boundaries and presence of strong edges like diaphragm, fat layers. To address the challenges and be able to accurately localize and detect kidney regions, we present a two-step algorithm that makes use of edge and texture information in combination with anatomical cues. First, we use an edge analysis technique to localize kidney region by matching the edge map with predefined templates. To accurately estimate the kidney morphology, we use textural information in a machine learning algorithm framework using Haar features and Gradient boosting classifier. We have tested the algorithm on 45 unseen cases and the performance against ground truth is measured by computing Dice overlap, % error in major and minor axis of kidney. The algorithm shows successful performance on 80% cases.

  13. Fetal growth and air pollution - A study on ultrasound and birth measures.

    PubMed

    Malmqvist, Ebba; Liew, Zeyan; Källén, Karin; Rignell-Hydbom, Anna; Rittner, Ralf; Rylander, Lars; Ritz, Beate

    2017-01-01

    Air pollution has been suggested to affect fetal growth, but more data is needed to assess the timing of exposure effects by using ultrasound measures. It is also important to study effects in low exposure areas to assess eventual thresholds of effects. The MAPSS (Maternal Air Pollution in Southern Sweden) cohort consists of linked registry data for around 48,000 pregnancies from an ultrasound database, birth registry and exposure data based on residential addresses. Measures of air pollution exposure were obtained through dispersion modelling with input data from an emissions database (NOx) with high resolution (100-500m grids). Air pollution effects were assessed with linear regressions for the following endpoints; biparietal diameter, femur length, abdominal diameter and estimated fetal weight measured in late pregnancy and birth weight and head circumference measured at birth. We estimated negative effects for NOx; in the adjusted analyses the decrease of abdominal diameter and femur length were -0.10 (-0.17, -0.03) and -0.13 (-0.17, -0.01)mm, respectively, per 10µg/m(3) increment of NOx. We also estimated an effect of NOx-exposures on birth weight by reducing birth weight by 9g per 10µg/m(3) increment of NOx. We estimated small but statistically significant effects of air pollution on late fetal and birth size and reduced fetal growth late in pregnancy in a geographic area with levels below current WHO air quality guidelines.

  14. Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients.

    PubMed

    Nenadic, Ivan Z; Qiang, Bo; Urban, Matthew W; Zhao, Heng; Sanchez, William; Greenleaf, James F; Chen, Shigao

    2017-01-21

    Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.

  15. Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients

    NASA Astrophysics Data System (ADS)

    Nenadic, Ivan Z.; Qiang, Bo; Urban, Matthew W.; Zhao, Heng; Sanchez, William; Greenleaf, James F.; Chen, Shigao

    2017-01-01

    Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.

  16. Ultrasound in trauma.

    PubMed

    Rippey, James C R; Royse, Alistair G

    2009-09-01

    Point-of-care ultrasound is well suited for use in the emergency setting for assessment of the trauma patient. Currently, portable ultrasound machines with high-resolution imaging capability allow trauma patients to be imaged in the pre-hospital setting, emergency departments and operating theatres. In major trauma, ultrasound is used to diagnose life-threatening conditions and to prioritise and guide appropriate interventions. Assessment of the basic haemodynamic state is a very important part of ultrasound use in trauma, but is discussed in more detail elsewhere. Focussed assessment with sonography for Trauma (FAST) rapidly assesses for haemoperitoneum and haemopericardium, and the Extended FAST examination (EFAST) explores for haemothorax, pneumothorax and intravascular filling status. In regional trauma, ultrasound can be used to detect fractures, many vascular injuries, musculoskeletal injuries, testicular injuries and can assess foetal viability in pregnant trauma patients. Ultrasound can also be used at the bedside to guide procedures in trauma, including nerve blocks and vascular access. Importantly, these examinations are being performed by the treating physician in real time, allowing for immediate changes to management of the patient. Controversy remains in determining the best training to ensure competence in this user-dependent imaging modality.

  17. [Shearwave-based ultrasound viscoelasticity measurement system for evaluation of liver fibrosis].

    PubMed

    Wei, Tan; Xiaodong, Han; Gang, Cheng; Hazard, Christopher

    2010-09-01

    This paper describes a liver elasticity and viscosity measurement system based on existing medical ultrasound platforms. This system relies on acoustic radiation force to invoke transient response on soft tissue, and employs displacement estimation algorithms to detect the propagation of shear wave. The research proves that the velocity of the shear wave may serve as a reliable estimation of the Young's modulus and viscosity coefficient of the liver tissue, and existing commercial products may be easily adapted to support this technique without extra hardware cost.

  18. Validation of ultrasound as a noninvasive tool to measure subcutaneous fat depth in leatherback sea turtles (Dermochelys coriacea)

    USGS Publications Warehouse

    Harris, Heather S.; Benson, Scott R.; James, Michael C.; Martin, Kelly J.; Stacy, Brian A.; Daoust, Pierre-Yves; Rist, Paul M.; Work, Thierry M.; Balazs, George H.; Seminoff, Jeffrey A.

    2016-01-01

    Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45–90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species.

  19. VALIDATION OF ULTRASOUND AS A NONINVASIVE TOOL TO MEASURE SUBCUTANEOUS FAT DEPTH IN LEATHERBACK SEA TURTLES (DERMOCHELYS CORIACEA).

    PubMed

    Harris, Heather S; Benson, Scott R; James, Michael C; Martin, Kelly J; Stacy, Brian A; Daoust, Pierre-Yves; Rist, Paul M; Work, Thierry M; Balazs, George H; Seminoff, Jeffrey A

    2016-03-01

    Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45-90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species.

  20. A Review on Atherosclerotic Biology, Wall Stiffness, Physics of Elasticity, and Its Ultrasound-Based Measurement.

    PubMed

    Patel, Anoop K; Suri, Harman S; Singh, Jaskaran; Kumar, Dinesh; Shafique, Shoaib; Nicolaides, Andrew; Jain, Sanjay K; Saba, Luca; Gupta, Ajay; Laird, John R; Giannopoulos, Argiris; Suri, Jasjit S

    2016-12-01

    Functional and structural changes in the common carotid artery are biomarkers for cardiovascular risk. Current methods for measuring functional changes include pulse wave velocity, compliance, distensibility, strain, stress, stiffness, and elasticity derived from arterial waveforms. The review is focused on the ultrasound-based carotid artery elasticity and stiffness measurements covering the physics of elasticity and linking it to biological evolution of arterial stiffness. The paper also presents evolution of plaque with a focus on the pathophysiologic cascade leading to arterial hardening. Using the concept of strain, and image-based elasticity, the paper then reviews the lumen diameter and carotid intima-media thickness measurements in combined temporal and spatial domains. Finally, the review presents the factors which influence the understanding of atherosclerotic disease formation and cardiovascular risk including arterial stiffness, tissue morphological characteristics, and image-based elasticity measurement.

  1. Bone QUS measurement performed under loading condition, a more accuracy ultrasound method for osteoporosis diagnosis.

    PubMed

    Liu, Chengrui; Niu, Haijun; Fan, Yubo; Li, Deyu

    2012-10-01

    Osteoporosis is a worldwide health problem with enormous social and economic impact. Quantitative ultrasound (QUS) method provides comprehensive information on bone mass, microstructure and mechanical properties of the bone. And the cheap, safe and portable ultrasound equipment is more suitable for public health monitoring. QUS measurement was normally performed on bone specimens without mechanical loading. But human bones are subjected to loading during routine daily activities, and physical loading leads to the changes of bone microstructure and mechanical properties. We hypothesized that bone QUS parameters measured under loading condition differ from those measured without loading because the microstructure of bone was changed when loading subjected to bone. Furthermore, when loading was subjected on bone, the loading-lead microstructure change of osteoporosis bone may larger than that of health bone. By considering the high relationship between bone microstructure and QUS parameters, the QUS parameters of osteoporosis bone may changed larger than that of health bone. So osteoporosis may be detected more effectively by the combination of QUS method and mechanical loading.

  2. Measurement of Transcranial Distance During Head-Down Tilt Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Torikoshi, Shigeyo; Ballard, R. E.; Watenpaugh, D. E.; Murthy, G.; Bowley, S.; Yost, W. T.; Hargens, Alan R.

    1995-01-01

    Exposure to microgravity probably elevates blood pressure and flow in the head which may increase intracranial volume (ICV) and pressure (ICP). Due to the slightly compliant nature of the cranium, any increase of ICP will increase ICV and transcranial distance. We used a noninvasive ultrasound technique to measure transcranial distance (frontal to occipital) during head-down tilt. Seven subjects (ages 26-53) underwent the following tilt angles: 90 deg. upright, 30 deg., 0 deg., -6 deg., -10 deg., -6 deg., 0 deg., 30 deg., and 90 deg. Each angle was maintained for 1 min. Ultrasound wave frequency was collected continuously and transcranial distance was calculated (Delta(x) = x(Delta)f/f, where x is path length and f is frequency of the wave) for each tilt angle. Frequency decreased from 503.687 kHz (90 deg. upright) to 502.619 kHz (-10 deg.). These frequencies translated to an increased transcranial distance of 0.403 mm. Although our data suggest a significant increase in transcranial distance during head-down tilt, this apparent increase may result, in part, from head-down tilt-induced subcutaneous edema or cutaneous blood volume elevation. In three subjects, when the above protocol was repeated with an ace bandage wrapped around the head to minimize such edema, the increased transcranial distance from 90 deg. to -10 deg. was reduced by 0.174 mm. Further development of the technique to quantify bone-to-bone expansion unconfounded by cutaneous fluid is necessary. Therefore, this ultrasound technique may provide measurements of changes in cranial dimensions during microgravity.

  3. Application of Digital Ultrasound Speckle Image Velocimetry(DUSIV) for Quantitative Flow Measurements in Aortic Vessel- an In Vitro Study

    NASA Astrophysics Data System (ADS)

    Zarandi, Mehrdad; Dabiri, Dana; Gharib, Morteza

    2001-11-01

    A new method is developed to use speckle signals for obtaining quantitative information about the flow field and its related properties such as wall shear stress. Speckle imaging allows for mapping flows at normal angles to the probe where Doppler technique render little information. Our custom developed method of Digital Ultrasound Speckle Image Velocimetry is used to measure the flow field and wall shear stress in a model of aortic vessel. The method has great potential for other applications such as flow in curved vessels, branching vessels, heart chambers and through valves for quantitative blood flow measurements. It also allows us to correct for the errors in ultrasound measurements caused by the angle of interrogation , or signal attenuation with distance from the ultrasound probe. Speckle velocimetry also allows calibration of the results obtained from the conventional Doppler shift based ultrasound methods and should therefore contribute to more accurate quantitative measurements of blood flow by ultrasound. Providing quantitative information with much higher resolution than Color Doppler measurements and applicability to optically inaccessible flows are the other advantages of this method.

  4. Comparison of sound speed measurements on two different ultrasound tomography devices

    NASA Astrophysics Data System (ADS)

    Sak, Mark; Duric, Neb; Littrup, Peter; Bey-Knight, Lisa; Sherman, Mark; Gierach, Gretchen; Malyarenko, Antonina

    2014-03-01

    Ultrasound tomography (UST) employs sound waves to produce three-dimensional images of breast tissue and precisely measures the attenuation of sound speed secondary to breast tissue composition. High breast density is a strong breast cancer risk factor and sound speed is directly proportional to breast density. UST provides a quantitative measure of breast density based on three-dimensional imaging without compression, thereby overcoming the shortcomings of many other imaging modalities. The quantitative nature of the UST breast density measures are tied to an external standard, so sound speed measurement in breast tissue should be independent of specific hardware. The work presented here compares breast sound speed measurement obtained with two different UST devices. The Computerized Ultrasound Risk Evaluation (CURE) system located at the Karmanos Cancer Institute in Detroit, Michigan was recently replaced with the SoftVue ultrasound tomographic device. Ongoing clinical trials have used images generated from both sets of hardware, so maintaining consistency in sound speed measurements is important. During an overlap period when both systems were in the same exam room, a total of 12 patients had one or both of their breasts imaged on both systems on the same day. There were 22 sound speed scans analyzed from each system and the average breast sound speeds were compared. Images were either reconstructed using saved raw data (for both CURE and SoftVue) or were created during the image acquisition (saved in DICOM format for SoftVue scans only). The sound speed measurements from each system were strongly and positively correlated with each other. The average difference in sound speed between the two sets of data was on the order of 1-2 m/s and this result was not statistically significant. The only sets of images that showed a statistical difference were the DICOM images created during the SoftVue scan compared to the SoftVue images reconstructed from the raw data

  5. Comparison of sound speed measurements on two different ultrasound tomography devices.

    PubMed

    Sak, Mark; Duric, Neb; Littrup, Peter; Bey-Knight, Lisa; Sherman, Mark; Gierach, Gretchen; Malyarenko, Antonina

    2014-03-20

    Ultrasound tomography (UST) employs sound waves to produce three-dimensional images of breast tissue and precisely measures the sound speed of breast tissue composition. High breast density is a strong breast cancer risk factor and sound speed is directly proportional to breast density. UST provides a quantitative measure of breast density based on three-dimensional imaging without compression, thereby overcoming the shortcomings of many other imaging modalities. The quantitative nature of the UST breast density measures are tied to an external standard, so sound speed measurement in breast tissue should be independent of specific hardware. The work presented here compares breast sound speed measurement obtained with two different UST devices. The Computerized Ultrasound Risk Evaluation (CURE) system located at the Karmanos Cancer Institute in Detroit, Michigan was recently replaced with the SoftVue ultrasound tomographic device. Ongoing clinical trials have used images generated from both sets of hardware, so maintaining consistency in sound speed measurements is important. During an overlap period when both systems were in the same exam room, a total of 12 patients had one or both of their breasts imaged on both systems on the same day. There were 22 sound speed scans analyzed from each system and the average breast sound speeds were compared. Images were either reconstructed using saved raw data (for both CURE and SoftVue) or were created during the image acquisition (saved in DICOM format for SoftVue scans only). The sound speed measurements from each system were strongly and positively correlated with each other. The average difference in sound speed between the two sets of data was on the order of 1-2 m/s and this result was not statistically significant. The only sets of images that showed a statistical difference were the DICOM images created during the SoftVue scan compared to the SoftVue images reconstructed from the raw data. However, the discrepancy

  6. Comparison of sound speed measurements on two different ultrasound tomography devices

    PubMed Central

    Sak, Mark; Duric, Neb; Littrup, Peter; Bey-Knight, Lisa; Sherman, Mark; Gierach, Gretchen; Malyarenko, Antonina

    2014-01-01

    Ultrasound tomography (UST) employs sound waves to produce three-dimensional images of breast tissue and precisely measures the sound speed of breast tissue composition. High breast density is a strong breast cancer risk factor and sound speed is directly proportional to breast density. UST provides a quantitative measure of breast density based on three-dimensional imaging without compression, thereby overcoming the shortcomings of many other imaging modalities. The quantitative nature of the UST breast density measures are tied to an external standard, so sound speed measurement in breast tissue should be independent of specific hardware. The work presented here compares breast sound speed measurement obtained with two different UST devices. The Computerized Ultrasound Risk Evaluation (CURE) system located at the Karmanos Cancer Institute in Detroit, Michigan was recently replaced with the SoftVue ultrasound tomographic device. Ongoing clinical trials have used images generated from both sets of hardware, so maintaining consistency in sound speed measurements is important. During an overlap period when both systems were in the same exam room, a total of 12 patients had one or both of their breasts imaged on both systems on the same day. There were 22 sound speed scans analyzed from each system and the average breast sound speeds were compared. Images were either reconstructed using saved raw data (for both CURE and SoftVue) or were created during the image acquisition (saved in DICOM format for SoftVue scans only). The sound speed measurements from each system were strongly and positively correlated with each other. The average difference in sound speed between the two sets of data was on the order of 1-2 m/s and this result was not statistically significant. The only sets of images that showed a statistical difference were the DICOM images created during the SoftVue scan compared to the SoftVue images reconstructed from the raw data. However, the discrepancy

  7. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    SciTech Connect

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M.; Reamer, Courtney B.; Mohler, Emile R.

    2014-02-15

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  8. Estimation of multipath transmission parameters for quantitative ultrasound measurements of bone.

    PubMed

    Dencks, Stefanie; Schmitz, Georg

    2013-09-01

    When applying quantitative ultrasound (QUS) measurements to bone for predicting osteoporotic fracture risk, the multipath transmission of sound waves frequently occurs. In the last 10 years, the interest in separating multipath QUS signals for their analysis awoke, and led to the introduction of several approaches. Here, we compare the performances of the two fastest algorithms proposed for QUS measurements of bone: the modified least-squares Prony method (MLSP), and the space alternating generalized expectation maximization algorithm (SAGE) applied in the frequency domain. In both approaches, the parameters of the transfer functions of the sound propagation paths are estimated. To provide an objective measure, we also analytically derive the Cramér-Rao lower bound of variances for any estimator and arbitrary transmit signals. In comparison with results of Monte Carlo simulations, this measure is used to evaluate both approaches regarding their accuracy and precision. Additionally, with simulations using typical QUS measurement settings, we illustrate the limitations of separating two superimposed waves for varying parameters with focus on their temporal separation. It is shown that for good SNRs around 100 dB, MLSP yields better results when two waves are very close. Additionally, the parameters of the smaller wave are more reliably estimated. If the SNR decreases, the parameter estimation with MLSP becomes biased and inefficient. Then, the robustness to noise of the SAGE clearly prevails. Because a clear influence of the interrelation between the wavelength of the ultrasound signals and their temporal separation is observable on the results, these findings can be transferred to QUS measurements at other sites. The choice of the suitable algorithm thus depends on the measurement conditions.

  9. Practical issues of hemodynamic monitoring at the bedside.

    PubMed

    Polanco, Patricio M; Pinsky, Michael R

    2006-12-01

    The hemodynamic monitoring of a surgical patient acquires a major relevance in high-risk patients and those suffering from surgical diseases associated with hemodynamic instability, such as hemorrhagic or septic shock. This article reviews the fundamental physiologic principles needed to understand hemodynamic monitoring at the bedside. Monitoring defines stability, instability, and response to therapy. The major hemodynamic parameters measured and derived from invasive hemodynamic monitoring, such as arterial, central venous, and pulmonary catheterization, are discussed, as are its clinical indications, benefits, and complications. The current clinical data relevant to hemodynamic monitoring are reviewed and discussed.

  10. Should intensivist do routine abdominal ultrasound?

    PubMed Central

    Samanta, Sukhen; Samanta, Sujay; Soni, Kapil Dev; Aggarwal, Richa

    2015-01-01

    Roundworm infestation is common in tropical climate population with a low socioeconomic status. We describe a case of a young male with polytrauma accident who presented with small bowel dysfunction with a high gastric residual volume during enteral feeding. While searching the etiology, the intensivist performed bedside abdominal ultrasound (USG) as a part of whole body USG screening along with clinical examination using different frequency probes to examine bowel movement and ultimately found ascariasis to be the cause. This case report will boost up the wide use of bedside USG by critical care physicians in their patient workup. PMID:26430346

  11. Spectroscopic measurement of adipose tissue thickness and comparison with ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Geraskin, Dmitri; Boeth, Heide; Kohl-Bareis, Matthias

    2007-07-01

    Near-infrared spectroscopy (NIRS) is widely applied for applications monitoring skeletal muscle oxygenation. However, this method is obstructed by the subcutaneous adipose tissue thickness (ATT) which might vary between < 1 mm to more than 12 mm. Though diffuse optical imaging can be applied to measure ATT, the objective here is to get this measure from spectroscopic data of a single source-detector distance. For the measurement of the optical lipid signal we used a broad band spatially resolved system (SRS), which is based on measurements of the wavelength dependence of the attenuation A for source detector distances ρ between 29 mm and 39 mm. Ultrasound images served as an anatomical reference of the lipid layer. The measurements were taken on 5 different muscle groups of 20 healthy volunteers, each for left and right limbs, e.g. vastus medialis, vastus lateralis and gastrocnemius muscle on the leg and ventral forearm muscles and biceps brachii muscle on the arm. Different analysis strategies were tested for the best calculation of ATT. There is a good non-linear correlation between optical lipid signal and ultrasound data, with an overall error in ATT prediction of about 0.5 mm. This finding is supported experimentally by additional MRI measurements as well as a multi-layer Monte Carlo (MC) model. Based on this data of the ATT thickness, a newly developed algorithm which exploits the wavelength dependence of the slope in attenuation with respect to source-detector distance and MC simulation for these parameters as a function of absorption and scattering coefficients delivers a considerably better fit of reflectance spectra when fitting haemoglobin concentrations. Implications for the monitoring of muscle oxygen saturation are discussed.

  12. Has Bedside Teaching Had Its Day?

    ERIC Educational Resources Information Center

    Qureshi, Zeshan; Maxwell, Simon

    2012-01-01

    Though a diverse array of teaching methods is now available, bedside teaching is arguably the most favoured. Students like it because it is patient-centred, and it includes a high proportion of relevant skills. It is on the decline, coinciding with declining clinical skills of junior doctors. Several factors might account for this: busier…

  13. Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree.

    PubMed

    Carneiro, Gustavo; Georgescu, Bogdan; Good, Sara; Comaniciu, Dorin

    2008-09-01

    We propose a novel method for the automatic detection and measurement of fetal anatomical structures in ultrasound images. This problem offers a myriad of challenges, including: difficulty of modeling the appearance variations of the visual object of interest, robustness to speckle noise and signal dropout, and large search space of the detection procedure. Previous solutions typically rely on the explicit encoding of prior knowledge and formulation of the problem as a perceptual grouping task solved through clustering or variational approaches. These methods are constrained by the validity of the underlying assumptions and usually are not enough to capture the complex appearances of fetal anatomies. We propose a novel system for fast automatic detection and measurement of fetal anatomies that directly exploits a large database of expert annotated fetal anatomical structures in ultrasound images. Our method learns automatically to distinguish between the appearance of the object of interest and background by training a constrained probabilistic boosting tree classifier. This system is able to produce the automatic segmentation of several fetal anatomies using the same basic detection algorithm. We show results on fully automatic measurement of biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), femur length (FL), humerus length (HL), and crown rump length (CRL). Notice that our approach is the first in the literature to deal with the HL and CRL measurements. Extensive experiments (with clinical validation) show that our system is, on average, close to the accuracy of experts in terms of segmentation and obstetric measurements. Finally, this system runs under half second on a standard dual-core PC computer.

  14. Effectiveness of the portable ultrasound bladder scanner in the measurement of residual urine volume after total mesorectal extirpation.

    PubMed

    Araki; Ishibashi; Sasatomi; Kanazawa; Ogata; Shirouzu

    2003-09-01

    The measurement of residual urine volume by bladder catheterization causes quite some suffering to the patient and sometimes causes urinary tract infections. To evaluate the postoperative measurement of residual urine volume with a portable ultrasound bladder scanner (Bladder Scan BVI 3000) and the cost-benefit analysis as compared with postoperative catheterization we carried out a study on 30 patients with primary rectal cancer. The data were then compared with actual urine volumes. This was a prospective study dealing with the economical benefit of ultrasound scanning over catheterization during the hospital stay. The ultrasound bladder scanner was found to be a reliable method of estimating residual urine volume since its data correlated with actual volumes with a coefficient of 0.9. The results satisfied both physicians and patients. Ultrasound scanning of the bladder to measure residual urine volume reduced the frequency of catheterization by 38% as compared with the patients on intermittent catheterization, with 17.4 catheters saved for each patient. In conclusion, the ultrasound bladder scanner could protect patients from the discomfort and urethral injury which might have been caused by bladder catheters, thus decreasing medical expenses. This technique will play an important role in determining whether to conduct invasive urethral catheterization for postoperative urinary disturbance in rectal cancer.

  15. Quantitative contrast-enhanced ultrasound measurement of cerebrospinal fluid flow for the diagnosis of ventricular shunt malfunction

    PubMed Central

    Hartman, Robin; Aglyamov, Salavat; Fox, Douglas J.; Emelianov, Stanislav

    2015-01-01

    Object Cerebral shunt malfunction is common but often difficult to effectively diagnose. Current methods are invasive, involve ionizing radiation, and can be costly. This work investigated the feasibility of quantitatively measuring cerebrospinal fluid flow in a shunt catheter using contrast-enhanced ultrasound. Methods A syringe pump was used to push a solution of gas-filled microbubbles at specific flow rates through a shunt catheter while a high-frequency ultrasound imaging system was used to collect ultrasound images for off-line processing. Displacement maps and velocity profiles were generated using a speckle tracking method based on a cross-correlation algorithm. An additional correction factor, to account for a predictable underestimation and to adjust the measured flow rates, was calculated based on the geometry of the ultrasound imaging plane and assuming a simple model of laminar flow. Results The developed method was able to differentiate between physiologically relevant flow rates from 0.0 to 0.09 ml/min with reasonable certainty. The quantitative measurement of flow rates through the catheter using this method was determined to be in good agreement with the expected flow rate. Conclusions This study demonstrated that contrast-enhanced ultrasound has the potential to be used as a minimally invasive and cost-effective alternative method for outpatient shunt malfunction diagnosis. PMID:26090831

  16. Photoacoustic clutter reduction by inversion of a linear scatter model using plane wave ultrasound measurements.

    PubMed

    Schwab, Hans-Martin; Beckmann, Martin F; Schmitz, Georg

    2016-04-01

    Photoacoustic imaging aims to visualize light absorption properties of biological tissue by receiving a sound wave that is generated inside the observed object as a result of the photoacoustic effect. In clinical applications, the strong light absorption in human skin is a major problem. When high amplitude photoacoustic waves that originate from skin absorption propagate into the tissue, they are reflected back by acoustical scatterers and the reflections contribute to the received signal. The artifacts associated with these reflected waves are referred to as clutter or skin echo and limit the applicability of photoacoustic imaging for medical applications severely. This study seeks to exploit the acoustic tissue information gained by plane wave ultrasound measurements with a linear array in order to correct for reflections in the photoacoustic image. By deriving a theory for clutter waves in k-space and a matching inversion approach, photoacoustic measurements compensated for clutter are shown to be recovered.

  17. Elastic constants of α Ti-7Al measured using resonant ultrasound spectroscopy

    NASA Astrophysics Data System (ADS)

    Adebisi, R. A.; Sathish, S.; Pilchak, A. L.; Shade, P. A.

    2016-02-01

    The five independent elastic constants of a single-phase (α, HCP crystal structure) titanium alloy, Ti-7Al, have been measured for the first time using resonant ultrasound spectroscopy (RUS). RUS is a nondestructive evaluation method that mea-sures the mechanical resonance of solids and uses the resonance frequencies to extract a complete set of elastic constants of the solid material. The elastic constants of titanium alloys vary substantially depending on manufacturing history and composition. In addition, available data on the elastic constants of titanium alloys is limited. The elastic constants data for Ti-7Al are presented in this paper and the results are compared to the available data for other titanium alloys that are similar in composition.

  18. Photoacoustic clutter reduction by inversion of a linear scatter model using plane wave ultrasound measurements

    PubMed Central

    Schwab, Hans-Martin; Beckmann, Martin F.; Schmitz, Georg

    2016-01-01

    Photoacoustic imaging aims to visualize light absorption properties of biological tissue by receiving a sound wave that is generated inside the observed object as a result of the photoacoustic effect. In clinical applications, the strong light absorption in human skin is a major problem. When high amplitude photoacoustic waves that originate from skin absorption propagate into the tissue, they are reflected back by acoustical scatterers and the reflections contribute to the received signal. The artifacts associated with these reflected waves are referred to as clutter or skin echo and limit the applicability of photoacoustic imaging for medical applications severely. This study seeks to exploit the acoustic tissue information gained by plane wave ultrasound measurements with a linear array in order to correct for reflections in the photoacoustic image. By deriving a theory for clutter waves in k-space and a matching inversion approach, photoacoustic measurements compensated for clutter are shown to be recovered. PMID:27446669

  19. Thermochromic Phantom and Measurement Protocol for Qualitative Analysis of Ultrasound Physiotherapy Systems.

    PubMed

    Costa, Rejane M; Alvarenga, André V; Costa-Felix, Rodrigo P B; Omena, Thaís P; von Krüger, Marco A; Pereira, Wagner C A

    2016-01-01

    Thermochromic test bodies are promising tools for qualitatively evaluating the acoustic output of ultrasound physiotherapy systems. Here, a novel phantom, made of silicone mixed with thermochromic powder material, was developed. Additionally, a procedure was developed to evaluate the stability and homogeneity of the phantom in a metrologic and statistical base. Twelve phantoms were divided into three groups. Each group was insonated by a different transducer. An effective intensity of 1.0 W/cm(2) was applied to each phantom; two operators performed the procedure three times in all phantoms. The heated area was measured after image processing. No statistical difference was observed in the heated areas for different samples or in the results for different operators. The heated areas obtained using each transducer were statistically different, indicating that the thermochromic phantom samples had sufficient sensitivity to represent the heated areas of different ultrasonic transducers. Combined with the evaluation procedure, the phantom provides an approach not previously described in the literature. The proposed approach can be used to quickly assess changes in ultrasonic beam cross-sectional shape during the lifetime of ultrasound physiotherapy systems.

  20. Optical measurement of adipose tissue thickness and comparison with ultrasound, magnetic resonance imging, and callipers

    NASA Astrophysics Data System (ADS)

    Geraskin, Dmitri; Boeth, Heide; Kohl-Bareis, Matthias

    2009-07-01

    Near-infrared spectroscopy is used to quantify the subcutaneous adipose tissue thickness (ATT) over five muscle groups (vastus medialis, vastus lateralis, gastrocnemius, ventral forearm and biceps brachii muscle) of healthy volunteers (n=20). The optical lipid signal (OLS) was obtained from the second derivative of broad band attenuation spectra and the lipid absorption peak (λ=930 nm). Ultrasound and MR imaging as well as mechanical calliper readings were taken as reference methods. The data show that the OLS is a good predictor for ATT (<16 mm) with absolute and relative errors of <0.8 mm and <24%, respectively. The optical method compares favourably with calliper reading. The finding of a non-linear relationship of optical signal vs. ultrasound is explained by a theoretical two-layer model based on the diffusion approximation for the transport of photons. The crosstalk between the OLS and tissue hemoglobin concentration changes during an incremental cycling exercise was found to be small, indicating the robustness of OLS. Furthermore, the effect of ATT on spatially-resolved spectroscopy measurements is shown to decrease the calculated muscle hemoglobin concentration and to increase oxygen saturation.

  1. Development of a thermal test object for the measurement of ultrasound intracavity transducer self-heating.

    PubMed

    Killingback, Alban L T; Newey, Valentine R; El-Brawany, Mohamed A; Nassiri, Dariush K

    2008-12-01

    The elevated surface temperature of diagnostic ultrasound transducers imposes an important limitation to their safe use in clinical situations. Moreover, particular care should be taken if transvaginal transducers are to be used during routine scans in the first few weeks of pregnancy as the transducer surface can be very close to embryonic/fetal tissues. Published results have shown that the heating of tissue due to transducer self-heating can equal and often exceed the acoustic heating contribution. In this article, we report the development of a portable self contained thermal test object (TTO) capable of assessing the self-heating of intracavity diagnostic ultrasound transducers. The thermal conductivity and volumetric heat capacity of the tissue mimicking material (TMM) used in the TTO were measured, yielding values of (0.56 +/- 0.01) W m(-1) K(-1) and (3.5 +/- 0.8) MJ m(-3) K(-1). The speed of sound of the TMM was measured as 1540 m s(-1) and the attenuation over a frequency range of 2 to 10 MHz was found to be (0.50 +/- 0.01) dB cm(-1) MHz(-1). These results are in excellent agreement with the International Electrotechnical Commission (IEC 60601-2-37) requirements and the previously published properties of biological soft tissue. The temperature stability and uniformity, and suitability of the TTO for the measurement of transducer self-heating were tested and found to be satisfactory. The TTO reached a stable temperature of 37 degrees C in 3 h and the spatial variation in temperature was less than +/- 0.2 degrees C. Lastly, transducer self-heating measurements from a transvaginal transducer exceeded the IEC temperature limit of 43 degrees C in less than 5 min and the temperature reached after 30 min was 47.3 degrees C.

  2. Medical Ultrasound Imaging.

    ERIC Educational Resources Information Center

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  3. Perpendicular ultrasound velocity measurement by 2D cross correlation of RF data. Part A: validation in a straight tube

    NASA Astrophysics Data System (ADS)

    Beulen, Bart; Bijnens, Nathalie; Rutten, Marcel; Brands, Peter; van de Vosse, Frans

    2010-11-01

    An ultrasound velocity assessment technique was validated, which allows the estimation of velocity components perpendicular to the ultrasound beam, using a commercially available ultrasound scanner equipped with a linear array probe. This enables the simultaneous measurement of axial blood velocity and vessel wall position, rendering a viable and accurate flow assessment. The validation was performed by comparing axial velocity profiles as measured in an experimental setup to analytical and computational fluid dynamics calculations. Physiologically relevant pulsating flows were considered, employing a blood analog fluid, which mimics both the acoustic and rheological properties of blood. In the core region (| r|/ a < 0.9), an accuracy of 3 cm s-1 was reached. For an accurate estimation of flow, no averaging in time was required, making a beat to beat analysis of pulsating flows possible.

  4. Volume measurement variability in three-dimensional high-frequency ultrasound images of murine liver metastases.

    PubMed

    Wirtzfeld, L A; Graham, K C; Groom, A C; Macdonald, I C; Chambers, A F; Fenster, A; Lacefield, J C

    2006-05-21

    The identification and quantification of tumour volume measurement variability is imperative for proper study design of longitudinal non-invasive imaging of pre-clinical mouse models of cancer. Measurement variability will dictate the minimum detectable volume change, which in turn influences the scheduling of imaging sessions and the interpretation of observed changes in tumour volume. In this paper, variability is quantified for tumour volume measurements from 3D high-frequency ultrasound images of murine liver metastases. Experimental B16F1 liver metastases were analysed in different size ranges including less than 1 mm3, 1-4 mm3, 4-8 mm3 and 8-70 mm3. The intra- and inter-observer repeatability was high over a large range of tumour volumes, but the coefficients of variation (COV) varied over the volume ranges. The minimum and maximum intra-observer COV were 4% and 14% for the 1-4 mm3 and <1 mm3 tumours, respectively. For tumour volumes measured by segmenting parallel planes, the maximum inter-slice distance that maintained acceptable measurement variability increased from 100 to 600 microm as tumour volume increased. Comparison of free breathing versus ventilated animals demonstrated that respiratory motion did not significantly change the measured volume. These results enable design of more efficient imaging studies by using the measured variability to estimate the time required to observe a significant change in tumour volume.

  5. Predictors of Bone Status by Quantitative Ultrasound Measurements in a Mountain Village in Japan

    PubMed Central

    Tajika, Tsuyoshi; Yamamoto, Atsushi; Ohsawa, Takashi; Oya, Noboru; Iizuka, Haku; Takagishi, Kenji

    2016-01-01

    Background: It seems to be important to recognize predictors of bone health condition in Japanese super-aged society. The purpose of this study was to investigate predictors of the speed of sound (SOS) of calcaneus by quantitative ultrasound measurements of mountain village residents. Materials and Methods: Medical examinations were conducted on 214 participants (69 men, 145 women; average age of 63.6 years). Each had completed a self-administered questionnaire including items such as gender, dominant hand, occupation, and history of smoking and drinking alcohol, experience of falls, and the EuroQol-5-dimensions-3-level Japanese version and a 25-question geriatric locomotive function scale proposed by the Japanese Orthopaedic Association. Bilateral grip and key pinch strength were measured. The SOS of calcaneus was assessed using ultrasound bone densitometry. Body composition was measured using a multi-frequency segmental body composition analyzer. Spearman's rank correlation coefficient was calculated to elucidate the relation between SOS and evaluation items. Stepwise logistic regression was used to identify predictors of SOS using the investigated factors as explanatory variables. P values of < .05 were regarded as statistically significant. Results: Significant positive correlation was found between the SOS and dominant and non-dominant grip and key pinch strength and Euro index and QOL VAS in all participants. In stepwise logistic regression, non-dominant key pinch (β coefficient= 0.27, p= .022) and Euro QOL VAS (β coefficient= 0.24, p= .0001) were predictors of calcaneal SOS for all participants. Conclusion: Key pinch strength and Euro QOL VAS assessment might be useful to predict calcaneal SOS in the general population. PMID:27990194

  6. A Protocol for Improved Measurement of Arterial Flow Rate in Preclinical Ultrasound

    PubMed Central

    Kenwright, D. A.; Thomson, A. J. W.; Hadoke, P. W. F.; Anderson, T.; Moran, C. M.; Gray, G. A.; Hoskins, P. R.

    2015-01-01

    Purpose: To describe a protocol for the measurement of blood flow rate in small animals and to compare flow rate measurements against measurements made using a transit time flowmeter. Materials and Methods: Measurements were made in rat and mice using a Visualsonics Vevo 770 scanner. The flow rate in carotid and femoral arteries was calculated from the time-average maximum velocity and vessel diameter. A correction factor was applied to correct for the overestimation of velocity arising from geometric spectral broadening. Invasive flow rate measurements were made using a Transonics system. Results: Measurements were achieved in rat carotid and femoral arteries and in mouse carotid arteries. Image quality in the mouse femoral artery was too poor to obtain diameter measurements. The applied correction factor in practice was 0.71–0.77. The diameter varied by 6–18% during the cardiac cycle. There was no overall difference in the flow rate measured using ultrasound and using transit-time flowmeters. The flow rates were comparable with those previously reported in the literature. There was wide variation in flow rates in the same artery in individual animals. Transit-time measurements were associated with changes of a factor of 10 during the typical 40 min measurement period, associated with probe movement, vessel spasm, vessel kinking and other effects. Conclusion: A protocol for the measurement of flow rate in arteries in small animals has been described and successfully used in rat carotid and femoral arteries and in mouse carotid arteries. The availability of a noninvasive procedure for flow rate measurement avoids the problems with changes in flow associated with an invasive procedure. PMID:27689153

  7. Ultrasound measurement of the corpus callosum and neural development of premature infants.

    PubMed

    Liu, Fang; Cao, Shikao; Liu, Jiaoran; Du, Zhifang; Guo, Zhimei; Ren, Changjun

    2013-09-15

    Length and thickness of 152 corpus callosa were measured in neonates within 24 hours of birth. Using ultrasonic diagnostic equipment with a neonatal brain-specific probe, corpus callosum length and thickness of the genu, body, and splenium were measured on the standard mid-sagittal plane, and the anteroposterior diameter of the genu was measured in the coronal plane. Results showed that corpus callosum length as well as thickness of the genu and splenium increased with tional age and birth weight, while other measures did not. These three factors on the standard mid-sagittal plane are therefore likely to be suitable for real-time evaluation of corpus callosum velopment in premature infants using cranial ultrasound. Further analysis revealed that thickness of the body and splenium and the anteroposterior diameter of the genu were greater in male infants than in female infants, suggesting that there are sex differences in corpus callosum size during the neonatal period. A second set of measurements were taken from 40 premature infants whose gestational age was 34 weeks or less. Corpus callosum measurements were corrected to a gestational age of 40 weeks, and infants were grouped for analysis depending on the outcome of a neonatal behavioral neurological assessment. Compared with infants with a normal neurological assessment, corpus callosum length and genu and splenium thicknesses were less in those with abnormalities, indicating that corpus callosum growth in premature infants is associated with neurobehavioral development during the early extrauterine stage.

  8. Ultrasound-based measurement of liquid-layer thickness: A novel time-domain approach

    NASA Astrophysics Data System (ADS)

    Praher, Bernhard; Steinbichler, Georg

    2017-01-01

    Measuring the thickness of a thin liquid layer between two solid materials is important when the adequate separation of metallic parts by a lubricant film (e.g., in bearings or mechanical seals) is to be assessed. The challenge in using ultrasound-based systems for such measurements is that the signal from the liquid layer is a superposition of multiple reflections. We have developed an algorithm for reconstructing this superimposed signal in the time domain. By comparing simulated and measured signals, the time-of-flight of the ultrasonic pulse in a layer can be estimated. With the longitudinal sound velocity known, the layer thickness can then be calculated. In laboratory measurements, we validate successfully (maximum relative error 4.9%) our algorithm for layer thicknesses ranging from 30 μm to 200 μm. Furthermore, we tested our method in the high-temperature environment of polymer processing by measuring the clearance between screw and barrel in the plasticisation unit of an injection moulding machine. The results of such measurements can indicate (i) the wear status of the tribo-mechanical screw-barrel system and (ii) unsuitable process conditions.

  9. Feasibility of coded vibration in a vibro-ultrasound system for tissue elasticity measurement.

    PubMed

    Zhao, Jinxin; Wang, Yuanyuan; Yu, Jinhua; Li, Tianjie; Zheng, Yong-Ping

    2016-07-01

    The ability of various methods for elasticity measurement and imaging is hampered by the vibration amplitude on biological tissues. Based on the inference that coded excitation will improve the performance of the cross-correlation function of the tissue displacement waves, the idea of exerting encoded external vibration on tested samples for measuring its elasticity is proposed. It was implemented by integrating a programmable vibration generation function into a customized vibro-ultrasound system to generate Barker coded vibration for elasticity measurement. Experiments were conducted on silicone phantoms and porcine muscles. The results showed that coded excitation of the vibration enhanced the accuracy and robustness of the elasticity measurement especially in low signal-to-noise ratio scenarios. In the phantom study, the measured shear modulus values with coded vibration had an R(2 )= 0.993 linear correlation to that of referenced indentation, while for single-cycle pulse the R(2) decreased to 0.987. In porcine muscle study, the coded vibration also obtained a shear modulus value which is more accurate than the single-cycle pulse by 0.16 kPa and 0.33 kPa at two different depths. These results demonstrated the feasibility and potentiality of the coded vibration for enhancing the quality of elasticity measurement and imaging.

  10. 3D thoracoscopic ultrasound volume measurement validation in an ex vivo and in vivo porcine model of lung tumours

    NASA Astrophysics Data System (ADS)

    Hornblower, V. D. M.; Yu, E.; Fenster, A.; Battista, J. J.; Malthaner, R. A.

    2007-01-01

    The purpose of this study was to validate the accuracy and reliability of volume measurements obtained using three-dimensional (3D) thoracoscopic ultrasound (US) imaging. Artificial 'tumours' were created by injecting a liquid agar mixture into spherical moulds of known volume. Once solidified, the 'tumours' were implanted into the lung tissue in both a porcine lung sample ex vivo and a surgical porcine model in vivo. 3D US images were created by mechanically rotating the thoracoscopic ultrasound probe about its long axis while the transducer was maintained in close contact with the tissue. Volume measurements were made by one observer using the ultrasound images and a manual-radial segmentation technique and these were compared with the known volumes of the agar. In vitro measurements had average accuracy and precision of 4.76% and 1.77%, respectively; in vivo measurements had average accuracy and precision of 8.18% and 1.75%, respectively. The 3D thoracoscopic ultrasound can be used to accurately and reproducibly measure 'tumour' volumes both in vivo and ex vivo.

  11. Transrectal ultrasound and magnetic resonance imaging measurement of extramural tumor spread in rectal cancer

    PubMed Central

    Rafaelsen, Søren R; Vagn-Hansen, Chris; Sørensen, Torben; Pløen, John; Jakobsen, Anders

    2012-01-01

    AIM: To evaluate the agreement between transrectal ultrasound (TRUS) and magnetic resonance imaging (MRI) in classification of ≥ T3 rectal tumors. METHODS: From January 2010 to January 2012, 86 consecutive patients with ≥ T3 tumors were included in this study. The mean age of the patients was 66.4 years (range: 26-91 years). The tumors were all ≥ T3 on TRUS. The sub-classification was defined by the penetration of the rectal wall: a: 0 to 1 mm; b: 1-5 mm; c: 6-15; d: > 15 mm. Early tumors as ab (≤ 5 mm) and advanced tumors as cd (> 5 mm). All patients underwent TRUS using a 6.5 MHz transrectal transducer. The MRI was performed with a 1.5 T Philips unit. The TRUS findings were blinded to the radiologist performing the interpretation of the MRI images and measuring the depth of extramural tumor spread. RESULTS: TRUS found 51 patients to have an early ≥ T3 tumors and 35 to have an advanced tumor, whereas MRI categorized 48 as early ≥ T3 tumors and 38 as advanced tumors. No patients with tumors classified as advanced by TRUS were found to be early on MRI. The kappa value in classifying early versus advanced T3 rectal tumors was 0.93 (95% CI: 0.85-1.00). We found a kappa value of 0.74 (95% CI: 0.63-0.86) for the total sub-classification between the two methods. The mean maximal tumor outgrowth measured by TRUS, 5.5 mm ± 5.63 mm and on MRI, 6.3 mm ± 6.18 mm, P = 0.004. In 19 of the 86 patients the following CT scan or surgery revealed distant metastases; of the 51 patients in the ultrasound ab group three (5.9%) had metastases, whereas 16 (45.7%) of 35 in the cd group harbored distant metastases, P = 0.00002. The odds ratio of having distant metastases in the ultrasound cd group compared to the ab group was 13.5 (95% CI: 3.5-51.6), P = 0.00002. The mean maximal ultrasound measured outgrowth was 4.3 mm (95% CI: 3.2-5.5 mm) in patients without distant metastases, while the mean maximal outgrowth was 9.5 mm (95% CI: 6.2-12.8 mm) in the patients with metastases

  12. Measurement of anastomosis geometry in lower extremity bypass grafts with 3-D ultrasound imaging.

    PubMed

    Leotta, Daniel F; Primozich, Jean F; Lowe, Christopher M; Karr, Leni N; Bergelin, Robert O; Beach, Kirk W; Zierler, R Eugene

    2005-10-01

    The attachment sites of lower extremity bypass grafts are known to exhibit a wide range of geometries. Factors that determine the geometry of a given anastomosis include graft material, graft site, native vessel size, graft size and individual patient anatomy. Therefore, it is difficult to specify a standard anastomosis geometry before surgery and difficult to predict the effect of the geometry on long-term graft patency. We have used 3-D ultrasound imaging to study 46 proximal anastomoses of lower limb bypass grafts. We have developed methods to characterize the 3-D geometry of the anastomosis in terms of component sizes and angles. These detailed geometric measurements describe a range of anastomosis geometries and establish standardized parameters across cases that can be used to relate anastomosis geometry to outcome.

  13. Ultrasound: An Unexplored Tool for Blood Flow Visualization and Hemodynamic Measurements

    NASA Astrophysics Data System (ADS)

    Shung, K. Kirk; Paeng, Dong-Guk

    2003-05-01

    Ultrasonic scattering by blood has been studied both theoretically and experimentally for a better characterization of the performance of ultrasonic devices. In the course of these investigations it became clear that ultrasonic scattering from blood is critically related to the hematological and hemodynamic properties of blood, including hematocrit, plasma protein concentration, flow rate, and flow cycle duration, to name a few parameters. An unexpected conclusion from this work is that ultrasound appears to be a totally unexplored and ignored tool for blood flow visualization and hemodynamic measurements. Two unique hemodynamic phenomena have been observed: the black hole, a low echogenic zone in the center stream of a blood vessel, and the collapsing ring, an hyperechogenic ring converging from the vessel periphery toward the center, and eventually collapsing during pulsatile flow. They seemed to be resulted from the spatial and temporal variations of the shear rate and acceleration in the vessel.

  14. Ultrasound Annual, 1983

    SciTech Connect

    Sanders, R.C.; Hill, M.C.

    1983-01-01

    The 1983 edition of Ultrasound Annual features a state-of-the-art assessment of real-time ultrasound technology and a look at improvements in real-time equipment. Chapters discuss important new obstetric applications of ultrasound in measuring fetal umbilical vein blood flow and monitoring ovarian follicular development in vivo and in vitro fertilization. Other topics covered include transrectal prostate ultrasound using a linear array system; ultrasound of the common bile duct; ultrasound in tropical diseases; prenatal diagnosis of craniospinal anomalies; scrotal ultrasonography; opthalmic ultrasonography; and sonography of the upper abdominal venous system.

  15. Prenatal Air Pollution Exposure and Ultrasound Measures of Fetal Growth in Los Angeles, California

    PubMed Central

    Ritz, Beate; Qiu, Jiaheng; Lee, Pei-Chen; Lurmann, Fred; Penfold, Bryan; Weiss, Robert Erin; McConnell, Rob; Arora, Chander; Hobel, Calvin; Wilhelm, Michelle

    2014-01-01

    Background Few previous studies examined the impact of prenatal air pollution exposures on fetal development based on ultrasound measures during pregnancy. Methods In a prospective birth cohort of more than 500 women followed during 1993-1996 in Los Angeles, California, we examined how air pollution impacts fetal growth during pregnancy. Exposure to traffic related air pollution was estimated using CALINE4 air dispersion modeling for nitrogen oxides (NOx) and a land use regression (LUR) model for nitrogen monoxide (NO), nitrogen dioxide (NO2) and NOx. Exposures to carbon monoxide (CO), NO2, ozone (O3) and particles <10 μm in aerodynamic diameter (PM10) were estimated using government monitoring data. We employed a linear mixed effects model to estimate changes in fetal size at approximately 19, 29 and 37 weeks gestation based on ultrasound. Results Exposure to traffic-derived air pollution during 29 to 37 weeks was negatively associated with biparietal diameter at 37 weeks gestation. For each interquartile range (IQR) increase in LUR-based estimates of NO, NO2 and NOx, or freeway CALINE4 NOx we estimated a reduction in biparietal diameter of 0.2-0.3 mm. For women residing within 5 km of a monitoring station, we estimated biparietal diameter reductions of 0.9-1.0 mm per IQR increase in CO and NO2. Effect estimates were robust to adjustment for a number of potential confounders. We did not observe consistent patterns for other growth endpoints we examined. Conclusions Prenatal exposure to traffic-derived pollution was negatively associated with fetal head size measured as biparietal diameter in late pregnancy. PMID:24517884

  16. Plantar fasciitis (fasciosis) treatment outcome study: plantar fascia thickness measured by ultrasound and correlated with patient self-reported improvement.

    PubMed

    Fabrikant, Jerry M; Park, Tae Soon

    2011-06-01

    Ultrasound, well recognized as an effective diagnostic tool, reveals a thickening of the plantar fascia in patients with plantar fasciitis/fasciosis disease. The authors hypothesized that ultrasound would also reveal a decrease in the plantar fascia thickness for patients undergoing treatment for the disease, a hypothesis that, heretofore, had been only tested on a limited number of subjects. They conducted a more statistically significant study that found that clinical treatment with injection and biomechanical correction does indeed diminish plantar fascia thickness as shown on ultrasound. The study also revealed that patients experience the most heightened plantar fascia tenderness toward the end of the day, and improvement in their symptomatic complaints were associated with a reduction in plantar fascia thickness. As a result, the authors conclude that office-based ultrasound can help diagnose and confirm plantar fasciitis/fasciosis through the measurement of the plantar fascia thickness. Because of the advantages of ultrasound--that it is non-invasive with greater patient acceptance, cost effective and radiation-free--the imaging tool should be considered and implemented early in the diagnosis and treatment of plantar fasciitis/fasciosis.

  17. Elective bedside surgery in critically injured patients is safe and cost-effective.

    PubMed Central

    Van Natta, T L; Morris, J A; Eddy, V A; Nunn, C R; Rutherford, E J; Neuzil, D; Jenkins, J M; Bass, J G

    1998-01-01

    OBJECTIVE: The success of elective minimally invasive surgery suggested that this concept could be adapted to the intensive care unit. We hypothesized that minimally invasive surgery could be done safely and cost-effectively at the bedside in critically injured patients. SUMMARY BACKGROUND DATA: This case series, conducted between October 1991 and June 1997 at a Level I trauma center, examined bedside dilatational tracheostomy (BDT), percutaneous endoscopic gastrostomy (PEG), and inferior vena cava (IVC) filter placement. All procedures had been performed in the operating room (OR) before initiation of this study. METHODS: All BDTs and PEGs were performed with intravenous general anesthesia (fentanyl, diazepam, and pancuronium) administered by the surgical team. IVC filters were placed using local anesthesia and conscious sedation. BDTs were done using a Ciaglia set, PEGs were done using a 20 Fr Flexiflow Inverta-PEG kit, and IVC filters were placed percutaneously under ultrasound guidance. Cost difference (delta cost) was defined as the difference in hospital cost and physician charges incurred in the OR as compared to the bedside. RESULTS: Of 16,417 trauma admissions, 379 patients (2%) underwent 472 minimally invasive procedures (272 BDTs, 129 PEGs, 71 IVC filters). There were four major complications (0.8%). Two patients had loss of airway requiring reintubation. Two patients had an intraperitoneal leak from the gastrostomy requiring operative repair. No patient had a major complication after IVC filter placement. Total delta cost was $611,994. When examined independently, the cost was $324,224 for BDT, $164,088 for PEG, and $123,682 for IVC filter. OR use was reduced by 506 hours. CONCLUSIONS: These bedside procedures have minimal complications, eliminate the risk associated with patient transport, reduce cost, improve OR utilization, and should be considered for routine use in the general surgery population. PMID:9605653

  18. New approaches to bedside monitoring in stroke.

    PubMed

    Cyrous, Alma; O'Neal, Brandon; Freeman, W David

    2012-08-01

    Stroke is a common, potentially devastating disease with potential high morbidity and mortality. Recognition at the onset of acute ischemic stroke is pivotal to changing outcomes such as intravenous thrombolysis. Stroke monitoring is a burgeoning field with various methods described and newer devices that aid in detecting acute or worsening ischemia that can lead to improved bedside and intensive care unit management. This article describes various methods of bedside stroke monitoring including newer techniques of intracranial pressure monitoring using the pressure reactivity index and compensatory reserve index to detect changes in autoregulatory states, noninvasive intracranial pressure monitoring, quantitative EEG with alpha-delta ratio, transcranial Doppler, methods of arteriovenous brain oxygen monitoring such as jugular venous oxygen and near-infrared spectroscopy, invasive brain oxygen probes such as Licox™ (brain tissue O₂), cerebral blood flow probe (CBF Hemedex™) and cerebral microdialysis.

  19. Ultrasound Estimates of Loin Muscle Measures and Backfat Thickness Augment Live Animal Prediction of Weights of Subprimal Cuts in Sheep.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of live animal, real-time, B-mode ultrasound (US) estimates of carcass traits as (partial) predictors of carcass composition warrants investigation in sheep of varying genetic and environmental backgrounds. Our objectives were to 1) evaluate US estimates of corresponding carcass measure...

  20. Computerized Tomography-Guided Paracentesis: An Effective Alternative to Bedside Paracentesis?

    PubMed Central

    Gaduputi, Vinaya; Tariq, Hassan; Chandrala, Chaitanya; Sakam, Sailaja; Abbas, Naeem; Chilimuri, Sridhar

    2017-01-01

    Background Ascites remains the most common cause of hospitalization among patients with decompensated cirrhosis. Paracentesis is a relatively safe procedure with low complication rates. Computerized tomography (CT)-guided therapeutic paracentesis could be a safe and effective alternative to unaided or aided (ultrasonogram-guided) bedside paracentesis. In this retrospective study, we aimed to compare the efficacy, safety, and cost-effectiveness of CT-guided paracentesis with bedside paracentesis. Methods The period of study was from 2002 to 2012. All patients with cirrhosis who underwent therapeutic paracentesis were included in the study. These patients were divided into two groups. Group I consisted of patients who underwent CT-guided pigtail catheter insertion with ascitic fluid drainage. Group II consisted of patients who underwent beside therapeutic paracentesis after localization of fluid either by physical examination or sonographic localization. We measured the efficacy of CT-guided paracentesis and bedside paracentesis in terms of volume of fluid removed, length of stay, discharge doses of diuretics (spironolactone and furosemide) and number of days to readmission for symptomatic ascites. We also computed the cost-effectiveness of CT-guided therapeutic paracentesis when compared to a bedside procedure. Fischer exact test was used to analyze the distribution of categorical data and unpaired t-test was used for comparison of means. Results There were a total of 546 unique patients with diagnosed cirrhosis who were admitted to the hospital with symptomatic ascites and underwent therapeutic paracentesis. Two hundred and forty-seven patients underwent CT-guided paracentesis, while 272 patients underwent bedside paracentesis. There was significant inverse correlation between the amount of ascitic fluid removed and total length of stay in the hospital. We found that the volume of fluid removed via a CT-guided pigtail insertion and drainage (2.72 ± 2.02 L) is

  1. Fetal Cerebellar Vermis Circumference Measured by 2-Dimensional Ultrasound Scan: Reference Range, Feasibility and Reproducibility

    PubMed Central

    Spinelli, M.; Sica, C.; Meglio, L. D.; Bolla, D.; Raio, L.; Surbek, D.

    2016-01-01

    Purpose: To provide 2-dimensional ultrasonographic (2D-US) normograms of cerebellar vermis biometry, as well as to evaluate the feasibility and the reproducibility of these measurements in clinical practice. Materials and Methods: A prospective cross-sectional study of 328 normal singleton pregnancies between 18 and 33 weeks of gestation. Measurements of the fetal cerebellar vermis circumference (VC) in the mid-sagittal plane were performed by both a senior and a junior operator using 2D-US. VC as a function of gestational age (GA) was expressed by regression equations. In 24 fetuses 3-dimensional (3D) reconstructed planes were obtained in order to allow comparisons with 2D-US measurements. The agreement between 2D and 3D measurements and the interobserver variability were assessed by interclass correlation coefficients (ICC). Results: Satisfactory vermis measurements could be obtained in 89.9% of cases. The VC (constant= − 12.21; slope=2.447; r=0.887, p<0.0001) correlated linearly with GA. A high degree of consistency was observed between 2D and 3D ultrasound measurements (ICC=0.846 95% CI 679–0.930) as well as between measurements obtained by different examiners (ICC=0.890 95% CI 989–0.945). Conclusion: 2-dimensional ultrasonographic measurements of cerebellar vermis throughout gestation in the mid-sagittal view seem to be feasible and reproducible enough to be potentially used in clinical practice. Such measurements may supply a tool for accurate identification of posterior fossa anomalies, providing the basis for proper counseling and management and of these conditions. PMID:27921094

  2. SOLO: An Interactive Microcomputer-Based Bedside Monitor

    PubMed Central

    Comerchero, Harry; Vernia, Michael; Tivig, Gerhard; Kalinsky, David; Miller, Avram; Rackow, Eric C.; Welch, Jim

    1979-01-01

    An interactive, microcomputer-based bedside monitor is described which facilitates continuous on-line monitoring of a given patient's hemodynamic parameters. Used primarily in shock/trauma and intensive care units, the user has easy access to the patient data via a special interactive keypad and video display integrally a part of the bedside monitor. Phasic waveforms are analyzed in order to derive heart rate, arterial pressure, pulmonary artery pressure, central venous pressure, temperature and respiration rate. Special procedure functions are available to facilitate on-line, interactive measurement of Cardiac Output, Pulmonary Wedge Pressure, and Fluid Input/Output. All continuously monitored parameters, as well as specially acquired parameters, can be graphically trended over the last 72 hours. Medication administration and special event markers can be displayed together with trends to correlate such actions with changes in the patient status. The SOLO MONITOR is currently implemented on a Digital Equipment Corporation LSI-11 with 28K words of memory and is commercially available through Mennen Medical Inc. ImagesFig. 1Fig. 11

  3. An analysis of temperature-induced errors for an ultrasound distance measuring system. M. S. Thesis

    NASA Technical Reports Server (NTRS)

    Wenger, David Paul

    1991-01-01

    The presentation of research is provided in the following five chapters. Chapter 2 presents the necessary background information and definitions for general work with ultrasound and acoustics. It also discusses the basis for errors in the slant range measurements. Chapter 3 presents a method of problem solution and an analysis of the sensitivity of the equations to slant range measurement errors. It also presents various methods by which the error in the slant range measurements can be reduced to improve overall measurement accuracy. Chapter 4 provides a description of a type of experiment used to test the analytical solution and provides a discussion of its results. Chapter 5 discusses the setup of a prototype collision avoidance system, discusses its accuracy, and demonstrates various methods of improving the accuracy along with the improvements' ramifications. Finally, Chapter 6 provides a summary of the work and a discussion of conclusions drawn from it. Additionally, suggestions for further research are made to improve upon what has been presented here.

  4. Exploratory Analysis of Carbon Dioxide Levels, Ultrasound and Optical Coherence Tomography Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Schaefer, C.; Young, M.; Mason, S.; Coble, C.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Patel, N.; Gibson, C.; Alexander, D.; Van Baalen, M.

    2017-01-01

    Enhanced screening for the Visual Impairment/Intracranial Pressure (VIIP) syndrome has been implemented to better characterize the ocular and vision changes observed in some long-duration crewmembers. This includes implementation of in-flight ultrasound in 2010 and optical coherence tomography (OCT) in 2013. Potential risk factors for VIIP include cardiovascular health, diet, anatomical and genetic factors, and environmental conditions. Carbon dioxide (CO2), a potent vasodilator, is chronically elevated on the International Space Station (ISS) relative to ambient levels on Earth, and is a plausible risk factor for VIIP. In an effort to understand the possible associations between CO2 and VIIP, this study explores the relationship of ambient CO2 levels on ISS compared to inflight ultrasound and OCT measures of the eye obtained from ISS crewmembers. CO2 measurements were aggregated from Operational Data Reduction Complex and Node 3 major constituent analyzers (MCAs) on ISS or from sensors located in the European Columbus module, as available. CO2 levels in the periods between each ultrasound and OCT session are summarized using timeseries metrics, including time-weighted means and variances. Partial least squares regression analyses are used to quantify the complex relationship between specific ultrasound and OCT measures and the CO2 metrics simulataneously. These analyses will enhance our understanding of the possible associations between CO2 levels and structural changes to the eye which will in turn inform future analysis of inflight VIIP data.

  5. A real-time measure of cavitation induced tissue disruption by ultrasound imaging backscatter reduction.

    PubMed

    Hall, Timothy L; Fowlkes, J Brian; Cain, Charles A

    2007-03-01

    A feedback method for obtaining real-time information on the mechanical disruption of tissue through ultrasound cavitation is presented. This method is based on a substantial reduction in ultrasound imaging backscatter from the target volume as the tissue structure is broken down. Ex-vivo samples of porcine liver were exposed to successive high-intensity ultrasound pulses at a low duty cycle to induce mechanical disruption of tissue parenchyma through cavitation (referred to as histotripsy). At the conclusion of treatment, B-scan imaging backscatter was observed to have decreased by 22.4 +/- 2.3 dB in the target location. Treated samples of tissue were found to contain disrupted tissue corresponding to the imaged hypoechoic volume with no remaining discernable structure and a sharp boundary. The observed, substantial backscatter reduction may be an effective feedback mechanism for assessing treatment efficacy in ultrasound surgery using pulsed ultrasound to create cavitation.

  6. Serial Measurements of Splanchnic Vein Diameters in Rats Using High-Frequency Ultrasound

    PubMed Central

    Seitz, Bridget M.; Krieger-Burke, Teresa; Fink, Gregory D.; Watts, Stephanie W.

    2016-01-01

    The purpose of this study was to investigate serial ultrasound imaging in rats as a fully non-invasive method to (1) quantify the diameters of splanchnic veins in real time as an indirect surrogate for the capacitance function of those veins, and (2) assess the effects of drugs on venous dimensions. A 21 MHz probe was used on anesthetized male Sprague–Dawley rats to collect images containing the portal vein (PV), superior mesenteric vein (SMV), abdominal inferior vena cava (IVC), and splenic vein (SpV; used as a landmark in timed studies) and the abdominal aorta (AA). Stable landmarks were established that allowed reproducible quantification of cross-sectional diameters within an animal. The average diameters of vessels measured every 5 min over 45 min remained within 0.75 ± 0.15% (PV), 0.2 ± 0.09% (SMV), 0.5 ± 0.12% (IVC), and 0.38 ± 0.06% (AA) of baseline (PV: 2.0 ± 0.12 mm; SMV: 1.7 ± 0.04 mm; IVC: 3.2 ± 0.1 mm; AA: 2.3 ± 0.14 mm). The maximal effects of the vasodilator sodium nitroprusside (SNP; 2 mg/kg, i.v. bolus) on venous diameters were determined 5 min post SNP bolus; the diameters of all noted veins were significantly increased by SNP, while mean arterial pressure (MAP) decreased 29 ± 4 mmHg. By contrast, administration of the venoconstrictor sarafotoxin (S6c; 5 ng/kg, i.v. bolus) significantly decreased PV and SpV, but not IVC, SMV, or AA, diameters 5 min post S6c bolus; MAP increased by 6 ± 2 mmHg. In order to determine if resting splanchnic vein diameters were stable over much longer periods of time, vessel diameters were measured every 2 weeks for 8 weeks. Measurements were found to be highly reproducible within animals over this time period. Finally, to evaluate the utility of vein imaging in a chronic condition, images were acquired from 4-week deoxycorticosterone acetate salt (DOCA-salt) hypertensive and normotensive (SHAM) control rats. All vessel diameters increased from baseline while MAP increased (67 ± 4 mmHg) in DOCA-salt rats

  7. Prenatal Exposure to NO2 and Ultrasound Measures of Fetal Growth in the Spanish INMA Cohort

    PubMed Central

    Iñiguez, Carmen; Esplugues, Ana; Sunyer, Jordi; Basterrechea, Mikel; Fernández-Somoano, Ana; Costa, Olga; Estarlich, Marisa; Aguilera, Inmaculada; Lertxundi, Aitana; Tardón, Adonina; Guxens, Mònica; Murcia, Mario; Lopez-Espinosa, Maria-Jose; Ballester, Ferran

    2015-01-01

    Background Air pollution exposure during pregnancy has been associated with impaired fetal growth. However, few studies have measured fetal biometry longitudinally, remaining unclear as to whether there are windows of special vulnerability. Objective The aim was to investigate the impact of nitrogen dioxide (NO2) exposure on fetal and neonatal biometry in the Spanish INMA study. Methods Biparietal diameter (BPD), femur length (FL), abdominal circumference (AC), and estimated fetal weight (EFW) were evaluated for up to 2,478 fetuses in each trimester of pregnancy. Size at 12, 20, and 34 weeks of gestation and growth between these points, as well as anthropometry at birth, were assessed by SD scores derived using cohort-specific growth curves. Temporally adjusted land-use regression was used to estimate exposure to NO2 at home addresses for up to 2,415 fetuses. Associations were investigated by linear regression in each cohort and subsequent meta-analysis. Results A 10-μg/m3 increase in average exposure to NO2 during weeks 0–12 was associated with reduced growth at weeks 0–12 in AC (–2.1%; 95% CI: –3.7, –0.6) and EFW (–1.6%; 95% CI: –3.0, –0.3). The same exposure was inversely associated with reduced growth at weeks 20–34 in BPD (–2.6%; 95% CI: –3.9, –1.2), AC (–1.8%; 95% CI: –3.3, –0.2), and EFW (–2.1%; 95% CI: –3.7, –0.2). A less consistent pattern of association was observed for FL. The negative association of this exposure with BPD and EFW was significantly stronger in smoking versus nonsmoking mothers. Conclusions Maternal exposure to NO2 in early pregnancy was associated with reduced fetal growth based on ultrasound measures of growth during pregnancy and measures of size at birth. Citation Iñiguez C, Esplugues A, Sunyer J, Basterrechea M, Fernández-Somoano A, Costa O, Estarlich M, Aguilera I, Lertxundi A, Tardón A, Guxens M, Murcia M, Lopez-Espinosa MJ, Ballester F, on behalf of the INMA Project. 2016. Prenatal exposure

  8. Measurement of viscoelastic properties of in vivo swine myocardium using Lamb Wave Dispersion Ultrasound Vibrometry (LDUV)

    PubMed Central

    Urban, Matthew W.; Pislaru, Cristina; Nenadic, Ivan Z.; Kinnick, Randall R.; Greenleaf, James F.

    2012-01-01

    Viscoelastic properties of the myocardium are important for normal cardiac function and may be altered by disease. Thus, quantification of these properties may aid with evaluation of the health of the heart. Lamb Wave Dispersion Ultrasound Vibrometry (LDUV) is a shear wave-based method that uses wave velocity dispersion to measure the underlying viscoelastic material properties of soft tissue with plate-like geometries. We tested this method in eight pigs in an open-chest preparation. A mechanical actuator was used to create harmonic, propagating mechanical waves in the myocardial wall. The motion was tracked using a high frame rate acquisition sequence, typically 2500 Hz. The velocities of wave propagation were measured over the 50–400 Hz frequency range in 50 Hz increments. Data were acquired over several cardiac cycles. Dispersion curves were fit with a viscoelastic, anti-symmetric Lamb wave model to obtain estimates of the shear elasticity, μ1, and viscosity, μ2 as defined by the Kelvin-Voigt rheological model. The sensitivity of the Lamb wave model was also studied using simulated data. We demonstrated that wave velocity measurements and Lamb wave theory allow one to estimate the variation of viscoelastic moduli of the myocardial walls in vivo throughout the course of the cardiac cycle. PMID:23060325

  9. Towards an Optimal Interest Point Detector for Measurements in Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Zukal, Martin; Beneš, Radek; Číka, Petr; Říha, Kamil

    2013-12-01

    This paper focuses on the comparison of different interest point detectors and their utilization for measurements in ultrasound (US) images. Certain medical examinations are based on speckle tracking which strongly relies on features that can be reliably tracked frame to frame. Only significant features (interest points) resistant to noise and brightness changes within US images are suitable for accurate long-lasting tracking. We compare three interest point detectors - Harris-Laplace, Difference of Gaussian (DoG) and Fast Hessian - and identify the most suitable one for use in US images on the basis of an objective criterion. Repeatability rate is assumed to be an objective quality measure for comparison. We have measured repeatability in images corrupted by different types of noise (speckle noise, Gaussian noise) and for changes in brightness. The Harris-Laplace detector outperformed its competitors and seems to be a sound option when choosing a suitable interest point detector for US images. However, it has to be noted that Fast Hessian and DoG detectors achieved better results in terms of processing speed.

  10. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.

    PubMed

    Zhou, Yufeng

    2015-03-01

    The acoustic power of high-intensity focused ultrasound (HIFU) is an important parameter that should be measured prior to each treatment to guarantee effective and safe outcomes. A new calibration technique was developed that involves estimating the pressure distribution, calculating the acoustic power using an underwater pressure blast sensor, and compensating the contribution of harmonics to the acoustic power. The output of a clinical extracorporeal HIFU system (center frequency of ~1 MHz, p+ = 2.5-57.2 MPa, p(-) = -1.8 to -13.9 MPa, I(SPPA) = 513-22,940 W/cm(2), -6 dB size of 1.6 × 10 mm: lateral × axial) was measured using this approach and then compared with that obtained using a radiation force balance. Similarities were found between each method at acoustic power ranging from 18.2 W to 912 W with an electrical-to-acoustic conversion efficiency of ~42%. The proposed method has advantages of low weight, smaller size, high sensitivity, quick response, high signal-to-noise ratio (especially at low power output), robust performance, and easy operation of HIFU exposimetry measurement.

  11. Reliability and Validity of Ultrasound Cross Sectional Area Measurements for Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Scott, Jessica M.; Martin, David S.; Cunningham, David; Matz, Timothy; Caine, Timothy; Hackney, Kyle J.; Arzeno, Natalia; Ploutz-Snyder, Lori

    2010-01-01

    Limb muscle atrophy and the accompanying decline in function can adversely affect the performance of astronauts during mission-related activities and upon re-ambulation in a gravitational environment. Previous characterization of space flight-induced muscle atrophy has been performed using pre and post flight magnetic resonance imaging (MRI). In addition to being costly and time consuming, MRI is an impractical methodology for assessing in-flight changes in muscle size. Given the mobility of ultrasound (US) equipment, it may be more feasible to evaluate changes in muscle size using this technique. PURPOSE: To examine the reliability and validity of using a customized template to acquire panoramic ultrasound (US) images for determining quadriceps and gastrocnemius anatomical cross sectional area (CSA). METHODS: Vastus lateralis (VL), rectus femoris (RF), medial gastrocnemius (MG), and lateral gastrocnemius (LG) CSA were assessed in 10 healthy individuals (36+/-2 yrs) using US and MRI. Panoramic US images were acquired by 2 sonographers using a customized template placed on the thigh and calf and analyzed by the same 2 sonographers (CX50 Philips). MRI images of the leg were acquired while subjects were supine in a 1.5T scanner (Signa Horizon LX, General Electric) and were analyzed by 3 trained investigators. The average of the 2 US and 3 MRI values were used for validity analysis. RESULTS: High inter-experimenter reliability was found for both the US template and MRI analysis as coefficients of variation across muscles ranged from 2.4 to 4.1% and 2.8 to 3.8%, respectively. Significant correlations were found between US and MRI CSA measures (VL, r = 0.85; RF, r = 0.60; MG, r = 0.86; LG, r = 0.73; p < 0.05). Furthermore, the standard error of measurement between US and MRI ranged from 0.91 to 2.09 sq cm with high limits of agreement analyzed by Bland-Altman plots. However, there were significant differences between absolute values of MRI and US for all muscles

  12. [Value of lung ultrasound in emergency and intensive care medicine].

    PubMed

    Michels, G; Breitkreutz, R; Pfister, R

    2014-11-01

    Lung ultrasound has traditionally been limited to evaluation of pleural effusion and as guidance for thoracocentesis. However, in recent years, thoracic ultrasound became an increasingly valuable diagnostic tool in emergency and intensive care medicine. The relative easy use of bedside examination made chest ultrasonography diagnostic valuable additional tool to be used in any clinical acute context. Various pulmonary diseases like pleural effusion, pulmonary-venous congestion und edema, pneumonia and pneumothorax can be detected very fast under emergency conditions.

  13. Abdominal Ultrasound

    MedlinePlus

    ... Ultrasound - Abdomen Ultrasound imaging of the abdomen uses sound waves to produce pictures of the structures within ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  14. Hip Ultrasound

    MedlinePlus

    ... Index A-Z Hip Ultrasound Hip ultrasound uses sound waves to produce pictures of muscles, tendons, ligaments, ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  15. Obstetrical Ultrasound

    MedlinePlus

    ... Index A-Z Obstetric Ultrasound Obstetric ultrasound uses sound waves to produce pictures of a baby (embryo ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  16. Ultrasound imaging system for measuring stiffness variation in the fingerpad skin in vivo

    NASA Astrophysics Data System (ADS)

    Wu, Wan-Chen; Raju, Balasundar I.; Srinivasan, Mandayam A.

    2005-04-01

    An elasticity imaging system was developed for measuring the stiffness variation at different depths of the human fingerpad skin in vivo. In this system, ultrasonic backscatter microscopy (UBM) with a single high frequency (28MHz) transducer was employed to obtain data on tissue heterogeneity at high axial resolution (~25 mm). The dorsal side of the finger was fixed on a manually controlled vertical stage and an acrylic indentor was applied to the fingerpad. A slit cut vertically through the indentor at the center and a piece of transparency sheet attached to the bottom allowed most of the ultrasound power to pass though while maintaining a flat surface in contact with the skin. With the assumption that the skin can be modeled as a semi-infinite layered structure, only data from a single A-line was obtained for strain analysis. The data at continuous indentation steps were cross-correlated to calculate the displacement at different spots along the depth. The de-correlation at certain regions was resolved by removing the data points with lower correlation coefficients, and curve fitting was applied to overcome the lack of resolution due to sampling. The fingerpads of 10 human subjects were tested in vivo and a gelatin phantom was made and tested for comparison. The results showed that even though some data were degraded due to the hypoechoic nature of the subcutaneous fat, the axial strain profile through the skin thickness (up to 3mm in depth) could be extracted as a measure of the stiffness variation.

  17. Quantitative head ultrasound measurements to determine thresholds for preterm neonates requiring interventional therapies following intraventricular hemorrhage

    NASA Astrophysics Data System (ADS)

    Kishimoto, Jessica; Fenster, Aaron; Salehi, Fateme; Romano, Walter; Lee, David S. C.; de Ribaupierre, Sandrine

    2016-04-01

    Dilation of the cerebral ventricles is a common condition in preterm neonates with intraventricular hemorrhage (IVH). This post hemorrhagic ventricle dilation (PHVD) can lead to lifelong neurological impairment through ischemic injury due to increased intracranial pressure and without treatment, can lead to death. Clinically, 2D ultrasound (US) through the fontanelles ('soft spots') of the patients are serially acquired to monitor the progression of the ventricle dilation. These images are used to determine when interventional therapies such as needle aspiration of the built up cerebrospinal fluid (CSF) ('ventricle tap', VT) might be indicated for a patient; however, quantitative measurements of the growth of the ventricles are often not performed. There is no consensus on when a neonate with PHVD should have an intervention and often interventions are performed after the potential for brain damage is quite high. Previously we have developed and validated a 3D US system to monitor the progression of ventricle volumes (VV) in IVH patients. We will describe the potential utility of quantitative 2D and 3D US to monitor and manage PHVD in neonates. Specifically, we will look to determine image-based measurement thresholds for patients who will require VT in comparison to patients with PHVD who resolve without intervention. Additionally, since many patients who have an initial VT will require subsequent interventions, we look at the potential for US to determine which PHVD patients will require additional VT after the initial one has been performed.

  18. [Ultrasound and regional anaesthesia].

    PubMed

    Delaunay, L; Plantet, F; Jochum, D

    2009-02-01

    The use of ultrasound is the latest major evolution in regional anaesthesia. Review of available literature shows significant changes in clinical practice. Ultrasound guidance allows the visualization of anatomical variations or unsuspected intraneural injections, reduces the volume of local anaesthetic injections and confirms correct local anaesthetic distribution or catheter placement. No study has found a statistical difference in success rates and safety because all studies were underpowered. However, the ability to visualize an invasive procedure that has been performed blindly in the past is an undeniable progress in terms of safety. The necessity to be familiar with the machine and the learning curve can be repulsive. The aim of this article is to demystify ultrasound guidance by explaining the fundamentals of the clinical use of ultrasound. With the help of different chapters, the authors explain the different adjustments and possible artefacts and give easy solutions for the use of bedside ultrasound. Training is essential and can be performed on manikins or training phantom. For each region the main anatomical landmarks are explained. One must be familiar with several imaging techniques: short axis (transverse) or long axis (longitudinal) nerve imaging, in-plane or out-of-plane imaging and hydrolocalization. Viewing the needle's tip position during its progression remains the main safety endpoint. Therefore, electrical nerve stimulation and ultrasound guidance should be combined, especially for beginners, to confirm proximity to neural structures and to help in case of difficulty. Optimizing safety and clinical results must remain a key priority in regional anaesthesia. Finally, specific regulations concerning the transducers are described. Paediatric specificities are also mentioned.

  19. Application of the acousto-optic effect to pressure measurements in ultrasound fields in water using a laser vibrometer

    NASA Astrophysics Data System (ADS)

    Buick, J. M.; Cosgrove, J. A.; Douissard, P.-A.; Greated, C. A.; Gilabert, B.

    2004-10-01

    A non-intrusive measuring technique, applied to sensing and measuring acoustic waves at ultrasonic frequencies is considered. The method is optically based and so does not interfere with the ultrasound field. The measurement procedure relies on the acousto-optic effect, that is the change in refractive index which occurs with changing pressure in the ultrasound field. This change in refractive index is detected through the change in the path length of a laser beam propagating through the region of interest. Typically these changes are small corresponding to a physical change of the order of 10-6 m. Fourier analysis is used to separate the component of the signal corresponding to the pressure variation from background noise and vibrations which can be dominant. Application of the technique is illustrated for an underwater ultrasound transducer. Measurements are made using the optical technique and compared to measurements taken with a hydrophone. The effectiveness of the optical measuring technique is discussed. It is shown that the laser vibrometer produces a good estimation of the mean beam pressure provided an estimation of the beam width is available, a restriction which is often satisfied; and the acoustic field can be assumed to be approximately constant across the beam.

  20. Incentive spirometer for bedside studies.

    PubMed

    Scheinhorn, D J; Warner, W; Ellis, E

    1982-06-01

    We evaluated an incentive spirometer (IS) for monitoring changes in lung function in hospitalized patients. Accuracy and reproducibility of IS measurements of known volumes were adequate (r = 0.87). Flow dependency was demonstrated but was not significant in the clinically useful range. Reproducibility of IS measurements in five normal subjects was good, with a small training effect uncovered. In 15 patients with asthma and chronic obstructive lung disease, change in IS values closely correlated with spirometrically measured changes in volume and flows (best correlation: IS versus FEV1/FVC%, r = 0.98) and in peak flow. The performance of the IS as tested and its availability in most hospitals outweigh its limitations. We advocate its use as an adjunct in monitoring progress of hospitalized patients with obstructive lung disease.

  1. Bench-to-bedside review: An approach to hemodynamic monitoring--Guyton at the bedside.

    PubMed

    Magder, Sheldon

    2012-10-29

    Hemodynamic monitoring is used to identify deviations from hemodynamic goals and to assess responses to therapy. To accomplish these goals one must understand how the circulation is regulated. In this review I begin with an historical review of the work of Arthur Guyton and his conceptual understanding of the circulation and then present an approach by which Guyton's concepts can be applied at the bedside. Guyton argued that cardiac output and central venous pressure are determined by the interaction of two functions: cardiac function, which is determined by cardiac performance; and a return function, which is determined by the return of blood to the heart. This means that changes in cardiac output are dependent upon changes of one of these two functions or of both. I start with an approach based on the approximation that blood pressure is determined by the product of cardiac output and systemic vascular resistance and that cardiac output is determined by cardiac function and venous return. A fall in blood pressure with no change in or a rise in cardiac output indicates that a decrease in vascular resistance is the dominant factor. If the fall in blood pressure is due to a fall in cardiac output then the role of a change in the return function and cardiac function can be separated by the patterns of changes in central venous pressure and cardiac output. Measurement of cardiac output is a central component to this approach but until recently it was not easy to obtain and was estimated from surrogates. However, there are now a number of non-invasive devices that can give measures of cardiac output and permit the use of physiological principles to more rapidly appreciate the primary pathophysiology behind hemodynamic abnormalities and to provide directed therapy.

  2. Comparison of grey scale median (GSM) measurement in ultrasound images of human carotid plaques using two different softwares.

    PubMed

    Östling, Gerd; Persson, Margaretha; Hedblad, Bo; Gonçalves, Isabel

    2013-11-01

    Grey scale median (GSM) measured on ultrasound images of carotid plaques has been used for several years now in research to find the vulnerable plaque. Centres have used different software and also different methods for GSM measurement. This has resulted in a wide range of GSM values and cut-off values for the detection of the vulnerable plaque. The aim of this study was to compare the values obtained with two different softwares, using different standardization methods, for the measurement of GSM on ultrasound images of carotid human plaques. GSM was measured with Adobe Photoshop(®) and with Artery Measurement System (AMS) on duplex ultrasound images of 100 consecutive medium- to large-sized carotid plaques of the Beta-blocker Cholesterol-lowering Asymptomatic Plaque Study (BCAPS). The mean values of GSM were 35·2 ± 19·3 and 55·8 ± 22·5 for Adobe Photoshop(®) and AMS, respectively. Mean difference was 20·45 (95% CI: 19·17-21·73). Although the absolute values of GSM differed, the agreement between the two measurements was good, correlation coefficient 0·95. A chi-square test revealed a kappa value of 0·68 when studying quartiles of GSM. The intra-observer variability was 1·9% for AMS and 2·5% for Adobe Photoshop. The difference between softwares and standardization methods must be taken into consideration when comparing studies. To avoid these problems, researcher should come to a consensus regarding software and standardization method for GSM measurement on ultrasound images of plaque in the arteries.

  3. Implementing the Bedside Paediatric Early Warning System in a community hospital: A prospective observational study

    PubMed Central

    Parshuram, Christopher S; Bayliss, Ann; Reimer, Janette; Middaugh, Kristen; Blanchard, Nadeene

    2011-01-01

    BACKGROUND: Late transfer of children with critical illness from community hospitals undermines the advantages of community-based care. It was hypothesized that implementation of the Bedside Paediatric Early Warning System (Bedside PEWS) would reduce late transfers. METHODS: A prospective before-and-after study was performed in a community hospital 22-bed inpatient paediatric ward. The primary outcome, significant clinical deterioration, was a composite measure of circulatory and respiratory support before transfer. Secondary outcomes were stat calls and resuscitation team calls, paediatrician workload and perceptions of frontline staff. RESULTS: Care was evaluated for 842 patient-days before and 2350 patient-days after implementation. The median inpatient census was 13. Implementation of the Bedside PEWS was associated with fewer stat calls to paediatricians (22.6 versus 5.1 per 1000 patient-days; P<0.0001), fewer significant clinical deterioration events (2.4 versus 0.43 per 1000 patient-days; P=0.013), reduced apprehension when calling the physician and no change in paediatrician workload. DISCUSSION: Implementation of the Bedside PEWS is feasible and safe, and may improve clinical outcomes. PMID:22379384

  4. Exploratory Analysis of Carbon Dioxide Levels, Ultrasound and Optical Coherence Tomography Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Schaefer, C.; Coble, C.; Mason, S.; Young, M.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Patel, N.; Gibson, C.; Alexander, D.; Van Baalen, M.

    2017-01-01

    Carbon dioxide (CO2) levels on board the International Space Station (ISS) have typically averaged 2.3 to 5.3 mmHg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow (CBF). Increased CBF leads to elevated intracranial pressure (ICP), a factor leading to visual disturbances, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve and optical coherence tomography (OCT) provide surrogate measurements of ICP; in-flight measurements of both were implemented as enhanced screening tools for the Visual Impairment/Intracranial Pressure (VIIP) syndrome. This analysis examines the relationships between ambient CO2 levels on ISS, ultrasound and OCT measures of the eye in an effort to understand how CO2 may possibly be associated with VIIP and to inform future analysis of in-flight VIIP data.

  5. Manual planimetric measurement of carotid plaque volume using three-dimensional ultrasound imaging

    SciTech Connect

    Landry, Anthony; Ainsworth, Craig; Blake, Chris; Spence, J. David; Fenster, Aaron

    2007-04-15

    We investigated the utility of three manual planimetric methods to quantify carotid plaque volume. A single observer measured 15 individual plaques from 15 three-dimensional (3D) ultrasound (3D US) images of patients ten times each using three different planimetric approaches. Individual plaque volumes were measured (range: 32.6-597.1 mm{sup 3}) using a standard planimetric approach (M1) whereby a plaque end was identified and sequential contours were measured. The same plaques were measured using a second approach (M2), whereby plaque ends were first identified and the 3D US image of the plaque was then subdivided into equal intervals. A third method (M3) was used to measure total plaque burden (range: 165.1-1080.0 mm{sup 3}) in a region ({+-}1.5 cm) relative to the carotid bifurcation. M1 systematically underestimated individual plaque volume compared to M2 (V{sub 2}=V{sub 1}+14.0 mm{sup 3}, r=0.99, p=0.006) due to a difference in the mean plaque length measured. Coefficients of variance (CV) for M1 and M2 decrease with increasing plaque volume, with M2 results less than M1. Root mean square difference between experimental and theoretical CV for M2 was 3.2%. The standard deviation in the identification of the transverse location of the carotid bifurcation was 0.56 mm. CVs for plaque burden measured using M3 ranged from 1.2% to 7.6% and were less than CVs determined for individual plaque volumes of the same volume. The utility of M3 was demonstrated by measuring carotid plaque burden and volume change over a period of 3 months in three patients. In conclusion, M2 was determined to be a more superior measurement technique than M1 to measure individual plaque volume. Furthermore, we demonstrated the utility of M3 to quantify regional plaque burden and to quantify change in plaque volume.

  6. Measurement of cervical range of motion pattern during cyclic neck movement by an ultrasound-based motion system.

    PubMed

    Wang, Shwu-Fen; Teng, Chin-Chih; Lin, Kwan-Hwa

    2005-02-01

    Goniometers and radiographic imaging have been used to measure active or passive cervical range of motion (ROM) in asymptomatic adults. However, the ultrasound-based coordinate measuring system (CMS) can measure continuous neck motion in three dimensions. The aims of this investigation are to evaluate the reliability and validity of ultrasound-based CMS (Zebris, CMS 70P), and to compare the cervical ROM patterns of asymptomatic young and middle-aged adults during continuous neck motions in the three cardinal planes. The ROM reciprocal ratio was defined as the ratio of the ROM from neutral position in one direction versus that in the opposite direction at the same cardinal plane. This study demonstrated the high test-retest reliability and validity of CMS during cervical motion in Chinese participants. Middle-aged adults exhibit reduced ROM ratios in the sagittal and frontal planes. The advantages and limitations of the CMS measurement tool and the potential future applications are documented. The measurement of neck motion pattern by ultrasound-based CMS may provide information on the management of neck dysfunction during functional movements.

  7. Detection and measurement of fetal abdominal contour in ultrasound images via local phase information and iterative randomized Hough transform.

    PubMed

    Wang, Weiming; Qin, Jing; Zhu, Lei; Ni, Dong; Chui, Yim-Pan; Heng, Pheng-Ann

    2014-01-01

    Due to the characteristic artifacts of ultrasound images, e.g., speckle noise, shadows and intensity inhomogeneity, traditional intensity-based methods usually have limited success on the segmentation of fetal abdominal contour. This paper presents a novel approach to detect and measure the abdominal contour from fetal ultrasound images in two steps. First, a local phase-based measure called multiscale feature asymmetry (MSFA) is de ned from the monogenic signal to detect the boundaries of fetal abdomen. The MSFA measure is intensity invariant and provides an absolute measurement for the signi cance of features in the image. Second, in order to detect the ellipse that ts to the abdominal contour, the iterative randomized Hough transform is employed to exclude the interferences of the inner boundaries, after which the detected ellipse gradually converges to the outer boundaries of the abdomen. Experimental results in clinical ultrasound images demonstrate the high agreement between our approach and manual approach on the measurement of abdominal circumference (mean sign difference is 0.42% and correlation coef cient is 0.9973), which indicates that the proposed approach can be used as a reliable and accurate tool for obstetrical care and diagnosis.

  8. Noninvasive measurement of acoustic field inside mother's uterus generated by ultrasound scanning

    NASA Astrophysics Data System (ADS)

    Antonets, V. A.; Kazakov, V. V.

    2015-07-01

    Sounds in the audible range arising in mother's uterus during conventional ultrasound scanning were recorded noninvasively for the first time. It was found that their level is comparable with the level of spoken language.

  9. Correlation of preoperative MRI and intraoperative 3D ultrasound to measure brain tissue shift

    NASA Astrophysics Data System (ADS)

    Gobbi, David G.; Lee, Belinda K. H.; Peters, Terence M.

    2001-05-01

    B-Mode ultrasound is often used during neurosurgery to provide intra-operative images of the brain though a craniotomy, but the use of 3D ultrasound during surgery is still in its infancy. We have developed a system that provides real-time freehand 3D ultrasound reconstruction at a reduced resolution. The reconstruction proceeds incrementally and the 3D image is overlayed, via a computer, on a pre-operative 3D MRI scan. This provides the operator with the necessary feedback to maintain a constant freehand sweep-rate, and also ensures that the sweep covers the desired anatomical volume. All of the ultrasound video frames are buffered, and a full-resolution, compounded reconstruction proceeds once the manual sweep is complete. We have also developed tools for manual tagging of homologous landmarks in the 3D MRI and 3D ultrasound volumes that use a piecewise cubic approximation of thin-plate spline interpolation to achieve interactive nonlinear registration and warping of the MRI volume to the ultrasound volume: Each time a homologous point-pair is identified by the use, the image of the warped MRI is updated on the computer screen after less than 0.5 s.

  10. Bedside Diagnosis in the Intensive Care Unit. Is Looking Overlooked?

    PubMed

    Metkus, Thomas S; Kim, Bo Soo

    2015-10-01

    Bedside diagnosis, including but not limited to the physical examination, can be lifesaving in the setting of critical illness and is a core competency in both medical school and at the postgraduate level. Data as to the clinical usefulness of bedside diagnosis in the modern intensive care unit (ICU) is sparse, however, and there are no clinical guidelines addressing performance, interpretation, and usefulness of the bedside assessment in critically ill patients. Bedside assessment and physical examination are used in a heterogeneous manner across institutions and even across ICUs within the same institution, which has implications for medical education, patient care, and the overuse/misuse of diagnostic testing. In this commentary, we review the existing data addressing bedside diagnosis in the ICU, describe various models of bedside assessment use in the ICU based on our clinical practice and on the limited evidence base, share our practical "checklist-based" approach to bedside assessment in the critically ill patient, and advocate for more formal study of physical examination and bedside assessment in the ICU to enhance clinical practice.

  11. Bedside teaching in medical education: a literature review.

    PubMed

    Peters, Max; Ten Cate, Olle

    2014-04-01

    Bedside teaching is seen as one of the most important modalities in teaching a variety of skills important for the medical profession, but its use is declining. A literature review was conducted to reveal its strengths, the causes of its decline and future perspectives, the evidence with regard to learning clinical skills and patient/student/teacher satisfaction. PubMed, Embase and the Cochrane library were systematically searched with regard to terms related to bedside teaching. Articles regarding the above-mentioned subjects were included. Bedside teaching has shown to improve certain clinical diagnostic skills in medical students and residents. Patients, students/residents and teachers all seem to favour bedside teaching, for varying reasons. Despite this, the practice of bedside teaching is declining. Reasons to explain this decline include the increased patient turnover in hospitals, the assumed violation of patients' privacy and an increased reliance on technology in the diagnostic process. Solutions vary from increasingly using residents and interns as bedside teachers to actively educating staff members regarding the importance of bedside teaching and providing them with practical essentials. Impediments to bedside teaching need to be overcome if this teaching modality is to remain a valuable educational method for durable clinical skills.

  12. Stable and Unstable Chromosome Aberrations Measured after Occupational Exposure to Ionizing Radiation and Ultrasound

    PubMed Central

    Fučić, Aleksandra; Želježić, Davor; Kašuba, Vilena; Kopjar, Nevenka; Rozgaj, Ružica; Lasan, Ružica; Mijić, August; Hitrec, Vlasta; Lucas, Joe Nathan

    2007-01-01

    Aim To evaluate chromosome aberration and fluorescent in situ hybridization (FISH) assays as a method to estimate of health risk, we monitored 9 male subjects occupationally exposed to low doses of both ionizing radiation and ultrasound during a period of over 3 years. Methods Sampling was performed at 6-month intervals during a three-year period. First we used conventional chromosomal aberrations analysis. When the aberration frequency for a particular subject reached the background, we measured translocations in the final sample, using fluorescence in situ hybridization. Chromosome painting probes for chromosomes 1, 2, and 4 were used simultaneously. Results Dicentric and ring chromosomes were eliminated within a year. Translocations persisted and deviated from control values in all examinees. Translocations were detected long after unstable aberrations decreased to the background level. Conclusion Fluorescence in situ hybridization-based translocation detection was a reliable method for monitoring chronic occupational clastogen exposure. Chromosome aberration assay correlated with translocation frequency. Stable chromosomal aberrations reflected cumulative genome damage during job exposure. PMID:17589981

  13. Transcranial measurements of the acoustic field produced by a low frequency focused ultrasound system

    NASA Astrophysics Data System (ADS)

    Voie, Arne; Fisher, David; Ahadi, Golnaz; Hölscher, Thilo

    2012-11-01

    The purpose of this study was to ascertain the effects of the skull on the location, shape and power of the acoustic field produced by a 150 mm radius hemispherical array operating at 220 kHz. We wanted to determine whether phase aberrations were significant at this frequency, the amount of attenuation, and whether CT data could be predictive of the trans-skull field. The effects of five calvaria were evaluated. Acoustic field data and CT scans for each skull specimen were imported into MATLAB® for measurements and visualization in two and three dimensions. We examined the effects of skull density, porosity, thickness, and sonication incident angles, and estimated the relative contributions of longitudinal and shear transmission to the total transmitted power. Power transmission through the skulls varied between 4% and 23% (mean: 12%). The range of focal position shifts was from 0.50 mm to 4.32 mm (mean: 1.95 mm). The 3 dB dimensions of the focused ultrasound (FUS) intensity focal volume increased on average by 39% (low: 4%, high: 122%). The 6 dB pressure focal volume increased by an average of 130 ± 75%. In general, the main effects of the skulls were power reduction, field dispersion and slight shift of focal peak location.

  14. Spectral energy measurements of simulated microemboli of various sizes using a diffraction grating ultrasound probe

    NASA Astrophysics Data System (ADS)

    Weiss, William J.; Ballakur, Sowmya G.; Tran, Hoang; Hazard, Sprague W.; Blebea, John

    2003-05-01

    This study characterizes the Doppler signal from simulated microemboli of various sizes in blood mimicking fluid using spectral energy parameters. The goal of this research is to detect microemboli as a non-invasive diagnostic tool, or intra-operatively as a surgical aid. A dual beam diffraction-grating ultrasound probe operating at 10 MHz (Model Echoflow BVM-1, EchoCath, Inc., Princeton, NJ) was used with a flow phantom. Microemboli were polystyrene microspheres in 200 to 1000 micron diameters, in concentrations of 0.1, 0.5, and 1.0 per ml. Average flow velocities were 25, 50, 75, and 100 cm/sec. The distribution of peak values of the power spectrum at 2.5 msec windows was plotted over 15 seconds. The means of the distributions corresponding to the microspheres and background fluid were averaged for the four velocity conditions. Embolic peak spectral power ranged from approximately 12 to 25 dB relative to the background. A detection method based on these measurements is currently being developed.

  15. A hybrid FDTD-Rayleigh integral computational method for the simulation of the ultrasound measurement of proximal femur.

    PubMed

    Cassereau, Didier; Nauleau, Pierre; Bendjoudi, Aniss; Minonzio, Jean-Gabriel; Laugier, Pascal; Bossy, Emmanuel; Grimal, Quentin

    2014-07-01

    The development of novel quantitative ultrasound (QUS) techniques to measure the hip is critically dependent on the possibility to simulate the ultrasound propagation. One specificity of hip QUS is that ultrasounds propagate through a large thickness of soft tissue, which can be modeled by a homogeneous fluid in a first approach. Finite difference time domain (FDTD) algorithms have been widely used to simulate QUS measurements but they are not adapted to simulate ultrasonic propagation over long distances in homogeneous media. In this paper, an hybrid numerical method is presented to simulate hip QUS measurements. A two-dimensional FDTD simulation in the vicinity of the bone is coupled to the semi-analytic calculation of the Rayleigh integral to compute the wave propagation between the probe and the bone. The method is used to simulate a setup dedicated to the measurement of circumferential guided waves in the cortical compartment of the femoral neck. The proposed approach is validated by comparison with a full FDTD simulation and with an experiment on a bone phantom. For a realistic QUS configuration, the computation time is estimated to be sixty times less with the hybrid method than with a full FDTD approach.

  16. Investigation of Ultrasound-Measured Flow Velocity, Flow Rate and Wall Shear Rate in Radial and Ulnar Arteries Using Simulation.

    PubMed

    Zhou, Xiaowei; Xia, Chunming; Stephen, Gandy; Khan, Faisel; Corner, George A; Hoskins, Peter R; Huang, Zhihong

    2017-02-21

    Parameters of blood flow measured by ultrasound in radial and ulnar arteries, such as flow velocity, flow rate and wall shear rate, are widely used in clinical practice and clinical research. Investigation of these measurements is useful for evaluating accuracy and providing knowledge of error sources. A method for simulating the spectral Doppler ultrasound measurement process was developed with computational fluid dynamics providing flow-field data. Specific scanning factors were adjusted to investigate their influence on estimation of the maximum velocity waveform, and flow rate and wall shear rate were derived using the Womersley equation. The overestimation in maximum velocity increases greatly (peak systolic from about 10% to 30%, time-averaged from about 30% to 50%) when the beam-vessel angle is changed from 30° to 70°. The Womersley equation was able to estimate flow rate in both arteries with less than 3% error, but performed better in the radial artery (2.3% overestimation) than the ulnar artery (15.4% underestimation) in estimating wall shear rate. It is concluded that measurements of flow parameters in the radial and ulnar arteries with clinical ultrasound scanners are prone to clinically significant errors.

  17. Measuring mechanical properties of the vastus lateralis tendon-aponeurosis complex in vivo by ultrasound imaging.

    PubMed

    Bojsen-Møller, J; Hansen, P; Aagaard, P; Kjaer, M; Magnusson, S P

    2003-08-01

    The mechanical properties of the human vastus lateralis (VL) tendon-aponeurosis complex were investigated in eight male subjects. Knee extensor force, knee joint angle, and corresponding longitudinal VL aponeurosis displacement were monitored synchronously during graded (10-s) maximal isometric knee extension contractions. Displacement observed during isometric conditions may be regarded as an expression of deformation in the tissues distal to the measurement site. Furthermore, aponeurosis displacement was measured during passive knee extension (90-75 degrees degrees ), and used to correct displacement values obtained during active contraction for joint angular motion. The passive trial yielded a highly linear relationship between aponeurosis displacement and joint angular motion (r2 = 0.998 +/- 0.002) with a mean correction factor of 0.41 +/- 0.10 mm/degree. Maximal knee extensor force was 5834 +/- 1341 N with a corresponding VL aponeurosis displacement of 12.7 +/- 2.5 mm, while correcting for joint angular motion reduced maximal displacement approximately 9% (to 11.6 +/- 2.5 mm, P < 0.005) (data presented as means +/- SD). Two separate graded contraction trials were performed, and no between-trial differences were observed in either maximal force or maximal displacement. Between trial coefficient of determination and CV for maximal force and maximal displacement were r2 = 0.97, CV = 2.9% and r2 = 0.92, CV = 4.6%, respectively, indicating intra-day reproducibility of measurements. These data demonstrate that when applying the newly established ultrasound-based method of investigating quadriceps connective tissue mechanical properties, maximal isometric contraction is inevitably associated with some joint angular motion that significantly influences the calculations.

  18. Evaluation of a bedside device to assess the activated partial thromboplastin time for heparin monitoring in infants.

    PubMed

    Klein, Richard H; van der Vorst, Marja M J; de Wilde, Rob B P; Hogenbirk, Karin; de Kam, Marieke L; Burggraaf, Jacobus

    2013-04-01

    To determine the relationship between the activated partial thromboplastin time (aPTT) measured with a standard laboratory assay and the aPTT measured with a bedside device in infants on heparin therapy after cardiothoracic surgery. Twenty infants aged below 1 year who were on heparin therapy were included. Exclusion criteria were prematurity, dysmaturity and the use of anticoagulants other than heparin. Nineteen samples were obtained from four adults in intensive care who were on heparin. The aPTT values were analyzed with the Coaguchek Pro/DM bedside device (aPTTbed) and compared with the aPTT values obtained from the laboratory Electra 1800C coagulation analyzer (aPTTlab). Correlation analysis was performed by linear regression. The agreement was calculated using Bland-Altman analysis. The correlation coefficient of samples obtained from infants was lower (r = 0.48) compared with samples from adults (r = 0.85). A substantial positive bias (27 s) and scatter [95% confidence interval (CI) -11; +65 s) was found. The bias showed a genuine trend to increase at higher aPTT values (r = 0.90; P < 0.001). The bedside device overestimates the aPTT in infants treated with heparin. The disagreement between the bedside device and laboratory increases at higher aPTTs. Bedside devices should not be used to monitor heparin therapy in infants in intensive care.

  19. Is ultrasound of bone relevant for corticosteroid-treated patients? A comparative study with bone densitometry measured by DEXA.

    PubMed

    Oliveri, Beatriz; Di Gregorio, Silvana; Parisi, Muriel Solange; Solís, Fabiana; Mautalen, Carlos

    2003-02-01

    Corticosteroid treatment diminishes bone mass and alters bone quality. The objective was to evaluate bone in corticosteroid-treated patients and controls and in fractured and non-fractured patients treated with corticosteroids using both X-ray densitometry (DEXA) and ultrasound. We evaluated 34 women aged 58 +/- 14 years (X +/- SD), who had been on long-term low dose prednisone therapy for at least 6 months, and who had never received specific treatment for osteoporosis. Bone mineral density of total skeleton (TS), lumbar spine (LS), femoral neck (FN), and vertebral morphometry (MXA) were measured by DEXA. Speed of sound (SOS), broadband ultrasound attenuation (BUA) and stiffness were measured using an Achilles Plus system. Forty-two healthy women served as controls. Both densitometric and ultrasound parameters in the patients were significantly diminished compared with controls: TS: P < 0.002, LS: P < 0.025, FS: P < 0.005, Stiffness: P < 0.001, BUA: P < 0.002 and SOS: P < 0.002. The percentage of patients with a Z score below -2 was higher in Stiffness and BUA: 38% and 47%, respectively, compared with a range of 16-24% in the other parameters (P < 0.05 BUA vs. DEXA measurements). Eleven patients with previous bone fracture had values lower than the non-fractured patients, both according to DEXA and ultrasound measurements, but the difference was only significant for BUA (P < 0.02). BUA of the calcaneus was more effective in detecting the specific skeletal alterations and fracture risk of the group of patients receiving chronic corticosteroid treatment.

  20. Joseph F. Keithley Award For Advances in Measurement Science: Resonant Ultrasound Spectroscopy: An Odyssey in Measurement Science

    NASA Astrophysics Data System (ADS)

    Migliori, Albert

    Perhaps the speeds of sound, or, equivalently, the elastic moduli are some of the most fundamental attributes of a solid, connecting to fundamental physics, metallurgy, non-destructive testing, and more. Unlike most of the quantities used to characterize condensed matter, the elastic moduli are fourth-rank tensors containing a wealth of detail, directional information, and consistency constraints that provide some of the most revealing probes of solids. We describe here the current state of the art in one method, Resonant Ultrasound Spectroscopy, where the mechanical resonances of a specimen of regular shape (easy to measure) are analyzed (difficult computational problem) to obtain the full elastic tensor. With modern advances in electronics and analysis, fractions of a part per million changes in elastic moduli are detectable providing new and important insight into grand challenges in condensed matter physics. This work was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001089.

  1. Real-time measurement of rectus femoris muscle kinematics during drop jump using ultrasound imaging: a preliminary study.

    PubMed

    Eranki, Avinash; Cortes, Nelson; Ferencek Gregurić, Zrinka; Kim, John J; Sikdar, Siddhartha

    2012-01-01

    We have developed an office based vector tissue Doppler imaging (vTDI) that can be used to quantitatively measure muscle kinematics using ultrasound. The goal of this preliminary study was to investigate if vTDI measures are repeatable and can be used robustly to measure and understand the kinematics of the rectus femoris muscle during a drop jump task. Data were collected from 8 healthy volunteers. Vector TDI along with a high speed camera video was used to better understand the dynamics of the drop jump. Our results indicate that the peak resultant vector velocity of the rectus femoris immediately following landing was repeatable across trials (intraclass correlation coefficient=0.9).The peak velocity had a relatively narrow range in 6 out of 8 subjects (48-62 cm/s), while in the remaining two subjects it exceeded 70 cm/s. The entire drop jump lasted for 1.45 0.27 seconds. The waveform of muscle velocity could be used to identify different phases of the jump. Also, the movement of the ultrasound transducer holder was minimal with peak deflection of 0.91 0.54 degrees over all trials. Vector TDI can be implemented in a clinical setting using an ultrasound system with a research interface to better understand the muscle kinematics in patients with ACL injuries.

  2. Reliable and Accurate Calcium Volume Measurement in Coronary Artery Using Intravascular Ultrasound Videos.

    PubMed

    Araki, Tadashi; Banchhor, Sumit K; Londhe, Narendra D; Ikeda, Nobutaka; Radeva, Petia; Shukla, Devarshi; Saba, Luca; Balestrieri, Antonella; Nicolaides, Andrew; Shafique, Shoaib; Laird, John R; Suri, Jasjit S

    2016-03-01

    Quantitative assessment of calcified atherosclerotic volume within the coronary artery wall is vital for cardiac interventional procedures. The goal of this study is to automatically measure the calcium volume, given the borders of coronary vessel wall for all the frames of the intravascular ultrasound (IVUS) video. Three soft computing fuzzy classification techniques were adapted namely Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) for automated segmentation of calcium regions and volume computation. These methods were benchmarked against previously developed threshold-based method. IVUS image data sets (around 30,600 IVUS frames) from 15 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/s). Calcium mean volume for FCM, K-means, HMRF and threshold-based method were 37.84 ± 17.38 mm(3), 27.79 ± 10.94 mm(3), 46.44 ± 19.13 mm(3) and 35.92 ± 16.44 mm(3) respectively. Cross-correlation, Jaccard Index and Dice Similarity were highest between FCM and threshold-based method: 0.99, 0.92 ± 0.02 and 0.95 + 0.02 respectively. Student's t-test, z-test and Wilcoxon-test are also performed to demonstrate consistency, reliability and accuracy of the results. Given the vessel wall region, the system reliably and automatically measures the calcium volume in IVUS videos. Further, we validated our system against a trained expert using scoring: K-means showed the best performance with an accuracy of 92.80%. Out procedure and protocol is along the line with method previously published clinically.

  3. Breast density measurements using ultrasound tomography for patients undergoing tamoxifen treatment

    NASA Astrophysics Data System (ADS)

    Sak, Mark; Duric, Neb; Littrup, Peter; Li, Cuiping; Bey-Knight, Lisa; Sherman, Mark; Boyd, Norman; Gierach, Gretchen

    2013-03-01

    Women with high breast density have an increased risk of developing breast cancer. Women treated with the selective estrogen receptor modulator tamoxifen for estrogen receptor positive breast cancer experience a 50% reduction in risk of contralateral breast cancer and overall reduction of similar magnitude has been identified among high-risk women receiving the drug for prevention. Tamoxifen has been shown to reduce mammographic density, and in the IBIS-1 chemoprevention trial, risk reduction and decline in density were significantly associated. Ultrasound tomography (UST) is an imaging modality that can create tomographic sound speed images of the breast. These sound speed images are useful because breast density is proportional to sound speed. The aim of this work is to examine the relationship between USTmeasured breast density and the use of tamoxifen. So far, preliminary results for a small number of patients have been observed and are promising. Correlations between the UST-measured density and mammographic density are strong and positive, while relationships between UST density with some patient specific risk factors behave as expected. Initial results of UST examinations of tamoxifen treated patients show that approximately 45% of the patients have a decrease in density in the contralateral breast after only several months of treatment. The true effect of tamoxifen on UST-measured density cannot yet be fully determined until more data are collected. However, these promising results suggest that UST can be used to reliably assess quantitative changes in breast density over short intervals and therefore suggest that UST may enable rapid assessment of density changes associated with therapeutic and preventative interventions.

  4. Use of bladder volume measurement assessed with ultrasound to predict postoperative urinary retention

    PubMed Central

    Ozturk, Nilgun Kavrut; Kavakli, Ali Sait

    2016-01-01

    OBJECTIVE: Postoperative urinary retention (POUR) is a common complication after spinal anesthesia. Ultrasound (US) is a simple, non-invasive method to estimate bladder volume before and after surgery. Primary aim of the present study was to investigate utility of bladder volume measured before and after surgery in prediction of POUR risk. Secondary aim was to investigate necessity of urethral catheter use and risk of urethral catheter-related infections. METHODS: Eighty patients who received spinal anesthesia for arthroscopic knee surgery were included in the study. Level and duration of sensory and motor block; bladder volume measured preoperatively, in post-anesthetic care unit (PACU), and when discharged from PACU; use of urethral catheter; and incidence of urinary tract infection data were recorded. RESULTS: POUR was observed in 28.7% of patients. Length of time for sensory block regression was significantly shorter in patients without POUR (p=0.012). Spontaneous urination was not observed in 3 of 23 patients with POUR, although bladder volume was less than 600 mL. Bladder volume over 600 mL without urination was recorded in 20 patients. There was no statistical difference in preoperative bladder volume between patients who did or did not develop POUR. Bladder volume on admission to PACU was higher in patients with POUR (p=0.023). Urgency and dysuria were observed in 5 patients who required urethral catheterization during postoperative period. Urinary tract infection developed in 1 patient. There was no statistical difference in development of urinary tract infection between patient groups who did and did not undergo urethral catheterization. CONCLUSION: Assessment of patient bladder volume with US before arthroscopic knee surgery may be used to foresee development of POUR. Avoiding elective urinary catheterization may reduce urinary infections. PMID:28275753

  5. Model-based correction of velocity measurements in navigated 3-D ultrasound imaging during neurosurgical interventions.

    PubMed

    Iversen, Daniel Hoyer; Lindseth, Frank; Unsgaard, Geirmund; Torp, Hans; Lovstakken, Lasse

    2013-09-01

    In neurosurgery, information of blood flow is important to identify and avoid damage to important vessels. Three-dimensional intraoperative ultrasound color-Doppler imaging has proven useful in this respect. However, due to Doppler angle-dependencies and the complexity of the vascular architecture, clinical valuable 3-D information of flow direction and velocity is currently not available. In this work, we aim to correct for angle-dependencies in 3-D flow images based on a geometric model of the neurovascular tree generated on-the-fly from free-hand 2-D imaging and an accurate position sensor system. The 3-D vessel model acts as a priori information of vessel orientation used to angle-correct the Doppler measurements, as well as provide an estimate of the average flow direction. Based on the flow direction we were also able to do aliasing correction to approximately double the measurable velocity range. In vitro experiments revealed a high accuracy and robustness for estimating the mean direction of flow. Accurate angle-correction of axial velocities were possible given a sufficient beam-to-flow angle for at least parts of a vessel segment . In vitro experiments showed an absolute relative bias of 9.5% for a challenging low-flow scenario. The method also showed promising results in vivo, improving the depiction of flow in the distal branches of intracranial aneurysms and the feeding arteries of an arteriovenous malformation. Careful inspection by an experienced surgeon confirmed the correct flow direction for all in vivo examples.

  6. Epidemiological survey of the feasibility of broadband ultrasound attenuation measured using calcaneal quantitative ultrasound to predict the incidence of falls in the middle aged and elderly

    PubMed Central

    Ou, Ling-Chun; Chang, Yin-Fan; Chang, Chin-Sung; Chiu, Ching-Ju; Chao, Ting-Hsing; Sun, Zih-Jie; Lin, Ruey-Mo; Wu, Chih-Hsing

    2017-01-01

    Objectives We investigated whether calcaneal quantitative ultrasound (QUS-C) is a feasible tool for predicting the incidence of falls. Design Prospective epidemiological cohort study. Setting Community-dwelling people sampled in central western Taiwan. Participants A cohort of community-dwelling people who were ≥40 years old (men: 524; women: 676) in 2009–2010. Follow-up questionnaires were completed by 186 men and 257 women in 2012. Methods Structured questionnaires and broadband ultrasound attenuation (BUA) data were obtained in 2009–2010 using QUS-C, and follow-up surveys were done in a telephone interview in 2012. Using a binary logistic regression model, the risk factors associated with a new fall during follow-up were analysed with all significant variables from the bivariate comparisons and theoretically important variables. Primary outcome measures The incidence of falls was determined when the first new fall occurred during the follow-up period. The mean follow-up time was 2.83 years. Results The total incidence of falls was 28.0 per 1000 person-years for the ≥40 year old group (all participants), 23.3 per 1000 person-years for the 40–70 year old group, and 45.6 per 1000 person-years for the ≥70 year old group. Using multiple logistic regression models, the independent factors were current smoking, living alone, psychiatric drug usage and lower BUA (OR 0.93; 95% CI 0.88 to 0.99, p<0.05) in the ≥70 year old group. Conclusions The incidence of falls was highest in the ≥70 year old group. Using QUS-C-derived BUA is feasible for predicting the incidence of falls in community-dwelling elderly people aged ≥70 years. PMID:28069623

  7. Measuring of Gastric Emptying in Egyptian Pediatric Patients with Portal Hypertension by Using Real-time Ultrasound

    PubMed Central

    Fahmy, Mona E.; Osman, Mahmoud A.; Mahmoud, Rehab A.; Mohamed, Lamiaa K.; Seif-elnasr, Khaled I.; Eskander, Ayman E.

    2012-01-01

    Background/Aim: Among the various methods for evaluating gastric emptying, the real-time ultrasound is safe, does not require intubation, or rely on either radiologic or radionuclide technique. The aim of our work was to measure the gastric emptying in pediatric patients with portal hypertension by using the real-time ultrasound. Patients and Methods: Forty patients with portal hypertension with mean age 7 ± 2.8 years and 20 healthy children as a control group underwent gastric emptying study by using real-time ultrasound. The cross-sectional area of the gastric antrum was measured in the fasting state and then each subject was allowed to drink tap water then calculated by using formula area (π longitudinal × anteroposterior diameter/4). The intragastric volume was assumed to be directly proportional to the cross-sectional area of the antrum. Results: The mean gastric emptying half-time volume was significantly delayed in portal hypertension patients (40 ± 6.8 min) compared with the control subjects (27.1 ± 3.6) min (P<0.05). Patients with extrahepatic portal vein obstruction had significant delayed gastric emptying in comparison to patients with portal hypertension due to other etiologies (36.14 ± 4.9 vs 44.41 ± 6.04 min; P<0.01). Conclusion: Ultrasound is a noninvasive and a reliable method for measuring gastric emptying in pediatric patients. Gastric emptying was significantly delayed in patients with portal hypertension. Etiology of portal hypertension may influence gastric emptying time in patients with chronic liver disease. PMID:22249091

  8. Doppler Ultrasound: What Is It Used for?

    MedlinePlus

    ... in your neck (carotid artery stenosis) A Doppler ultrasound can estimate how fast blood flows by measuring the rate of change in its pitch (frequency). During a Doppler ultrasound, a technician trained in ultrasound imaging (sonographer) presses ...

  9. Proof of concept: In vitro measurement of correlation between radiodensity and ultrasound echo response of ovine vertebral bodies.

    PubMed

    Chang, Jin Ho; Raphael, David T; Zhang, Yao Ping; Shung, K Kirk

    2011-04-01

    An acoustic guidance method for pedicle screw placement during spine fixation surgery was recently investigated, with a view toward preventing complications such as injury to the spinal cord, thecal sac, and spinal nerve roots due to screw misplacement. The method relies upon the change in the ultrasound amplitude reflected at different sites-from the outer posterior cortex, through the pedicle, and towards the distal ventral cortex. The amplitude change was empirically observed through in vitro measurement of ultrasound amplitude at the different sites by inserting a 2.5-MHz single element transducer into a vertebral body through insertion pathway created by an advancing screw. This paper provides a theoretical and experimental rationale behind these empirical findings and distance-dependent correlation coefficients between amplitude and bone mineral density within the vertebral body, which approached 97%.

  10. TU-A-9A-02: Analysis of Variations in Clinical Doppler Ultrasound Peak Velocity Measurements

    SciTech Connect

    Zhang, Y; Stekel, S; Tradup, D; Hangiandreou, N

    2014-06-15

    Purpose: Doppler ultrasound (US) peak velocity (Vmax) measurements show considerable variations due to intrinsic spectral broadening with different scanning techniques, machines and manufacturers. We developed a semi-automated Vmax estimation method and used this method to investigate the performance of a US system for clinical Doppler Vmax measurement. Methods: Semi-automated Vmax is defined as the velocity at which the computed mean spectral profile falls to within 1 background standard deviation of the background mean. GE LOGIQ E9 system with 9L and ML6-15 probes were studied with steady flow (5.3 – 12.5 ml/s) in a Gammex OPTIMIZER 1425A phantom. All Doppler spectra were acquired by 1 operator at the distal end of 5 mm angular tube using a modified clinical carotid artery protocol. Repeatability and variation of Vmax to scanning parameters and probes were analyzed and reported as percentage, i.e. (max-min)/mean. Results: Vmax estimation had good repeatability (3.1% over 6 days for 9L, and 3.6% for ML6-15). For 9L probe, varying gain, compression, scale, SV depth and length, and frequency had minimal impact on Vmax (all variations less than 4.0%). Beam steering had slightly higher influence (largest variations across flow rates were 4.9% for 9L and 6.9% for ML6-15). For both probes, Doppler angle had the greatest effect on Vmax. Percentage increase of Vmax was largely independent of actual flow rates. For Doppler angle varied from 30 to 60°, Vmax increased 24% for 9L, and 20% for ML6-15. Vmax measured by ML6-15 were lower than that by 9L at each Doppler angle with differences less than 5%. Conclusion: The proposed Vmax estimation method is shown to be a useful tool to evaluate clinical Doppler US system performance. For the tested system and probes, Doppler angle had largest impact in measured Vmax.

  11. Cranial diameter pulsations measured by non-invasive ultrasound decrease with tilt

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, Richard E.; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    INTRODUCTION: Intracranial pressure (ICP) may play a significant role in physiological responses to microgravity by contributing to the nausea associated with microgravity exposure. However, effects of altered gravity on ICP in astronauts have not been investigated, primarily due to the invasiveness of currently available techniques. We have developed an ultrasonic device that monitors changes in cranial diameter pulsation non-invasively so that we can evaluate ICP dynamics in astronauts during spaceflight. This study was designed to demonstrate the feasibility of our ultrasound technique under the physiological condition in which ICP dynamics are changed due to altered gravitational force. METHODS: Six healthy volunteers were placed at 60 degrees head-up, 30 degrees headup, supine, and 15 degrees head-down positions for 3 min at each angle. We measured arterial blood pressure (ABP) with a finger pressure cuff, and cranial diameter pulsation with a pulsed phase lock loop device (PPLL). RESULTS: Analysis of covariance demonstrated that amplitudes of cranial diameter pulsations were significantly altered with the angle of tilt (p < 0.001). The 95% confidence interval for linear regression coefficients of the cranial diameter pulsation amplitudes with tilt angle was 0.862 to 0.968. However, ABP amplitudes did not show this relationship. DISCUSSION: Our noninvasive ultrasonic technique reveals that the amplitude of cranial diameter pulsation decreases as a function of tilt angle, suggesting that ICP pulsation follows the same relationship. It is demonstrated that the PPLL device has a sufficient sensitivity to detect changes non-invasively in ICP pulsation caused by altered gravity.

  12. Pulmonary transit time measurement by contrast-enhanced ultrasound in left ventricular dyssynchrony

    PubMed Central

    Saporito, Salvatore; Mischi, Massimo; van Assen, Hans C; Bouwman, R Arthur; de Lepper, Anouk G W; van den Bosch, Harrie C M; Korsten, Hendrikus H M; Houthuizen, Patrick

    2016-01-01

    Background Pulmonary transit time (PTT) is an indirect measure of preload and left ventricular function, which can be estimated using the indicator dilution theory by contrast-enhanced ultrasound (CEUS). In this study, we first assessed the accuracy of PTT-CEUS by comparing it with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Secondly, we tested the hypothesis that PTT-CEUS correlates with the severity of heart failure, assessed by MRI and N-terminal pro-B-type natriuretic peptide (NT-proBNP). Methods and results Twenty patients referred to our hospital for cardiac resynchronization therapy (CRT) were enrolled. DCE-MRI, CEUS, and NT-proBNP measurements were performed within an hour. Mean transit time (MTT) was obtained by estimating the time evolution of indicator concentration within regions of interest drawn in the right and left ventricles in video loops of DCE-MRI and CEUS. PTT was estimated as the difference of the left and right ventricular MTT. Normalized PTT (nPTT) was obtained by multiplication of PTT with the heart rate. Mean PTT-CEUS was 10.5±2.4s and PTT-DCE-MRI was 10.4±2.0s (P=0.88). The correlations of PTT and nPTT by CEUS and DCE-MRI were strong; r=0.75 (P=0.0001) and r=0.76 (P=0.0001), respectively. Bland–Altman analysis revealed a bias of 0.1s for PTT. nPTT-CEUS correlated moderately with left ventricle volumes. The correlations for PTT-CEUS and nPTT-CEUS were moderate to strong with NT-proBNP; r=0.54 (P=0.022) and r=0.68 (P=0.002), respectively. Conclusions (n)PTT-CEUS showed strong agreement with that by DCE-MRI. Given the good correlation with NT-proBNP level, (n)PTT-CEUS may provide a novel, clinically feasible measure to quantify the severity of heart failure. Clinical Trial Registry: NCT01735838 PMID:27249553

  13. Genetic and environmental contributions to the association between quantitative ultrasound and bone mineral density measurements: a twin study.

    PubMed

    Howard, G M; Nguyen, T V; Harris, M; Kelly, P J; Eisman, J A

    1998-08-01

    This study was designed to assess the relative contributions of genetic and environmental factors to the variation and covariation of quantitative ultrasound (QUS) measurements and their relationships to bone mineral density (BMD). Forty-nine monozygotic (MZ) and 44 dizygotic (DZ) female twins between 20 and 83 years of age (53 +/- 13 years, mean +/- SD) were studied. Digital (phalangeal) QUS (speed of sound [SOS]) and calcaneal QUS (broadband ultrasound attenuation [BUA] and velocity of sound [VOS]) were measured using a DBM Sonic 1200 ultrasound densitometer and a CUBA ultrasound densitometer, respectively. Femoral neck (FN), lumbar spine (LS), and total body (TB) BMD were measured using dual-energy X-ray absorptiometry. Familial resemblance and hence heritability (proportion of variance of a trait attributable to genetic factors) were assessed by analysis of variance, univariate, and multivariate model-fitting genetic analyses. In both QUS and BMD parameters, MZ twins were more alike than DZ pairs. Estimates of heritability for age- and weight-adjusted BUA, VOS, and SOS were 0.74, 0.55, and 0.82, respectively. Corresponding indices of heritability for LS, FN, and TB BMD were 0.79, 0.77, and 0.82, respectively. In cross-sectional analysis, both BUA and SOS, but not VOS, were independently associated with BMD measurements. However, analysis based on intrapair differences suggested that only BUA was related to BMD. Bivariate genetic analysis indicated that the genetic correlations between BUA and BMD ranged between 0.43 and 0.51 (p < 0.001), whereas the environmental correlations ranged between 0.20 and 0.28 (p < 0.01). While the genetic correlations within QUS and BMD measurements were significant, factor analysis indicates that common genes affect BMD at different sites. Also, individual QUS measurements appear to be influenced by some common sets of genes rather than by environmental factors. Significant environmental correlations were only found for BMD

  14. Bedside or not bedside: Evaluation of patient satisfaction in intensive medical rehabilitation wards

    PubMed Central

    Luthy, Christophe; Francis Gerstel, Patricia; Pugliesi, Angela; Piguet, Valérie; Allaz, Anne-Françoise; Cedraschi, Christine

    2017-01-01

    Background Concerns that bedside presentation (BsP) rounds could make patients uncomfortable led many residency programs to move daily rounds outside the patients’ room (OsPR). We performed a prospective quasi-experimental controlled study measuring the effect of these two approaches on patient satisfaction. Methods Patient satisfaction was measured using the Picker questionnaire (PiQ). Results are expressed in problematic percentage scores scaled from 0 = best-100 = worst. During three months, 3 wards of a 6 ward medical rehabilitation division implemented BsP and 3 control wards kept their usual organization of rounds. In total, 90 patients of each group were included in the study and completed the PiQ. Results Socio-clinical characteristics were similar in both groups: mean age = 67 years (SD = 13), mean Charlson comorbidity index = 8.6 (2.4); mean length of stay = 22 days (12). During their stay, patients in the BsP units had a mean of 14.3 (8) BsP rounds and 0.5 (0.8) OsPR; control patients had a mean of 0.9 (0.7) BsP and 14.8 (7.3) OsPR (p<0.0001). Patients in BsP units reported lower problematic scores regarding coordination of care (39% vs 45%, p = 0.029), involvement of family/friends (29 vs 41%, p = 0.006) and continuity/transition (44% vs 54%, p = 0.020); two questions of the PiQ had worse scores in the BsP: trust in nurses (46.7% vs 30 %, p = 0.021) and recommendation of the institution (61.1% vs 44.4%. p = 0.025). No worsening in dimensions such as respect for patient preferences was seen. Conclusions BsP rounds influenced the patient-healthcare professionals’ encounter. These rounds were associated with improved patient satisfaction with care, particularly regarding interprofessional collaboration and discharge planning. PMID:28170431

  15. Spatial and temporal frequency domain laser-ultrasound applied in the direct measurement of dispersion relations of surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Grünsteidl, Clemens; Veres, István A.; Roither, Jürgen; Burgholzer, Peter; Murray, Todd W.; Berer, Thomas

    2013-01-01

    We present a laser-ultrasound measurement technique which combines adjustable spatial and temporal modulation of the excitation laser beam. Our method spreads the intensity of an amplitude modulated continuous wave laser over a micro-scale pattern on the sample surface to excite surface acoustic waves. The excitation pattern consists of parallel, equidistant lines and the waves generated from the individual lines interfere on the sample surface. Measurement is done in the spatial-temporal frequency domain allowing the direct determination of dispersion relations. The technique performs with high signal-to-noise-ratios and low peak power densities on the sample.

  16. Measurement of postvoid residual urine with portable transabdominal bladder ultrasound scanner and urethral catheterization.

    PubMed

    Goode, P S; Locher, J L; Bryant, R L; Roth, D L; Burgio, K L

    2000-01-01

    The study was a clinical series of 95 ambulatory women with urinary incontinence. After voiding, each subject was scanned with a BladderScan BVI 2500, then catheterized for postvoid residual (PVR) and then scanned again. The mean PVR obtained by ultrasound was 49 ml, significantly larger than the mean PVR of 32 ml obtained by catheterization. Correlation analysis showed that the difference was not related to age, weight, body mass index, parity, pelvic prolapse or prior incontinence surgery, but was associated with prior hysterectomy and uterine prolapse. Regression analysis revealed that the difference was independently related to prior hysterectomy only. Postcatheterization ultrasound detected a mean of 22 ml, suggesting that the difference between the PVR values may be due to residual urine not removed by catheterization. Finally, ultrasound had a sensitivity of 66.7% and a specificity of 96.5% in detecting PVR > or = 100 ml. Portable ultrasound scanners are quick, easy to use, reasonably sensitive, and very specific for determining elevated PVR.

  17. Visualizing and Measuring the Temperature Field Produced by Medical Diagnostic Ultrasound Using Thermography

    ERIC Educational Resources Information Center

    Vachutka, J.; Grec, P.; Mornstein, V.; Caruana, C. J.

    2008-01-01

    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and…

  18. Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging.

    PubMed

    Zhou, Guang-Quan; Chan, Phoebe; Zheng, Yong-Ping

    2015-03-01

    Muscle imaging is a promising field of research to understand the biological and bioelectrical characteristics of muscles through the observation of muscle architectural change. Sonomyography (SMG) is a technique which can quantify the real-time architectural change of muscles under different contractions and motions with ultrasound imaging. The pennation angle and fascicle length are two crucial SMG parameters to understand the contraction mechanics at muscle level, but they have to be manually detected on ultrasound images frame by frame. In this study, we proposed an automatic method to quantitatively identify pennation angle and fascicle length of gastrocnemius (GM) muscle based on multi-resolution analysis and line feature extraction, which could overcome the limitations of tedious and time-consuming manual measurement. The method started with convolving Gabor wavelet specially designed for enhancing the line-like structure detection in GM ultrasound image. The resulting image was then used to detect the fascicles and aponeuroses for calculating the pennation angle and fascicle length with the consideration of their distribution in ultrasound image. The performance of this method was tested on computer simulated images and experimental images in vivo obtained from normal subjects. Tests on synthetic images showed that the method could identify the fascicle orientation with an average error less than 0.1°. The result of in vivo experiment showed a good agreement between the results obtained by the automatic and the manual measurements (r=0.94±0.03; p<0.001, and r=0.95±0.02, p<0.001). Furthermore, a significant correlation between the ankle angle and pennation angle (r=0.89±0.05; p<0.001) and fascicle length (r=-0.90±0.04; p<0.001) was found for the ankle plantar flexion. This study demonstrated that the proposed method was able to automatically measure the pennation angle and fascicle length of GM ultrasound images, which made it feasible to investigate

  19. Bedside echocardiography in critically ill patients

    PubMed Central

    Casaroto, Eduardo; Mohovic, Tatiana; Pinto, Lilian Moreira; de Lara, Tais Rodrigues

    2015-01-01

    ABSTRACT The echocardiography has become a vital tool in the diagnosis of critically ill patients. The use of echocardiography by intensivists has been increasing since the 1990’s. This tool has become a common procedure for the cardiovascular assessment of critically ill patients, especially because it is non-invasive and can be applied in fast and guided manner at the bedside. Physicians with basic training in echocardiography, both from intensive care unit or emergency department, can assess the left ventricle function properly with good accuracy compared with assessment made by cardiologists. The change of treatment approach based on echocardiographic findings is commonly seen after examination of unstable patient. This brief review focuses on growing importance of echocardiography as an useful tool for management of critically ill patients in the intensive care setting along with the cardiac output assessment using this resource. PMID:26761560

  20. Influence of coupling substances in the measurement of ultrasound velocity in stone materials

    NASA Astrophysics Data System (ADS)

    Giuzio, Beatrice; Alvarez de Buergo, Monica; Fort, Rafael; Masini, Nicola

    2015-04-01

    Ultrasonic (US) testing is widely applied in many fields (i.e. aviation, petrochemical, power engineering, construction and metallurgical industries). In the field of built cultural heritage and science conservation, US testing can provide the quality of the historic building materials (physic-mechanical properties), their heterogeneity/homogeinity and anisotropy, in terms of materials characterization, but also how deterioration processes can affect their quality (either after natural decay or simulation ageing tests in the laboratory). Moreover, US testing is a useful technique in evaluating the effectiveness of conservation and restoration techniques such as assessing the compatibility among original and restoration materials, identification of original quarries, and the success or not in the increase of a material cohesion when applying consolidating products. In order to obtain precise, real and reliable measurements, coupling substances between the material surface and the ultrasonic sensors are frequently used, to provide a proper contact between the transducer and the material, to assure the perfect transmission of the ultrasonic wave. Various coupling agents can be applied for this purpose. According to Wesolowski (2012), the choice of the coupling agent significantly affects the measurement of propagation velocity in material samples and, as a consequence, the US test results. In this paper, the effect of six coupling agents (medical gel used for ultrasonography, gel + parafilm, plasticine, honey, glicerine and a plastic material provided for ultrasound measurement by Panametrics) on ultrasonic measurements conducted on specific building materials is investigated on two different types of building stones (granite and dolostone from the area of Madrid, traditionally used in the construction of the built heritage, 4 stone specimens for each rock variety, 20 x 6 x 8 cm). Direct and indirect modes measuring were performed, the first one with the transducers

  1. Ultrasound -- Vascular

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  2. Ultrasound - Breast

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  3. Ultrasound -- Pelvis

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  4. Prostate Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  5. Abdominal Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  6. Obstetrical Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  7. Musculoskeletal Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  8. Hip Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  9. Ultrasound - Scrotum

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  10. Ultrasound - Breast

    MedlinePlus

    ... the examination. top of page What does the equipment look like? Ultrasound scanners consist of a console ... ultrasound that require biopsy are not cancers. Many facilities do not offer ultrasound screening, and the procedure ...

  11. Organochlorine Compounds and Ultrasound Measurements of Fetal Growth in the INMA Cohort (Spain)

    PubMed Central

    Lopez-Espinosa, Maria-Jose; Murcia, Mario; Iñiguez, Carmen; Vizcaino, Esther; Costa, Olga; Fernández-Somoano, Ana; Basterrechea, Mikel; Lertxundi, Aitana; Guxens, Mònica; Gascon, Mireia; Goñi-Irigoyen, Fernando; Grimalt, Joan O.; Tardón, Adonina; Ballester, Ferran

    2015-01-01

    Background Several studies have reported decreases in birth size associated with exposure to organochlorine compounds (OCs), but uncertainties remain regarding the critical windows of prenatal exposure and the effects on fetal body segments. Objective We examined the relationship between prenatal OC concentrations and fetal anthropometry. Methods We measured 4,4´-dichlorodiphenyldichloroethylene (4,4´-DDE), hexachlorobenzene (HCB), and polychlorinated biphenyl (PCB) congeners (138, 153, and 180) in 2,369 maternal and 1,140 cord serum samples in four Spanish cohorts (2003–2008). We used linear mixed models to obtain longitudinal growth curves for estimated fetal weight (EFW), abdominal circumference (AC), biparietal diameter (BPD), and femur length (FL) adjusted by parental and fetal characteristics. We calculated standard deviation (SD) scores of growth at 0–12, 12–20, and 20–34 weeks of gestation as well as size at gestational week 34 for the four parameters. We studied the association between OCs and the fetal outcomes by cohort-specific linear models and subsequent meta-analyses. Results PCBs were associated with a reduction in AC up to mid-pregnancy, and BPD and FL from gestational week 20 onward. An inverse association was also found between HCB and AC growth in early pregnancy. The reduction of these parameters ranged from –4% to –2% for a doubling in the OC concentrations. No association between 4,4´-DDE and fetal growth was observed. Conclusions To our knowledge, this is the first study to report an association between prenatal exposure to some PCBs and HCB and fetal growth: AC during the first two trimesters of pregnancy, and BPD and FL later in pregnancy. Citation Lopez-Espinosa MJ, Murcia M, Iñiguez C, Vizcaino E, Costa O, Fernández-Somoano A, Basterrechea M, Lertxundi A, Guxens M, Gascon M, Goñi-Irigoyen F, Grimalt JO, Tardón A, Ballester F. 2016. Organochlorine compounds and ultrasound measurements of fetal growth in the INMA cohort

  12. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.

    PubMed

    Nguyen, Man M; Zhou, Shiwei; Robert, Jean-Luc; Shamdasani, Vijay; Xie, Hua

    2014-01-01

    Because tissues consist of solid and fluid materials, their mechanical properties should be characterized in terms of both elasticity and viscosity. Although the elastic properties of tissue-mimicking phantoms have been extensively studied and well characterized in commercially available phantoms, their viscous properties have not been fully investigated. In this article, a set of 14 tissue-mimicking phantoms with different concentrations of gelatin and castor oil were fabricated and characterized in terms of acoustic and viscoelastic properties. The results indicate that adding castor oil to gelatin phantoms decreases shear modulus, but increases shear wave dispersion. For 3% gelatin phantoms containing 0%, 10%, 20% and 40% oil, the measured shear moduli are 2.01 ± 0.26, 1.68 ± 0.25, 1.10 ± 0.22 and 0.88 ± 0.17 kPa, and the Voigt-model coupled shear viscosities are 0.60 ± 0.11, 0.89 ± 0.07, 1.05 ± 0.11 and 1.06 ± 0.13 Pa·s, respectively. The results also confirm that increasing the gelatin concentration increases shear modulus. For phantoms containing 3%, 4%, 5%, 6% and 7% gelatin, the measured shear moduli are 2.01 ± 0.26, 3.10 ± 0.34, 4.18 ± 0.84, 8.05 ± 1.00 and 10.24 ± 1.80 kPa at 0% oil and 1.10 ± 0.22, 1.97 ± 0.20, 3.13 ± 0.63, 4.60 ± 0.60 and 8.43 ± 1.39 kPa at 20% oil, respectively. The phantom recipe developed in this study can be used in validating ultrasound shear wave elastography techniques for soft tissues.

  13. Imaging Neuroinflammation – from Bench to Bedside

    PubMed Central

    Pulli, Benjamin; Chen, John W

    2014-01-01

    Neuroinflammation plays a central role in a variety of neurological diseases, including stroke, multiple sclerosis, Alzheimer’s disease, and malignant CNS neoplasms, among many other. Different cell types and molecular mediators participate in a cascade of events in the brain that is ultimately aimed at control, regeneration and repair, but leads to damage of brain tissue under pathological conditions. Non-invasive molecular imaging of key players in the inflammation cascade holds promise for identification and quantification of the disease process before it is too late for effective therapeutic intervention. In this review, we focus on molecular imaging techniques that target inflammatory cells and molecules that are of interest in neuroinflammation, especially those with high translational potential. Over the past decade, a plethora of molecular imaging agents have been developed and tested in animal models of (neuro)inflammation, and a few have been translated from bench to bedside. The most promising imaging techniques to visualize neuroinflammation include MRI, positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical imaging methods. These techniques enable us to image adhesion molecules to visualize endothelial cell activation, assess leukocyte functions such as oxidative stress, granule release, and phagocytosis, and label a variety of inflammatory cells for cell tracking experiments. In addition, several cell types and their activation can be specifically targeted in vivo, and consequences of neuroinflammation such as neuronal death and demyelination can be quantified. As we continue to make progress in utilizing molecular imaging technology to study and understand neuroinflammation, increasing efforts and investment should be made to bring more of these novel imaging agents from the “bench to bedside.” PMID:25525560

  14. Cranial Ultrasound/Head Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  15. Measurement of the normalized broadband ultrasound attenuation in trabecular bone by using a bidirectional transverse transmission technique

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2015-01-01

    A new method for measuring the normalized broadband ultrasound attenuation (nBUA) in trabecular bone by using a bidirectional transverse transmission technique was proposed and validated with measurements obtained by using the conventional transverse transmission technique. There was no significant difference between the nBUA measurements obtained for 14 bovine femoral trabecular bone samples by using the bidirectional and the conventional transverse transmission techniques. The nBUA measured by using the two transverse transmission techniques showed strong positive correlations of r = 0.87 to 0.88 with the apparent bone density, consistent with the behavior in human trabecular bone invitro. We expect that the new method can be usefully applied for improved accuracy and precision in clinical measurements.

  16. How do patients perceive electronic documentation at the bedside?

    PubMed

    Dagnone, R Vico; Wilson, Rosemary; Goldstein, David H; Murdoch, John; Rimmer, Michael J; VanDenKerkhof, Elizabeth G

    2006-01-01

    Electronic patient records provide an opportunity for real-time access to patient information at the bedside, which has the potential to improve healthcare quality because it would increase efficiency and facilitate best practice. Patients in this study reported that portable computers used at the bedside did not affect the clinician-patient relationship. Many patients thought that the technology was a valuable tool and that it could foster an efficient hospital atmosphere and promote reliable and accurate medical documentation.

  17. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    PubMed

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation.

  18. Accurate quantitative measurements of brachial artery cross-sectional vascular area and vascular volume elastic modulus using automated oscillometric measurements: comparison with brachial artery ultrasound

    PubMed Central

    Tomiyama, Yuuki; Yoshinaga, Keiichiro; Fujii, Satoshi; Ochi, Noriki; Inoue, Mamiko; Nishida, Mutumi; Aziki, Kumi; Horie, Tatsunori; Katoh, Chietsugu; Tamaki, Nagara

    2015-01-01

    Increasing vascular diameter and attenuated vascular elasticity may be reliable markers for atherosclerotic risk assessment. However, previous measurements have been complex, operator-dependent or invasive. Recently, we developed a new automated oscillometric method to measure a brachial artery's estimated area (eA) and volume elastic modulus (VE). The aim of this study was to investigate the reliability of new automated oscillometric measurement of eA and VE. Rest eA and VE were measured using the recently developed automated detector with the oscillometric method. eA was estimated using pressure/volume curves and VE was defined as follows (VE=Δ pressure/ (100 × Δ area/area) mm Hg/%). Sixteen volunteers (age 35.2±13.1 years) underwent the oscillometric measurements and brachial ultrasound at rest and under nitroglycerin (NTG) administration. Oscillometric measurement was performed twice on different days. The rest eA correlated with ultrasound-measured brachial artery area (r=0.77, P<0.001). Rest eA and VE measurement showed good reproducibility (eA: intraclass correlation coefficient (ICC)=0.88, VE: ICC=0.78). Under NTG stress, eA was significantly increased (12.3±3.0 vs. 17.1±4.6 mm2, P<0.001), and this was similar to the case with ultrasound evaluation (4.46±0.72 vs. 4.73±0.75 mm, P<0.001). VE was also decreased (0.81±0.16 vs. 0.65±0.11 mm Hg/%, P<0.001) after NTG. Cross-sectional vascular area calculated using this automated oscillometric measurement correlated with ultrasound measurement and showed good reproducibility. Therefore, this is a reliable approach and this modality may have practical application to automatically assess muscular artery diameter and elasticity in clinical or epidemiological settings. PMID:25693851

  19. Laser-ultrasound spectroscopy apparatus and method with detection of shear resonances for measuring anisotropy, thickness, and other properties

    DOEpatents

    Levesque, Daniel; Moreau, Andre; Dubois, Marc; Monchalin, Jean-Pierre; Bussiere, Jean; Lord, Martin; Padioleau, Christian

    2000-01-01

    Apparatus and method for detecting shear resonances includes structure and steps for applying a radiation pulse from a pulsed source of radiation to an object to generate elastic waves therein, optically detecting the elastic waves generated in the object, and analyzing the elastic waves optically detected in the object. These shear resonances, alone or in combination with other information, may be used in the present invention to improve thickness measurement accuracy and to determine geometrical, microstructural, and physical properties of the object. At least one shear resonance in the object is detected with the elastic waves optically detected in the object. Preferably, laser-ultrasound spectroscopy is utilized to detect the shear resonances.

  20. AISI/DOE Advanced Process Control Program Vol. 4 of 6: ON-LINE, NON-DESTRUCTIVE MECHANICAL PROPERTY MEASUREMENT USING LASER-ULTRASOUND

    SciTech Connect

    Andre' Moreau; Martin Lord; Daniel Levesqure; Marc Dubois; Jean Bussiere; Jean-Pierre Monchalin; Christian Padioleau; Guy Lamouche; Teodor Veres; Martin Viens; Harold Hebert; Pierre Basseras; Cheng-Kuei Jen

    2001-03-31

    The goal of this project was to demonstrate the feasibility to measure the mechanical properties, such as yield strength, tensile strength, elongation, strain hardening exponent and plastic strain ratio parameters, of low carbon steel sheets on the production line using laser ultrasound. The ultrasound generated by the developed apparatus travels mostly back and forth in the thickness of the steel sheet. By measuring the time delay between two echoes, and the relative amplitude of these two echoes, one can measure ultrasound velocity and attenuation. These are governed by the microstructure: grain size, crystallographic texture, dislocations, etc. Thus, by recording the time behavior of the ultrasonic signal, one can extract microstructural information. These microstructural information together with the modified Hall-Petch equation allow measurement of the mechanical properties. Through laboratory investigations with a laboratory laser ultrasound system, followed by the installation of a prototype system at LTV Steel Company's No.1 Inspection Line in Cleveland, all target mechanical properties of ultra low carbon (ULC), low carbon (LC) and high strength low alloy (HSLA) steel sample lots were measured meeting or nearly meeting all the target accuracies. Thus, the project realized its goal to demonstrate that the mechanical properties of low carbon steel sheets can be measured on-line using laser ultrasound

  1. Relationships among dual-energy X-ray absorptiometry (DXA), bioelectrical impedance (BIA), and ultrasound measurements of body composition of swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In three separate studies (156 pigs total), DXA, BIA, and ultrasound were compared as methods for measuring live body composition of pigs at 60 and 100-110 kg BWt. DXA measured total body fat and lean content, BIA measurements of resistance (Rs) and reactance (Xc) were used to calculate total body l...

  2. Ultrasound in cardiac trauma.

    PubMed

    Saranteas, Theodosios; Mavrogenis, Andreas F; Mandila, Christina; Poularas, John; Panou, Fotios

    2017-04-01

    In the perioperative period, the emergency department or the intensive care unit accurate assessment of variable chest pain requires meticulous knowledge, diagnostic skills, and suitable usage of various diagnostic modalities. In addition, in polytrauma patients, cardiac injury including aortic dissection, pulmonary embolism, acute myocardial infarction, and pericardial effusion should be immediately revealed and treated. In these patients, arrhythmias, mainly tachycardia, cardiac murmurs, or hypotension must alert physicians to suspect cardiovascular trauma, which would potentially be life threatening. Ultrasound of the heart using transthoracic and transesophageal echocardiography are valuable diagnostic tools that can be used interchangeably in conjunction with other modalities such as the electrocardiogram and computed tomography for the diagnosis of cardiovascular abnormalities in trauma patients. Although ultrasound of the heart is often underused in the setting of trauma, it does have the advantages of being easily accessible, noninvasive, and rapid bedside assessment tool. This review article aims to analyze the potential cardiac injuries in trauma patients, and to provide an elaborate description of the role of echocardiography for their accurate diagnosis.

  3. The World Health Organization Fetal Growth Charts: A Multinational Longitudinal Study of Ultrasound Biometric Measurements and Estimated Fetal Weight

    PubMed Central

    Carroli, Guillermo; Widmer, Mariana; Neerup Jensen, Lisa; Giordano, Daniel; Abdel Aleem, Hany; Talegawkar, Sameera A.; Benachi, Alexandra; Diemert, Anke; Tshefu Kitoto, Antoinette; Thinkhamrop, Jadsada; Lumbiganon, Pisake; Tabor, Ann; Kriplani, Alka; Gonzalez Perez, Rogelio; Hecher, Kurt; Hanson, Mark A.; Gülmezoglu, A. Metin; Platt, Lawrence D.

    2017-01-01

    Background Perinatal mortality and morbidity continue to be major global health challenges strongly associated with prematurity and reduced fetal growth, an issue of further interest given the mounting evidence that fetal growth in general is linked to degrees of risk of common noncommunicable diseases in adulthood. Against this background, WHO made it a high priority to provide the present fetal growth charts for estimated fetal weight (EFW) and common ultrasound biometric measurements intended for worldwide use. Methods and Findings We conducted a multinational prospective observational longitudinal study of fetal growth in low-risk singleton pregnancies of women of high or middle socioeconomic status and without known environmental constraints on fetal growth. Centers in ten countries (Argentina, Brazil, Democratic Republic of the Congo, Denmark, Egypt, France, Germany, India, Norway, and Thailand) recruited participants who had reliable information on last menstrual period and gestational age confirmed by crown–rump length measured at 8–13 wk of gestation. Participants had anthropometric and nutritional assessments and seven scheduled ultrasound examinations during pregnancy. Fifty-two participants withdrew consent, and 1,387 participated in the study. At study entry, median maternal age was 28 y (interquartile range [IQR] 25–31), median height was 162 cm (IQR 157–168), median weight was 61 kg (IQR 55–68), 58% of the women were nulliparous, and median daily caloric intake was 1,840 cal (IQR 1,487–2,222). The median pregnancy duration was 39 wk (IQR 38–40) although there were significant differences between countries, the largest difference being 12 d (95% CI 8–16). The median birthweight was 3,300 g (IQR 2,980–3,615). There were differences in birthweight between countries, e.g., India had significantly smaller neonates than the other countries, even after adjusting for gestational age. Thirty-one women had a miscarriage, and three fetuses had

  4. Automatic detection and measurement of structures in fetal head ultrasound volumes using sequential estimation and Integrated Detection Network (IDN).

    PubMed

    Sofka, Michal; Zhang, Jingdan; Good, Sara; Zhou, S Kevin; Comaniciu, Dorin

    2014-05-01

    Routine ultrasound exam in the second and third trimesters of pregnancy involves manually measuring fetal head and brain structures in 2-D scans. The procedure requires a sonographer to find the standardized visualization planes with a probe and manually place measurement calipers on the structures of interest. The process is tedious, time consuming, and introduces user variability into the measurements. This paper proposes an automatic fetal head and brain (AFHB) system for automatically measuring anatomical structures from 3-D ultrasound volumes. The system searches the 3-D volume in a hierarchy of resolutions and by focusing on regions that are likely to be the measured anatomy. The output is a standardized visualization of the plane with correct orientation and centering as well as the biometric measurement of the anatomy. The system is based on a novel framework for detecting multiple structures in 3-D volumes. Since a joint model is difficult to obtain in most practical situations, the structures are detected in a sequence, one-by-one. The detection relies on Sequential Estimation techniques, frequently applied to visual tracking. The interdependence of structure poses and strong prior information embedded in our domain yields faster and more accurate results than detecting the objects individually. The posterior distribution of the structure pose is approximated at each step by sequential Monte Carlo. The samples are propagated within the sequence across multiple structures and hierarchical levels. The probabilistic model helps solve many challenges present in the ultrasound images of the fetus such as speckle noise, signal drop-out, shadows caused by bones, and appearance variations caused by the differences in the fetus gestational age. This is possible by discriminative learning on an extensive database of scans comprising more than two thousand volumes and more than thirteen thousand annotations. The average difference between ground truth and automatic

  5. Accuracy of velocity and shear rate measurements using pulsed Doppler ultrasound: a comparison of signal analysis techniques.

    PubMed

    Markou, C P; Ku, D N

    1991-01-01

    An experimental investigation was instituted to evaluate the performance of Doppler ultrasound signal processing techniques for measuring fluid velocity under well-defined flow conditions using a 10-MHz multigated pulsed ultrasound instrument. Conditions of fully developed flow in a rigid, circular tube were varied over a Reynolds number range between 500 and 8000. The velocity across the tube was determined using analog and digital zero crossing detectors and three digital spectrum estimators. Determination of the Doppler frequency from analog or digital zero crossing detectors gave accurate velocity values for laminar and moderately turbulent flow away from the wall (0.969 less than or equal to r less than or equal to 0.986). Three digital spectrum estimators, Fast Fourier Transform, Burg autoregressive method, and minimum variance method, were slightly more accurate than the zero crossing detector (0.984 less than or equal to r less than or equal to 0.994), especially at points close to the walls and with higher levels of turbulence. Steep velocity gradients and transit-time-effects from high velocities produced significantly larger errors in velocity measurement. Wall shear rate estimates were most precise when calculated using the position of the wall and two velocity points. The calculated wall shears were within 20%-30% of theoretically predicted values.

  6. Patients’ attitude towards bedside teaching in Tunisia

    PubMed Central

    El Mhamdi, Sana; Bouanene, Ines; Sriha, Asma; Soltani, Mohamed

    2015-01-01

    Objectives To assess patient' reaction towards bedside teaching at the University Hospital of Monastir (Tunisia) and to identify the factors that may influence it. Methods A cross-sectional study was conducted during December 2012 at the University Hospital of Monastir. Each department, except the psychiatric department and the intensive care units, was visited in one day. All inpatients present on the day of the study were interviewed by four trained female nurses using a structured questionnaire. Results Of the 401 patients approached, 356 (88.8%) agreed to participate. In general, the results demonstrate that patients were positive toward medical students’ participation. The highest acceptance rates were found in situations where there is no direct contact between the patient and the student (e.g. when reading their medical file, attending ward rounds and observing doctor examining them). As the degree of students’ involvement increased, the refusal rate increased. Gender, age, educational level, marital status and the extent of students’ involvement in patient’s care were identified as the main factors affecting patients’ attitude. Conclusion: Taking advantage of this attitude, valorizing patient role as educator and using further learning methods in situations where patient’s consent for student involvement was not obtained should be considered to guarantee optimal care and safety to patients and good medical education to future physicians. PMID:26706313

  7. Enablers and barriers to implementing bedside reporting: insights from nurses.

    PubMed

    Jeffs, Lianne; Cardoso, Roberta; Beswick, Susan; Acott, Ashley; Simpson, Elisa; Campbell, Heather; Lo, Joyce; Ferris, Ella

    2013-09-01

    As part of efforts to improve patient safety, quality of care and patient- and family-centred care, there is a growing interest in moving away from traditional taped nursing reports or reporting at the nursing station to reporting at the bedside. Although a body of knowledge exists regarding what nurses view as benefits and challenges experienced in nurse-to-nurse bedside reporting, less is known about the perceptions of nurses who have experienced this change in reporting practice on their unit. In this context, a qualitative study using semi-structured interviews was undertaken to explore nurses' perceptions of a newly implemented nurse-to-nurse bedside reporting practice at one acute care hospital. A total of 43 interviews were conducted on four units with seven nurses from respirology, 10 from obstetrics and gynecology, 10 from nephrology and 16 from general surgery. Data were analyzed using a directed content analysis approach. Three themes emerged that captured nurses' perceptions of the implementation of nurse-to-nurse bedside reporting: (a) being supported to change and embrace bedside reporting, (b) maintaining confidentiality and respecting patients' preferences and (c) experiencing challenges with bedside reporting. Our findings provide insight for other organizations in their efforts to change reporting practices. Specifically, there is a need for multi-pronged initiatives including leadership support, educational opportunities and ongoing monitoring and feedback mechanisms. Future research is required to examine how enablers can be leveraged and barriers mitigated or removed to ensure successful implementation and sustainability of nurse-to-nurse bedside reporting.

  8. [Ultrasound of the large abdominal vessels].

    PubMed

    Oviedo-García, A A; Algaba-Montes, M; Segura-Grau, A; Rodríguez-Lorenzo, Á

    2016-01-01

    Ultrasound has recently become an indispensable tool for the family physician, whether exercised in primary care and emergency department; and likewise it has spread to many other specialties: internal medicine, critical care, neurology, pneumology, digestive, etc. and that ultrasound has proven to be a safe diagnostic tool and have great capacity. We firmly believe that ultrasound done to «bedside» the patient by the family doctor, can greatly complement the physical examination and greatly improve clinical effectiveness, allowing the browser an immediate view of the anatomy and physiology of certain structures. It is within this context is particularly relevant ultrasonography of the Aorta and large abdominal vessels, made by the family doctor or the emergency itself, which will develop along this chapter.

  9. Diagnostic Emergency Ultrasound: Assessment Techniques In The Pediatric Patient.

    PubMed

    Guttman, Joshua; Nelson, Bret P

    2016-01-01

    Emergency ultrasound is performed at the point of care to answer focused clinical questions in a rapid manner. Over the last 20 years, the use of this technique has grown rapidly, and it has become a core requirement in many emergency medicine residencies and in some pediatric emergency medicine fellowships. The use of emergency ultrasound in the pediatric setting is increasing due to the lack of ionizing radiation with these studies, as compared to computed tomography. Utilizing diagnostic ultrasound in the emergency department can allow clinicians to arrive at a diagnosis at the bedside rather than sending the patient out of the department for another study. This issue focuses on common indications for diagnostic ultrasound, as found in the pediatric literature or extrapolated from adult literature where pediatric evidence is scarce. Limitations, current trends, controversies, and future directions of diagnostic ultrasound in the emergency department are also discussed.

  10. Precision of Corneal Thickness Measurements Obtained Using the Scheimpflug-Placido Imaging and Agreement with Ultrasound Pachymetry

    PubMed Central

    Huang, Jinhai; Wang, Chengfang; Lu, Weicong; Gao, Rongrong; Li, Yuanguang; Wang, Qinmei; Zhao, Yune

    2015-01-01

    Purpose. To assess the reliability and comparability of measuring central corneal thickness (CCT) and thinnest corneal thickness (TCT) using a new Scheimpflug-Placido analyzer (TMS-5, Japan) and ultrasound (US) pachymetry. Methods. Seventy-six healthy subjects were prospectively measured 3 times by 1 operator using the TMS-5, 3 additional consecutive scans were performed by a second operator, and ultrasound (US) pachymetry measurements were taken. The test-retest repeatability (TRT), coefficient of variation (CoV), and intraclass correlation coefficient (ICC) were calculated to evaluate intraoperator repeatability and interoperator reproducibility. Agreement among the devices was assessed using Bland-Altman plots and 95% limits of agreement (LoA). Results. The intraoperators TRT and CoV were <19 μm and 2.0%, respectively. The interoperators TRT and CoV were <12 μm and 1.0%, respectively, and ICC was >0.90. The mean CCT and TCT measurements using the TMS-5 were 15.97 μm (95% LoA from −26.42 to −5.52 μm) and 20.32 μm (95% LoA from −30.67 to −9.97 μm) smaller, respectively, than those using US pachymetry. Conclusions. The TMS-5 shows good repeatability and reproducibility for measuring CCT and TCT in normal subjects but only moderate agreement with US pachymetry results. Caution is warranted before using these techniques interchangeably. PMID:25810919

  11. Non-contact, ultrasound-based indentation method for measuring elastic properties of biological tissues using harmonic motion imaging (HMI).

    PubMed

    Vappou, Jonathan; Hou, Gary Y; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E

    2015-04-07

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by harmonic motion imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking radiofrequency signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the measured Young's modulus and the HMI modulus in the numerical study (r(2) > 0.99, relative error <10%) and on polyacrylamide gels (r(2) = 0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI = 2.62  ±  0.41 kPa, compared to EMechTesting = 4.2  ±  2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens.

  12. Measurement of anterior and posterior circulation flow contributions to cerebral blood flow. An ultrasound-derived volumetric flow analysis.

    PubMed

    Boyajian, R A; Schwend, R B; Wolfe, M M; Bickerton, R E; Otis, S M

    1995-01-01

    Ultrasound-derived volumetric flow analysis may be useful in answering questions of basic physiological interest in the cerebrovascular circulation. Using this technique, the authors have sought to describe quantitatively the complete concurrent flow relations among all four arteries supplying the brain. The aim of this study of normal subjects was to determine the relative flow contributions of the anterior (internal carotid arteries) and posterior (vertebral arteries) cerebral circulation. Comparisons between the observed and theoretically expected anterior and posterior flow distribution would provide an opportunity to assess traditional rheological conceptions in vivo. Pulsed color Doppler ultrasonography was used to measure mean flow rates in the internal carotid and vertebral arteries in 21 normal adults. The anterior circulation (internal carotid arteries bilaterally) carried 82% of the brain's blood supply and comprised 67% of the total vascular cross-sectional area. These values demonstrate precise concordance between observations in vivo and the theoretically derived (Hagen-Poiseuille) expected flow distribution. These cerebrovascular findings support the traditional conception of macroscopic blood flow. Further studies using ultrasound-derived volumetric analysis of the brain's arterial flow relations may illuminate the vascular pathophysiology underlying aging, cerebral ischemia, and dementias.

  13. ULTRASOUND MEASUREMENTS AND OBJECTIVE FORCES OF GLENOHUMERAL TRANSLATIONS DURING SHOULDER ACCESSORY PASSIVE MOTION TESTING IN HEALTHY INDIVIDUALS

    PubMed Central

    Worst, Haley; Decarreau, Ryan; Davies, George

    2016-01-01

    Background Clinical examination of caspuloligamentous structures of the glenohumeral joint has historically been subjective in nature, as demonstrated by limited intra-rater and inter-rater reproducibility. Musculoskeletal diagnostic ultrasound was utilized to develop a clinically objective measurement technique for glenohumeral inferior and posterolateral translation. Purpose The purpose of this study was to measure the accessory passive force required to achieve end range glenohumeral posterolateral and inferior accessory translation, as well as, to quantify the amount of translation of the glenohumeral joint caused by the applied force. Study Design Cross-sectional descriptive correlational study Methods Twenty-five asymptomatic subjects between the ages of 18 and 30 were recruited via convenience sampling. Posterolateral and inferior shoulder accessory passive translation was assessed and measured using a GE LOGIQe ultrasound, while concurrently using a hand held dynamometer to quantify the passive force applied during assessment. Normative values for force and translation were described as means and standard deviations. Results Mean values for posterolateral translation were 6.5 +/− 4.0 mm on the right shoulder and 6.3 +/− 3.5 mm on the left with an associated mean force of 127.1 +/− 55.6 N and 114.4 +/− 50.7 N, respectively. Mean values for inferior translation were 4.8 +/− 1.7 mm on the right shoulder and 5.4 +/− 1.8 mm on the left with an associated mean force of 84.5 +/− 30.5 N and 76.1 +/− 30.1 N, respectively. There was a significant association between inferior translation and inferior force (r = .51). No significant association was found between posterolateral translation and posterolateral force. Significant differences were found between dominant and non-dominant shoulders for posterolateral translation, posterolateral force to produce translation, and inferior translation values

  14. Transforming care at the bedside: patient-controlled liberalized diet.

    PubMed

    Scott-Smith, Joyce L; Greenhouse, Pamela K

    2007-03-01

    A 2003 partnership between the Institute for Healthcare Improvement and the Robert Wood Johnson Foundation created an initiative to redesign medical-surgical inpatient care - Transforming Care at the Bedside (TCAB). TCAB is intended to transform the elements that affect care on medical/surgical units by rapidly creating, testing, and measuring new ideas. TCAB began as a pilot with three hospitals nationwide, including the University of Pittsburgh Medical Center (UPMC) Shadyside in Pittsburgh, Pennsylvania. UPMC Shadyside initiated its TCAB efforts with an interdisciplinary initiative, involving registered nurses (RNs), nursing assistants, registered dietitians (RDs), and medical doctors (MDs), to transform nutritional services for medical-surgical inpatients. The Patient Controlled Liberalized Diet Program, piloted in late 2003 and rolled-out house-wide in August, 2004, puts the patient in control. The goal is to improve nutritional status and satisfaction among inpatients by empowering them to make menu selections and providing individualized nutrition education. Positive quantitative and qualitative outcomes have resulted, leading to plans for system-wide (19-hospital) spread and further programmatic evolution.

  15. An ultrasound-based liquid pressure measurement method in small diameter pipelines considering the installation and temperature.

    PubMed

    Li, Xue; Song, Zhengxiang

    2015-04-09

    Liquid pressure is a key parameter for detecting and judging faults in hydraulic mechanisms, but traditional measurement methods have many deficiencies. An effective non-intrusive method using an ultrasound-based technique to measure liquid pressure in small diameter (less than 15 mm) pipelines is presented in this paper. The proposed method is based on the principle that the transmission speed of an ultrasonic wave in a Kneser liquid correlates with liquid pressure. Liquid pressure was calculated using the variation of ultrasonic propagation time in a liquid under different pressures: 0 Pa and X Pa. In this research the time difference was obtained by an electrical processing approach and was accurately measured to the nanosecond level through a high-resolution time measurement module. Because installation differences and liquid temperatures could influence the measurement accuracy, a special type of circuit called automatic gain control (AGC) circuit and a new back propagation network (BPN) model accounting for liquid temperature were employed to improve the measurement results. The corresponding pressure values were finally obtained by utilizing the relationship between time difference, transient temperature and liquid pressure. An experimental pressure measurement platform was built and the experimental results confirm that the proposed method has good measurement accuracy.

  16. An Ultrasound-Based Liquid Pressure Measurement Method in Small Diameter Pipelines Considering the Installation and Temperature

    PubMed Central

    Li, Xue; Song, Zhengxiang

    2015-01-01

    Liquid pressure is a key parameter for detecting and judging faults in hydraulic mechanisms, but traditional measurement methods have many deficiencies. An effective non-intrusive method using an ultrasound-based technique to measure liquid pressure in small diameter (less than 15 mm) pipelines is presented in this paper. The proposed method is based on the principle that the transmission speed of an ultrasonic wave in a Kneser liquid correlates with liquid pressure. Liquid pressure was calculated using the variation of ultrasonic propagation time in a liquid under different pressures: 0 Pa and X Pa. In this research the time difference was obtained by an electrical processing approach and was accurately measured to the nanosecond level through a high-resolution time measurement module. Because installation differences and liquid temperatures could influence the measurement accuracy, a special type of circuit called automatic gain control (AGC) circuit and a new back propagation network (BPN) model accounting for liquid temperature were employed to improve the measurement results. The corresponding pressure values were finally obtained by utilizing the relationship between time difference, transient temperature and liquid pressure. An experimental pressure measurement platform was built and the experimental results confirm that the proposed method has good measurement accuracy. PMID:25860069

  17. Peritoneal dialysis: from bench to bedside

    PubMed Central

    Krediet, Raymond T.

    2013-01-01

    Peritoneal dialysis was first employed in patients with acute renal failure in the 1940s and since the 1960s for those with end-stage renal disease. Its popularity increased enormously after the introduction of continuous ambulatory peritoneal dialysis in the end of 1970s. This stimulated both clinical and basic research. In an ideal situation, this should lead to cross-fertilization between the two. The present review describes two examples of interactions: one where it worked out very well and another where basic science missed the link with clinical findings. Those on fluid transport are examples of how old physiological findings on absorption of saline and glucose solutions were adopted in peritoneal dialysis by the use of glucose as an osmotic agent. The mechanism behind this in patients was first solved mathematically by the assumption of ultrasmall intracellular pores allowing water transport only. At the same time, basic science discovered the water channel aquaporin-1 (AQP-1), and a few years later, studies in transgenic mice confirmed that AQP-1 was the ultrasmall pore. In clinical medicine, this led to its assessment in patients and the notion of its impairment. Drugs for treatment have been developed. Research on biocompatibility is not a success story. Basic science has focussed on dialysis solutions with a low pH and lactate, and effects of glucose degradation products, although the first is irrelevant in patients and effects of continuous exposure to high glucose concentrations were largely neglected. Industry believed the bench more than the bedside, resulting in ‘biocompatible’ dialysis solutions. These solutions have some beneficial effects, but are evidently not the final answer. PMID:26120456

  18. The effect of bone fracture unevenness on ultrasound axial transmission measurements: A pilot 2D simulation study

    NASA Astrophysics Data System (ADS)

    Machado, Christiano B.; Pereira, Wagner C. A.; Padilla, Frédéric; Laugier, Pascal

    2012-05-01

    Ultrasound axial transmission (UAT) has been proposed to the diagnosis and follow-up of fracture healing. Some researchers have already pointed out the influence of fracture length, geometry and callus composition on the ultrasound time-of-flight and attenuation, with experimental and simulation studies. The aim of this work was to develop a pilot study on the effect of bone fracture unevenness on UAT measurements. Two-dimensional (2D) numerical simulations of ultrasound wave propagation were run using a custom-made finite-difference time domain code (SimSonic2D). Numerical models were composed of two 4-mm thick bone plates, with fracture lengths varying from 0 to 4 mm. For each case, an upward (UWun) and downward (DWun) unevenness of 0.5, 1.0 and 1.5 mm was implemented in the second plate. The 1-MHz emitter and receptor transducers were placed at 40 mm from each other, 20 mm apart from the center fracture. Two configurations were considered: 1.5 mm above the plates (for the 0-mm unevenness case) and transducers in contact with bone plate. For each situation, the time-of-flight of the first arriving signal (TOFFAS) and the FAS energy amplitude loss measured by the sound pressure level (SPLFAS) were computed. Results showed that there was a linear increase in TOFFAS with increasing fracture length, and a decrease of SPLFAS with the presence of a discontinuity. TOFFAS values were decreased with UWun (-0.87 μs for UWun = 1.5 mm), and increased with DWun (+0.99 μs for DWun = 1.5 mm). The SPLFAS increased with both UWun (+3.54 dB for UWun = 1.5 mm) and DWun (+8.15 dB for DWun = 1.5 mm). Both parameters showed the same variability. When transducers were put in contact with bone surface, fracture unevenness had no influence on TOF and SPL estimates. Previous works have already demonstrated that a fracture of 3 mm can increase TOFFAS in an order of 1 μs. Considering these preliminary results, it can be concluded that, although the variable fracture unevenness (until 1

  19. Influence of lifestyle factors on quantitative heel ultrasound measurements in middle-aged and elderly men

    PubMed Central

    Pye, Stephen R; Devakumar, Vinodh; Boonen, Steven; Borghs, Herman; Vanderschueren, Dirk; Adams, Judith E; Ward, Kate A; Bartfai, Gyorgy; Casanueva, Felipe F; Finn, Joseph D; Forti, Gianni; Giwercman, Aleksander; Han, Thang S; Huhtaniemi, Ilpo T; Kula, Krzysztof; Lean, Michael EJ; Pendleton, Neil; Punab, Margus; Silman, Alan J; Wu, Frederick CW; O’Neill, Terence W

    2014-01-01

    We examined the distribution of quantitative heel ultrasound (QUS) parameters in population samples of European men, and looked at the influence of lifestyle factors on the occurrence of these parameters. Men aged between 40 and 79 years were recruited from eight European centres and invited to attend for an interviewer-assisted questionnaire, assessment of physical performance and quantitative ultrasound (QUS) of the calcaneus (Hologic - SAHARA). The relationships between QUS parameters and lifestyle variables were assessed using linear regression with adjustments for age, centre and weight. 3,258 men, mean age 60.0 years were included in the analysis. A higher PASE score (upper vs lower tertile) was associated with higher BUA (β coefficient = 2.44 dB/Mhz), SOS (β coefficient = 6.83 m/s) and QUI (β coefficient = 3.87). Compared to those who were inactive, those who walked or cycled more than an hour per day had a higher BUA (β coeff =3.71 dB/Mhz), SOS (β coeff = 6.97 m/s) and QUI (β coeff = 4.50). A longer time to walk 50 feet was linked with lower BUA (β coeff = −0.62 dB/Mhz), SOS (β coeff = −1.06 m/s) and QUI (β coeff = −0.69). Smoking was associated with a reduction in BUA, SOS and QUI. There was a U shaped association with frequency of alcohol consumption. Modification of lifestyle, including increasing physical activity and stopping smoking may help optimise bone strength and reduce the risk of fracture in middle aged and elderly European men. PMID:20205346

  20. Two-photon photoacoustics ultrasound measurement by a loss modulation technique

    NASA Astrophysics Data System (ADS)

    Lai, Yu-Hung; Chang, Chieh-Feng; Cheng, Yu-Hsiang; Sun, Chi-Kuang

    2013-03-01

    In this work, we investigated the principle of the two-photon absorption (TPA) detection with a loss modulation technique, and first demonstrated the existence of two-photon photoacoustics ultrasound excited by a femtosecond high repetition rate laser. By using the AO modulation with different modulation frequencies, we successfully create the beating of the light signal when the two arms of the beams are both spatial and temporal overlapping. The pulse train of the femtosecond laser causes the narrow band excitation, providing the frequency selectivity and sensitivity. Moreover, the pulse energy is no more than 15nJ/pulse, which is at least 3 orders of magnitude smaller than that of the nanosecond laser, and therefore prevents the thermal damage of the sample. With the help of lock-in detection and a low noise amplifier, we can separate the signal of two-photon absorption from one-photon absorption. We used an ultrasonic transducer to detect the response of the sample, and verified the existence of the two-photon photoacoustics ultrasound generating by the femtosecond laser. Several contrast agents, such as the black carbon solution, the fluorescence dye and the nano-particles, were used in the experiment. In the end, we demonstrated the application, two photo-acoustic imaging, which provides the high spatial resolution (<10μm) and large penetration depth (~1mm), to the simulated biological tissue. This is a milestone to develop the two-photon photoacoustics microscopy, which, in principle, has the great potential to achieve the in vitro and in vivo high resolution deep tissue imaging.

  1. Ultrasound virtual endoscopy: Polyp detection and reliability of measurement in an in vitro study with pig intestine specimens

    PubMed Central

    Liu, Jin-Ya; Chen, Li-Da; Cai, Hua-Song; Liang, Jin-Yu; Xu, Ming; Huang, Yang; Li, Wei; Feng, Shi-Ting; Xie, Xiao-Yan; Lu, Ming-De; Wang, Wei

    2016-01-01

    AIM: To present our initial experience regarding the feasibility of ultrasound virtual endoscopy (USVE) and its measurement reliability for polyp detection in an in vitro study using pig intestine specimens. METHODS: Six porcine intestine specimens containing 30 synthetic polyps underwent USVE, computed tomography colonography (CTC) and optical colonoscopy (OC) for polyp detection. The polyp measurement defined as the maximum polyp diameter on two-dimensional (2D) multiplanar reformatted (MPR) planes was obtained by USVE, and the absolute measurement error was analyzed using the direct measurement as the reference standard. RESULTS: USVE detected 29 (96.7%) of 30 polyps, remaining a 7-mm one missed. There was one false-positive finding. Twenty-six (89.7%) of 29 reconstructed images were clearly depicted, while 29 (96.7%) of 30 polyps were displayed on CTC with one false-negative finding. In OC, all the polyps were detected. The intraclass correlation coefficient was 0.876 (95%CI: 0.745-0.940) for measurements obtained with USVE. The pooled absolute measurement errors ± the standard deviations of the depicted polyps with actual sizes ≤ 5 mm, 6-9 mm, and ≥ 10 mm were 1.9 ± 0.8 mm, 0.9 ± 1.2 mm, and 1.0 ± 1.4 mm, respectively. CONCLUSION: USVE is reliable for polyp detection and measurement in in vitro study. PMID:27022217

  2. Accurate lumen diameter measurement in curved vessels in carotid ultrasound: an iterative scale-space and spatial transformation approach.

    PubMed

    Krishna Kumar, P; Araki, Tadashi; Rajan, Jeny; Saba, Luca; Lavra, Francesco; Ikeda, Nobutaka; Sharma, Aditya M; Shafique, Shoaib; Nicolaides, Andrew; Laird, John R; Gupta, Ajay; Suri, Jasjit S

    2016-12-10

    Monitoring of cerebrovascular diseases via carotid ultrasound has started to become a routine. The measurement of image-based lumen diameter (LD) or inter-adventitial diameter (IAD) is a promising approach for quantification of the degree of stenosis. The manual measurements of LD/IAD are not reliable, subjective and slow. The curvature associated with the vessels along with non-uniformity in the plaque growth poses further challenges. This study uses a novel and generalized approach for automated LD and IAD measurement based on a combination of spatial transformation and scale-space. In this iterative procedure, the scale-space is first used to get the lumen axis which is then used with spatial image transformation paradigm to get a transformed image. The scale-space is then reapplied to retrieve the lumen region and boundary in the transformed framework. Then, inverse transformation is applied to display the results in original image framework. Two hundred and two patients' left and right common carotid artery (404 carotid images) B-mode ultrasound images were retrospectively analyzed. The validation of our algorithm has done against the two manual expert tracings. The coefficient of correlation between the two manual tracings for LD was 0.98 (p < 0.0001) and 0.99 (p < 0.0001), respectively. The precision of merit between the manual expert tracings and the automated system was 97.7 and 98.7%, respectively. The experimental analysis demonstrated superior performance of the proposed method over conventional approaches. Several statistical tests demonstrated the stability and reliability of the automated system.

  3. Development of a Body Condition Scoring Index for Female African Elephants Validated by Ultrasound Measurements of Subcutaneous Fat

    PubMed Central

    Morfeld, Kari A.; Lehnhardt, John; Alligood, Christina; Bolling, Jeff; Brown, Janine L.

    2014-01-01

    Obesity-related health and reproductive problems may be contributing to non-sustainability of zoo African elephant (Loxodonta africana) populations. However, a major constraint in screening for obesity in elephants is lack of a practical method to accurately assess body fat. Body condition scoring (BCS) is the assessment of subcutaneous fat stores based on visual evaluation and provides an immediate appraisal of the degree of obesity of an individual. The objective of this study was to develop a visual BCS index for female African elephants and validate it using ultrasound measures of subcutaneous fat. To develop the index, standardized photographs were collected from zoo (n = 50) and free-ranging (n = 57) female African elephants for identifying key body regions and skeletal features, which were then used to visually determine body fat deposition patterns. This information was used to develop a visual BCS method consisting of a list of body regions and the physical criteria for assigning an overall score on a 5-point scale, with 1 representing the lowest and 5 representing the highest levels of body fat. Results showed that as BCS increased, ultrasound measures of subcutaneous fat thickness also increased (P<0.01), indicating the scores closely coincide with physical measures of fat reserves. The BCS index proved to be reliable and repeatable based on high intra- and inter-assessor agreement across three assessors. In comparing photographs of wild vs. captive African elephants, the median BCS in the free-ranging individuals (BCS = 3, range 1–5) was lower (P<0.001) than that of the zoo population (BCS = 4, range 2–5). In sum, we have developed the first validated BCS index for African elephants. This tool can be used to examine which factors impact body condition in zoo and free-ranging elephants, providing valuable information on how it affects health and reproductive potential of individual elephants. PMID:24718304

  4. Subject-specific measures of Achilles tendon moment arm using ultrasound and video-based motion capture

    PubMed Central

    Manal, Kurt; Cowder, Justin D; Buchanan, Thomas S

    2013-01-01

    The Achilles tendon (AT) moment arm is an important biomechanical parameter most commonly estimated using one of two methods: (A) center of rotation and (B) tendon excursion. Conflicting findings regarding magnitude and whether it changes with contraction intensity have been reported when using these methods. In this study, we present an alternate method of measuring the AT moment arm by combining ultrasound and video-based motion capture. Moment arms for 10 healthy male subjects were measured at five different joint angles in 10° increments ranging from 20° of dorsiflexion (DF) to 20° of plantar flexion (PF). Moment arms were measured at rest and also during maximum voluntary contraction (MVC). For both conditions, the AT moment arm increased in magnitude as the ankle moved from DF to PF. In 20° of DF, the moment arm at rest averaged 34.6 ± 1.8 mm and increased to a maximum value of 36.9 ± 1.9 mm when plantar flexed to 10°. Moment arms during MVC ranged from 35.7 ± 1.8 mm to 38.1 ± 2.6 mm. The moment arms we obtained were much more consistent with literature values derived using ultrasound and tendon excursion compared to center of rotation or in vitro methods. This is noteworthy as the hybrid method is easy to implement and as it is less costly and timing consuming than other methods, including tendon excursion, it is well suited for large-scale studies involving many subjects. PMID:24400141

  5. Abdominal ultrasound

    MedlinePlus

    ... Kidney - blood and urine flow Abdominal ultrasound References Chen L. Abdominal ultrasound imaging. In: Sahani DV, Samir ... the Health on the Net Foundation (www.hon.ch). The information provided herein should not be used ...

  6. Endoscopic ultrasound

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/007646.htm Endoscopic ultrasound To use the sharing features on this page, please enable JavaScript. Endoscopic ultrasound is a type of imaging test. It is ...

  7. Clinical Teachers’ Opinions about Bedside-based Clinical Teaching

    PubMed Central

    Shehab, Abdullah

    2013-01-01

    Objectives: In recent years, there has been a decline in estimated time spent on bedside teaching. The aim of this study was to evaluate clinical teachers’ perceptions and practice of, and approaches to, bedside teaching. Methods: The study site was Ninewells Hospital in Dundee, UK. A self-administered questionnaire was developed and piloted on full-time clinical academic university staff. Responses were solicited to 36 questions relating to teaching experience, familiarity with the 12 learning outcomes of Dundee Medical School's curriculum, and perception and practice of basic bedside etiquette. For each of these items, a comparison between consultants and specialist registrars (SPRs) was carried out. Results: Out of the 64 clinical teachers approached, 45 (70%) participated in the study: 26 of them (57.7%) were consultants and 19 (42.3%) SPRs. A total of 17 (65%) of the consultants had been trained to teach medical students at the bedside, while only 9 SPRs (47%) had had similar training. In addition, 13 consultants (50%) reported being familiar with Dundee Medical School's 12 learning outcomes, while only 7 (36%) SPRs were familiar with it. Obstacles reported by consultants and SPRs were groups of over 6 students (65% versus 61%, respectively), a limited number of patients with good clinical signs (67% versus 63%, respectively), a shorter length of stay in hospital (73% versus 68%, respectively), lack of privacy in crowded wards (76% versus 73%, respectively), and interruptions from telephones and visitors (57% versus 64%, respectively). Conclusion: Effective clinical teacher training and a thorough understanding of curriculum outcomes are crucial to successful bedside clinical teaching. Identifying obstacles to bedside clinical teaching will contribute to a more effective and efficient programme. PMID:23573392

  8. Does ultrasound measurement improve the accuracy of electronic brachytherapy in the treatment of superficial non-melanomatous skin cancer?

    PubMed Central

    Pan, Junhan; Cui, Haiyan; Stea, Baldassarre

    2017-01-01

    Purpose Electronic brachytherapy (eBT) is a form of contact radiation therapy used for thin superficial non-melanomatous skin cancers (NMSCs). An accurate measurement of diameter and depth is important for eBT treatment planning. Therefore, we compared clinical measurements by an experienced physician to measurements obtained using ultrasound (US), an objective imaging modality, in order to determine if clinical measurements were accurate enough for adequate NMSC treatment. Material and methods Eighteen patients with 20 biopsy-proven NMSCs first had a clinical examination and then an US evaluation prior to starting eBT. One physician provided a clinical measurement for diameter and depth based on physical examination during radiation oncology consultation. The patients then had an US evaluation with a 14 or 18 MHz US unit, to determine both the diameter and depth measurements; eBT dose prescription was done using the US derived measurements. The clinical measurements and US measurements were compared using a t-test. Results Seventeen lesions were basal cell carcinoma and 3 lesions were squamous cell carcinoma. The most common location was the nose (10 lesions). The difference between the clinical and the US derived measurements for the second largest diameter was found to be statistically significant (p = 0.03), while the difference for the largest diameter of the lesions was not (p = 0.24). More importantly, the depth measurements obtained with US were also found to be significantly different from the clinical estimates (p = 0.02). All patients have had a complete response to therapy with a median follow-up of 24 months. Conclusions Statistically different measurements were obtained in 2 of 3 parameters used in choosing applicator size and prescription depth using an US assessment. The data presented suggests that US is a more objective modality than clinical judgment for determining superficial NMSC diameter and prescription depth for personalized eBT planning

  9. Automatic Measurement of Thalamic Diameter in 2D Fetal Ultrasound Brain Images using Shape Prior Constrained Regularized Level Sets.

    PubMed

    Sridar, Pradeeba; Kumar, Ashnil; Li, Changyang; Woo, Joyce; Quinton, Ann; Benzie, Ron; Peek, Michael; Feng, Dagan; Ramarathnam, Krishna Kumar; Nanan, Ralph; Kim, Jinman

    2016-06-20

    We derived an automated algorithm for accurately measuring the thalamic diameter from 2D fetal ultrasound (US) brain images. The algorithm overcomes the inherent limitations of the US image modality: non-uniform density, missing boundaries, and strong speckle noise. We introduced a 'guitar' structure that represents the negative space surrounding the thalamic regions. The guitar acts as a landmark for deriving the widest points of the thalamus even when its boundaries are not identifiable. We augmented a generalized level-set framework with a shape prior and constraints derived from statistical shape models of the guitars; this framework was used to segment US images and measure the thalamic diameter. Our segmentation method achieved a higher mean Dice similarity coefficient, Hausdorff distance, specificity and reduced contour leakage when compared to other well-established methods. The automatic thalamic diameter measurement had an inter-observer variability of -0.56±2.29 millimeters compared to manual measurement by an expert sonographer. Our method was capable of automatically estimating the thalamic diameter, with the measurement accuracy on par with clinical assessment. Our method can be used as part of computer-assisted screening tools that automatically measure the biometrics of the fetal thalamus; these biometrics are linked to neuro-developmental outcomes.

  10. Ultrasound strain zero-crossing elasticity measurement in assessment of renal allograft cortical hardness: a preliminary observation.

    PubMed

    Gao, Jing; Rubin, Jonathan M

    2014-09-01

    To determine whether ultrasound strain zero-crossing elasticity measurement can be used to discriminate moderate cortical fibrosis or inflammation in renal allografts, we prospectively assessed cortical hardness with quasi-static ultrasound elastography in 38 renal transplant patients who underwent kidney biopsy from January 2013 to June 2013. With the Banff score criteria for renal cortical fibrosis as gold standard, 38 subjects were divided into two groups: group 1 (n = 18) with ≤25% cortical fibrosis and group 2 (n = 20) with >26% cortical fibrosis. We then divided this population again into group 3 (n = 20) with ≤ 25% inflammation and group 4 (n = 18) with >26% inflammation based on the Banff score for renal parenchyma inflammation. To estimate renal cortical hardness in both population divisions, we propose an ultrasound strain relative zero-crossing elasticity measurement (ZC) method. In this technique, the relative return to baseline, that is zero strain, of strain in the renal cortex is compared with that of strain in reference soft tissue (between the abdominal wall and pelvic muscles). Using the ZC point on the reference strain decompression slope as standard, we determined when cortical strain crossed zero during decompression. ZC was negative when cortical strain did not return or returned after the reference, whereas ZC was positive when cortical strain returned ahead of the reference. Fisher's exact test was used to examine the significance of differences in ZC between groups 1 and 2 and between groups 3 and 4. The accuracy of ZC in determining moderate cortical fibrosis and moderate inflammation was examined by receiver operating characteristic analysis. The intra-class correlation coefficient and analysis of variance were used to test inter-rater reliability and reproducibility. ZC had good inter-observer agreement (ICC = 0.912) and reproducibility (p = 0.979). ZCs were negative in 18 of 18 cases in group 1 and positive in 19 of 20 cases in

  11. Thyroid ultrasound

    PubMed Central

    Chaudhary, Vikas; Bano, Shahina

    2013-01-01

    Thyroid ultrasonography has established itself as a popular and useful tool in the evaluation and management of thyroid disorders. Advanced ultrasound techniques in thyroid imaging have not only fascinated the radiologists but also attracted the surgeons and endocrinologists who are using these techniques in their daily clinical and operative practice. This review provides an overview of indications for ultrasound in various thyroid diseases, describes characteristic ultrasound findings in these diseases, and illustrates major diagnostic pitfalls of thyroid ultrasound. PMID:23776892

  12. Carotid Ultrasound

    MedlinePlus

    ... this page from the NHLBI on Twitter. Carotid Ultrasound Also known as carotid duplex. Carotid ultrasound is a painless imaging test that uses high- ... of your carotid arteries. This test uses an ultrasound machine, which includes a computer, a screen, and ...

  13. A Cross-Sectional Study of the Association of VDR Gene, Calcium Intake, and Heel Ultrasound Measures in Early Adulthood.

    PubMed

    Correa-Rodríguez, María; Schmidt Rio-Valle, Jacqueline; González-Jiménez, Emilio; Rueda-Medina, Blanca

    2016-03-01

    The acquisition of a high adult peak bone mass (PBM) is considered an important determinant of osteoporotic risk later in life. Genetic and environmental factors determine optimal PBM acquisition in early adulthood. The aim of this study was to test the association of vitamin D receptor (VDR) gene polymorphisms and dietary calcium intake with the bone mass of young adults. The study population comprised a total of 305 individuals (mean age 20.41; SD 2.36) whose bone mass was assessed through heel ultrasound [quantitative ultrasound measurements (QUS)] measurements (BUA, dB/MHz). The FokI G/A, rs9729 G/T, and TaqI G/A polymorphisms were selected as genetic markers of VDR. A significant difference in BUA values was observed according to gender (females 82.96; SD 15.89 vs. males 97.72; SD 16.50; p < 0.00001). The mean dietary calcium intake of the study group (827.84 mg/day; SD 347.04) was lower than the dietary reference intake for young adults (1000 mg/day) and had no association with BUA. None of the three VDR polymorphisms tested showed an association with BUA. Similarly, the analysis of VDR 3' haplotypes, estimated using rs9729 and Taq1 as tag SNPs, did not reveal any significant association with QUS traits. Our results confirm the existence of different heel QUS for women and men, as well as a tendency towards low calcium consumption by young adults, and they also suggest that the VDR gene does not play a major role in the genetic determination of QUS parameter in early adulthood.

  14. Elasticity-density and viscoelasticity-density relationships at the tibia mid-diaphysis assessed from resonant ultrasound spectroscopy measurements.

    PubMed

    Bernard, Simon; Schneider, Joannes; Varga, Peter; Laugier, Pascal; Raum, Kay; Grimal, Quentin

    2016-02-01

    Cortical bone tissue is an anisotropic material characterized by typically five independent elastic coefficients (for transverse isotropy) governing shear and longitudinal deformations in the different anatomical directions. It is well established that the Young's modulus in the direction of the bone axis of long bones has a strong relationship with mass density. It is not clear, however, whether relationships of similar strength exist for the other elastic coefficients, for they have seldom been investigated, and the results available in the literature are contradictory. The objectives of the present work were to document the anisotropic elastic properties of cortical bone at the tibia mid-diaphysis and to elucidate their relationships with mass density. Resonant ultrasound spectroscopy (RUS) was used to measure the transverse isotropic stiffness tensor of 55 specimens from 19 donors. Except for Poisson's ratios and the non-diagonal stiffness coefficient, strong linear correlations between the different elastic coefficients (0.7 < r(2) < 0.99) and between these coefficients and density (0.79 < r(2) < 0.89) were found. Comparison with previously published data from femur specimens suggested that the strong correlations evidenced in this study may not only be valid for the mid-tibia. RUS also measures the viscous part of the stiffness tensor. An anisotropy ratio close to two was found for damping coefficients. Damping increased as the mass density decreased. The data suggest that a relatively accurate estimation of all the mid-tibia elastic coefficients can be derived from mass density. This is of particular interest (1) to design organ-scale bone models in which elastic coefficients are mapped according to Hounsfield values from computed tomography scans as a surrogate for mass density and (2) to model ultrasound propagation at the mid-tibia, which is an important site for the in vivo assessment of bone status with axial transmission techniques.

  15. Metrological Validation of a Measurement Procedure for the Characterization of a Biological Ultrasound Tissue-Mimicking Material.

    PubMed

    Santos, Taynara Q; Alvarenga, André V; Oliveira, Débora P; Costa-Felix, Rodrigo P B

    2017-01-01

    The speed of sound and attenuation are important properties for characterizing reference materials such as biological phantoms used in ultrasound applications. There are many publications on the manufacture of ultrasonic phantoms and the characterization of their properties. However, few studies have applied the principles of metrology, such as the expression of the uncertainty of measurement. The objective of this study is to validate a method for characterizing the speed of sound and the attenuation coefficient of tissue-mimicking material (TMM) based on the expression of the measurement of uncertainty. Six 60-mm-diameter TMMs were fabricated, three 10 mm thick and three 20 mm thick. The experimental setup comprised two ultrasonic transducers, acting as transmitter or receiver depending on the stage of the measurement protocol, both with a nominal center frequency of 5 MHz and an element diameter of 12.7 mm. A sine burst of 20 cycles and 20-V peak-to-peak amplitude at 5 MHz excited the transmitter transducer, producing a maximum pressure of 0.06 MPa. The measurement method was based on the through-transmission substitution immersion technique. The speed of sound measurement system was validated using a calibrated stainless-steel cylinder as reference material, and normalized errors were <0.8. The attenuation coefficient measurement method was validated using replicated measurements under repeatability conditions. The normalized error between the two measurement sets was <1. The proposed uncertainty models for the measurements of the speed of sound and the attenuation coefficient can help other laboratories develop their own uncertainty models. These validated measurement methods can be used to certify a TMM as a reference material for biotechnological applications.

  16. Comparison of Measurements of the Uterus and Cervix Obtained by Magnetic Resonance and Transabdominal Ultrasound Imaging to Identify the Brachytherapy Target in Patients With Cervix Cancer

    SciTech Connect

    Dyk, Sylvia van; Kondalsamy-Chennakesavan, Srinivas; Schneider, Michal; Bernshaw, David; Narayan, Kailash

    2014-03-15

    Purpose: To compare measurements of the uterus and cervix obtained with magnetic resonance imaging (MRI) and transabdominal ultrasound to determine whether ultrasound can identify the brachytherapy target and be used to guide conformal brachytherapy planning and treatment for cervix cancer. Methods and Materials: Consecutive patients undergoing curative treatment with radiation therapy between January 2007 and March 2012 were included in the study. Intrauterine applicators were inserted into the uterine canal while patients were anesthetized. Images were obtained by MRI and transabdominal ultrasound in the longitudinal axis of the uterus with the applicator in treatment position. Measurements were taken at the anterior and posterior surface of the uterus at 2.0-cm intervals along the applicator, from the external os to the tip of the applicator. Data were analyzed using Bland Altman plots examining bias and 95% limits of agreement. Results: A total of 192 patients contributed 1668 measurements of the cervix and uterus. Mean (±SD) differences of measurements between imaging modalities at the anterior and posterior uterine surface ranged from 1.5 (±3.353) mm to 3.7 (±3.856) mm, and −1.46 (±3.308) mm to 0.47 (±3.502) mm, respectively. The mean differences were less than 3 mm in the cervix. The mean differences were less than 1.5 mm at all measurement points on the posterior surface. Conclusion: Differences in the measurements of the cervix and uterus obtained by MRI and ultrasound were within clinically acceptable limits. Transabdominal ultrasound can be substituted for MRI in defining the target volume for conformal brachytherapy treatment of cervix cancer.

  17. The development of motor synergies in children: ultrasound and acoustic measurements.

    PubMed

    Noiray, Aude; Ménard, Lucie; Iskarous, Khalil

    2013-01-01

    The present study focuses on differences in lingual coarticulation between French children and adults. The specific question pursued is whether 4-5 year old children have already acquired a synergy observed in adults in which the tongue back helps the tip in the formation of alveolar consonants. Locus equations, estimated from acoustic and ultrasound imaging data were used to compare coarticulation degree between adults and children and further investigate differences in motor synergy between the front and back parts of the tongue. Results show similar slope and intercept patterns for adults and children in both the acoustic and articulatory domains, with an effect of place of articulation in both groups between alveolar and non-alveolar consonants. These results suggest that 4-5 year old children (1) have learned the motor synergy investigated and (2) have developed a pattern of coarticulatory resistance depending on a consonant place of articulation. Also, results show that acoustic locus equations can be used to gauge the presence of motor synergies in children.

  18. Pulsatility Produced by the Hemodialysis Roller Pump as Measured by Doppler Ultrasound.

    PubMed

    Fulker, David; Keshavarzi, Gholamreza; Simmons, Anne; Pugh, Debbie; Barber, Tracie

    2015-11-01

    Microbubbles have previously been detected in the hemodialysis extracorporeal circuit and can enter the blood vessel leading to potential complications. A potential source of these microbubbles is highly pulsatile flow resulting in cavitation. This study quantified the pulsatility produced by the roller pump throughout the extracorporeal circuit. A Sonosite S-series ultrasound probe (FUJIFILM Sonosite Inc., Tokyo, Japan) was used on a single patient during normal hemodialysis treatment. The Doppler waveform showed highly pulsatile flow throughout the circuit with the greatest pulse occurring after the pump itself. The velocity pulse after the pump ranged from 57.6 ± 1.74 cm/s to -72 ± 4.13 cm/s. Flow reversal occurred when contact between the forward roller and tubing ended. The amplitude of the pulse was reduced from 129.6 cm/s to 16.25 cm/s and 6.87 cm/s following the dialyzer and venous air trap. This resulted in almost nonpulsatile, continuous flow returning to the patient through the venous needle. These results indicate that the roller pump may be a source of microbubble formation from cavitation due to the highly pulsatile blood flow. The venous air trap was identified as the most effective mechanism in reducing the pulsatility. The inclusion of multiple rollers is also recommended to offer an effective solution in dampening the pulse produced by the pump.

  19. The possible use of combined electrical impedance and ultrasound velocity measurements for the non-invasive measurement of temperature during mild hyperthermia.

    PubMed

    Islam, Naimul; Hale, Rebecca; Taylor, Matthew; Wilson, Adrian

    2013-09-01

    This paper explores the possibility of using combined measurements of electrical impedance and changes in ultrasound time of flight for determining deep body temperature during mild hyperthermia. Simultaneous electrical impedance spectra (1 kHz-1024 kHz) and ultrasound time-of-flight measurements were made on layered sheep liver and fat tissue samples as the temperature was increased from 30-50 °C. The change in propagation velocity for 100% fat and 100% liver samples was found to vary linearly with temperature and the temperature coefficient of the time-of-flight was shown to vary linearly with the % fat in the sample (0.009% °C-1%-1). Tetrapolar impedance measurements normalized to 8 kHz were shown to have a small sensitivity to temperature for both liver (0.001% °C-1 ≤ 45 °C) and fat (0.002% °C-1 ≤ 512 kHz) and the best linear correlation between the normalized impedance and the % fat in the sample was found at 256 kHz (gradient 0.026%-1, r2 = 0.65). A bootstrap analysis on 15 layered tissue samples evaluated using the normalized impedance at 256 kHz to determine the % fat in the sample and the temperature coefficient of the time of flight to determine the temperature. The results showed differences (including some large differences) between the predicted and measured temperatures and an error evaluation identified the possible origins of these.

  20. CORRELATION BETWEEN CALCANEAL BONE ULTRASOUND MEASUREMENTS AND DENSITOMETRY AMONG POSTMENOPAUSAL WOMEN WITH FRACTURES CAUSED BY BONE FRAGILITY

    PubMed Central

    Moraes, Frederico Barra; Oliveira, Lindomar Guimarães de; Novais, Pierre de Souza; Melo, Murilo Rodrigues; Guimarães, Mara Lúcia Rassi

    2015-01-01

    Objective: To assess the correlation between ultrasound (US) measurement on the calcaneus and bone densitometry (DEXA), among postmenopausal women who already presented fragility fractures. Methods: 35 postmenopausal women over 40 years of age, with the ability to walk and presenting osteoporotic fractures of the wrist or spine, without previous treatment for osteoporosis, were analyzed in a retrospective cohort. Of these, 16 were under 60 and 19 were over 60. The broadband ultrasound attenuation (BUA) and speed of sound (SOS) were compared using DEXA (L1-L4, total femur, femoral neck and wrist). Two different values of BUA were used as cutoff points for osteoporosis: BUA < 60 dB/MHz and BUA < 64 dB/MHz (P < 0.05); and SOS < 1600 m/s. The confidence interval was 95%. The DEXA and US data were plotted on dispersion graphs and, through linear regression, it was possible to establish correlations. Following this, the sample was stratified according to age (up to 60 years and 60 years and over). Thus, the values were again compared and correlated. Results: The best correlation obtained between DEXA and US was between the T-score of the wrist and BUA < 64 dB/MHz, with 92% sensitivity and 95% specificity. Better sensitivity at all DEXA sites was obtained when US was performed on patients over 60 years of age. The SOS compatible with osteoporosis was < 1592.5 m/s (89% sensitivity and 85% specificity). Conclusion: US on the calcaneus can be used for screening the risk of osteoporosis fractures, using a cutoff of BUA < 64 dB/MHz, especially among patients over 60 years of age. PMID:27027001

  1. Musculoskeletal ultrasound in pediatric rheumatology

    PubMed Central

    2011-01-01

    Although musculoskeletal ultrasound (MSUS) has emerged as an indispensible tool among physicians involved in musculoskeletal medicine in the last two decades, only recently has it become more attractive to pediatric rheumatologists. Thereafter, the use of MSUS in pediatric rheumatology has started to increase. Yet, an ever-growing body of literature shows parity and even superiority of MSUS when compared to physical examination and other imaging modalities. MSUS is suitable for examination of children of all ages and it has certain advantages over other imaging modalities; as it is cheaper, mobile, instantly accessible bedside, easy to combine with clinical assessment (interactivity) and non-invasive. It does not require sedation, which facilitates repetitive examinations. Assessment of multiple locations is possible during the same session. Agitation is rarely a problem and small children can be seated in their parents' lap or they can even play while being examined. PMID:21910870

  2. Application of a Sub-set of Skinfold Sites for Ultrasound Measurement of Subcutaneous Adiposity and Percentage Body Fat Estimation in Athletes.

    PubMed

    O'Neill, D C; Cronin, O; O'Neill, S B; Woods, T; Keohane, D M; Molloy, M G; Falvey, E C

    2016-05-01

    Body composition assessment is an integral feature of elite sport as optimization facilitates successful performance. This study aims to refine the use of B-mode ultrasound in the assessment of athlete body composition by determining suitable sites for measurement. 67 elite athletes recruited from the Human Performance Laboratory, University College Cork, Ireland, underwent dual measurement of body composition. Subcutaneous adipose tissue thickness at 7 anatomical sites were measured using ultrasound and compared to percentage body fat values determined using Dual-Energy X-ray Absorptiometry. Multiple linear regressions were performed and an equation to predict percentage body fat was derived. The present study found subcutaneous adipose tissue depths at the triceps, biceps, anterior thigh and supraspinale sites correlated significantly with percentage body fat by X-ray absorptiometry (all p<0.05). Summation of the depths at these locations correlated strongly with percentage body fat by Dual-Energy X-ray Absorptiometry (R²=0.879). The triceps, biceps, anterior thigh and supraspinale sites are suitable anatomical landmarks for the estimation of %BF using B-mode ultrasound. Use of B-mode ultrasound in the assessment of athlete body composition confers many benefits including lack of ionising radiation and its potential to be used as a portable field tool.

  3. [The pretransfusion bedside agglutination test is not a "Gold Standard"].

    PubMed

    Levy, G

    2008-11-01

    ABO-incompatible transfusions remain frequent in Europe despite the technological progresses in relation with the potential number of human errors during the control procedures of the transfusion chain. The agglutination bedside-test is only one step of this chain and the amelioration of the security will be achieved by its replacement by an electronical check.

  4. Students’ perspective of bedside teaching: A qualitative study

    PubMed Central

    Al-Swailmi, Farhan Khashim; Khan, Ishtiaq Ali; Mehmood, Yasir; Al-Enazi, Shehab Ahmed; Alrowaili, Majed; Al-Enazi, Madallah Mashaan

    2016-01-01

    Objectives: To determine students’ perception of bedside teaching, to find out barriers in its effective implementation and to suggest strategies to make it an effective learning tool. Methods: This study was conducted in Faculty of Medicine, Northern Border University Arar, Kingdom of Saudi Arabia between November 2013 and January 2014. The study design was qualitative inductive thematic analysis using transcripts from audio-recorded focus group discussions. Four focused group discussions with medical students of 4th and 5th year MBBS were conducted. Each 40 to 50 minutes discussion session was audio taped and transcribed verbatim. Thematic analysis extracted key themes pertaining to objectives of the study. Results: A total 75 students of 4th and 5th year MBBS took part in the study, 48 were female and 27 of them were male. Students believed that bedside teaching is valuable for learning essential clinical skills. They described many barriers in its effective implementation: uncooperative and less number of patients and faculty attitude. Our students suggested various strategies to address these barriers: promotion of awareness among general public about students’ learning and its benefits, free medical treatment for expatriates and building of university hospital. Conclusion: Bedside teaching is an important learning tool. Its utility can be enhanced by orienting local patients’ attitude towards importance of students’ learning, by providing free medical treatment to expatriates and by including bedside teaching in faculty development programs. PMID:27182238

  5. Cardiovascular Tissue Engineering: Preclinical Validation to Bedside Application

    PubMed Central

    Best, Cameron; Onwuka, Ekene; Pepper, Victoria; Sams, Malik; Breuer, Jake

    2015-01-01

    Advancements in biomaterial science and available cell sources have spurred the translation of tissue-engineering technology to the bedside, addressing the pressing clinical demands for replacement cardiovascular tissues. Here, the in vivo status of tissue-engineered blood vessels, heart valves, and myocardium is briefly reviewed, illustrating progress toward a tissue-engineered heart for clinical use. PMID:26661524

  6. An automated bladder volume measurement algorithm by pixel classification using random forests.

    PubMed

    Annangi, Pavan; Frigstad, Sigmund; Subin, S B; Torp, Anders; Ramasubramaniam, Sundararajan; Varna, Srinivas; Annangi, Pavan; Frigstad, Sigmund; Subin, S B; Torp, Anders; Ramasubramaniam, Sundararajan; Varna, Srinivas; Ramasubramaniam, Sundararajan; Torp, Anders; Varna, Srinivas; Subin, Sb; Annangi, Pavan; Frigstad, Sigmund

    2016-08-01

    Residual bladder volume measurement is a very important marker for patients with urinary retention problems. To be able to monitor patients with these conditions at the bedside by nurses or in an out patient setting by general physicians, hand held ultrasound devices will be extremely useful. However to increase the usage of these devices by non traditional users, automated tools that can aid them in the scanning and measurement process will be of great help. In our paper, we have developed a robust segmentation algorithm to automatically measure bladder volume by segmenting bladder contours from sagittal and transverse ultrasound views using a combination of machine learning and active contour algorithms. The algorithm is tested on 50 unseen images and 23 transverse and longitudinal image pairs and the performance is reported.

  7. Evaluation of agreement in corneal thickness measurements obtained using optical coherence tomography and ultrasound technique and determination of its specificity in keratoconus screening

    NASA Astrophysics Data System (ADS)

    Gunvant, P.; Darner, R.

    2011-03-01

    The aims of the present study are 1) to evaluate inter and intra observer repeatability of optical coherence tomography corneal thickness measurements 2) to investigate the agreement in corneal thickness obtained using an ultrasound pachymeter and the non-contact high resolution optical coherence tomography 3) to evaluate the false positive rate of identifying keratoconic suspects on the basis of standard machine protocol. Measurements were performed on 51 eyes of 51 individuals without any known corneal pathology. Altman and Bland plots were analyzed to determine agreement of corneal thickness measurements obtained using optical coherence tomography and ultrasound pachymeter; linear regression analysis was performed to evaluate its interchangeability. The agreement between the optical coherence tomography and ultrasonic pachymeter measurements was best for the central corneal thickness with a mean bias of 13.4 microns, with optical coherence tomography values being lower than the ultrasound pachymeter. The agreement of measurements in the mid-peripheral cornea was poor, with bias in measurements ranging from 33 to 55 microns. The optical coherence tomography measurements were repeatable with no differences in values between intra and inter observer repeat measurements. Using standard machine protocol for keratoconus screening, utilizing 1 out of 4 criteria gave a specificity of 86% and using 2 of the 4 criteria gave a specificity of 98%.

  8. Role of bedside transvaginal ultrasonography in the diagnosis of tubo-ovarian abscess in the emergency department.

    PubMed

    Adhikari, Srikar; Blaivas, Michael; Lyon, Matthew

    2008-05-01

    Tubo-ovarian Abscess (TOA) is a complication of pelvic inflammatory disease (PID) requiring admission, i.v. antibiotics and, possibly, aspiration or surgery. The purpose of this study was to describe the role of emergency department (ED) bedside transvaginal ultrasonography (US) in the diagnosis of TOA. This was a retrospective review of non-pregnant ED patients presenting with pelvic pain who were diagnosed with TOA using bedside transvaginal US. ED US examinations were performed by emergency medicine residents and ultrasound-credentialed attending physicians within 1 h after clinical assessment. ED US logs were reviewed for the diagnosis of TOA. Medical records were reviewed for risk factors, medical and sexual history, physical examination findings, laboratory results, additional diagnostic testing, hospital course, and a discharge diagnosis of TOA by the admitting gynecology service. A total of 20 patients with TOA were identified over a 3-year period. Ages ranged from 14 to 45 years (mean 27 years). Seven (35%) patients reported a prior history of PID or sexually transmitted disease, and 1 (5%) was febrile. All had lower abdominal tenderness and 9 (45%) had cervical motion or adnexal tenderness. The sonographic abnormalities included 14 (70%) with a complex adnexal mass, 5 (25%) with echogenic fluid in the cul-de-sac, and 3 (15%) patients with pyosalpinx. The discharge diagnosis was TOA by the admitting gynecology service for all patients. Our study illustrates the limitations of clinical criteria in diagnosing TOA and supports the use of bedside US when evaluating patients with pelvic pain and symptoms that do not meet classic Centers for Disease Control and Prevention criteria for PID.

  9. From FAST to E-FAST: an overview of the evolution of ultrasound-based traumatic injury assessment.

    PubMed

    Montoya, J; Stawicki, S P; Evans, D C; Bahner, D P; Sparks, S; Sharpe, R P; Cipolla, J

    2016-04-01

    Ultrasound is a ubiquitous and versatile diagnostic tool. In the setting of acute injury, ultrasound enhances the basic trauma evaluation, influences bedside decision-making, and helps determine whether or not an unstable patient requires emergent procedural intervention. Consequently, continued education of surgeons and other acute care practitioners in performing focused emergency ultrasound is of great importance. This article provides a synopsis of focused assessment with sonography for trauma (FAST) and the extended FAST (E-FAST) that incorporates basic thoracic injury assessment. The authors also review key pitfalls, limitations, controversies, and advances related to FAST, E-FAST, and ultrasound education.

  10. Effect of Transducer Orientation on Errors in Ultrasound Image-Based Measurements of Human Medial Gastrocnemius Muscle Fascicle Length and Pennation

    PubMed Central

    Gandevia, Simon C.; Herbert, Robert D.

    2016-01-01

    Ultrasound imaging is often used to measure muscle fascicle lengths and pennation angles in human muscles in vivo. Theoretically the most accurate measurements are made when the transducer is oriented so that the image plane aligns with muscle fascicles and, for measurements of pennation, when the image plane also intersects the aponeuroses perpendicularly. However this orientation is difficult to achieve and usually there is some degree of misalignment. Here, we used simulated ultrasound images based on three-dimensional models of the human medial gastrocnemius, derived from magnetic resonance and diffusion tensor images, to describe the relationship between transducer orientation and measurement errors. With the transducer oriented perpendicular to the surface of the leg, the error in measurement of fascicle lengths was about 0.4 mm per degree of misalignment of the ultrasound image with the muscle fascicles. If the transducer is then tipped by 20°, the error increases to 1.1 mm per degree of misalignment. For a given degree of misalignment of muscle fascicles with the image plane, the smallest absolute error in fascicle length measurements occurs when the transducer is held perpendicular to the surface of the leg. Misalignment of the transducer with the fascicles may cause fascicle length measurements to be underestimated or overestimated. Contrary to widely held beliefs, it is shown that pennation angles are always overestimated if the image is not perpendicular to the aponeurosis, even when the image is perfectly aligned with the fascicles. An analytical explanation is provided for this finding. PMID:27294280

  11. Cochlear microphonics recordable at the non-shielded bedside using a new tubal transducer.

    PubMed

    Nishida, H; Komatsuzaki, A; Noguchi, Y

    1997-01-01

    A new tubal transducer (NC-3) for measuring cochlear microphonics (CM) in extratympanic electrocochleography (ECochG) was developed by improving the common hearing aid earphone. Using a human forearm as a dummy ear, the artifact contamination generated from the NC-3 tubal transducer was tested and the possibility of measuring the CM at a non-shielded bedside was studied. An HN-5 electrode was fixed to a subject's forearm, and a sound stimulus of 90 dBnHL was delivered through the tube of the NC-3. When the earphone of the transducer was placed at a right-angle to the electrode on either a vertical or horizontal plane and the electrode was placed in direct contact with the tip of the tube, contamination from electromagnetic induction and CM-like mechanical vibration were prevented. Using the HN-5 electrode and NC-3, extratympanic ECochG-CM was recorded from normal-hearing subjects in both a shielded soundproof room and a non-shielded ordinary, quiet room. No differences were found between CMs measured in the two rooms. These results suggest that the NC-3 overcomes the shortcomings of a loudspeaker system and allows CM to be recorded accurately at non-shielded bedsides.

  12. Measurement of turbulence statistics in single-phase and two-phase flows using ultrasound imaging velocimetry

    NASA Astrophysics Data System (ADS)

    Gurung, Arati; Poelma, Christian

    2016-11-01

    Ultrasound imaging velocimetry (UIV) has received considerable interest as a tool to measure in non-transparent flows. So far, studies have only reported statistics for steady flows or used a qualitative approach. In this study, we demonstrate that UIV has matured to a level where accurate turbulence statistics can be obtained. The technique is first validated in laminar and fully developed turbulent pipe flow (single-phase, with water as fluid) at a Reynolds number of 5300. The flow statistics agree with the literature data. Subsequently, we obtain similar statistics in turbulent two-phase flows at the same Reynolds number, by adding solid particles up to volume fraction of 3 %. In these cases, the medium is completely opaque, yet UIV provides useable data. The error in the measurements is estimated using an ad hoc approach at a volume load up to 10 %. For this case, the errors are approximately 1.9 and 0.3 % of the centerline velocity for the streamwise and radial velocity components, respectively. Additionally, it is demonstrated that it is possible to estimate the local concentration in stratified flows.

  13. Urinary Mineral Concentrations in European Pre-Adolescent Children and Their Association with Calcaneal Bone Quantitative Ultrasound Measurements

    PubMed Central

    Van den Bussche, Karen; Herrmann, Diana; De Henauw, Stefaan; Kourides, Yiannis A.; Lauria, Fabio; Marild, Staffan; Molnár, Dénes; Moreno, Luis A.; Veidebaum, Toomas; Ahrens, Wolfgang; Sioen, Isabelle

    2016-01-01

    This study investigates differences and associations between urinary mineral concentrations and calcaneal bone measures assessed by quantitative ultrasonography (QUS) in 4322 children (3.1–11.9 years, 50.6% boys) from seven European countries. Urinary mineral concentrations and calcaneal QUS parameters differed significantly across countries. Clustering revealed a lower stiffness index (SI) in children with low and medium urinary mineral concentrations, and a higher SI in children with high urinary mineral concentrations. Urinary sodium (uNa) was positively correlated with urinary calcium (uCa), and was positively associated with broadband ultrasound attenuation and SI after adjustment for age, sex and fat-free mass. Urinary potassium (uK) was negatively correlated with uCa but positively associated with speed of sound after adjustment. No association was found between uCa and QUS parameters after adjustment, but when additionally adjusting for uNa, uCa was negatively associated with SI. Our findings suggest that urinary mineral concentrations are associated with calcaneal QUS parameters and may therefore implicate bone properties. These findings should be confirmed in longitudinal studies that include the food intake and repeated measurement of urinary mineral concentrations to better estimate usual intake and minimize bias. PMID:27164120

  14. Velocity field measurements of valvular blood flow in a human superficial vein using high-frequency ultrasound speckle image velocimetry.

    PubMed

    Nam, Kweon-Ho; Yeom, Eunseop; Ha, Hojin; Lee, Sang-Joon

    2012-01-01

    This study aims to investigate the blood flow around the perivalvular area in a human superficial vein using high-frequency ultrasound (HFUS) speckle image velocimetry. HFUS B-mode images were captured from the superficial veins of human lower extremity with a 35-MHz transducer. To measure the instantaneous velocity fields of blood flow, a cross-correlation particle image velocimetry (PIV) algorithm was applied to two B-mode images that were captured consecutively. The echo speckles of red blood cells (RBCs) were used as flow tracers. In the vicinity of the venous valve, the opening and closing motions of valve cusps were simultaneously visualized with the phasic variation of velocity fields. Large-scale vortices were observed behind the sinus pockets while the main bloodstream was directed proximally. This measurement technique combining PIV algorithm and HFUS B-mode imaging was found to be unique and useful for investigating the hemodynamic characteristics of blood flow in the perivalvular area and for diagnosing venous insufficiency and valve abnormality in superficial blood vessels.

  15. Tablet computers with mobile electronic medical records enhance clinical routine and promote bedside time: a controlled prospective crossover study.

    PubMed

    Fleischmann, Robert; Duhm, Julian; Hupperts, Hagen; Brandt, Stephan A

    2015-03-01

    Demographic changes require physicians to deliver needed services with fewer resources. Neurology as an interdisciplinary domain involves complex diagnostic procedures and time-consuming data handling. Tablet PCs might streamline clinical workflow through mobile access to patient data. This study examined the impact of tablets running an electronic medical record on ward round performance. We hypothesised that tablet use should reduce ward round time and decrease the time needed to check medical records thereby increasing physicians' bedside availability. Nine resident neurologists participated in a controlled prospective crossover trial over 14 weeks. In the experimental condition, tablets were used in addition to the established medical record. In the control condition, physicians used established systems only. The combined primary outcome measure included changes in total ward round time and relative time shifts between associated work processes. The secondary outcome measure was physicians' time required to check a medical record vs. physicians' bedside time. There was a significant main effect on the primary outcome measure (p = 0.01). Tablet use accelerated preparing (p = 0.004) and post-processing (p < 0.001) of ward rounds. Time for conducting ward rounds was unaffected (p = 0.19). Checking medical records was faster with tablets (p = 0.001) increasing physicians' bedside time (p < 0.001). Tablet use led to significant time savings during preparing and post-processing of ward rounds. It was further associated with time savings during checking medical data and an increase in physicians' bedside time. Tablets may facilitate clinical data handling and promote workflow.

  16. The effect of food consumption on the thickness of abdominal muscles, employing ultrasound measurements.

    PubMed

    Kordi, Ramin; Rostami, Mohsen; Noormohammadpour, Pardis; Mansournia, Mohammad Ali

    2011-08-01

    Recently, the roles of transabdominal muscles particularly TrA (transverse abdominis) muscle in spinal stability leading to treatment of low back pain have been suggested. Both in clinical setting and follow up studies, abdominal muscle thickness measurements need to be repeated at a later point in time to demonstrate efficacy of a therapeutic intervention. Different issues have been suggested as source of error in the repeated measurements of abdominal muscle thickness in different days such as patient position and stability of probe location. The level of stomach fullness has not been investigated as a source of error in ultrasonic measurements of transabdominal muscles thickness. This study was performed to evaluate the effect of food consumption on thickness of lateral abdominal muscles. Lateral abdominal muscles thicknesses of 63 healthy volunteer men were measured before and after food consumption. All the measurements were performed in two transducer positions and both sides. Waist circumference and body weight of participants were also measured before and post-food consumption. The thickness measures of all three muscles layers of lateral abdominal muscles (external oblique, internal oblique and transversus abdominis) in both sides and measured positions were significantly reduced after food consumption. We found no correlation between the increase of waist circumference and reduction of muscle layer thicknesses after food consumption. In case of comparison between the values of transabdominal muscle thicknesses over the time, the effect of food consumption on muscle thickness might be assumed as a potential source of error.

  17. An analysis of the origin of differences between measured and simulated fields produced by a 15-element ultrasound phased array.

    PubMed

    Aitkenhead, Adam H; Mills, John A; Wilson, Adrian J

    2010-03-01

    Modeling provides an attractive approach for the design of phased array ultrasound transducers for hyperthermia. However, measurements on physical transducers reveal differences from the idealized field profiles predicted by simulation. In this paper we report a method of analyzing the origins of these differences. The measured performance of a 15-element sparse phased array is described and compared with simulated fields calculated using the point source method. It highlighted two notable differences: First, that the focal region was located closer to the surface of the physical transducer than in the simulated fields; and second, that numerous intensity maxima were present between the surface of the transducer and the focal zone in the experimental data, but not in the simulated fields. We identified six factors that could potentially affect the field but were not taken into account by the default simulations, and we performed a sensitivity analysis on these: (i) Variation in the amplitude of the output from each element, (ii) the presence of square-wave harmonics in the drive signals, (iii) nonpistonlike vibration of elements, (iv) quantization of the applied phases, (v) errors in the spatial positioning of each element; and (vi) interelement cross-coupling. Both the independent impact of each factor and the interactions between multiple factors were analyzed by using a full-factorial experimental design composed of 64 (2(6)) simulations. The results indicated that nonpistonlike motion of elements is likely to be the primary cause of differences between the measured and modelled fields. Determination of the precise vibrational modes of elements in an array is complex and would require full finite element analysis. However, the simple vibrational mode considered within the present work, corresponding to the addition of a surface Rayleigh wave originating at the element center and propagating radially, produced simulation results that were in good agreement with

  18. Measuring the radiation force of megahertz ultrasound acting on a solid spherical scatterer

    NASA Astrophysics Data System (ADS)

    Nikolaeva, A. V.; Tsysar, S. A.; Sapozhnikov, O. A.

    2016-01-01

    The paper considers the problem of precise measurement of the acoustic radiation force of an ultrasonic beam on targets in the form of solid spherical scatterers. Using known analytic relations, a numerical model is developed to perform calculations for different sizes of spherical scatterers and arbitrary frequencies of the incident acoustic wave. A novel method is proposed for measuring the radiation force, which is based on the principle of acoustic echolocation. The radiation force is measured experimentally in a wide range of incident wave intensities using two chosen methods differing in the way the location of the target is controlled.

  19. REFINE (REducing Falls in In-patieNt Elderly) using bed and bedside chair pressure sensors linked to radio-pagers in acute hospital care: a randomised controlled trial

    PubMed Central

    Sahota, Opinder; Drummond, Avril; Kendrick, Denise; Grainge, Matthew J.; Vass, Catherine; Sach, Tracey; Gladman, John; Avis, Mark

    2014-01-01

    Background: falls in hospitals are a major problem and contribute to substantial healthcare burden. Advances in sensor technology afford innovative approaches to reducing falls in acute hospital care. However, whether these are clinically effective and cost effective in the UK setting has not been evaluated. Methods: pragmatic, parallel-arm, individual randomised controlled trial of bed and bedside chair pressure sensors using radio-pagers (intervention group) compared with standard care (control group) in elderly patients admitted to acute, general medical wards, in a large UK teaching hospital. Primary outcome measure number of in-patient bedside falls per 1,000 bed days. Results: 1,839 participants were randomised (918 to the intervention group and 921 to the control group). There were 85 bedside falls (65 fallers) in the intervention group, falls rate 8.71 per 1,000 bed days compared with 83 bedside falls (64 fallers) in the control group, falls rate 9.84 per 1,000 bed days (adjusted incidence rate ratio, 0.90; 95% confidence interval [CI], 0.66–1.22; P = 0.51). There was no significant difference between the two groups with respect to time to first bedside fall (adjusted hazard ratio (HR), 0.95; 95% CI: 0.67–1.34; P= 0.12). The mean cost per patient in the intervention group was £7199 compared with £6400 in the control group, mean difference in QALYs per patient, 0.0001 (95% CI: −0.0006–0.0004, P= 0.67). Conclusions: bed and bedside chair pressure sensors as a single intervention strategy do not reduce in-patient bedside falls, time to first bedside fall and are not cost-effective in elderly patients in acute, general medical wards in the UK. Trial registration: isrctn.org identifier: ISRCTN44972300. PMID:24141253

  20. Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc Mechanics

    DTIC Science & Technology

    2014-01-01

    images of IVDs and dynamic vertebral motion in-vivo during simulated tasks relevant to acute and chronic cervical spine injury and disease. A semi...of cervical vertebrae. Dynamic IVD displacements of vertebrae C4-5 measured by US were consistent with direct measurements. For motion frequencies...We developed a diagnostic system that applies dynamic cyclic loads to cervical spine over a range of programmable frequencies and amplitudes that

  1. Acoustic power measurement of high intensity focused ultrasound in medicine based on radiation force.

    PubMed

    Shou, Wende; Huang, Xiaowei; Duan, Shimei; Xia, Rongmin; Shi, Zhonglong; Geng, Xiaoming; Li, Faqi

    2006-12-22

    How to measure the acoustic power of HIFU is one of the most important tasks in its medical application. In the paper a whole series of formula for calculating the radiation force related to the acoustic power radiated by a single element focusing transducer and by the focusing transducer array were given. Various system of radiation force balance (RFB) to measure the acoustic power of HIFU in medicine were designed and applied in China. In high power experiments, the dependence of radiation force acting the absorbing target on the target position at the beam axis of focusing transducer was fined. There is a peak value of "radiation force" acting the absorbing target in the focal region when the acoustic power through the focal plane exceeds some threshold. In order to avoid this big measurement error caused by the 'peak effect' in focal region, the distance between the absorbing target of RFB and the focusing transducer or transducer array was defined to be equal to or less than 0.7 times of the focal length in the National Standard of China for the measurements of acoustic power and field characteristics of HIFU. More than six different therapeutic equipments of HIFU have been examined by RFB for measuring the acoustic power since 1998. These results show that RFB with the absorbing target is valid in the acoustic power range up to 500W with good linearity for the drive voltage squared of focusing transducer or array. The uncertainty of measurement is within +/-15%.

  2. Comparison of Central Corneal Thickness Measurements by Pentacam and Ultrasound Pachymetry in Normal Myopic Patients

    PubMed Central

    Emerah, Sherif; ELZakzouk, Ehab; Farag, Mohamed

    2016-01-01

    Introduction Precise measurement of corneal thickness is of crucial importance in corneal refractive procedures. The aim of this work is to compare the central corneal thickness measurements using Scheimpflug imaging (Pentacam) and contact US pachymetry in normal myopic patients. Methods This retrospective cohort study was conducted on in 144 eyes of 72 normal myopic patients during 6 months. The study location was the Research Institute of Ophthalmology (Giza, Egypt), and Magrabi Eye Hospital (Dubai, United Arab Emirates). Central corneal thickness was measured with the two devices. Data were analyzed by descriptive statistics, independent-samples t-test, paired-samples t-test, Mann-Whitney U test and Pearson-Product Moment Correlation Coefficient. Results The mean age was 25.3±5.6 years (range 18 to 38 years). The median age for our patients is 24 years. The average measurements of CCT were 526.8±35.3 and 529.1±37.9 for the Pentacam pachymetry and US pachymetry values, respectively. Mean difference between both measurements was 2.3±2.6μm which is statistically insignificant (p=0.08). Bland Altman Plot shows border line agreement of the two methods US pachymetry and Pentacam in detection of central corneal thickness. Conclusion The results of this study showed no significant differences in CCT readings between the measurements obtained by Pentacam and US pachymetry in normal myopic patients. PMID:28163862

  3. Ultrasound semi-automated measurement of fetal nuchal translucency thickness based on principal direction estimation

    NASA Astrophysics Data System (ADS)

    Yoon, Heechul; Lee, Hyuntaek; Jung, Haekyung; Lee, Mi-Young; Won, Hye-Sung

    2015-03-01

    The objective of the paper is to introduce a novel method for nuchal translucency (NT) boundary detection and thickness measurement, which is one of the most significant markers in the early screening of chromosomal defects, namely Down syndrome. To improve the reliability and reproducibility of NT measurements, several automated methods have been introduced. However, the performance of their methods degrades when NT borders are tilted due to varying fetal movements. Therefore, we propose a principal direction estimation based NT measurement method to provide reliable and consistent performance regardless of both fetal positions and NT directions. At first, Radon Transform and cost function are used to estimate the principal direction of NT borders. Then, on the estimated angle bin, i.e., the main direction of NT, gradient based features are employed to find initial NT lines which are beginning points of the active contour fitting method to find real NT borders. Finally, the maximum thickness is measured from distances between the upper and lower border of NT by searching along to the orthogonal lines of main NT direction. To evaluate the performance, 89 of in vivo fetal images were collected and the ground-truth database was measured by clinical experts. Quantitative results using intraclass correlation coefficients and difference analysis verify that the proposed method can improve the reliability and reproducibility in the measurement of maximum NT thickness.

  4. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models.

    PubMed

    Mézière, Fabien; Muller, Marie; Bossy, Emmanuel; Derode, Arnaud

    2014-07-01

    This article quantitatively investigates ultrasound propagation in numerical anisotropic porous media with finite-difference simulations in 3D. The propagation media consist of clusters of ellipsoidal scatterers randomly distributed in water, mimicking the anisotropic structure of cancellous bone. Velocities and attenuation coefficients of the ensemble-averaged transmitted wave (also known as the coherent wave) are measured in various configurations. As in real cancellous bone, one or two longitudinal modes emerge, depending on the micro-structure. The results are confronted with two standard theoretical approaches: Biot's theory, usually invoked in porous media, and the Independent Scattering Approximation (ISA), a classical first-order approach of multiple scattering theory. On the one hand, when only one longitudinal wave is observed, it is found that at porosities higher than 90% the ISA successfully predicts the attenuation coefficient (unlike Biot's theory), as well as the existence of negative dispersion. On the other hand, the ISA is not well suited to study two-wave propagation, unlike Biot's model, at least as far as wave speeds are concerned. No free fitting parameters were used for the application of Biot's theory. Finally we investigate the phase-shift between waves in the fluid and the solid structure, and compare them to Biot's predictions of in-phase and out-of-phase motions.

  5. Constrained snake vs. conventional snake for carotid ultrasound automated IMT measurements on multi-center data sets.

    PubMed

    Molinari, Filippo; Meiburger, Kristen M; Saba, Luca; Acharya, U Rajendra; Ledda, Mario; Nicolaides, Andrew; Suri, Jasjit S

    2012-09-01

    Accurate intima-media thickness (IMT) measurement of the carotid artery from minimal plaque ultrasound images is a relevant clinical need, since IMT increase is related to the progression of atherosclerosis. In this paper, we describe a novel dual snake-based model for the high-performance carotid IMT measurement, called Carotid Measurement Using Dual Snakes (CMUDS). Snakes (which are deformable contours) adapt to the lumen-intima (LI) and media-adventitia (MA) interfaces, thus enabling the IMT computation as distance between the LI and MA snakes. However, traditional snakes might be unable to maintain a correct distance and in some spatial location along the artery, it might even collapse between them or diverge. The technical improvement of this work is the definition of a dual snake-based constrained system, which prevents the LI and MA snakes from collapsing or bleeding, thus optimizing the IMT estimation. The CMUDS system consists of two parametric models automatically initialized using the far adventitia border which we automatically traced by using a previously developed multi-resolution approach. The dual snakes evolve simultaneously and are constrained by the distances between them, ensuring the regularization of LI/MA topology. We benchmarked our automated CMUDS with the previous conventional semi-automated snake system called Carotid Measurement Using Single Snake (CMUSS). Two independent readers manually traced the LIMA boundaries of a multi-institutional, multi-ethnic, and multi-scanner database of 665 CCA longitudinal 2D images. We evaluated our system performance by comparing it with the gold standard as traced by clinical readers. CMUDS and CMUSS correctly processed 100% of the 665 images. Comparing the performance with respect to the two readers, our automatically measured IMT was on average very close to that of the two readers (IMT measurement biases for CMUSS was equal to -0.011±0.329mm and -0.045±0.317mm, respectively, while for CMUDS, it was

  6. Ultrasound measurements of live and carcass traits in Tswana goat kids raised under semi-intensive system in South-eastern Botswana.

    PubMed

    Monau, Phetogo Ineeleng; Nsoso, Shalaulani James; Waugh, Esau Emmanuel; Sharma, Surender Pal

    2013-03-01

    The aim of this study was to characterise ultrasound measurements of live and carcass traits in intact males, females and castrated Tswana goat kids from birth to 12 months of age raised under semi-intensive system in South-eastern Botswana. Measurements were recorded in 15 castrates, 15 intact males and 15 female Tswana goat kids randomly selected at birth. Ultrasonic fat and muscle depths were measured at the first, third/fourth, sixth/seventh, ninth/tenth and 12th/13th thoracic; first, third and fifth lumbar and first, second/third and fourth/fifth sternal vertebrae, fortnightly for the first 6 months and then monthly for the remaining 6 months. The animals were stunned and humanely slaughtered at 12 months of age, and ultrasound and shatterproof ruler were used to measure fat and muscle depths on the carcasses at similar sites as on live animals. A real-time B-mode ultrasound scanner fitted with LV2-1 probe operating at 7.5 MHz (Explorer V5 Vet Laptop B-Ultrasonic Scanner UMC Technology Development Co., Ltd, China) was used to predict ultrasound measurements on live animals and their carcasses. Data were analysed using general linear model in statistical analysis system. Muscle depth measurements increased significantly (p < 0.05) with age in all sites of measurements. However, there was no significant difference between the sexes at different sites of muscle depth measurements at the same age. Muscle depth at the sternal vertebrae was significantly deeper (almost 55 mm at 12 months of age) than 16 mm at thoracic and 16 mm at lumbar vertebrae at 12 and 8 months of age, respectively. No subcutaneous fat depth measurements were recorded in the lumbar vertebrae (0.00 ± 0.00) and the thoracic (0.00 ± 0.00) regions in all sex groups. However, fourth and fifth sternal vertebrae showed considerably deeper amount of subcutaneous fat suitable for taking fat measurements as age increases (2.07 ± 0.23 mm females, 1.50 ± 0.43 mm intact

  7. Temperature distributions measurement of high intensity focused ultrasound using a thin-film thermocouple array and estimation of thermal error caused by viscous heating.

    PubMed

    Matsuki, Kosuke; Narumi, Ryuta; Azuma, Takashi; Yoshinaka, Kiyoshi; Sasaki, Akira; Okita, Kohei; Takagi, Shu; Matsumoto, Yoichiro

    2013-01-01

    To improve the throughput of high intensity focused ultrasound (HIFU) treatment, we have considered a focus switching method at two points. For this method, it is necessary to evaluate the thermal distribution under exposure to ultrasound. The thermal distribution was measured using a prototype thin-film thermocouple array, which has the advantage of minimizing the influence of the thermocouple on the acoustic and temperature fields. Focus switching was employed to enlarge the area of temperature increase and evaluate the proposed evaluation parameters with respect to safety and uniformity. The results indicate that focus switching can effectively expand the thermal lesion while maintaining a steep thermal boundary. In addition, the influence caused by the thin-film thermocouple array was estimated experimentally. This thermocouple was demonstrated to be an effective tool for the measurement of temperature distributions induced by HIFU.

  8. Noninvasive Intracranial Volume and Pressure Measurements Using Ultrasound (Head and Spinal)

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.

    1999-01-01

    Prevention of secondary brain injuries following head trauma can be accomplished most easily when intracranial pressure (ICP) is monitored. However, current measurement techniques are invasive and thus not practical in the combat environment. The Pulsed Phase Lock Loop device, which was developed and patented by consultants Drs. Yost and Cantrell, uses a unique, noninvasive ultrasonic phase comparison method to measure slight changes in cranial volume which occur with changes in ICP. Year two studies included whole body head-up and head-down tilting effects on intracranial compliance and pressure in six healthy volunteers.

  9. Simulations and measurements of transcranial low-frequency ultrasound therapy: skull-base heating and effective area of treatment.

    PubMed

    Pulkkinen, Aki; Huang, Yuexi; Song, Junho; Hynynen, Kullervo

    2011-08-07

    Measurements of temperature elevations induced by sonications in a single intact cadaver skull filled with soft-tissue mimicking phantom material were performed using magnetic resonance thermometry. The sonications were done using a clinical transcranial ultrasound therapy device operating at 230 kHz and the measurements were compared with simulations done using a model incorporating both the longitudinal and shear wave propagation. Both the measurements and simulations showed that in some situations the temperature increase could be higher in the phantom material adjacent to the skull-base than at the focus, which could lead to undesired soft-tissue damage in treatment situations. On average the measurements of the sonicated locations, as well as the comparative simulations, showed 32 ± 64% and 49 ± 32% higher temperature elevations adjacent to the skull-base than at the focus, respectively. The simulation model was used to extend the measurements by simulating multiple sonications of brain tissue in five different skulls with and without correcting the aberrations caused by the skull on the ultrasound. Without aberration correction the closest sonications to the skulls that were treatable in any brain location without undesired tissue damage were at a distance of 19.1 ± 2.6 mm. None of the sonications beyond a distance of 41.2 ± 5.3 mm were found to cause undesired tissue damage. When using the aberration correction closest treatable, safe distances for sonications were found to be 16.0 ± 1.6  and 38.8 ± 3.8 mm, respectively. New active cooling of the skull-base through the nasal cavities was introduced and the treatment area was investigated. The closest treatable distance without aberration correction reduced to 17.4 ± 1.9 mm with the new cooling method. All sonications beyond a distance of 39.7 ± 6.6 mm were found treatable. With the aberration correction no difference in the closest treatable or the safety distance was found in comparison

  10. In situ measurements of shear stresses of a flushing wave in a circular sewer using ultrasound.

    PubMed

    Staufer, P; Pinnekamp, J

    2008-01-01

    Deposits build up in sewer networks during both spells of dry weather and in connection with storm water events. In order to reduce the negative effects of deposit on the environment, different cleaning technologies and strategies are applied to remove the deposits. Jet cleaning represents the most widely used method to clean sewers. Another alternative cleaning procedure is flushing. On account of new developments in measurement and control panels, the flushing method is becoming more important. Therefore, in the last few years a number of new flushing devices have been constructed for application in basins, main sewers and initial reaches. Today, automatic flushing gates are able to accomplish cleaning procedures under economical and ecological conditions. The properties of flushing waves for cleaning sewers have been determined by several mathematical-numerical studies. These various investigations use altering numerical schemes, are based on different sets of physical equations and take one- or more dimensional aspects into account. Considering that bottom shear stress is the key value to evaluate the beginning of motion of any deposit, one may use this value that has to be determined by measurements. This paper deals with shear stresses caused by flushing waves which have been measured by an ultrasonic device that can determine the velocity in different depths of flow. Thus, it is possible, within certain limits, to calculate bottom shear stresses based on the log-wall law. Further discussion will deal with the requirements of measurements, its uncertainty and aspects in respect to the application of simulation of flushing waves.

  11. Photoacoustic measurement for glucose solution concentration based on tunable pulsed laser induced ultrasound

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen; Zhao, Dengji

    2012-12-01

    Noninvasive measurement of blood glucose concentration (BGC) has become a research hotspot. BGC measurement based on photoacoustic spectroscopy (PAS) was employed to detect the photoacoustic (PA) signal of blood glucose due to the advantages of avoiding the disturbance of optical scattering. In this paper, a set of custom-built BGC measurement system based on tunable optical parametric oscillator (OPO) pulsed laser and ultrasonic transducer was established to test the PA response effect of the glucose solution. In the experiments, we successfully acquired the time resolved PA signals of distilled water and glucose aqueous solution, and the PA peak-to-peak values(PPV) were gotten under the condition of excitated pulsed laser with changed wavelength from 1340nm to 2200nm by increasing interval of 10nm, the optimal characteristic wavelengths of distilled water and glucose solution were determined. Finally, to get the concentration prediction error, we used the linear fitting of ordinary least square (OLS) algorithm to fit the PPV of 1510nm, and we got the predicted concentration error was about 0.69mmol/L via the fitted linear equation. So, this system and scheme have some values in the research of noninvasive BGC measurement.

  12. Accuracy and precision of a new portable ultrasound scanner, the BME-150A, in residual urine volume measurement: a comparison with the BladderScan BVI 3000.

    PubMed

    Choe, Jin Ho; Lee, Ji Yeon; Lee, Kyu-Sung

    2007-06-01

    The objective of the study was to determine the relative accuracy of a new portable ultrasound unit, BME-150A, and the BladderScan BVI 3000, as assessed in comparison with the catheterized residual urine volume. We used both of these machines to prospectively measure the residual urine volumes of 89 patients (40 men and 49 women) who were undergoing urodynamic studies. The ultrasound measurements were compared with the post-scan bladder volumes obtained by catheterization in the same patients. The ultrasounds were followed immediately (within 5 min) by in-and-out catheterizations while the patients were in a supine position. There were a total of 116 paired measurements made. The BME-150A and the BVI 3000 demonstrated a correlation with the residual volume of 0.92 and 0.94, and a mean difference from the true residual volume of 7.8 and 3.6 ml, respectively. Intraclass correlation coefficients for the accuracy of the two bladder scans were 0.90 for BME-150A and 0.95 for BVI 3000. The difference of accuracy between the two models was not significant (p = 0.2421). There were six cases in which a follow-up evaluation of falsely elevated post-void residual urine volume measurements on the ultrasound studies resulted in comparatively low catheterized volumes, with a range of differences from 66 to 275.5 ml. These cases were diagnosed with an ovarian cyst, uterine myoma, or uterine adenomyosis on pelvic ultrasonography. The accuracy of the BME-150A is comparable to that of the BVI 3000 in estimating the true residual urine volumes and is sufficient enough for us to recommend its use as an alternative to catheterization.

  13. Non-Destructive Measurement Methods (Neutron-, X-ray Radiography, Vibration Diagnostics and Ultrasound) in the Inspection of Helicopter Rotor Blades

    DTIC Science & Technology

    2005-04-01

    the radiography gauging. In addition to the Statistical Energy Analysis (SEA) measurement a small exciter table (BK4810) and impedance head (BK 8000... Statistical Energy Analysis ; 7th Conf. on Vehicle System Dynamics, Identification and Anomalies (VSDIA2000), 6-8 Nov. 2000 Budapest, Proc. pp. 491-493... Energy Analysis (SEA) and Ultrasound Test. (UT) were concurrently applied. These methods collect accessory information on the objects under inspection

  14. Perceptions of Teamwork in the Interprofessional Bedside Rounding Process.

    PubMed

    Beaird, Genevieve; Dent, John M; Keim-Malpass, Jessica; Muller, Abigail Guo Jian; Nelson, Nicole; Brashers, Valentina

    Patient perceptions of teamwork have been a relatively undiscovered domain. Our study investigated the use of the Patients' Insights and Views of Teamwork (PIVOT) survey on an acute cardiology unit in an academic teaching hospital with patients receiving Rounding with Heart, an interprofessional bedside rounding initiative, and others receiving traditional rounding processes. Sixty-three subjects were surveyed during their hospital stay. We found a significant difference (p = .006) in PIVOT scores between those receiving interprofessional rounding and those not receiving this rounding structure. In an item-by-item analysis, four specific items were found to be significant which were supported by analysis of qualitative data. Observations of the structured interprofessional rounding process by our research team reveal themes that emerged from observations: (1) openness/inclusivity, (2) patient-centeredness, (3) attending role/shared leadership, (4) nonconfrontational learning, (5) efficacy, and (6) team at bedside. Our results indicate that patients may be able to recognize the teamwork in the structured bedside rounding process and that interfacing with the team may be an important component to patients. We conclude that patient perceptions of teamwork are a valuable informant to modeling collaborative practices, and there are key observable components to the structured rounding model that may foster collaboration among different disciplines.

  15. Sitting at patients' bedsides may improve patients' perceptions of physician communication skills.

    PubMed

    Merel, Susan E; McKinney, Christy M; Ufkes, Patrick; Kwan, Alan C; White, Andrew A

    2016-12-01

    Sitting at a patient's bedside in the inpatient setting is recommended as a best practice but has not been widely adopted. Previous studies suggest that a physician's seated posture may increase the patient's perception of time spent in the room but have not included hospitalists. We performed a cluster-randomized trial of seated versus standing physician posture during inpatient rounds on a hospitalist service at an academic medical center. Patients whose physician sat were significantly more likely to rate their physician highly on measures of listening carefully and explaining things in a way that was easy to understand. The average time spent in the patient's room was approximately 12 minutes and was not affected by physician posture. Patients' perception of the time their physician spent in their room was not affected by physician posture. Sitting at the bedside during rounds does not increase the amount of time spent with the patient but may improve patient-physician communication. Journal of Hospital Medicine 2015;11:865-868. © 2015 Society of Hospital Medicine.

  16. Evaluation of bedside pulmonary function in the neonate: From the past to the future.

    PubMed

    Reiterer, F; Sivieri, E; Abbasi, S

    2015-10-01

    Pulmonary function testing and monitoring plays an important role in the respiratory management of neonates. A noninvasive and complete bedside evaluation of the respiratory status is especially useful in critically ill neonates to assess disease severity and resolution and the response to pharmacological interventions as well as to guide mechanical respiratory support. Besides traditional tools to assess pulmonary gas exchage such as arterial or transcutaenous blood gas analysis, pulse oximetry, and capnography, additional valuable information about global lung function is provided through measurement of pulmonary mechanics and volumes. This has now been aided by commercially available computerized pulmonary function testing systems, respiratory monitors, and modern ventilators with integrated pulmonary function readouts. In an attempt to apply easy-to-use pulmonary function testing methods which do not interfere with the infant́s airflow, other tools have been developed such as respiratory inductance plethysmography, and more recently, electromagnetic and optoelectronic plethysmography, electrical impedance tomography, and electrical impedance segmentography. These alternative technologies allow not only global, but also regional and dynamic evaluations of lung ventilation. Although these methods have proven their usefulness for research applications, they are not yet broadly used in a routine clinical setting. This review will give a historical and clinical overview of different bedside methods to assess and monitor pulmonary function and evaluate the potential clinical usefulness of such methods with an outlook into future directions in neonatal respiratory diagnostics.

  17. Real-Time, Computer-Assisted Quantification of Plus Disease in Retinopathy of Prematurity at the Bedside

    PubMed Central

    Cabrera, Michelle T.; Freedman, Sharon F.; Hartnett, Mary Elizabeth; Stinnett, Sandra S.; Chen, Bei Bei; Wallace, David K.

    2015-01-01

    BACKGROUND AND OBJECTIVE Plus disease is the primary indication for retinopathy of prematurity (ROP) treatment, but ophthalmologists often struggle to judge whether it is present. ROPtool is a semi-automated computer program that objectively assesses plus disease by measuring retinal vascular tortuosity and width. This study determined ROPtool’s bedside diagnostic accuracy concurrent with ROP screening. PATIENTS AND METHODS ROP screening examinations were recorded using Keeler video indirect ophthalmoscopy. A masked operator traced images in ROPtool at the bedside, comparing ROPtool’s plus diagnosis to the examiner’s clinical judgment. RESULTS Four hundred sixty-four examinations (129 eyes of 65 infants) were performed. ROPtool’s sensitivity, specificity, and area under the receiver operating characteristic curve for plus diagnosis was 71% (CI: 38%–100%), 93% (CI: 89%–98%) and 0.87, and for pre-plus or worse was 68% (CI: 51%–85%), 82% (CI: 77%–86%) and 0.81, respectively. CONCLUSION ROPtool can provide a real-time second opinion of plus disease at the bedside. Image enhancement technologies may further improve ROPtool’s diagnostic accuracy. PMID:25423634

  18. Using nonlinear ultrasound measurements to track thermal aging in modified 9%Cr ferritic martensitic steel

    NASA Astrophysics Data System (ADS)

    Marino, Daniel; Kim, Jin-Yeon; Jacobs, Laurence J.; Ruiz, Alberto; Joo, Young-Sang

    2015-03-01

    This study investigates early thermal aging in 9%Cr ferritic martensitic (FM) steel, which is caused by the formation of second phases during high temperature exposure. This study employs a recently developed nonlinear ultrasonic technique to explore the sensitivity of the nonlinearity parameter. Experimental results show that the nonlinearity parameter is sensitive to certain changes in material's properties such as thermal embrittlement and hardness changes; therefore, it can be used as an indicator of the thermal damage. The specimens investigated are heat treated for different holding times ranging from 200h to 3000h at 650°C. Nonlinear ultrasonic experiments are conducted for each specimen using a wedge transducer to generate and an air-coupled transducer to detect Raleigh surface waves. The amplitudes of the first and second order harmonics are measured at different propagation distances and these amplitudes are used to obtain the relative nonlinearity parameter for each specimen with a different holding time. The nonlinear ultrasonic results are compared with independent mechanical measurements and metallographic images. This research proposes the nonlinear ultrasonic technique as a nondestructive evaluation tool not only to detect thermal damage in early stages, and also to qualitatively assess the stage of thermal damage.

  19. Assessment of trabecular bone quality in human cadaver calcaneus using scanning confocal ultrasound and dual x-ray absorptiometry (DEXA) measurements

    NASA Astrophysics Data System (ADS)

    Qin, Yixian; Xia, Yi; Lin, Wei; Rubin, Clinton; Gruber, Barry

    2004-10-01

    Microgravity and aging induced bone loss is a critical skeleton complication, occurring particularly in the weight-supporting skeleton, which leads to osteoporosis and fracture. Advents in quantitative ultrasound (QUS) provide a unique method for evaluating bone strength and density. Using a newly developed scanning confocal acoustic diagnostic (SCAD) system, QUS assessment for bone quality in the real body region was evaluated. A total of 19 human cadaver calcanei, age 66 to 97 years old, were tested by both SCAD and nonscan mode. The scanning region covered an approximate 40×40 mm2 with 0.5 mm resolution. Broadband ultrasound attenuation (BUA, dB/MHz), energy attenuation (ATT, dB), and ultrasound velocity (UV, m/s) were measured. The QUS properties were then correlated to the bone mineral density (BMD) measured by DEXA. Correlations between BMD and QUS parameters were significantly improved by using SCAD as compared to nonscan mode, yielding correlations between BMD and SCAD QUS parameters as R=0.82 (BUA), and R=0.86 (est. BMD). It is suggested that SCAD is feasible for in vivo bone quality mapping. It can be potentially used for monitoring instant changes of bone strength and density. [Work supported by the National Space Biomedical Research Institute (TD00207), and New York Center for Biotechnology.

  20. Medical Imaging with Ultrasound: Some Basic Physics.

    ERIC Educational Resources Information Center

    Gosling, R.

    1989-01-01

    Discussed are medical applications of ultrasound. The physics of the wave nature of ultrasound including its propagation and production, return by the body, spatial and contrast resolution, attenuation, image formation using pulsed echo ultrasound techniques, measurement of velocity and duplex scanning are described. (YP)

  1. Carotid atherosclerotic plaque characterisation by measurement of ultrasound sound speed in vitro at high frequency, 20 MHz.

    PubMed

    Brewin, M P; Srodon, P D; Greenwald, S E; Birch, M J

    2014-02-01

    This study aimed to utilise a tissue mimicking material (TMM) in order to embed in vitro carotid plaque tissue so that its acoustic properties could be assessed. Here, an International Electrotechnical Commission (IEC) agar-based TMM was adapted to a clear gel by removal of the particulates. This clear TMM was measured with sound speed at 1540 ms(-1) and an attenuation coefficient of 0.15 dB cm(-1)MHz(-1). Composite sound speed was then measured through the embedded material using a scanning acoustic microscope (SAM). Both broadband reflection and transmission techniques were performed on each plaque specimen in order to ensure the consistency of the measurement of sound speed, both at 21 °C and 37 °C. The plaque was measured at two temperatures to investigate any effect on the lipid content of the plaque. The contour maps from its associated attenuation plots were used to match the speed data to the photographic mask of the plaque outline. This physical matching was then used to derive the sound speed from the percentage composition seen in the histological data by solution of simultaneous equations. Individual speed values for five plaque components were derived; TMM, elastin, fibrous/collagen, calcification and lipid. The results for derived sound speed in the TMM were consistently close to the expected value of soft tissue, 1540 ms(-1). The fibrous tissue showed a mean value of 1584 ms(-1) at 37 °C. The derived sound speeds for elastic and lipid exhibited large inter-quartile ranges. The calcification had higher sound speed than the other plaque components at 1760-2000 ms(-1). The limitations here lay in the difficulties in the matching process caused by the inhomogeneity of the plaque material and shrinkage during the histological process. Future work may concentrate on more homogeneous material in order to derive sound speed data for separate components. Nevertheless, this study increases the known data ranges of the individual components within a plaque

  2. Enhanced correlation between quantitative ultrasound and structural and mechanical properties of bone using combined transmission-reflection measurement.

    PubMed

    Lin, Liangjun; Lin, Wei; Qin, Yi-Xian

    2015-03-01

    Quantitative ultrasound (QUS) is capable of predicting the principal structural orientation of trabecular bone; this orientation is highly correlated with the mechanical strength of trabecular bone. Irregular shape of bone, however, would increase variation in such a prediction, especially under human in vivo measurement. This study was designed to combine transmission and reflection modes of QUS measurement to improve the prediction for the structural and mechanical properties of trabecular bone. QUS, mechanical testing, and micro computed tomography (μCT) scanning were performed on 24 trabecular bone cubes harvested from a bovine distal femur to obtain the mechanical and structural parameters. Transmission and reflection modes of QUS measurement in the transverse and frontal planes were performed in a confined 60° angle range with 5° increment. The QUS parameters, attenuation (ATT) and velocity (UV), obtained from transmission mode, were normalized to the specimen thickness acquired from reflection mode. Analysis of covariance showed that the combined transmission-reflection modes improved prediction for the structural and Young's modulus of bone in comparison to the traditional QUS measurement performed only in the medial-lateral orientation. In the transverse plane, significant improvement between QUS and μCT was found in ATT vs bone surface density (BS/BV) (p < 0.05), ATT vs trabecular thickness (Tb.Th) (p < 0.01), ATT vs degree of anisotropy (DA) (p < 0.05), UV vs trabecular bone number (Tb.N) (p < 0.05), and UV vs Tb.Th (p < 0.001). In the frontal plane, significant improvement was found in ATT vs structural model index (SMI) (p < 0.01), ATT vs bone volume fraction (BV/TV) (p < 0.01), ATT vs BS/BV (p < 0.001), ATT vs Tb.Th (p < 0.001), ATT vs DA (p < 0.001), and ATT vs modulus (p < 0.001), UV vs SMI (p < 0.01), UV vs BV/TV (p < 0.05), UV vs BS/BV (p < 0.05), UV vs Tb.Th (p < 0.01), UV vs

  3. Enhanced correlation between quantitative ultrasound and structural and mechanical properties of bone using combined transmission-reflection measurement

    PubMed Central

    Lin, Liangjun; Lin, Wei; Qin, Yi-Xian

    2015-01-01

    Quantitative ultrasound (QUS) is capable of predicting the principal structural orientation of trabecular bone; this orientation is highly correlated with the mechanical strength of trabecular bone. Irregular shape of bone, however, would increase variation in such a prediction, especially under human in vivo measurement. This study was designed to combine transmission and reflection modes of QUS measurement to improve the prediction for the structural and mechanical properties of trabecular bone. QUS, mechanical testing, and micro computed tomography (μCT) scanning were performed on 24 trabecular bone cubes harvested from a bovine distal femur to obtain the mechanical and structural parameters. Transmission and reflection modes of QUS measurement in the transverse and frontal planes were performed in a confined 60° angle range with 5° increment. The QUS parameters, attenuation (ATT) and velocity (UV), obtained from transmission mode, were normalized to the specimen thickness acquired from reflection mode. Analysis of covariance showed that the combined transmission-reflection modes improved prediction for the structural and Young's modulus of bone in comparison to the traditional QUS measurement performed only in the medial-lateral orientation. In the transverse plane, significant improvement between QUS and μCT was found in ATT vs bone surface density (BS/BV) (p < 0.05), ATT vs trabecular thickness (Tb.Th) (p < 0.01), ATT vs degree of anisotropy (DA) (p < 0.05), UV vs trabecular bone number (Tb.N) (p < 0.05), and UV vs Tb.Th (p < 0.001). In the frontal plane, significant improvement was found in ATT vs structural model index (SMI) (p < 0.01), ATT vs bone volume fraction (BV/TV) (p < 0.01), ATT vs BS/BV (p < 0.001), ATT vs Tb.Th (p < 0.001), ATT vs DA (p < 0.001), and ATT vs modulus (p < 0.001), UV vs SMI (p < 0.01), UV vs BV/TV (p < 0.05), UV vs BS/BV (p < 0.05), UV vs Tb.Th (p < 0.01), UV vs

  4. Exploration and Practice in Photoacoustic Measurement for Glucose Concentration Based on Tunable Pulsed Laser Induced Ultrasound

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen; Zhao, Dengji; Xiong, Zhihua

    2015-07-01

    In this article, a tunable pulsed laser induced photoacoustic measurement setup of monitoring glucose concentration was established in the forward mode. In experiments, the time-resolved photoacoustic signal of glucose aqueous solution with different concentrations of 0-300 mg/dl were captured and averaged 512 times, and the photoacoustic peak-to-peak values were recorded using the wavelength scan in NIR region of 1300-2300 nm. The optimal characteristic wavelengths of glucose were determined via the difference spectral and the first derivative spectral algorithm, and correction models between peak-to-peak values of optimal wavelengths and concentration gradients were established using multivariate linear regression algorithm. Experimental results demonstrated that the profile and logarithm shape of time-resolved photoacoustic signal for glucose solutions were in good agreement with photoacoustic theories. The prediction effect of optimal wavelength of 1510 nm was best, its root-mean-square errors of correction and prediction were 12.14 and 8.45 mg/dl, respectively, the correlation coefficient reached 0.9856.

  5. Is dynamic cerebral autoregulation measurement using transcranial Doppler ultrasound reproducible in the presence of high concentration oxygen and carbon dioxide?

    PubMed

    Minhas, Jatinder S; Syed, Nazia F; Haunton, Victoria J; Panerai, Ronney B; Robinson, Thompson G; Mistri, Amit K

    2016-05-01

    Reliability of cerebral blood flow velocity (CBFV) and dynamic cerebral autoregulation estimates (expressed as autoregulation index: ARI) using spontaneous fluctuations in blood pressure (BP) has been demonstrated. However, reliability during co-administration of O2 and CO2 is unknown. Bilateral CBFV (using transcranial Doppler), BP and RR interval recordings were performed in healthy volunteers (seven males, four females, age: 54  ±  10 years) on two occasions over 9  ±  4 d. Four 5 min recordings were made whilst breathing air (A), then 5%CO2 (C), 80%O2 (O) and mixed O2  +  CO2 (M), in random order. CBFV was recorded; ARI was calculated using transfer function analysis. Precision was quantified as within-visit standard error of measurement (SEM) and the coefficient of variation (CV). CBFV and ARI estimates with A (SEM: 3.85 & 0.87; CV: 7.5% & 17.8%, respectively) were comparable to a previous reproducibility study. The SEM and CV with C and O were similar, though higher values were noted with M; Bland-Altman plots indicated no significant bias across all gases for CBFV and ARI (bias  <0.06 cm s(-1) and  <0.05, respectively). Thus, transcranial-Doppler-ultrasound-estimated CBFV and ARI during inhalation of O2 and CO2 have acceptable levels of reproducibility and can be used to study the effect of these gases on cerebral haemodynamics.

  6. The Role of Airway and Endobronchial Ultrasound in Perioperative Medicine

    PubMed Central

    Votruba, Jiri; Zemanová, Petra; Lambert, Lukas; Vesela, Michaela Michalkova

    2015-01-01

    Recent years have witnessed an increased use of ultrasound in evaluation of the airway and the lower parts of the respiratory system. Ultrasound examination is fast and reliable and can be performed at the bedside and does not carry the risk of exposure to ionizing radiation. Apart from use in diagnostics it may also provide safe guidance for invasive and semi-invasive procedures. Ultrasound examination of the oral cavity structures, epiglottis, vocal cords, and subglottic space may help in the prediction of difficult intubation. Preoperative ultrasound may diagnose vocal cord palsy or deviation or stenosis of the trachea. Ultrasonography can also be used for confirmation of endotracheal tube, double-lumen tube, or laryngeal mask placement. This can be achieved by direct examination of the tube inside the trachea or by indirect methods evaluating lung movements. Postoperative airway ultrasound may reveal laryngeal pathology or subglottic oedema. Conventional ultrasound is a reliable real-time navigational tool for emergency cricothyrotomy or percutaneous dilational tracheostomy. Endobronchial ultrasound is a combination of bronchoscopy and ultrasonography and is used for preoperative examination of lung cancer and solitary pulmonary nodules. The method is also useful for real-time navigated biopsies of such pathological structures. PMID:26788507

  7. Lung ultrasound in critically ill patients: a new diagnostic tool.

    PubMed

    Dexheimer Neto, Felippe Leopoldo; Dalcin, Paulo de Tarso Roth; Teixeira, Cassiano; Beltrami, Flávia Gabe

    2012-01-01

    The evaluation of critically ill patients using lung ultrasound, even if performed by nonspecialists, has recently garnered greater interest. Because lung ultrasound is based on the fact that every acute illness reduces lung aeration, it can provide information that complements the physical examination and clinical impression, the main advantage being that it is a bedside tool. The objective of this review was to evaluate the clinical applications of lung ultrasound by searching the PubMed and the Brazilian Virtual Library of Health databases. We used the following search terms (in Portuguese and English): ultrasound; lung; and critical care. In addition to the most relevant articles, we also reviewed specialized textbooks. The data show that lung ultrasound is useful in the differential diagnosis of pulmonary infiltrates, having good accuracy in identifying consolidations and interstitial syndrome. In addition, lung ultrasound has been widely used in the evaluation and treatment of pleural effusions, as well as in the identification of pneumothorax. This technique can also be useful in the immediate evaluation of patients with dyspnea or acute respiratory failure. Other described applications include monitoring treatment response and increasing the safety of invasive procedures. Although specific criteria regarding training and certification are still lacking, lung ultrasound is a fast, inexpensive, and widely available tool. This technique should progressively come to be more widely incorporated into the care of critically ill patients.

  8. The Role of Airway and Endobronchial Ultrasound in Perioperative Medicine.

    PubMed

    Votruba, Jiri; Zemanová, Petra; Lambert, Lukas; Vesela, Michaela Michalkova

    2015-01-01

    Recent years have witnessed an increased use of ultrasound in evaluation of the airway and the lower parts of the respiratory system. Ultrasound examination is fast and reliable and can be performed at the bedside and does not carry the risk of exposure to ionizing radiation. Apart from use in diagnostics it may also provide safe guidance for invasive and semi-invasive procedures. Ultrasound examination of the oral cavity structures, epiglottis, vocal cords, and subglottic space may help in the prediction of difficult intubation. Preoperative ultrasound may diagnose vocal cord palsy or deviation or stenosis of the trachea. Ultrasonography can also be used for confirmation of endotracheal tube, double-lumen tube, or laryngeal mask placement. This can be achieved by direct examination of the tube inside the trachea or by indirect methods evaluating lung movements. Postoperative airway ultrasound may reveal laryngeal pathology or subglottic oedema. Conventional ultrasound is a reliable real-time navigational tool for emergency cricothyrotomy or percutaneous dilational tracheostomy. Endobronchial ultrasound is a combination of bronchoscopy and ultrasonography and is used for preoperative examination of lung cancer and solitary pulmonary nodules. The method is also useful for real-time navigated biopsies of such pathological structures.

  9. International standards for early fetal size and pregnancy dating based on ultrasound measurement of crown–rump length in the first trimester of pregnancy

    PubMed Central

    Papageorghiou, A T; Kennedy, S H; Salomon, L J; Ohuma, E O; Cheikh Ismail, L; Barros, F C; Lambert, A; Carvalho, M; Jaffer, Y A; Bertino, E; Gravett, M G; Altman, D G; Purwar, M; Noble, J A; Pang, R; Victora, C G; Bhutta, Z A; Villar, J

    2014-01-01

    Objectives There are no international standards for relating fetal crown–rump length (CRL) to gestational age (GA), and most existing charts have considerable methodological limitations. The INTERGROWTH-21st Project aimed to produce the first international standards for early fetal size and ultrasound dating of pregnancy based on CRL measurement. Methods Urban areas in eight geographically diverse countries that met strict eligibility criteria were selected for the prospective, population-based recruitment, between 9 + 0 and 13 + 6 weeks' gestation, of healthy well-nourished women with singleton pregnancies at low risk of fetal growth impairment. GA was calculated on the basis of a certain last menstrual period, regular menstrual cycle and lack of hormonal medication or breastfeeding in the preceding 2 months. CRL was measured using strict protocols and quality-control measures. All women were followed up throughout pregnancy until delivery and hospital discharge. Cases of neonatal and fetal death, severe pregnancy complications and congenital abnormalities were excluded from the study. Results A total of 4607 women were enrolled in the Fetal Growth Longitudinal Study, one of the three main components of the INTERGROWTH-21st Project, of whom 4321 had a live singleton birth in the absence of severe maternal conditions or congenital abnormalities detected by ultrasound or at birth. The CRL was measured in 56 women at < 9 + 0 weeks' gestation; these were excluded, resulting in 4265 women who contributed data to the final analysis. The mean CRL and SD increased with GA almost linearly, and their relationship to GA is given by the following two equations (in which GA is in days and CRL in mm): mean CRL = −50.6562 + (0.815118 × GA) + (0.00535302 × GA2); and SD of CRL = −2.21626 + (0.0984894 × GA). GA estimation is carried out according to the two equations: GA = 40.9041 + (3.21585 × CRL0.5) + (0.348956

  10. Hand ultrasound: a high-fidelity simulation of lung sliding.

    PubMed

    Shokoohi, Hamid; Boniface, Keith

    2012-09-01

    Simulation training has been effectively used to integrate didactic knowledge and technical skills in emergency and critical care medicine. In this article, we introduce a novel model of simulating lung ultrasound and the features of lung sliding and pneumothorax by performing a hand ultrasound. The simulation model involves scanning the palmar aspect of the hand to create normal lung sliding in varying modes of scanning and to mimic ultrasound features of pneumothorax, including "stratosphere/barcode sign" and "lung point." The simple, reproducible, and readily available simulation model we describe demonstrates a high-fidelity simulation surrogate that can be used to rapidly illustrate the signs of normal and abnormal lung sliding at the bedside.

  11. Ultrasound -- Vascular

    MedlinePlus

    ... plan for their effective treatment. detect blood clots (deep venous thrombosis (DVT) in the major veins of ... What are the limitations of Vascular Ultrasound? Vessels deep in the body are harder to see than ...

  12. Trauma Ultrasound.

    PubMed

    Wongwaisayawan, Sirote; Suwannanon, Ruedeekorn; Prachanukool, Thidathit; Sricharoen, Pungkava; Saksobhavivat, Nitima; Kaewlai, Rathachai

    2015-10-01

    Ultrasound plays a pivotal role in the evaluation of acute trauma patients through the use of multi-site scanning encompassing abdominal, cardiothoracic, vascular and skeletal scans. In a high-speed polytrauma setting, because exsanguinations are the primary cause of trauma morbidity and mortality, ultrasound is used for quick and accurate detection of hemorrhages in the pericardial, pleural, and peritoneal cavities during the primary Advanced Trauma Life Support (ATLS) survey. Volume status can be assessed non-invasively with ultrasound of the inferior vena cava (IVC), which is a useful tool in the initial phase and follow-up evaluations. Pneumothorax can also be quickly detected with ultrasound. During the secondary survey and in patients sustaining low-speed or localized trauma, ultrasound can be used to help detect abdominal organ injuries. This is particularly helpful in patients in whom hemoperitoneum is not identified on an initial scan because findings of organ injuries will expedite the next test, often computed tomography (CT). Moreover, ultrasound can assist in detection of fractures easily obscured on radiography, such as rib and sternal fractures.

  13. Carotid Ultrasound Imaging

    MedlinePlus

    ... Index A-Z Ultrasound - Carotid Carotid ultrasound uses sound waves to produce pictures of the carotid arteries ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  14. A comparison by medicine residents of physical examination versus hand-carried ultrasound for estimation of right atrial pressure.

    PubMed

    Brennan, J Matthew; Blair, John E; Goonewardena, Sascha; Ronan, Adam; Shah, Dipak; Vasaiwala, Samip; Brooks, Erica; Levy, Ari; Kirkpatrick, James N; Spencer, Kirk T

    2007-06-01

    Physicians' ability to accurately estimate right atrial (RA) pressure from bedside evaluation of the jugular venous waveform is poor, particularly when performed by physicians in training. Conventional ultrasound measurement of the inferior vena cava (IVC) accurately predicts RA pressure, but the cost, lack of portability, and specialized training required to acquire and interpret the data render this modality impractical for routine clinical use. The objective of this study was to compare physical examination with hand-carried ultrasound (HCU) in the detection of elevated RA pressure (>10 mm Hg). After limited training (4 hours didactic and 20 studies), 4 internal medicine residents using an HCU device estimated RA pressure from images of the IVC in 40 consecutive patients <1 hour after right-sided cardiac catheterization. RA pressure was also estimated from examination of the jugular venous pulse (JVP) in 40 patients before right-sided cardiac catheterization. RA pressure was successfully estimated from HCU images of the IVC in 90% of patients, compared with 63% from JVP examination. The sensitivity for predicting RA pressure >10 mm Hg was 82% with HCU and 14% from JVP inspection. Specificities were similar between the techniques. Overall accuracies were 71% using HCU and 60% with JVP assessment. In conclusion, internal medicine residents with brief training in echocardiography can more frequently and more accurately predict elevated RA pressure using HCU measurements of the IVC than with physical examination of the JVP.

  15. Can anatomists teach living anatomy using ultrasound as a teaching tool?

    PubMed

    Jurjus, Rosalyn A; Dimorier, Kathryn; Brown, Kirsten; Slaby, Frank; Shokoohi, Hamid; Boniface, Keith; Liu, Yiju Teresa

    2014-01-01

    The utilization of bedside ultrasound by an increasing number of medical specialties has created the need for more ultrasound exposure and teaching in medical school. Although there is a widespread support for more vertical integration of ultrasound teaching throughout the undergraduate curriculum, little is known about whether the quality of ultrasound teaching differs if performed by anatomists or clinicians. The purpose of this study is to compare medical students' evaluation of ultrasound anatomy teaching by clinicians and anatomists. Hands-on interactive ultrasound sessions were scheduled as part of the gross anatomy course following principles of adult learning and instructional design. Seven teachers (three anatomists and four clinicians) taught in each session. Before each session, anatomists were trained in ultrasound by clinicians. Students were divided into groups, rotated teachers between sessions, and completed evaluations. Results indicated students perceived the two groups as comparable for all factors except for knowledge organization and the helpfulness of ultrasound for understanding anatomy (P < 0.001). However, results from unpaired samples t-tests demonstrated a nonstatistically significant difference between the groups within each session for both questions. Moreover, students' test performance for both groups was similar. This study demonstrated that anatomists can teach living anatomy using ultrasound with minimal training as well as clinicians, and encourage the teaching of living anatomy by anatomists in human anatomy courses using ultrasound. Repeating this study at a multicenter level is currently being considered to further validate our conclusion.

  16. Ultrasound in analytical chemistry.

    PubMed

    Priego Capote, F; Luque de Castro, M D

    2007-01-01

    Ultrasound is a type of energy which can help analytical chemists in almost all their laboratory tasks, from cleaning to detection. A generic view of the different steps which can be assisted by ultrasound is given here. These steps include preliminary operations usually not considered in most analytical methods (e.g. cleaning, degassing, and atomization), sample preparation being the main area of application. In sample preparation ultrasound is used to assist solid-sample treatment (e.g. digestion, leaching, slurry formation) and liquid-sample preparation (e.g. liquid-liquid extraction, emulsification, homogenization) or to promote heterogeneous sample treatment (e.g. filtration, aggregation, dissolution of solids, crystallization, precipitation, defoaming, degassing). Detection techniques based on use of ultrasonic radiation, the principles on which they are based, responses, and the quantities measured are also discussed.

  17. Evaluation of spasticity after stroke by using ultrasound to measure the muscle architecture parameters: a clinical study

    PubMed Central

    Yang, Yuan-Bin; Zhang, Jing; Leng, Zhen-Peng; Chen, Xin; Song, Wei-Qun

    2014-01-01

    Objective: This study aims to compare the difference and the change trend of Muscle Architecture Parameters (MAP) between spastic and normal muscle tone patients after stroke, and analysis the application and value of Muscle Architecture Parameters in evaluating spasticity after stroke. Methods: 41 stroke patients were divided into spastic group (26 cases), normal muscle tone control group (15 cases). Modified Ashworth Scale (MAS) was applied in both groups for assessing muscle tone of lower limbs (no influence, contralateral). Muscle architectural parameters of ultrasound measurement include muscle thickness, fascicle length and pennation angle. The difference of three muscle architectural parameters between the affected side and the contralateral side in spastic group and the difference of MAS and three muscle architectural parameters between spastic group and normal control group were compared. Results: MAS score, Pennation Angle (PA) and Muscular Thickness (MT) value of MAP in spastic group were significantly higher than the control group, Fascicle length (FL) is significantly lower than the control group (P < 0.05). In spastic group, MAS score, PA and MT value of MAP of affected side muscle was substantially higher than that of contralateral, FL value significantly lower than that of contralateral (P < 0.05). There was positive correlation between MAS and PA and MT but was negative correlation between MAS and FL, rank correlation coefficient test was statistical significant (p < 0.05). Logistic multivariate regression analysis showed that spasticity can lead PA and FL to change (p < 0.05), there is no clear correlation between MT and spasticity occurs (P > 0.05). Conclusion: MAP has a better sensitivity in evaluating muscle tone between spastic patients and non-spastic patients, and degrees of spasticity have a clear corresponding exponential relationship to MAP. Combing MAS and MAP can assess muscle tone more objectively and accurately because subtle changes

  18. Assessment of voluntary pelvic floor muscle contraction in continent and incontinent women using transperineal ultrasound, manual muscle testing and vaginal squeeze pressure measurements.

    PubMed

    Thompson, Judith A; O'Sullivan, Peter B; Briffa, N Kathryn; Neumann, Patricia

    2006-11-01

    The aims of the study were: (1) to assess women performing voluntary pelvic floor muscle (PFM) contractions, on initial instruction without biofeedback teaching, using transperineal ultrasound, manual muscle testing, and perineometry and (2) to assess for associations between the different measurements of PFM function. Sixty continent (30 nulliparous and 30 parous) and 60 incontinent (30 stress urinary incontinence (SUI) and 30 urge urinary incontinence (UUI)) women were assessed. Bladder neck depression during attempts to perform an elevating pelvic floor muscle (PFM) contraction occurred in 17% of continent and 30% of incontinent women. The UUI group had the highest proportion of women who depressed the bladder neck (40%), although this was not statistically significant (p=0.060). The continent women were stronger on manual muscle testing (p=0.001) and perineometry (p=0.019) and had greater PFM endurance (p<0.001) than the incontinent women. There was a strong tendency for the continent women to have a greater degree of bladder neck elevation than the incontinent women (p=0.051). There was a moderate correlation between bladder neck movement during PFM contraction measured by ultrasound and PFM strength assessed by manual muscle testing (r=0.58, p=0.01) and perineometry (r=0.43, p=0.01). The observation that many women were performing PFM exercises incorrectly reinforces the need for individual PFM assessment with a skilled practitioner. The significant correlation between the measurements of bladder neck elevation during PFM contraction and PFM strength measured using MMT and perineometry supports the use of ultrasound in the assessment of PFM function; however, the correlation was only moderate and, therefore, indicates that the different measurement tools assess different aspects of PFM function. It is recommended that physiotherapists use a combination of assessment tools to evaluate the different aspects of PFM function that are important for continence

  19. Bedside patient data viewer using RFID and e-Ink technology.

    PubMed

    Nikodijevic, Aleksandar; Pichler, Patrick; Forjan, Mathias; Sauermann, Stefan

    2014-01-01

    In the daily routine of hospitals, which work with paper based medical records, the staff has to find the appropriate patient file if it needs information about the patient. With the introduction of ELGA the Austrian hospitals have to use specific standards for their clinical documentation. These structured documents can be used to feed an e-Ink reader with information about every patient in a hospital. Combined with RFID and security measures, the clinical staff is supported during the patient file searching process. The developed experimental setup of the Bedside Patient Data Viewer demonstrates a prototype of such a system. An Amazon Kindle Paperwhite is used to display processed data, supplied by a Raspberry Pi with an attached RFID module for identification purposes. Results show that such a system can be implemented, however a lot of organizational and technical issues remain to be solved.

  20. Ultrasound-modulated bioluminescence tomography

    NASA Astrophysics Data System (ADS)

    Bal, Guillaume; Schotland, John C.

    2014-03-01

    We propose a method to reconstruct the density of a luminescent source in a highly scattering medium from ultrasound-modulated optical measurements. Our approach is based on the solution to a hybrid inverse source problem for the diffusion equation.

  1. Point of Care Ultrasound: A WFUMB Position Paper.

    PubMed

    Dietrich, Christoph F; Goudie, Adrian; Chiorean, Liliana; Cui, Xin Wu; Gilja, Odd Helge; Dong, Yi; Abramowicz, Jacques S; Vinayak, Sudhir; Westerway, Susan Campbell; Nolsøe, Christian Pállson; Chou, Yi-Hong; Blaivas, Michael

    2017-01-01

    Over the last decade, the use of portable ultrasound scanners has enhanced the concept of point of care ultrasound (PoC-US), namely, "ultrasound performed at the bedside and interpreted directly by the treating clinician." PoC-US is not a replacement for comprehensive ultrasound, but rather allows physicians immediate access to clinical imaging for rapid and direct solutions. PoC-US has already revolutionized everyday clinical practice, and it is believed that it will dramatically change how ultrasound is applied in daily practice. However, its use and teaching are different from continent to continent and from country to country. This World Federation for Ultrasound in Medicine and Biology position paper discusses the current status and future perspectives of PoC-US. Particular attention is given to the different uses of PoC-US and its clinical significance, including within emergency and critical care medicine, cardiology, anesthesiology, rheumatology, obstetrics, neonatology, gynecology, gastroenterology and many other applications. In the future, PoC-US will be more diverse than ever and be included in medical student training.

  2. Bedside coaching to improve nurses' recognition of delirium.

    PubMed

    Gordon, Susan Jean; Melillo, Karen Devereaux; Nannini, Angela; Lakatos, Barbara E

    2013-10-01

    Delirium is a widespread complication of hospitalization and is frequently unrecognized by nurses and other healthcare professionals. Patients with neuroscience diagnoses are at increased risk for delirium as compared with other patients. The aims of this quality improvement project were to (1) increase neuroscience nurses' knowledge of delirium, (2) integrate coaching into evidence-based practice, and (3) evaluate the effectiveness of this combined approach to improve nurses' recognition of delirium on a neuroscience unit. Institutional review board approval was obtained. A retrospective chart review of randomly selected patients admitted before the intervention was completed. The (modified) Nurse's Knowledge of Delirium Tool was electronically administered to nursing staff (n = 47), followed within 2 weeks by a didactic presentation on delirium. Bedside coaching was performed over a period of 4 weeks. The (modified) Nurses Knowledge of Delirium Tool was electronically readministered to nurses 4 weeks later to determine the change in aggregate knowledge. A postintervention chart review was conducted. SPSS software was used to analyze descriptive statistics with regard to chart reviews, documentation, and change in questionnaire scores. Findings reveal that neuroscience nurses recognize the absence of delirium 94.4% of the time and the presence of delirium 100% of the time after a didactic session and coaching. The postintervention chart review showed a statistically significant increase (p = .000) in the documentation of delirium screening results. Expert coaching at the bedside may be a reliable method for teaching nurses to use evidence-based screening tools to detect delirium in patients with neuroscience diagnoses.

  3. Winning the paper chase. Bedside terminals help clear the record.

    PubMed

    Brennan, P

    1989-10-01

    In a simpler bygone era, patient charts were nothing more than a few sheets of paper clipped together and slipped inside a light-weight cardboard file. Today, the average medical chart contains 70 pages of odd-sized forms, laboratory results, medication records, and hand-written notes. Initial attempts to alleviate the disorder and confusion inherent in hand-written charts involved the introduction of stand-alone bedside computer terminals. As hardware technology advanced, portable hand-held units became available. Both approaches failed because they still required the time-consuming manual entry of data. True automated management of patient records is now available through patient data management systems (PDMS). A PDMS can be connected to virtually any bedside monitoring device to record and interpret patient data into an easily understood and instantly accessible, centralized electronic record. A computerized charting system can allow simultaneous access to an individual chart through terminals located throughout the hospital, and physicians can access the system from their offices or homes. A PDMS cuts in half the time nurses spend charting vital signs, medications, fluid balances, and intravenous infusions. A well-documented, accurate chart ensures the hospital of correct reimbursement for services. In matters involving litigation, a PDMS provides a court-accepted electronic chronology of a medical case.

  4. Reproducibility and accuracy of optic nerve sheath diameter assessment using ultrasound compared to magnetic resonance imaging

    PubMed Central

    2013-01-01

    Background Quantification of the optic nerve sheath diameter (ONSD) by transbulbar sonography is a promising non-invasive technique for the detection of altered intracranial pressure. In order to establish this method as follow-up tool in diseases with intracranial hyper- or hypotension scan-rescan reproducibility and accuracy need to be systematically investigated. Methods The right ONSD of 15 healthy volunteers (mean age 24.5 ± 0.8 years) were measured by both transbulbar sonography (9 – 3 MHz) and 3 Tesla MRI (half-Fourier acquisition single-shot turbo spin-echo sequences, HASTE) 3 and 5 mm behind papilla. All volunteers underwent repeated ultrasound and MRI examinations in order to assess scan-rescan reproducibility and accuracy. Moreover, inter- and intra-observer variabilities were calculated for both techniques. Results Scan-rescan reproducibility was robust for ONSD quantification by sonography and MRI at both depths (r > 0.75, p ≤ 0.001, mean differences < 2%). Comparing ultrasound- and MRI-derived ONSD values, we found acceptable agreement between both methods for measurements at a depth of 3 mm (r = 0.72, p = 0.002, mean difference < 5%). Further analyses revealed good inter- and intra-observer reliability for sonographic measurements 3 mm behind the papilla and for MRI at 3 and 5 mm (r > 0.82, p < 0.001, mean differences < 5%). Conclusions Sonographic ONSD quantification 3 mm behind the papilla can be performed with good reproducibility, measurement accuracy and observer agreement. Thus, our findings emphasize the feasibility of this technique as a non-invasive bedside tool for longitudinal ONSD measurements. PMID:24289136

  5. A supervised texton based approach for automatic segmentation and measurement of the fetal head and femur in 2D ultrasound images

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ye, Xujiong; Lambrou, Tryphon; Duan, Wenting; Allinson, Nigel; Dudley, Nicholas J.

    2016-02-01

    This paper presents a supervised texton based approach for the accurate segmentation and measurement of ultrasound fetal head (BPD, OFD, HC) and femur (FL). The method consists of several steps. First, a non-linear diffusion technique is utilized to reduce the speckle noise. Then, based on the assumption that cross sectional intensity profiles of skull and femur can be approximated by Gaussian-like curves, a multi-scale and multi-orientation filter bank is designed to extract texton features specific to ultrasound fetal anatomic structure. The extracted texton cues, together with multi-scale local brightness, are then built into a unified framework for boundary detection of ultrasound fetal head and femur. Finally, for fetal head, a direct least square ellipse fitting method is used to construct a closed head contour, whilst, for fetal femur a closed contour is produced by connecting the detected femur boundaries. The presented method is demonstrated to be promising for clinical applications. Overall the evaluation results of fetal head segmentation and measurement from our method are comparable with the inter-observer difference of experts, with the best average precision of 96.85%, the maximum symmetric contour distance (MSD) of 1.46 mm, average symmetric contour distance (ASD) of 0.53 mm while for fetal femur, the overall performance of our method is better than the inter-observer difference of experts, with the average precision of 84.37%, MSD of 2.72 mm and ASD of 0.31 mm.

  6. Three-dimensional geometrical changes of the human tibialis anterior muscle and its central aponeurosis measured with three-dimensional ultrasound during isometric contractions

    PubMed Central

    Cresswell, Andrew G.; Lichtwark, Glen A.

    2016-01-01

    Background. Muscles not only shorten during contraction to perform mechanical work, but they also bulge radially because of the isovolumetric constraint on muscle fibres. Muscle bulging may have important implications for muscle performance, however quantifying three-dimensional (3D) muscle shape changes in human muscle is problematic because of difficulties with sustaining contractions for the duration of an in vivo scan. Although two-dimensional ultrasound imaging is useful for measuring local muscle deformations, assumptions must be made about global muscle shape changes, which could lead to errors in fully understanding the mechanical behaviour of muscle and its surrounding connective tissues, such as aponeurosis. Therefore, the aims of this investigation were (a) to determine the intra-session reliability of a novel 3D ultrasound (3DUS) imaging method for measuring in vivo human muscle and aponeurosis deformations and (b) to examine how contraction intensity influences in vivo human muscle and aponeurosis strains during isometric contractions. Methods. Participants (n = 12) were seated in a reclined position with their left knee extended and ankle at 90° and performed isometric dorsiflexion contractions up to 50% of maximal voluntary contraction. 3DUS scans of the tibialis anterior (TA) muscle belly were performed during the contractions and at rest to assess muscle volume, muscle length, muscle cross-sectional area, muscle thickness and width, fascicle length and pennation angle, and central aponeurosis width and length. The 3DUS scan involved synchronous B-mode ultrasound imaging and 3D motion capture of the position and orientation of the ultrasound transducer, while successive cross-sectional slices were captured by sweeping the transducer along the muscle. Results. 3DUS was shown to be highly reliable across measures of muscle volume, muscle length, fascicle length and central aponeurosis length (ICC ≥ 0.98, CV < 1%). The TA remained isovolumetric

  7. An investigation of the reproducibility of ultrasound measures of abdominal muscle activation in patients with chronic non-specific low back pain.

    PubMed

    Costa, Leonardo Oliveira Pena; Maher, Chris G; Latimer, Jane; Hodges, Paul W; Shirley, Debra

    2009-07-01

    Ultrasound (US) measures are used by clinicians and researchers to evaluate improvements in activity of the abdominal muscles in patients with low back pain. Studies evaluating the reproducibility of these US measures provide some information; however, little is known about the reproducibility of these US measures over time in patients with low back pain. The objectives of this study were to estimate the reproducibility of ultrasound measurements of automatic activation of the lateral abdominal wall muscles using a leg force task in patients with chronic low back pain. Thirty-five participants from an existing randomised, blinded, placebo-controlled trial participated in the study. A reproducibility analysis was undertaken from all patients using data collected at baseline and after treatment. The reproducibility of measurements of thickness, muscle activation (thickness changes) and muscle improvement/deterioration after intervention (differences in thickness changes from single images made before and after treatment) was analysed. The reproducibility of static images (thickness) was excellent (ICC(2,1) = 0.97, 95% CI = 0.96-0.97, standard error of the measurement (SEM) = 0.04 cm, smallest detectable change (SDC) = 0.11 cm), the reproducibility of thickness changes was moderate (ICC(2,1) = 0.72, 95% CI 0.65-0.76, SEM = 15%, SDC 41%), while the reproducibility of differences in thickness changes from single images with statistical adjustment for duplicate measures was poor (ICC(2,1) = 0.44, 95% CI 0.33-0.58, SEM = 21%, SDC = 66.5%). Improvements in the testing protocol must be performed in order to enhance reproducibility of US as an outcome measure for abdominal muscle activation.

  8. A Tactile Sensor for Ultrasound Imaging Systems.

    PubMed

    Peng, Yiyan; Shkel, Yuri M; Hall, Timothy J

    2016-02-15

    Medical ultrasound systems are capable of monitoring a variety of health conditions while avoiding invasive procedures. However this function is complicated by ultrasound contrast of the tissue varying with contact pressure exerted by the probe. The knowledge of the contact pressure is beneficial for a variety of screening and diagnostic procedures involving ultrasound. This paper introduces a solid-state sensor array which measures the contact pressure distribution between the probe and the tissue marginally affecting the ultrasound imaging capabilities. The probe design utilizes the dielectrostriction mechanism which relates the change in dielectric properties of the sensing layer to deformation. The concept, structure, fabrication, and performance of this sensor array are discussed. The prototype device is highly tolerant to overloads (>1 MPa tested) and provides stress measurements in the range of 0.14 to 10 kPa. Its loss of ultrasound transmissivity is less 3dB at 9 MHz ultrasound frequency. This performance is satisfactory for clinical and biomedical research in ultrasound image formation and interpretation, however for commercial product, a higher ultrasound transmissivity is desired. Directions for improving the sensor ultrasound transparency and electrical performance are discussed. The sensor array described in this paper has been developed specifically for ultrasound diagnosis during breast cancer screening. However, the same sensing mechanism, similar configuration and sensor array structure can be applied to other applications involving ultrasound tools for medical diagnostics.

  9. A Tactile Sensor for Ultrasound Imaging Systems

    PubMed Central

    Peng, Yiyan; Shkel, Yuri M.; Hall, Timothy J.

    2015-01-01

    Medical ultrasound systems are capable of monitoring a variety of health conditions while avoiding invasive procedures. However this function is complicated by ultrasound contrast of the tissue varying with contact pressure exerted by the probe. The knowledge of the contact pressure is beneficial for a variety of screening and diagnostic procedures involving ultrasound. This paper introduces a solid-state sensor array which measures the contact pressure distribution between the probe and the tissue marginally affecting the ultrasound imaging capabilities. The probe design utilizes the dielectrostriction mechanism which relates the change in dielectric properties of the sensing layer to deformation. The concept, structure, fabrication, and performance of this sensor array are discussed. The prototype device is highly tolerant to overloads (>1 MPa tested) and provides stress measurements in the range of 0.14 to 10 kPa. Its loss of ultrasound transmissivity is less 3dB at 9 MHz ultrasound frequency. This performance is satisfactory for clinical and biomedical research in ultrasound image formation and interpretation, however for commercial product, a higher ultrasound transmissivity is desired. Directions for improving the sensor ultrasound transparency and electrical performance are discussed. The sensor array described in this paper has been developed specifically for ultrasound diagnosis during breast cancer screening. However, the same sensing mechanism, similar configuration and sensor array structure can be applied to other applications involving ultrasound tools for medical diagnostics. PMID:26880870

  10. Intravascular ultrasound elastography.

    PubMed

    van der Steen, A F; de Korte, C L; Céspedes, E I

    1998-10-01

    Intravascular Ultrasound Blastography. The response of a tissue to mechanical excitation is a function of its mechanical properties. Excitation can be dynamic or quasistatic in nature. The response (e.g. displacement, velocity, compression) can be measured via ultrasound. This is the main principle underlying ultrasound elasticity imaging, sonoelasticity imaging, or ultrasound elastography. It is of great interest to know the local hardness of vessel wall and plaques. Intravascular elastography yields information unavailable or inconclusive if obtained from IVUS alone and thus contributes to more correct diagnosis. Potentially it can be used for therapy guidance. During the last decade several working groups used elastography in intravascular applications with varying success. In this paper we discuss the various approaches by different working groups. Focus will be on the approach of the Rotterdam group. Using a 30 MHz IVUS catheter, RF data are acquired from vessels in vitro at different intraluminal pressures. Local tissue displacement estimation by cross-correlation is followed by computation of the local strain. The resulting image supplies local information on the elastic properties of the vessel and plaque with high spatial resolution. Feasibility and usefulness are shown by means of phantom measurements. Furthermore, initial in vitro results of femoral arteries and correlation with histology are discussed. Phantom data show that the elastograms reveal information not presented by the echogram. In vitro artery data prove that in principle elastography is capable of identifying plaque composition where echography fails.

  11. Ultrasound - Scrotum

    MedlinePlus

    ... especially when the mass is solid). Blood flow images of the testicles are not always reliable in determining the presence or absence of blood supply to a testicle that has twisted. When searching for an absent testicle, ultrasound may not be ...

  12. Incremental value of thoracic ultrasound in intensive care units: Indications, uses, and applications

    PubMed Central

    Liccardo, Biagio; Martone, Francesca; Trambaiolo, Paolo; Severino, Sergio; Cibinel, Gian Alfonso; D’Andrea, Antonello

    2016-01-01

    Emergency physicians are required to care for unstable patients with life-threatening conditions, and thus must make decisions that are both quick and precise about unclear clinical situations. There is increasing consensus in favor of using ultrasound as a real-time bedside clinical tool for clinicians in emergency settings alongside the irreplaceable use of historical and physical examinations. B-mode sonography is an old technology that was first proposed for medical applications more than 50 years ago. Its application in the diagnosis of thoracic diseases has always been considered limited, due to the presence of air in the lung and the presence of the bones of the thoracic cage, which prevent the progression of the ultrasound beam. However, the close relationship between air and water in the lungs causes a variety of artifacts on ultrasounds. At the bedside, thoracic ultrasound is based primarily on the analysis of these artifacts, with the aim of improving accuracy and safety in the diagnosis and therapy of the various varieties of pulmonary pathologic diseases which are predominantly “water-rich” or “air-rich”. The indications, contraindications, advantages, disadvantages, and techniques of thoracic ultrasound and its related procedures are analyzed in the present review. PMID:27247712

  13. Tissue identification by ultrasound

    NASA Technical Reports Server (NTRS)

    Lecroissette, D. H.; Heyser, R. C.; Gammell, P. M.; Wilson, R. L.

    1978-01-01

    The ultrasonic properties of animal and human soft tissue were measured over the frequency range of 1.5 to 10.0 MHz. The method employed a swept-frequency, coherent technique known as time delay spectrometry. Measurements of attenuation versus frequency on liver, backfat, kidney, pancreas, spleen, breast, and other tissue were made. Considerable attention was paid to tissue handling and in determining the effects of fixing on the attenuation of ultrasound in the tissue.

  14. The cavitation threshold of human tissue exposed to 0.2-MHz pulsed ultrasound: preliminary measurements based on a study of clinical lithotripsy.

    PubMed

    Coleman, A J; Kodama, T; Choi, M J; Adams, T; Saunders, J E

    1995-01-01

    Evidence of acoustic cavitation was identified in the form of transient echoes in ultrasound B-scan images of patients receiving extracorporeal shock-wave lithotripsy treatment on a Storz Modulith SL20. This lithotripter generates 10-microseconds duration pulses with a centre frequency of 0.2 MHz at a pulse repetition frequency of 1 Hz. The visual appearance of B-scan images was examined in a total of 30 patients and a quantitative analysis of echogenicity changes was carried out in six cases involving lithotripsy treatment of stones in the renal pelvis. In these patients new echoes were identified in images unaffected by movement artefacts and were found to occur in perinephric fat and adjacent muscle and kidney tissue at positions close to the axis of the shock-wave field between 1 and 2 cm in advance of the indicated beam focus of the lithotripter. The echogenicity within each region increased significantly above the background level when the output of the lithotripter was increased above a threshold value. The acoustic pressures corresponding to this threshold were measured in water using a calibrated PVDF membrane hydrophone. After correction for attenuation in tissue the cavitation thresholds, in terms of the temporal peak negative pressure, are found to lie between 1.5 MPa and 3.5 MPa in all six cases. Interpretation of the measured values in terms of the likely threshold at the higher frequencies used in diagnostic ultrasound is considered using a theoretical model.

  15. Cost-effective broad-band electrical impedance spectroscopy measurement circuit and signal analysis for piezo-materials and ultrasound transducers

    PubMed Central

    Lewis, George K; Lewis, George K; Olbricht, William

    2008-01-01

    This paper explains the circuitry and signal processing to perform electrical impedance spectroscopy on piezoelectric materials and ultrasound transducers. Here, we measure and compare the impedance spectra of 2−5 MHz piezoelectrics, but the methodology applies for 700 kHz–20 MHz ultrasonic devices as well. Using a 12 ns wide 5 volt pulsing circuit as an impulse, we determine the electrical impedance curves experimentally using Ohm's law and fast Fourier transform (FFT), and compare results with mathematical models. The method allows for rapid impedance measurement for a range of frequencies using a narrow input pulse, digital oscilloscope and FFT techniques. The technique compares well to current methodologies such as network and impedance analyzers while providing additional versatility in the electrical impedance measurement. The technique is theoretically simple, easy to implement and completed with ordinary laboratory instrumentation for minimal cost. PMID:19081773

  16. Cost-effective broad-band electrical impedance spectroscopy measurement circuit and signal analysis for piezo-materials and ultrasound transducers.

    PubMed

    Lewis, George K; Lewis, George K; Olbricht, William

    2008-10-01

    This paper explains the circuitry and signal processing to perform electrical impedance spectroscopy on piezoelectric materials and ultrasound transducers. Here, we measure and compare the impedance spectra of 2-5 MHz piezoelectrics, but the methodology applies for 700 kHz-20 MHz ultrasonic devices as well. Using a 12 ns wide 5 volt pulsing circuit as an impulse, we determine the electrical impedance curves experimentally using Ohm's law and fast Fourier transform (FFT), and compare results with mathematical models. The method allows for rapid impedance measurement for a range of frequencies using a narrow input pulse, digital oscilloscope and FFT techniques. The technique compares well to current methodologies such as network and impedance analyzers while providing additional versatility in the electrical impedance measurement. The technique is theoretically simple, easy to implement and completed with ordinary laboratory instrumentation for minimal cost.

  17. Ultrasound Annual, 1984

    SciTech Connect

    Sanders, R.C.; Hill, M.C.

    1984-01-01

    The 1984 edition of Ultrasound Annual explores new applications of ultrasound in speech and swallowing and offers guidelines on the use of ultrasound and nuclear medicine in thyroid and biliary tract disease. Other areas covered include Doppler sonography of the abdomen, intraoperative abdominal ultrasound, sonography of the placenta, ultrasound of the neonatal head and abdomen, and sonographic echo patterns created by fat.

  18. User-guided automated segmentation of time-series ultrasound images for measuring vasoreactivity of the brachial artery induced by flow mediation

    NASA Astrophysics Data System (ADS)

    Sehgal, Chandra M.; Kao, Yen H.; Cary, Ted W.; Arger, Peter H.; Mohler, Emile R.

    2005-04-01

    Endothelial dysfunction in response to vasoactive stimuli is closely associated with diseases such as atherosclerosis, hypertension and congestive heart failure. The current method of using ultrasound to image the brachial artery along the longitudinal axis is insensitive for measuring the small vasodilatation that occurs in response to flow mediation. The goal of this study is to overcome this limitation by using cross-sectional imaging of the brachial artery in conjunction with the User-Guided Automated Boundary Detection (UGABD) algorithm for extracting arterial boundaries. High-resolution ultrasound imaging was performed on rigid plastic tubing, on elastic rubber tubing phantoms with steady and pulsatile flow, and on the brachial artery of a healthy volunteer undergoing reactive hyperemia. The area of cross section of time-series images was analyzed by UGABD by propagating the boundary from one frame to the next. The UGABD results were compared by linear correlation with those obtained by manual tracing. UGABD measured the cross-sectional area of the phantom tubing to within 5% of the true area. The algorithm correctly detected pulsatile vasomotion in phantoms and in the brachial artery. A comparison of area measurements made using UGABD with those made by manual tracings yielded a correlation of 0.9 and 0.8 for phantoms and arteries, respectively. The peak vasodilatation due to reactive hyperemia was two orders of magnitude greater in pixel count than that measured by longitudinal imaging. Cross-sectional imaging is more sensitive than longitudinal imaging for measuring flow-mediated dilatation of brachial artery, and thus may be more suitable for evaluating endothelial dysfunction.

  19. Medical immunology: two-way bridge connecting bench and bedside.

    PubMed

    Rijkers, Ger T; Damoiseaux, Jan G M C; Hooijkaas, Herbert

    2014-12-01

    Medical immunology in The Netherlands is a laboratory specialism dealing with immunological analyses as well as pre- and post-analytical consultation to clinicians (clinical immunologists and other specialists) involved in patients with immune mediated diseases. The scope of medical immunology includes immunodeficiencies, autoimmune diseases, allergy, transfusion and transplantation immunology, and lymphoproliferative disorders plus the monitoring of these patients. The training, professional criteria, quality control of procedures and laboratories is well organized. As examples of the bridge function of medical immunology between laboratory (bench) and patient (bedside) the contribution of medical immunologists to diagnosis and treatment of primary immunodeficiency diseases (in particular: humoral immunodeficiencies) as well as autoantibodies (anti-citrullinated proteins in rheumatoid arthritis) are given.

  20. [Vertigo in the Emergency Department: new bedside tests].

    PubMed

    Tamás, T László; Garai, Tibor; Tompos, Tamás; Szirmai, Ágnes

    2016-03-13

    According to international statistics, the first examination of 25% of patients with vertigo is carried out in Emergency Departments. The most important task of the examining physician is to diagnose life threatening pathologic processes. One of the most difficult otoneurological diagnostic challange in Emergency Departments is to differentiate between dangerous posterior scale stroke presenting with isolated vertigo and the benign vestibular neuritis.These two disorders can be safely differentiated using fast, non-invasive, evidence based bedside tests which have been introduced in the past few years. 35% of stroke cases mimicking vestibular neuritis (pseudoneuritis) are misdiagnosed at the Emergency Department, and 40% of these cases develop complications. During the first 48 hours, sensitivity for stroke of the new test that is based on the malfunction of the oculomotor system is better than the diffusion-weighted cranial magnetic resonance imaging. Using special test glasses each component of the new test can be made objective and repeatable.

  1. Safety consciousness: assignments that expand focus beyond the bedside.

    PubMed

    Seibert, Susan A

    2014-02-01

    In order to stimulate safety consciousness beyond the bedside, a series of meaningful, practice-based learning activities were devised that compel students in a baccalaureate nursing program to consider safety issues beyond the obvious concerns at the point of care. The assignments emphasize systems level thinking and process evaluation of facility characteristics, team communication, and unit based improvement campaigns. Reflective components engage students in evaluation of their comfort level with being an agent of change, the climate for change on their unit, and their confidence in delegation and communication skills. Through these assignments, students demonstrated integration of concepts from lecture (change theory, systems theory, quality improvement, and process evaluation) and achievement of Quality and Safety Education for Nurses (QSEN) competencies. The reflective components stimulated critical reflection of practice. Examples of student responses are included in this article.

  2. Rheumatoid arthritis therapy: advances from bench to bedside.

    PubMed

    Choi, Soo-In; Brahn, Ernest

    2010-11-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with significant functional disability and morbidity. Treatment with conventional disease-modifying anti-rheumatic drugs has substantial limitations including partial efficacy and poor tolerability. Advances in our understanding of the pathogenesis of RA over the past decade have fostered development of targeted therapies and greatly expanded the available treatment options. Several of the therapeutic targets identified by recent studies have been translated into effective therapeutic agents, and many additional agents are currently under active development. In this article, we review the biologic agents that have made successful transitions from bench to bedside as well as the biologic and small molecule agents that are at various stages of development in human trials.

  3. A wireless energy transfer platform, integrated at the bedside.

    PubMed

    De Clercq, Hans; Puers, Robert

    2013-01-01

    This paper presents the design of a wireless energy transfer platform, integrated at the bedside. The system contains a matrix of identical inductive power transmitters, which are optimised to provide power to a wearable sensor network, with the purpose of wirelessly recording vital signals over an extended period of time. The magnetic link, operates at a transfer frequency of 6.78MHz and is able to transfer a power of 3.3mW to the remote side at an inter-coil distance of 100mm. The total efficiency of the power link is 26%. Moreover, the platform is able to dynamically determine the position of freely moving sensor nodes and selectively induce a magnetic field in the area where the sensor nodes are positioned. As a result, the patient will not be subjected to unnecessary radiation and the specific absorption rate standards are met more easily.

  4. The poison pen: bedside diagnosis of urinary diquat.

    PubMed

    Vohra, Rais; Salazar, Anthony; Cantrell, F L; Fernando, Ravindra; Clark, Richard F

    2010-03-01

    Diquat is a bipyridyl herbicide with nephrotoxic effects. This in vitro study demonstrates a colorimetric test for detection of diquat in human urine. Urine specimens using ten concentrations of diquat herbicide solution and controls for urine and glyphosate were prepared. A two-step assay (addition of bicarbonate followed by sodium dithionite) was performed, with a resulting color change of the original solution for each specimen. Color change intensity was noted immediately and after 30 min, by gross visual inspection. A green color with concentration-dependent intensity was detected in all specimens, in which concentrations of diquat solution ranged from 0.73 to 730 mg/L. This colorimetric effect disappeared after 30 min. The sodium bicarbonate/dithionite test may be useful as a qualitative bedside technique for the detection of urinary diquat in the appropriate clinical setting.

  5. Equine cellular therapy--from stall to bench to bedside?

    PubMed

    Burk, Janina; Badylak, Stephen F; Kelly, Jeremy; Brehm, Walter

    2013-01-01

    Pioneering clinical stem cell research is being performed in the horse, a recipient of cutting edge veterinary medicine as well as a unique animal model, paving the way for human medical applications. Although demonstrable progress has been made on the clinical front, in vitro characterization of equine stem cells is still in comparatively early stages. To translate the promising results of clinical stem cell therapy in the horse, advances must be made in the characterization of equine stem cells. Aiming to improve communication between veterinarians and other natural scientists, this review gives an overview of veterinary "bedside" achievements, focusing on stem cell therapies in equine orthopedics as well as the current state of in vitro characterization of equine multipotent mesenchymal stromal cells (MSCs) and equine embryonic stem cells (ESCs).

  6. Can ultrasound guidance reduce the risk of pneumothorax following thoracentesis?*, **

    PubMed Central

    Perazzo, Alessandro; Gatto, Piergiorgio; Barlascini, Cornelius; Ferrari-Bravo, Maura; Nicolini, Antonello

    2014-01-01

    OBJECTIVE: Thoracentesis is one of the bedside procedures most commonly associated with iatrogenic complications, particularly pneumothorax. Various risk factors for complications associated with thoracentesis have recently been identified, including an inexperienced operator; an inadequate or inexperienced support team; the lack of a standardized protocol; and the lack of ultrasound guidance. We sought to determine whether ultrasound-guided thoracentesis can reduce the risk of pneumothorax and improve outcomes (fewer procedures without fluid removal and greater volumes of fluid removed during the procedures). In our comparison of thoracentesis with and without ultrasound guidance, all procedures were performed by a team of expert pulmonologists, using the same standardized protocol in both conditions. METHODS: A total of 160 participants were randomly allocated to undergo thoracentesis with or without ultrasound guidance (n = 80 per group). The primary outcome was pneumothorax following thoracentesis. Secondary outcomes included the number of procedures without fluid removal and the volume of fluid drained during the procedure. RESULTS: Pneumothorax occurred in 1 of the 80 patients who underwent ultrasound-guided thoracentesis and in 10 of the 80 patients who underwent thoracentesis without ultrasound guidance, the difference being statistically significant (p = 0.009). Fluid was removed in 79 of the 80 procedures performed with ultrasound guidance and in 72 of the 80 procedures performed without it. The mean volume of fluid drained was larger during the former than during the latter (960 ± 500 mL vs. 770 ± 480 mL), the difference being statistically significant (p = 0.03). CONCLUSIONS: Ultrasound guidance increases the yield of thoracentesis and reduces the risk of post-procedure pneumothorax. (Chinese Clinical Trial Registry identifier: ChiCTR-TRC-12002174 [http://www.chictr.org/en/]) PMID:24626264

  7. General Ultrasound Imaging

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  8. Venous Ultrasound (Extremities)

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  9. Carotid Ultrasound Imaging

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  10. The accuracy of prostate volume measurement from ultrasound images: a quasi-Monte Carlo simulation study using magnetic resonance imaging.

    PubMed

    Azulay, David-Olivier D; Murphy, Philip; Graham, Jim

    2013-01-01

    Prostate volume is an important parameter to guide management of patients with benign prostatic hyperplasia (BPH) and to deliver clinical trial endpoints. Generally, simple 2D ultrasound (US) approaches are favoured despite the potential for greater accuracy afforded by magnetic resonance imaging (MRI) or complex US procedures. In this study, different approaches to estimate prostate size are evaluated with a simulation to select multiple organ cross-sections and diameters from 22 MRI-defined prostate shapes. A quasi-Monte Carlo (qMC) approach is used to simulate multiple probe positions and angles within prescribed limits resulting in a range of dimensions. The basic ellipsoid calculation which uses two scanning planes compares well to the MRI volume across the range of prostate shapes and sizes (R=0.992). However, using an appropriate linear regression model, accurate volume estimates can be made using prostate diameters calculated from a single scanning plane.

  11. Non-invasive Measurement of Thermal Diffusivity Using High-Intensity Focused Ultrasound and Through-Transmission Ultrasonic Imaging.

    PubMed

    Yeshurun, Lilach; Azhari, Haim

    2016-01-01

    Thermal diffusivity at the site ablated by high-intensity focused ultrasound (HIFU) plays an important role in the final therapeutic outcome, as it influences the temperature's spatial and temporal distribution. Moreover, as tissue thermal diffusivity is different in tumors as compared with normal tissue, it could also potentially be used as a new source of imaging contrast. The aim of this study was to examine the feasibility of combining through-transmission ultrasonic imaging and HIFU to estimate thermal diffusivity non-invasively. The concept was initially evaluated using a computer simulation. Then it was experimentally tested on phantoms made of agar and ex vivo porcine fat. A computerized imaging system combined with a HIFU system was used to heat the phantoms to temperatures below 42°C to avoid irreversible damage. Through-transmission scanning provided the time-of-flight values in a region of interest during its cooling process. The time-of-flight values were consequently converted into mean values of speed of sound. Using the speed-of-sound profiles along with the developed model, we estimated the changes in temperature profiles over time. These changes in temperature profiles were then used to calculate the corresponding thermal diffusivity of the studied specimen. Thermal diffusivity for porcine fat was found to be lower by one order of magnitude than that obtained for agar (0.313×10(-7)m(2)/s vs. 4.83×10(-7)m(2)/s, respectively, p < 0.041). The fact that there is a substantial difference between agar and fat implies that non-invasive all-ultrasound thermal diffusivity mapping is feasible. The suggested method may particularly be suitable for breast scanning.

  12. Ultrasound-Derived Abdominal Muscle Thickness Better Detects Metabolic Syndrome Risk in Obese Patients than Skeletal Muscle Index Measured by Dual-Energy X-Ray Absorptiometry

    PubMed Central

    Ido, Ayumi; Nakayama, Yuki; Ishii, Kojiro; Iemitsu, Motoyuki; Sato, Koji; Fujimoto, Masahiro; Kurihara, Toshiyuki; Hamaoka, Takafumi; Satoh-Asahara, Noriko; Sanada, Kiyoshi

    2015-01-01

    Sarcopenia has never been diagnosed based on site-specific muscle loss, and little is known about the relationship between site-specific muscle loss and metabolic syndrome (MetS) risk factors. To this end, this cross-sectional study aimed to investigate the relationship between site-specific muscle size and MetS risk factors. Subjects were 38 obese men and women aged 40–82 years. Total body fat and lean body mass were assessed by whole-body dual-energy X-ray absorptiometry (DXA) scan. Muscle thickness (MTH) was measured using B-mode ultrasound scanning in six body regions. Subjects were classified into general obesity (GO) and sarcopenic obesity (SO) groups using the threshold values of one standard deviation below the sex-specific means of either MTH or skeletal muscle index (SMI) measured by DXA. MetS risk score was acquired by standardizing and summing the following continuously distributed variables: visceral fat area, mean blood pressure, HbA1c, and serum triglyceride / high density lipoprotein cholesterol, to obtain the Z-score. Multiple regression analysis revealed that the MetS risk score was independently associated with abdominal MTH in all subjects, but not with MTH in other muscle regions, including the thigh. Although HbA1c and the number of MetS risk factors in the SO group were significantly higher than those in the GO group, there were no significant differences between GO and SO groups as defined by SMI. Ultrasound-derived abdominal MTH would allow a better assessment of sarcopenia in obese patients and can be used as an alternative to the conventionally-used SMI measured by DXA. PMID:26700167

  13. Breast ultrasound.

    PubMed

    Ueno, E

    1996-03-01

    In ultrasound, ultrasonic images are formed by means of echoes among tissues with different acoustic impedance. Acoustic impedance is the product of sound speed and bulk modulus. The bulk modulus expresses the elasticity of an object, and in the human body, the value is increased by conditions such as fibrosis and calcification. The sound speed is usually high in elastic tissues and low in water. In the body, it is lowest in the fatty tissue. Ultrasound echoes are strong on the surface of bones which are hard and have a high sound speed. In organs filled with air such as the lungs, the bulk modulus is low and the sound speed is extremely low at 340 m/s, which produce strong echoes (the sound speed in solid tissues is 1,530 m/s). Human tissue is constructed of units smaller than the ultrasonic beam, and it is necessary to understand back-scattering in order to understand the ultrasonic images of these tissues. When ultrasound passes through tissue, it is absorbed as thermal energy and attenuated. Fiber is a tissue with a high absorption and attenuation rate. When the rate increases, the posterior echoes are attenuated. However, in masses with a high water content such as cysts, the posterior echoes are accentuated. This phenomenon is an important, basic finding for determining the properties of tumors. Breast cancer can be classified into two types: stellate carcinoma and circumscribed carcinoma. Since stellate carcinoma is rich in fiber, the posterior echoes are attenuated or lacking. However, circumscribed carcinoma has a high cellularity and the posterior echoes are accentuated. The same tendency is also seen in benign tumors. In immature fibroadenomas, posterior echoes are accentuated, while in fibroadenomas with hyalinosis, the posterior echoes are attenuated. Therefore, if the fundamentals of this tissue characterization and the histological features are understood, reading of ultrasound becomes easy. Color Doppler has also been developed and has contributed

  14. Eye and orbit ultrasound

    MedlinePlus

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... ophthalmology department of a hospital or clinic. Your eye is numbed with medicine (anesthetic drops). The ultrasound ...

  15. Comparison of photoacoustically derived hemoglobin and oxygenation measurements with contrast-enhanced ultrasound estimated vascularity and immunohistochemical staining in a breast cancer model.

    PubMed

    Eisenbrey, John R; Merton, Daniel A; Marshall, Andrew; Liu, Ji-Bin; Fox, Traci B; Sridharan, Anush; Forsberg, Flemming

    2015-01-01

    In this preliminary study, we compared two noninvasive techniques for imaging intratumoral physiological conditions to immunohistochemical staining in a murine breast cancer model. MDA-MB-231 tumors were implanted in the mammary pad of 11 nude rats. Ultrasound and photoacoustic (PA) scanning were performed using a Vevo 2100 scanner (Visualsonics, Toronto, Canada). Contrast-enhanced ultrasound (CEUS) was used to create maximum intensity projections as a measure of tumor vascularity. PAs were used to determine total hemoglobin signal (HbT), oxygenation levels in detected blood (SO2 Avg), and oxygenation levels over the entire tumor area (SO2 Tot). Tumors were then stained for vascular endothelial growth factor (VEGF), cyclooxygenase-2 (Cox-2), and the platelet endothelial cell adhesion molecule CD31. Correlations between findings were analyzed using Pearson's coefficient. Significant correlation was observed between CEUS-derived vascularity measurements and both PA indicators of blood volume (r = 0.49 for HbT, r = 0.50 for SO2 Tot). Cox-2 showed significant negative correlation with SO2 Avg (r = -0.49, p = 0.020) and SO2 Tot (r = -0.43, p = 0.047), while CD31 showed significant negative correlation with CEUS-derived vascularity (r = -0.47, p = 0.036). However, no significant correlation was observed between VEGF expression and any imaging modality (p > 0.08). Photoacoustically derived HbT and SO2 Tot may be a good indicator of tumor fractional vascularity. While CEUS correlates with CD31 expression, photoacoustically derived SO2 Avg appears to be a better predictor of Cox-2 expression.

  16. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range.

    PubMed

    Hakulinen, Mikko A; Day, Judd S; Töyräs, Juha; Timonen, Matti; Kröger, Heikki; Weinans, Harrie; Kiviranta, Ilkka; Jurvelin, Jukka S

    2005-04-21

    The ultrasound (US) backscattering method has been introduced as an alternative for the through-transmission measurement of sound attenuation and speed in diagnosis of osteoporosis. Both attenuation and backscattering depend strongly on the US frequency. In this study, 20 human trabecular bone samples were measured in transmission and pulse-echo geometry in vitro. The aim of the study was to find the most sensitive frequency range for the quantitative ultrasound (QUS) analyses. Normalized broadband US attenuation (nBUA), speed of sound (SOS), broadband US backscatter (BUB) and integrated reflection coefficient (IRC) were determined for each sample. The samples were spatially scanned with five pairs of US transducers covering a frequency range of 0.2-6.7 MHz. Furthermore, mechanical properties and density of the same samples were determined. At all frequencies, SOS, BUB and IRC showed statistically significant linear correlations with the mechanical properties or density of human trabecular bone (0.51 < r < 0.82, 0.54 < r < 0.81 and 0.70 < r < 0.85, respectively). In contrast to SOS, IRC and BUB, nBUA showed statistically significant correlations with mechanical parameters or density at the centre frequency of 1 MHz only. Our results suggest that frequencies up to 5 MHz can be useful in QUS analyses for the prediction of bone mechanical properties and density. Since the use of higher frequencies provides better axial and spatial resolution, improved structural analyses may be possible. While extensive attenuation of high frequencies in trabecular bone limits the clinically feasible frequency range, selection of optimal frequency range for in vivo QUS application should be carefully considered.

  17. Repeatability and Minimal Detectable Change in Longitudinal Median Nerve Excursion Measures During Upper Limb Neurodynamic Techniques in a Mixed Population: A Pilot Study Using Musculoskeletal Ultrasound Imaging.

    PubMed

    Paquette, Philippe; Lamontagne, Martin; Higgins, Johanne; Gagnon, Dany H

    2015-07-01

    This study determined test-retest reliability and minimum detectable change in longitudinal median nerve excursion during upper limb neurodynamic tests (ULNTs). Seven participants with unilateral or bilateral carpal tunnel syndrome and 11 healthy participants were randomly tested with two ULNTs (i.e., tensioner and slider). Each ULNT was performed three times each at 45° and 90° of shoulder abduction on two separate visits. Video sequences of median nerve excursion, recorded by a physical therapist using ultrasound imaging, were quantified using computer software. The generalizability theory, encompassing a G-Study and a D-study, measured the dependability coefficient (Φ) along with standard error of measurement (SEM) accuracy and allowed various testing protocols to be proposed. The highest reliability (Φ = 0.84) and lowest minimal measurement error (SEM = 0.58 mm) of the longitudinal median nerve excursion were reached during the ULNT-slider performed with 45° of shoulder abduction and when measures obtained from three different image sequences recorded during a single visit were averaged. It is recommended that longitudinal median nerve excursion measures computed from three separate image sequences recorded during a single visit be averaged in clinical practice. Ideally, adding a second visit (six image sequences) is also suggested in research protocols.

  18. The Effects of the Transforming Care at the Bedside Program on Perceived Team Effectiveness and Patient Outcomes.

    PubMed

    Lavoie-Tremblay, Mélanie; O'Connor, Patricia; Biron, Alain; Lavigne, Geneviéve L; Fréchette, Julie; Briand, Anaïck

    The objective of the study was to document the impact of Transforming Care at the Bedside (TCAB) program on health care team's effectiveness, patient safety, and patient experience. A pretest and posttest (team effectiveness) and a time-series study design (patient experience and safety) were used. The intervention (the TCAB program) was implemented in 8 units in a multihospital academic health science center in Montreal, Quebec, Canada. The impact of TCAB interventions was measured using the Team Effectiveness (TCAB teams, n = 50), and Clostridium difficile-associated diarrhea and vancomycin-resistant Enterobacter rates (patient safety) and Hospital Consumer Assessment of Healthcare Providers and Systems (patient experience; n = 551 patients). The intervention was composed of 4 learning modules, each lasting 12 to 15 weeks of workshops held at the start of each module, combined with hands-on learning 1 day per week. Transforming Care at the Bedside teams also selected 1 key safety indicator to improve throughout the initiative. Pretest and posttest differences indicate improvement on the 5 team effectiveness subscales. Improvement in vancomycin-resistant Enterococcus rate was also detected. No significant improvement was detected for patient experience. These findings call to attention the need to support ongoing quality improvement competency development among frontline teams.

  19. Painful traumatic peripheral partial nerve injury-sensory dysfunction profiles comparing outcomes of bedside examination and quantitative sensory testing.

    PubMed

    Leffler, Ann-Sofie; Hansson, Per

    2008-05-01

    The primary aim of this retrospective study was to focusing on the relationship between individual outcomes of bedside examination (BE) and quantitative testing of somatosensory functions (QST) in 32 patients with painful traumatic partial nerve injury. In addition, the potential presence of common sensory dysfunction denominators has been probed. Patients with a history of traumatic partial nerve injury and ongoing pain were included if pain was confined to the entire or part of the innervation territory of the severed nerve and a bedside titration of the neuron-anatomical borders confirmed sensory aberrations. An in-depth BE and QST was then performed in the most painful area. Categorization of normal and pathological outcome for both BE and QST was based on time honoured clinical decision-making using the healthy contralateral corresponding area as control. In patients with normal outcome or quantitative aberrations (i.e. hypo- or hyperesthesia) at BE and QST, the same individual outcome of touch sensation was reported by 48% of the patients, for cold in 54% and for warmth in 58%. The most common dysfunction found at both BE and QST was hypoesthesia, however with no common denominators in somatosensory dysfunction. In conclusion, this study demonstrated that not infrequently the individual outcome of BE and the corresponding QST measure differed, most frequently for touch sensibility. This finding is of outmost importance when QST outcomes are used to corroborate results from BE in the diagnostic situation.

  20. A new pocket-sized transcranial ultrasound device (NeuroDop): comparison with standard TCD.

    PubMed

    Kidwell, C S; Martin, N A; Saver, J L

    2000-04-01

    The NeuroDop is a new bedside assessment tool consisting of a continuous wave ultrasound probe attached to a stethoscope earpiece. This study was designed to compare middle cerebral artery (MCA) velocity assessment obtained with the NeuroDop versus standard transcranial Doppler (TCD). TCD technologists performed continuous wave NeuroDop studies followed by standard TCD studies on 60 subjects. Technologists recorded presence of MCA signal and estimated velocity based on NeuroDop auditory characteristics. Signal was obtained in 108 MCA vessels with the portable unit and in 112 vessels using standard TCD. For detection of patency, sensitivity was 96%, specificity 88%, positive predictive value 99%, and negative predictive value 58%. Auditorially estimated velocities from the NeuroDop strongly correlated with TCD velocity measures (r = 0.71). Categorical estimates of velocity as decreased (< 37 cm/sec), normal (37-81 cm/sec), or increased (> 81 cm/sec) demonstrated an accuracy rate of 85%. This novel stethoscope-continuous wave unit has excellent sensitivity in detecting presence of MCA patency. Moreover, MCA velocities can be characterized to a reasonable degree of accuracy based on NeuroDop auditory characteristics. The NeuroDop shows promise as a tool to rapidly assess and serially monitor presence and amplitude of MCA velocity and may help guide thrombolytic and other emergency management decisions in stroke patients.

  1. [High frequency ultrasound].

    PubMed

    Sattler, E

    2015-07-01

    Diagnostic ultrasound has become a standard procedure in clinical dermatology. Devices with intermediate high frequencies of 7.5-15 MHz are used in dermato-oncology for the staging and postoperative care of skin tumor patients and in angiology for improved vessel diagnostics. In contrast, the high frequency ultrasound systems with 20-100 MHz probes offer a much higher resolution, yet with a lower penetration depth of about 1 cm. The main indications are the preoperative measurements of tumor thickness in malignant melanoma and other skin tumors and the assessment of inflammatory and soft tissue diseases, offering information on the course of these dermatoses and allowing therapy monitoring. This article gives an overview on technical principles, devices, mode of examination, influencing factors, interpretation of the images, indications but also limitations of this technique.

  2. Towards Dynamic Contrast Specific Ultrasound Tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-10-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.

  3. Towards Dynamic Contrast Specific Ultrasound Tomography

    PubMed Central

    Demi, Libertario; Van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-01-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast. PMID:27703251

  4. WE-EF-210-06: Ultrasound 2D Strain Measurement of Radiation-Induced Toxicity: Phantom and Ex Vivo Experiments

    SciTech Connect

    Liu, T; Torres, M; Rossi, P; Jani, A; Curran, W; Yang, X

    2015-06-15

    Purpose: Radiation-induced fibrosis is a common long-term complication affecting many patients following cancer radiotherapy. Standard clinical assessment of subcutaneous fibrosis is subjective and often limited to visual inspection and palpation. Ultrasound strain imaging describes the compressibility (elasticity) of biological tissues. This study’s purpose is to develop a quantitative ultrasound strain imaging that can consistently and accurately characterize radiation-induce fibrosis. Methods: In this study, we propose a 2D strain imaging method based on deformable image registration. A combined affine and B-spline transformation model is used to calculate the displacement of tissue between pre-stress and post-stress B-mode image sequences. The 2D displacement is estimated through a hybrid image similarity measure metric, which is a combination of the normalized mutual information (NMI) and normalized sum-of-squared-differences (NSSD). And 2D strain is obtained from the gradient of the local displacement. We conducted phantom experiments under various compressions and compared the performance of our proposed method with the standard cross-correlation (CC)- based method using the signal-to-noise (SNR) and contrast-to-noise (CNS) ratios. In addition, we conducted ex-vivo beef muscle experiment to further validate the proposed method. Results: For phantom study, the SNR and CNS values of the proposed method were significantly higher than those calculated from the CC-based method under different strains. The SNR and CNR increased by a factor of 1.9 and 2.7 comparing to the CC-based method. For the ex-vivo experiment, the CC-based method failed to work due to large deformation (6.7%), while our proposed method could accurately detect the stiffness change. Conclusion: We have developed a 2D strain imaging technique based on the deformable image registration, validated its accuracy and feasibility with phantom and ex-vivo data. This 2D ultrasound strain imaging

  5. Pharmacokinetics of BPA in gliomas with ultrasound induced blood-brain barrier disruption as measured by microdialysis.

    PubMed

    Yang, Feng-Yi; Lin, Yi-Li; Chou, Fong-In; Lin, Yu-Chuan; Hsueh Liu, Yen-Wan; Chang, Lun-Wei; Hsieh, Yu-Ling

    2014-01-01

    The blood-brain barrier (BBB) can be transiently disrupted by focused ultrasound (FUS) in the presence of microbubbles for targeted drug delivery. Previous studies have illustrated the pharmacokinetics of drug delivery across the BBB after sonication using indirect visualization techniques. In this study, we investigated the in vivo extracellular kinetics of boronophenylalanine-fructose (BPA-f) in glioma-bearing rats with FUS-induced BBB disruption by microdialysis. After simultaneous intravenous administration of BPA and FUS exposure, the boron concentration in the treated brains was quantified by inductively coupled plasma mass spectroscopy. With FUS, the mean peak concentration of BPA-f in the glioma dialysate was 3.6 times greater than without FUS, and the area under the concentration-time curve was 2.1 times greater. This study demonstrates that intracerebral microdialysis can be used to assess local BBB transport profiles of drugs in a sonicated site. Applying microdialysis to the study of metabolism and pharmacokinetics is useful for obtaining selective information within a specific brain site after FUS-induced BBB disruption.

  6. The use of normalized cross-correlation analysis for automatic tendon excursion measurement in dynamic ultrasound imaging.

    PubMed

    Pearson, Stephen J; Ritchings, Tim; Mohamed, Ahmad S A

    2013-04-01

    The work describes an automated method of tracking dynamic ultrasound images using a normalized cross-correlation algorithm, applied to the patellar and gastrocnemius tendon. Displacement was examined during active and passive tendon excursions using B-mode ultrasonography. In the passive test where two regions of interest (2-ROI) were tracked, the automated tracking algorithm showed insignificant deviations from relative zero displacement for the knee (0.01 ± 0.04 mm) and ankle (-0.02 ± 0.04 mm) (P > .05). Similarly, when tracking 1-ROI the passive tests showed no significant differences (P > .05) between automatic and manual methods, 7.50 ± 0.60 vs 7.66 ± 0.63 mm for the patellar and 11.28 ± 1.36 vs 11.17 ± 1.35 mm for the gastrocnemius tests. The active tests gave no significant differences (P > .05) between automatic and manual methods with differences of 0.29 ± 0.04 mm for the patellar and 0.26 ± 0.01 mm for the gastrocnemius. This study showed that automatic tracking of in vivo displacement of tendon during dynamic excursion under load is possible and valid when compared with the standardized method. This approach will save time during analysis and enable discrete areas of the tendon to be examined.

  7. Abdominal aortic aneurysm imaging with 3-D ultrasound: 3-D-based maximum diameter measurement and volume quantification.

    PubMed

    Long, A; Rouet, L; Debreuve, A; Ardon, R; Barbe, C; Becquemin, J P; Allaire, E

    2013-08-01

    The clinical reliability of 3-D ultrasound imaging (3-DUS) in quantification of abdominal aortic aneurysm (AAA) was evaluated. B-mode and 3-DUS images of AAAs were acquired for 42 patients. AAAs were segmented. A 3-D-based maximum diameter (Max3-D) and partial volume (Vol30) were defined and quantified. Comparisons between 2-D (Max2-D) and 3-D diameters and between orthogonal acquisitions were performed. Intra- and inter-observer reproducibility was evaluated. Intra- and inter-observer coefficients of repeatability (CRs) were less than 5.18 mm for Max3-D. Intra-observer and inter-observer CRs were respectively less than 6.16 and 8.71 mL for Vol30. The mean of normalized errors of Vol30 was around 7%. Correlation between Max2-D and Max3-D was 0.988 (p < 0.0001). Max3-D and Vol30 were not influenced by a probe rotation of 90°. Use of 3-DUS to quantify AAA is a new approach in clinical practice. The present study proposed and evaluated dedicated parameters. Their reproducibility makes the technique clinically reliable.

  8. Strangulated epigastric hernia in a 90-year-old man: Point-of-Care Ultrasound (POCUS) as a saving kit: Case report

    PubMed Central

    Abu-Zidan, Fikri M.; Idris, Kamal; Khalifa, Mohammed

    2016-01-01

    Introduction The physiological reserve of extreme elderly patients is very limited and has major impact on clinical decisions on their management. Hereby we report a 90-year-old man who presented with a strangulated epigastric hernia and who developed postoperative intra-abdominal bleeding, and highlight the value of Point-of-Care Ultrasound (POCUS) in critical decisions made during the management of this patient. Presentation of case A 90-year-old man presented with a tender irreducible epigastric mass. Surgeon-performed POCUS using colour Doppler showed small bowel in the hernia with no flow in the mesentery. Resection anastomosis of an ischaemic small bowel and suture repair of the hernia was performed. Twenty four hours after surgery, in a routine follow up using POCUS, significant intra-peritoneal fluid was detected although the patient was haemodynamically stable. The fluid was tapped under bedside ultrasound guidance and it was frank blood. During induction of anaesthesia for a laparotomy, the patient became hypotensive. Resuscitation under inferior vena cava sonographic measurement, followed by successful damage control surgery with packing, was performed. 36 h later, the packs were removed, no active bleeding could be seen and the abdomen was closed without tension. The patient was discharged home 50 days after surgery with good general condition. Conclusion POCUS has a central role in the management of critically-ill elderly patients for making quick critical decisions. PMID:27017275

  9. Primary care follow-up and measured mental health outcomes among women referred for ultrasound assessment of pain and/or bleeding in early pregnancy: a quantitative questionnaire study

    PubMed Central

    Moscrop, Andrew; Harrison, Sian; Heppell, Victoria; Heneghan, Carl; Ward, Alison

    2013-01-01

    Objectives To examine the extent of primary care follow-up and mental health outcomes among women referred for ultrasound assessment of pain and/or bleeding in early pregnancy, including those whose pregnancy is found to be viable on ultrasound assessment. Design Questionnaire study with prospective follow-up. Setting Urgent gynaecology clinic in secondary care, England. Participants 57 women participated in the study. Entry criteria: referral to the urgent gynaecology clinic with pain and/or bleeding in early pregnancy; gestation less than 16 weeks (the clinic's own ‘cut-off’); no previous attendance at the clinic during the current pregnancy. Exclusion criteria: inability to understand English or to provide informed consent. Primary and secondary outcome measures Incidence of primary care follow-up among women referred to the urgent gynaecology clinic; incidence of women with measured mental health scores suggesting significant symptoms of distress. Results Fewer than 1 in 10 women referred for ultrasound assessment of pain and/or bleeding in early pregnancy had follow-up arrangements made with their general practitioner (GP). Most women who had GP follow-up found it helpful and a significant minority of women who did not have GP follow-up felt that it would have been helpful. Following ultrasound assessment, more than one-third of women had significant symptoms of distress. Symptoms of distress, particularly anxiety, were present among those women found to have viable pregnancies, as well as among those with non-viable pregnancies. Conclusions GPs are advised to consider offering follow-up to all women referred for ultrasound assessment of pain and/or bleeding in early pregnancy. Researchers in this area are advised to consider the experiences of women with pain and/or bleeding in early pregnancy whose pregnancies are ultimately found to be viable on ultrasound scan. PMID:23585390

  10. Ultrasound and Therapy

    NASA Astrophysics Data System (ADS)

    Lafon, Cyril

    This paper begins with an overview and a description of the interactions between ultrasound and biological tissues encountered during treatment protocols. In a second part of this seminar, two clinical applications of therapeutic ultrasound will be described in details: -Kidney stone destruction by ultrasound (lithotripsy) and High Intensity Focused Ultrasound for treating prostate cancer (HIFU).

  11. [Ultrasound in emergency medicine].

    PubMed

    Lapostolle, F; Deltour, S; Petrovic, T

    2015-12-01

    Ultrasound has revolutionized the practice of emergency medicine, particularly in prehospital setting. About a patient with dyspnea, we present the role of ultrasound in the diagnosis and emergency treatment. Echocardiography, but also hemodynamic ultrasound (vena cava) and lung exam are valuable tools. Achieving lung ultrasound and diagnostic value of B lines B are detailed.

  12. Lung ultrasound findings in meconium aspiration syndrome.

    PubMed

    Piastra, Marco; Yousef, Nadya; Brat, Roselyne; Manzoni, Paolo; Mokhtari, Mostafa; De Luca, Daniele

    2014-09-01

    Meconium aspiration syndrome (MAS) is a rare and life-threatening neonatal lung injury induced by meconium in the lung and airways. Lung ultrasound (LUS) is a quick, easy and cheap imaging technique that is increasingly being used in critical care settings, also for newborns. In this paper we describe ultrasound findings in MAS. Six patients with MAS of variable severity were examined by LUS during the first hours of life. Chest X-rays were used as reference. The following dynamic LUS signs were seen in all patients: (1) B-pattern (interstitial) coalescent or sparse; (2) consolidations; (3) atelectasis; (4) bronchograms. No pattern was observed for the distribution of signs in lung areas, although the signs varied with time, probably due to the changing localisation of meconium in the lungs. LUS images corresponded well with X-ray findings. In conclusion, we provide the first formal description of LUS findings in neonates with MAS. LUS is a useful and promising tool in the diagnosis and management of MAS, providing real-time bedside imaging, with the additional potential benefit of limiting radiation exposure in sick neonates.

  13. Research at the Bedside: It Makes A Difference.

    PubMed

    Bridges, Elizabeth J

    2015-07-01

    Research at the bedside makes a difference for our patients, and also for our nurses. However, it is now time to broaden our focus from research on interventions or events at a narrow point in time to research that addresses care across the continuum. This continuum may start at the point of injury, such as the battlefield through en route care delivered during the 8000-mile journey home for our wounded warriors, or for critically ill patients as they move between the emergency department, operating room, and intensive care unit. This focus also requires researchers to consider "care within context," that is, research- and evidence-based practice tailored to the unique conditions of the care environment. Beyond conducting research and developing new knowledge is the challenge of translating evidence into practice. A culture of inquiry is a critical element in the successful translation of evidence into practice. In a culture of inquiry, nurses are encouraged to question and evaluate their practice, provide evidence-based care, and actively participate in and lead clinical inquiry. This article draws from a program of applied clinical research reflecting care across the continuum within both military and civilian health care settings and discusses how the application of these research findings and the advancement of a culture of inquiry make a difference for both patients and nurses.

  14. Translational research: understanding the continuum from bench to bedside.

    PubMed

    Drolet, Brian C; Lorenzi, Nancy M

    2011-01-01

    The process of translating basic scientific discoveries to clinical applications, and ultimately to public health improvements, has emerged as an important, but difficult, objective in biomedical research. The process is best described as a "translation continuum" because various resources and actions are involved in this progression of knowledge, which advances discoveries from the bench to the bedside. The current model of this continuum focuses primarily on translational research, which is merely one component of the overall translation process. This approach is ineffective. A revised model to address the entire continuum would provide a methodology to identify and describe all translational activities (eg, implementation, adoption translational research, etc) as well their place within the continuum. This manuscript reviews and synthesizes the literature to provide an overview of the current terminology and model for translation. A modification of the existing model is proposed to create a framework called the Biomedical Research Translation Continuum, which defines the translation process and describes the progression of knowledge from laboratory to health gains. This framework clarifies translation for readers who have not followed the evolving and complicated models currently described. Authors and researchers may use the continuum to understand and describe their research better as well as the translational activities within a conceptual framework. Additionally, the framework may increase the advancement of knowledge by refining discussions of translation and allowing more precise identification of barriers to progress.

  15. Bench-to-bedside review: Latest results in hemorrhagic shock

    PubMed Central

    Angele, Martin K; Schneider, Christian P; Chaudry, Irshad H

    2008-01-01

    Hemorrhagic shock is a leading cause of death in trauma patients worldwide. Bleeding control, maintenance of tissue oxygenation with fluid resuscitation, coagulation support, and maintenance of normothermia remain mainstays of therapy for patients with hemorrhagic shock. Although now widely practised as standard in the USA and Europe, shock resuscitation strategies involving blood replacement and fluid volume loading to regain tissue perfusion and oxygenation vary between trauma centers; the primary cause of this is the scarcity of published evidence and lack of randomized controlled clinical trials. Despite enormous efforts to improve outcomes after severe hemorrhage, novel strategies based on experimental data have not resulted in profound changes in treatment philosophy. Recent clinical and experimental studies indicated the important influences of sex and genetics on pathophysiological mechanisms after hemorrhage. Those findings might provide one explanation why several promising experimental approaches have failed in the clinical arena. In this respect, more clinically relevant animal models should be used to investigate pathophysiology and novel treatment approaches. This review points out new therapeutic strategies, namely immunomodulation, cardiovascular maintenance, small volume resuscitation, and so on, that have been introduced in clinics or are in the process of being transferred from bench to bedside. Control of hemorrhage in the earliest phases of care, recognition and monitoring of individual risk factors, and therapeutic modulation of the inflammatory immune response will probably constitute the next generation of therapy in hemorrhagic shock. Further randomized controlled multicenter clinical trials are needed that utilize standardized criteria for enrolling patients, but existing ethical requirements must be maintained. PMID:18638356

  16. Myocardial ischemia reperfusion injury: from basic science to clinical bedside.

    PubMed

    Frank, Anja; Bonney, Megan; Bonney, Stephanie; Weitzel, Lindsay; Koeppen, Michael; Eckle, Tobias

    2012-09-01

    Myocardial ischemia reperfusion injury contributes to adverse cardiovascular outcomes after myocardial ischemia, cardiac surgery or circulatory arrest. Primarily, no blood flow to the heart causes an imbalance between oxygen demand and supply, named ischemia (from the Greek isch, restriction; and haema, blood), resulting in damage or dysfunction of the cardiac tissue. Instinctively, early and fast restoration of blood flow has been established to be the treatment of choice to prevent further tissue injury. Indeed, the use of thrombolytic therapy or primary percutaneous coronary intervention is the most effective strategy for reducing the size of a myocardial infarct and improving the clinical outcome. Unfortunately, restoring blood flow to the ischemic myocardium, named reperfusion, can also induce injury. This phenomenon was therefore termed myocardial ischemia reperfusion injury. Subsequent studies in animal models of acute myocardial infarction suggest that myocardial ischemia reperfusion injury accounts for up to 50% of the final size of a myocardial infarct. Consequently, many researchers aim to understand the underlying molecular mechanism of myocardial ischemia reperfusion injury to find therapeutic strategies ultimately reducing the final infarct size. Despite the identification of numerous therapeutic strategies at the bench, many of them are just in the process of being translated to bedside. The current review discusses the most striking basic science findings made during the past decades that are currently under clinical evaluation, with the ultimate goal to treat patients who are suffering from myocardial ischemia reperfusion-associated tissue injury.

  17. Economic analysis of bedside ultrasonography (US) implementation in an Internal Medicine department.

    PubMed

    Testa, Americo; Francesconi, Andrea; Giannuzzi, Rosangela; Berardi, Silvia; Sbraccia, Paolo

    2015-12-01

    The economic crisis, the growing healthcare demand, and Defensive Medicine wastefulness, strongly recommend the restructuring of the entire medical network. New health technology, such as bedside ultrasonography, might successfully integrate the clinical approach optimizing the use of limited resources, especially in a person-oriented vision of medicine. Bedside ultrasonography is a safe and reliable technique, with worldwide expanding employment in various clinical settings, being considered as "the stethoscope of the 21st century". However, at present, bedside ultrasonography lacks economic analysis. We performed a Cost-Benefit Analysis "ex ante", with a break-even point computing, of bedside ultrasonography implementation in an Internal Medicine department in the mid-term. Number and kind estimation of bedside ultrasonographic studies were obtained by a retrospective study, whose data results were applied to the next 3-year period (foresight study). All 1980 foreseen bedside examinations, with prevailing multiorgan ultrasonographic studies, were considered to calculate direct and indirect costs, while specific and generic revenues were considered only after the first semester. Physician professional training, equipment purchase and working time represented the main fixed and variable cost items. DRG increase/appropriateness, hospitalization stay shortening and reduction of traditional ultrasonography examination requests mainly impacted on calculated revenues. The break-even point, i.e. the volume of activity at which revenues exactly equal total incurred costs, was calculated to be 734 US examinations, corresponding to € 81,998 and the time considered necessary to reach it resulting 406 days. Our economic analysis clearly shows that bedside ultrasonography implementation in clinical daily management of an Internal Medicine department can produce consistent savings, or economic profit according to managerial choices (i.e., considering public or private targets

  18. Ultrasound in Space Medicine

    NASA Technical Reports Server (NTRS)

    Dulchavsky, Scott A.; Sargsyan, A.E.

    2009-01-01

    This slide presentation reviews the use of ultrasound as a diagnostic tool in microgravity environments. The goals of research in ultrasound usage in space environments are: (1) Determine accuracy of ultrasound in novel clinical conditions. (2) Determine optimal training methodologies, (3) Determine microgravity associated changes and (4) Develop intuitive ultrasound catalog to enhance autonomous medical care. Also uses of Ultrasound technology in terrestrial applications are reviewed.

  19. Lung ultrasound in the critically ill

    PubMed Central

    2014-01-01

    Lung ultrasound is a basic application of critical ultrasound, defined as a loop associating urgent diagnoses with immediate therapeutic decisions. It requires the mastery of ten signs: the bat sign (pleural line), lung sliding (yielding seashore sign), the A-line (horizontal artifact), the quad sign, and sinusoid sign indicating pleural effusion, the fractal, and tissue-like sign indicating lung consolidation, the B-line, and lung rockets indicating interstitial syndrome, abolished lung sliding with the stratosphere sign suggesting pneumothorax, and the lung point indicating pneumothorax. Two more signs, the lung pulse and the dynamic air bronchogram, are used to distinguish atelectasis from pneumonia. All of these disorders were assessed using CT as the “gold standard” with sensitivity and specificity ranging from 90% to 100%, allowing ultrasound to be considered as a reasonable bedside “gold standard” in the critically ill. The BLUE-protocol is a fast protocol (<3 minutes), which allows diagnosis of acute respiratory failure. It includes a venous analysis done in appropriate cases. Pulmonary edema, pulmonary embolism, pneumonia, chronic obstructive pulmonary disease, asthma, and pneumothorax yield specific profiles. Pulmonary edema, e.g., yields anterior lung rockets associated with lung sliding, making the “B-profile.” The FALLS-protocol adapts the BLUE-protocol to acute circulatory failure. It makes sequential search for obstructive, cardiogenic, hypovolemic, and distributive shock using simple real-time echocardiography (right ventricle dilatation, pericardial effusion), then lung ultrasound for assessing a direct parameter of clinical volemia: the apparition of B-lines, schematically, is considered as the endpoint for fluid therapy. Other aims of lung ultrasound are decreasing medical irradiation: the LUCIFLR program (most CTs in ARDS or trauma can be postponed), a use in traumatology, intensive care unit, neonates (the signs are the same than

  20. Comparison of stroke volume and cardiac output as measured by a single observer using four different ultrasound techniques in six clinically healthy cats.

    PubMed

    Biermann, K; Hungerbühler, S; Kästner, S B R

    2012-12-01

    The aim of this study was to assess agreement and repeatability of four ultrasound methods for measuring stroke volume (SV) and cardiac output (CO) in cats. Measurement of SV and CO was performed by the Teichholz method, the Simpson's method (SM), the area length method (ALM) and a volumetric flow method across the aorta (Trace method). For each method, the coefficient of variation (CV) was calculated and agreement was determined by Bland-Altman analysis. The CV was acceptable (<20%) for all parameters, except for SV and CO obtained by SM (28.8% and 22.4%, respectively) and ALM (21.6% and 22.6%, respectively). Narrow limits of agreement were observed between both planimetric methods (SM and ALM). The Trace method was the most repeatable, followed by the Teichholz method. Despite excellent inter-method agreement, neither of the planimetric methods produced results with adequate repeatability. As the Teichholz and Trace methods were acceptably repeatable, and probably gave the most representative values, they appear to be the most useful methods for the measurement of SV and CO in cats. Further investigations are needed to compare the echocardiographic methods described here with a standard technique such as thermodilution.

  1. Characterization of the activity of ultrasound emitted in a perpendicular liquid flow using Particle Image Velocimetry (PIV) and electrochemical mass transfer measurements.

    PubMed

    Barthès, Magali; Mazue, Gerald; Bonnet, Dimitri; Viennet, Remy; Hihn, Jean-Yves; Bailly, Yannick

    2015-05-01

    The present work is dedicated to the study of the interactions between a liquid circulation and a perpendicular acoustic wave propagation. A specific experimental setup was designed to study one transducer operating at 20 kHz, with the help of electrochemical mass transfer measurements combined with Particle Image Velocimetry (PIV) determination. Electrodes were located on the wall opposite to the acoustic emission. Experiments were performed for various Reynolds numbers: from 0 to 21700 (different liquid flow rates and viscosities). Both PIV and electrochemical measurements methods were found to be relevant, and had delivered complementary information. Even if PIV showed that the plume due to streaming was highly deflected by the additional flow, electrochemical measurements showed that there was still an activity, higher than in silent conditions, on the wall facing the transducer. Thus the ultrasound contribution remained noticeable on the surface opposite to the transducer even for a disturbed hydrodynamic environment due to the presence of a liquid circulation perpendicular to the wave propagation.

  2. Potential Bedside Utility of the Clock-Drawing Test in Evaluating Rapid Therapeutic Response in the Natural Course of Schizophrenia: A Preliminary Study.

    PubMed

    Ransing, Ramdas Sarjerao; Khairkar, Praveen Homdeorao; Mishra, Kshirod; Sakekar, Gajanan

    2017-03-15

    The Clock-Drawing Test (CDT) is a brief, relatively time-efficient, easy to administer at bedside, and well-proven cognitive screening test that assesses a broad range of cognitive abilities in stroke, delirium, and dementia. However, challenges of comprehensive therapeutic outcome evaluations in schizophrenia can also be potentially overcome using CDT. The authors aimed to measure the therapeutic outcome using CDT in 101 schizophrenia patients, irrespective of their diagnostic subtypes. A repeated measures analysis of variance found that improvements on CDT and the Positive and Negative Syndrome Scale were closely correlated, reflecting critical information about therapeutic response measures in schizophrenia.

  3. Ultrasound Imaging Velocimetry: a review

    NASA Astrophysics Data System (ADS)

    Poelma, Christian

    2017-01-01

    Whole-field velocity measurement techniques based on ultrasound imaging (a.k.a. `ultrasound imaging velocimetry' or `echo-PIV') have received significant attention from the fluid mechanics community in the last decade, in particular because of their ability to obtain velocity fields in flows that elude characterisation by conventional optical methods. In this review, an overview is given of the history, typical components and challenges of these techniques. The basic principles of ultrasound image formation are summarised, as well as various techniques to estimate flow velocities; the emphasis is on correlation-based techniques. Examples are given for a wide range of applications, including in vivo cardiovascular flow measurements, the characterisation of sediment transport and the characterisation of complex non-Newtonian fluids. To conclude, future opportunities are identified. These encompass not just optimisation of the accuracy and dynamic range, but also extension to other application areas.

  4. Cardio-thoracic surgical patients' experience on bedside nursing handovers: Findings from a qualitative study.

    PubMed

    Lupieri, Giulia; Creatti, Chiara; Palese, Alvisa

    2016-08-01

    The purpose of this study was to describe the experiences of postoperative cardio-thoracic surgical patients experiencing nursing bedside handover. A descriptive qualitative approach was undertaken. A purposeful sampling technique was adopted, including 14 patients who went through cardio-thoracic surgery and witnessed at least two bedside handovers. The study was performed in a Cardio-thoracic ICU localised in a Joint Commission International accredited Academic Hospital in north-eastern Italy from August to November 2014. The experience of patients participating at the bedside handover is based on four main themes: (1) 'discovering a new nursing identity', (2) 'being apparently engaged in a bedside handover', (3) 'experiencing the paradox of confidentiality' and (4) 'having the situation under control'. With the handover performed at the bedside in a postoperative setting, two interconnected potential effects may be achieved with regard to patients, nurses and the nursing profession. Nurses have a great opportunity to express their closeness to patients and to promote awareness of the important growth that nursing has achieved over the years as a profession and discipline. Therefore, patients may better perceive nursing competence and feel safer during the postoperative care pathway. They can appreciate nurses' humanity in caring and trust their competence and professionalism.

  5. [How should anesthesiologists perform ultrasound examinations? Diagnostic use of ultrasound in emergency and intensive care and medicine].

    PubMed

    Maecken, T; Zinke, H; Zenz, M; Grau, T

    2011-03-01

    Ultrasound imaging has attained great significance as a tool for diagnostics in emergency and intensive care medicine. The major advantages of this technique are its instantaneous bedside availability and the possibility to perform repeatable examinations. These advantages are based on recent developments, such as portable ultrasound devices offering excellent imaging quality as well as a quick-start-function. Ultrasound imaging in critically ill patients is frequently performed under pressure of time depending on the current acute physical state. All standard examinations in echocardiography, vascular, abdominal and thoracic ultrasound scanning can be applied in these patients. Based on the clinical scenario the duration of examinations may vary from seconds during cardiopulmonary resuscitations to time-consuming repeated scanning. The transition from basic to subject-specific detailed examinations is flowing and has to be adjusted to local conditions. In the field of emergency and intensive care medicine the technique used is whole-body sonography. The goal is to classify the patient's present physical state and to define a targeted therapeutic approach. The characteristics of whole-body sonography are similar to the field of anesthesiology which is an interdisciplinary one. Currently, these characteristics deserve more attention in training in sonography.

  6. Monitoring cancer treatment response using photoacoustic and ultrasound spectral analysis in combination with oxygenation measurements (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hysi, Eno; May, Jonathan P.; Wirtzfeld, Lauren; Undzys, Elijus; Li, Shyh-Dar; Kolios, Michael C.

    2016-03-01

    At clinically-relevant depths, the frequency content of photoacoustic signals encodes information about the size, concentration and spatial distribution of non-resolvable blood vessels. This study evaluates whether photoacoustics can detect cancer therapy-induced vascular perturbations. Photoacoustic/ultrasound (PA/US) spectral analysis was combined with functional, PA-based oxygenation and power Doppler (PD) perfusion estimates to assess treatment response. Co-registered, in-vivo US/PA/PD imaging of mice bearing breast cancer tumors was performed pre-treatment and 30m/2h/5h/24h/7d post-treatment (VevoLAZR, Fujifilm VisualSonics). Hyperthermia treatment (1h, 43C) was performed after systemic injections of doxorubicin-loaded thermosensitive liposomes (TSL, n=13) or free doxorubicin (DOX, n=11). Response was classified according to 2h, PA-based oxygenation drop and endpoint (>9d), caliper-based volume reduction. At all time-points/wavelengths (750/850nm), the spectral-slope (SS) was computed from the normalized US/PA power spectra using depth-matched reference phantoms. The percent-vascularity (PV) was estimated for the animal with the largest oxygenation-drop at 2h. TLS-treated responders decreased their PA-SS by 1.9x @750nm and 5.8x @850nm 30m post-treatment and remained constant for 24h; tumor oxygenation followed the same trend. Non-responding SS remained unchanged for 24h. The 750nm SS was 18.7x lower than 850nm suggesting the TSL is sensitive vessel oxygenation. Responder PV decreased 100% when the 30m oxygenation dropped 15% and increased 7x when the 7d oxygenation increased 20%. DOX-responders exhibited similar trends to TSL-responders although the 750nm PA-SS was 1.6x smaller and post-treatment PV was 50% higher. The US-SS remained unchanged until 7d post-treatment suggesting its sensitivity to tumor cell-death. These findings suggest that PA spectral analysis has potential in monitoring cancer treatment response.

  7. Bringing technology to the bedside: using smartphones to improve interprofessional communication.

    PubMed

    Whitlow, Malinda Lee; Drake, Emily; Tullmann, Dorothy; Hoke, George; Barth, Denise

    2014-07-01

    The purpose of this project was to evaluate the impact of using Smartphones at the bedside on the quality of interprofessional communication and measure the response time between nurses and physicians compared with the usual paging device. Smartphones were provided to nurses and physicians on a 26-bed medical unit during a 2-month study period. Data were collected using Nurse-Physician Communication Questionnaires and Time and Motion data collection tools. Baseline data gathered from a convenience sample of general medicine nurses (n=61) and physicians (n=44) indicated that both nurses and physicians were dissatisfied with the current one-way paging devices and were frequently interrupted during patient care (P=.000). Postimplementation data suggested that the use of Smartphones significantly reduced patient interruptions (P=.021), allowed nurses to stay with patients (P=.002), and reduced wait times for a returned call (P=.001). Nurse travel time to answer a telephone call and time spent on hold by nurses and physicians also decreased by 100% from a range of 8 to 79 minutes down to 0 minutes. Staff reported improvement in quality of communication, and significant workflow efficiency was noted. Further research on the impact on patient safety and satisfaction is needed and other nursing units should consider implementing Smartphones within their medical centers.

  8. Bedside Evaluation of the Functional Organization of the Auditory Cortex in Patients with Disorders of Consciousness

    PubMed Central

    Henriques, Julie; Pazart, Lionel; Grigoryeva, Lyudmila; Muzard, Emelyne; Beaussant, Yvan; Haffen, Emmanuel; Moulin, Thierry; Aubry, Régis; Ortega, Juan-Pablo; Gabriel, Damien

    2016-01-01

    To measure the level of residual cognitive function in patients with disorders of consciousness, the use of electrophysiological and neuroimaging protocols of increasing complexity is recommended. This work presents an EEG-based method capable of assessing at an individual level the integrity of the auditory cortex at the bedside of patients and can be seen as the first cortical stage of this hierarchical approach. The method is based on two features: first, the possibility of automatically detecting the presence of a N100 wave and second, in showing evidence of frequency processing in the auditory cortex with a machine learning based classification of the EEG signals associated with different frequencies and auditory stimulation modalities. In the control group of twelve healthy volunteers, cortical frequency processing was clearly demonstrated. EEG recordings from two patients with disorders of consciousness showed evidence of partially preserved cortical processing in the first patient and none in the second patient. From these results, it appears that the classification method presented here reliably detects signal differences in the encoding of frequencies and is a useful tool in the evaluation of the integrity of the auditory cortex. Even though the classification method presented in this work was designed for patients with disorders of consciousness, it can also be applied to other pathological populations. PMID:26789734

  9. Emerging Applications of Bedside 3D Printing in Plastic Surgery

    PubMed Central

    Chae, Michael P.; Rozen, Warren M.; McMenamin, Paul G.; Findlay, Michael W.; Spychal, Robert T.; Hunter-Smith, David J.

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  10. Emerging Applications of Bedside 3D Printing in Plastic Surgery.

    PubMed

    Chae, Michael P; Rozen, Warren M; McMenamin, Paul G; Findlay, Michael W; Spychal, Robert T; Hunter-Smith, David J

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  11. Eating disorders: from bench to bedside and back.

    PubMed

    Gaetani, Silvana; Romano, Adele; Provensi, Gustavo; Ricca, Valdo; Lutz, Thomas; Passani, Maria Beatrice

    2016-12-01

    The central nervous system and viscera constitute a functional ensemble, the gut-brain axis, that allows bidirectional information flow that contributes to the control of feeding behavior based not only on the homeostatic, but also on the hedonic aspects of food intake. The prevalence of eating disorders, such as anorexia nervosa, binge eating and obesity, poses an enormous clinical burden, and involves an ever-growing percentage of the population worldwide. Clinical and preclinical research is constantly adding new information to the field and orienting further studies with the aim of providing a foundation for developing more specific and effective treatment approaches to pathological conditions. A recent symposium at the XVI Congress of the Societá Italiana di Neuroscienze (SINS, 2015) 'Eating disorders: from bench to bedside and back' brought together basic scientists and clinicians with the objective of presenting novel perspectives in the neurobiology of eating disorders. Clinical studies presented by V. Ricca illustrated some genetic aspects of the psychopathology of anorexia nervosa. Preclinical studies addressed different issues ranging from the description of animal models that mimic human pathologies such as anorexia nervosa, diet-induced obesity, and binge eating disorders (T. Lutz), to novel interactions between peripheral signals and central circuits that govern food intake, mood and stress (A. Romano and G. Provensi). The gut-brain axis has received increasing attention in the recent years as preclinical studies are demonstrating that the brain and visceral organs such as the liver and guts, but also the microbiota are constantly engaged in processes of reciprocal communication, with unexpected physiological and pathological implications. Eating is controlled by a plethora of factors; genetic predisposition, early life adverse conditions, peripheral gastrointestinal hormones that act directly or indirectly on the central nervous system, all are

  12. Metabolic alterations and hepatitis C: From bench to bedside.

    PubMed

    Chang, Ming-Ling

    2016-01-28

    In addition to causing cirrhosis and hepatocellular carcinoma, hepatitis C virus (HCV) is thought to cause hypolipidemia, hepatic steatosis, insulin resistance, metabolic syndrome, and diabetes. The viral life cycle of HCV depends on cholesterol metabolism in host cells. HCV core protein and nonstructural protein 5A perturb crucial lipid and glucose pathways, such as the sterol regulatory element-binding protein pathway and the protein kinase B/mammalian target of rapamycin/S6 kinase 1 pathway. Although several lines of transgenic mice expressing core or full HCV proteins exhibit hepatic steatosis and/or dyslipidemia, whether they completely reflect the metabolic alterations in humans with HCV infection remains unknown. Many cross-sectional studies have demonstrated increased prevalences of metabolic alterations and cardiovascular events in patients with chronic hepatitis C (CHC); however, conflicting results exist, primarily due to unavoidable individual variations. Utilizing anti-HCV therapy, most longitudinal cohort studies of CHC patients have demonstrated the favorable effects of viral clearance in attenuating metabolic alterations and cardiovascular risks. To determine the risks of HCV-associated metabolic alterations and associated complications in patients with CHC, it is necessary to adjust for crucial confounders, such as HCV genotype and host baseline glucose metabolism, for a long follow-up period after anti-HCV treatment. Adipose tissue is an important endocrine organ due to its release of adipocytokines, which regulate lipid and glucose metabolism. However, most data on HCV infection and adipocytokine alteration are inconclusive. A comprehensive overview of HCV-associated metabolic and adipocytokine alterations, from bench to bedside, is presented in this topic highlight.

  13. Measurement of selected polychlorinated biphenyls (PCBs) in water via ultrasound assisted emulsification-microextraction (USAEME) using low-density organic solvents.

    PubMed

    Yurdakok-Dikmen, Begum; Kuzukiran, Ozgur; Filazi, Ayhan; Kara, Erdem

    2016-04-01

    Despite bans and restrictions for their adverse health effects including endocrine disruption, due to their stability in the environment, polychlorinated biphenyls (PCBs) are still of concern for their residues in several matrices. This study employed low-density ultrasound-assisted emulsification-microextraction (USAEME) to measure selected PCBs (28, 52, 101, 118, 138, 153, and 180) in water samples for gas chromatography-mass spectrometry analysis. Among tested solvents (isooctane, chloroform, hexane, and cyclohexane), 200 μL isooctane resulted in the highest yield for a 10 mL sample. The optimized method was validated and yielded recoveries of 87.29-92.83% with the limit of detection and limit of quantification (LOQ) values 3-12 ng/L and 10-40 ng/L, respectively. Twelve tap water samples collected in September 2014 were screened using this simple, rapid, and validated method. PCB concentrations in two samples were above the LOQ values; one sample contained 1,380 ng/L of PCB 118, 530 ng/L of PCB 138, and 152 ng/L of PCB 153, and the other contained 444 ng/L of PCB 138. Despite the city water supply being clean and the municipality employing all available measures to ensure clean water supply, the general public must be made aware of the regular maintenance of local water pipelines and storage tanks for the prevention of PCB contamination.

  14. Relationships of ultrasound measures of intrinsic foot muscle cross-sectional area and muscle volume with maximum toe flexor muscle strength and physical performance in young adults

    PubMed Central

    Abe, Takashi; Tayashiki, Kota; Nakatani, Miyuki; Watanabe, Hironori

    2016-01-01

    [Purpose] To investigate the relationships between toe flexor muscle strength with (TFS-5-toes) and without (TFS-4-toes) the contribution of the great toe, anatomical and physiological muscle cross-sectional areas (CSA) of intrinsic toe flexor muscle and physical performance were measured. [Subjects] Seventeen men (82% sports-active) and 17 women (47% sports-active), aged 20 to 35 years, volunteered. [Methods] Anatomical CSA was measured in two intrinsic toe flexor muscles (flexor digitorum brevis [FDB] and abductor hallucis) by ultrasound. Muscle volume and muscle length of the FDB were also estimated, and physiological CSA was calculated. [Results] Both TFS-5-toes and TFS-4-toes correlated positively with walking speed in men (r=0.584 and r=0.553, respectively) and women (r=0.748 and r=0.533, respectively). Physiological CSA of the FDB was significantly correlated with TFS-5-toes (r=0.748) and TFS-4-toes (r=0.573) in women. In men, physiological CSA of the FDB correlated positively with TFS-4-toes (r=0.536), but not with TFS-5-toes (r=0.333). [Conclusion] Our results indicate that physiological CSA of the FDB is moderately associated with TFS-4-toes while toe flexor strength correlates with walking performance. PMID:26957721

  15. The effects of probe placement on measured flow velocity in transcranial Doppler ultrasound imaging in-vitro and in-vivo experiments

    NASA Astrophysics Data System (ADS)

    de Jong, Daan L. K.; Meel-van den Abeelen, Aisha S. S.; Lagro, Joep; Claassen, Jurgen A. H. R.; Slump, Cornelis H.

    2014-03-01

    The measurement of the blood flow in the middle cerebral artery (MCA) using transcranial Doppler ultrasound (US) imaging is clinically relevant for the study of cerebral autoregulation. Especially in the aging population, impairement of the autoregulation may coincide or relate to loss of perfusion and consequently loss of brain function. The cerebral autoregulation can be assessed by relating the blood pressure to the blood flow in the brain. Doppler US is a widely used, non-invasive method to measure the blood flow in the MCA. However, Doppler flow imaging is known to produce results that are dependent of the operator. The angle of the probe insonation with respect to the centerline of the blood vessel is a well known factor for output variability. In patients also the skull must be traversed and the MCA must be detected, influencing the US signal intensity. In this contribution we report two studies. We describe first an in-vitro setup to study the Doppler flow in a situation where the ground truth is known. Secondly, we report on a study with healthy volunteers where the effects of small probe displacements on the flow velocity signals are investigated. For the latter purpose, a special probe holder was designed to control the experiment.

  16. Resonant ultrasound measurements of elastic constants in melt-spun R[sub 2]Fe[sub 14]B compounds (R=Ce, Pr, Nd, Er)

    SciTech Connect

    Fuerst, C.D.; Herbst, J.F. ); Sarrao, J.L.; Migliori, A. )

    1994-05-15

    Measurements are reported of the longitudinal and transverse elastic moduli of the R[sub 2]Fe[sub 14]B compounds having rare-earth component R=Ce, Pr, Nd, and Er. A resonant ultrasound technique was used to determine the elastic constants on hot-pressed, melt-spun samples which are essentially isotropic, polycrystalline specimens of the four compounds. The results for Nd[sub 2]Fe[sub 14]B, which agree well with previous studies, and Er[sub 2]Fe[sub 14]B exhibit clear signatures of the spin reorientations which occur in those compounds. No such signature appears in the data for Pr[sub 2]Fe[sub 14]B, consistent with the fact that no spin reorientation occurs in that material. The ultrasonic attenuation of each sample has also been measured and it has been found that it shows features in the vicinity of spin reorientations (Nd[sub 2]Fe[sub 14]B, Er[sub 2]Fe[sub 14]B) and the Curie point (Ce[sub 2]Fe[sub 14]B).

  17. Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy

    SciTech Connect

    Baek, Jihye; Huh, Jangyoung; Hyun An, So; Oh, Yoonjin; Kim, Myungsoo; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena

    2013-02-15

    Purpose: To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Methods: Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Results: Volume measurement, using 3D US, shows a 2.8 {+-} 1.5% error, 4.4 {+-} 3.0% error for CT, and 3.1 {+-} 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. Conclusions: 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

  18. Effects of Isoflurane on Coronary Blood Flow Velocity in Young, Old, and ApoE−/− Mice Measured by Doppler Ultrasound

    PubMed Central

    Hartley, Craig J.; Reddy, Anilkumar K.; Madala, Sridhar; Michael, Lloyd H.; Entman, Mark L.; Taffet, George E.

    2007-01-01

    The commonly used anesthetic agent, isoflurane (ISO), is a potent coronary vasodilator which could potentially be used in the assessment of coronary reserve, but its effects on coronary blood flow in mice are unknown. Coronary reserve is reduced by age, coronary artery disease, and other cardiac pathologies in man, and some of these conditions can now be modeled in mice. Accordingly, we used Doppler ultrasound to measure coronary flow velocity in mice anesthetized at low (1%) and at high (2.5%) levels of ISO to generate baseline (B) and elevated hyperemic (H) coronary flows respectively. A 20 MHz Doppler probe was mounted in a micromanipulator and pointed transthoracically toward the origin of the left main coronary arteries of 10 6-wk (Y), 10 2-yr (O), and 20 2-yr apolipoprotein-E null (ApoE−/−) atherosclerotic (A) mice. In each mouse we measured (B) and (H) peak diastolic velocities. B was 35.4 +/− 1.4 cm/s (Y), 24.8 +/− 1.6 (O), and 51.7 +/− 6.4 (A); H was 83.5 +/− 1.3 (Y), 86.5 +/− 1.9 (O), and 120 +/− 16.9 (A); and H/B was 2.4 +/− 0.1 (Y), 3.6 +/− 0.2 (O), and 2.5 +/− 0.2 (A). The differences in baseline velocities and H/B between O and Y and between A and O were significant (P < 0.01), while the differences in hyperemic velocities were not (P > 0.05). H/B was higher in old mice due to decreased baseline flow rather than increased hyperemic flow velocity. In contrast ApoE−/− mice have increased baseline and hyperemic velocities perhaps due to coronary lesions. The differences in baseline velocities between young and old mice could be due to age-related changes in basal metabolism or to differential sensitivity to isoflurane. We conclude that Doppler ultrasound combined with coronary vasodilation via isoflurane could provide a convenient and noninvasive method to estimate coronary reserve in mice, but also that care must be taken when assessing coronary flow in mice under isoflurane anesthesia because of its potent coronary vasodilator

  19. Ultrasound of the Thyroid Gland

    MedlinePlus

    ... Index A-Z Ultrasound - Thyroid Thyroid ultrasound uses sound waves to produce pictures of the thyroid gland ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  20. [Lung ultrasound in acute and critical care medicine].

    PubMed

    Zechner, P M; Seibel, A; Aichinger, G; Steigerwald, M; Dorr, K; Scheiermann, P; Schellhaas, S; Cuca, C; Breitkreutz, R

    2012-07-01

    The development of modern critical care lung ultrasound is based on the classical representation of anatomical structures and the need for the assessment of specific sonography artefacts and phenomena. The air and fluid content of the lungs is interpreted using few typical artefacts and phenomena, with which the most important differential diagnoses can be made. According to a recent international consensus conference these include lung sliding, lung pulse, B-lines, lung point, reverberation artefacts, subpleural consolidations and intrapleural fluid collections. An increased number of B-lines is an unspecific sign for an increased quantity of fluid in the lungs resembling interstitial syndromes, for example in the case of cardiogenic pulmonary edema or lung contusion. In the diagnosis of interstitial syndromes lung ultrasound provides higher diagnostic accuracy (95%) than auscultation (55%) and chest radiography (72%). Diagnosis of pneumonia and pulmonary embolism can be achieved at the bedside by evaluating subpleural lung consolidations. Detection of lung sliding can help to detect asymmetrical ventilation and allows the exclusion of a pneumothorax. Ultrasound-based diagnosis of pneumothorax is superior to supine anterior chest radiography: for