Sample records for bee pollinators increases

  1. Synergistic effects of non-Apis bees and honey bees for pollination services

    PubMed Central

    Brittain, Claire; Williams, Neal; Kremen, Claire; Klein, Alexandra-Maria

    2013-01-01

    In diverse pollinator communities, interspecific interactions may modify the behaviour and increase the pollination effectiveness of individual species. Because agricultural production reliant on pollination is growing, improving pollination effectiveness could increase crop yield without any increase in agricultural intensity or area. In California almond, a crop highly dependent on honey bee pollination, we explored the foraging behaviour and pollination effectiveness of honey bees in orchards with simple (honey bee only) and diverse (non-Apis bees present) bee communities. In orchards with non-Apis bees, the foraging behaviour of honey bees changed and the pollination effectiveness of a single honey bee visit was greater than in orchards where non-Apis bees were absent. This change translated to a greater proportion of fruit set in these orchards. Our field experiments show that increased pollinator diversity can synergistically increase pollination service, through species interactions that alter the behaviour and resulting functional quality of a dominant pollinator species. These results of functional synergy between species were supported by an additional controlled cage experiment with Osmia lignaria and Apis mellifera. Our findings highlight a largely unexplored facilitative component of the benefit of biodiversity to ecosystem services, and represent a way to improve pollinator-dependent crop yields in a sustainable manner. PMID:23303545

  2. Lack of pollinators limits fruit production in commercial blueberry (Vaccinium corymbosum).

    PubMed

    Benjamin, Faye E; Winfree, Rachael

    2014-12-01

    Modern agriculture relies on domesticated pollinators such as the honey bee (Apis mellifera L.), and to a lesser extent on native pollinators, for the production of animal-pollinated crops. There is growing concern that pollinator availability may not keep pace with increasing agricultural production. However, whether crop production is in fact pollen-limited at the field scale has rarely been studied. Here, we ask whether commercial highbush blueberry (Vaccinium corymbosum L.) production in New Jersey is limited by a lack of pollination even when growers provide honey bees at recommended densities. We studied two varieties of blueberry over 3 yr to determine whether blueberry crop production is pollen-limited and to measure the relative contributions of honey bees and native bees to blueberry pollination. We found two lines of evidence for pollen limitation. First, berries receiving supplemental hand-pollination were generally heavier than berries receiving ambient pollination. Second, mean berry mass increased significantly and nonasymptotically with honey bee flower visitation rate. While honey bees provided 86% of pollination and thus drove the findings reported above, native bees still contributed 14% of total pollination even in our conventionally managed, high-input agricultural system. Honey bees and native bees were also similarly efficient as pollinators on a per-visit basis. Overall, our study shows that pollination can be a limiting factor in commercial fruit production. Yields might increase with increased honey bee stocking rates and improved dispersal of hives within crop fields, and with habitat restoration to increase pollination provided by native bees.

  3. Wild bees enhance honey bees' pollination of hybrid sunflower.

    PubMed

    Greenleaf, Sarah S; Kremen, Claire

    2006-09-12

    Pollinators are required for producing 15-30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages.

  4. Wild bees enhance honey bees’ pollination of hybrid sunflower

    PubMed Central

    Greenleaf, Sarah S.; Kremen, Claire

    2006-01-01

    Pollinators are required for producing 15–30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages. PMID:16940358

  5. Floral traits influencing plant attractiveness to three bee species: Consequences for plant reproductive success.

    PubMed

    Bauer, Austin A; Clayton, Murray K; Brunet, Johanne

    2017-05-01

    The ability to attract pollinators is crucial to plants that rely on insects for pollination. We contrasted the roles of floral display size and flower color in attracting three bee species and determined the relationships between plant attractiveness (number of pollinator visits) and seed set for each bee species. We recorded pollinator visits to plants, measured plant traits, and quantified plant reproductive success. A zero-inflated Poisson regression model indicated plant traits associated with pollinator attraction. It identified traits that increased the number of bee visits and traits that increased the probability of a plant not receiving any visits. Different components of floral display size were examined and two models of flower color contrasted. Relationships between plant attractiveness and seed set were determined using regression analyses. Plants with more racemes received more bee visits from all three bee species. Plants with few racemes were more likely not to receive any bee visits. The role of flower color varied with bee species and was influenced by the choice of the flower color model. Increasing bee visits increased seed set for all three bee species, with the steepest slope for leafcutting bees, followed by bumble bees, and finally honey bees. Floral display size influenced pollinator attraction more consistently than flower color. The same plant traits affected the probability of not being visited and the number of pollinator visits received. The impact of plant attractiveness on female reproductive success varied, together with pollinator effectiveness, by pollinator species. © 2017 Bauer et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons public domain license (CC0 1.0).

  6. Pollination success following loss of a frequent pollinator: the role of compensatory visitation by other effective pollinators

    PubMed Central

    Hallett, Allysa C.; Mitchell, Randall J.; Chamberlain, Evan R.

    2017-01-01

    Abstract Pollinator abundance is declining worldwide and may lower the quantity and quality of pollination services to flowering plant populations. Loss of an important pollinator is often assumed to reduce the amount of pollen received by stigmas of a focal species (pollination success), yet this assumption has rarely been tested experimentally. The magnitude of the effect, if any, may depend on the relative efficiency of the remaining pollinators, and on whether the loss of one pollinator leads to changes in visitation patterns by other pollinators. To explore how a change in pollinator composition influences pollination of Asclepias verticillata, we excluded bumble bees from plots in large and small populations of this milkweed species. We then quantified pollinator visitation rates, pollen export and pollen receipt for control plots and for plots where bumble bees were experimentally excluded. We found that exclusion of bumble bees did not reduce pollen receipt by A. verticillata flowers. Visitation by Polistes wasps increased markedly following bumble bee exclusion, both in small populations (186 % increase) and in large populations (400 % increase). Because Polistes wasps were as efficient as bumble bees at pollen transfer, increased wasp visitation offset lost bumble bee pollination services. Thus, loss of a frequent pollinator will not necessarily lead to a decline in pollination success. When pollinator loss is followed by a shift in the composition and abundance of remaining pollinators, pollination success will depend on the net change in the quantity and quality of pollination services. PMID:28798863

  7. Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production.

    PubMed

    Gibbs, Jason; Elle, Elizabeth; Bobiwash, Kyle; Haapalainen, Tiia; Isaacs, Rufus

    2016-01-01

    Highbush blueberry yields are dependent on pollination by bees, and introduction of managed honey bees is the primary strategy used for pollination of this crop. Complementary pollination services are also provided by wild bees, yet highbush blueberry is increasingly grown in regions outside its native range where wild bee communities may be less adapted to the crop and growers may still be testing appropriate honey bee stocking densities. To contrast crop pollination in native and non-native production regions, we sampled commercial 'Bluecrop' blueberry fields in British Columbia and Michigan with grower-selected honey bee stocking rates (0-39.5 hives per ha) to compare bee visitors to blueberry flowers, pollination and yield deficits, and how those vary with local- and landscape-scale factors. Observed and Chao-1 estimated species richness, as well as Shannon diversity of wild bees visiting blueberries were significantly higher in Michigan where the crop is within its native range. The regional bee communities were also significantly different, with Michigan farms having greater dissimilarity than British Columbia. Blueberry fields in British Columbia had fewer visits by honey bees than those in Michigan, irrespective of stocking rate, and they also had lower berry weights and a significant pollination deficit. In British Columbia, pollination service increased with abundance of wild bumble bees, whereas in Michigan the abundance of honey bees was the primary predictor of pollination. The proportion of semi-natural habitat at local and landscape scales was positively correlated with wild bee abundance in both regions. Wild bee abundance declined significantly with distance from natural borders in Michigan, but not in British Columbia where large-bodied bumble bees dominated the wild bee community. Our results highlight the varying dependence of crop production on different types of bees and reveal that strategies for pollination improvement in the same crop can vary greatly across production regions.

  8. Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production

    PubMed Central

    Gibbs, Jason; Elle, Elizabeth; Bobiwash, Kyle; Haapalainen, Tiia; Isaacs, Rufus

    2016-01-01

    Highbush blueberry yields are dependent on pollination by bees, and introduction of managed honey bees is the primary strategy used for pollination of this crop. Complementary pollination services are also provided by wild bees, yet highbush blueberry is increasingly grown in regions outside its native range where wild bee communities may be less adapted to the crop and growers may still be testing appropriate honey bee stocking densities. To contrast crop pollination in native and non-native production regions, we sampled commercial ‘Bluecrop’ blueberry fields in British Columbia and Michigan with grower-selected honey bee stocking rates (0–39.5 hives per ha) to compare bee visitors to blueberry flowers, pollination and yield deficits, and how those vary with local- and landscape-scale factors. Observed and Chao-1 estimated species richness, as well as Shannon diversity of wild bees visiting blueberries were significantly higher in Michigan where the crop is within its native range. The regional bee communities were also significantly different, with Michigan farms having greater dissimilarity than British Columbia. Blueberry fields in British Columbia had fewer visits by honey bees than those in Michigan, irrespective of stocking rate, and they also had lower berry weights and a significant pollination deficit. In British Columbia, pollination service increased with abundance of wild bumble bees, whereas in Michigan the abundance of honey bees was the primary predictor of pollination. The proportion of semi-natural habitat at local and landscape scales was positively correlated with wild bee abundance in both regions. Wild bee abundance declined significantly with distance from natural borders in Michigan, but not in British Columbia where large-bodied bumble bees dominated the wild bee community. Our results highlight the varying dependence of crop production on different types of bees and reveal that strategies for pollination improvement in the same crop can vary greatly across production regions. PMID:27391969

  9. The habitat disruption induces immune-suppression and oxidative stress in honey bees

    PubMed Central

    Morimoto, Tomomi; Kojima, Yuriko; Toki, Taku; Komeda, Yayoi; Yoshiyama, Mikio; Kimura, Kiyoshi; Nirasawa, Keijiro; Kadowaki, Tatsuhiko

    2011-01-01

    The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycling of honey bee colonies. To understand the physiological states of honey bees used for long-term pollination in greenhouses, we characterized their gene expression profiles by microarray. We found that the greenhouse environment changes the gene expression profiles and induces immune-suppression and oxidative stress in honey bees. In fact, the increase of the number of Nosema microsporidia and protein carbonyl content was observed in honey bees during pollination in greenhouses. Thus, honey bee colonies are likely to collapse during pollination in greenhouses when heavily infested with pathogens. Degradation of honey bee habitat by changing the outside environment of the colony, during pollination services for example, imposes negative impacts on honey bees. Thus, worldwide use of honey bees for crop pollination in general could be one of reasons for the decline of managed honey bee colonies. PMID:22393496

  10. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems

    PubMed Central

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity. PMID:26765140

  11. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems.

    PubMed

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.

  12. Non-bee insects are important contributors to global crop pollination.

    PubMed

    Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A; Garratt, Michael P D; Howlett, Brad G; Winfree, Rachael; Cunningham, Saul A; Mayfield, Margaret M; Arthur, Anthony D; Andersson, Georg K S; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G; Chacoff, Natacha P; Entling, Martin H; Foully, Benjamin; Freitas, Breno M; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R; Gross, Caroline L; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q; Lindström, Sandra A M; Mandelik, Yael; Monteiro, Victor M; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E; Pereira, Natália de O; Pisanty, Gideon; Potts, Simon G; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G; Stanley, Dara A; Stout, Jane C; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H; Viana, Blandina F; Woyciechowski, Michal

    2016-01-05

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.

  13. Non-bee insects are important contributors to global crop pollination

    PubMed Central

    Bartomeus, Ignasi; Garibaldi, Lucas A.; Garratt, Michael P. D.; Howlett, Brad G.; Winfree, Rachael; Cunningham, Saul A.; Mayfield, Margaret M.; Arthur, Anthony D.; Andersson, Georg K. S.; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G.; Chacoff, Natacha P.; Entling, Martin H.; Foully, Benjamin; Freitas, Breno M.; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R.; Gross, Caroline L.; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q.; Lindström, Sandra A. M.; Mandelik, Yael; Monteiro, Victor M.; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E.; de O. Pereira, Natália; Pisanty, Gideon; Potts, Simon G.; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S.; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G.; Stanley, Dara A.; Stout, Jane C.; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H.; Viana, Blandina F.; Woyciechowski, Michal

    2016-01-01

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25–50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines. PMID:26621730

  14. Pollination Reservoirs in Lowbush Blueberry (Ericales: Ericaceae)

    PubMed Central

    Drummond, F. A.; Hoshide, A. K.; Dibble, A. C.; Stack, L. B.

    2017-01-01

    Abstract Pollinator-dependent agriculture heavily relies upon a single pollinator—the honey bee. To diversify pollination strategies, growers are turning to alternatives. Densely planted reservoirs of pollen- and nectar-rich flowers (pollination reservoirs, hereafter “PRs”) may improve pollination services provided by wild bees. Our focal agroecosystem, lowbush blueberry (Vaccinium angustifolium Aiton), exists in a simple landscape uniquely positioned to benefit from PRs. First, we contrast bee visitation rates and use of three types of PR. We consider the effects of PRs on wild bee diversity and the composition of bumble bee pollen loads. We contrast field-level crop pollination services between PRs and controls four years postestablishment. Last, we calculate the time to pay for PR investment. Social bees preferentially used clover plantings; solitary bees preferentially used wildflower plantings. On average, bumble bee pollen loads in treatment fields contained 37% PR pollen. PRs significantly increased visitation rates to the crop in year 4, and exerted a marginally significant positive influence on fruit set. The annualized costs of PRs were covered by the fourth year using the measured increase in pollination services. Our findings provide evidence of the positive impact of PRs on crop pollination services. PMID:28069631

  15. Pollination Reservoirs in Lowbush Blueberry (Ericales: Ericaceae).

    PubMed

    Venturini, E M; Drummond, F A; Hoshide, A K; Dibble, A C; Stack, L B

    2017-04-01

    Pollinator-dependent agriculture heavily relies upon a single pollinator-the honey bee. To diversify pollination strategies, growers are turning to alternatives. Densely planted reservoirs of pollen- and nectar-rich flowers (pollination reservoirs, hereafter "PRs") may improve pollination services provided by wild bees. Our focal agroecosystem, lowbush blueberry (Vaccinium angustifolium Aiton), exists in a simple landscape uniquely positioned to benefit from PRs. First, we contrast bee visitation rates and use of three types of PR. We consider the effects of PRs on wild bee diversity and the composition of bumble bee pollen loads. We contrast field-level crop pollination services between PRs and controls four years postestablishment. Last, we calculate the time to pay for PR investment. Social bees preferentially used clover plantings; solitary bees preferentially used wildflower plantings. On average, bumble bee pollen loads in treatment fields contained 37% PR pollen. PRs significantly increased visitation rates to the crop in year 4, and exerted a marginally significant positive influence on fruit set. The annualized costs of PRs were covered by the fourth year using the measured increase in pollination services. Our findings provide evidence of the positive impact of PRs on crop pollination services. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  16. Cage-Fighting Bees: Can Aggressive Competition Increase Pollination Efficacy for an Oligolectic Native Bee?

    USDA-ARS?s Scientific Manuscript database

    Pollination efficacy of the oligolectic bee Ptilothrix bombiformis was measured as the number of pollen grains delivered to virgin Hibiscus stigmas. Such specialized bee foragers are often assumed to be highly efficient pollinators. Intriguingly, however, we discovered females fight over host blooms...

  17. Modeling the status, trends, and impacts of wild bee abundance in the United States

    PubMed Central

    Koh, Insu; Lonsdorf, Eric V.; Williams, Neal M.; Brittain, Claire; Isaacs, Rufus; Gibbs, Jason; Ricketts, Taylor H.

    2016-01-01

    Wild bees are highly valuable pollinators. Along with managed honey bees, they provide a critical ecosystem service by ensuring stable pollination to agriculture and wild plant communities. Increasing concern about the welfare of both wild and managed pollinators, however, has prompted recent calls for national evaluation and action. Here, for the first time to our knowledge, we assess the status and trends of wild bees and their potential impacts on pollination services across the coterminous United States. We use a spatial habitat model, national land-cover data, and carefully quantified expert knowledge to estimate wild bee abundance and associated uncertainty. Between 2008 and 2013, modeled bee abundance declined across 23% of US land area. This decline was generally associated with conversion of natural habitats to row crops. We identify 139 counties where low bee abundances correspond to large areas of pollinator-dependent crops. These areas of mismatch between supply (wild bee abundance) and demand (cultivated area) for pollination comprise 39% of the pollinator-dependent crop area in the United States. Further, we find that the crops most highly dependent on pollinators tend to experience more severe mismatches between declining supply and increasing demand. These trends, should they continue, may increase costs for US farmers and may even destabilize crop production over time. National assessments such as this can help focus both scientific and political efforts to understand and sustain wild bees. As new information becomes available, repeated assessments can update findings, revise priorities, and track progress toward sustainable management of our nation’s pollinators. PMID:26699460

  18. Modeling the status, trends, and impacts of wild bee abundance in the United States.

    PubMed

    Koh, Insu; Lonsdorf, Eric V; Williams, Neal M; Brittain, Claire; Isaacs, Rufus; Gibbs, Jason; Ricketts, Taylor H

    2016-01-05

    Wild bees are highly valuable pollinators. Along with managed honey bees, they provide a critical ecosystem service by ensuring stable pollination to agriculture and wild plant communities. Increasing concern about the welfare of both wild and managed pollinators, however, has prompted recent calls for national evaluation and action. Here, for the first time to our knowledge, we assess the status and trends of wild bees and their potential impacts on pollination services across the coterminous United States. We use a spatial habitat model, national land-cover data, and carefully quantified expert knowledge to estimate wild bee abundance and associated uncertainty. Between 2008 and 2013, modeled bee abundance declined across 23% of US land area. This decline was generally associated with conversion of natural habitats to row crops. We identify 139 counties where low bee abundances correspond to large areas of pollinator-dependent crops. These areas of mismatch between supply (wild bee abundance) and demand (cultivated area) for pollination comprise 39% of the pollinator-dependent crop area in the United States. Further, we find that the crops most highly dependent on pollinators tend to experience more severe mismatches between declining supply and increasing demand. These trends, should they continue, may increase costs for US farmers and may even destabilize crop production over time. National assessments such as this can help focus both scientific and political efforts to understand and sustain wild bees. As new information becomes available, repeated assessments can update findings, revise priorities, and track progress toward sustainable management of our nation's pollinators.

  19. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees

    PubMed Central

    Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus

    2011-01-01

    Background and Aims Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Methods Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Key Results Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Conclusions Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers. PMID:21498566

  20. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees.

    PubMed

    Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus

    2011-06-01

    Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.

  1. A heterogeneous landscape does not guarantee high crop pollination

    PubMed Central

    Hambäck, Peter A.; Lemessa, Debissa; Nemomissa, Sileshi; Hylander, Kristoffer

    2016-01-01

    The expansion of pollinator-dependent crops, especially in the developing world, together with reports of worldwide pollinator declines, raises concern of possible yield gaps. Farmers directly reliant on pollination services for food supply often live in regions where our knowledge of pollination services is poor. In a manipulative experiment replicated at 23 sites across an Ethiopian agricultural landscape, we found poor pollination services and severe pollen limitation in a common oil crop. With supplementary pollination, the yield increased on average by 91%. Despite the heterogeneous agricultural matrix, we found a low bee abundance, which may explain poor pollination services. The variation in pollen limitation was unrelated to surrounding forest cover, local bee richness and bee abundance. While practices that commonly increase pollinators (restricted pesticide use, flower strips) are an integral part of the landscape, these elements are apparently insufficient. Management to increase pollination services is therefore in need of urgent investigation. PMID:27629036

  2. Nest establishment, pollination efficiency, and reproductive success of Megachile rotundata (Hymenoptera: Megachilidae) in relation to resource availability in field enclosures.

    PubMed

    Pitts-Singer, Theresa L; Bosch, Jordi

    2010-02-01

    The alfalfa leafcutting bee, Megachile rotundata (Fabricius), is used to pollinate alfalfa, Medicago sativa L., for seed production in the United States and Canada. It is difficult to reliably sustain commercial M. rotundata populations in the United States because of problems with disease, parasites, predators, and unexplained mortality. One possible explanation for early immature mortality is that, relative to floral availability, superfluous numbers of bees are released in alfalfa fields where resources quickly become limited. Our objective was to determine how M. rotundata density affects bee nesting, pollination efficiency, and reproductive success. Various numbers of bees were released into enclosures on an alfalfa field, but only 10-90% of released female bees established nests. Therefore, a "bee density index" was derived for each enclosure from the number of established females and number of open flowers over time. As the density index increased, significant reductions occurred in the number of pollinated flowers, number of nests, and number of cells produced per bee, as well as the percentage of cells that produced viable prepupae by summer's end and the percentage that produced adult bees. The percentage of cells resulting in early brood mortality (i.e., pollen balls) significantly increased as the density index increased. We conclude that bee nest establishment, pollination efficiency, and reproductive success are compromised when bee densities are high relative to floral resource availability. Open field studies are needed to determine commercial bee densities that result in sustainable bee populations and adequate pollination for profitable alfalfa seed production.

  3. Density-dependent effects of ants on selection for bumble bee pollination in Polemonium viscosum.

    PubMed

    Galen, Candace; Geib, Jennifer C

    2007-05-01

    Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly positive over a wide range of ant abundance (20-80% of plants visited by ants daily). Although high cheater abundance reduces the fitness returns of bumble bee pollination, it does not completely eliminate selection for bumble bee attraction in P. viscosum.

  4. Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination

    PubMed Central

    Holzschuh, Andrea; Dormann, Carsten F.; Tscharntke, Teja; Steffan-Dewenter, Ingolf

    2011-01-01

    Agricultural land use results in direct biodiversity decline through loss of natural habitat, but may also cause indirect cross-habitat effects on conservation areas. We conducted three landscape-scale field studies on 67 sites to test the hypothesis that mass flowering of oilseed rape (Brassica napus) results in a transient dilution of bees in crop fields, and in increased competition between crop plants and grassland plants for pollinators. Abundances of bumble-bees, which are the main pollinators of the grassland plant Primula veris, but also pollinate oilseed rape (OSR), decreased with increasing amount of OSR. This landscape-scale dilution affected bumble-bee abundances strongly in OSR fields and marginally in grasslands, where bumble-bee abundances were generally low at the time of Primula flowering. Seed set of Primula veris, which flowers during OSR bloom, was reduced by 20 per cent when the amount of OSR within 1 km radius increased from 0 to 15 per cent. Hence, the current expansion of bee-attractive biofuel crops results in transient dilution of crop pollinators, which means an increased competition for pollinators between crops and wild plants. In conclusion, mass-flowering crops potentially threaten fitness of concurrently flowering wild plants in conservation areas, despite the fact that, in the long run, mass-flowering crops can enhance abundances of generalist pollinators and their pollination service. PMID:21471115

  5. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae

    USDA-ARS?s Scientific Manuscript database

    Recent declines in honey bee populations and increasing demand for insect-pollinated crops raise concerns about pollinator shortages. Pesticide exposure and pathogens may interact to have strong negative effects on managed honey bee colonies. Such findings are of great concern given the large number...

  6. Sweat bees on hot chillies: provision of pollination services by native bees in traditional slash-and-burn agriculture in the Yucatán Peninsula of tropical Mexico.

    PubMed

    Landaverde-González, Patricia; Quezada-Euán, José Javier G; Theodorou, Panagiotis; Murray, Tomás E; Husemann, Martin; Ayala, Ricardo; Moo-Valle, Humberto; Vandame, Rémy; Paxton, Robert J

    2017-12-01

    Traditional tropical agriculture often entails a form of slash-and-burn land management that may adversely affect ecosystem services such as pollination, which are required for successful crop yields. The Yucatán Peninsula of Mexico has a >4000 year history of traditional slash-and-burn agriculture, termed 'milpa'. Hot 'Habanero' chilli is a major pollinator-dependent crop that nowadays is often grown in monoculture within the milpa system.We studied 37 local farmers' chilli fields (sites) to evaluate the effects of landscape composition on bee communities. At 11 of these sites, we undertook experimental pollination treatments to quantify the pollination of chilli. We further explored the relationships between landscape composition, bee communities and pollination service provision to chilli.Bee species richness, particularly species of the family Apidae, was positively related to the amount of forest cover. Species diversity decreased with increasing proportion of crop land surrounding each sampling site. Sweat bees of the genus Lasioglossum were the most abundant bee taxon in chilli fields and, in contrast to other bee species, increased in abundance with the proportion of fallow land, gardens and pastures which are an integral part of the milpa system.There was an average pollination shortfall of 21% for chilli across all sites; yet the shortfall was unrelated to the proportion of land covered by crops. Rather, chilli pollination was positively related to the abundance of Lasioglossum bees, probably an important pollinator of chilli, as well indirectly to the proportion of fallow land, gardens and pastures that promote Lasioglossum abundance. Synthesis and applications . Current, low-intensity traditional slash-and-burn ( milpa ) agriculture provides Lasioglossum spp. pollinators for successful chilli production; fallow land, gardens and pasture therefore need to be valued as important habitats for these and related ground-nesting bee species. However, the negative impact of agriculture on total bee species diversity highlights how agricultural intensification is likely to reduce pollination services to crops, including chilli. Indeed, natural forest cover is vital in tropical Yucatán to maintain a rich assemblage of bee species and the provision of pollination services for diverse crops and wild flowers.

  7. Habitat choice of multiple pollinators in almond trees and its potential effect on pollen movement and productivity: A theoretical approach using the Shigesada-Kawasaki-Teramoto model.

    PubMed

    Yong, Kamuela E; Li, Yi; Hendrix, Stephen D

    2012-07-21

    California's almond industry, valued at $2.3 billion per year, depends on the pollinator services of honey bees, although pollination by other insects, mainly solitary wild bees, is being investigated as an alternative because of recent declines in the number of honey bee colonies. Our objective is to model the movements of honey bees and determine the conditions under which they will forage in less favorable areas of a tree and its surroundings when other pollinators are present. We hypothesize that foraging in less favorable areas leads to increased movement between trees and increased cross pollination between varieties which is required for successful nut production. We use the Shigesada-Kawasaki-Teramoto model (1979) which describes the density of two species in a two-dimensional environment of variable favorableness with respect to intrinsic diffusions and intra and interspecific interactions of species. The model is applied to almond pollination by honey bees and other pollinators with environmental favorableness based on the distribution of flowers in trees. Using the spectral-Galerkin method in a rectangular domain, we numerically approximated the two-dimensional nonlinear parabolic partial differential system arising in the model. When cross-diffusion or interspecific effects of other pollinators was high, honey bees foraged in less favorable areas of the tree. In the model, high cross-diffusion also resulted in increased activity in honey bees which manifested itself in the field in terms of accelerations, decelerations, and changes in direction, indicating rapid redistribution of densities to an equilibrium state. Empirical analysis of the number of honey bees and other visitors in 2-min intervals to almond trees shows a negative relationship, indicating cross-diffusion effects in nature with the potential to increase movement to a different tree with a more favorable environment, potentially increasing nut production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Evaluating pollination deficits in pumpkin production in New York.

    PubMed

    Petersen, J D; Huseth, A S; Nault, B A

    2014-10-01

    Potential decreases in crop yield from reductions in bee-mediated pollination services threaten food production demands of a growing population. Many fruit and vegetable growers supplement their fields with bee colonies during crop bloom. The extent to which crop production requires supplementary pollination services beyond those provided by wild bees is not well documented. Pumpkin, Cucurbita pepo L., requires bee-mediated pollination for fruit development. Previous research identified the common eastern bumble bee, Bombus impatiens (Cresson), as the most efficient pumpkin pollinator. Two concomitant studies were conducted to examine pollination deficits in New York pumpkin fields from 2011 to 2013. In the first study, fruit weight, seed set, and B. impatiens visits to pumpkin flowers were compared across fields supplemented with B. impatiens colonies at a recommended stocking density of five colonies per hectare, a high density of 15 colonies per hectare, or not supplemented with bees. In the second study, fruit weight and seed set of pumpkins that received supplemental pollen through hand-pollination were compared with those that were open-pollinated by wild bees. Results indicated that supplementing pumpkin fields with B. impatiens colonies, regardless of stocking density, did not increase fruit weight, seed set, or B. impatiens visits to pumpkin flowers. Fruit weight and seed set did not differ between hand- and open-pollinated treatments. In general, we conclude that pumpkin production in central New York is not limited by inadequate pollination services provided by wild bees and that on average, supplementation with B. impatiens colonies did not improve pumpkin yield.

  9. Managed bumble bees (Bombus impatiens) (Hymenoptera: Apidae) caged with blueberry bushes at high density did not increase fruit set or fruit weight compared to open pollination

    Treesearch

    J. W. Campbell; J. O' Brien; J. H. Irvin; C. B. Kimmel; J. C. Daniels; J. D. Ellis

    2017-01-01

    Highbush blueberry (Vaccinium corymbosum L.) is an important crop grown throughout Florida. Currently, most blueberry growers use honey bees (Apis mellifera L.) to provide pollination services for highbush blueberries even though bumble bees (Bombus spp.) have been shown to be more efficient at pollinating blueberries on a per bee basis. In general, contribution of...

  10. Distance from forest edge affects bee pollinators in oilseed rape fields.

    PubMed

    Bailey, Samantha; Requier, Fabrice; Nusillard, Benoît; Roberts, Stuart P M; Potts, Simon G; Bouget, Christophe

    2014-02-01

    Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy-makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.

  11. Distance from forest edge affects bee pollinators in oilseed rape fields

    PubMed Central

    Bailey, Samantha; Requier, Fabrice; Nusillard, Benoît; Roberts, Stuart P M; Potts, Simon G; Bouget, Christophe

    2014-01-01

    Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy-makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services. PMID:24634722

  12. Bee pollination improves crop quality, shelf life and commercial value.

    PubMed

    Klatt, Björn K; Holzschuh, Andrea; Westphal, Catrin; Clough, Yann; Smit, Inga; Pawelzik, Elke; Tscharntke, Teja

    2014-01-22

    Pollination improves the yield of most crop species and contributes to one-third of global crop production, but comprehensive benefits including crop quality are still unknown. Hence, pollination is underestimated by international policies, which is particularly alarming in times of agricultural intensification and diminishing pollination services. In this study, exclusion experiments with strawberries showed bee pollination to improve fruit quality, quantity and market value compared with wind and self-pollination. Bee-pollinated fruits were heavier, had less malformations and reached higher commercial grades. They had increased redness and reduced sugar-acid-ratios and were firmer, thus improving the commercially important shelf life. Longer shelf life reduced fruit loss by at least 11%. This is accounting for 0.32 billion US$ of the 1.44 billion US$ provided by bee pollination to the total value of 2.90 billion US$ made with strawberry selling in the European Union 2009. The fruit quality and yield effects are driven by the pollination-mediated production of hormonal growth regulators, which occur in several pollination-dependent crops. Thus, our comprehensive findings should be transferable to a wide range of crops and demonstrate bee pollination to be a hitherto underestimated but vital and economically important determinant of fruit quality.

  13. Ecology and economics of using native managed bees for almond pollination

    USDA-ARS?s Scientific Manuscript database

    Evidence of the efficacy of using managed native bees, rather than or concurrently with honey bees, in crop pollination is increasing. However, a broader ecological economic framework for evaluating the costs and benefits of using these bees has not been developed. We conducted a cost-benefit analy...

  14. Seed set in guayule (Parthenium argentatum, Asteraceae) in relation to insect pollination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamood, A.N.; Waller, G.D.; Ray, D.T.

    Guayule (Parthenium argentatum, Asteraceae) is one of two major plant species grown for natural rubber. Studies were conducted to determine the effect of honey bee (Apis mellifera) pollination and season on seed set and total seed yield/ha. The experiments involved four pollination treatments: plants caged with bees; plants caged without bees; plants open pollinated (uncovered); and plants individually covered. Seeds were harvested monthly July-September 1984, and May-September 1985. Plots with bees produced at least 150% more seeds than plots without bees, and there were no qualitative differences in the seed weights among treatments. Highest seed yield was in May andmore » September. Results indicate that (1) insect pollination in guayule increases seed yield and (2) fewer seeds are produced in the warmest months.« less

  15. Pollination Services Provided by Bees in Pumpkin Fields Supplemented with Either Apis mellifera or Bombus impatiens or Not Supplemented

    PubMed Central

    Petersen, Jessica D.; Reiners, Stephen; Nault, Brian A.

    2013-01-01

    Pollinators provide an important service in many crops. Managed honey bees (Apis mellifera L.) are used to supplement pollination services provided by wild bees with the assumption that they will enhance pollination, fruit set and crop yield beyond the levels provided by the wild bees. Recent declines in managed honey bee populations have stimulated interest in finding alternative managed pollinators to service crops. In the eastern U.S., managed hives of the native common eastern bumble bee (Bombus impatiens Cresson) may be an excellent choice. To examine this issue, a comprehensive 2-yr study was conducted to compare fruit yield and bee visits to flowers in pumpkin (Cucurbita pepo L.) fields that were either supplemented with A. mellifera hives, B. impatiens hives or were not supplemented. We compared pumpkin yield, A. mellifera flower visitation frequency and B. impatiens flower visitation frequency between treatments. Results indicated that supplementing pumpkin fields with either A. mellifera or B. impatiens hives did not increase their visitation to pumpkin flowers or fruit yield compared with those that were not supplemented. Next, the relationship between frequency of pumpkin flower visitation by the most prominent bee species (Peponapis pruinosa (Say), B. impatiens and A. mellifera) and fruit yield was determined across all pumpkin fields sampled. Fruit yield increased as the frequency of flower visits by A. mellifera and B. impatiens increased in 2011 and 2012, respectively. These results suggest that supplementation with managed bees may not improve pumpkin production and that A. mellifera and B. impatiens are important pollinators of pumpkin in our system. PMID:23894544

  16. Pollination services provided by bees in pumpkin fields supplemented with either Apis mellifera or Bombus impatiens or not supplemented.

    PubMed

    Petersen, Jessica D; Reiners, Stephen; Nault, Brian A

    2013-01-01

    Pollinators provide an important service in many crops. Managed honey bees (Apis mellifera L.) are used to supplement pollination services provided by wild bees with the assumption that they will enhance pollination, fruit set and crop yield beyond the levels provided by the wild bees. Recent declines in managed honey bee populations have stimulated interest in finding alternative managed pollinators to service crops. In the eastern U.S., managed hives of the native common eastern bumble bee (Bombus impatiens Cresson) may be an excellent choice. To examine this issue, a comprehensive 2-yr study was conducted to compare fruit yield and bee visits to flowers in pumpkin (Cucurbita pepo L.) fields that were either supplemented with A. mellifera hives, B. impatiens hives or were not supplemented. We compared pumpkin yield, A. mellifera flower visitation frequency and B. impatiens flower visitation frequency between treatments. Results indicated that supplementing pumpkin fields with either A. mellifera or B. impatiens hives did not increase their visitation to pumpkin flowers or fruit yield compared with those that were not supplemented. Next, the relationship between frequency of pumpkin flower visitation by the most prominent bee species (Peponapis pruinosa (Say), B. impatiens and A. mellifera) and fruit yield was determined across all pumpkin fields sampled. Fruit yield increased as the frequency of flower visits by A. mellifera and B. impatiens increased in 2011 and 2012, respectively. These results suggest that supplementation with managed bees may not improve pumpkin production and that A. mellifera and B. impatiens are important pollinators of pumpkin in our system.

  17. The importance of bees in natural and agricultural ecosystems

    Treesearch

    Paul Rhoades

    2013-01-01

    As the world’s most important group of pollinators, bees are a crucial part of agricultural production and natural ecosystem function. Bees and the pollination they provide are relevant to the nursery industry because of their role in the performance of seed increase plots as well as the importance of pollination in supporting persistent plant communities in restored...

  18. Diversity of wild bees supports pollination services in an urbanized landscape.

    PubMed

    Lowenstein, David M; Matteson, Kevin C; Minor, Emily S

    2015-11-01

    Plantings in residential neighborhoods can support wild pollinators. However, it is unknown how effectively wild pollinators maintain pollination services in small, urban gardens with diverse floral resources. We used a 'mobile garden' experimental design, whereby potted plants of cucumber, eggplant, and purple coneflower were brought to 30 residential yards in Chicago, IL, USA, to enable direct assessment of pollination services provided by wild pollinator communities. We measured fruit and seed set and investigated the effect of within-yard characteristics and adjacent floral resources on plant pollination. Increased pollinator visitation and taxonomic richness generally led to increases in fruit and seed set for all focal plants. Furthermore, fruit and seed set were correlated across the three species, suggesting that pollination services vary across the landscape in ways that are consistent among different plant species. Plant species varied in terms of which pollinator groups provided the most visits and benefit for pollination. Cucumber pollination was linked to visitation by small sweat bees (Lasioglossum spp.), whereas eggplant pollination was linked to visits by bumble bees. Purple coneflower was visited by the most diverse group of pollinators and, perhaps due to this phenomenon, was more effectively pollinated in florally-rich gardens. Our results demonstrate how a diversity of wild bees supports pollination of multiple plant species, highlighting the importance of pollinator conservation within cities. Non-crop resources should continue to be planted in urban gardens, as these resources have a neutral and potentially positive effect on crop pollination.

  19. Resource diversity and landscape-level homogeneity drive native bee foraging.

    PubMed

    Jha, Shalene; Kremen, Claire

    2013-01-08

    Given widespread declines in pollinator communities and increasing global reliance on pollinator-dependent crops, there is an acute need to develop a mechanistic understanding of native pollinator population and foraging biology. Using a population genetics approach, we determine the impact of habitat and floral resource distributions on nesting and foraging patterns of a critical native pollinator, Bombus vosnesenskii. Our findings demonstrate that native bee foraging is far more plastic and extensive than previously believed and does not follow a simple optimal foraging strategy. Rather, bumble bees forage further in pursuit of species-rich floral patches and in landscapes where patch-to-patch variation in floral resources is less, regardless of habitat composition. Thus, our results reveal extreme foraging plasticity and demonstrate that floral diversity, not density, drives bee foraging distance. Furthermore, we find a negative impact of paved habitat and a positive impact of natural woodland on bumble bee nesting densities. Overall, this study reveals that natural and human-altered landscapes can be managed for increased native bee nesting and extended foraging, dually enhancing biodiversity and the spatial extent of pollination services.

  20. Managed Bumble Bees (Bombus impatiens) (Hymenoptera: Apidae) Caged With Blueberry Bushes at High Density Did Not Increase Fruit Set or Fruit Weight Compared to Open Pollination.

    PubMed

    Campbell, J W; O'Brien, J; Irvin, J H; Kimmel, C B; Daniels, J C; Ellis, J D

    2017-04-01

    Highbush blueberry (Vaccinium corymbosum L.) is an important crop grown throughout Florida. Currently, most blueberry growers use honey bees (Apis mellifera L.) to provide pollination services for highbush blueberries even though bumble bees (Bombus spp.) have been shown to be more efficient at pollinating blueberries on a per bee basis. In general, contribution of bumble bees to the pollination of commercial highbush blueberries in Florida is unknown. Herein, we determined if managed bumble bees could contribute to highbush blueberry pollination. There were four treatments in this study: two treatments of caged commercial bumble bee (Bombus impatiens Cresson) colonies (low and high weight hives), a treatment excluding all pollinators, and a final treatment which allowed all pollinators (managed and wild pollinators) in the area have access to the plot. All treatments were located within a highbush blueberry field containing two cultivars of blooming plants, 'Emerald' and 'Millennia', with each cage containing 16 mature blueberry plants. We gathered data on fruit set, berry weight, and number of seeds produced per berry. When pollinators were excluded, fruit set was significantly lower in both cultivars (<8%) compared to that in all of the other treatments (>58%). Berry weight was not significantly different among the treatments, and the number of seeds per berry did not show a clear response. This study emphasizes the importance of bumble bees as an effective pollinator of blueberries and the potential beneficial implications of the addition of bumble bees in commercial blueberry greenhouses or high tunnels. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Multilevel Spatial Structure Impacts on the Pollination Services of Comarum palustre (Rosaceae)

    PubMed Central

    Somme, Laurent; Mayer, Carolin; Jacquemart, Anne-Laure

    2014-01-01

    Habitat destruction and fragmentation accelerate pollinator decline, consequently disrupting ecosystem processes such as pollination. To date, the impacts of multilevel spatial structure on pollination services have rarely been addressed. We focused on the effects of population spatial structure on the pollination services of Comarum palustre at three levels (i.e. within-population, between-populations and landscape). For three years, we investigated 14 Belgian populations, which differed in their within-population flower density, population surface, closure (i.e. proportion of the population edge that consisted of woody elements) and isolation (i.e. percentage of woody area cover within a 500 m radius from the population centre). We tested whether these spatial characteristics impact on pollinator abundance and visitation rate and thus, reproductive success of C. palustre. Insects were observed in 15 randomly-chosen plots in each population. We tested for pollen limitation with supplemental hand-cross pollination. Bumble bees and solitary bees were the major pollinators through all populations. Within populations, plots with high flower densities attracted high numbers of bumble bees and other insects. High bumble bee and solitary bee abundance was observed in populations presenting high proportions of woody edges and in populations within landscapes presenting high proportions of woody areas. Seed set resulting from open pollination varied with bumble bee and solitary bee visitation rate, leading to increased pollen limitation when pollinators were scarce. Since the reproductive success depended on the visitation rate of the main pollinators, which depended on multilevel spatial structure, wetland management plans should pay special attention to favour a mosaic of biotopes, including nesting sites and food resources for insects. This study particularly supports the relevance of a mix wetlands and woody habitats to bees. PMID:24915450

  2. Multilevel spatial structure impacts on the pollination services of Comarum palustre (Rosaceae).

    PubMed

    Somme, Laurent; Mayer, Carolin; Jacquemart, Anne-Laure

    2014-01-01

    Habitat destruction and fragmentation accelerate pollinator decline, consequently disrupting ecosystem processes such as pollination. To date, the impacts of multilevel spatial structure on pollination services have rarely been addressed. We focused on the effects of population spatial structure on the pollination services of Comarum palustre at three levels (i.e. within-population, between-populations and landscape). For three years, we investigated 14 Belgian populations, which differed in their within-population flower density, population surface, closure (i.e. proportion of the population edge that consisted of woody elements) and isolation (i.e. percentage of woody area cover within a 500 m radius from the population centre). We tested whether these spatial characteristics impact on pollinator abundance and visitation rate and thus, reproductive success of C. palustre. Insects were observed in 15 randomly-chosen plots in each population. We tested for pollen limitation with supplemental hand-cross pollination. Bumble bees and solitary bees were the major pollinators through all populations. Within populations, plots with high flower densities attracted high numbers of bumble bees and other insects. High bumble bee and solitary bee abundance was observed in populations presenting high proportions of woody edges and in populations within landscapes presenting high proportions of woody areas. Seed set resulting from open pollination varied with bumble bee and solitary bee visitation rate, leading to increased pollen limitation when pollinators were scarce. Since the reproductive success depended on the visitation rate of the main pollinators, which depended on multilevel spatial structure, wetland management plans should pay special attention to favour a mosaic of biotopes, including nesting sites and food resources for insects. This study particularly supports the relevance of a mix wetlands and woody habitats to bees.

  3. Bee species diversity enhances productivity and stability in a perennial crop.

    PubMed

    Rogers, Shelley R; Tarpy, David R; Burrack, Hannah J

    2014-01-01

    Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning--and, therefore, their importance in maintaining and enhancing these services-remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services.

  4. Bee Species Diversity Enhances Productivity and Stability in a Perennial Crop

    PubMed Central

    Rogers, Shelley R.; Tarpy, David R.; Burrack, Hannah J.

    2014-01-01

    Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning—and, therefore, their importance in maintaining and enhancing these services—remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services. PMID:24817218

  5. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema

    NASA Astrophysics Data System (ADS)

    Pettis, Jeffery S.; Vanengelsdorp, Dennis; Johnson, Josephine; Dively, Galen

    2012-02-01

    Global pollinator declines have been attributed to habitat destruction, pesticide use, and climate change or some combination of these factors, and managed honey bees, Apis mellifera, are part of worldwide pollinator declines. Here we exposed honey bee colonies during three brood generations to sub-lethal doses of a widely used pesticide, imidacloprid, and then subsequently challenged newly emerged bees with the gut parasite, Nosema spp. The pesticide dosages used were below levels demonstrated to cause effects on longevity or foraging in adult honey bees. Nosema infections increased significantly in the bees from pesticide-treated hives when compared to bees from control hives demonstrating an indirect effect of pesticides on pathogen growth in honey bees. We clearly demonstrate an increase in pathogen growth within individual bees reared in colonies exposed to one of the most widely used pesticides worldwide, imidacloprid, at below levels considered harmful to bees. The finding that individual bees with undetectable levels of the target pesticide, after being reared in a sub-lethal pesticide environment within the colony, had higher Nosema is significant. Interactions between pesticides and pathogens could be a major contributor to increased mortality of honey bee colonies, including colony collapse disorder, and other pollinator declines worldwide.

  6. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model

    PubMed Central

    Settele, Josef; Dormann, Carsten F.

    2018-01-01

    Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness), number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies) with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study), for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1) Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2) Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3) Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response to this ratio for all bee sizes. The nest to foraging habitat ratio, a strong habitat proxy incorporating fragmentation could be a promising and practical measure for comparing landscape suitability for pollinators. 4) The number of flower visits was hardly affected by resource allocation, but predominantly by bee size. 5) In landscapes with the highest visitation coverage, bees flew least far, suggesting that these pollination proxies are subject to a trade-off between either longer pollen transport distances or a better pollination coverage, linked to how nests are distributed over the landscape rather than being affected by bee size. PMID:29444076

  7. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model.

    PubMed

    Everaars, Jeroen; Settele, Josef; Dormann, Carsten F

    2018-01-01

    Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness), number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies) with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study), for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1) Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2) Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3) Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response to this ratio for all bee sizes. The nest to foraging habitat ratio, a strong habitat proxy incorporating fragmentation could be a promising and practical measure for comparing landscape suitability for pollinators. 4) The number of flower visits was hardly affected by resource allocation, but predominantly by bee size. 5) In landscapes with the highest visitation coverage, bees flew least far, suggesting that these pollination proxies are subject to a trade-off between either longer pollen transport distances or a better pollination coverage, linked to how nests are distributed over the landscape rather than being affected by bee size.

  8. Negative effects of pesticides on wild bee communities can be buffered by landscape context

    PubMed Central

    Park, Mia G.; Blitzer, E. J.; Gibbs, Jason; Losey, John E.; Danforth, Bryan N.

    2015-01-01

    Wild bee communities provide underappreciated but critical agricultural pollination services. Given predicted global shortages in pollination services, managing agroecosystems to support thriving wild bee communities is, therefore, central to ensuring sustainable food production. Benefits of natural (including semi-natural) habitat for wild bee abundance and diversity on farms are well documented. By contrast, few studies have examined toxicity of pesticides on wild bees, let alone effects of farm-level pesticide exposure on entire bee communities. Whether beneficial natural areas could mediate effects of harmful pesticides on wild bees is also unknown. Here, we assess the effect of conventional pesticide use on the wild bee community visiting apple (Malus domestica) within a gradient of percentage natural area in the landscape. Wild bee community abundance and species richness decreased linearly with increasing pesticide use in orchards one year after application; however, pesticide effects on wild bees were buffered by increasing proportion of natural habitat in the surrounding landscape. A significant contribution of fungicides to observed pesticide effects suggests deleterious properties of a class of pesticides that was, until recently, considered benign to bees. Our results demonstrate extended benefits of natural areas for wild pollinators and highlight the importance of considering the landscape context when weighing up the costs of pest management on crop pollination services. PMID:26041355

  9. A pollinators' eye view of a shelter mimicry system.

    PubMed

    Vereecken, Nicolas J; Dorchin, Achik; Dafni, Amots; Hötling, Susann; Schulz, Stefan; Watts, Stella

    2013-06-01

    'Human-red' flowers are traditionally considered to be rather unpopular with bees, yet some allogamous species in the section Oncocyclus (genus Iris, Iridaceae) have evolved specialized interactions with their pollinators, a narrow taxonomic range of male solitary bees. The dark-red, tubular flowers of these irises are nectarless but provide protective shelters (i.e. a non-nutritive form of reward) primarily to male solitary bees (Apidae, Eucerini) that pollinate the flowers while looking for a shelter. An earlier study on orchids suggested that species pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of different n-alkenes (unsaturated cuticular hydrocarbons). Whether or not this also applies to the Oncocyclus irises and whether pollinators are attracted by specific colours or scents of these flowers is unknown. Using Iris atropurpurea, recording of pollinator preferences for shelters with different spatial parameters was combined with analyses of floral colours (by spectrophotometry) and scents (by gas chromatography-mass spectrometry) to test the hypotheses that (a) pollinators significantly prefer floral tunnels facing the rising sun (floral heat-reward hypothesis), and that (b) flowers pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of unsaturated cuticular hydrocarbons (n-alkenes) in their floral scent (preadaptation to sexual-deception hypothesis). Male bees do not significantly prefer shelters facing the rising sun or with the presence of high absolute/relative amounts and numbers of n-alkenes in the floral scent. The results suggest that the flowers of I. atropurpurea probably evolved by pollinator-mediated selection acting primarily on floral colours to mimic large achromatic ('bee-black') protective shelters used preferentially by male solitary bees, and that pollinator visits are presumably not the result of an odour-based sexual stimulation or motivated by an increased morning floral heat reward in tunnels facing the rising sun.

  10. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops.

    PubMed

    Rader, Romina; Reilly, James; Bartomeus, Ignasi; Winfree, Rachael

    2013-10-01

    If climate change affects pollinator-dependent crop production, this will have important implications for global food security because insect pollinators contribute to production for 75% of the leading global food crops. We investigate whether climate warming could result in indirect impacts upon crop pollination services via an overlooked mechanism, namely temperature-induced shifts in the diurnal activity patterns of pollinators. Using a large data set on bee pollination of watermelon crops, we predict how pollination services might change under various climate change scenarios. Our results show that under the most extreme IPCC scenario (A1F1), pollination services by managed honey bees are expected to decline by 14.5%, whereas pollination services provided by most native, wild taxa are predicted to increase, resulting in an estimated aggregate change in pollination services of +4.5% by 2099. We demonstrate the importance of native biodiversity in buffering the impacts of climate change, because crop pollination services would decline more steeply without the native, wild pollinators. More generally, our study provides an important example of how biodiversity can stabilize ecosystem services against environmental change. © 2013 John Wiley & Sons Ltd.

  11. Sunflower (Helianthus annuus) pollination in California's Central Valley is limited by native bee nest site location.

    PubMed

    Sardiñas, Hillary S; Tom, Kathleen; Ponisio, Lauren Catherine; Rominger, Andrew; Kremen, Claire

    2016-03-01

    The delivery of ecosystem services by mobile organisms depends on the distribution of those organisms, which is, in turn, affected by resources at local and landscape scales. Pollinator-dependent crops rely on mobile animals like bees for crop production, and the spatial relationship between floral resources and nest location for these central-place foragers influences the delivery of pollination services. Current models that map pollination coverage in agricultural regions utilize landscape-level estimates of floral availability and nesting incidence inferred from expert opinion, rather than direct assessments. Foraging distance is often derived from proxies of bee body size, rather than direct measurements of foraging that account for behavioral responses to floral resource type and distribution. The lack of direct measurements of nesting incidence and foraging distances may lead to inaccurate mapping of pollination services. We examined the role of local-scale floral resource presence from hedgerow plantings on nest incidence of ground-nesting bees in field margins and within monoculture, conventionally managed sunflower fields in California's Central Valley. We tracked bee movement into fields using fluorescent powder. We then used these data to simulate the distribution of pollination services within a crop field. Contrary to expert opinion, we found that ground-nesting native bees nested both in fields and edges, though nesting rates declined with distance into field. Further, we detected no effect of field-margin floral enhancements on nesting. We found evidence of an exponential decay rate of bee movement into fields, indicating that foraging predominantly occurred in less than 1% of medium-sized bees' predicted typical foraging range. Although we found native bees nesting within agricultural fields, their restricted foraging movements likely centralize pollination near nest sites. Our data thus predict a heterogeneous distribution of pollination services within sunflower fields, with edges receiving higher coverage than field centers. To generate more accurate maps of services, we advocate directly measuring the autecology of ecosystem service providers, which vary by crop system, pollinator species, and region. Improving estimates of the factors affecting pollinator populations can increase the accuracy of pollination service maps and help clarify the influence of farming practices on wild bees occurring in agricultural landscapes.

  12. Plant-pollinator interactions in New Caledonia influenced by introduced honey bees.

    PubMed

    Kato, Makoto; Kawakita, Atsushi

    2004-11-01

    The flora of New Caledonia is characterized by remarkably high species diversity, high endemicity, and an unusual abundance of archaic plant taxa. To investigate community-level pollination mutualism in this endemic ecosystem, we observed flower visitors on 99 plant species in 42 families of various types of vegetation. Among the 95 native plant species, the most dominant pollination system was melittophily (bee-pollinated, 46.3%), followed by phalaenophily (moth-pollinated, 20.0%), ornithophily (bird-pollinated, 11.6%), cantharophily (beetle-pollinated, 8.4%), myophily (fly-pollinated, 3.2%), chiropterophily (bat-pollinated, 3.2%), and anemophily (wind-pollinated, 3.2%). The prevalence of ornithophily by honeyeaters shows an ecological link to pollination mutualism in Australia. The relative dominance of phalaenophily is unique to New Caledonia, and is proposed to be related to the low diversity of the original bee fauna and the absence of long-tongued bees. Although some archaic plants maintain archaic plant-pollinator interactions, e.g., Zygogynum pollinated by micropterigid moths, or Hedycarya pollinated by thrips and staphylinid beetles, the most dominant organism observed on flowers was the introduced honey bee, Apis mellifera. The plant species now visited by honey bees are thought to have originally been pollinated by native solitary short-tongued bees. Our data suggest that the unique systems of pollination mutualism in New Caledonia are now endangered by the establishment of highly invasive honey bees.

  13. Coupling of pollination services and coffee suitability under climate change.

    PubMed

    Imbach, Pablo; Fung, Emily; Hannah, Lee; Navarro-Racines, Carlos E; Roubik, David W; Ricketts, Taylor H; Harvey, Celia A; Donatti, Camila I; Läderach, Peter; Locatelli, Bruno; Roehrdanz, Patrick R

    2017-09-26

    Climate change will cause geographic range shifts for pollinators and major crops, with global implications for food security and rural livelihoods. However, little is known about the potential for coupled impacts of climate change on pollinators and crops. Coffee production exemplifies this issue, because large losses in areas suitable for coffee production have been projected due to climate change and because coffee production is dependent on bee pollination. We modeled the potential distributions of coffee and coffee pollinators under current and future climates in Latin America to understand whether future coffee-suitable areas will also be suitable for pollinators. Our results suggest that coffee-suitable areas will be reduced 73-88% by 2050 across warming scenarios, a decline 46-76% greater than estimated by global assessments. Mean bee richness will decline 8-18% within future coffee-suitable areas, but all are predicted to contain at least 5 bee species, and 46-59% of future coffee-suitable areas will contain 10 or more species. In our models, coffee suitability and bee richness each increase (i.e., positive coupling) in 10-22% of future coffee-suitable areas. Diminished coffee suitability and bee richness (i.e., negative coupling), however, occur in 34-51% of other areas. Finally, in 31-33% of the future coffee distribution areas, bee richness decreases and coffee suitability increases. Assessing coupled effects of climate change on crop suitability and pollination can help target appropriate management practices, including forest conservation, shade adjustment, crop rotation, or status quo, in different regions.

  14. Negative effects of pesticides on wild bee communities can be buffered by landscape context.

    PubMed

    Park, Mia G; Blitzer, E J; Gibbs, Jason; Losey, John E; Danforth, Bryan N

    2015-06-22

    Wild bee communities provide underappreciated but critical agricultural pollination services. Given predicted global shortages in pollination services, managing agroecosystems to support thriving wild bee communities is, therefore, central to ensuring sustainable food production. Benefits of natural (including semi-natural) habitat for wild bee abundance and diversity on farms are well documented. By contrast, few studies have examined toxicity of pesticides on wild bees, let alone effects of farm-level pesticide exposure on entire bee communities. Whether beneficial natural areas could mediate effects of harmful pesticides on wild bees is also unknown. Here, we assess the effect of conventional pesticide use on the wild bee community visiting apple (Malus domestica) within a gradient of percentage natural area in the landscape. Wild bee community abundance and species richness decreased linearly with increasing pesticide use in orchards one year after application; however, pesticide effects on wild bees were buffered by increasing proportion of natural habitat in the surrounding landscape. A significant contribution of fungicides to observed pesticide effects suggests deleterious properties of a class of pesticides that was, until recently, considered benign to bees. Our results demonstrate extended benefits of natural areas for wild pollinators and highlight the importance of considering the landscape context when weighing up the costs of pest management on crop pollination services. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Individual perception of bees: Between perceived danger and willingness to protect.

    PubMed

    Schönfelder, Mona Lisa; Bogner, Franz Xaver

    2017-01-01

    The current loss of biodiversity has found its way into the media. Especially the loss of bees as pollinators has recently received much attention aiming to increase public awareness about the consequence of pollinator loss and strategies for protection. However, pollinating insects like bees often prompt considerable anxiety. Negative emotions such as fear and disgust often lead to lack of support for conservation and appropriate initiatives for protection. Our study monitored perceptions of bees in the contexts of conservation and danger bees possibly represent by applying a semantic differential using contrasting adjectives under the heading "I think bees are…". Additionally, open questions were applied to examine individual perceptions of danger and conservation of bees. Respondents were students from primary school, secondary school and university. We compared these novices (n = 499) to experts (beekeepers, n = 153). An exploratory factor analysis of the semantic differential responses yielded three major oblique factors: Interest, Danger and Conservation & Usefulness. The inter-correlations of these factors were significant. Although all subgroups showed an overall high willingness to protect bees, the perception of danger scored medium. The individual experience of bee stings was the most prevalent reason for expressing fear. Educational programs focusing on pollinator conservation may reduce the perceived danger through removing misinformation, and supporting interest in the species. Based on the overall positive attitude toward bees, we suggest introducing bees (e.g., Apis mellifera) as a flagship species for pollinator conservation.

  16. Crop Pollination Exposes Honey Bees to Pesticides Which Alters Their Susceptibility to the Gut Pathogen Nosema ceranae

    PubMed Central

    Pettis, Jeffery S.; Lichtenberg, Elinor M.; Andree, Michael; Stitzinger, Jennie; Rose, Robyn; vanEngelsdorp, Dennis

    2013-01-01

    Recent declines in honey bee populations and increasing demand for insect-pollinated crops raise concerns about pollinator shortages. Pesticide exposure and pathogens may interact to have strong negative effects on managed honey bee colonies. Such findings are of great concern given the large numbers and high levels of pesticides found in honey bee colonies. Thus it is crucial to determine how field-relevant combinations and loads of pesticides affect bee health. We collected pollen from bee hives in seven major crops to determine 1) what types of pesticides bees are exposed to when rented for pollination of various crops and 2) how field-relevant pesticide blends affect bees’ susceptibility to the gut parasite Nosema ceranae. Our samples represent pollen collected by foragers for use by the colony, and do not necessarily indicate foragers’ roles as pollinators. In blueberry, cranberry, cucumber, pumpkin and watermelon bees collected pollen almost exclusively from weeds and wildflowers during our sampling. Thus more attention must be paid to how honey bees are exposed to pesticides outside of the field in which they are placed. We detected 35 different pesticides in the sampled pollen, and found high fungicide loads. The insecticides esfenvalerate and phosmet were at a concentration higher than their median lethal dose in at least one pollen sample. While fungicides are typically seen as fairly safe for honey bees, we found an increased probability of Nosema infection in bees that consumed pollen with a higher fungicide load. Our results highlight a need for research on sub-lethal effects of fungicides and other chemicals that bees placed in an agricultural setting are exposed to. PMID:23894612

  17. Bombus huntii, Bombus impatiens and Bombus vosnesenskii (Hymenoptera: Apidae) pollinate greenhouse-grown tomatoes in western North America

    USDA-ARS?s Scientific Manuscript database

    Bumble bees (Bombus) are the primary pollinators of tomatoes grown in greenhouses and can significantly increase fruit weight compared to tomatoes that receive no supplemental pollination. Due to mounting concerns over the transportation of bumble bees outside of their native ranges, several specie...

  18. Integrated crop pollination: Combining strategies to ensure stable and sustainable yields of pollination-dependent crops

    USDA-ARS?s Scientific Manuscript database

    Meeting the nutritional needs of our growing human population will be increasingly dependent on bees and other pollinators that provide the essential delivery of pollen to crop flowers during bloom. Honey bees have experienced population declines in some regions, and similar changes are evident for ...

  19. Summer Flowering Cover Crops Support Wild Bees in Vineyards.

    PubMed

    Wilson, Houston; Wong, Jessica S; Thorp, Robbin W; Miles, Albie F; Daane, Kent M; Altieri, Miguel A

    2018-02-08

    Agricultural expansion and intensification negatively affect pollinator populations and has led to reductions in pollination services across multiple cropping systems. As a result, growers and researchers have utilized the restoration of local and landscape habitat diversity to support pollinators, and wild bees in particular. Although a majority of studies to date have focussed on effects in pollinator-dependent crops such as almond, tomato, sunflower, and watermelon, supporting wild bees in self-pollinated crops, such as grapes, can contribute to broader conservation goals as well as provide other indirect benefits to growers. This study evaluates the influence of summer flowering cover crops and landscape diversity on the abundance and diversity of vineyard bee populations. We showed that diversity and abundance of wild bees were increased on the flowering cover crop, but were unaffected by changes in landscape diversity. These findings indicate that summer flowering cover crops can be used to support wild bees and this could be a useful strategy for grape growers interested in pollinator conservation as part of a broader farmscape sustainability agenda. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Pollinator communities in strawberry crops - variation at multiple spatial scales.

    PubMed

    Ahrenfeldt, E J; Klatt, B K; Arildsen, J; Trandem, N; Andersson, G K S; Tscharntke, T; Smith, H G; Sigsgaard, L

    2015-08-01

    Predicting potential pollination services of wild bees in crops requires knowledge of their spatial distribution within fields. Field margins can serve as nesting and foraging habitats for wild bees and can be a source of pollinators. Regional differences in pollinator community composition may affect this spill-over of bees. We studied how regional and local differences affect the spatial distribution of wild bee species richness, activity-density and body size in crop fields. We sampled bees both from the field centre and at two different types of semi-natural field margins, grass strips and hedges, in 12 strawberry fields. The fields were distributed over four regions in Northern Europe, representing an almost 1100 km long north-south gradient. Even over this gradient, daytime temperatures during sampling did not differ significantly between regions and did therefore probably not impact bee activity. Bee species richness was higher in field margins compared with field centres independent of field size. However, there was no difference between centre and margin in body-size or activity-density. In contrast, bee activity-density increased towards the southern regions, whereas the mean body size increased towards the north. In conclusion, our study revealed a general pattern across European regions of bee diversity, but not activity-density, declining towards the field interior which suggests that the benefits of functional diversity of pollinators may be difficult to achieve through spill-over effects from margins to crop. We also identified dissimilar regional patterns in bee diversity and activity-density, which should be taken into account in conservation management.

  1. Climate-associated phenological advances in bee pollinators and bee-pollinated plants

    PubMed Central

    Bartomeus, Ignasi; Ascher, John S.; Wagner, David; Danforth, Bryan N.; Colla, Sheila; Kornbluth, Sarah; Winfree, Rachael

    2011-01-01

    The phenology of many ecological processes is modulated by temperature, making them potentially sensitive to climate change. Mutualistic interactions may be especially vulnerable because of the potential for phenological mismatching if the species involved do not respond similarly to changes in temperature. Here we present an analysis of climate-associated shifts in the phenology of wild bees, the most important pollinators worldwide, and compare these shifts to published studies of bee-pollinated plants over the same time period. We report that over the past 130 y, the phenology of 10 bee species from northeastern North America has advanced by a mean of 10.4 ± 1.3 d. Most of this advance has taken place since 1970, paralleling global temperature increases. When the best available data are used to estimate analogous rates of advance for plants, these rates are not distinguishable from those of bees, suggesting that bee emergence is keeping pace with shifts in host-plant flowering, at least among the generalist species that we investigated. PMID:22143794

  2. Climate-associated phenological advances in bee pollinators and bee-pollinated plants.

    PubMed

    Bartomeus, Ignasi; Ascher, John S; Wagner, David; Danforth, Bryan N; Colla, Sheila; Kornbluth, Sarah; Winfree, Rachael

    2011-12-20

    The phenology of many ecological processes is modulated by temperature, making them potentially sensitive to climate change. Mutualistic interactions may be especially vulnerable because of the potential for phenological mismatching if the species involved do not respond similarly to changes in temperature. Here we present an analysis of climate-associated shifts in the phenology of wild bees, the most important pollinators worldwide, and compare these shifts to published studies of bee-pollinated plants over the same time period. We report that over the past 130 y, the phenology of 10 bee species from northeastern North America has advanced by a mean of 10.4 ± 1.3 d. Most of this advance has taken place since 1970, paralleling global temperature increases. When the best available data are used to estimate analogous rates of advance for plants, these rates are not distinguishable from those of bees, suggesting that bee emergence is keeping pace with shifts in host-plant flowering, at least among the generalist species that we investigated.

  3. High species richness of native pollinators in Brazilian tomato crops.

    PubMed

    Silva-Neto, C M; Bergamini, L L; Elias, M A S; Moreira, G L; Morais, J M; Bergamini, B A R; Franceschinelli, E V

    2017-01-01

    Pollinators provide an essential service to natural ecosystems and agriculture. In tomatoes flowers, anthers are poricidal, pollen may drop from their pore when flowers are shaken by the wind. However, bees that vibrate these anthers increase pollen load on the stigma and in fruit production. The present study aimed to identify the pollinator richness of tomato flowers and investigate their morphological and functional traits related to the plant-pollinator interaction in plantations of Central Brazil. The time of anthesis, flower duration, and the number and viability of pollen grains and ovules were recorded. Floral visitors were observed and collected. Flower buds opened around 6h30 and closed around 18h00. They reopened on the following day at the same time in the morning, lasting on average 48 hours. The highest pollen availability occurred during the first hours of anthesis. Afterwards, the number of pollen grains declined, especially between 10h00 to 12h00, which is consistent with the pollinator visitation pattern. Forty bee species were found in the tomato fields, 30 of which were considered pollinators. We found that during the flowering period, plants offered an enormous amount of pollen to their visitors. These may explain the high richness and amount of bees that visit the tomato flowers in the study areas. The period of pollen availability and depletion throughout the day overlapped with the bees foraging period, suggesting that bees are highly effective in removing pollen grains from anthers. Many of these grains probably land on the stigma of the same flower, leading to self-pollination and subsequent fruit development. Native bees (Exomalopsis spp.) are effective pollinators of tomato flowers and are likely to contribute to increasing crop productivity. On the other hand, here tomato flowers offer large amounts of pollen resource to a high richness and amount of bees, showing a strong plant-pollinator interaction in the study agroecosystem.

  4. Efficiency of local Indonesia honey bees (Apis cerana L.) and stingless bee (Trigona iridipennis) on tomato (Lycopersicon esculentum Mill.) pollination.

    PubMed

    Putra, Ramadhani Eka; Kinasih, Ida

    2014-01-01

    Tomato (Lycopersicon esculentum Mill.) is considered as one of major agricultural commodity of Indonesia farming. However, monthly production is unstable due to lack of pollination services. Common pollinator agent of tomatoes is bumblebees which is unsuitable for tropical climate of Indonesia and the possibility of alteration of local wild plant interaction with their pollinator. Indonesia is rich with wild bees and some of the species already domesticated for years with prospect as pollinating agent for tomatoes. This research aimed to assess the efficiency of local honey bee (Apis cerana L.) and stingless bee (Trigona iridipennis), as pollinator of tomato. During this research, total visitation rate and total numbers of pollinated flowers by honey bee and stingless bee were compared between them with bagged flowers as control. Total fruit production, average weight and size also measured in order to correlated pollination efficiency with quantity and quality of fruit produced. Result of this research showed that A. cerana has slightly higher rate of visitation (p>0.05) and significantly shorter handling time (p < 0.05) than T. iridipennis due to their larger colony demand and low reward provide by tomato flowers. However, honey bee pollinated tomato flowers more efficient pollinator than stingless bee (80.3 and 70.2% efficiency, respectively; p < 0.05) even though the average weight and size of tomatoes were similar (p>0.05). Based on the results, it is concluded that the use of Apis cerana and Trigona spp., for pollinating tomatoes in tropical climates could be an alternative to the use of non-native Apis mellifera and bumblebees (Bombus spp.). However, more researches are needed to evaluate the cost/benefit on large-scale farming and greenhouse pollination using both bees against other bee species and pollination methods.

  5. The importance of key floral bioactive compounds to honey bees for the detection and attraction of hybrid vegetable crops and increased seed yield.

    PubMed

    Mas, Flore; Harper, Aimee; Horner, Rachael; Welsh, Taylor; Jaksons, Peter; Suckling, David M

    2018-02-15

    Crop breeding programmes generally select for traits for improved yield and human consumption preferences. Yet, they often overlook one fundamental trait essential for insect-pollinated crops: pollinator attraction. This is even more critical for hybrid plants that rely on cross-pollination between the male-fertile line and the male-sterile line to set seeds. This study investigated the role of floral odours for honey bee pollination that could explain the poor seed yield in hybrid crops. The key floral bioactive compounds that honey bees detect were identified for three vegetable hybrid crops. It was found that 30% of the variation in bioactive compound quantities was explained by variety. Differences in quantities of the bioactive compounds triggered different degrees of olfactory response and were also associated with varied appetitive response. Correlating the abundance of each bioactive compound with seed yield, it was found that aldehydes such as nonanal and decanal can have a strong negative influence on seed yield with increasing quantity. Using these methodologies to identify relevant bioactive compounds associated with honey bee pollination, plant breeding programmes should also consider selecting for floral traits attractive to honey bees to improve crop pollination for enhanced seed yield. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  6. Flight of the bumble bee: Buzzes predict pollination services.

    PubMed

    Miller-Struttmann, Nicole E; Heise, David; Schul, Johannes; Geib, Jennifer C; Galen, Candace

    2017-01-01

    Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30-52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to bee population declines.

  7. Flight of the bumble bee: Buzzes predict pollination services

    PubMed Central

    Heise, David; Schul, Johannes; Geib, Jennifer C.; Galen, Candace

    2017-01-01

    Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30–52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to bee population declines. PMID:28591213

  8. Resource Effects on Solitary Bee Reproduction in a Managed Crop Pollination System.

    PubMed

    Pitts-Singer, Theresa L

    2015-08-01

    Population density may affect solitary bee maternal resource allocation. The number of Megachile rotundata (F.), alfalfa leafcutting bee, females released for seed production of Medicago sativa L., alfalfa, may limit flower availability for nest provisioning. In turn, pollinator abundance also may affect crop yield. The M. sativa pollination system presents an opportunity to test for effects of density dependence and maternal manipulation on M. rotundata reproduction. A multiyear study was performed on M. sativa fields upon which M. rotundata densities were altered to induce low, medium, and high density situations. Numbers of adult bees and open flowers were recorded weekly; bee reproduction variables were collected once. Fields varied in plant performance for each site and year, and the intended bee densities were not realized. Therefore, the variable density index (DI) was derived to describe the number of female bees per area of flowers over the study period. As DI increased, percentages of pollinated flowers, established females, and healthy brood significantly increased, and the number of pollinated flowers per female and of dead or diseased brood significantly decreased. Sex ratio was significantly more female biased as DI increased. Overwintered offspring weights were similar regardless of DI, but significantly differed by year for both sexes, and for males also by field and year × field interaction. Overall, resource limitation was not found in this field study. Other density-dependent factors may have induced a bee dispersal response soon after bees were released in the fields that circumvented the need for, or impact of, maternal manipulation. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by a US Government employee and is in the public domain in the US.

  9. A pollinators' eye view of a shelter mimicry system

    PubMed Central

    Vereecken, Nicolas J.; Dorchin, Achik; Dafni, Amots; Hötling, Susann; Schulz, Stefan; Watts, Stella

    2013-01-01

    Background and Aims ‘Human-red’ flowers are traditionally considered to be rather unpopular with bees, yet some allogamous species in the section Oncocyclus (genus Iris, Iridaceae) have evolved specialized interactions with their pollinators, a narrow taxonomic range of male solitary bees. The dark-red, tubular flowers of these irises are nectarless but provide protective shelters (i.e. a non-nutritive form of reward) primarily to male solitary bees (Apidae, Eucerini) that pollinate the flowers while looking for a shelter. An earlier study on orchids suggested that species pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of different n-alkenes (unsaturated cuticular hydrocarbons). Whether or not this also applies to the Oncocyclus irises and whether pollinators are attracted by specific colours or scents of these flowers is unknown. Methods Using Iris atropurpurea, recording of pollinator preferences for shelters with different spatial parameters was combined with analyses of floral colours (by spectrophotometry) and scents (by gas chromatography–mass spectrometry) to test the hypotheses that (a) pollinators significantly prefer floral tunnels facing the rising sun (floral heat-reward hypothesis), and that (b) flowers pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of unsaturated cuticular hydrocarbons (n-alkenes) in their floral scent (preadaptation to sexual-deception hypothesis). Key Results Male bees do not significantly prefer shelters facing the rising sun or with the presence of high absolute/relative amounts and numbers of n-alkenes in the floral scent. Conclusions The results suggest that the flowers of I. atropurpurea probably evolved by pollinator-mediated selection acting primarily on floral colours to mimic large achromatic (‘bee-black’) protective shelters used preferentially by male solitary bees, and that pollinator visits are presumably not the result of an odour-based sexual stimulation or motivated by an increased morning floral heat reward in tunnels facing the rising sun. PMID:23599249

  10. Evaluation of the neotropical stingless bee Melipona quadrifasciata (Hymenoptera: Apidae) as pollinator of greenhouse tomatoes.

    PubMed

    Del Sarto, M C L; Peruquetti, R C; Campos, L A O

    2005-04-01

    The Neotropical stingless bee Melipona quadrifasciata Lepeletier was evaluated for pollinating tomatoes (variety Rodas; long-life hybrid) in greenhouses under plastic and with a hydroponic system and "organic concepts" in Minas Gerais State, Brazil. Flowers not pollinated did not set any fruit. Pollination by bees plus manual pollination did not differ from either bee or manual pollination. Maximum fruit diameter, fruit height, and roundness (quotient between maximum fruit diameter and fruit height) were not significantly different between treatments, but fruit visited by M. quadrifasciata had 10.8% less seeds (dry mass) than manual pollination. This apparently low efficiency of M. quadrifasciata pollination was attributed to the overlap of only 30 min between highest bee foraging activity and highest flower stigma receptivity. Thus, it was concluded that M. quadrifasciata is a feasible pollinator of greenhouse tomatoes because of 1) the observed increase in fruit quality with lower mechanical injury than traditional manual pollination, 2) no significant decrease in fruit size, and 3) high price of such product in the market. Some considerations for sustainable use of M. quadrifasciata as greenhouse pollinator are presented. Although techniques for keeping captive colonies of M. quadrifasciata are currently available, the sole current method for acquiring new colonies is removing them from the forest, and if demand was created for large numbers of colonies for commercial use, techniques for captive rearing must be developed to prevent serious declines in wild populations.

  11. Potential pollinators of tomato, Lycopersicon esculentum (Solanaceae), in open crops and the effect of a solitary bee in fruit set and quality.

    PubMed

    Santos, A O R; Bartelli, B F; Nogueira-Ferreira, F H

    2014-06-01

    We identified native bees that are floral visitors and potential pollinators of tomato in Cerrado areas, described the foraging behavior of these species, and verified the influence of the visitation of a solitary bee on the quantity and quality of fruits. Three areas of tomato crops, located in Minas Gerais, Brazil, were sampled between March and November 2012. We collected 185 bees belonging to 13 species. Exomalopsis (Exomalopsis) analis Spinola, 1853 (Hymenoptera: Apidae) was the most abundant. Ten species performed buzz pollination. Apis mellifera L. 1758 (Hymenoptera: Apidae) and Paratrigona lineata (Lepeletier, 1836) (Hymenoptera: Apidae) could also act as pollinators. The fruit set and number of seeds obtained from the pollination treatment by E. analis were higher than those in the control group. Our results allowed the identification of potential tomato pollinators in Cerrado areas and also contributed information regarding the impact of a single species (E. analis) on fruit set and quality. Although most of the visiting bees show the ability for tomato pollination, there is an absence of adequate management techniques, and its usage is difficult with the aim of increasing the crop production, which is the case for E. analis. Species such as Melipona quinquefasciata, P. lineata, and A. mellifera, which are easy to handle, are not used for pollination services. Finally, it is suggested that a combination of different bee species that are able to pollinate the tomato is necessary to prevent the super-exploitation of only a single species for pollination services and to guarantee the occurrence of potential pollinators in the crop area.

  12. Flower diversity and bee reproduction in an arid ecosystem.

    PubMed

    Dorado, Jimena; Vázquez, Diego P

    2016-01-01

    Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site), and whether such effects were modulated by bee generalization on floral resources. Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the diversity-stability relationship, given that elevation had a positive effect on flower diversity but a negative effect on bee reproduction. Although high temporal stability in flower production is expected to enhance pollinator reproduction, in our study it had a weakly negative-instead of positive-effect on the average number of brood cells per nest. Other environmental factors that vary with elevation could influence bee reproduction. Our study focused on a small group of closely-related bee species, which cautions against generalization of our findings to other groups of pollinators. More studies are clearly needed to assess the extent to which pollinator demography is influenced by the diversity of floral resources.

  13. Individual perception of bees: Between perceived danger and willingness to protect

    PubMed Central

    Bogner, Franz Xaver

    2017-01-01

    The current loss of biodiversity has found its way into the media. Especially the loss of bees as pollinators has recently received much attention aiming to increase public awareness about the consequence of pollinator loss and strategies for protection. However, pollinating insects like bees often prompt considerable anxiety. Negative emotions such as fear and disgust often lead to lack of support for conservation and appropriate initiatives for protection. Our study monitored perceptions of bees in the contexts of conservation and danger bees possibly represent by applying a semantic differential using contrasting adjectives under the heading “I think bees are…”. Additionally, open questions were applied to examine individual perceptions of danger and conservation of bees. Respondents were students from primary school, secondary school and university. We compared these novices (n = 499) to experts (beekeepers, n = 153). An exploratory factor analysis of the semantic differential responses yielded three major oblique factors: Interest, Danger and Conservation & Usefulness. The inter-correlations of these factors were significant. Although all subgroups showed an overall high willingness to protect bees, the perception of danger scored medium. The individual experience of bee stings was the most prevalent reason for expressing fear. Educational programs focusing on pollinator conservation may reduce the perceived danger through removing misinformation, and supporting interest in the species. Based on the overall positive attitude toward bees, we suggest introducing bees (e.g., Apis mellifera) as a flagship species for pollinator conservation. PMID:28662124

  14. Does the invasive Lupinus polyphyllus increase pollinator visitation to a native herb through effects on pollinator population sizes?

    PubMed

    Jakobsson, Anna; Padrón, Benigno

    2014-01-01

    Invasive plants may compete with native species for abiotic factors as light, space and nutrients, and have also been shown to affect native pollination interactions. Studies have mainly focused on how invasive plants affect pollinator behaviour, i.e. attraction of pollinators to or away from native flowers. However, when an invasive plant provides resources utilized by native pollinators this could increase pollinator population sizes and thereby pollination success in natives. Effects mediated through changes in pollinator population sizes have been largely ignored in previous studies, and the dominance of negative interactions suggested by meta-analyses may therefore be biased. We investigated the impact of the invasive Lupinus polyphyllus on pollination in the native Lotus corniculatus using a study design comparing invaded and uninvaded sites before and after the flowering period of the invasive. We monitored wild bee abundance in transects, and visit rate and seed production of potted Lotus plants. Bumblebee abundance increased 3.9 times in invaded sites during the study period, whereas it was unaltered in uninvaded sites. Total visit rate per Lotus plant increased 2.1 times in invaded sites and decreased 4.4 times in uninvaded sites. No corresponding change in seed production of Lotus was found. The increase in visit rate to Lotus was driven by an increase in solitary bee visitation, whereas mainly bumblebees were observed to visit the invasive Lupinus. The mechanism by which the invasive increases pollinator visit rates to Lotus could be increased availability of other flower resources for solitary bees when bumblebees forage on Lupinus.

  15. Pollination of Campomanesia phaea (Myrtaceae) by night-active bees: a new nocturnal pollination system mediated by floral scent.

    PubMed

    Cordeiro, G D; Pinheiro, M; Dötterl, S; Alves-Dos-Santos, I

    2017-03-01

    Bees are the most important diurnal pollinators of angiosperms. In several groups of bees a nocturnal/crepuscular habit developed, yet little is known about their role in pollination and whether some plants are adapted specifically to these bees. We used a multidisciplinary approach to investigate the reproductive biology and to understand the role of nocturnal/crepuscular bees in pollination of Campomanesia phaea (Myrtaceae), popularly named cambuci. We studied the floral biology and breeding system of C. phaea. We collected the floral visitors and tested the pollinators' effectiveness. We also determined the floral scents released at night and during daytime, and studied behavioural responses of crepuscular/nocturnal bees towards these scents. The flowers of cambuci were self-incompatible and had pollen as the only resource for flower visitors. Anthesis lasted around 14 h, beginning at 04:30 h at night. The flowers released 14 volatile compounds, mainly aliphatic and aromatic compounds. We collected 52 species of floral visitors, mainly bees. Nocturnal and crepuscular bees (four species) were among the most frequent species and the only effective pollinators. In field bioassays performed at night, nocturnal/crepuscular bees were attracted by a synthetic scent blend consisting of the six most abundant compounds. This study describes the first scent-mediated pollination system between a plant and its nocturnal bee pollinators. Further, C. phaea has several floral traits that do not allow classification into other nocturnal pollination syndromes (e.g. pollinator attraction already before sunrise, with pollen as the only reward), instead it is a plant specifically adapted to nocturnal bees. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa.

    PubMed

    Stein, Katharina; Coulibaly, Drissa; Stenchly, Kathrin; Goetze, Dethardt; Porembski, Stefan; Lindner, André; Konaté, Souleymane; Linsenmair, Eduard K

    2017-12-18

    Mutualistic biotic interactions as among flowering plants and their animal pollinators are a key component of biodiversity. Pollination, especially by insects, is a key element in ecosystem functioning, and hence constitutes an ecosystem service of global importance. Not only sexual reproduction of plants is ensured, but also yields are stabilized and genetic variability of crops is maintained, counteracting inbreeding depression and facilitating system resilience. While experiencing rapid environmental change, there is an increased demand for food and income security, especially in sub-Saharan communities, which are highly dependent on small scale agriculture. By combining exclusion experiments, pollinator surveys and field manipulations, this study for the first time quantifies the contribution of bee pollinators to smallholders' production of the major cash crops, cotton and sesame, in Burkina Faso. Pollination by honeybees and wild bees significantly increased yield quantity and quality on average up to 62%, while exclusion of pollinators caused an average yield gap of 37% in cotton and 59% in sesame. Self-pollination revealed inbreeding depression effects on fruit set and low germination rates in the F1-generation. Our results highlight potential negative consequences of any pollinator decline, provoking risks to agriculture and compromising crop yields in sub-Saharan West Africa.

  17. Herbivory as an important selective force in the evolution of floral traits and pollinator shifts

    PubMed Central

    Overson, Rick P.; Raguso, Robert A.; Skogen, Krissa A.

    2017-01-01

    Abstract Floral trait evolution is frequently attributed to pollinator-mediated selection but herbivores can play a key role in shaping plant reproductive biology. Here we examine the role of florivores in driving floral trait evolution and pollinator shifts in a recently radiated clade of flowering plants, Oenothera sect. Calylophus. We compare florivory by a specialist, internal feeder, Mompha, on closely related hawkmoth- and bee-pollinated species and document variation in damage based on floral traits within sites, species and among species. Our results show that flowers with longer floral tubes and decreased floral flare have increased Mompha damage. Bee-pollinated flowers, which have substantially smaller floral tubes, experience on average 13% less Mompha florivory than do hawkmoth-pollinated flowers. The positive association between tube length and Mompha damage is evident even within sites of some species, suggesting that Mompha can drive trait differentiation at microevolutionary scales. Given that there are at least two independent shifts from hawkmoth to bee pollination in this clade, florivore-mediated selection on floral traits may have played an important role in facilitating morphological changes associated with transitions from hawkmoth to bee pollination. PMID:28011456

  18. Minimal Effects of an Invasive Flowering Shrub on the Pollinator Community of Native Forbs

    PubMed Central

    Chung, Y. Anny; Burkle, Laura A.; Knight, Tiffany M.

    2014-01-01

    Biological invasions can strongly influence species interactions such as pollination. Most of the documented effects of exotic plant species on plant-pollinator interactions have been observational studies using single pairs of native and exotic plants, and have focused on dominant exotic plant species. We know little about how exotic plants alter interactions in entire communities of plants and pollinators, especially at low to medium invader densities. In this study, we began to address these gaps by experimentally removing the flowers of a showy invasive shrub, Rosa multiflora, and evaluating its effects on the frequency, richness, and composition of bee visitors to co-flowering native plants. We found that while R. multiflora increased plot-level richness of bee visitors to co-flowering native plant species at some sites, its presence had no significant effects on bee visitation rate, visitor richness, bee community composition, or abundance overall. In addition, we found that compared to co-flowering natives, R. multiflora was a generalist plant that primarily received visits from generalist bee species shared with native plant species. Our results suggest that exotic plants such as R. multiflora may facilitate native plant pollination in a community context by attracting a more diverse assemblage of pollinators, but have limited and idiosyncratic effects on the resident plant-pollinator network in general. PMID:25343718

  19. Generalist bees pollinate red-flowered Penstemon eatonii: Duality in the hummingbird pollination syndrome

    Treesearch

    James H. Cane; Rick Dunne

    2014-01-01

    The red tubular flowers of Penstemon eatonii (Plantaginaceae) typify the classic pollination syndrome for hummingbirds. Bees are thought to diminish its seed siring potential, but we found that foraging female generalist bees (Apis, Anthophora) deposited substantial amounts of conspecific pollen on P. eatonii stigmas. In the absence of hummingbirds, bee pollination of...

  20. The endangered Iris atropurpurea (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators

    PubMed Central

    Watts, Stella; Sapir, Yuval; Segal, Bosmat; Dafni, Amots

    2013-01-01

    Background and Aims The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented. Methods Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated. Key Results The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal–low deposition pollinators, whereas honey-bees were high removal–low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas. Conclusions Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside reserves, where the bulk of Oncocyclus iris species are protected. PMID:23275630

  1. The endangered Iris atropurpurea (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators.

    PubMed

    Watts, Stella; Sapir, Yuval; Segal, Bosmat; Dafni, Amots

    2013-03-01

    The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented. Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated. The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal-low deposition pollinators, whereas honey-bees were high removal-low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas. Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside reserves, where the bulk of Oncocyclus iris species are protected.

  2. Pollination of Granadilla (Passiflora ligularis) Benefits From Large Wild Insects.

    PubMed

    Gutiérrez-Chacón, Catalina; Fornoff, Felix; Ospina-Torres, Rodulfo; Klein, Alexandra-Maria

    2018-05-15

    The contribution of wild pollinators to food production has recently been assessed for many crops, although it remains unclear for several tropical crops. Granadilla (Passiflora ligularis Juss), a crop native to the tropical Andes, is one such crop where a gap exists regarding comprehensive knowledge about its pollination system. In a field experiment in the Colombian Andes, we 1) describe flower visitors in terms of visit quantity (visitation rate) and quality (touches of flower-reproductive structures), 2) assess the pollination system by comparing fruit set and fruit weight per flower in three pollination treatments: pollinator exclusion, open pollination, and supplementary pollination, and 3) evaluate pollination deficits (difference between open and supplementary pollination) in relation to pollinator density. We observed 12 bee species visiting granadilla flowers, with Apis mellifera Linnaeus being the most frequent species. However, large bees such as Xylocopa lachnea Moure and Epicharis rustica Olivier touched stigmata and anthers more often. Fruit set and fruit weight per flower were significantly lower in the pollinator exclusion treatment compared to open and supplementary pollination, while the latter treatments showed nonsignificant differences. Pollination deficit significantly decreased with the increasing density of large bees and wasps. Our results illustrate the high dependency of granadilla on wild pollinating insects and highlight the crucial role of large insects to granadilla production. This stresses the need to maintain or increase the density of large pollinators in granadilla production areas, which in turn will necessitate better knowledge on their ecological requirements to inform landscape planning and population-management programs.

  3. The relationship between managed bees and the prevalence of parasites in bumblebees

    PubMed Central

    Goulson, Dave; Hughes, William O.H.

    2014-01-01

    Honey bees and, more recently, bumblebees have been domesticated and are now managed commercially primarily for crop pollination, mixing with wild pollinators during foraging on shared flower resources. There is mounting evidence that managed honey bees or commercially produced bumblebees may affect the health of wild pollinators such as bumblebees by increasing competition for resources and the prevalence of parasites in wild bees. Here we screened 764 bumblebees from around five greenhouses that either used commercially produced bumblebees or did not, as well as bumblebees from 10 colonies placed at two sites either close to or far from a honey bee apiary, for the parasites Apicystis bombi, Crithidia bombi, Nosema bombi, N. ceranae, N. apis and deformed wing virus. We found that A. bombi and C. bombi were more prevalent around greenhouses using commercially produced bumblebees, while C. bombi was 18% more prevalent in bumblebees at the site near to the honey bee apiary than those at the site far from the apiary. Whilst these results are from only a limited number of sites, they support previous reports of parasite spillover from commercially produced bumblebees to wild bumblebees, and suggest that the impact of stress from competing with managed bees or the vectoring of parasites by them on parasite prevalence in wild bees needs further investigation. It appears increasingly likely that the use of managed bees comes at a cost of increased parasites in wild bumblebees, which is not only a concern for bumblebee conservation, but which may impact other pollinators as well. PMID:25165632

  4. The relationship between managed bees and the prevalence of parasites in bumblebees.

    PubMed

    Graystock, Peter; Goulson, Dave; Hughes, William O H

    2014-01-01

    Honey bees and, more recently, bumblebees have been domesticated and are now managed commercially primarily for crop pollination, mixing with wild pollinators during foraging on shared flower resources. There is mounting evidence that managed honey bees or commercially produced bumblebees may affect the health of wild pollinators such as bumblebees by increasing competition for resources and the prevalence of parasites in wild bees. Here we screened 764 bumblebees from around five greenhouses that either used commercially produced bumblebees or did not, as well as bumblebees from 10 colonies placed at two sites either close to or far from a honey bee apiary, for the parasites Apicystis bombi, Crithidia bombi, Nosema bombi, N. ceranae, N. apis and deformed wing virus. We found that A. bombi and C. bombi were more prevalent around greenhouses using commercially produced bumblebees, while C. bombi was 18% more prevalent in bumblebees at the site near to the honey bee apiary than those at the site far from the apiary. Whilst these results are from only a limited number of sites, they support previous reports of parasite spillover from commercially produced bumblebees to wild bumblebees, and suggest that the impact of stress from competing with managed bees or the vectoring of parasites by them on parasite prevalence in wild bees needs further investigation. It appears increasingly likely that the use of managed bees comes at a cost of increased parasites in wild bumblebees, which is not only a concern for bumblebee conservation, but which may impact other pollinators as well.

  5. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees.

    PubMed

    Youngsteadt, Elsa; Appler, R Holden; López-Uribe, Margarita M; Tarpy, David R; Frank, Steven D

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators.

  6. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees

    PubMed Central

    López-Uribe, Margarita M.; Tarpy, David R.; Frank, Steven D.

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators. PMID:26536606

  7. Effects of landscape composition and configuration on pollination in a native herb: a field experiment.

    PubMed

    Ekroos, Johan; Jakobsson, Anna; Wideen, Joel; Herbertsson, Lina; Rundlöf, Maj; Smith, Henrik G

    2015-10-01

    Bumble bee abundance in agricultural landscapes is known to decrease with increasing distance from seminatural grasslands, but whether the pollination of bumble-bee-pollinated wild plants shows a similar pattern is less well known. In addition, the relative effects of landscape composition (landscape heterogeneity) and landscape configuration (distance from seminatural grassland) on wild plant pollination, and the interaction between these landscape effects, have not been studied using landscape-level replication. We performed a field experiment to disentangle these landscape effects on the pollination of a native herb, the sticky catchfly (Lychnis viscaria), while accounting for the proportion of oilseed rape across landscapes and the local abundance of bee forage flowers. We measured pollen limitation (the degree to which seed set is pollen-limited), seed set, and seed set stability using potted plants placed in landscapes that differed in heterogeneity (composition) and distance from seminatural grassland (configuration). Pollen limitation and seed set in individual plants did not respond to landscape composition, landscape configuration, or proportion of oilseed rape. Instead, seed set increased with increasing local bee forage flower cover. However, we found within-plant variability in pollen limitation and seed set to increase with increasing distance from seminatural pasture. Our results suggest that average within-plant levels of pollen limitation and seed set respond less swiftly than the within-plant variability in pollen limitation and seed set to changes in landscape configuration. Although landscape effects on pollination were less important than predicted, we conclude that landscape configuration and local habitat characteristics play larger roles than landscape composition in the pollination of L. viscaria.

  8. Flower diversity and bee reproduction in an arid ecosystem

    PubMed Central

    Vázquez, Diego P.

    2016-01-01

    Background: Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. Materials and Methods: Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site), and whether such effects were modulated by bee generalization on floral resources. Results: Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. Discussion: Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the diversity-stability relationship, given that elevation had a positive effect on flower diversity but a negative effect on bee reproduction. Although high temporal stability in flower production is expected to enhance pollinator reproduction, in our study it had a weakly negative—instead of positive—effect on the average number of brood cells per nest. Other environmental factors that vary with elevation could influence bee reproduction. Our study focused on a small group of closely-related bee species, which cautions against generalization of our findings to other groups of pollinators. More studies are clearly needed to assess the extent to which pollinator demography is influenced by the diversity of floral resources. PMID:27547556

  9. Community and species-specific responses of wild bees to insect pest control programs applied to a pollinator-dependent crop.

    PubMed

    Tuell, Julianna K; Isaacs, Rufus

    2010-06-01

    Wild bee conservation is regarded as essential for sustainable production of pollinator-dependent crops, yet little is known about the effects on wild bee communities of typical insect pest management programs used postbloom. We developed an insecticide program risk (IPR) index to quantify the relative risk to wild bees of insecticide programs applied to blueberry fields. This was used to determine the relationship between IPR and the abundance, diversity, and richness of wild bee communities sampled during three successive flowering seasons. In 2 of 3 yr, bee abundance and species richness declined with increasing IPR. Bee diversity declined with IPR in one of 3 yr. These results indicate that wild bee communities are negatively affected by increasingly intensive chemical pest management activities in crop fields and that interyear variability in bee populations has the potential to mask such effects in short-term studies. When several wild bee species were analyzed separately, two of three solitary and one of three social blueberry-foraging species declined with increasing IPR values, suggesting that different life histories and nesting habits may help some bee populations escape the negative effects of insecticides applied after bloom. Pollinator conservation programs aimed strictly at reducing insecticide use may have varying success, depending on the biology of the target bee species. The IPR index provides a standard method to compare pest management programs for their potential effect on wild bee communities, with broad application for use in other agricultural systems.

  10. Using nectar-related traits to enhance crop-pollinator interactions

    USDA-ARS?s Scientific Manuscript database

    Floral nectar and other rewards facilitate crop pollination, and in so doing, increase the amount and breadth of food available for humans. Though pollinator abundance and diversity (particularly bees) have declined over the past several decades, a concomitant increase in reliance on pollinators pre...

  11. Fragmentation and Management of Ethiopian Moist Evergreen Forest Drive Compositional Shifts of Insect Communities Visiting Wild Arabica Coffee Flowers

    NASA Astrophysics Data System (ADS)

    Berecha, Gezahegn; Aerts, Raf; Muys, Bart; Honnay, Olivier

    2015-02-01

    Coffea arabica is an indigenous understorey shrub of the moist evergreen Afromontane forest of SW Ethiopia. Coffee cultivation here occurs under different forest management intensities, ranging from almost no intervention in the `forest coffee' system to far-reaching interventions that include the removal of competing shrubs and selective thinning of the upper canopy in the `semi-forest coffee' system. We investigated whether increasing forest management intensity and fragmentation result in impacts upon potential coffee pollination services through examining shifts in insect communities that visit coffee flowers. Overall, we netted 2,976 insect individuals on C. arabica flowers, belonging to sixteen taxonomic groups, comprising 10 insect orders. Taxonomic richness of the flower-visiting insects significantly decreased and pollinator community changed with increasing forest management intensity and fragmentation. The relative abundance of honey bees significantly increased with increasing forest management intensity and fragmentation, likely resulting from the introduction of bee hives in the most intensively managed forests. The impoverishment of the insect communities through increased forest management intensity and fragmentation potentially decreases the resilience of the coffee production system as pollination increasingly relies on honey bees alone. This may negatively affect coffee productivity in the long term as global pollination services by managed honey bees are expected to decline under current climate change scenarios. Coffee agroforestry management practices should urgently integrate pollinator conservation measures.

  12. Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009

    PubMed Central

    Calderone, Nicholas W.

    2012-01-01

    In the US, the cultivated area (hectares) and production (tonnes) of crops that require or benefit from insect pollination (directly dependent crops: apples, almonds, blueberries, cucurbits, etc.) increased from 1992, the first year in this study, through 1999 and continued near those levels through 2009; aggregate yield (tonnes/hectare) remained unchanged. The value of directly dependent crops attributed to all insect pollination (2009 USD) decreased from $14.29 billion in 1996, the first year for value data in this study, to $10.69 billion in 2001, but increased thereafter, reaching $15.12 billion by 2009. The values attributed to honey bees and non-Apis pollinators followed similar patterns, reaching $11.68 billion and $3.44 billion, respectively, by 2009. The cultivated area of crops grown from seeds resulting from insect pollination (indirectly dependent crops: legume hays, carrots, onions, etc.) was stable from 1992 through 1999, but has since declined. Production of those crops also declined, albeit not as rapidly as the decline in cultivated area; this asymmetry was due to increases in aggregate yield. The value of indirectly dependent crops attributed to insect pollination declined from $15.45 billion in 1996 to $12.00 billion in 2004, but has since trended upward. The value of indirectly dependent crops attributed to honey bees and non-Apis pollinators, exclusive of alfalfa leafcutter bees, has declined since 1996 to $5.39 billion and $1.15 billion, respectively in 2009. The value of alfalfa hay attributed to alfalfa leafcutter bees ranged between $4.99 and $7.04 billion. Trend analysis demonstrates that US producers have a continued and significant need for insect pollinators and that a diminution in managed or wild pollinator populations could seriously threaten the continued production of insect pollinated crops and crops grown from seeds resulting from insect pollination. PMID:22629374

  13. Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers.

    PubMed

    Papiorek, Sarah; Junker, Robert R; Lunau, Klaus

    2014-01-01

    Flowers bear the function of filters supporting the attraction of pollinators as well as the deterrence of floral antagonists. The effect of epidermal cell shape on the visual display and tactile properties of flowers has been evaluated only recently. In this study we quantitatively measured epidermal cell shape, gloss and spectral reflectance of flowers pollinated by either bees or birds testing three hypotheses: The first two hypotheses imply that bee-pollinated flowers might benefit from rough surfaces on visually-active parts produced by conical epidermal cells, as they may enhance the colour signal of flowers as well as the grip on flowers for bees. In contrast, bird-pollinated flowers might benefit from flat surfaces produced by flat epidermal cells, by avoiding frequent visitation from non-pollinating bees due to a reduced colour signal, as birds do not rely on specific colour parameters while foraging. Moreover, flat petal surfaces in bird-pollinated flowers may hamper grip for bees that do not touch anthers and stigmas while consuming nectar and thus, are considered as nectar thieves. Beside this, the third hypothesis implies that those flower parts which are vulnerable to nectar robbing of bee- as well as bird-pollinated flowers benefit from flat epidermal cells, hampering grip for nectar robbing bees. Our comparative data show in fact that conical epidermal cells are restricted to visually-active parts of bee-pollinated flowers, whereas robbing-sensitive parts of bee-pollinated as well as the entire floral surface of bird-pollinated flowers possess on average flat epidermal cells. However, direct correlations between epidermal cell shape and colour parameters have not been found. Our results together with published experimental studies show that epidermal cell shape as a largely neglected flower trait might act as an important feature in pollinator attraction and avoidance of antagonists, and thus may contribute to the partitioning of flower-visitors.

  14. Functional group diversity of bee pollinators increases crop yield

    PubMed Central

    Hoehn, Patrick; Tscharntke, Teja; Tylianakis, Jason M; Steffan-Dewenter, Ingolf

    2008-01-01

    Niche complementarity is a commonly invoked mechanism underlying the positive relationship between biodiversity and ecosystem functioning, but little empirical evidence exists for complementarity among pollinator species. This study related differences in three functional traits of pollinating bees (flower height preference, daily time of flower visitation and within-flower behaviour) to the seed set of the obligate cross-pollinated pumpkin Cucurbita moschata Duch. ex Poir. across a land-use intensity gradient from tropical rainforest and agroforests to grassland in Indonesia. Bee richness and abundance changed with habitat variables and we used this natural variation to test whether complementary resource use by the diverse pollinator community enhanced final yield. We found that pollinator diversity, but not abundance, was positively related to seed set of pumpkins. Bees showed species-specific spatial and temporal variation in flower visitation traits and within-flower behaviour, allowing for classification into functional guilds. Diversity of functional groups explained even more of the variance in seed set (r2=45%) than did species richness (r2=32%) highlighting the role of functional complementarity. Even though we do not provide experimental, but rather correlative evidence, we can link spatial and temporal complementarity in highly diverse pollinator communities to pollination success in the field, leading to enhanced crop yield without any managed honeybees. PMID:18595841

  15. More than euglossines: the diverse pollinators and floral scents of Zygopetalinae orchids.

    PubMed

    Nunes, Carlos E P; Wolowski, Marina; Pansarin, Emerson Ricardo; Gerlach, Günter; Aximoff, Izar; Vereecken, Nicolas J; Salvador, Marcos José; Sazima, Marlies

    2017-10-13

    Floral volatile organic compounds (VOCs) play important roles in plant-pollinator interactions. We investigated the reproductive ecology and floral VOCs of Zygopetalinae orchids to understand the relationship between floral scents and pollinators. We performed focal observations, phenological censuses and breeding system experiments in eight species in southeast Brazil. Floral scents were collected and analysed using SPME/GC-MS. We performed multivariate analyses to group species according to affinities of their VOCs and define compounds associated to each plant. Dichaea cogniauxiana was pollinated by weevils which use their developing ovules, while D. pendula was pollinated by the same weevils and perfume-collecting male euglossine bees. The other species were deceit-pollinated by bees. Zygopetalum crinitum was pollinated by carpenter bees, while W. warreana, Z. mackayi and Z. maxillare were bumblebee-pollinated. The latter was also pollinated by Centris confusa. Breeding system varied widely with no association to any pollinator group. Most VOCs are common to other floral scents. Zygopetalum crinitum presented an exclusive blend of VOCs, mainly composed of benzenoids. The scents of Pabstia jugosa, Promenaea xanthina and the Zygopetalum spp. were similar. The bumblebee-pollinated species have flowering periods partially overlapped, thus neither phenology nor pollinators constitute hybridization barriers among these species. Euglossines are not the only pollinators of Zygopetalinae. Different VOCs, size and lifespan of flowers are associated with distinct pollinators. A distinctive VOC bouquet may determine specialisation in carpenter bees or male euglossines within bee-pollinated flowers. Finally, visitation of deceit-pollinated flowers by perfume-collecting euglossines allows us to hypothesise how pollination by this group of bees had evolved.

  16. Pollination value of male bees: the specialist bee Peponapis pruinosa (Apidae) at summer squash (Cucurbita pepo).

    PubMed

    Cane, James H; Sampson, Blair J; Miller, Stephanie A

    2011-06-01

    Male bees can be abundant at flowers, particularly floral hosts of those bee species whose females are taxonomic pollen specialists (oligolecty). Contributions of male bees to host pollination are rarely studied directly despite their prevalence in a number of pollination guilds, including those of some crop plants. In this study, males of the oligolectic bee, Peponapis pruinosa Say, were shown to be effective pollinators of summer squash, Cucurbita pepo L. Seven sequential visits from male P. pruinosa maximized squash fruit set and growth. This number of male visits accumulated during the first hour of their foraging and mate searching at flowers soon after sunrise. Pollination efficacy of male P. pruinosa and their abundances at squash flowers were sufficient to account for most summer squash production at our study sites, and by extrapolation, to two-thirds of all 87 North American farms and market gardens growing squashes that were surveyed for pollinators by collaborators in the Squash Pollinators of the Americas Survey. We posit that the substantial pollination value of male Peponapis bees is a consequence of their species' oligolecty, their mate seeking strategy, and some extreme traits of Cucurbita flowers (massive rewards, flower size, phenology).

  17. Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees.

    PubMed

    Pisanty, Gideon; Mandelik, Yael

    2015-04-01

    Wild pollinators, bees in particular, may greatly contribute to crop pollination and provide a safety net against declines in commercial pollinators. However, the identity, life history traits, and environmental sensitivities of main crop pollinator species.have received limited attention. These are crucial for predicting pollination services of different communities and for developing management practices that enhance crop pollinators. We sampled wild bees in three crop systems (almond, confection sunflower, and seed watermelon) in a mosaic Israeli Mediterranean landscape. Bees were sampled in field/orchard edges and interiors, and in seminatural scrub surrounding the fields/orchards. We also analyzed land cover at 50-2500 m radii around fields/orchards. We used this data to distinguish crop from non-crop pollinators based on a set of life history traits (nesting, lecty, sociality, body size) linked to habitat preference and crop visitation. Bee abundance and species richness decreased from the surrounding seminatural habitat to the field/orchard interior, especially across the seminatural habitat-field edge ecotone. Thus, although rich bee communities were found near fields, only small fractions crossed the ecotone and visited crop flowers in substantial numbers. The bee assemblage in agricultural fields/orchards and on crop flowers was dominated by ground-nesting bees of the tribe Halictini, which tend to nest within fields. Bees' habitat preferences were determined mainly by nesting guild, whereas crop visitation was determined mainly by sociality. Lecty and body size also affected both measures. The percentage of surrounding seminatural habitat at 250-2500 m radii had a positive effect on wild bee diversity in field edges, for all bee guilds, while at 50-100 m radii, only aboveground nesters were positively affected. In sum, we found that crop and non-crop pollinators are distinguished by behavioral and morphological traits. Hence, analysis of life-history traits of bee communities can help assess the pollination services they are likely to provide (when taking into account single-visit pollination efficiency). The ecotone between agricultural fields and surrounding habitats is a major barrier that filters many bee species, particularly with regard to their nesting requirements. Thus, greater attention should be given to management practices that encourage pollinators to live and nest, and not only forage, within fields.

  18. Tracing impacts of partner abundance in facultative pollination mutualisms: from individuals to populations.

    PubMed

    Geib, Jennifer C; Galen, Candace

    2012-07-01

    Partner abundance affects costs and benefits in obligate mutualisms, but its role in facultative partnerships is less clear. We address this gap in a pollination web consisting of two clovers (Trifolium) that differ in specialization on a bumble bee pollinator Bombus balteatus. We examine how pollination niche breadth affects plant responses to pollinator abundance, comparing early-flowering (specialized) and late-flowering (generalized) cohorts of T. parryi and early T. parryi to T. dasyphyllum, a pollination generalist. Co-pollinators disrupt the link between B. halteatus visitation and pollination rate for both clovers. Only for early-flowering T. parryi do visitation, pollination, and seed set increase with density of B. balteatus. Bumble bee density also alters timing of seed germination in T. parryi, with seeds from plants receiving augmented B. balteatus germinating sooner than seeds of open-pollinated counterparts. Benefits saturate at intermediate bumble bee densities. Despite strong effects of B. balteatus density on individual plant fitness components, population models suggest little impact of B. balteatus density on lamda in T. parryi or T. dasyphyllum. Findings show that functional redundancy in a pollinator guild mediates host-plant responses to partner density. Unexpected effects of pollinator density on life history schedule have implications for recruitment under pollinator decline.

  19. Linking pollinator efficiency to patterns of pollen limitation: small bees exploit the plant-pollinator mutualism.

    PubMed

    Koski, Matthew H; Ison, Jennifer L; Padilla, Ashley; Pham, Angela Q; Galloway, Laura F

    2018-06-13

    Seemingly mutualistic relationships can be exploited, in some cases reducing fitness of the exploited species. In plants, the insufficient receipt of pollen limits reproduction. While infrequent pollination commonly underlies pollen limitation (PL), frequent interactions with low-efficiency, exploitative pollinators may also cause PL. In the widespread protandrous herb Campanula americana , visitation by three pollinators explained 63% of the variation in PL among populations spanning the range. Bumblebees and the medium-sized Megachile campanulae enhanced reproductive success, but small solitary bees exacerbated PL. To dissect mechanisms behind these relationships, we scored sex-specific floral visitation, and the contributions of each pollinator to plant fitness using single flower visits. Small bees and M. campanulae overvisited male-phase flowers, but bumblebees frequently visited female-phase flowers. Fewer bumblebee visits were required to saturate seed set compared to other bees. Scaling pollinator efficiency metrics to populations, small bees deplete large amounts of pollen due to highly male-biased flower visitation and infrequent pollen deposition. Thus, small bees reduce plant reproduction by limiting pollen available for transfer by efficient pollinators, and appear to exploit the plant-pollinator mutualism, acting as functional parasites to C. americana It is therefore unlikely that small bees will compensate for reproductive failure in C. americana when bumblebees are scarce. © 2018 The Author(s).

  20. Honey bee pathology: current threats to honey bees and beekeeping.

    PubMed

    Genersch, Elke

    2010-06-01

    Managed honey bees are the most important commercial pollinators of those crops which depend on animal pollination for reproduction and which account for 35% of the global food production. Hence, they are vital for an economic, sustainable agriculture and for food security. In addition, honey bees also pollinate a variety of wild flowers and, therefore, contribute to the biodiversity of many ecosystems. Honey and other hive products are, at least economically and ecologically rather, by-products of beekeeping. Due to this outstanding role of honey bees, severe and inexplicable honey bee colony losses, which have been reported recently to be steadily increasing, have attracted much attention and stimulated many research activities. Although the phenomenon "decline of honey bees" is far from being finally solved, consensus exists that pests and pathogens are the single most important cause of otherwise inexplicable colony losses. This review will focus on selected bee pathogens and parasites which have been demonstrated to be involved in colony losses in different regions of the world and which, therefore, are considered current threats to honey bees and beekeeping.

  1. Nectar minerals as regulators of flower visitation in stingless bees and nectar hoarding wasps.

    PubMed

    Afik, Ohad; Delaplane, Keith S; Shafir, Sharoni; Moo-Valle, Humberto; Quezada-Euán, J Javier G

    2014-05-01

    Various nectar components have a repellent effect on flower visitors, and their adaptive advantages for the plant are not well understood. Persea americana (avocado) is an example of a plant that secretes nectar with repellent components. It was demonstrated that the mineral constituents of this nectar, mainly potassium and phosphate, are concentrated enough to repel honey bees, Apis mellifera, a pollinator often used for commercial avocado pollination. Honey bees, however, are not the natural pollinator of P. americana, a plant native to Central America. In order to understand the role of nectar minerals in plant-pollinator relationships, it is important to focus on the plant's interactions with its natural pollinators. Two species of stingless bees and one species of social wasp, all native to the Yucatan Peninsula, Mexico, part of the natural range of P. americana, were tested for their sensitivity to sugar solutions enriched with potassium and phosphate, and compared with the sensitivity of honey bees. In choice tests between control and mineral-enriched solutions, all three native species were indifferent for mineral concentrations lower than those naturally occurring in P. americana nectar. Repellence was expressed at concentrations near or exceeding natural concentrations. The threshold point at which native pollinators showed repellence to increasing levels of minerals was higher than that detected for honey bees. The results do not support the hypothesis that high mineral content is attractive for native Hymenopteran pollinators; nevertheless, nectar mineral composition may still have a role in regulating flower visitors through different levels of repellency.

  2. Railway Embankments as New Habitat for Pollinators in an Agricultural Landscape

    PubMed Central

    Moroń, Dawid; Skórka, Piotr; Lenda, Magdalena; Rożej-Pabijan, Elżbieta; Wantuch, Marta; Kajzer-Bonk, Joanna; Celary, Waldemar; Mielczarek, Łukasz Emil; Tryjanowski, Piotr

    2014-01-01

    Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (semi)natural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments) in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies) when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated) ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground. PMID:25054427

  3. 78 FR 10167 - Pollinator Summit: Status of Ongoing Collaborative Efforts To Protect Pollinators; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... in activities to reduce potential acute exposure of honey bees and pollinators to pesticides. Invited... exposure of honey bees and pollinators to pesticides. This action is directed to the public in general, and... crops. While there are several factors affecting honey bee health, pesticides are among these variables...

  4. Flight performance of bumble bee as a possible pollinator in space agriculture under partial gravity

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Hashimoto, Hirofumi; Mitsuhata, Masahiro; Sasaki, Masami; Space Agriculture Task Force, J.

    Space agriculture is an advanced life support concept for habitation on extraterrestrial bodies based on biological and ecological function. Flowering plant species are core member of space agriculture to produce food and revitalize air and water. Selection of crop plant species is made on the basis of nutritional requirements to maintain healthy life of space crew. Species selected for space agriculture have several mode of reproduction. For some of plant species, insect pollination is effective to increase yield and quality of food. In terrestrial agriculture, bee is widely introduced to pollinate flower. For pollinator insect on Mars, working environment is different from Earth. Magnitude of gravity is 0.38G on Mars surface. In order to confirm feasibility of insect pollination for space agriculture, capability of flying pollinator insect under such exotic condition should be examined. Even bee does not possess evident gravity sensory system, gravity dominates flying performance and behavior. During flight or hovering, lifting force produced by wing beat sustains body weight, which is the product of body mass and gravitational acceleration. Flying behavior of bumble bee, Bombus ignitus, was documented under partial or micro-gravity produced by parabolic flight of jet plane. Flying behavior at absence of gravity differed from that under normal gravity. Ability of bee to fly under partial gravity was examined at the level of Mars, Moon and the less, to determine the threshold level of gravity for bee flying maneuver. Adaptation process of bee flying under different gravity level was evaluated as well by successive documentation of parabolic flight experiment.

  5. Stingless Bees as Alternative Pollinators of Canola.

    PubMed

    Witter, Sidia; Nunes-Silva, Patrícia; Lisboa, Bruno B; Tirelli, Flavia P; Sattler, Aroni; Both Hilgert-Moreira, Suzane; Blochtein, Betina

    2015-06-01

    Alternative pollinators can ensure pollination services if the availability of the managed or most common pollinator is compromised. In this study, the behavior and pollination efficiency of Apis mellifera L. and two species of stingless bees, Plebeia emerina Friese and Tetragonisca fiebrigi Schwarz, were evaluated and compared in flowers of Brassica napus L. 'Hyola 61'. A. mellifera was an efficient pollinator when collecting nectar because it effectively touched the reproductive organs of the flower. In contrast, stingless bees were efficient pollinators only when collecting pollen. The number of pollen grains deposited on the stigma after a single visit by worker bees of the three species was greater than the number of grains resulting from pollination without the bee visits. On average, the three species deposited enough pollen grains to fertilize all of the flower ovules. A. mellifera and P. emerina had similar pollination efficiency because no significant differences were observed in the characteristics of the siliques produced. Although T. fiebrigi is also an effective pollinator, the seed mass produced by their pollination was lower. Native bees promoted similar rates of fruit set compared with A. mellifera. Thus, P. emerina has potential to be used for pollination in canola crops. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Economic benefit of crop pollination by bees: a case of Kakamega small-holder farming in western Kenya.

    PubMed

    Kasina, J M; Mburu, J; Kraemer, M; Holm-Mueller, K

    2009-04-01

    In most developing countries, crop production is by small scale farmers, who mainly produce for their own consumption and the extra for market. Pollination in such systems is unmanaged and is usually incidental, supported by nearby ecosystems. One of the reasons of not managing pollination is the lack of understanding of its economic value. The "public-good" nature of pollination in these systems also discourages individual initiatives intended to conserve pollinators. We evaluate the economic returns from bee pollination in small-holder farming systems. To do this we apply the factor of production method, a form of revealed preferences methods available for valuing ecosystem services. Our analyses show that bee pollination enhances the yield of most crops grown in the farmland and improves immensely the quality of produce. Almost 40% of the annual value of crops under consideration represented the net returns derived from bee pollination. More than 99% of this benefit is attributed to pollination by feral bees. We provide in-depth valuation of pollination service and discuss applicability and limitations of the factor of production method in developing countries.

  7. Using publicly available data to quantify plant–pollinator interactions and evaluate conservation seeding mixes in the Northern Great Plains

    USGS Publications Warehouse

    Otto, Clint R.; O'Dell, Samuel; Bryant, R. B.; Euliss, Ned H. Jr.; Bush, Rachel; Smart, Matthew

    2017-01-01

    Concern over declining pollinators has led to multiple conservation initiatives for improving forage for bees in agroecosystems. Using data available through the Pollinator Library (npwrc.usgs.gov/pollinator/), we summarize plant–pollinator interaction data collected from 2012–2015 on lands managed by the U.S. Fish and Wildlife Service and private lands enrolled in U.S. Department of Agriculture conservation programs in eastern North Dakota (ND). Furthermore, we demonstrate how plant–pollinator interaction data from the Pollinator Library and seed cost information can be used to evaluate hypothetical seeding mixes for pollinator habitat enhancements. We summarize records of 314 wild bee and 849 honey bee (Apis mellifera L.) interactions detected on 63 different plant species. The wild bee observations consisted of 46 species, 15 genera, and 5 families. Over 54% of all wild bee observations were represented by three genera―Bombus, Lassioglossum, and Melissodes. The most commonly visited forbs by wild bees were Monarda fistulosa, Sonchus arvensis, and Zizia aurea. The most commonly visited forbs by A. mellifera were Cirsium arvense, Melilotus officinalis, and Medicago sativa. Among all interactions, 13% of A. mellifera and 77% of wild bee observations were made on plants native to ND. Our seed mix evaluation shows that mixes may often need to be tailored to meet the unique needs of wild bees and managed honey bees in agricultural landscapes. Our evaluation also demonstrates the importance of incorporating both biologic and economic information when attempting to design cost-effective seeding mixes for supporting pollinators in a critically important part of the United States.

  8. Assessing Wild Bee Biodiversity in Cranberry Agroenvironments: Influence of Natural Habitats.

    PubMed

    Gervais, Amélie; Fournier, Valérie; Sheffield, Cory S; Chagnon, Madeleine

    2017-08-01

    The conservation of bee populations for pollination in agricultural landscapes has attracted a lot of recent research interest, especially for crop industries undergoing expansion to meet increased production demands. In Canada, much growth has been occurring with commercial cranberry production, a field crop which is largely dependent on bee pollination. Wild bee pollinators could be negatively impacted by losses of natural habitat surrounding cranberry fields to accommodate increased production, but growers have little insight on how to manage their lands to maximize the presence of wild bees. Here, we described a 2-yr study where bee diversity and species composition were investigated to better understand the dynamic between natural habitat and cranberry fields. Bees were sampled using pan-traps and hand netting both within cranberry fields and in one of the three adjacent natural habitat types once a week during the crop flowering period. We found that bee community composition among cranberry fields did not differ based on the respective adjacent habitat type, but fields bordered by meadows were marginally less diverse than fields bordered by forest. As one would expect, field and natural habitat communities differed in terms of species composition and species richness. There was no evidence that one type of natural habitat was more favorable for the bees than another. Future agrobiodiversity studies should simultaneously examine bee diversity comprised in both crop fields and adjacent natural environments to better understand the species dynamics essential to the preservation of pollination services. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Specialized and Generalized Pollen-Collection Strategies in an Ancient Bee Lineage.

    PubMed

    Wappler, Torsten; Labandeira, Conrad C; Engel, Michael S; Zetter, Reinhard; Grímsson, Friðgeir

    2015-12-07

    Iconic examples of insect pollination have emphasized narrowly specialized pollinator mutualisms such as figs and fig wasps and yuccas and yucca moths. However, recent attention by pollination ecologists has focused on the broad spectra of pollinated plants by generalist pollinators such as bees. Bees have great impact for formulating hypotheses regarding specialization versus generalization in pollination mutualisms. We report the pollination biology of six northern European species of an extinct tribe of pollen-basket-bearing apine bees, Electrapini, of early-middle Eocene age, examined from two deposits of 48 and 44 million years in age. These bees exhibit a pattern of generalized, incidental pollen occurring randomly on their heads, thoraces, and abdomens, obtained from diverse, nectar-bearing plants. By contrast, a more restricted suite of pollen was acquired for metatibial pollen baskets (corbiculae) of the same bee taxa from a taxonomically much narrower suite of arborescent, evergreen hosts with uniform flower structure. The stereotyped plant sources of the specialist strategy of pollen collection consisted of pentamerous, radially symmetrical flowers with a conspicuous gynoecium surrounded by prominent nectar reward, organized in structurally similar compound inflorescences. Pollen specialization in bees occurs not for efficient pollination but rather in the corbiculate Electrapini as food for bee larvae (brood) and involves packing corbiculae with moistened pollen that rapidly loses viability with age. This specialist strategy was a well-developed preference by the early Eocene, providing a geochronologic midpoint assessment of bee pollen-collection strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A Tale of Two Bees: Looking at Pollination Fees for Both Almonds and Sweet Cherries

    USDA-ARS?s Scientific Manuscript database

    The economic theory of supply and demand can explain the recent drastic changes in the pollination prices for almonds and cherries, following large acreage increases for these crops and a concurrent drop in honey bee availability due to colony collapse disorder (CCD). We constructed a model which s...

  11. Heteranthery as a solution to the demand for pollen as food and for pollination - Legitimate flower visitors reject flowers without feeding anthers.

    PubMed

    Mesquita-Neto, J N; Costa, B K P; Schlindwein, C

    2017-11-01

    Heteranthery, the presence of feeding and pollinating anthers in the same flower, seems to mediate the evolutionary dilemma for plants to protect their gametes and yet provide food for pollinators. This study aims to elucidate the role of heteranthery in the buzz-pollinated Senna reniformis. The fecundity of pollen from long-, medium- and short-sized anthers was determined by hand cross-pollination experiments, and the quantity, size, ornamentation and viability of pollen of different anthers were compared. Rates of flower rejection by bees were measured in anther removal experiments to assess the preferences of flower visitors for feeding or pollinating anthers. Large bees, which were the effective pollinators of self-incompatible S. reniformis, avoided flowers without short feeding anthers, but not those without medium or long anthers. Illegitimate small and medium-sized bees were unresponsive to anther exclusion experiments. Long anthers deposited pollen on the back and short anthers on the venter of large bees. Pollen from long anthers had higher in vitro viability and higher fruit and seed set after cross-pollination than pollen from other sized anthers. Short anthers produce feeding pollen to effective pollinators and long anthers are related to pollination of S. reniformis. Bee behaviour and size was found to directly influence the role of anthers in the 'division of labour'. Only large bee pollinators that carry the pollinating pollen from long anthers in 'safe sites' associated short anthers with the presence of food. In the absence of these larger bee pollinators, the role of heteranthery in S. reniformis would be strongly compromised and its function would be lost. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  12. Pollinator Interactions with Yellow Starthistle (Centaurea solstitialis) across Urban, Agricultural, and Natural Landscapes

    PubMed Central

    Leong, Misha; Kremen, Claire; Roderick, George K.

    2014-01-01

    Pollinator-plant relationships are found to be particularly vulnerable to land use change. Yet despite extensive research in agricultural and natural systems, less attention has focused on these interactions in neighboring urban areas and its impact on pollination services. We investigated pollinator-plant interactions in a peri-urban landscape on the outskirts of the San Francisco Bay Area, California, where urban, agricultural, and natural land use types interface. We made standardized observations of floral visitation and measured seed set of yellow starthistle (Centaurea solstitialis), a common grassland invasive, to test the hypotheses that increasing urbanization decreases 1) rates of bee visitation, 2) viable seed set, and 3) the efficiency of pollination (relationship between bee visitation and seed set). We unexpectedly found that bee visitation was highest in urban and agricultural land use contexts, but in contrast, seed set rates in these human-altered landscapes were lower than in natural sites. An explanation for the discrepancy between floral visitation and seed set is that higher plant diversity in urban and agricultural areas, as a result of more introduced species, decreases pollinator efficiency. If these patterns are consistent across other plant species, the novel plant communities created in these managed landscapes and the generalist bee species that are favored by human-altered environments will reduce pollination services. PMID:24466050

  13. "Hummingbird" floral traits interact synergistically to discourage visitation by bumble bee foragers.

    PubMed

    Gegear, Robert J; Burns, Rebecca; Swoboda-Bhattarai, Katharine A

    2017-02-01

    Pollination syndromes are suites of floral traits presumed to reflect adaptations to attract and utilize a "primary" type of animal pollinator. However, syndrome traits may also function to deter "secondary" flower visitors that reduce plant fitness through their foraging activities. Here we use the hummingbird-pollinated plant species Mimulus cardinalis as a model to investigate the potential deterrent effects of classic bird syndrome traits on bumble bee foragers. To establish that M. cardinalis flowers elicit an avoidance response in bees, we assessed the choice behavior of individual foragers on a mixed experimental array of M. cardinalis and its bee-pollinated sister species M. lewisii. As expected, bees showed a strong preference against M. cardinalis flowers (only 22% of total bee visits were to M. cardinalis), but surprisingly also showed a high degree of individual specialization (95.2% of total plant transitions were between conspecifics). To determine M. cardinalis floral traits that discourage bee visitation, we then assessed foraging responses of individuals to M. cardinalis-like and M. lewisii-like floral models differing in color, orientation, reward, and combinations thereof. Across experiments, M. cardinalis-like trait combinations consistently produced a higher degree of flower avoidance behavior and individual specialization than expected based on bee responses to each trait in isolation. We then conducted a series of flower discrimination experiments to assess the ability of bees to utilize traits and trait combinations associated with each species. Relative to M. lewisii-like alternatives, M. cardinalis-like traits alone had a minimal effect on bee foraging proficiency but together increased the time bees spent searching for rewarding flowers from 1.49 to 2.65 s per visit. Collectively, our results show that M. cardinalis flowers impose foraging costs on bumble bees sufficient to discourage visitation and remarkably, generate such costs through synergistic color-orientation and color-reward trait interactions. Floral syndromes therefore represent complex adaptations to multiple pollinator groups, rather than simply the primary pollinator. © 2016 by the Ecological Society of America.

  14. Ozone Differentially Affects Perception of Plant Volatiles in Western Honey Bees.

    PubMed

    Dötterl, Stefan; Vater, Marina; Rupp, Thomas; Held, Andreas

    2016-06-01

    Floral scents play a key role in mediating plant-pollinator interactions. Volatile organic compounds (VOCs) emitted by flowers are used by flower visitors as olfactory cues to locate flowers, both from a distance and at close range. More recently it has been demonstrated that reactive molecules such as ozone can modify or degrade VOCs, and this may impair the communication between plants and their pollinators. However, it is not known whether such reactive molecules also may affect the olfactory system of pollinators, and thus not only influence signal transmission but perception of the signal. In this study, we used electroantennographic measurements to determine the effect of increased levels of ozone on antennal responses in western honey bees (Apis mellifera L.). Linalool and 2-phenylethanol, both known to be involved in location of flowers by the bees, and (Z)-3-hexenyl acetate, a widespread green leaf volatile also detected by bees, were used. The results showed that ozone affected antennal responses to the different substances differently. Ozone decreased antennal responses to (Z)-3-hexenyl acetate, whereas responses to linalool and 2-phenylethanol were not influenced by ozone. Overall, the study does not provide evidence that pollination by honey bees is impaired by damage in the olfactory system of the bees caused by increased levels of ozone, at least when linalool and 2-phenylethanol are the attractive signals. However, the results also suggest that ozone can change the overall perception of an odor blend. This might have negative effects in pollination systems and other organismic interactions mediated by specific ratios of compounds.

  15. Correlations between environmental factors and wild bee behavior on alfalfa (Medicago sativa) in northwestern China.

    PubMed

    Wang, Xiaojuan; Liu, Hongping; Li, Xiaoxia; Song, Yu; Chen, Li; Jin, Liang

    2009-10-01

    To discover the effect of environmental factors on pollinator visitation to flowering Medicago sativa, several field experiments were designed to examine the diurnal movement patterns of wild bee species in the Hexi Corridor of northwestern China. Our study results showed that Megachile abluta, M. spissula, and Xylocopa valga showed unimodal diurnal foraging behavior, whereas Andrena parvula and Anthophora melanognatha showed bimodal diurnal foraging behavior. Correlation analysis indicated that diurnal foraging activities of pollinators were significantly correlated with environmental factors. Correlations of foraging activities versus environmental factors for M. abluta, M. spissula, and X. valga best fit a linear model, whereas those of A. parvula and A. melanognatha best fit a parallel quadratic model. Results of this study indicated that solitary wild bees such as M. abluta, M. spissula, X. valga, A. parvula, and A. melanognatha are potential alfalfa pollinators in the Hexi Corridor. An understanding of the environmental factors that affect the behaviors of different wild bees foraging in alfalfa are basic to the utilization of solitary wild bees in a practical way for increased, or more consistent, pollination of alfalfa for seed production.

  16. Using Publicly Available Data to Quantify Plant-Pollinator Interactions and Evaluate Conservation Seeding Mixes in the Northern Great Plains.

    PubMed

    Otto, C R V; O'Dell, S; Bryant, R B; Euliss, N H; Bush, R M; Smart, M D

    2017-06-01

    Concern over declining pollinators has led to multiple conservation initiatives for improving forage for bees in agroecosystems. Using data available through the Pollinator Library (npwrc.usgs.gov/pollinator/), we summarize plant-pollinator interaction data collected from 2012-2015 on lands managed by the U.S. Fish and Wildlife Service and private lands enrolled in U.S. Department of Agriculture conservation programs in eastern North Dakota (ND). Furthermore, we demonstrate how plant-pollinator interaction data from the Pollinator Library and seed cost information can be used to evaluate hypothetical seeding mixes for pollinator habitat enhancements. We summarize records of 314 wild bee and 849 honey bee (Apis mellifera L.) interactions detected on 63 different plant species. The wild bee observations consisted of 46 species, 15 genera, and 5 families. Over 54% of all wild bee observations were represented by three genera-Bombus, Lassioglossum, and Melissodes. The most commonly visited forbs by wild bees were Monarda fistulosa, Sonchus arvensis, and Zizia aurea. The most commonly visited forbs by A. mellifera were Cirsium arvense, Melilotus officinalis, and Medicago sativa. Among all interactions, 13% of A. mellifera and 77% of wild bee observations were made on plants native to ND. Our seed mix evaluation shows that mixes may often need to be tailored to meet the unique needs of wild bees and managed honey bees in agricultural landscapes. Our evaluation also demonstrates the importance of incorporating both biologic and economic information when attempting to design cost-effective seeding mixes for supporting pollinators in a critically important part of the United States. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  17. Interactive Effects of Large- and Small-Scale Sources of Feral Honey-Bees for Sunflower in the Argentine Pampas

    PubMed Central

    Sáez, Agustín; Sabatino, Malena; Aizen, Marcelo A.

    2012-01-01

    Pollinators for animal pollinated crops can be provided by natural and semi-natural habitats, ranging from large vegetation remnants to small areas of non-crop land in an otherwise highly modified landscape. It is unknown, however, how different small- and large-scale habitat patches interact as pollinator sources. In the intensively managed Argentine Pampas, we studied the additive and interactive effects of large expanses (up to 2200 ha) of natural habitat, represented by untilled isolated “sierras”, and narrow (3–7 m wide) strips of semi-natural habitat, represented by field margins, as pollinator sources for sunflower (Helianthus annus). We estimated visitation rates by feral honey-bees, Apis mellifera, and native flower visitors (as a group) at 1, 5, 25, 50 and 100 m from a field margin in 17 sunflower fields 0–10 km distant from the nearest sierra. Honey-bees dominated the pollinator assemblage accounting for >90% of all visits to sunflower inflorescences. Honey-bee visitation was strongly affected by proximity to the sierras decreasing by about 70% in the most isolated fields. There was also a decline in honey-bee visitation with distance from the field margin, which was apparent with increasing field isolation, but undetected in fields nearby large expanses of natural habitat. The probability of observing a native visitor decreased with isolation from the sierras, but in other respects visitation by flower visitors other than honey-bees was mostly unaffected by the habitat factors assessed in this study. Overall, we found strong hierarchical and interactive effects between the study large and small-scale pollinator sources. These results emphasize the importance of preserving natural habitats and managing actively field verges in the absence of large remnants of natural habitat for improving pollinator services. PMID:22303477

  18. Interactive effects of large- and small-scale sources of feral honey-bees for sunflower in the Argentine Pampas.

    PubMed

    Sáez, Agustín; Sabatino, Malena; Aizen, Marcelo A

    2012-01-01

    Pollinators for animal pollinated crops can be provided by natural and semi-natural habitats, ranging from large vegetation remnants to small areas of non-crop land in an otherwise highly modified landscape. It is unknown, however, how different small- and large-scale habitat patches interact as pollinator sources. In the intensively managed Argentine Pampas, we studied the additive and interactive effects of large expanses (up to 2200 ha) of natural habitat, represented by untilled isolated "sierras", and narrow (3-7 m wide) strips of semi-natural habitat, represented by field margins, as pollinator sources for sunflower (Helianthus annus). We estimated visitation rates by feral honey-bees, Apis mellifera, and native flower visitors (as a group) at 1, 5, 25, 50 and 100 m from a field margin in 17 sunflower fields 0-10 km distant from the nearest sierra. Honey-bees dominated the pollinator assemblage accounting for >90% of all visits to sunflower inflorescences. Honey-bee visitation was strongly affected by proximity to the sierras decreasing by about 70% in the most isolated fields. There was also a decline in honey-bee visitation with distance from the field margin, which was apparent with increasing field isolation, but undetected in fields nearby large expanses of natural habitat. The probability of observing a native visitor decreased with isolation from the sierras, but in other respects visitation by flower visitors other than honey-bees was mostly unaffected by the habitat factors assessed in this study. Overall, we found strong hierarchical and interactive effects between the study large and small-scale pollinator sources. These results emphasize the importance of preserving natural habitats and managing actively field verges in the absence of large remnants of natural habitat for improving pollinator services.

  19. Direct benefits and indirect costs of warm temperatures for high-elevation populations of a solitary bee.

    PubMed

    Forrest, Jessica R K; Chisholm, Sarah P M

    2017-02-01

    Warm temperatures are required for insect flight. Consequently, warming could benefit many high-latitude and high-altitude insects by increasing opportunities for foraging or oviposition. However, warming can also alter species interactions, including interactions with natural enemies, making the net effect of rising temperatures on population growth rate difficult to predict. We investigated the temperature-dependence of nesting activity and lifetime reproductive output over 3 yr in subalpine populations of a pollen-specialist bee, Osmia iridis. Rates of nest provisioning increased with ambient temperatures and with availability of floral resources, as expected. However, warmer conditions did not increase lifetime reproductive output. Lifetime offspring production was best explained by rates of brood parasitism (by the wasp Sapyga), which increased with temperature. Direct observations of bee and parasite activity suggest that although activity of both species is favored by warmer temperatures, bees can be active at lower ambient temperatures, while wasps are active only at higher temperatures. Thus, direct benefits to the bees of warmer temperatures were nullified by indirect costs associated with increased parasite activity. To date, most studies of climate-change effects on pollinators have focused on changing interactions between pollinators and their floral host-plants (i.e., bottom-up processes). Our results suggest that natural enemies (i.e., top-down forces) can play a key role in pollinator population regulation and should not be overlooked in forecasts of pollinator responses to climate change. © 2016 by the Ecological Society of America.

  20. The importance of plant diversity in maintaining the pollinator bee, Eulaema nigrita (Hymenoptera: Apidae) in sweet passion fruit fields.

    PubMed

    da Silva, Cláudia Inês; Bordon, Natali Gomes; da Rocha Filho, Léo Correia; Garófalo, Carlos Alberto

    2012-12-01

    The euglossine bee Eulaema nigrita plays an important role for the pollination of native and economically important plants, such as the sweet passion-fruit Passiflora alata. E. nigrita uniquely collects the nectar from the flowers of P. alata, nevertheless, it needs to visit other plants to collect pollen, nectar and other resources for its survival. There are two methods to identify the species of plants used by bees in their diet: by direct observation of the bees in the flowers, and through identification of pollen grains present in brood cells, feces, or in the bees' body. In order to identify the other plants that E. nigrita visits, we analyzed samples of pollen grains removed from the bee's body in the course of the flowering period of P. alata. Among our results, the flora visited by E. nigrita comprised 40 species from 32 genera and 19 families, some of them used as a pollen source or just nectar. In spite of being a polyletic species, E. nigrita exhibited preference for some plant species with poricidal anthers. P. alata which has high sugar concentration nectar was the main source of nectar for this bee in the studied area. Nonetheless, the pollinic analysis indicated that others nectariferous plant species are necessary to keep the populations of E. nigrita. Studies such as this one are important since they indicate supplementary pollen-nectar sources which must be used for the conservation of the populations of E. nigrita in crops neighbouring areas. In the absence of pollinators, growers are forced to pay for hand pollination, which increases production costs; keeping pollinators in cultivated areas is still more feasible to ensure sweet passion fruit production.

  1. Pollinators: Downward Trends and Lofty Goals

    EPA Science Inventory

    Pollinators are essential to natural and managed landscapes. By providing critical pollination services, bees, birds, beetles, butterflies, bats and other animals enhance biodiversity and contribute to production of many nutritious foods. Honey bees alone pollinate 90 commercia...

  2. Fruit Set and Single Visit Stigma Pollen Deposition by Managed Bumble Bees and Wild Bees in Citrullus lanatus (Cucurbitales: Cucurbitaceae).

    PubMed

    Campbell, Joshua W; Daniels, Jaret C; Ellis, James D

    2018-04-02

    Pollinators provide essential services for watermelon, Citrullus lanatus (Thunb.; Cucurbitales: Cucurbitaceae). Managed bumble bees, Bombus impatiens (Cresson; Hymenoptera: Apidae), have been shown to be a useful watermelon pollinator in some areas. However, the exact contribution bumble bees make to watermelon pollination and how their contribution compares to that of other bees is unclear. We used large cages (5.4 × 2.5 × 2.4 m) to confine bumble bee hives to watermelon plants and compared fruit set in those cages to cages containing watermelons but no pollinators, and to open areas of field next to cages (allows all pollinators). We also collected data on single visit pollen deposition onto watermelon stigmas by managed bumble bees, honey bees, and wild bees. Overall, more fruit formed within the open cages than in cages of the other two treatment groups. B. impatiens and Melissodes spp. deposited the most pollen onto watermelon stigmas per visit, but all bee species observed visiting watermelon flowers were capable of depositing ample pollen to watermelon stigmas. Although B. impatiens did deposit large quantities of pollen to stigmas, they were not common within the field (i.e., outside the cages) as they were readily drawn to flowering plants outside of the watermelon field. Overall, bumble bees can successfully pollinate watermelon, but may be useful in greenhouses or high tunnels where watermelon flowers have no competition from other flowering plants that could draw bumble bees away from watermelon.

  3. Honey bees are the dominant diurnal pollinator of native milkweed in a large urban park.

    PubMed

    MacIvor, James Scott; Roberto, Adriano N; Sodhi, Darwin S; Onuferko, Thomas M; Cadotte, Marc W

    2017-10-01

    In eastern North America, the field milkweed, Asclepias syriaca L. (Asclepiadaceae), is used in planting schemes to promote biodiversity conservation for numerous insects including the endangered monarch butterfly, Danaus plexippus (Linnaeus) (Nymphalidae). Less is known about its pollinators, and especially in urban habitats where it is planted often despite being under increasing pressure from invasive plant species, such as the related milkweed, the dog-strangling vine (DSV), Vincetoxicum rossicum (Kleopow) Barbar. (Asclepiadaceae). During the A. syriaca flowering period in July 2016, we surveyed bees in open habitats along a DSV invasion gradient and inspected 433 individuals of 25 bee species in 12 genera for pollinia: these were affixed to bees that visited A. syriaca for nectar and contain pollen packets that are vectored (e.g., transferred) between flowers. Of all bees sampled, pollinia were found only on the nonindigenous honeybee, Apis mellifera (43% of all bees identified), as well as one individual bumblebee, Bombus impatiens Cresson. Pollinia were recorded from 45.2% of all honeybees collected. We found no relationship between biomass of DSV and biomass of A. syriaca per site. There was a significant positive correlation between A. syriaca biomass and the number of pollinia, and the proportion vectored. No relationship with DSV biomass was detected for the number of pollinia collected by bees but the proportion of vectored pollinia declined with increasing DSV biomass. Although we find no evidence of DSV flowers attracting potential pollinators away from A. syriaca and other flowering plants, the impacts on native plant-pollinator mutualisms relate to its ability to outcompete native plants. As wild bees do not appear to visit DSV flowers, it could be altering the landscape to one which honeybees are more tolerant than native wild bees.

  4. Annual dynamics of wild bee densities: attractiveness and productivity effects of oilseed rape.

    PubMed

    Riedinger, Verena; Mitesser, Oliver; Hovestadt, Thomas; Steffan-Dewenter, Ingolf; Holzschuh, Andrea

    2015-05-01

    Mass-flowering crops may affect long-term population dynamics, but effects on pollinators have never been studied across several years. We monitored wild bees in oilseed rape fields in 16 landscapes in Germany in two consecutive years. Effects on bee densities of landscape oilseed rape cover in the years of monitoring and in the previous years were evaluated with landscape data from three consecutive years. We fit empirical data to a mechanistic model to provide estimates for oilseed rape attractiveness and its effect on bee productivity in comparison to the rest of the landscape, and we evaluated consequences for pollinator densities in consecutive years. Our results show that high oilseed rape cover in the previous year enhances current densities of wild bees (except for bumble bees). Moreover, we show a strong attractiveness of and dilution on (i.e., decreasing bee densities with increasing landscape oilseed rape cover) oilseed rape for bees during flowering in the current year, modifying the effect of the previous year's oilseed rape cover in the case of wild bees (excluding Bombus). As long as other factors such as nesting sites or natural enemies do not limit bee reproduction, our findings suggest long-term positive effects of mass-flowering crops on bee populations, at least for non-Bombus generalists, which possibly help to maintain crop pollination services even when crop area increases. Similar effects are conceivable for other organisms providing ecosystem services in annual crops and should be considered in future studies.

  5. Butterfly pollination in Pteroglossa (Orchidaceae, Orchidoideae): a comparative study on the reproductive biology of two species of a Neotropical genus of Spiranthinae.

    PubMed

    Pansarin, Emerson R; Ferreira, Alessandro W C

    2015-05-01

    Spiranthinae orchids are known for being self-compatible and offering nectar as a reward. Although data on their pollinators are scarce, members of this tribe are mostly pollinated by bees, hummingbirds and moths. Some of them even reproduce through facultative self-pollination. Nothing is known about the pollinators and reproduction system in Pteroglossa. Based on records on flowering phenology, floral morphology, reward production, pollinators and breeding system, this paper aims to study the reproductive biology of two Pteroglossa spp. Both species offer nectar as a resource and are pollinated exclusively by diurnal Lepidoptera at the studied areas. Nectar is produced by two glandular nectaries, and is stored in a spur. Pollinaria possess a ventrally adhesive viscidium that is deposited on the basal portion of butterfly proboscides. Both species are self-compatible but pollinator-dependent. The reproductive success is low when compared to other Spiranthinae. Although no evident mechanical barrier to avoid self-pollination or geitonogamy was identified, the erratic behavior of the butterflies, with their infrequent visits to only one flower per inflorescence, contributes to an increased fruit set produced through cross-pollination. The presence of ventrally adhesive viscidia in Spiranthinae is responsible for greater pollinator diversity when compared to bee-pollinated Goodyerinae with dorsally adhesive viscidia, adapted to attach to bee mouthparts.

  6. Viruses of commercialized insect pollinators.

    PubMed

    Gisder, Sebastian; Genersch, Elke

    2017-07-01

    Managed insect pollinators are indispensable in modern agriculture. They are used worldwide not only in the open field but also in greenhouses to enhance fruit set, seed production, and crop yield. Managed honey bee (Apis mellifera, Apis cerana) colonies provide the majority of commercial pollination although other members of the superfamily Apoidea are also exploited and commercialized as managed pollinators. In the recent past, it became more and more evident that viral diseases play a key role in devastating honey bee colony losses and it was also recognized that many viruses originally thought to be honey bee specific can also be detected in other pollinating insects. However, while research on viruses infecting honey bees started more than 50years ago and the knowledge on these viruses is growing ever since, little is known on virus diseases of other pollinating bee species. Recent virus surveys suggested that many of the viruses thought to be honey bee specific are actually circulating in the pollinator community and that pollinator management and commercialization of pollinators provide ample opportunity for viral diseases to spread. However, the direction of disease transmission is not always clear and the impact of these viral diseases on the different hosts remains elusive in many cases. With our review we want to provide an up-to-date overview on the viruses detected in different commercialized pollinators in order to encourage research in the field of pollinator virology that goes beyond molecular detection of viruses. A deeper understanding of this field of virology is urgently needed to be able to evaluate the impact of viruses on pollinator health and the role of different pollinators in spreading viral diseases and to be able to decide on appropriate measures to prevent virus-driven pollinator decline. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Bee Hunt! Ecojustice in Practice for Earth's Buzzing Biodiversity

    ERIC Educational Resources Information Center

    Mueller, Michael P.; Pickering, John

    2010-01-01

    The Bee Hunt! project and curriculum are designed with cultural and environmental sensitivity in mind. In this project, K-12 students develop their awareness and understanding of science and investigate North American pollinator declines. Bees, butterflies, and other pollinators are integrally connected to the pollination of the world's crops for…

  8. Effects of varroa mites and bee disease on pollination efficacy of honeybees

    USDA-ARS?s Scientific Manuscript database

    Single-stranded RNA viruses cause disease and behavioral changes in many insects, especially honey bees. Varroa mites and viral diseases are known to affect the efficiency of crop pollination by honey bees by eliminating colonies, but almost no information exists about their influence on pollination...

  9. Pollinator specialization and pollination syndromes of three related North American Silene.

    PubMed

    Reynolds, Richard J; Westbrook, M Jody; Rohde, Alexandra S; Cridland, Julie M; Fenster, Charles B; Dudash, Michele R

    2009-08-01

    Community and biogeographic surveys often conclude that plant-pollinator interactions are highly generalized. Thus, a central implication of the pollination syndrome concept, that floral trait evolution occurs primarily via specialized interactions of plants with their pollinators, has been questioned. However, broad surveys may not distinguish whether flower visitors are actual pollen vectors and hence lack power to assess the relationship between syndrome traits and the pollinators responsible for their evolution. Here we address whether the floral traits of three closely related hermaphroditic Silene spp. native to eastern North America (S. caroliniana, S. virginica, and S. stellata) correspond to predicted specialized pollination based on floral differences among the three species and the congruence of these floral features with recognized pollination syndromes. A nocturnal/diurnal pollinator exclusion experiment demonstrated that all three Silene spp. have diurnal pollinators, and only S. stellata has nocturnal pollinators. Multiyear studies of visitation rates demonstrated that large bees, hummingbirds, and nocturnal moths were the most frequent pollinators of S. caroliniana, S. virginica, and S. stellata, respectively. Estimates of pollen grains deposited and removed per visit generally corroborated the visitation rate results for all three species. However, the relatively infrequent diurnal hawkmoth pollinators of S. caroliniana were equally effective and more efficient than the most frequent large bee visitors. Pollinator importance (visitation X deposition) of each of the animal visitors to each species was estimated and demonstrated that in most years large bees and nocturnal moths were the most important pollinators of S. caroliniana and S. stellata, respectively. By quantifying comprehensive aspects of the pollination process we determined that S. virginica and S. stellata were specialized on hummingbirds and nocturnal moths, respectively, and S. caroliniana was the least specialized with diurnal hawkmoth and large bee pollinators. Compared across the Silene species, divergent floral character states are consistent with increasing the attraction and/or pollen transfer efficiency of their respective major pollinators, which suggests that the pollinators are past and/or contemporary selective agents for floral trait evolution in these three Silene species. We conclude that the pollination syndrome concept allows us to effectively relate the functional significance of floral morphology to the major pollinators of these Silene species.

  10. Native Honey Bees Outperform Adventive Honey Bees in Increasing Pyrus bretschneideri (Rosales: Rosaceae) Pollination.

    PubMed

    Gemeda, Tolera Kumsa; Shao, Youquan; Wu, Wenqin; Yang, Huipeng; Huang, Jiaxing; Wu, Jie

    2017-12-05

    The foraging behavior of different bee species is a key factor influencing the pollination efficiency of different crops. Most pear species exhibit full self-incompatibility and thus depend entirely on cross-pollination. However, as little is known about the pear visitation preferences of native Apis cerana (Fabricius; Hymenoptera: Apidae) and adventive Apis mellifera (L.; Hymenoptera: Apidae) in China. A comparative analysis was performed to explore the pear-foraging differences of these species under the natural conditions of pear growing areas. The results show significant variability in the pollen-gathering tendency of these honey bees. Compared to A. mellifera, A. cerana begins foraging at an earlier time of day and gathers a larger amount of pollen in the morning. Based on pollen collection data, A. mellifera shows variable preferences: vigorously foraging on pear on the first day of observation but collecting pollen from non-target floral resources on other experimental days. Conversely, A. cerana persists in pear pollen collection, without shifting preference to other competitive flowers. Therefore, A. cerana outperforms adventive A. mellifera with regard to pear pollen collection under natural conditions, which may lead to increased pear pollination. This study supports arguments in favor of further multiplication and maintenance of A. cerana for pear and other native crop pollination. Moreover, it is essential to develop alternative pollination management techniques to utilize A. mellifera for pear pollination. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Wildflower Plantings Do Not Compete With Neighboring Almond Orchards for Pollinator Visits.

    PubMed

    Lundin, Ola; Ward, Kimiora L; Artz, Derek R; Boyle, Natalie K; Pitts-Singer, Theresa L; Williams, Neal M

    2017-06-01

    The engineering of flowering agricultural field borders has emerged as a research and policy priority to mitigate threats to pollinators. Studies have, however, rarely addressed the potential that flowering field borders might compete with neighboring crops for pollinator visits if they both are in bloom at the same time, despite this being a concern expressed by growers. We evaluated how wildflower plantings added to orchard borders in a large (512 ha) commercial almond orchard affected honey bee and wild bee visitation to orchard borders and the crop. The study was conducted over two consecutive seasons using three large (0.48 ha) wildflower plantings paired with control orchard borders in a highly simplified agricultural landscape in California. Honey bee (Apis mellifera L.) and wild bee visitation to wildflower plots were at least an order of magnitude higher than to control plots, but increased honey bee visitation to wildflower plots did not lead to any detectable shifts in honey bee visitation to almond flowers in the neighboring orchard. Wild bees were rarely observed visiting almond flowers irrespective of border treatment, indicating a limited short-term potential for augmenting crop pollination using wild bees in highly simplified agricultural landscapes. Although further studies are warranted on bee visitation and crop yield from spatially independent orchards, this study indicates that growers can support bees with alternative forage in almond orchards without risking competition between the wildflower plantings and the crop. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Pollen Collection, Honey Production, and Pollination Services: Managing Honey Bees in an Agricultural Setting.

    PubMed

    Hoover, Shelley E; Ovinge, Lynae P

    2018-05-09

    Hybrid canola seed production is an important pollination market in Canada; typically both honey bees (Apis mellifera L. (Hymenoptera: Apidae)) and Alfalfa Leafcutting bees (Megachile rotundata Fab. (Hymenoptera: Megachilidae)) are concurrently managed to ensure pollination in this high-value crop. Beekeepers are paid to provide pollination services, and the colonies also produce a honey crop from the canola. Pollen availability from male-fertile plants is carefully managed in this crop to provide an abundance of pollen to fertilize male-sterile ('female') plants. This abundance of pollen represents an underutilized resource for beekeepers, and an opportunity to diversify the hive-products produced for market in this management system. We used a commercial-style pollen trap to collect pollen from colonies twice weekly for the duration of canola pollination, and compared the honey production and amount of sealed brood in colonies with pollen traps to those without pollen traps. We found that while pollen trapping reduced honey production, there was no negative impact on brood production, and at current market prices, the per-hive revenue was higher in colonies from which pollen was trapped. Pollen trapping honey bee colonies in the context of hybrid canola pollination, therefore, offers beekeepers an opportunity to diversify their products and increase their revenue.

  13. Mapping large-area landscape suitability for honey bees to assess the influence of land-use change on sustainability of national pollination services.

    PubMed

    Gallant, Alisa L; Euliss, Ned H; Browning, Zac

    2014-01-01

    Pollination is a critical ecosystem service affected by various drivers of land-use change, such as policies and programs aimed at land resources, market values for crop commodities, local land-management decisions, and shifts in climate. The United States is the world's most active market for pollination services by honey bees, and the Northern Great Plains provide the majority of bee colonies used to meet the Nation's annual pollination needs. Legislation requiring increased production of biofuel crops, increasing commodity prices for crops of little nutritional value for bees in the Northern Great Plains, and reductions in government programs aimed at promoting land conservation are converging to alter the regional landscape in ways that challenge beekeepers to provide adequate numbers of hives for national pollination services. We developed a spatially explicit model that identifies sites with the potential to support large apiaries based on local-scale land-cover requirements for honey bees. We produced maps of potential apiary locations for North Dakota, a leading producer of honey, based on land-cover maps representing (1) an annual time series compiled from existing operational products and (2) a realistic scenario of land change. We found that existing land-cover products lack sufficient local accuracy to monitor actual changes in landscape suitability for honey bees, but our model proved informative for evaluating effects on suitability under scenarios of land change. The scenario we implemented was aligned with current drivers of land-use change in the Northern Great Plains and highlighted the importance of conservation lands in landscapes intensively and extensively managed for crops.

  14. Mapping large-area landscape suitability for honey bees to assess the influence of land-use change on sustainability of national pollination services

    USGS Publications Warehouse

    Gallant, Alisa L.; Euliss, Ned H.; Browning, Zac

    2014-01-01

    Pollination is a critical ecosystem service affected by various drivers of land-use change, such as policies and programs aimed at land resources, market values for crop commodities, local land-management decisions, and shifts in climate. The United States is the world's most active market for pollination services by honey bees, and the Northern Great Plains provide the majority of bee colonies used to meet the Nation's annual pollination needs. Legislation requiring increased production of biofuel crops, increasing commodity prices for crops of little nutritional value for bees in the Northern Great Plains, and reductions in government programs aimed at promoting land conservation are converging to alter the regional landscape in ways that challenge beekeepers to provide adequate numbers of hives for national pollination services. We developed a spatially explicit model that identifies sites with the potential to support large apiaries based on local-scale land-cover requirements for honey bees. We produced maps of potential apiary locations for North Dakota, a leading producer of honey, based on land-cover maps representing (1) an annual time series compiled from existing operational products and (2) a realistic scenario of land change. We found that existing land-cover products lack sufficient local accuracy to monitor actual changes in landscape suitability for honey bees, but our model proved informative for evaluating effects on suitability under scenarios of land change. The scenario we implemented was aligned with current drivers of land-use change in the Northern Great Plains and highlighted the importance of conservation lands in landscapes intensively and extensively managed for crops.

  15. Mapping Large-Area Landscape Suitability for Honey Bees to Assess the Influence of Land-Use Change on Sustainability of National Pollination Services

    PubMed Central

    Gallant, Alisa L.; Euliss, Ned H.; Browning, Zac

    2014-01-01

    Pollination is a critical ecosystem service affected by various drivers of land-use change, such as policies and programs aimed at land resources, market values for crop commodities, local land-management decisions, and shifts in climate. The United States is the world's most active market for pollination services by honey bees, and the Northern Great Plains provide the majority of bee colonies used to meet the Nation's annual pollination needs. Legislation requiring increased production of biofuel crops, increasing commodity prices for crops of little nutritional value for bees in the Northern Great Plains, and reductions in government programs aimed at promoting land conservation are converging to alter the regional landscape in ways that challenge beekeepers to provide adequate numbers of hives for national pollination services. We developed a spatially explicit model that identifies sites with the potential to support large apiaries based on local-scale land-cover requirements for honey bees. We produced maps of potential apiary locations for North Dakota, a leading producer of honey, based on land-cover maps representing (1) an annual time series compiled from existing operational products and (2) a realistic scenario of land change. We found that existing land-cover products lack sufficient local accuracy to monitor actual changes in landscape suitability for honey bees, but our model proved informative for evaluating effects on suitability under scenarios of land change. The scenario we implemented was aligned with current drivers of land-use change in the Northern Great Plains and highlighted the importance of conservation lands in landscapes intensively and extensively managed for crops. PMID:24919181

  16. Predicting plant attractiveness to pollinators with passive crowdsourcing.

    PubMed

    Bahlai, Christie A; Landis, Douglas A

    2016-06-01

    Global concern regarding pollinator decline has intensified interest in enhancing pollinator resources in managed landscapes. These efforts frequently emphasize restoration or planting of flowering plants to provide pollen and nectar resources that are highly attractive to the desired pollinators. However, determining exactly which plant species should be used to enhance a landscape is difficult. Empirical screening of plants for such purposes is logistically daunting, but could be streamlined by crowdsourcing data to create lists of plants most probable to attract the desired pollinator taxa. People frequently photograph plants in bloom and the Internet has become a vast repository of such images. A proportion of these images also capture floral visitation by arthropods. Here, we test the hypothesis that the abundance of floral images containing identifiable pollinator and other beneficial insects is positively associated with the observed attractiveness of the same species in controlled field trials from previously published studies. We used Google Image searches to determine the correlation of pollinator visitation captured by photographs on the Internet relative to the attractiveness of the same species in common-garden field trials for 43 plant species. From the first 30 photographs, which successfully identified the plant, we recorded the number of Apis (managed honeybees), non-Apis (exclusively wild bees) and the number of bee-mimicking syrphid flies. We used these observations from search hits as well as bloom period (BP) as predictor variables in Generalized Linear Models (GLMs) for field-observed abundances of each of these groups. We found that non-Apis bees observed in controlled field trials were positively associated with observations of these taxa in Google Image searches (pseudo-R (2) of 0.668). Syrphid fly observations in the field were also associated with the frequency they were observed in images, but this relationship was weak. Apis bee observations were not associated with Internet images, but were slightly associated with BP. Our results suggest that passively crowdsourced image data can potentially be a useful screening tool to identify candidate plants for pollinator habitat restoration efforts directed at wild bee conservation. Increasing our understanding of the attractiveness of a greater diversity of plants increases the potential for more rapid and efficient research in creating pollinator-supportive landscapes.

  17. Enhancing pollination by attracting & retaining leaf cutting bees (Megachile rotundata) in alfalfa seed production fields

    USDA-ARS?s Scientific Manuscript database

    The alfalfa leafcutting bee, Megachile rotundata (F.), has become an important managed pollinator of alfalfa, Medicago sativa L. One problem when using alfalfa leafcutting bees as managed pollinator, is the dispersal of many females upon release, even when adequate nesting sites are present. While d...

  18. Native bees and plant pollination

    USGS Publications Warehouse

    Ginsberg, H.S.

    2004-01-01

    Bees are important pollinators, but evidence suggests that numbers of some species are declining. Decreases have been documented in the honey bee, Apis mellifera (which was introduced to North America), but there are no monitoring programs for the vast majority of native species, so we cannot be sure about the extent of this problem. Recent efforts to develop standardized protocols for bee sampling will help us collect the data needed to assess trends in bee populations. Unfortunately, diversity of bee life cycles and phenologies, and the large number of rare species, make it difficult to assess trends in bee faunas. Changes in bee populations can affect plant reproduction, which can influence plant population density and cover, thus potentially modifying horizontal and vertical structure of a community, microclimate near the ground, patterns of nitrogen deposition, etc. These potential effects of changes in pollination patterns have not been assessed in natural communities. Effects of management actions on bees and other pollinators should be considered in conservation planning.

  19. Bee genera, diversity and abundance in genetically modified canola fields.

    PubMed

    O'Brien, Colton; Arathi, H S

    2018-01-02

    Intensive agricultural practices resulting in large scale habitat loss ranks as the top contributing factors in the global bee decline. Growing Genetically Modified Herbicide Tolerant (GMHT) crops as large monocultures has resulted extensive applications of herbicides leading to the degradation of natural habitats surrounding farmlands. Herbicide tolerance trait is beneficial for crops such as Canola (Brassica napus) that are extremely vulnerable to weed competition. While the trait in itself does not harm pollinators, growing genetically modified herbicide tolerant cultivars indirectly contributes towards pollinator declines through habitat loss. Canola, a mass-flowering crop is highly attractive to bee pollinators and the extensive adoption of the herbicide tolerant trait has led to depletion of non-crop floral resources. Extensive use of herbicide in and near fields with herbicide tolerant cultivars systematically eliminates semi-natural habitats around agricultural fields which consist of non-crop flowering plants. Planting pollinator strips provides floral resources for bees after crop flowering. We document the bee genera in canola and the adjoining pollinator strip. The overlap in bee genera reinforces the importance of pollinator habitats in agricultural landscape.

  20. Solitary invasive orchid bee outperforms co-occurring native bees to promote fruit set of an invasive Solanum.

    PubMed

    Liu, Hong; Pemberton, Robert W

    2009-03-01

    Our understanding of the effects of introduced invasive pollinators on plants has been exclusively drawn from studies on introduced social bees. One might expect, however, that the impacts of introduced solitary bees, with much lower population densities and fewer foragers, would be small. Yet little is known about the potential effects of naturalized solitary bees on the environment. We took advantage of the recent naturalization of an orchid bee, Euglossa viridissima, in southern Florida to study the effects of this solitary bee on reproduction of Solanum torvum, an invasive shrub. Flowers of S. torvum require specialized buzz pollination. Through timed floral visitor watches and two pollination treatments (control and pollen supplementation) at three forest edge and three open area sites, we found that the fruit set of S. torvum was pollen limited at the open sites where the native bees dominate, but was not pollen limited at the forest sites where the invasive orchid bees dominate. The orchid bee's pollination efficiency was nearly double that of the native halictid bees, and was also slightly higher than that of the native carpenter bee. Experiments using small and large mesh cages (to deny or allow E. viridissima access, respectively) at one forest site indicated that when the orchid bee was excluded, the flowers set one-quarter as many fruit as when the bee was allowed access. The orchid bee was the most important pollinator of the weed at the forest sites, which could pose additional challenges to the management of this weed in the fragmented, endangered tropical hardwood forests in the region. This specialized invasive mutualism may promote populations of both the orchid bee and this noxious weed. Invasive solitary bees, particularly species that are specialized pollinators, appear to have more importance than has previously been recognized.

  1. Evaluation of Nasonov Pheromone Dispensers for Pollinator Attraction in Apple, Blueberry, and Cherry.

    PubMed

    Williamson, J; Adams, C G; Isaacs, R; Gut, L J

    2018-04-23

    Declines in the number of commercial honey bees (Apis mellifera L.) (Hymenoptera: Apidae) and some wild bee species around the world threaten fruit, nut, and vegetable production and have prompted interest in developing methods for gaining efficiencies in pollination services. One possible approach would be to deploy attractants within the target crop to increase the number of floral visits. In this study, we evaluate two new pollinator attractants, Polynate and SPLAT Bloom, for their ability to increase pollinator visitation and fruit set in apple (Malus pumila Mill.), highbush blueberry (Vaccinium sp. L.), and tart cherry (Prunus cerasus L.). Polynate is a plastic twin-tube dispenser loaded with a mixture of floral scent and Nasonov pheromone. SPLAT Bloom contains the same chemical formula as Polynate, but is applied as a 3 g wax dollop directly onto the tree or bush. The objectives of this study were to determine if Polynate and SPLAT Bloom increase the number of honey bee foragers and fruit set in apples, highbush blueberries, and tart cherries. We conducted replicated evaluations of 32 fields or orchards with and without putative attractants over three growing seasons. Both products failed to provide a measurable increase in pollinator visits or fruit set in these crops, indicating no return on investment for either product.

  2. Bee Abundance and Nutritional Status in Relation to Grassland Management Practices in an Agricultural Landscape.

    PubMed

    Smith, Griffin W; Debinski, Diane M; Scavo, Nicole A; Lange, Corey J; Delaney, John T; Moranz, Raymond A; Miller, James R; Engle, David M; Toth, Amy L

    2016-04-01

    Grasslands provide important resources for pollinators in agricultural landscapes. Managing grasslands with fire and grazing has the potential to benefit plant and pollinator communities, though there is uncertainty about the ideal approach. We examined the relationships among burning and grazing regimes, plant communities, and Bombus species and Apis mellifera L. abundance and nutritional indicators at the Grand River Grasslands in southern Iowa and northern Missouri. Treatment regimes included burn-only, grazed-and-burned, and patch-burn graze (pastures subdivided into three temporally distinct fire patches with free access by cattle). The premise of the experimental design was that patch-burn grazing would increase habitat heterogeneity, thereby providing more diverse and abundant floral resources for pollinators. We predicted that both bee abundance and individual bee nutritional indicators (bee size and lipid content) would be positively correlated with floral resource abundance. There were no significant differences among treatments with respect to bee abundance. However, some of the specific characteristics of the plant community showed significant relationships with bee response variables. Pastures with greater abundance of floral resources had greater bee abundance but lower bee nutritional indicators. Bee nutritional variables were positively correlated with vegetation height, but, in some cases, negatively correlated with stocking rate. These results suggest grassland site characteristics such as floral resource abundance and stocking rate are of potential importance to bee pollinators and suggest avenues for further research to untangle the complex interactions between grassland management, plant responses, and bee health. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Multiple shifts to different pollinators fuelled rapid diversification in sexually deceptive Ophrys orchids.

    PubMed

    Breitkopf, Hendrik; Onstein, Renske E; Cafasso, Donata; Schlüter, Philipp M; Cozzolino, Salvatore

    2015-07-01

    Episodes of rapid speciation provide unique insights into evolutionary processes underlying species radiations and patterns of biodiversity. Here we investigated the radiation of sexually deceptive bee orchids (Ophrys). Based on a time-calibrated phylogeny and by means of ancestral character reconstruction and divergence time estimation, we estimated the tempo and mode of this radiation within a state-dependent evolutionary framework. It appears that, in the Pleistocene, the evolution of Ophrys was marked by episodes of rapid diversification coinciding with shifts to different pollinator types: from wasps to Eucera bees to Andrena and other bees. An abrupt increase in net diversification rate was detected in three clades. Among these, two phylogenetically distant lineages switched from Eucera to Andrena and other bees in a parallel fashion and at about the same time in their evolutionary history. Lack of early radiation associated with the evolution of the key innovation of sexual deception suggests that Ophrys diversification was mainly driven by subsequent ecological opportunities provided by the exploitation of novel pollinator groups, encompassing many bee species slightly differing in their sex pheromone communication systems, and by spatiotemporal fluctuations in the pollinator mosaic. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Biodiversity ensures plant-pollinator phenological synchrony against climate change.

    PubMed

    Bartomeus, Ignasi; Park, Mia G; Gibbs, Jason; Danforth, Bryan N; Lakso, Alan N; Winfree, Rachael

    2013-11-01

    Climate change has the potential to alter the phenological synchrony between interacting mutualists, such as plants and their pollinators. However, high levels of biodiversity might buffer the negative effects of species-specific phenological shifts and maintain synchrony at the community level, as predicted by the biodiversity insurance hypothesis. Here, we explore how biodiversity might enhance and stabilise phenological synchrony between a valuable crop, apple and its native pollinators. We combine 46 years of data on apple flowering phenology with historical records of bee pollinators over the same period. When the key apple pollinators are considered altogether, we found extensive synchrony between bee activity and apple peak bloom due to complementarity among bee species' activity periods, and also a stable trend over time due to differential responses to warming climate among bee species. A simulation model confirms that high biodiversity levels can ensure plant-pollinator phenological synchrony and thus pollination function. © 2013 John Wiley & Sons Ltd/CNRS.

  5. Spatial variation in selection on corolla shape in a generalist plant is promoted by the preference patterns of its local pollinators.

    PubMed

    Gómez, José M; Bosch, Jordi; Perfectti, Francisco; Fernández, J D; Abdelaziz, Mohamed; Camacho, J P M

    2008-10-07

    An adaptive role of corolla shape has been often asserted without an empirical demonstration of how natural selection acts on this trait. In generalist plants, in which flowers are visited by diverse pollinator fauna that commonly vary spatially, detecting pollinator-mediated selection on corolla shape is even more difficult. In this study, we explore the mechanisms promoting selection on corolla shape in the generalist crucifer Erysimum mediohispanicum Polatschek (Brassicaceae). We found that the main pollinators of E. mediohispanicum (large bees, small bees and bee flies) discriminate between different corolla shapes when offered artificial flowers without reward. Importantly, different pollinators prefer different shapes: bees prefer flowers with narrow petals, whereas bee flies prefer flowers with rounded overlapping petals. We also found that flowers with narrow petals (those preferred by bees) produce both more pollen and nectar than those with rounded petals. Finally, different plant populations were visited by different faunas. As a result, we found spatial variation in the selection acting on corolla shape. Selection favoured flowers with narrow petals in the populations where large or small bees are the most abundant pollinator groups. Our study suggests that pollinators, by preferring flowers with high reward, exert strong selection on the E. mediohispanicum corolla shape. The geographical variation in the pollinator-mediated selection on E. mediohispanicum corolla shape suggests that phenotypic evolution and diversification can occur in this complex floral trait even without specialization.

  6. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species.

    PubMed

    Ogilvie, Jane E; Thomson, James D

    2016-06-01

    Plant species can influence the pollination and reproductive success of coflowering neighbors that share pollinators. Because some individual pollinators habitually forage in particular areas, it is also possible that plant species could influence the pollination of neighbors that bloom later. When flowers of a preferred forage plant decline in an area, site-fidelity may cause individual flower feeders to stay in an area and switch plant species rather than search for preferred plants in a new location. A newly blooming plant species may quickly inherit a set of visitors from a prior plant species, and therefore experience higher pollination success than it would in an area where the first species never bloomed. To test this, we manipulated the placement and timing of two plant species, Delphinium barbeyi and later-blooming Gentiana parryi. We recorded the responses of individually marked bumble bee pollinators. About 63% of marked individuals returned repeatedly to the same areas to forage on Delphinium. When Delphinium was experimentally taken out of bloom, most of those site-faithful individuals (78%) stayed and switched to Gentiana. Consequently, Gentiana flowers received more visits in areas where Delphinium had previously flowered, compared to areas where Delphinium was still flowering or never occurred. Gentiana stigmas received more pollen in areas where Delphinium disappeared than where it never bloomed, indicating that Delphinium increases the pollination of Gentiana when they are separated in time. Overall, we show that individual bumble bees are often site-faithful, causing one plant species to increase the pollination of another even when separated in time, which is a novel mechanism of pollination facilitation.

  7. Native Bees Effectively Pollinate New World Cucurbita (C. pepo and C. maxima): An Internet Collaboration

    USDA-ARS?s Scientific Manuscript database

    Wild squash bees have all five traits ascribed to the most effective crop pollinators. They are abundant, competitive, efficient, faithful to a specific crop and fast. Shared pollinator surveys covering 2,700 ha of US squash and pumpkin (n = 50 farms) show strong parallels among Cucurbita’s bee gui...

  8. Absence of Leishmaniinae and Nosematidae in stingless bees

    PubMed Central

    Nunes-Silva, Patrícia; Piot, Niels; Meeus, Ivan; Blochtein, Betina; Smagghe, Guy

    2016-01-01

    Bee pollination is an indispensable component of global food production and plays a crucial role in sustainable agriculture. The worldwide decline of bee populations, including wild pollinators, poses a threat to this system. However, most studies to date are situated in temperate regions where Apini and Bombini are very abundant pollinators. Tropical and subtropical regions where stingless bees (Apidae: Meliponini) are generally very common, are often overlooked. These bees also face pressure due to deforestation and agricultural intensification as well as the growing use and spread of exotic pollinators as Apis mellifera and Bombus species. The loss or decline of this important bee tribe would have a large impact on their provided ecosystem services, in both wild and agricultural landscapes. The importance of pollinator diseases, which can contribute to decline, has not been investigated so far in this bee tribe. Here we report on the first large pathogen screening of Meliponini species in southern Brazil. Remarkably we observed that there was an absence of Leishmaniinae and Nosematidae, and a very low occurrence of Apicystis bombi. Our data on disease prevalence in both understudied areas and species, can greatly improve our knowledge on the distribution of pathogens among bee species. PMID:27586080

  9. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees

    NASA Astrophysics Data System (ADS)

    Stanley, Dara A.; Garratt, Michael P. D.; Wickens, Jennifer B.; Wickens, Victoria J.; Potts, Simon G.; Raine, Nigel E.

    2015-12-01

    Recent concern over global pollinator declines has led to considerable research on the effects of pesticides on bees. Although pesticides are typically not encountered at lethal levels in the field, there is growing evidence indicating that exposure to field-realistic levels can have sublethal effects on bees, affecting their foraging behaviour, homing ability and reproductive success. Bees are essential for the pollination of a wide variety of crops and the majority of wild flowering plants, but until now research on pesticide effects has been limited to direct effects on bees themselves and not on the pollination services they provide. Here we show the first evidence to our knowledge that pesticide exposure can reduce the pollination services bumblebees deliver to apples, a crop of global economic importance. Bumblebee colonies exposed to a neonicotinoid pesticide provided lower visitation rates to apple trees and collected pollen less often. Most importantly, these pesticide-exposed colonies produced apples containing fewer seeds, demonstrating a reduced delivery of pollination services. Our results also indicate that reduced pollination service delivery is not due to pesticide-induced changes in individual bee behaviour, but most likely due to effects at the colony level. These findings show that pesticide exposure can impair the ability of bees to provide pollination services, with important implications for both the sustained delivery of stable crop yields and the functioning of natural ecosystems.

  10. Flower specialisation: the occluded corolla of snapdragons (Antirrhinum) exhibits two pollinator niches of large long-tongued bees.

    PubMed

    Vargas, P; Liberal, I; Ornosa, C; Gómez, J M

    2017-09-01

    Flower specialisation of angiosperms includes the occluded corollas of snapdragons (Antirrhinum and some relatives), which have been postulated to be one of the most efficient structures to physical limit access to pollinators. The Iberian Peninsula harbours the highest number of species (18 Iberian of the 20 species of Antirrhinum) that potentially share similar pollinator fauna. Crossing experiments with 18 Iberian species from this study and literature revealed a general pattern of self-incompatibility (SI) - failure in this SI system has been also observed in a few plants - which indicates the need for pollinator agents in Antirrhinum pollination. Field surveys in natural conditions (304 h) found flower visitation (>85%) almost exclusively by 11 species of bee (Anthophora fulvitarsis, Anthophora plumipes, Anthidium sticticum, Apis mellifera, Bombus hortorum, Bombus pascuorum, Bombus ruderatus, Bombus terrestris, Chalicodoma lefebvrei, Chalicodoma pyrenaica and Xylocopa violacea). This result covering the majority of Antirrhinum species suggests that large bees of the two long-tongued bee families (Megachilidae, Apidae) are the major pollinators of Antirrhinum. A bipartite modularity analysis revealed two pollinator systems of long-tongued bees: (i) the long-studied system of bumblebees (Bombus spp.) associated with nine primarily northern species of Antirrhinum; and (ii) a newly proposed pollinator system involving other large bees associated with seven species primarily distributed in southern Mediterranean areas. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Aging and body size in solitary bees

    USDA-ARS?s Scientific Manuscript database

    Solitary bees are important pollinators of crops and non-domestic plants. Osmia lignaria is a native, commercially-reared solitary bee used to maximize pollination in orchard crops. In solitary bees, adult body size is extremely variable depending on the nutritional resources available to the develo...

  12. Evolution of sexual mimicry in the orchid subtribe orchidinae: the role of preadaptations in the attraction of male bees as pollinators

    PubMed Central

    2008-01-01

    Background Within the astonishing diversity of orchid pollination systems, sexual deception is one of the most stunning. An example is the genus Ophrys, where plants attract male bees as pollinators by mimicking female mating signals. Unsaturated hydrocarbons (alkenes) are often the key signal for this chemical mimicry. Here we investigate the evolution of these key compounds within Orchidinae by mapping their production in flowers of selected species onto their estimated phylogeny. Results We found that alkenes, at least in trace amounts, were present in 18 of 20 investigated species together representing 10 genera. Thus, the reconstruction of ancestral state for alkene-production showed that this is a primitive character state in Ophrys, and can be interpreted as a preadaptation for the evolution of sexual deception. Four of the investigated species, namely Ophrys sphegodes, Serapias lingua, S. cordigera, and Anacamptis papilionacea, that are pollinated primarily by male bees, produced significantly larger amounts and a greater number of different alkenes than the species pollinated either primarily by female bees or other insects. Conclusion We suggest that high amounts of alkenes evolved for the attraction of primarily male bees as pollinators by sensory exploitation, and discuss possible driving forces for the evolution of pollination by male bees. PMID:18226206

  13. Evolution of sexual mimicry in the orchid subtribe orchidinae: the role of preadaptations in the attraction of male bees as pollinators.

    PubMed

    Schiestl, Florian P; Cozzolino, Salvatore

    2008-01-28

    Within the astonishing diversity of orchid pollination systems, sexual deception is one of the most stunning. An example is the genus Ophrys, where plants attract male bees as pollinators by mimicking female mating signals. Unsaturated hydrocarbons (alkenes) are often the key signal for this chemical mimicry. Here we investigate the evolution of these key compounds within Orchidinae by mapping their production in flowers of selected species onto their estimated phylogeny. We found that alkenes, at least in trace amounts, were present in 18 of 20 investigated species together representing 10 genera. Thus, the reconstruction of ancestral state for alkene-production showed that this is a primitive character state in Ophrys, and can be interpreted as a preadaptation for the evolution of sexual deception. Four of the investigated species, namely Ophrys sphegodes, Serapias lingua, S. cordigera, and Anacamptis papilionacea, that are pollinated primarily by male bees, produced significantly larger amounts and a greater number of different alkenes than the species pollinated either primarily by female bees or other insects. We suggest that high amounts of alkenes evolved for the attraction of primarily male bees as pollinators by sensory exploitation, and discuss possible driving forces for the evolution of pollination by male bees.

  14. Imidacloprid-Induced Impairment of Mushroom Bodies and Behavior of the Native Stingless Bee Melipona quadrifasciata anthidioides

    PubMed Central

    Tomé, Hudson Vaner V.; Martins, Gustavo F.; Lima, Maria Augusta P.; Campos, Lúcio Antonio O.; Guedes, Raul Narciso C.

    2012-01-01

    Declines in pollinator colonies represent a worldwide concern. The widespread use of agricultural pesticides is recognized as a potential cause of these declines. Previous studies have examined the effects of neonicotinoid insecticides such as imidacloprid on pollinator colonies, but these investigations have mainly focused on adult honey bees. Native stingless bees (Hymenoptera: Apidae: Meliponinae) are key pollinators in neotropical areas and are threatened with extinction due to deforestation and pesticide use. Few studies have directly investigated the effects of pesticides on these pollinators. Furthermore, the existing impact studies did not address the issue of larval ingestion of contaminated pollen and nectar, which could potentially have dire consequences for the colony. Here, we assessed the effects of imidacloprid ingestion by stingless bee larvae on their survival, development, neuromorphology and adult walking behavior. Increasing doses of imidacloprid were added to the diet provided to individual worker larvae of the stingless bee Melipona quadrifasciata anthidioides throughout their development. Survival rates above 50% were only observed at insecticide doses lower than 0.0056 µg active ingredient (a.i.)/bee. No sublethal effect on body mass or developmental time was observed in the surviving insects, but the pesticide treatment negatively affected the development of mushroom bodies in the brain and impaired the walking behavior of newly emerged adult workers. Therefore, stingless bee larvae are particularly susceptible to imidacloprid, as it caused both high mortality and sublethal effects that impaired brain development and compromised mobility at the young adult stage. These findings demonstrate the lethal effects of imidacloprid on native stingless bees and provide evidence of novel serious sublethal effects that may compromise colony survival. The ecological and economic importance of neotropical stingless bees as pollinators, their susceptibility to insecticides and the vulnerability of their larvae to insecticide exposure emphasize the importance of studying these species. PMID:22675559

  15. Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides.

    PubMed

    Tomé, Hudson Vaner V; Martins, Gustavo F; Lima, Maria Augusta P; Campos, Lúcio Antonio O; Guedes, Raul Narciso C

    2012-01-01

    Declines in pollinator colonies represent a worldwide concern. The widespread use of agricultural pesticides is recognized as a potential cause of these declines. Previous studies have examined the effects of neonicotinoid insecticides such as imidacloprid on pollinator colonies, but these investigations have mainly focused on adult honey bees. Native stingless bees (Hymenoptera: Apidae: Meliponinae) are key pollinators in neotropical areas and are threatened with extinction due to deforestation and pesticide use. Few studies have directly investigated the effects of pesticides on these pollinators. Furthermore, the existing impact studies did not address the issue of larval ingestion of contaminated pollen and nectar, which could potentially have dire consequences for the colony. Here, we assessed the effects of imidacloprid ingestion by stingless bee larvae on their survival, development, neuromorphology and adult walking behavior. Increasing doses of imidacloprid were added to the diet provided to individual worker larvae of the stingless bee Melipona quadrifasciata anthidioides throughout their development. Survival rates above 50% were only observed at insecticide doses lower than 0.0056 µg active ingredient (a.i.)/bee. No sublethal effect on body mass or developmental time was observed in the surviving insects, but the pesticide treatment negatively affected the development of mushroom bodies in the brain and impaired the walking behavior of newly emerged adult workers. Therefore, stingless bee larvae are particularly susceptible to imidacloprid, as it caused both high mortality and sublethal effects that impaired brain development and compromised mobility at the young adult stage. These findings demonstrate the lethal effects of imidacloprid on native stingless bees and provide evidence of novel serious sublethal effects that may compromise colony survival. The ecological and economic importance of neotropical stingless bees as pollinators, their susceptibility to insecticides and the vulnerability of their larvae to insecticide exposure emphasize the importance of studying these species.

  16. Managing honey bees (Hymenoptera: Apidae) for greenhouse tomato pollination.

    PubMed

    Sabara, Holly A; Winston, Mark L

    2003-06-01

    Although commercially reared colonies of bumble bees (Bombus sp.) are the primary pollinator world-wide for greenhouse tomatoes (Lycopersicon esculentum Mill.) previous research indicates that honey bees (Apis mellifera L.) might be a feasible alternative or supplement to bumble bee pollination. However, management methods for honey bee greenhouse tomato pollination scarcely have been explored. We 1) tested the effect of initial amounts of brood on colony population size and flight activity in screened greenhouses during the winter, and 2) compared foraging from colonies with brood used within screened and unscreened greenhouses during the summer. Brood rearing was maintained at low levels in both brood and no-brood colonies after 21 d during the winter, and emerging honey bees from both treatments had significantly lower weights than bees from outdoor colonies. Honey bee flight activity throughout the day and over the 21 d in the greenhouse was not influenced by initial brood level. In our summer experiment, brood production in screened greenhouses neared zero after 21 d but higher levels of brood were reared in unscreened greenhouses with access to outside forage. Flower visitation measured throughout the day and over the 21 d the colonies were in the greenhouse was not influenced by screening treatment. An economic analysis indicated that managing honey bees for greenhouse tomato pollination would be financially viable for both beekeepers and growers. We conclude that honey bees can be successfully managed for greenhouse tomato pollination in both screened and unscreened greenhouses if the foraging force is maintained by replacing colonies every 3 wk.

  17. The evolution of floral sonication, a pollen foraging behavior used by bees (Anthophila)

    PubMed Central

    Cardinal, Sophie; Buchmann, Stephen L.; Russell, Avery L.

    2018-01-01

    Abstract Over 22,000 species of biotically pollinated flowering plants, including some major agricultural crops, depend primarily on bees capable of floral sonication for pollination services. The ability to sonicate (“buzz”) flowers is widespread in bees but not ubiquitous. Despite the prevalence of this pollinator behavior and its importance to natural and agricultural systems, the evolutionary history of floral sonication in bees has not been previously studied. Here, we reconstruct the evolutionary history of floral sonication in bees by generating a time‐calibrated phylogeny and reconstructing ancestral states for this pollen extraction behavior. We also test the hypothesis that the ability to sonicate flowers and thereby efficiently access pollen from a diverse assemblage of plant species, led to increased diversification among sonicating bee taxa. We find that floral sonication evolved on average 45 times within bees, possibly first during the Early Cretaceous (100–145 million years ago) in the common ancestor of bees. We find that sonicating lineages are significantly more species rich than nonsonicating sister lineages when comparing sister clades, but a probabilistic structured rate permutation on phylogenies approach failed to support the hypothesis that floral sonication is a key driver of bee diversification. This study provides the evolutionary framework needed to further study how floral sonication by bees may have facilitated the spread and common evolution of angiosperm species with poricidal floral morphology. PMID:29392714

  18. Poor correlation between the removal or deposition of pollen grains and frequency of pollinator contact with sex organs

    NASA Astrophysics Data System (ADS)

    Sakamoto, Ryota L.; Morinaga, Shin-Ichi

    2013-09-01

    Pollinators deposit pollen grains on stigmas and remove pollen grains from anthers. The mechanics of these transfers can now be quantified with the use of high-speed video. We videoed hawkmoths, carpenter bees, and swallowtail butterflies pollinating Clerodendrum trichotomum. The number of grains deposited on stigmas did not vary significantly with the number of times pollinators contacted stigmas. In contrast, pollen removal from the anthers increased significantly with the number of contacts to anthers. Pollen removal varied among the three types of pollinators. Also, the three types carried pollen on different parts of their bodies. In hawkmoths and carpenter bees, a large number of contacted body part with anthers differed significantly from the body part that attached a large number of pollen grains. Our results indicate that a large number of contacts by pollinators does not increase either the male or female reproductive success of plants compared to a small number of contacts during a visit.

  19. Ecology and Economics of Using Native Managed Bees for Almond Pollination.

    PubMed

    Koh, Insu; Lonsdorf, Eric V; Artz, Derek R; Pitts-Singer, Theresa L; Ricketts, Taylor H

    2018-02-09

    Native managed bees can improve crop pollination, but a general framework for evaluating the associated economic costs and benefits has not been developed. We conducted a cost-benefit analysis to assess how managing blue orchard bees (Osmia lignaria Say [Hymenoptera: Megachildae]) alongside honey bees (Apis mellifera Linnaeus [Hymenoptera: Apidae]) can affect profits for almond growers in California. Specifically, we studied how adjusting three strategies can influence profits: (1) number of released O. lignaria bees, (2) density of artificial nest boxes, and (3) number of nest cavities (tubes) per box. We developed an ecological model for the effects of pollinator activity on almond yields, validated the model with published data, and then estimated changes in profits for different management strategies. Our model shows that almond yields increase with O. lignaria foraging density, even where honey bees are already in use. Our cost-benefit analysis shows that profit ranged from -US$1,800 to US$2,800/acre given different combinations of the three strategies. Adding nest boxes had the greatest effect; we predict an increase in profit between low and high nest box density strategies (2.5 and 10 boxes/acre). In fact, the number of released bees and the availability of nest tubes had relatively small effects in the high nest box density strategies. This suggests that growers could improve profits by simply adding more nest boxes with moderate number of tubes in each. Our approach can support grower decisions regarding integrated crop pollination and highlight the importance of a comprehensive ecological economic framework for assessing these decisions. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Detecting insect pollinator declines on regional and global scales

    USGS Publications Warehouse

    Lubuhn, Gretchen; Droege, Sam; Connor, Edward F.; Gemmill-Herren, Barbara; Potts, Simon G.; Minckley, Robert L.; Griswold, Terry; Jean, Robert; Kula, Emanuel; Roubik, David W.; Cane, Jim; Wright, Karen W.; Frankie, Gordon; Parker, Frank

    2013-01-01

    Recently there has been considerable concern about declines in bee communities in agricultural and natural habitats. The value of pollination to agriculture, provided primarily by bees, is >$200 billion/year worldwide, and in natural ecosystems it is thought to be even greater. However, no monitoring program exists to accurately detect declines in abundance of insect pollinators; thus, it is difficult to quantify the status of bee communities or estimate the extent of declines. We used data from 11 multiyear studies of bee communities to devise a program to monitor pollinators at regional, national, or international scales. In these studies, 7 different methods for sampling bees were used and bees were sampled on 3 different continents. We estimated that a monitoring program with 200-250 sampling locations each sampled twice over 5 years would provide sufficient power to detect small (2-5%) annual declines in the number of species and in total abundance and would cost U.S.$2,000,000. To detect declines as small as 1% annually over the same period would require >300 sampling locations. Given the role of pollinators in food security and ecosystem function, we recommend establishment of integrated regional and international monitoring programs to detect changes in pollinator communities.

  1. Are there pollination syndromes in the Australian epacrids (Ericaceae: Styphelioideae)? A novel statistical method to identify key floral traits per syndrome

    PubMed Central

    Johnson, Karen A.

    2013-01-01

    Background and Aims Convergent floral traits hypothesized as attracting particular pollinators are known as pollination syndromes. Floral diversity suggests that the Australian epacrid flora may be adapted to pollinator type. Currently there are empirical data on the pollination systems for 87 species (approx. 15 % of Australian epacrids). This provides an opportunity to test for pollination syndromes and their important morphological traits in an iconic element of the Australian flora. Methods Data on epacrid–pollinator relationships were obtained from published literature and field observation. A multivariate approach was used to test whether epacrid floral attributes related to pollinator profiles. Statistical classification was then used to rank floral attributes according to their predictive value. Data sets excluding mixed pollination systems were used to test the predictive power of statistical classification to identify pollination models. Key Results Floral attributes are correlated with bird, fly and bee pollination. Using floral attributes identified as correlating with pollinator type, bird pollination is classified with 86 % accuracy, red flowers being the most important predictor. Fly and bee pollination are classified with 78 and 69 % accuracy, but have a lack of individually important floral predictors. Excluding mixed pollination systems improved the accuracy of the prediction of both bee and fly pollination systems. Conclusions Although most epacrids have generalized pollination systems, a correlation between bird pollination and red, long-tubed epacrids is found. Statistical classification highlights the relative importance of each floral attribute in relation to pollinator type and proves useful in classifying epacrids to bird, fly and bee pollination systems. PMID:23681546

  2. Diversification of Fijian halictine bees: insights into a recent island radiation.

    PubMed

    Groom, Scott V C; Stevens, Mark I; Schwarz, Michael P

    2013-09-01

    Although bees form a key pollinator suite for flowering plants, very few studies have examined the evolutionary radiation of non-domesticated bees over human time-scales. This is surprising given the importance of bees for crop pollination and the effect of humans in transforming ecosystems via agriculture. In the Pacific, where the bee fauna appears depauperate, their importance as pollinators is not clear, particularly in Fiji where species diversity is even lower than neighbouring archipelagos. Here we explore the radiation of halictine bees in Fiji using phylogenetic analyses of mtDNA COI sequence data. Our analyses indicate the existence of several 'deep' clades whose divergences are close to the crown node, along with a highly derived 'broom' clade showing very high haplotype diversity, and mostly limited to low-lying agricultural regions. This derived clade is very abundant, whereas the more basal clades were relatively rare. Although nearly all haplotype diversity in Fijian Homalictus comprises synonymous substitutions, a small number of amino acid changes are associated with the major clades, including the hyper-diverse clade. Analyses of haplotype lineage accumulation show a steep increase in selectively neutral COI haplotypes corresponding to the emergence of this 'broom' clade. We explore three possible scenarios for this dramatic increase: (i) a key change in adaptedness to the environment, (ii) a large-scale extinction event, or (iii) a dramatic increase in suitable habitats leading to rapid population expansion. Using estimated mutation rates of mitochondrial DNA in other invertebrates, we argue that Homalictus first colonised the Fijian archipelago in the middle-late Pleistocene, and the rapid accumulation of haplotypes in the hyper-diverse clade occurred in the Holocene, but prior to recorded human presence in the Fijian region. Our results indicate that bees have not been important pollinators of Fijian ecosystems until very recent times. Post-Pleistocene climate change and anthropogenic effects on Fijian ecosystems are likely to have greatly transformed pollinator suites from the conditions when those ecosystems were first being assembled. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Asynchronous diversification in a specialized plant-pollinator mutualism.

    PubMed

    Ramírez, Santiago R; Eltz, Thomas; Fujiwara, Mikiko K; Gerlach, Günter; Goldman-Huertas, Benjamin; Tsutsui, Neil D; Pierce, Naomi E

    2011-09-23

    Most flowering plants establish mutualistic associations with insect pollinators to facilitate sexual reproduction. However, the evolutionary processes that gave rise to these associations remain poorly understood. We reconstructed the times of divergence, diversification patterns, and interaction networks of a diverse group of specialized orchids and their bee pollinators. In contrast to a scenario of coevolution by race formation, we show that fragrance-producing orchids originated at least three times independently after their fragrance-collecting bee mutualists. Whereas orchid diversification has apparently tracked the diversification of orchids' bee pollinators, bees appear to have depended on the diverse chemical environment of neotropical forests. We corroborated this apparent asymmetrical dependency by simulating co-extinction cascades in real interaction networks that lacked reciprocal specialization. These results suggest that the diversification of insect-pollinated angiosperms may have been facilitated by the exploitation of preexisting sensory biases of insect pollinators.

  4. Diacetin, a reliable cue and private communication channel in a specialized pollination system

    PubMed Central

    Schäffler, Irmgard; Steiner, Kim E.; Haid, Mark; van Berkel, Sander S.; Gerlach, Günter; Johnson, Steven D.; Wessjohann, Ludger; Dötterl, Stefan

    2015-01-01

    The interaction between floral oil secreting plants and oil-collecting bees is one of the most specialized of all pollination mutualisms. Yet, the specific stimuli used by the bees to locate their host flowers have remained elusive. This study identifies diacetin, a volatile acetylated glycerol, as a floral signal compound shared by unrelated oil plants from around the globe. Electrophysiological measurements of antennae and behavioural assays identified diacetin as the key volatile used by oil-collecting bees to locate their host flowers. Furthermore, electrophysiological measurements indicate that only oil-collecting bees are capable of detecting diacetin. The structural and obvious biosynthetic similarity between diacetin and associated floral oils make it a reliable cue for oil-collecting bees. It is easily perceived by oil bees, but can’t be detected by other potential pollinators. Therefore, diacetin represents the first demonstrated private communication channel in a pollination system. PMID:26245141

  5. Large pollen loads of a South African asclepiad do not interfere with the foraging behaviour or efficiency of pollinating honey bees

    NASA Astrophysics Data System (ADS)

    Coombs, G.; Dold, A. P.; Brassine, E. I.; Peter, C. I.

    2012-07-01

    The pollen of asclepiads (Asclepiadoideae, Apocynaceae) and most orchids (Orchidaceae) are packaged as large aggregations known as pollinaria that are removed as entire units by pollinators. In some instances, individual pollinators may accumulate large loads of these pollinaria. We found that the primary pollinator of Cynanchum ellipticum (Apocynaceae—Asclepiadoideae), the honey bee Apis mellifera, accumulate very large agglomerations of pollinaria on their mouthparts when foraging on this species. We tested whether large pollinarium loads negatively affected the foraging behaviour and foraging efficiency of honey bees by slowing foraging speeds or causing honey bees to visit fewer flowers, and found no evidence to suggest that large pollinarium loads altered foraging behaviour. C. ellipticum displayed consistently high levels of pollination success and pollen transfer efficiency (PTE). This may be a consequence of efficiently loading large numbers of pollinaria onto pollinators even when primary points of attachment on pollinators are already occupied and doing so in a manner that does not impact the foraging behaviour of pollinating insects.

  6. Response diversity of wild bees to overwintering temperatures.

    PubMed

    Fründ, Jochen; Zieger, Sarah L; Tscharntke, Teja

    2013-12-01

    Biodiversity can provide insurance against environmental change, but only if species differ in their response to environmental conditions (response diversity). Wild bees provide pollination services to wild and crop plants, and response diversity might insure this function against changing climate. To experimentally test the hypothesis that bee species differ in their response to increasing winter temperature, we stored cocoons of nine bee species at different temperatures during the winter (1.5-9.5 °C). Bee species differed significantly in their responses (weight loss, weight at emergence and emergence date). The developmental stage during the winter explained some of these differences. Bee species overwintering as adults generally showed decreased weight and earlier emergence with increasing temperature, whereas bee species overwintering in pre-imaginal stages showed weaker or even opposite responses. This means that winter warming will likely affect some bee species negatively by increasing energy expenditure, while others are less sensitive presumably due to different physiology. Likewise, species phenologies will respond differently to winter warming, potentially affecting plant-pollinator interactions. Responses are not independent of current flight periods: bees active in spring will likely show the strongest phenological advances. Taken together, wild bee diversity provides response diversity to climate change, which may be the basis for an insurance effect.

  7. Pesticide use within a pollinator-dependent crop has negative effects on the abundance and species richness of sweat bees, Lasioglossum spp., and on bumble bee colony growth.

    USDA-ARS?s Scientific Manuscript database

    Pesticides are implicated in current bee declines. Wild bees that nest or forage within agroecosystems may be exposed to numerous pesticides applied throughout their life cycles, with potential additive or synergistic effects. In pollinator-dependent crops, pesticides may reduce bee populations, cre...

  8. Pollination of tomatoes by the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera (Hymenoptera, Apidae).

    PubMed

    dos Santos, S A Bispo; Roselino, A C; Hrncir, M; Bego, L R

    2009-06-30

    The pollination effectiveness of the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera was tested in tomato plots. The experiment was conducted in four greenhouses as well as in an external open plot in Ribeirão Preto, SP, Brazil. The tomato plants were exposed to visits by M. quadrifasciata in one greenhouse and to A. mellifera in another; two greenhouses were maintained without bees (controls) and an open field plot was exposed to pollinators in an area where both honey bee and stingless bee colonies are abundant. We counted the number of tomatoes produced in each plot. Two hundred tomatoes from each plot were weighed, their vertical and transversal circumferences were measured, and the seeds were counted. We collected 253 Chrysomelidae, 17 Halictidae, one Paratrigona sp, and one honey bee from the flowers of the tomato plants in the open area. The largest number of fruits (1414 tomatoes), the heaviest and largest tomatoes, and the ones with the most seed were collected from the greenhouse with stingless bees. Fruits cultivated in the greenhouse with honey bees had the same weight and size as those produced in one of the control greenhouses. The stingless bee, M. quadrifasciata, was significantly more efficient than honey bees in pollinating greenhouse tomatoes.

  9. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome

    PubMed Central

    Bromenshenk, Jerry J.; Henderson, Colin B.; Seccomb, Robert A.; Welch, Phillip M.; Debnam, Scott E.; Firth, David R.

    2015-01-01

    This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%–80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management. PMID:26529030

  10. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome.

    PubMed

    Bromenshenk, Jerry J; Henderson, Colin B; Seccomb, Robert A; Welch, Phillip M; Debnam, Scott E; Firth, David R

    2015-10-30

    This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%-80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management.

  11. Generalization versus Specialization in Pollination Systems: Visitors, Thieves, and Pollinators of Hypoestes aristata (Acanthaceae)

    PubMed Central

    Padyšáková, Eliška; Bartoš, Michael; Tropek, Robert; Janeček, Štěpán

    2013-01-01

    Many recent studies have suggested that the majority of animal-pollinated plants have a higher diversity of pollinators than that expected according to their pollination syndrome. This broad generalization, often based on pollination web data, has been challenged by the fact that some floral visitors recorded in pollination webs are ineffective pollinators. To contribute to this debate, and to obtain a contrast between visitors and pollinators, we studied insect and bird visitors to virgin flowers of Hypoestes aristata in the Bamenda Highlands, Cameroon. We observed the flowers and their visitors for 2-h periods and measured the seed production as a metric of reproductive success. We determined the effects of individual visitors using 2 statistical models, single-visit data that were gathered for more frequent visitor species, and frequency data. This approach enabled us to determine the positive as well as neutral or negative impact of visitors on H. aristata’s reproductive success. We found that (i) this plant is not generalized but rather specialized; although we recorded 15 morphotaxa of visitors, only 3 large bee species seemed to be important pollinators; (ii) the carpenter bee Xylocopa cf. inconstans was both the most frequent and the most effective pollinator; (iii) the honey bee Apis mellifera acted as a nectar thief with apparent negative effects on the plant reproduction; and (iv) the close relationship between H. aristata and carpenter bees was in agreement with the large-bee pollination syndrome of this plant. Our results highlight the need for studies detecting the roles of individual visitors. We showed that such an approach is necessary to evaluate the pollination syndrome hypothesis and create relevant evolutionary and ecological hypotheses. PMID:23593135

  12. Generalization versus specialization in pollination systems: visitors, thieves, and pollinators of Hypoestes aristata (Acanthaceae).

    PubMed

    Padyšáková, Eliška; Bartoš, Michael; Tropek, Robert; Janeček, Stěpán

    2013-01-01

    Many recent studies have suggested that the majority of animal-pollinated plants have a higher diversity of pollinators than that expected according to their pollination syndrome. This broad generalization, often based on pollination web data, has been challenged by the fact that some floral visitors recorded in pollination webs are ineffective pollinators. To contribute to this debate, and to obtain a contrast between visitors and pollinators, we studied insect and bird visitors to virgin flowers of Hypoestes aristata in the Bamenda Highlands, Cameroon. We observed the flowers and their visitors for 2-h periods and measured the seed production as a metric of reproductive success. We determined the effects of individual visitors using 2 statistical models, single-visit data that were gathered for more frequent visitor species, and frequency data. This approach enabled us to determine the positive as well as neutral or negative impact of visitors on H. aristata's reproductive success. We found that (i) this plant is not generalized but rather specialized; although we recorded 15 morphotaxa of visitors, only 3 large bee species seemed to be important pollinators; (ii) the carpenter bee Xylocopa cf. inconstans was both the most frequent and the most effective pollinator; (iii) the honey bee Apis mellifera acted as a nectar thief with apparent negative effects on the plant reproduction; and (iv) the close relationship between H. aristata and carpenter bees was in agreement with the large-bee pollination syndrome of this plant. Our results highlight the need for studies detecting the roles of individual visitors. We showed that such an approach is necessary to evaluate the pollination syndrome hypothesis and create relevant evolutionary and ecological hypotheses.

  13. Positive and Negative Impacts of Non-Native Bee Species around the World.

    PubMed

    Russo, Laura

    2016-11-28

    Though they are relatively understudied, non-native bees are ubiquitous and have enormous potential economic and environmental impacts. These impacts may be positive or negative, and are often unquantified. In this manuscript, I review literature on the known distribution and environmental and economic impacts of 80 species of introduced bees. The potential negative impacts of non-native bees include competition with native bees for nesting sites or floral resources, pollination of invasive weeds, co-invasion with pathogens and parasites, genetic introgression, damage to buildings, affecting the pollination of native plant species, and changing the structure of native pollination networks. The potential positive impacts of non-native bees include agricultural pollination, availability for scientific research, rescue of native species, and resilience to human-mediated disturbance and climate change. Most non-native bee species are accidentally introduced and nest in stems, twigs, and cavities in wood. In terms of number of species, the best represented families are Megachilidae and Apidae, and the best represented genus is Megachile . The best studied genera are Apis and Bombus , and most of the species in these genera were deliberately introduced for agricultural pollination. Thus, we know little about the majority of non-native bees, accidentally introduced or spreading beyond their native ranges.

  14. Positive and Negative Impacts of Non-Native Bee Species around the World

    PubMed Central

    Russo, Laura

    2016-01-01

    Though they are relatively understudied, non-native bees are ubiquitous and have enormous potential economic and environmental impacts. These impacts may be positive or negative, and are often unquantified. In this manuscript, I review literature on the known distribution and environmental and economic impacts of 80 species of introduced bees. The potential negative impacts of non-native bees include competition with native bees for nesting sites or floral resources, pollination of invasive weeds, co-invasion with pathogens and parasites, genetic introgression, damage to buildings, affecting the pollination of native plant species, and changing the structure of native pollination networks. The potential positive impacts of non-native bees include agricultural pollination, availability for scientific research, rescue of native species, and resilience to human-mediated disturbance and climate change. Most non-native bee species are accidentally introduced and nest in stems, twigs, and cavities in wood. In terms of number of species, the best represented families are Megachilidae and Apidae, and the best represented genus is Megachile. The best studied genera are Apis and Bombus, and most of the species in these genera were deliberately introduced for agricultural pollination. Thus, we know little about the majority of non-native bees, accidentally introduced or spreading beyond their native ranges. PMID:27916802

  15. Are empidine dance flies major flower visitors in alpine environments? A case study in the Alps, France

    PubMed Central

    Lefebvre, Vincent; Fontaine, Colin; Villemant, Claire; Daugeron, Christophe

    2014-01-01

    Pollination is one of the most important ecosystem services and bees the most important pollinators. As a population decline of bees has been documented in numerous regions of the world, it is crucial to develop understanding on other possible pollinators. Here, we study the potential pollination impact of Diptera, and among them Empidinae, in an alpine environment, where the abundance of bees is naturally lower. Interactions between 19 entomophilous plants and their flower visitors were recorded in a subalpine meadow in the French Alps during six weeks. Visitation frequencies were used to build the flower–visitor network. Our results show that interactions between flies and plants are dominant; flies represent more than 60% of all visitors, with 54% of them being Empidinae. We especially found that flies, Empidinae and bees are the main visitors of 11, three and one plants, respectively. When considering both bees and Syrphidae together, six plants were more visited by Empidinae; when considering bees and Syrphidae separately, 10 plants were more visited by Empidinae than by bees or Syrphidae. The results support the idea that flies widely replace bees as main flower visitors at altitude, and among them the Empidinae might play a key role in pollination. PMID:25376804

  16. Are empidine dance flies major flower visitors in alpine environments? A case study in the Alps, France.

    PubMed

    Lefebvre, Vincent; Fontaine, Colin; Villemant, Claire; Daugeron, Christophe

    2014-11-01

    Pollination is one of the most important ecosystem services and bees the most important pollinators. As a population decline of bees has been documented in numerous regions of the world, it is crucial to develop understanding on other possible pollinators. Here, we study the potential pollination impact of Diptera, and among them Empidinae, in an alpine environment, where the abundance of bees is naturally lower. Interactions between 19 entomophilous plants and their flower visitors were recorded in a subalpine meadow in the French Alps during six weeks. Visitation frequencies were used to build the flower-visitor network. Our results show that interactions between flies and plants are dominant; flies represent more than 60% of all visitors, with 54% of them being Empidinae. We especially found that flies, Empidinae and bees are the main visitors of 11, three and one plants, respectively. When considering both bees and Syrphidae together, six plants were more visited by Empidinae; when considering bees and Syrphidae separately, 10 plants were more visited by Empidinae than by bees or Syrphidae. The results support the idea that flies widely replace bees as main flower visitors at altitude, and among them the Empidinae might play a key role in pollination. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Abundance and Diversity of Wild Bees (Hymenoptera: Apoidea) Found in Lowbush Blueberry Growing Regions of Downeast Maine.

    PubMed

    Bushmann, Sara L; Drummond, Francis A

    2015-08-01

    Insect-mediated pollination is critical for lowbush blueberry (Ericaceae: Vaccinium angustifolium Aiton) fruit development. Past research shows a persistent presence of wild bees (Hymenoptera: Apoidea) providing pollination services even when commercial pollinators are present. We undertook the study to 1) provide a description of bee communities found in lowbush blueberry-growing regions, 2) identify field characteristics or farm management practices that influence those communities, 3) identify key wild bee pollinators that provide pollination services for the blueberry crop, and 4) identify non-crop plants found within the cropping system that provide forage for wild bees. During a 4-year period, we collected solitary and eusocial bees in over 40 fields during and after blueberry bloom, determining a management description for each field. We collected 4,474 solitary bees representing 124 species and 1,315 summer bumble bees representing nine species. No bumble bee species were previously unknown in Maine, yet we document seven solitary bee species new for the state. These include species of the genera Nomada, Lasioglossum, Calliopsis, and Augochloropsis. No field characteristic or farm management practice related to bee community structure, except bumble bee species richness was higher in certified organic fields. Pollen analysis determined scopal loads of 67-99% ericaceous pollen carried by five species of Andrena. Our data suggest two native ericaceous plants, Kalmia angustifolia L. and Gaylussacia baccata (Wangenheim), provide important alternative floral resources. We conclude that Maine blueberry croplands are populated with a species-rich bee community that fluctuates in time and space. We suggest growers develop and maintain wild bee forage and nest sites. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. RNA Viruses in Hymenopteran Pollinators: Evidence of Inter-Taxa Virus Transmission via Pollen and Potential Impact on Non-Apis Hymenopteran Species

    PubMed Central

    Rajotte, Edwin G.; Holmes, Edward C.; Ostiguy, Nancy; vanEngelsdorp, Dennis; Lipkin, W. Ian; dePamphilis, Claude W.; Toth, Amy L.; Cox-Foster, Diana L.

    2010-01-01

    Although overall pollinator populations have declined over the last couple of decades, the honey bee (Apis mellifera) malady, colony collapse disorder (CCD), has caused major concern in the agricultural community. Among honey bee pathogens, RNA viruses are emerging as a serious threat and are suspected as major contributors to CCD. Recent detection of these viral species in bumble bees suggests a possible wider environmental spread of these viruses with potential broader impact. It is therefore vital to study the ecology and epidemiology of these viruses in the hymenopteran pollinator community as a whole. We studied the viral distribution in honey bees, in their pollen loads, and in other non-Apis hymenopteran pollinators collected from flowering plants in Pennsylvania, New York, and Illinois in the United States. Viruses in the samples were detected using reverse transcriptase-PCR and confirmed by sequencing. For the first time, we report the molecular detection of picorna-like RNA viruses (deformed wing virus, sacbrood virus and black queen cell virus) in pollen pellets collected directly from forager bees. Pollen pellets from several uninfected forager bees were detected with virus, indicating that pollen itself may harbor viruses. The viruses in the pollen and honey stored in the hive were demonstrated to be infective, with the queen becoming infected and laying infected eggs after these virus-contaminated foods were given to virus-free colonies. These viruses were detected in eleven other non-Apis hymenopteran species, ranging from many solitary bees to bumble bees and wasps. This finding further expands the viral host range and implies a possible deeper impact on the health of our ecosystem. Phylogenetic analyses support that these viruses are disseminating freely among the pollinators via the flower pollen itself. Notably, in cases where honey bee apiaries affected by CCD harbored honey bees with Israeli Acute Paralysis virus (IAPV), nearby non-Apis hymenopteran pollinators also had IAPV, while those near apiaries without IAPV did not. In containment greenhouse experiments, IAPV moved from infected honey bees to bumble bees and from infected bumble bees to honey bees within a week, demonstrating that the viruses could be transmitted from one species to another. This study adds to our present understanding of virus epidemiology and may help explain bee disease patterns and pollinator population decline in general. PMID:21203504

  19. Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources.

    PubMed

    Thomson, Diane M

    2016-10-01

    Time series of abundances are critical for understanding how abiotic factors and species interactions affect population dynamics, but are rarely linked with experiments and also scarce for bee pollinators. This gap is important given concerns about declines in some bee species. I monitored honey bee (Apis mellifera) and bumble bee (Bombus spp.) foragers in coastal California from 1999, when feral A. mellifera populations were low due to Varroa destructor, until 2014. Apis mellifera increased substantially, except between 2006 and 2011, coinciding with declines in managed populations. Increases in A. mellifera strongly correlated with declines in Bombus and reduced diet overlap between them, suggesting resource competition consistent with past experimental results. Lower Bombus numbers also correlated with diminished floral resources. Declines in floral abundances were associated with drought and reduced spring rainfall. These results illustrate how competition with an introduced species may interact with climate to drive local decline of native pollinators. © 2016 John Wiley & Sons Ltd/CNRS.

  20. Experimental evidence that wildflower strips increase pollinator visits to crops.

    PubMed

    Feltham, Hannah; Park, Kirsty; Minderman, Jeroen; Goulson, Dave

    2015-08-01

    Wild bees provide a free and potentially diverse ecosystem service to farmers growing pollination-dependent crops. While many crops benefit from insect pollination, soft fruit crops, including strawberries are highly dependent on this ecosystem service to produce viable fruit. However, as a result of intensive farming practices and declining pollinator populations, farmers are increasingly turning to commercially reared bees to ensure that crops are adequately pollinated throughout the season. Wildflower strips are a commonly used measure aimed at the conservation of wild pollinators. It has been suggested that commercial crops may also benefit from the presence of noncrop flowers; however, the efficacy and economic benefits of sowing flower strips for crops remain relatively unstudied. In a study system that utilizes both wild and commercial pollinators, we test whether wildflower strips increase the number of visits to adjacent commercial strawberry crops by pollinating insects. We quantified this by experimentally sowing wildflower strips approximately 20 meters away from the crop and recording the number of pollinator visits to crops with, and without, flower strips. Between June and August 2013, we walked 292 crop transects at six farms in Scotland, recording a total of 2826 pollinators. On average, the frequency of pollinator visits was 25% higher for crops with adjacent flower strips compared to those without, with a combination of wild and commercial bumblebees (Bombus spp.) accounting for 67% of all pollinators observed. This effect was independent of other confounding effects, such as the number of flowers on the crop, date, and temperature. Synthesis and applications. This study provides evidence that soft fruit farmers can increase the number of pollinators that visit their crops by sowing inexpensive flower seed mixes nearby. By investing in this management option, farmers have the potential to increase and sustain pollinator populations over time.

  1. Experimental evidence that wildflower strips increase pollinator visits to crops

    PubMed Central

    Feltham, Hannah; Park, Kirsty; Minderman, Jeroen; Goulson, Dave

    2015-01-01

    Wild bees provide a free and potentially diverse ecosystem service to farmers growing pollination-dependent crops. While many crops benefit from insect pollination, soft fruit crops, including strawberries are highly dependent on this ecosystem service to produce viable fruit. However, as a result of intensive farming practices and declining pollinator populations, farmers are increasingly turning to commercially reared bees to ensure that crops are adequately pollinated throughout the season. Wildflower strips are a commonly used measure aimed at the conservation of wild pollinators. It has been suggested that commercial crops may also benefit from the presence of noncrop flowers; however, the efficacy and economic benefits of sowing flower strips for crops remain relatively unstudied. In a study system that utilizes both wild and commercial pollinators, we test whether wildflower strips increase the number of visits to adjacent commercial strawberry crops by pollinating insects. We quantified this by experimentally sowing wildflower strips approximately 20 meters away from the crop and recording the number of pollinator visits to crops with, and without, flower strips. Between June and August 2013, we walked 292 crop transects at six farms in Scotland, recording a total of 2826 pollinators. On average, the frequency of pollinator visits was 25% higher for crops with adjacent flower strips compared to those without, with a combination of wild and commercial bumblebees (Bombus spp.) accounting for 67% of all pollinators observed. This effect was independent of other confounding effects, such as the number of flowers on the crop, date, and temperature. Synthesis and applications. This study provides evidence that soft fruit farmers can increase the number of pollinators that visit their crops by sowing inexpensive flower seed mixes nearby. By investing in this management option, farmers have the potential to increase and sustain pollinator populations over time. PMID:26380683

  2. Bee Mite ID - an online resource on identification of mites associated with bees of the World

    USDA-ARS?s Scientific Manuscript database

    Parasitic mites are known to be a factor in recent declines in bee pollinator populations. In particular, Varroa destructor, an introduced parasite and disease vector, has decimated colonies of the western honey bee, one of the most important agricultural pollinators in the world. Further, global tr...

  3. Effects of honey bee (Hymenoptera: Apidae) and bumble bee (Hymenoptera: Apidae) presence on cranberry (Ericales: Ericaceae) pollination.

    PubMed

    Evans, E C; Spivak, M

    2006-06-01

    Honey bees, Apis mellifera L., are frequently used to pollinate commercial cranberries, Vaccinium macrocarpon Ait., but information is lacking on the relative contribution of honey bees and native bees, the effects of surrounding vegetation on bee visitation, and on optimal timing for honey bee introduction. We begin with a descriptive study of numbers of honey bees, bumble bees, and other bees visiting cranberry blossoms, and their subsequent effect on cranberry yield, on three cranberry properties in 1999. The property surrounded by agricultural land, as opposed to wetlands and woodlands, had fewer numbers of all bee types. In 2000, one property did not introduce honey bee colonies, providing an opportunity to document the effect of lack of honey bees on yield. With no honey bees, plants along the edge of the bed had significantly higher berry weights compared with nonedge plants, suggesting that wild pollinators were only effective along the edge. Comparing the same bed between 1999, with three honey bee colonies per acre, and 2000, with no honey bees, we found a significant reduction in average berry size. In 2000, we compared stigma loading on properties with and without honey bees. Significantly more stigmas received the minimum number of tetrads required for fruit set on the property with honey bees. Significantly more tetrads were deposited during mid-bloom compared with early bloom, indicating that mid-bloom was the best time to have honey bees present. This study emphasizes the importance and effectiveness of honey bees as pollinators of commercial size cranberry plantings.

  4. Predicting plant attractiveness to pollinators with passive crowdsourcing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahlai, Christie A.; Landis, Douglas A.

    Global concern regarding pollinator decline has intensified interest in enhancing pollinator resources in managed landscapes. These efforts frequently emphasize restoration or planting of flowering plants to provide pollen and nectar resources that are highly attractive to the desired pollinators. However, determining exactly which plant species should be used to enhance a landscape is difficult. Empirical screening of plants for such purposes is logistically daunting, but could be streamlined by crowdsourcing data to create lists of plants most probable to attract the desired pollinator taxa. People frequently photograph plants in bloom and the Internet has become a vast repository of suchmore » images. A proportion of these images also capture floral visitation by arthropods. Here, we test the hypothesis that the abundance of floral images containing identifiable pollinator and other beneficial insects is positively associated with the observed attractiveness of the same species in controlled field trials from previously published studies. We used Google Image searches to determine the correlation of pollinator visitation captured by photographs on the Internet relative to the attractiveness of the same species in common-garden field trials for 43 plant species. From the first 30 photographs, which successfully identified the plant, we recorded the number of Apis (managed honeybees), non-Apis (exclusively wild bees) and the number of bee-mimicking syrphid flies. We used these observations from search hits as well as bloom period (BP) as predictor variables in Generalized Linear Models (GLMs) for field-observed abundances of each of these groups. We found that non-Apis bees observed in controlled field trials were positively associated with observations of these taxa in Google Image searches (pseudo-R 2 of 0.668). Syrphid fly observations in the field were also associated with the frequency they were observed in images, but this relationship was weak. Apis bee observations were not associated with Internet images, but were slightly associated with BP. Our results suggest that passively crowdsourced image data can potentially be a useful screening tool to identify candidate plants for pollinator habitat restoration efforts directed at wild bee conservation. Increasing our understanding of the attractiveness of a greater diversity of plants increases the potential for more rapid and efficient research in creating pollinator-supportive landscapes.« less

  5. Predicting plant attractiveness to pollinators with passive crowdsourcing

    DOE PAGES

    Bahlai, Christie A.; Landis, Douglas A.

    2016-06-01

    Global concern regarding pollinator decline has intensified interest in enhancing pollinator resources in managed landscapes. These efforts frequently emphasize restoration or planting of flowering plants to provide pollen and nectar resources that are highly attractive to the desired pollinators. However, determining exactly which plant species should be used to enhance a landscape is difficult. Empirical screening of plants for such purposes is logistically daunting, but could be streamlined by crowdsourcing data to create lists of plants most probable to attract the desired pollinator taxa. People frequently photograph plants in bloom and the Internet has become a vast repository of suchmore » images. A proportion of these images also capture floral visitation by arthropods. Here, we test the hypothesis that the abundance of floral images containing identifiable pollinator and other beneficial insects is positively associated with the observed attractiveness of the same species in controlled field trials from previously published studies. We used Google Image searches to determine the correlation of pollinator visitation captured by photographs on the Internet relative to the attractiveness of the same species in common-garden field trials for 43 plant species. From the first 30 photographs, which successfully identified the plant, we recorded the number of Apis (managed honeybees), non-Apis (exclusively wild bees) and the number of bee-mimicking syrphid flies. We used these observations from search hits as well as bloom period (BP) as predictor variables in Generalized Linear Models (GLMs) for field-observed abundances of each of these groups. We found that non-Apis bees observed in controlled field trials were positively associated with observations of these taxa in Google Image searches (pseudo-R 2 of 0.668). Syrphid fly observations in the field were also associated with the frequency they were observed in images, but this relationship was weak. Apis bee observations were not associated with Internet images, but were slightly associated with BP. Our results suggest that passively crowdsourced image data can potentially be a useful screening tool to identify candidate plants for pollinator habitat restoration efforts directed at wild bee conservation. Increasing our understanding of the attractiveness of a greater diversity of plants increases the potential for more rapid and efficient research in creating pollinator-supportive landscapes.« less

  6. Predicting plant attractiveness to pollinators with passive crowdsourcing

    PubMed Central

    Bahlai, Christie A.; Landis, Douglas A.

    2016-01-01

    Global concern regarding pollinator decline has intensified interest in enhancing pollinator resources in managed landscapes. These efforts frequently emphasize restoration or planting of flowering plants to provide pollen and nectar resources that are highly attractive to the desired pollinators. However, determining exactly which plant species should be used to enhance a landscape is difficult. Empirical screening of plants for such purposes is logistically daunting, but could be streamlined by crowdsourcing data to create lists of plants most probable to attract the desired pollinator taxa. People frequently photograph plants in bloom and the Internet has become a vast repository of such images. A proportion of these images also capture floral visitation by arthropods. Here, we test the hypothesis that the abundance of floral images containing identifiable pollinator and other beneficial insects is positively associated with the observed attractiveness of the same species in controlled field trials from previously published studies. We used Google Image searches to determine the correlation of pollinator visitation captured by photographs on the Internet relative to the attractiveness of the same species in common-garden field trials for 43 plant species. From the first 30 photographs, which successfully identified the plant, we recorded the number of Apis (managed honeybees), non-Apis (exclusively wild bees) and the number of bee-mimicking syrphid flies. We used these observations from search hits as well as bloom period (BP) as predictor variables in Generalized Linear Models (GLMs) for field-observed abundances of each of these groups. We found that non-Apis bees observed in controlled field trials were positively associated with observations of these taxa in Google Image searches (pseudo-R2 of 0.668). Syrphid fly observations in the field were also associated with the frequency they were observed in images, but this relationship was weak. Apis bee observations were not associated with Internet images, but were slightly associated with BP. Our results suggest that passively crowdsourced image data can potentially be a useful screening tool to identify candidate plants for pollinator habitat restoration efforts directed at wild bee conservation. Increasing our understanding of the attractiveness of a greater diversity of plants increases the potential for more rapid and efficient research in creating pollinator-supportive landscapes. PMID:27429762

  7. Recent introduction of an allodapine bee into Fiji: A new model system for understanding biological invasions by pollinators.

    PubMed

    Groom, Scott V C; Tuiwawa, Marika V; Stevens, Mark I; Schwarz, Michael P

    2015-08-01

    Morphology-based studies have suggested a very depauperate bee fauna for islands in the South West Pacific, and recent genetic studies since have indicated an even smaller endemic fauna with many bee species in this region resulting from human-aided dispersal. These introduced species have the potential to both disrupt native pollinator suites as well as augment crop pollination, but for most species the timings of introduction are unknown. We examined the distribution and nesting biology of the long-tongued bee Braunsapis puangensis that was first recorded from Fiji in 2007. This bee has now become widespread in Fiji and both its local abundance and geographical range are likely to increase dramatically. The impacts of this invasion are potentially enormous for agriculture and native ecosystems, but they also provide opportunities for understanding how social insect species adapt to new environments. We outline the major issues associated with this recent invasion and argue that a long-term monitoring study is needed. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  8. Parameterization of the InVEST Crop Pollination Model to spatially predict abundance of wild blueberry (Vaccinium angustifolium Aiton) native bee pollinators in Maine, USA

    USGS Publications Warehouse

    Groff, Shannon C.; Loftin, Cynthia S.; Drummond, Frank; Bushmann, Sara; McGill, Brian J.

    2016-01-01

    Non-native honeybees historically have been managed for crop pollination, however, recent population declines draw attention to pollination services provided by native bees. We applied the InVEST Crop Pollination model, developed to predict native bee abundance from habitat resources, in Maine's wild blueberry crop landscape. We evaluated model performance with parameters informed by four approaches: 1) expert opinion; 2) sensitivity analysis; 3) sensitivity analysis informed model optimization; and, 4) simulated annealing (uninformed) model optimization. Uninformed optimization improved model performance by 29% compared to expert opinion-informed model, while sensitivity-analysis informed optimization improved model performance by 54%. This suggests that expert opinion may not result in the best parameter values for the InVEST model. The proportion of deciduous/mixed forest within 2000 m of a blueberry field also reliably predicted native bee abundance in blueberry fields, however, the InVEST model provides an efficient tool to estimate bee abundance beyond the field perimeter.

  9. Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees.

    USDA-ARS?s Scientific Manuscript database

    Recent steep declines in honey bee health have severely impacted the beekeeping industry, presenting new risks for agricultural commodities that depend on insect pollination. Honey bee declines could reflect increased pressures from parasites and pathogens. The incidence of the microsporidian pathog...

  10. Developing and establishing bee species as crop pollinators: the example of Osmia spp. (Hymenoptera: Megachilidae) and fruit trees.

    PubMed

    Bosch, J; Bosch, J; Kemp, W P

    2002-02-01

    The development of a bee species as a new crop pollinator starts with the identification of a pollination-limited crop production deficit and the selection of one or more candidate pollinator species. The process continues with a series of studies on the developmental biology, pollinating efficacy, nesting behaviour, preference for different nesting substrates, and population dynamics of the candidate pollinator. Parallel studies investigate the biology of parasites, predators and pathogens. The information gained in these studies is combined with information on the reproductive biology of the crop to design a management system. Complete management systems should provide guidelines on rearing and releasing methods, bee densities required for adequate pollination, nesting materials, and control against parasites, predators and pathogens. Management systems should also provide methods to ensure a reliable pollinator supply. Pilot tests on a commercial scale are then conducted to test and eventually refine the management system. The process culminates with the delivery of a viable system to manage and sustain the new pollinator on a commercial scale. The process is illustrated by the development of three mason bees, Osmia cornifrons (Radoszkowski), O. lignaria Say and O. cornuta (Latreille) as orchard pollinators in Japan, the USA and Europe, respectively.

  11. The evolution of floral sonication, a pollen foraging behavior used by bees (Anthophila).

    PubMed

    Cardinal, Sophie; Buchmann, Stephen L; Russell, Avery L

    2018-03-01

    Over 22,000 species of biotically pollinated flowering plants, including some major agricultural crops, depend primarily on bees capable of floral sonication for pollination services. The ability to sonicate ("buzz") flowers is widespread in bees but not ubiquitous. Despite the prevalence of this pollinator behavior and its importance to natural and agricultural systems, the evolutionary history of floral sonication in bees has not been previously studied. Here, we reconstruct the evolutionary history of floral sonication in bees by generating a time-calibrated phylogeny and reconstructing ancestral states for this pollen extraction behavior. We also test the hypothesis that the ability to sonicate flowers and thereby efficiently access pollen from a diverse assemblage of plant species, led to increased diversification among sonicating bee taxa. We find that floral sonication evolved on average 45 times within bees, possibly first during the Early Cretaceous (100-145 million years ago) in the common ancestor of bees. We find that sonicating lineages are significantly more species rich than nonsonicating sister lineages when comparing sister clades, but a probabilistic structured rate permutation on phylogenies approach failed to support the hypothesis that floral sonication is a key driver of bee diversification. This study provides the evolutionary framework needed to further study how floral sonication by bees may have facilitated the spread and common evolution of angiosperm species with poricidal floral morphology. © 2018 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  12. Changing Bee and Hoverfly Pollinator Assemblages along an Urban-Rural Gradient

    PubMed Central

    Bates, Adam J.; Sadler, Jon P.; Fairbrass, Alison J.; Falk, Steven J.; Hale, James D.; Matthews, Tom J.

    2011-01-01

    Background The potential for reduced pollination ecosystem service due to global declines of bees and other pollinators is cause for considerable concern. Habitat degradation, destruction and fragmentation due to agricultural intensification have historically been the main causes of this pollinator decline. However, despite increasing and accelerating levels of global urbanization, very little research has investigated the effects of urbanization on pollinator assemblages. We assessed changes in the diversity, abundance and species composition of bee and hoverfly pollinator assemblages in urban, suburban, and rural sites across a UK city. Methodology/Principal Findings Bees and hoverflies were trapped and netted at 24 sites of similar habitat character (churchyards and cemeteries) that varied in position along a gradient of urbanization. Local habitat quality (altitude, shelter from wind, diversity and abundance of flowers), and the broader-scale degree of urbanization (e.g. percentage of built landscape and gardens within 100 m, 250 m, 500 m, 1 km, and 2.5 km of the site) were assessed for each study site. The diversity and abundance of pollinators were both significantly negatively associated with higher levels of urbanization. Assemblage composition changed along the urbanization gradient with some species positively associated with urban and suburban land-use, but more species negatively so. Pollinator assemblages were positively affected by good site habitat quality, in particular the availability of flowering plants. Conclusions/Significance Our results show that urban areas can support diverse pollinator assemblages, but that this capacity is strongly affected by local habitat quality. Nonetheless, in both urban and suburban areas of the city the assemblages had fewer individuals and lower diversity than similar rural habitats. The unique development histories of different urban areas, and the difficulty of assessing mobile pollinator assemblages in just part of their range, mean that complementary studies in different cities and urban habitats are required to discover if these findings are more widely applicable. PMID:21858128

  13. The evolution of signal–reward correlations in bee- and hummingbird-pollinated species of Salvia

    PubMed Central

    Benitez-Vieyra, Santiago; Fornoni, Juan; Pérez-Alquicira, Jessica; Boege, Karina; Domínguez, César A.

    2014-01-01

    Within-individual variation in floral advertising and reward traits is a feature experienced by pollinators that visit different flowers of the same plant. Pollinators can use advertising traits to gather information about the quality and amount of rewards, leading to the evolution of signal–reward correlations. As long as plants differ in the reliability of their signals and pollinators base their foraging decisions on this information, natural selection should act on within-individual correlations between signals and rewards. Because birds and bees differ in their cognitive capabilities, and use different floral traits as signals, we tested the occurrence of adaptive divergence of the within-individual signal–reward correlations among Salvia species that are pollinated either by bees or by hummingbirds. They are expected to use different floral advertising traits: frontal traits in the case of bees and side traits in the case of hummingbirds. We confirmed this expectation as bee- and hummingbird-pollinated species differed in which specific traits are predominantly associated with nectar reward at the within-individual level. Our findings highlight the adaptive value of within-individual variation and covariation patterns, commonly disregarded as ‘environmental noise’, and are consistent with the hypothesis that pollinator-mediated selection affects the correlation pattern among floral traits. PMID:24648219

  14. The evolution of signal-reward correlations in bee- and hummingbird-pollinated species of Salvia.

    PubMed

    Benitez-Vieyra, Santiago; Fornoni, Juan; Pérez-Alquicira, Jessica; Boege, Karina; Domínguez, César A

    2014-05-07

    Within-individual variation in floral advertising and reward traits is a feature experienced by pollinators that visit different flowers of the same plant. Pollinators can use advertising traits to gather information about the quality and amount of rewards, leading to the evolution of signal-reward correlations. As long as plants differ in the reliability of their signals and pollinators base their foraging decisions on this information, natural selection should act on within-individual correlations between signals and rewards. Because birds and bees differ in their cognitive capabilities, and use different floral traits as signals, we tested the occurrence of adaptive divergence of the within-individual signal-reward correlations among Salvia species that are pollinated either by bees or by hummingbirds. They are expected to use different floral advertising traits: frontal traits in the case of bees and side traits in the case of hummingbirds. We confirmed this expectation as bee- and hummingbird-pollinated species differed in which specific traits are predominantly associated with nectar reward at the within-individual level. Our findings highlight the adaptive value of within-individual variation and covariation patterns, commonly disregarded as 'environmental noise', and are consistent with the hypothesis that pollinator-mediated selection affects the correlation pattern among floral traits.

  15. Pollination Research Methods with Apis mellifera

    USDA-ARS?s Scientific Manuscript database

    This chapter describes field and lab procedures for doing experiments on honey bee pollination. Most of the methods apply to any insect for whom pollen vectoring capacity is the question. What makes honey bee pollination distinctive is its historic emphasis on agricultural applications; hence one fi...

  16. Buzz-pollination in Neotropical bees: genus-dependent frequencies and lack of optimal frequency for pollen release.

    PubMed

    Rosi-Denadai, Conrado Augusto; Araújo, Priscila Cássia Souza; Campos, Lucio Antônio de Oliveira; Cosme, Lirio; Guedes, Raul Narciso Carvalho

    2018-05-08

    Over 50 genera of bees release pollen from flower anthers using thoracic vibrations, a phenomenon known as buzz-pollination. The efficiency of this process is directly affected by the mechanical properties of the buzzes, namely the duration, amplitude, and frequency. Nonetheless, although the effects of the former two properties are well described, the role of buzz frequency on pollen release remains unclear. Furthermore, nearly all of the existing studies describing vibrational properties of natural buzz-pollination are limited to bumblebees (Bombus) and carpenter bees (Xylocopa) constraining our current understanding of this behavior and its evolution. Therefore, we attempted to minimize this shortcoming by testing whether flower anthers exhibit optimal frequency for pollen release and whether bees tune their buzzes to match these (optimal) frequencies. If true, certain frequencies will trigger more pollen release and lighter bees will reach buzz frequencies closer to this optimum to compensate their smaller buzz amplitudes. Two strategies were used to test these hypotheses: (i) the use of (artificial) vibrational playbacks in a broad range of buzz frequencies and amplitudes to assess pollen release by tomato plants (Solanum lycopersicum L.) and (ii) the recording of natural buzzes of Neotropical bees visiting tomato plants during pollination. The playback experiment indicates that although buzz frequency does affect pollen release, no optimal frequency exists for that. In addition, the recorded results of natural buzz-pollination reveal that buzz frequencies vary with bee genera and are not correlated with body size. Therefore, neither bees nor plants are tuned to optimal pollen release frequencies. Bee frequency of buzz-pollination is a likely consequence of the insect flight machinery adapted to reach higher accelerations, while flower plant response to buzz-pollination is the likely result of its pollen granular properties. © 2018 Institute of Zoology, Chinese Academy of Sciences.

  17. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status

    PubMed Central

    Mogren, Christina L.; Lundgren, Jonathan G.

    2016-01-01

    Worldwide pollinator declines are attributed to a number of factors, including pesticide exposures. Neonicotinoid insecticides specifically have been detected in surface waters, non-target vegetation, and bee products, but the risks posed by environmental exposures are still not well understood. Pollinator strips were tested for clothianidin contamination in plant tissues, and the risks to honey bees assessed. An enzyme-linked immunosorbent assay (ELISA) quantified clothianidin in leaf, nectar, honey, and bee bread at organic and seed-treated farms. Total glycogen, lipids, and protein from honey bee workers were quantified. The proportion of plants testing positive for clothianidin were the same between treatments. Leaf tissue and honey had similar concentrations of clothianidin between organic and seed-treated farms. Honey (mean±SE: 6.61 ± 0.88 ppb clothianidin per hive) had seven times greater concentrations than nectar collected by bees (0.94 ± 0.09 ppb). Bee bread collected from organic sites (25.8 ± 3.0 ppb) had significantly less clothianidin than those at seed treated locations (41.6 ± 2.9 ppb). Increasing concentrations of clothianidin in bee bread were correlated with decreased glycogen, lipid, and protein in workers. This study shows that small, isolated areas set aside for conservation do not provide spatial or temporal relief from neonicotinoid exposures in agricultural regions where their use is largely prophylactic. PMID:27412495

  18. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status

    NASA Astrophysics Data System (ADS)

    Mogren, Christina L.; Lundgren, Jonathan G.

    2016-07-01

    Worldwide pollinator declines are attributed to a number of factors, including pesticide exposures. Neonicotinoid insecticides specifically have been detected in surface waters, non-target vegetation, and bee products, but the risks posed by environmental exposures are still not well understood. Pollinator strips were tested for clothianidin contamination in plant tissues, and the risks to honey bees assessed. An enzyme-linked immunosorbent assay (ELISA) quantified clothianidin in leaf, nectar, honey, and bee bread at organic and seed-treated farms. Total glycogen, lipids, and protein from honey bee workers were quantified. The proportion of plants testing positive for clothianidin were the same between treatments. Leaf tissue and honey had similar concentrations of clothianidin between organic and seed-treated farms. Honey (mean±SE: 6.61 ± 0.88 ppb clothianidin per hive) had seven times greater concentrations than nectar collected by bees (0.94 ± 0.09 ppb). Bee bread collected from organic sites (25.8 ± 3.0 ppb) had significantly less clothianidin than those at seed treated locations (41.6 ± 2.9 ppb). Increasing concentrations of clothianidin in bee bread were correlated with decreased glycogen, lipid, and protein in workers. This study shows that small, isolated areas set aside for conservation do not provide spatial or temporal relief from neonicotinoid exposures in agricultural regions where their use is largely prophylactic.

  19. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status.

    PubMed

    Mogren, Christina L; Lundgren, Jonathan G

    2016-07-14

    Worldwide pollinator declines are attributed to a number of factors, including pesticide exposures. Neonicotinoid insecticides specifically have been detected in surface waters, non-target vegetation, and bee products, but the risks posed by environmental exposures are still not well understood. Pollinator strips were tested for clothianidin contamination in plant tissues, and the risks to honey bees assessed. An enzyme-linked immunosorbent assay (ELISA) quantified clothianidin in leaf, nectar, honey, and bee bread at organic and seed-treated farms. Total glycogen, lipids, and protein from honey bee workers were quantified. The proportion of plants testing positive for clothianidin were the same between treatments. Leaf tissue and honey had similar concentrations of clothianidin between organic and seed-treated farms. Honey (mean±SE: 6.61 ± 0.88 ppb clothianidin per hive) had seven times greater concentrations than nectar collected by bees (0.94 ± 0.09 ppb). Bee bread collected from organic sites (25.8 ± 3.0 ppb) had significantly less clothianidin than those at seed treated locations (41.6 ± 2.9 ppb). Increasing concentrations of clothianidin in bee bread were correlated with decreased glycogen, lipid, and protein in workers. This study shows that small, isolated areas set aside for conservation do not provide spatial or temporal relief from neonicotinoid exposures in agricultural regions where their use is largely prophylactic.

  20. Key environmental determinants of global and regional richness patterns for a wild bee subfamily

    USDA-ARS?s Scientific Manuscript database

    Reports of world-wide decline of pollinators, and of bees in particular, raise increasing concerns about food security. While local factors of bee decline are relatively well known and potential mitigation strategies on landscape scale have been outlined, the regional and continental-scale threats t...

  1. Parasitized honey bees are less likely to forage and carry less pollen.

    PubMed

    Lach, Lori; Kratz, Madlen; Baer, Boris

    2015-09-01

    Research into loss of pollination capacity has focused primarily on documenting pollinator declines and their causes with comparatively little attention paid to how stressors may affect pollinating behavior of surviving pollinators. The European honey bee, Apis mellifera is one of the world's most important generalist pollinators, and Nosema apis is a widespread microsporidian gut parasite of adult A. mellifera. We individually fed 960 newly eclosed A. mellifera workers either a sucrose solution or 400 N. apis spores in a sucrose solution and tagged them with a unique radio frequency identification (RFID) tag to monitor their foraging behavior. We found spore-fed bees were less likely to forage than those fed sugar only. Those that did forage started foraging when they were older and stopped foraging when they were younger than bees fed sugar only. However, inoculated and non-inoculated bees did not significantly differ in the number of foraging trips taken per day, the total hours foraged over their lifetime, or homing ability. Inoculated returning foragers were 4.3 times less likely to be carrying available pollen than non-inoculated returning foragers and the number of pollen grains carried was negatively correlated with the number of N. apis spores. In an arena of artificial flowers, inoculated bees had a tendency (p=0.061) to choose sugar flowers over pollen flowers, compared to non-inoculated bees which visited pollen and sugar flowers equally. These results demonstrate that even a relatively low dose of a widespread disease of A. mellifera may adversely affect bees' ability to pollinate. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns.

    PubMed

    Papiorek, S; Junker, R R; Alves-Dos-Santos, I; Melo, G A R; Amaral-Neto, L P; Sazima, M; Wolowski, M; Freitas, L; Lunau, K

    2016-01-01

    Colour is one of the most obvious advertisements of flowers, and occurs in a huge diversity among the angiosperms. Flower colour is responsible for attraction from a distance, whereas contrasting colour patterns within flowers aid orientation of flower visitors after approaching the flowers. Due to the striking differences in colour vision systems and neural processing across animal taxa, flower colours evoke specific behavioural responses by different flower visitors. We tested whether and how yellow flowers differ in their spectral reflectance depending on the main pollinator. We focused on bees and birds and examined whether the presence or absence of the widespread UV reflectance pattern of yellow flowers predicts the main pollinator. Most bee-pollinated flowers displayed a pattern with UV-absorbing centres and UV-reflecting peripheries, whereas the majority of bird-pollinated flowers are entirely UV- absorbing. In choice experiments we found that bees did not show consistent preferences for any colour or pattern types. However, all tested bee species made their first antennal contact preferably at the UV-absorbing area of the artificial flower, irrespective of its spatial position within the flower. The appearance of UV patterns within flowers is the main difference in spectral reflectance between yellow bee- and bird-pollinated flowers, and affects the foraging behaviour of flower visitors. The results support the hypothesis that flower colours and the visual capabilities of their efficient pollinators are adapted to each other. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Floral traits mediate the vulnerability of aloes to pollen theft and inefficient pollination by bees

    PubMed Central

    Hargreaves, Anna L.; Harder, Lawrence D.; Johnson, Steven D.

    2012-01-01

    Background and Aims Pollen-collecting bees are among the most important pollinators globally, but are also the most common pollen thieves and can significantly reduce plant reproduction. The pollination efficiency of pollen collectors depends on the frequency of their visits to female(-phase) flowers, contact with stigmas and deposition of pollen of sufficient quantity and quality to fertilize ovules. Here we investigate the relative importance of these components, and the hypothesis that floral and inflorescence characteristics mediate the pollination role of pollen collection by bees. Methods For ten Aloe species that differ extensively in floral and inflorescence traits, we experimentally excluded potential bird pollinators to quantify the contributions of insect visitors to pollen removal, pollen deposition and seed production. We measured corolla width and depth to determine nectar accessibility, and the phenology of anther dehiscence and stigma receptivity to quantify herkogamy and dichogamy. Further, we compiled all published bird-exclusion studies of aloes, and compared insect pollination success with floral morphology. Key Results Species varied from exclusively insect pollinated, to exclusively bird pollinated but subject to extensive pollen theft by insects. Nectar inaccessibility and strong dichogamy inhibited pollination by pollen-collecting bees by discouraging visits to female-phase (i.e. pollenless) flowers. For species with large inflorescences of pollen-rich flowers, pollen collectors successfully deposited pollen, but of such low quality (probably self-pollen) that they made almost no contribution to seed set. Indeed, considering all published bird-exclusion studies (17 species in total), insect pollination efficiency varied significantly with floral shape. Conclusions Species-specific floral and inflorescence characteristics, especially nectar accessibility and dichogamy, control the efficiency of pollen-collecting bees as pollinators of aloes. PMID:22278414

  4. Field Populations of Wild Apis cerana Honey Bees Exhibit Increased Genetic Diversity Under Pesticide Stress Along an Agricultural Intensification Gradient in Eastern India.

    PubMed

    Chakrabarti, Priyadarshini; Sarkar, Sagartirtha; Basu, Parthiba

    2018-05-01

    Pesticides have been reported to be one of the major drivers in the global pollinator losses. The large-scale decline in honey bees, an important pollinator group, has resulted in comprehensive studies on honey bee colonies. Lack of information on native wild pollinators has paved the way for this study, which highlights the underlying evolutionary changes occurring in the wild honey bee populations exposed to pesticides along an agricultural intensification landscape. The study reports an increased genetic diversity in native Apis cerana Fabricius (Hymenoptera: Apidae) populations continually exposed to pesticide stress. An increased heterozygosity, evidenced by a higher electrophoretic banding pattern, was observed in the pesticide-exposed populations for two isozymes involved with xenobiotic metabolism-esterase and glucose-6-phosphate dehydrogenase. Differential banding patterns also revealed a higher percentage of polymorphic loci, number of polymorphic bands, Nei's genetic distance, etc. observed in these populations in the Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) experiments using three random decamer primers. Higher heterozygosity, being indicative of a more resistant population, implies population survival within the threshold pesticide stress. This study reports such changes for the first time in native wild Indian honey bee populations exposed to pesticides and has far-reaching implications on the population adaptability under pesticide stress.

  5. Variations in thermal history lead to dissynchronous diapause development

    USDA-ARS?s Scientific Manuscript database

    The alfalfa leafcutting bee, Megachile rotundata, is the world’s most intensively managed solitary bee for commercial pollination. It is the primary pollinator for alfalfa seed production. Managed bees are subjected to thermal regimes for overwintering and subsequent adult emergence in time for al...

  6. Robotic bees for crop pollination: Why drones cannot replace biodiversity.

    PubMed

    Potts, Simon G; Neumann, Peter; Vaissière, Bernard; Vereecken, Nicolas J

    2018-06-14

    The notion that robotic crop pollination will solve the decline in pollinators has gained wide popularity recently (Fig. 1), and in March 2018 Walmart filed a patent for autonomous robot bees. However, w present six arguments showing that this is a technically and economically inviable 'solution' at present and poses substantial ecological and moral risks: (1) despite recent advances, robotic pollination is far from being able to replace bees to pollinate crops efficiently; (2) using robots is very unlikely to be economically viable; (3) there would be unacceptably high environmental costs; (4) wider ecosystems would be damaged; (5) it would erode the values of biodiversity; and, (6) relying on robotic pollination could actually lead to major food insecurity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Do managed bees have negative effects on wild bees?: A systematic review of the literature

    PubMed Central

    Gratton, Claudio

    2017-01-01

    Managed bees are critical for crop pollination worldwide. As the demand for pollinator-dependent crops increases, so does the use of managed bees. Concern has arisen that managed bees may have unintended negative impacts on native wild bees, which are important pollinators in both agricultural and natural ecosystems. The goal of this study was to synthesize the literature documenting the effects of managed honey bees and bumble bees on wild bees in three areas: (1) competition for floral and nesting resources, (2) indirect effects via changes in plant communities, including the spread of exotic plants and decline of native plants, and (3) transmission of pathogens. The majority of reviewed studies reported negative effects of managed bees, but trends differed across topical areas. Of studies examining competition, results were highly variable with 53% reporting negative effects on wild bees, while 28% reported no effects and 19% reported mixed effects (varying with the bee species or variables examined). Equal numbers of studies examining plant communities reported positive (36%) and negative (36%) effects, with the remainder reporting no or mixed effects. Finally, the majority of studies on pathogen transmission (70%) reported potential negative effects of managed bees on wild bees. However, most studies across all topical areas documented the potential for impact (e.g. reporting the occurrence of competition or pathogens), but did not measure direct effects on wild bee fitness, abundance, or diversity. Furthermore, we found that results varied depending on whether managed bees were in their native or non-native range; managed bees within their native range had lesser competitive effects, but potentially greater effects on wild bees via pathogen transmission. We conclude that while this field has expanded considerably in recent decades, additional research measuring direct, long-term, and population-level effects of managed bees is needed to understand their potential impact on wild bees. PMID:29220412

  8. Do managed bees have negative effects on wild bees?: A systematic review of the literature.

    PubMed

    Mallinger, Rachel E; Gaines-Day, Hannah R; Gratton, Claudio

    2017-01-01

    Managed bees are critical for crop pollination worldwide. As the demand for pollinator-dependent crops increases, so does the use of managed bees. Concern has arisen that managed bees may have unintended negative impacts on native wild bees, which are important pollinators in both agricultural and natural ecosystems. The goal of this study was to synthesize the literature documenting the effects of managed honey bees and bumble bees on wild bees in three areas: (1) competition for floral and nesting resources, (2) indirect effects via changes in plant communities, including the spread of exotic plants and decline of native plants, and (3) transmission of pathogens. The majority of reviewed studies reported negative effects of managed bees, but trends differed across topical areas. Of studies examining competition, results were highly variable with 53% reporting negative effects on wild bees, while 28% reported no effects and 19% reported mixed effects (varying with the bee species or variables examined). Equal numbers of studies examining plant communities reported positive (36%) and negative (36%) effects, with the remainder reporting no or mixed effects. Finally, the majority of studies on pathogen transmission (70%) reported potential negative effects of managed bees on wild bees. However, most studies across all topical areas documented the potential for impact (e.g. reporting the occurrence of competition or pathogens), but did not measure direct effects on wild bee fitness, abundance, or diversity. Furthermore, we found that results varied depending on whether managed bees were in their native or non-native range; managed bees within their native range had lesser competitive effects, but potentially greater effects on wild bees via pathogen transmission. We conclude that while this field has expanded considerably in recent decades, additional research measuring direct, long-term, and population-level effects of managed bees is needed to understand their potential impact on wild bees.

  9. Improved storage of the pollinator, Megachile rotundata

    USDA-ARS?s Scientific Manuscript database

    The alfalfa leafcutting bee, Megachile rotundata, is the 3rd most common pollinator used for crop pollination in North America and low-temperature storage protocols are a critical component of M. rotundata management. There are four times during the production cycle that bees may need to be subj...

  10. Using microcontrollers to study emergence rhythms of the alfalfa leafcutting bee, Megachile rotundata

    USDA-ARS?s Scientific Manuscript database

    An important aspect of pollination is phenological overlap of natural events, such as peak flower bloom coinciding with pollinator emergence. Pollinator emergence can be impacted by environmental cues that inform their internal clocks. The alfalfa leafcutting bee, Megachile rotundata is a solitary, ...

  11. Pathogen prevalence and abundance in honey bee colonies involved in almond pollination.

    PubMed

    Cavigli, Ian; Daughenbaugh, Katie F; Martin, Madison; Lerch, Michael; Banner, Katie; Garcia, Emma; Brutscher, Laura M; Flenniken, Michelle L

    Honey bees are important pollinators of agricultural crops. Since 2006, US beekeepers have experienced high annual honey bee colony losses, which may be attributed to multiple abiotic and biotic factors, including pathogens. However, the relative importance of these factors has not been fully elucidated. To identify the most prevalent pathogens and investigate the relationship between colony strength and health, we assessed pathogen occurrence, prevalence, and abundance in Western US honey bee colonies involved in almond pollination. The most prevalent pathogens were Black queen cell virus (BQCV), Lake Sinai virus 2 (LSV2), Sacbrood virus (SBV), Nosema ceranae , and trypanosomatids. Our results indicated that pathogen prevalence and abundance were associated with both sampling date and beekeeping operation, that prevalence was highest in honey bee samples obtained immediately after almond pollination, and that weak colonies had a greater mean pathogen prevalence than strong colonies.

  12. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation.

    PubMed

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P D; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Ward, Kimiora L; Westphal, Catrin; Potts, Simon G

    2015-06-16

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.

  13. Promoting Pollinating Insects in Intensive Agricultural Matrices: Field-Scale Experimental Manipulation of Hay-Meadow Mowing Regimes and Its Effects on Bees

    PubMed Central

    Buri, Pierrick; Humbert, Jean-Yves; Arlettaz, Raphaël

    2014-01-01

    Bees are a key component of biodiversity as they ensure a crucial ecosystem service: pollination. This ecosystem service is nowadays threatened, because bees suffer from agricultural intensification. Yet, bees rarely benefit from the measures established to promote biodiversity in farmland, such as agri-environment schemes (AES). We experimentally tested if the spatio-temporal modification of mowing regimes within extensively managed hay meadows, a widespread AES, can promote bees. We applied a randomized block design, replicated 12 times across the Swiss lowlands, that consisted of three different mowing treatments: 1) first cut not before 15 June (conventional regime for meadows within Swiss AES); 2) first cut not before 15 June, as treatment 1 but with 15% of area left uncut serving as a refuge; 3) first cut not before 15 July. Bees were collected with pan traps, twice during the vegetation season (before and after mowing). Wild bee abundance and species richness significantly increased in meadows where uncut refuges were left, in comparison to meadows without refuges: there was both an immediate (within year) and cumulative (from one year to the following) positive effect of the uncut refuge treatment. An immediate positive effect of delayed mowing was also evidenced in both wild bees and honey bees. Conventional AES could easily accommodate such a simple management prescription that promotes farmland biodiversity and is likely to enhance pollination services. PMID:24416434

  14. Bumble-bee learning selects for both early and long flowering in food-deceptive plants

    PubMed Central

    Internicola, Antonina I.; Harder, Lawrence D.

    2012-01-01

    Most rewardless orchids engage in generalized food-deception, exhibiting floral traits typical of rewarding species and exploiting the instinctive foraging of pollinators. Generalized food-deceptive (GFD) orchids compete poorly with rewarding species for pollinator services, which may be overcome by flowering early in the growing season when relatively more pollinators are naive and fewer competing plant species are flowering, and/or flowering for extended periods to enhance the chance of pollinator visits. We tested these hypotheses by manipulating flowering time and duration in a natural population of Calypso bulbosa and quantifying pollinator visitation based on pollen removal. Both early and long flowering increased bumble-bee visitation compared with late and brief flowering, respectively. To identify the cause of reduced visitation during late flowering, we tested whether negative experience with C. bulbosa (avoidance learning) and positive experience with a rewarding species, Arctostaphylos uva-ursi, (associative learning) by captive bumble-bees could reduce C. bulbosa's competitiveness. Avoidance learning explained the higher visitation of early- compared with late-flowering C. bulbosa. The resulting pollinator-mediated selection for early flowering may commonly affect GFD orchids, explaining their tendency to flower earlier than rewarding orchids. For dissimilar deceptive and rewarding sympatric species, associative learning may additionally favour early flowering by GFD species. PMID:22090384

  15. Bumble-bee learning selects for both early and long flowering in food-deceptive plants.

    PubMed

    Internicola, Antonina I; Harder, Lawrence D

    2012-04-22

    Most rewardless orchids engage in generalized food-deception, exhibiting floral traits typical of rewarding species and exploiting the instinctive foraging of pollinators. Generalized food-deceptive (GFD) orchids compete poorly with rewarding species for pollinator services, which may be overcome by flowering early in the growing season when relatively more pollinators are naive and fewer competing plant species are flowering, and/or flowering for extended periods to enhance the chance of pollinator visits. We tested these hypotheses by manipulating flowering time and duration in a natural population of Calypso bulbosa and quantifying pollinator visitation based on pollen removal. Both early and long flowering increased bumble-bee visitation compared with late and brief flowering, respectively. To identify the cause of reduced visitation during late flowering, we tested whether negative experience with C. bulbosa (avoidance learning) and positive experience with a rewarding species, Arctostaphylos uva-ursi, (associative learning) by captive bumble-bees could reduce C. bulbosa's competitiveness. Avoidance learning explained the higher visitation of early- compared with late-flowering C. bulbosa. The resulting pollinator-mediated selection for early flowering may commonly affect GFD orchids, explaining their tendency to flower earlier than rewarding orchids. For dissimilar deceptive and rewarding sympatric species, associative learning may additionally favour early flowering by GFD species.

  16. Functionality of Varroa-resistant honey bees (Hymenoptera: Apidae) when used in migratory beekeeping for crop pollination.

    PubMed

    Danka, Robert G; De Guzman, Lilia I; Rinderer, Thomas E; Sylvester, H Allen; Wagener, Christine M; Bourgeois, A Lelania; Harris, Jeffrey W; Villa, José D

    2012-04-01

    Two types of honey bees, Apis mellifera L. (Hymenoptera: Apidae), bred for resistance to Varroa destructor Anderson & Trueman were evaluated for performance when used in migratory crop pollination. Colonies of Russian honey bees (RHB) and outcrossed bees with Varroa-sensitive hygiene (VSH) were managed without miticide treatments and compared with colonies of Italian honey bees that served as controls. Control colonies were managed as groups which either were treated twice each year against V. destructor (CT) or kept untreated (CU). Totals of 240 and 247 colonies were established initially for trials in 2008 and 2009, respectively. RHB and VSH colonies generally had adult and brood populations similar to those of the standard CT group regarding pollination requirements. For pollination of almonds [Prunus dulcis (Mill.) D.A.Webb] in February, percentages of colonies meeting the required six or more frames of adult bees were 57% (VSH), 56% (CT), 39% (RHB), and 34% (CU). RHB are known to have small colonies in early spring, but this can be overcome with appropriate feeding. For later pollination requirements in May to July, 94-100% of colonies in the four groups met pollination size requirements for apples (Malus domestica Borkh.), cranberries (Vaccinium macrocarpon Aiton), and lowbush blueberries (Vaccinium angustifolium Aiton). Infestations with V. destructor usually were lowest in CT colonies and tended to be lower in VSH colonies than in RHB and CU colonies. This study demonstrates that bees with the VSH trait and pure RHB offer alternatives for beekeepers to use for commercial crop pollination while reducing reliance on miticides. The high frequency of queen loss (only approximately one fourth of original queens survived each year) suggests that frequent requeening is necessary to maintain desired genetics.

  17. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards

    PubMed Central

    Russo, Laura; Park, Mia; Gibbs, Jason; Danforth, Bryan

    2015-01-01

    Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness. PMID:26380684

  18. An inert pesticide adjuvant synergizes viral pathogenicity and mortality in honey bee larvae

    USDA-ARS?s Scientific Manuscript database

    Honey bees are highly valued for their pollination services in agricultural settings, and recent declines in managed populations have caused concern. Colony losses following a major pollination event in the United States, almond pollination, have been characterized by brood mortality with specific s...

  19. Late season survey of bumble bees along Canadian highways of British Columbia and Yukon Territories.

    USDA-ARS?s Scientific Manuscript database

    Bumble bees are important pollinators of flowering plants, foraging and providing pollination services throughout the growing season. They are adapted to cool temperatures and are among the most important of all pollinators in high elevations and northern latitudes. Over the past several decades, mu...

  20. Using Nonmetric Multidimensional Scaling to Analyze Bee Visitation in East Tennessee Crops as an Indicator of Pollination Services Provided by Honey Bees (Apis mellifera L.) and Native Bees.

    PubMed

    Wilson, Michael E; Skinner, John A; Wszelaki, Annette L; Drummond, Frank

    2016-04-01

    This study investigated bee visitation on 10 agricultural crops grown on diverse small farms in Tennessee to determine the abundance of native bees and honey bees and the partitioning of visitation among crops. Summaries for each crop are used to generate mean proportions of bee visitation by categories of bees. This shows that native bee visits often occur as frequently, or in greater proportions than non-native honey bee visits. Visitation across multiple crops is then analyzed together with nonmetric multidimensional scaling to show how communities of bees that provide crop pollination change depending on the crop. Within squash and pumpkin plantings, continuous and discrete factors, such as "time of day" and "organic practices," further explain shifts in the community composition of flower visitors. Results from this study show that native bees frequently visit flowers on various crops, indicating that they are likely contributing to pollination services in addition to honey bees. Furthermore, the community of bees visiting flowers changes based on crop type, phenology, and spatial-temporal factors. Results suggest that developing pollinator conservation for farms that grow a wide variety of crops will likely require multiple conservation strategies. Farms that concentrate on a single crop may be able to tailor conservation practices toward the most important bees in their system and geographic locale. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Do specialized flowers promote reproductive isolation? Realized pollination accuracy of three sympatric Pedicularis species

    PubMed Central

    Armbruster, W. Scott; Shi, Xiao-Qing; Huang, Shuang-Quan

    2014-01-01

    Background and Aims Interest in pollinator-mediated evolutionary divergence of flower phenotype and speciation in plants has been at the core of plant evolutionary studies since Darwin. Specialized pollination is predicted to lead to reproductive isolation and promote speciation among sympatric species by promoting partitioning of (1) the species of pollinators used, (2) when pollinators are used, or (3) the sites of pollen placement. Here this last mechanism is investigated by observing the pollination accuracy of sympatric Pedicularis species (Orobanchacae). Methods Pollinator behaviour was observed on three species of Pedicularis (P. densispica, P. tricolor and P. dichotoma) in the Hengduan Mountains, south-west China. Using fluorescent powder and dyed pollen, the accuracy was assessed of stigma contact with, and pollen deposition on, pollinating bumble-bees, respectively. Key Results All three species of Pedicularis were pollinated by bumble-bees. It was found that the adaptive accuracy of female function was much higher than that of male function in all three flower species. Although peak pollen deposition corresponded to the optimal location on the pollinator (i.e. the site of stigma contact) for each species, substantial amounts of pollen were scattered over much of the bees' bodies. Conclusions The Pedicularis species studied in the eastern Himalayan region did not conform with Grant's ‘Pedicularis Model’ of mechanical reproductive isolation. The specialized flowers of this diverse group of plants seem unlikely to have increased the potential for reproductive isolation or influenced rates of speciation. It is suggested instead that the extreme species richness of the Pedicularis clade was generated in other ways and that specialized flowers and substantial pollination accuracy evolved as a response to selection generated by the diversity of co-occurring congeners. PMID:24047714

  2. The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England

    PubMed Central

    Senapathi, Deepa; Carvalheiro, Luísa G.; Biesmeijer, Jacobus C.; Dodson, Cassie-Ann; Evans, Rebecca L.; McKerchar, Megan; Morton, R. Daniel; Moss, Ellen D.; Roberts, Stuart P. M.; Kunin, William E.; Potts, Simon G.

    2015-01-01

    Change in land cover is thought to be one of the key drivers of pollinator declines, and yet there is a dearth of studies exploring the relationships between historical changes in land cover and shifts in pollinator communities. Here, we explore, for the first time, land cover changes in England over more than 80 years, and relate them to concurrent shifts in bee and wasp species richness and community composition. Using historical data from 14 sites across four counties, we quantify the key land cover changes within and around these sites and estimate the changes in richness and composition of pollinators. Land cover changes within sites, as well as changes within a 1 km radius outside the sites, have significant effects on richness and composition of bee and wasp species, with changes in edge habitats between major land classes also having a key influence. Our results highlight not just the land cover changes that may be detrimental to pollinator communities, but also provide an insight into how increases in habitat diversity may benefit species diversity, and could thus help inform policy and practice for future land management. PMID:25833861

  3. Collapse of a pollination web in small conservation areas.

    PubMed

    Pauw, Anton

    2007-07-01

    A suspected global decline in pollinators has heightened interest in their ecological significance. In a worst-case scenario, the decline of generalist pollinators is predicted to trigger cascades of linked declines among the multiple specialist plant species to which they are linked, but this has not been documented. I studied a portion of a pollination web involving a generalist pollinator, the oil-collecting bee Rediviva peringueyi, and a community of oil-secreting plants. Across 27 established conservation areas located in the Cape Floral Region, I found substantial variation in the bees' occurrence in relation to soil type and the successional stage of the vegetation. Anthropogenic declines were detectable against this background of naturally occurring variation: R. peringueyi was absent from small conservation areas (< 385 ha) in an urban matrix. In the absence of the bee, seed set failed in six specialist plant species that are pollinated only by R. peringueyi but remained high in a pollination generalist, which had replacement pollinators. The findings are consistent with theoretical predictions of the importance of generalist pollinators in maintaining the structure of pollination webs.

  4. Evaluation of native bees as pollinators of cucurbit crops under floating row covers.

    PubMed

    Minter, Logan M; Bessin, Ricardo T

    2014-10-01

    Production of cucurbit crops presents growers with numerous challenges. Several severe pests and diseases can be managed through the use of rotation, trap cropping, mechanical barriers, such as row covers, and chemical applications. However, considerations must also be made for pollinating insects, as adequate pollination affects the quantity and quality of fruit. Insecticides may negatively affect pollinators; a concern enhanced in recent years due to losses in managed Apis melifera L. colonies. Row covers can be used in place of chemical control before pollination, but when removed, pests have access to fields along with the pollinators. If pollination services of native bees could be harnessed for use under continuous row covers, both concerns could be balanced for growers. The potential of two bee species which specialize on cucurbit flowers, Peponapis pruinosa Say and Xenoglossa strenua Cresson, were assessed under continuous row covers, employed over acorn squash. Experimental treatments included plots with either naturally or artificially introduced bees under row covers and control plots with row covers either permanently removed at crop flowering, or employed continuously with no added pollinating insects. Pests in plots with permanently removed row covers were managed using standard practices used in certified organic production. Marketable yields from plots inoculated with bees were indistinguishable from those produced under standard practices, indicating this system would provide adequate yields to growers without time and monetary inputs of insecticide applications. Additionally, application of this technique was investigated for muskmelon production and discussed along with considerations for farm management.

  5. Evaluating bee (Hymenoptera: Apoidea) diversity using malaise traps in coffee landscapes of Costa Rica

    USDA-ARS?s Scientific Manuscript database

    Even though Arabica coffee (Coffea arabica Linnaeus, Rubiaceae) can self-pollinate, bees are important pollinators, without which there is lower fruit quality and yield. We studied bee diversity in coffee agroecosystems in Costa Rica during two coffee flowering seasons (2005 and 2006). Malaise traps...

  6. The synergistic effects of almond protection fungicides on honey bee (Apis mellifera) forager survival

    USDA-ARS?s Scientific Manuscript database

    The honey bee (Apis mellifera) contributes approximately $17 billion annually in pollination services performed for major agricultural crops in the United States including almond, which is completely dependent on honey bee pollination for nut set. Almond growers face challenges to crop productivity ...

  7. Special Issue: Honey Bee Viruses

    PubMed Central

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field. PMID:26702462

  8. Special Issue: Honey Bee Viruses.

    PubMed

    Gisder, Sebastian; Genersch, Elke

    2015-10-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field.

  9. Bee visitation rates to cultivated sunflowers increase with the amount and accessibility of nectar sugars

    USDA-ARS?s Scientific Manuscript database

    Pollinators make foraging decisions based on numerous floral traits, including nectar and pollen rewards, and associated visual and olfactory cues. For insect-pollinated crops, identifying and breeding for attractive floral traits may increase yields. In this study, we examined floral trait variatio...

  10. Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity.

    PubMed

    Herrera, Carlos M; Pozo, María I; Medrano, Mónica

    2013-02-01

    Through their effects on physicochemical features of floral nectar, nectar-dwelling yeasts can alter pollinator behavior, but the effect of such changes on pollination success and plant reproduction is unknown. We present results of experiments testing the effects of nectar yeasts on foraging patterns of captive and free-ranging bumble bees, and also on pollination success and fecundity of the early-blooming, bumble bee-pollinated Helleborus foetidus (Ranunculaceae). Under controlled experimental conditions, inexperienced Bombus terrestris workers responded positively to the presence of yeasts in artificial sugar solutions mimicking floral nectar by visiting proportionally more yeast-containing artificial flowers. Free-ranging bumble bees also preferred yeast-containing nectar in the field. Experiments conducted in two different years consistently showed that natural and artificial nectars containing yeasts were more thoroughly removed than nectars without yeasts. Experimental yeast inoculation of the nectar of H. foetidus flowers was significantly associated with reductions in number of pollen tubes in the style, fruit set, seed set, and mass of individual seeds produced. These results provide the first direct evidence to date that nectar yeasts can modify pollinator foraging patterns, pollination success, and the quantity and quality of seeds produced by insect-pollinated plants.

  11. The pollination mechanism in Trigonidium obtusum Lindl (Orchidaceae: Maxillariinae): sexual mimicry and trap-flowers.

    PubMed

    Singer, Rodrigo B

    2002-02-01

    The pollination process in Trigonidium obtusum Lindl. (Epidendroideae: Maxillariinae) is documented. The flowers are pollinated by sexually excited drones of Plebeia droryana (Meliponinae). When attempting to copulate either with sepals or petals, these bees slip on the waxy perianth surface and become trapped in the funnel-like flower tube. Bees trying to escape from the flowers may instead access the space between the column and lip, fixing the pollinarium on their scutellum. Pollinarium-bearing bees may pollinate the flowers when repeating the above-mentioned steps, leaving pollinia on the concave stigmatic surface, thus effecting pollination. Recently removed pollinaria are too broad to enter the stigma but they begin to dehydrate and within 40 min of removal are small enough to fit the stigmatic cavity. This mechanism prevents insect-mediated self-pollination and promotes cross-pollination. Preliminary evidence based on experiments with cultivated plants suggests that they are self-compatible but that fruit set is pollinator-dependent. The data obtained are discussed in a phylogenetic context. It is suggested that the pseudocopulatory syndrome in Trigonidium could have evolved from rewardless (food advertising) ancestors. Pseudocopulation in the context of the long flowering period of this orchid species (about 7 months) is understandable since the eusocial Plebeia bees produce fertile individuals several times a year.

  12. Effects of invasive plant species on pollinator service and reproduction in native plants at Acadia National Park

    USGS Publications Warehouse

    Stubbs, C.J.; Drummond, F.; Ginsberg, H.

    2007-01-01

    Invasive plant species can have profound negative effects on natural communities by competively excluding native species. Berberis thunbergii (Japanese barberry), Frangula alnus (glossy or alder buckthorn) and Lythrum salicaria (purple loosestrife) are invasive species known to reduce native plant diversity and are thus of great concern to Acadia National Park. Pollinators visit them for nectar and pollen. The effects of invasive plant species on pollinator behavior were investigated by comparing pollinator visitation to co-flowering native and invasive species with visitation to native species growing alone. The effect of invasives on pollination of native plants was studied by comparing fruit set in patches of the native species growing near invasives with patches far from invasive species in Acadia National Park. The coflowering pairs were as follows: in the spring native Vaccinium angustifolium (lowbush blueberry) was paired with B. thunbergii; in early summer native Viburnum nudum (wild raisin) was paired with F. alnus ; in late summer native Spiraea alba (meadowsweet) was paired with L. salicaria. We investigated whether these invasives competed with native plants for pollinators in Acadia and thus negatively affected native plant reproduction. Our objectives were to determine: 1) the influence, if any, of each invasive on pollinator visitation to a co-flowering native species, 2) factors that might affect visitation, 3) invasive pollen transfer to native plants, and 4) whether invasives influence native plant reproduction (fruit set). Our findings indicate that at times the number of flower visitors to natives was lower or the species composition of visitors different when invasives were present, that invasives sometimes attracted more pollinators, that generally the invasives were more rewarding as far as nectar and pollen availability for pollinators, and that generally native plant fruit set and seed set was not significantly lowered in the presence of the invasive. In fact, in one year fruit set of S. alba was significantly greater in the presence of L. salicaria. The number of invasive pollen grains on native stigmas was extremely low; on average less than one grain per stigma. These fruit set and pollen deposition findings indicate that native plant reproduction was not adversely affected in the short term by these invasive species and that therefore competition between the native and invasive species for pollinators did not occur. Native bee populations monitored in 2004-2005 at sites with and without B. thunbergii and/or F. alnus indicated a greater abundance of native bees at sites with these invasives present. Native bees collected from the native and invasive plants were compared with historical records to assess whether invasive plants favor different bee species than those that formerly predominated on Mount Desert Island. This does not appear to be the case. Several species of bumble bees (Bombus spp.) as well as nine solitary bee species were found that were not documented by the Procter surveys of 1917-1940. Collecting of native bees was limited to the study plants, which may, in part, explain why some bee species documented in the Procter Surveys were not found in the present research. A field guide for identification of native bumble bees has been produced to help Park Natural Resource personnel monitor the status of native bee populations in Acadia. Other educational materials were also developed, aimed at educating Park visitors by exposing them to: 1) the role of native plants and their bee pollinators in terrestrial ecosystems; 2) the effects of invasive plants on native plant-pollinator mutualisms; 3) the need for conserving native bees and other pollinators; and 4) conservation strategies for protecting and enhancing native plant-pollinator mutualisms in the Park. Based on the present findings, Acadia Park Resource Management personnel should continue to closely

  13. Risk to pollinators from the use of chlorpyrifos in the United States.

    PubMed

    Cutler, G Christopher; Purdy, John; Giesy, John P; Solomon, Keith R

    2014-01-01

    CPY is an organophosphorus insecticide that is widely used in North American agriculture. It is non-systemic, comes in several sprayable and granular formulations,and is used on a number of high-acreage crops on which pollinators can forage,including tree fruits, alfalfa, corn, sunflower, and almonds. Bees (Apoidea) are the most important pollinators of agricultural crops in North America and were the main pollinators of interest in this risk assessment.The conceptual model identified a number of potential exposure pathways for pollinators, some more significant than others. CPY is classified as being highly toxic to honey bees by direct contact exposure. However, label precautions and good agricultural practices prohibit application of CPY when bees are flying and/or when flowering crops or weeds are present in the treatment area. Therefore, the risk of CPY to pollinators through direct contact exposure should be small. The main hazards for primary exposure for honey bees are dietary and contact exposure from flowers that were sprayed during application and remain available to bees after application. The main pathways for potential secondary exposure to CPY is through pollen and nectar brought to the hive by forager bees and the sublethal body burden of CPY carried on forager bees. Foraging for other materials, including water or propolis, does not appear to be an important exposure route. Since adult forager honey bees are most exposed, their protection from exposure via pollen, honey, and contact with plant surfaces is expected to be protective of other life stages and castes of honey bees.Tier- I approaches to estimate oral exposure to CPY through pollen and nectar/honey, the principle food sources for honey bees, suggested that CPY poses a risk to honey bees through consumption of pollen and nectar. However, a Tier-2 assessment of concentrations reported in pollen and honey from monitoring work in North America indicated there is little risk of acute toxicity from CPY through consumption of these food sources.Several models were also used to estimate upper-limit exposure of honey bees to CPY through consumption of water from puddles or dew. All models suggest that the risk of CPY is below the LOC for this pathway. Laboratory experiments with field-treated foliage, and semi-field and field tests with honey bees, bumble bees,and alfalfa leaf cutting bees indicate that exposure to foliage, pollen and/or nectar is hazardous to bees up to 3 d after application of CPY to a crop. Pollinators exposed to foliage, pollen or nectar after this time should be minimally affected.Several data gaps and areas of uncertainty were identified, which apply to CPYand other foliar insecticides. These primarily concern the lack of exposure and toxicological data on non-Apis pollinators. Overall, the rarity of reported bee kill incidents involving CPY indicates that compliance with the label precautions and good agricultural practice with the product is the norm in North American agriculture.Overall, we concluded that, provided label directions and good agricultural practices are followed, the use of CPY in agriculture in North America does not present an unacceptable risk to honeybees.

  14. Innate colour preferences of the Australian native stingless bee Tetragonula carbonaria Sm.

    PubMed

    Dyer, Adrian G; Boyd-Gerny, Skye; Shrestha, Mani; Lunau, Klaus; Garcia, Jair E; Koethe, Sebastian; Wong, Bob B M

    2016-10-01

    Innate preferences promote the capacity of pollinators to find flowers. Honeybees and bumblebees have strong preferences for 'blue' stimuli, and flowers of this colour typically present higher nectar rewards. Interestingly, flowers from multiple different locations around the world independently have the same distribution in bee colour space. Currently, however, there is a paucity of data on the innate colour preferences of stingless bees that are often implicated as being key pollinators in many parts of the world. In Australia, the endemic stingless bee Tetragonula carbonaria is widely distributed and known to be an efficient pollinator of both native plants and agricultural crops. In controlled laboratory conditions, we tested the innate colour responses of naïve bees using standard broadband reflectance stimuli representative of common flower colours. Colorimetric analyses considering hymenopteran vision and a hexagon colour space revealed a difference between test colonies, and a significant effect of green contrast and an interaction effect of green contrast with spectral purity on bee choices. We also observed colour preferences for stimuli from the blue and blue-green categorical regions of colour space. Our results are discussed in relation to the similar distribution of flower colours observed from bee pollination around the world.

  15. Detoxification and stress response genes expressed in a western North American bumble bee, Bombus huntii (Hymenoptera: Apidae)

    USDA-ARS?s Scientific Manuscript database

    Bumble bees are generalist floral visitors, meaning they pollinate a wide variety of plants. Their pollination activities expose them to both plant toxins and pesticides, yet little is known about what detoxification pathways are active in bumble bees, how the expression of detoxification genes chan...

  16. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees

    USDA-ARS?s Scientific Manuscript database

    Most pollination in large-scale agriculture is dependent on managed colonies of a single species, the honey bee Apis mellifera. More than 1 million hives are transported to California each year just to pollinate the almonds, and bees are trucked across the country for various cropping systems. Conce...

  17. Orchard Pollination in Capitol Reef National Park, Utah, USA. Honey Bees or Native Bees?

    USDA-ARS?s Scientific Manuscript database

    Unlike most National Parks in the United States, Capitol Reef National Park in central Utah includes an agricultural component. The Park surrounds 22 rosaceous fruit orchards started over a century ago by Mormon pioneers. During bloom, hives of the alien honey bee are imported to pollinate the flow...

  18. 'Anti-bee' and 'pro-bird' changes during the evolution of hummingbird pollination in Penstemon flowers.

    PubMed

    Castellanos, M C; Wilson, P; Thomson, J D

    2004-07-01

    Floral phenotypes may be as much the result of selection for avoidance of some animal visitors as selection for improving the interaction with better pollinators. When specializing on hummingbird-pollination, Penstemon flowers may have evolved to improve the morphological fit between bird and flower, or to exclude less-efficient bees, or both. We hypothesized how such selection might work on four floral characters that affect the mechanics of pollen transfer: anther/stigma exsertion, presence of a lower corolla lip, width of the corolla tube, and angle of flower inclination. We surgically modified bee-pollinated P. strictus flowers changing one trait at a time to make them resemble hummingbird-pollinated P. barbatus flowers, and measured pollen transfer by bumblebees and hummingbirds. Results suggest that, apart from 'pro-bird' adaptations, specific 'anti-bee' adaptations have been important in shaping hummingbird-flowers. Moreover, some trait changes may have been selected for only if changing in concert with other traits. Copyright 2004 Blackwell Publishing Ltd

  19. Floral scent composition predicts bee pollination system in five butterfly bush (Buddleja, Scrophulariaceae) species.

    PubMed

    Gong, W-C; Chen, G; Vereecken, N J; Dunn, B L; Ma, Y-P; Sun, W-B

    2015-01-01

    Traditionally, plant-pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino-Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC-MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species-specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant-pollinator interactions in these Asian Buddleja species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Historical changes in northeastern US bee pollinators related to shared ecological traits.

    PubMed

    Bartomeus, Ignasi; Ascher, John S; Gibbs, Jason; Danforth, Bryan N; Wagner, David L; Hedtke, Shannon M; Winfree, Rachael

    2013-03-19

    Pollinators such as bees are essential to the functioning of terrestrial ecosystems. However, despite concerns about a global pollinator crisis, long-term data on the status of bee species are limited. We present a long-term study of relative rates of change for an entire regional bee fauna in the northeastern United States, based on >30,000 museum records representing 438 species. Over a 140-y period, aggregate native species richness weakly decreased, but richness declines were significant only for the genus Bombus. Of 187 native species analyzed individually, only three declined steeply, all of these in the genus Bombus. However, there were large shifts in community composition, as indicated by 56% of species showing significant changes in relative abundance over time. Traits associated with a declining relative abundance include small dietary and phenological breadth and large body size. In addition, species with lower latitudinal range boundaries are increasing in relative abundance, a finding that may represent a response to climate change. We show that despite marked increases in human population density and large changes in anthropogenic land use, aggregate native species richness declines were modest outside of the genus Bombus. At the same time, we find that certain ecological traits are associated with declines in relative abundance. These results should help target conservation efforts focused on maintaining native bee abundance and diversity and therefore the important ecosystems services that they provide.

  1. Spinosad in the native stingless bee Melipona quadrifasciata: regrettable non-target toxicity of a bioinsecticide.

    PubMed

    Tomé, Hudson Vaner V; Barbosa, Wagner F; Martins, Gustavo F; Guedes, Raul Narciso C

    2015-04-01

    The risks imposed by novel insecticides, mainly bioinsecticides, are largely unknown despite their increased use and their perceived environmental safety, which is based on their natural origin. Furthermore, unlike honeybees, native pollinator species have received little attention. In the present study, the lethal and sublethal effects of the neonicotinoid imidacloprid and the bioinsecticide spinosad were assessed in the stingless bee species Meliponaquadrifasciata, an important native pollinator in the Neotropical region. The adult stingless bee workers exhibited high oral insecticide susceptibility, with LD50s of 23.54 and 12.07 ng a.i./bee for imidacloprid and spinosad, respectively. Imidacloprid also impaired worker respiration and overall group activity and flight, while spinosad significantly impaired only worker flight despite exhibiting higher oral toxicity to adult workers than imidacloprid. These findings indicate the hazardous nature not only of imidacloprid but also the bioinsecticide spinosad to adult workers of the native pollinator M. quadrifasciata. Therefore, bioinsecticides should not be exempted from risk assessment analysis due to their lethal and sublethal components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Modeling Pollinator Community Response to Contrasting Bioenergy Scenarios

    PubMed Central

    Bennett, Ashley B.; Meehan, Timothy D.; Gratton, Claudio; Isaacs, Rufus

    2014-01-01

    In the United States, policy initiatives aimed at increasing sources of renewable energy are advancing bioenergy production, especially in the Midwest region, where agricultural landscapes dominate. While policy directives are focused on renewable fuel production, biodiversity and ecosystem services will be impacted by the land-use changes required to meet production targets. Using data from field observations, we developed empirical models for predicting abundance, diversity, and community composition of flower-visiting bees based on land cover. We used these models to explore how bees might respond under two contrasting bioenergy scenarios: annual bioenergy crop production and perennial grassland bioenergy production. In the two scenarios, 600,000 ha of marginal annual crop land or marginal grassland were converted to perennial grassland or annual row crop bioenergy production, respectively. Model projections indicate that expansion of annual bioenergy crop production at this scale will reduce bee abundance by 0 to 71%, and bee diversity by 0 to 28%, depending on location. In contrast, converting annual crops on marginal soil to perennial grasslands could increase bee abundance from 0 to 600% and increase bee diversity between 0 and 53%. Our analysis of bee community composition suggested a similar pattern, with bee communities becoming less diverse under annual bioenergy crop production, whereas bee composition transitioned towards a more diverse community dominated by wild bees under perennial bioenergy crop production. Models, like those employed here, suggest that bioenergy policies have important consequences for pollinator conservation. PMID:25365559

  3. Firm Efficiency and Returns-to-Scale in the Honey Bee Pollination Services Industry.

    PubMed

    Jones Ritten, Chian; Peck, Dannele; Ehmke, Mariah; Patalee, M A Buddhika

    2018-04-03

    While the demand for pollination services have been increasing, continued declines in honey bee, Apis mellifera L. (Hymenoptera: Apidae), colonies have put the cropping sector and the broader health of agro-ecosystems at risk. Economic factors may play a role in dwindling honey bee colony supply in the United States, but have not been extensively studied. Using data envelopment analysis (DEA), we measure technical efficiency, returns to scale, and factors influencing the efficiency of those apiaries in the northern Rocky Mountain region participating in the pollination services market. We find that, although over 25% of apiaries are technically efficient, many experience either increasing or decreasing returns to scale. Smaller apiaries (under 80 colonies) experience increasing returns to scale, but a lack of available financing may hinder them from achieving economically sustainable colony levels. Larger apiaries (over 1,000 colonies) experience decreasing returns to scale. Those beekeepers may have economic incentivizes to decrease colony numbers. Using a double bootstrap method, we find that apiary location and off-farm employment influence apiary technical efficiency. Apiaries in Wyoming are found to be more efficient than those in Utah or Montana. Further, engagement in off-farm employment increases an apiary's technical efficiency. The combined effects of efficiency gains through off-farm employment and diseconomies of scale may explain, in part, the historical decline in honey bee numbers.

  4. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation

    PubMed Central

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P.D.; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Westphal, Catrin; Potts, Simon G

    2015-01-01

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments. PMID:26079893

  5. Sensitivity of commercial pumpkin yield to potential decline among different groups of pollinating bees.

    PubMed

    Pfister, Sonja C; Eckerter, Philipp W; Schirmel, Jens; Cresswell, James E; Entling, Martin H

    2017-05-01

    The yield of animal-pollinated crops is threatened by bee declines, but its precise sensitivity is poorly known. We therefore determined the yield dependence of Hokkaido pumpkin in Germany on insect pollination by quantifying: (i) the relationship between pollen receipt and fruit set and (ii) the cumulative pollen deposition of each pollinator group. We found that approximately 2500 pollen grains per flower were needed to maximize fruit set. At the measured rates of flower visitation, we estimated that bumblebees (21 visits/flower lifetime, 864 grains/visit) or honeybees (123 visits, 260 grains) could individually achieve maximum crop yield, whereas halictid bees are ineffective (11 visits, 16 grains). The pollinator fauna was capable of delivering 20 times the necessary amount of pollen. We therefore estimate that pumpkin yield was not pollination-limited in our study region and that it is currently fairly resilient to single declines of honeybees or wild bumblebees.

  6. Sensitivity of commercial pumpkin yield to potential decline among different groups of pollinating bees

    PubMed Central

    Eckerter, Philipp W.; Schirmel, Jens; Cresswell, James E.; Entling, Martin H.

    2017-01-01

    The yield of animal-pollinated crops is threatened by bee declines, but its precise sensitivity is poorly known. We therefore determined the yield dependence of Hokkaido pumpkin in Germany on insect pollination by quantifying: (i) the relationship between pollen receipt and fruit set and (ii) the cumulative pollen deposition of each pollinator group. We found that approximately 2500 pollen grains per flower were needed to maximize fruit set. At the measured rates of flower visitation, we estimated that bumblebees (21 visits/flower lifetime, 864 grains/visit) or honeybees (123 visits, 260 grains) could individually achieve maximum crop yield, whereas halictid bees are ineffective (11 visits, 16 grains). The pollinator fauna was capable of delivering 20 times the necessary amount of pollen. We therefore estimate that pumpkin yield was not pollination-limited in our study region and that it is currently fairly resilient to single declines of honeybees or wild bumblebees. PMID:28573019

  7. Ricochet pollination in Senna (Fabaceae) - petals deflect pollen jets and promote division of labour among flower structures.

    PubMed

    Amorim, T; Marazzi, B; Soares, A A; Forni-Martins, E R; Muniz, C R; Westerkamp, C

    2017-11-01

    Naturalists Fritz and Hermann Müller hypothesised that heteranthery often leads to a division of labour into 'feeding' and 'pollinating' stamens; the latter often being as long as the pistil so as to promote successful pollination on the bees' back. In many buzz-pollinated species of Senna, however, the so-called pollinating stamens are short and not level with the stigma, raising the question of how pollen is shed on the bees' back. Here we explore a mechanism called 'ricochet pollination'. We test whether division of labour is achieved through the interaction between short lower stamens and strongly concave 'deflector petals'. We studied the arrangement and morphology of the floral organs involved in the ricochet pollination, functioning of the flowers through artificial sonication and observed the interactions between bees and flowers in the field. The middle stamens are adapted to eject pollen downwards, which can be readily collected on the bee mid legs. Most of the pollen is ejected towards the deflector petal(s). Pollen from this set of stamens is more likely to contribute to pollination. The pollen grains seem to ricochet multiple times against the deflector petals to eventually reach the bee's back. The pollen ricochet mechanism promotes a division of labour by involving additional floral organs, such as petals, reinforcing the Müllers' division-of-labour hypothesis. However, alternative, non-multiexclusive hypotheses could be explored in genus Senna and other angiosperm species. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  8. Bumble bee (Hymenoptera: Apidae) community structure on two sagebrush steppe sites in southern Idaho

    Treesearch

    Stephen P. Cook; Sara M. Birch; Frank W. Merickel; Carrie Caselton Lowe; Deborah Page-Dumroese

    2011-01-01

    Although sagebrush, Artemisia spp., does not require an insect pollinator, there are several native species of bumble bees, Bombus spp. (Hymenoptera: Apidae), that are present in sagebrush steppe ecosystems where they act as pollinators for various forbs and shrubs. These native pollinators contribute to plant productivity and reproduction. We captured 12 species of...

  9. The most effective pollinator principle applies to new invasive pollinators.

    PubMed

    Medel, Rodrigo; González-Browne, Catalina; Salazar, Daniela; Ferrer, Pedro; Ehrenfeld, Mildred

    2018-06-01

    G. L. Stebbins' most effective pollinator principle states that when pollinators are not limiting, plants are expected to specialize and adapt to the most abundant and effective pollinator species available. In this study, we quantify the effectiveness of bees, hummingbirds and hawkmoths in a Chilean population of Erythranthe lutea (Phrymaceae), and examine whether flower traits are subject to pollinator-mediated selection by the most effective pollinator species during two consecutive years. Unlike most species in the pollinator community, the visitation rate of the recently arrived Bombus terrestris did not change substantially between years, which together with its high and stable pollen delivery to flower stigmas made this species the most important in the pollinator assemblage, followed by the solitary bee Centris nigerrima Flower traits were under significant selection in the direction expected for short-tongue bees, suggesting that E. lutea is in the initial steps of adaptation to the highly effective exotic bumblebee . Our results illustrate the applicability of Stebbins' principle for new invasive pollinators, and stress their importance in driving flower adaptation of native plant species, a critical issue in the face of biotic exchange and homogenization. © 2018 The Author(s).

  10. Effects of habitat isolation on pollinator communities and seed set.

    PubMed

    Steffan-Dewenter, I; Tscharntke, Teja

    1999-11-01

    Destruction and fragmentation of natural habitats is the major reason for the decreasing biodiversity in the agricultural landscape. Loss of populations may negatively affect biotic interactions and ecosystem stability. Here we tested the hypothesis that habitat fragmentation affects bee populations and thereby disrupts plant-pollinator interactions. We experimentally established small "habitat islands" of two self-incompatible, annual crucifers on eight calcareous grasslands and in the intensively managed agricultural landscape at increasing distances (up to 1000 m) from these species-rich grasslands to measure effects of isolation on both pollinator guilds and seed set, independently from patch size and density, resource availability and genetic erosion of plant populations. Each habitat island consisted of four pots each with one plant of mustard (Sinapis arvensis) and radish (Raphanus sativus). Increasing isolation of the small habitat islands resulted in both decreased abundance and species richness of flower-visiting bees (Hymenoptera: Apoidea). Mean body size of flower-visiting wild bees was larger on isolated than on nonisolated habitat islands emphasizing the positive correlation of body size and foraging distance. Abundance of flower-visiting honeybees depended on the distance from the nearest apiary. Abundance of other flower visitors such as hover flies did not change with increasing isolation. Number of seeds per fruit and per plant decreased significantly with increasing distance from the nearest grassland for both mustard and radish. Mean seed set per plant was halved at a distance of approximately 1000 m for mustard and at 250 m for radish. In accordance with expectations, seed set per plant was positively correlated with the number of flower-visiting bees. We found no evidence for resource limitation in the case of mustard and only marginal effects for radish. We conclude that habitat connectivity is essential to maintain not only abundant and diverse bee communities, but also plant-pollinator interactions in economically important crops and endangered wild plants.

  11. Behavior and pollination efficiency of Nannotrigona perilampoides (Hymenoptera: Meliponini) on greenhouse tomatoes (Lycopersicon esculentum) in subtropical México.

    PubMed

    Cauich, Orlando; Quezada-Euán, José Javier G; Macias-Macias, José Octavio; Reyes-Oregel, Vicente; Medina-Peralta, Salvador; Parra-Tabla, Victor

    2004-04-01

    The acclimation, foraging behavior, and pollination efficiency of stingless bees of the species Nannotrigona perilampoides Cresson were evaluated in tomato (Lycopersicon esculentum Mill.) plants cultivated in two greenhouses. The greenhouses were divided into three areas of 16 m2, and one of the following treatments was used for pollination: stingless bees (SB), mechanical vibration (MV), and no pollination (NP). Observations were conducted once a week from 0800 to 1600 hours during 2 mo. The acclimation of the bees to the greenhouses was estimated by the number of bees that did not return to the hive (lost bees) and by comparing the population of the colonies (brood and adults). The foraging activity of the bees across the day was evaluated by comparing the number of foragers per hour. The influence of environmental variables on the foraging activity was also analyzed. The pollination efficiency was compared among treatments through the percentage of fruit set, weight of individual fruit, kilograms of fruit produced per square meter, and the number of seed per fruit. The bees started foraging on the flowers approximately 7 d after the colonies were introduced to the greenhouse. There was a decline in the population of the colonies across the experiment, but colonies did not die out. Correlations of environmental variables with the foraging activity of the bees showed that none of them had a significant influence on pollen foraging. However, water collection was positively correlated with the temperature and negatively correlated with the humidity inside the greenhouse. The estimation of the pollination efficiency per treatment showed that there were significant differences in fruit set in SB (83 +/- 4.2) and MV (78.5 +/- 6.4) compared with NP (52.6 +/- 7.6). However, the average weight of the fruit was similar for the three treatments (65 g). There were significant differences for seed number in SB (200 +/- 15.3) and MV (232 +/- 21.4) compared with NP (120 +/- 16.6). The productivity in kilograms of fruit per square meter was higher in SB (5.72 +/- 0.61) and MV (5.66 +/- 0.58 kg) compared with NP (3.34 +/- 0.72). The number of seed was positively correlated with the weight of the fruit. We conclude that the use of Nannotrigona testaceicornis Rondani, for pollinating greenhouse tomatoes in tropical climates, could be an alternative to the use of highly defensive African-derived Apis mellifera or non-native bumble bees (Bombus spp.). However, more research is needed to evaluate the cost/benefit on large-scale greenhouse pollination using N. perilampoides Cresson against other bee species and pollination methods.

  12. Sterile flowers increase pollinator attraction and promote female success in the Mediterranean herb Leopoldia comosa

    PubMed Central

    Morales, Carolina L.; Traveset, Anna; Harder, Lawrence D.

    2013-01-01

    Background and Aims Large floral displays have opposing consequences for animal-pollinated angiosperms: they attract more pollinators but also enable elevated among-flower self-pollination (geitonogamy). The presence of sterile flowers as pollinator signals may enhance attraction while allowing displays of fewer open fertile flowers, limiting geitonogamy. The simultaneous contributions of fertile and non-fertile display components to pollinator attraction and reproductive output remain undetermined. Methods The simultaneous effects of the presence of sterile flowers and fertile-flower display size in two populations of Leopoldia comosa were experimentally assessed. Pollinator behaviour, pollen removal and deposition, and fruit and seed production were compared between intact plants and plants with sterile flowers removed. Key Results The presence of sterile flowers almost tripled pollinator attraction, supplementing the positive effect of the number of fertile flowers on the number of bees approaching inflorescences. Although attracted bees visited more flowers on larger inflorescences, the number visited did not additionally depend on the presence of sterile flowers. The presence of sterile flowers improved all aspects of plant performance, the magnitude of plant benefit being context dependent. During weather favourable to pollinators, the presence of sterile flowers increased pollen deposition on stigmas of young flowers, but this difference was not evident in older flowers, probably because of autonomous self-pollination in poorly visited flowers. Total pollen receipt per stigma decreased with increasing fertile display size. In the population with more pollinators, the presence of sterile flowers increased fruit number but not seed set or mass, whereas in the other population sterile flowers enhanced seeds per fruit, but not fruit production. These contrasts are consistent with dissimilar cross-pollination and autonomous self-pollination, coupled with the strong predispersal inbreeding depression exhibited by L. comosa populations. Conclusions Sterile flowers enrich pollination quality by promoting pollen export and import, while limiting the mating costs of geitonogamy associated with large fertile displays. PMID:23131298

  13. Selenium toxicity to honey bee (Apis mellifera L.) pollinators: effects on behaviors and survival.

    PubMed

    Hladun, Kristen R; Smith, Brian H; Mustard, Julie A; Morton, Ray R; Trumble, John T

    2012-01-01

    We know very little about how soil-borne pollutants such as selenium (Se) can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few studies have examined its effects on the insects that feed on Se-accumulating plants, particularly pollinators. In laboratory bioassays, we used proboscis extension reflex (PER) and taste perception to determine if the presence of Se affected the gustatory response of honey bee (Apis mellifera L., Hymenoptera: Apidae) foragers. Antennae and proboscises were stimulated with both organic (selenomethionine) and inorganic (selenate) forms of Se that commonly occur in Se-accumulating plants. Methionine was also tested. Each compound was dissolved in 1 M sucrose at 5 concentrations, with sucrose alone as a control. Antennal stimulation with selenomethionine and methionine reduced PER at higher concentrations. Selenate did not reduce gustatory behaviors. Two hours after being fed the treatments, bees were tested for sucrose response threshold. Bees fed selenate responded less to sucrose stimulation. Mortality was higher in bees chronically dosed with selenate compared with a single dose. Selenomethionine did not increase mortality except at the highest concentration. Methionine did not significantly impact survival. Our study has shown that bees fed selenate were less responsive to sucrose, which may lead to a reduction in incoming floral resources needed to support coworkers and larvae in the field. If honey bees forage on nectar containing Se (particularly selenate), reductions in population numbers may occur due to direct toxicity. Given that honey bees are willing to consume food resources containing Se and may not avoid Se compounds in the plant tissues on which they are foraging, they may suffer similar adverse effects as seen in other insect guilds.

  14. Selenium Toxicity to Honey Bee (Apis mellifera L.) Pollinators: Effects on Behaviors and Survival

    PubMed Central

    Hladun, Kristen R.; Smith, Brian H.; Mustard, Julie A.; Morton, Ray R.; Trumble, John T.

    2012-01-01

    We know very little about how soil-borne pollutants such as selenium (Se) can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few studies have examined its effects on the insects that feed on Se-accumulating plants, particularly pollinators. In laboratory bioassays, we used proboscis extension reflex (PER) and taste perception to determine if the presence of Se affected the gustatory response of honey bee (Apis mellifera L., Hymenoptera: Apidae) foragers. Antennae and proboscises were stimulated with both organic (selenomethionine) and inorganic (selenate) forms of Se that commonly occur in Se-accumulating plants. Methionine was also tested. Each compound was dissolved in 1 M sucrose at 5 concentrations, with sucrose alone as a control. Antennal stimulation with selenomethionine and methionine reduced PER at higher concentrations. Selenate did not reduce gustatory behaviors. Two hours after being fed the treatments, bees were tested for sucrose response threshold. Bees fed selenate responded less to sucrose stimulation. Mortality was higher in bees chronically dosed with selenate compared with a single dose. Selenomethionine did not increase mortality except at the highest concentration. Methionine did not significantly impact survival. Our study has shown that bees fed selenate were less responsive to sucrose, which may lead to a reduction in incoming floral resources needed to support coworkers and larvae in the field. If honey bees forage on nectar containing Se (particularly selenate), reductions in population numbers may occur due to direct toxicity. Given that honey bees are willing to consume food resources containing Se and may not avoid Se compounds in the plant tissues on which they are foraging, they may suffer similar adverse effects as seen in other insect guilds. PMID:22514621

  15. The European wool-carder bee (Anthidium manicatum) eavesdrops on plant volatile organic compounds (VOCs) during trichome collection.

    PubMed

    Graham, Kelsey K; Brown, Steve; Clarke, Stephanie; Röse, Ursula S R; Starks, Philip T

    2017-11-01

    The plant-pollinator relationship is generally considered mutualistic. This relationship is less clear, however, when pollinators also cause tissue damage. Some Megachilidae bees collect plant material for nests from the plants they pollinate. In this study, we examined the relationship between Anthidium manicatum, the European wool-carder bee, and the source of its preferred nesting material - Stachys byzantina, lamb's ear. Female A. manicatum use their mandibles to trim trichomes from plants for nesting material (a behaviour dubbed "carding"). Using volatile organic compound (VOC) headspace analysis and behavioural observations, we explored (a) how carding effects S. byzantina and (b) how A. manicatum may choose specific S. byzantina plants. We found that removal of trichomes leads to a dissimilar VOC bouquet compared to intact leaves, with a significant increase in VOC detection following damage. A. manicatum also visit S. byzantina plants with trichomes removed at a greater frequency compared to plants with trichomes intact. Our data suggest that A. manicatum eavesdrop on VOCs produced by damaged plants, leading to more carding damage for individual plants due to increased detectability by A. manicatum. Accordingly, visitation by A. manicatum to S. byzantina may incur both a benefit (pollination) and cost (tissue damage) to the plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Nectar replenishment maintains the neutral effects of nectar robbing on female reproductive success of Salvia przewalskii (Lamiaceae), a plant pollinated and robbed by bumble bees

    PubMed Central

    Ye, Zhong-Ming; Jin, Xiao-Fang; Inouye, David W.

    2017-01-01

    Background and Aims It has been suggested that the dynamics of nectar replenishment could differ for flowers after being nectar robbed or visited legitimately, but further experimental work is needed to investigate this hypothesis. This study aimed to assess the role of nectar replenishment in mediating the effects of nectar robbing on pollinator behaviour and plant reproduction. Methods Plant–robber–pollinator interactions in an alpine plant, Salvia przewalskii, were studied. It is pollinated by long-tongued Bombus religiosus and short-tongued B. friseanus, but robbed by B. friseanus. Nectar production rates for flowers after they were either robbed or legitimately visited were compared, and three levels of nectar robbing were created to detect the effects of nectar robbing on pollinator behaviour and plant reproduction. Key Results Nectar replenishment did not differ between flowers that had been robbed or legitimately visited. Neither fruit set nor seed set was significantly affected by nectar robbing. In addition, nectar robbing did not significantly affect visitation rate, flowers visited within a plant per foraging bout, or flower handling time of the legitimate pollinators. However, a tendency for a decrease in relative abundance of the pollinator B. religiosus with an increase of nectar robbing was found. Conclusions Nectar robbing did not affect female reproductive success because nectar replenishment ensures that pollinators maintain their visiting activity to nectar-robbed flowers. Nectar replenishment might be a defence mechanism against nectar robbing to enhance reproductive fitness by maintaining attractiveness to pollinators. Further studies are needed to reveal the potential for interference competition among bumble bees foraging as robbers and legitimate visitors, and to investigate variation of nectar robbing in communities with different bumble bee species composition. PMID:28158409

  17. The Pollination Mechanism in Trigonidium obtusum Lindl (Orchidaceae: Maxillariinae): Sexual Mimicry and Trap‐flowers

    PubMed Central

    SINGER, RODRIGO B.

    2002-01-01

    The pollination process in Trigonidium obtusum Lindl. (Epidendroideae: Maxillariinae) is documented. The flowers are pollinated by sexually excited drones of Plebeia droryana (Meliponinae). When attempting to copulate either with sepals or petals, these bees slip on the waxy perianth surface and become trapped in the funnel‐like flower tube. Bees trying to escape from the flowers may instead access the space between the column and lip, fixing the pollinarium on their scutellum. Pollinarium‐bearing bees may pollinate the flowers when repeating the above‐mentioned steps, leaving pollinia on the concave stigmatic surface, thus effecting pollination. Recently removed pollinaria are too broad to enter the stigma but they begin to dehydrate and within 40 min of removal are small enough to fit the stigmatic cavity. This mechanism prevents insect‐mediated self‐pollination and promotes cross‐pollination. Preliminary evidence based on experiments with cultivated plants suggests that they are self‐compatible but that fruit set is pollinator‐dependent. The data obtained are discussed in a phylogenetic context. It is suggested that the pseudocopulatory syndrome in Trigonidium could have evolved from rewardless (food advertising) ancestors. Pseudocopulation in the context of the long flowering period of this orchid species (about 7 months) is understandable since the eusocial Plebeia bees produce fertile individuals several times a year. PMID:12099346

  18. Pollinators in peril? A multipark approach to evaluating bee communities in habitats vulnerable to effects from climate change

    USGS Publications Warehouse

    Rykken, Jessica; Rodman, Ann; Droege, Sam; Grundel, Ralph

    2014-01-01

    In 2010, collaborators from the National Park Service (Ann Rodman, Yellowstone National Park), USGS (Sam Droege and Ralph Grundel), and Harvard University (Jessica Rykken) were awarded funding from the NPS Climate Change Response Program to launch just such an investigation in almost 50 units of the National Park System (fig. 1). The main objectives of this multiyear project were to: Compare bee communities in three “vulnerable” habitats (high elevation, inland arid, coastal) and paired “common” habitats, representative of the landscape matrix, in order to determine whether vulnerable habitats have a distinctive bee fauna that may be at higher risk under climate change scenarios. Inform natural resource managers at each park about the bee fauna at their paired sites, including the presence of rare and endemic species, and make suggestions for active management strategies to promote native bee habitat if warranted. Increase awareness among park natural resource staffs, interpreters, and visitors of native bee diversity and natural history, the essential role of bees in maintaining healthy ecosystems, and potential threats from climate change to pollinator-dependent ecosystems.

  19. Potential pollinators of Comolia ovalifolia DC Triana (Melastomataceae) and Chamaecrista ramosa (Vog.) H.S. Irwin and Barneby var. ramosa (Leguminosae-Caesalpinioideae), in restinga, Bahia, Brazil.

    PubMed

    Oliveira-Rebouças, P; Gimenes, M

    2011-05-01

    Comolia ovalifolia DC Triana (Melastomataceae) and Chamaecrista ramosa (Vog.) H.S. Irwin and Barneby var. ramosa (Leguminosae-Caesalpinioideae) are tropical plant species found in restinga (herbaceous-shrubby, sandy costal ecosystems). They have flowers with poricidal anthers and are pollinated by bees. The study sought to analyse potential pollinators of both plants during visits to their flowers in a restinga area in Bahia. The flowering displayed by both species was considered continuous and long duration, constantly providing pollen to floral visitors. C. ovalifolia was visited by 17 species of bees and C. ramosa by 16 species, predominantly from the Apidae family (with a similarity index of 74%). The behavior displayed by these visiting bees was of vibrating anthers. The small-sized Euglossa sp. Latreille, 1802 and Florilegus similis Urban, 1970 bees played less of a role as pollinators, since they rarely touched the flower stigma during harvests and were thus considered opportunist visitors or casual pollinators. Centris decolorata Lepetier, 1841 (= C. leprieuri) and Xylocopa subcyanea Perez, 1901 are large bees and were considered efficient pollinators of C. ovalifolia and C. ramosa because of the higher frequency and constancy of their visits, and their favourable behaviour and size for pollen transfer between flowers, which guarantees the survival of these native restinga plant species.

  20. Pterandra pyroidea: a case of pollination shift within Neotropical Malpighiaceae

    PubMed Central

    Cappellari, Simone C.; Haleem, Muhammad A.; Marsaioli, Anita J.; Tidon, Rosana; Simpson, Beryl B.

    2011-01-01

    Background and Aims Most Neotropical species of Malpighiaceae produce floral fatty oils in calyx glands to attract pollinating oil-collecting bees, which depend on this resource for reproduction. This specialized type of pollination system tends to be lost in members of the family that occur outside the geographic distribution (e.g. Africa) of Neotropical oil-collecting bees. This study focused on the pollination ecology, chemical ecology and reproductive biology of an oil flower species, Pterandra pyroidea (Malpighiaceae) from the Brazilian Cerrado. Populations of this species consist of plants with oil-secreting (glandular) flowers, plants with non-oil-secreting flowers (eglandular) or a mix of both plant types. This study specifically aims to clarify the role of eglandular morphs in this species. Methods Data on pollinators were recorded by in situ observations. Breeding system experiments were conducted by isolating inflorescences and by enzymatic reactions. Floral resources, pollen and floral oils offered by this species were analysed by staining and a combination of various spectroscopic methods. Key Results Eglandular flowers of P. pyroidea do not act as mimics of their oil-producing conspecifics to attract pollinators. Instead, both oil-producing and oil-free flowers depend on pollen-collecting bees for reproduction, and their main pollinators are bumble-bees. Floral oils produced by glandular flowers are less complex than those described in closely related genera. Conclusions Eglandular flowers represent a shift in the pollination system in which oil is being lost and pollen is becoming the main reward of P. pyroidea flowers. Pollination shifts of this kind have hitherto not been demonstrated empirically within Neotropical Malpighiaceae and this species exhibits an unusual transition from a specialized towards a generalized pollination system in an area considered the hotspot of oil-collecting bee diversity in the Neotropics. Transitions of this type provide an opportunity to study ongoing evolutionary mechanisms that promote the persistence of species previously involved in specialized mutualistic relationships. PMID:21610210

  1. Pollen Bearing Honey Bee Detection in Hive Entrance Video Recorded by Remote Embedded System for Pollination Monitoring

    NASA Astrophysics Data System (ADS)

    Babic, Z.; Pilipovic, R.; Risojevic, V.; Mirjanic, G.

    2016-06-01

    Honey bees have crucial role in pollination across the world. This paper presents a simple, non-invasive, system for pollen bearing honey bee detection in surveillance video obtained at the entrance of a hive. The proposed system can be used as a part of a more complex system for tracking and counting of honey bees with remote pollination monitoring as a final goal. The proposed method is executed in real time on embedded systems co-located with a hive. Background subtraction, color segmentation and morphology methods are used for segmentation of honey bees. Classification in two classes, pollen bearing honey bees and honey bees that do not have pollen load, is performed using nearest mean classifier, with a simple descriptor consisting of color variance and eccentricity features. On in-house data set we achieved correct classification rate of 88.7% with 50 training images per class. We show that the obtained classification results are not far behind from the results of state-of-the-art image classification methods. That favors the proposed method, particularly having in mind that real time video transmission to remote high performance computing workstation is still an issue, and transfer of obtained parameters of pollination process is much easier.

  2. Flower-visiting behavior of male bees is triggered by nectar-feeding insects.

    PubMed

    Sugiura, Shinji; Abe, Tetsuto; Yamaura, Yuichi; Makino, Shun'ichi

    2007-08-01

    Bees are important pollinators for many flowering plants. Female bees are thought to be more effective pollinators than male bees because they carry much more pollen than males. Males of some solitary bee species are known to patrol near flowers that females visit. Because patrolling males visit flowers to mate or defend their territories, they may function as pollinators. However, the significance of patrolling males to pollination has not been studied. We studied males of a solitary bee, Heriades fulvohispidus (Megachilidae), patrolling near flowers and visiting flowers that attracted nectar-feeding insects, including conspecifics, on the Ogasawara (Bonin) Islands. To test the hypothesis that patrolling male bees may function as pollen vectors, we compared the frequency of visits by H. fulvohispidus to flowers of an endemic plant, Schima mertensiana (Theaceae); comparisons were made among flowers with a dead H. fulvohispidus, a dead beetle, a piece of plastic, and nothing (control flowers). Patrolling H. fulvohispidus more frequently visited flowers with a dead conspecific, a dead beetle, or a piece of plastic than the control flowers. Our experiment demonstrates that nectar-feeding insects (including conspecifics and other insects) enhance the flower-visiting frequency of patrolling H. fulvohispidus males on S. mertensiana flowers. Furthermore, we observed S. mertensiana pollen on patrolling males as well as females, suggesting that male bees may also function as pollen vectors.

  3. Flower-visiting behavior of male bees is triggered by nectar-feeding insects

    NASA Astrophysics Data System (ADS)

    Sugiura, Shinji; Abe, Tetsuto; Yamaura, Yuichi; Makino, Shun'ichi

    2007-08-01

    Bees are important pollinators for many flowering plants. Female bees are thought to be more effective pollinators than male bees because they carry much more pollen than males. Males of some solitary bee species are known to patrol near flowers that females visit. Because patrolling males visit flowers to mate or defend their territories, they may function as pollinators. However, the significance of patrolling males to pollination has not been studied. We studied males of a solitary bee, Heriades fulvohispidus (Megachilidae), patrolling near flowers and visiting flowers that attracted nectar-feeding insects, including conspecifics, on the Ogasawara (Bonin) Islands. To test the hypothesis that patrolling male bees may function as pollen vectors, we compared the frequency of visits by H. fulvohispidus to flowers of an endemic plant, Schima mertensiana (Theaceae); comparisons were made among flowers with a dead H. fulvohispidus, a dead beetle, a piece of plastic, and nothing (control flowers). Patrolling H. fulvohispidus more frequently visited flowers with a dead conspecific, a dead beetle, or a piece of plastic than the control flowers. Our experiment demonstrates that nectar-feeding insects (including conspecifics and other insects) enhance the flower-visiting frequency of patrolling H. fulvohispidus males on S. mertensiana flowers. Furthermore, we observed S. mertensiana pollen on patrolling males as well as females, suggesting that male bees may also function as pollen vectors.

  4. The effect of nest box distribution on sustainable propagation of Osmia lignaria (Hymenoptera: Megachilidae) in commercial tart cherry orchards

    USDA-ARS?s Scientific Manuscript database

    The blue orchard bee, Osmia lignaria Say, is a solitary, native bee that is an excellent pollinator of tree fruit orchards. Due to the annual rising costs of honey bee hive rentals, many orchardists are eager to develop management tools and practices to support O. lignaria as alternative pollinator...

  5. A scientific note on Bombus (Psithyrus) insularis invasions of bumble bee nests and honey bee hives in the western United States

    USDA-ARS?s Scientific Manuscript database

    Bumble bees (genus Bombus) are critical pollinators of flowering plants, yet some species are obligate social parasites that do little pollinating and reduce the fitness of the colonies they invade. In 2012 we observed an outbreak of the parasitic Bombus insularis in the Cache Valley of Northern Ut...

  6. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea

    PubMed Central

    Thairu, Margaret W.; Brunet, Johanne

    2015-01-01

    Background and Aims Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Methods Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Key Results Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Conclusions Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. PMID:25808657

  7. Pollinator-independent orchid attracts biotic pollinators due the production of lipoidal substances.

    PubMed

    Pansarin, E R; Bergamo, P J; Ferreira-Caliman, M J

    2018-03-01

    Flowering plants often depend on the attraction of biotic pollinators for sexual reproduction. Consequently, the emergence and maintenance of selected floral attributes related to pollinator attraction and rewarding are driven by pollinator pressure. In this paper we explore the effect of pollinators, rainfall, temperature and air humidity on the reproduction of a Brazilian terrestrial orchid, Cranichis candida based on data of phenology, flower resources, olfactory and visual attraction cues, pollinators and breeding system. The flowers of C. candida are strongly protandrous and pollinated by workers of the social native bee Tetragonisca angustula. The bees collect labellar lipoidal substances (wax scales), which are transported to the nest. The lipoidal substance is composed of sterols, hydrocarbons and terpenes. The last presumably protects the bees and their nests against pathogens and other arthropods. C. candida sets fruits through biotic self- and cross-pollination, and spontaneously due the action of raindrops on flowers. Our results indicate that in C. candida, although rain-mediated spontaneous self-pollination happens, fructification mediated by biotic pollinations also occurs, which may result in fruit set by cross-pollination. A mixed pollination system must result in higher genetic variability when compared to species whose fruits are produced entirely by self-pollination. On the other hand, autogamy is a form of reproductive assurance, and has commonly evolved where pollination services are rare or absent. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  8. Temporal, but not spatial, changes in expression patterns of petal identity genes are associated with loss of papillate conical cells and the shift to bird pollination in Macaronesian Lotus (Leguminosae).

    PubMed

    Ojeda, D I; Jaén-Molina, R; Santos-Guerra, A; Caujape-Castells, J; Cronk, Q

    2017-05-01

    In the generally bee-pollinated genus Lotus a group of four species have evolved bird-pollinated flowers. The floral changes in these species include altered petal orientation, shape and texture. In Lotus these characters are associated with dorsiventral petal identity, suggesting that shifts in the expression of dorsal identity genes may be involved in the evolution of bird pollination. Of particular interest is Lotus japonicus CYCLOIDEA 2 (LjCYC2), known to determine the presence of papillate conical cells on the dorsal petal in L. japonicus. Bird-pollinated species are unusual in not having papillate conical cells on the dorsal petal. Using RT-PCR at various stages of flower development, we determined the timing of expression in all petal types for the three putative petal identity genes (CYC-like genes) in different species with contrasting floral morphology and pollination syndromes. In bird-pollinated species the dorsal identity gene, LjCYC2, is not expressed at the floral stage when papillate conical cells are normally differentiating in bee-pollinated species. In contrast, in bee-pollinated species, LjCYC2 is expressed during conical cell development. Changes in the timing of expression of the above two genes are associated with modifications in petal growth and lateralisation of the dorsal and ventral petals in the bird-pollinated species. This study indicates that changes in the timing, rather than spatial distribution, of expression likely contribute to the modifications of petal micromorphology and petal size during the transition from bee to bird pollination in Macaronesian Lotus species. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants.

    PubMed

    Stanley, Dara A; Raine, Nigel E

    2016-07-01

    Insect pollinators are essential for both the production of a large proportion of world crops and the health of natural ecosystems. As important pollinators, bumblebees must learn to forage on flowers to feed both themselves and provision their colonies.Increased use of pesticides has caused concern over sublethal effects on bees, such as impacts on reproduction or learning ability. However, little is known about how sublethal exposure to field-realistic levels of pesticide might affect the ability of bees to visit and manipulate flowers.We observed the behaviour of individual bumblebees from colonies chronically exposed to a neonicotinoid pesticide (10 ppb thiamethoxam) or control solutions foraging for the first time on an array of morphologically complex wildflowers ( Lotus corniculatus and Trifolium repens ) in an outdoor flight arena.We found that more bees released from pesticide-treated colonies became foragers, and that they visited more L. corniculatus flowers than controls. Interestingly, bees exposed to pesticide collected pollen more often than controls, but control bees learnt to handle flowers efficiently after fewer learning visits than bees exposed to pesticide. There were also different initial floral preferences of our treatment groups; control bees visited a higher proportion of T. repens flowers, and bees exposed to pesticide were more likely to choose L. corniculatus on their first visit.Our results suggest that the foraging behaviour of bumblebees on real flowers can be altered by sublethal exposure to field-realistic levels of pesticide. This has implications for the foraging success and persistence of bumblebee colonies, but perhaps more importantly for the interactions between wild plants and flower-visiting insects and ability of bees to deliver the crucial pollination services to plants necessary for ecosystem functioning.

  10. Pollination syndromes in African Marantaceae.

    PubMed

    Ley, Alexandra C; Classen-Bockhoff, Regine

    2009-07-01

    The Marantaceae (550 spp.) is the most derived family in the order Zingiberales and exhibits a complex explosive pollination mechanism. To understand the evolutionary significance of this unique process of pollen transfer, comparative morphological and ecological studies were conducted in Gabon. During a total stay of 11 months, 31 species of Marantaceae were investigated at different sites in Gabon. The study included analyses of floral diversity, observations on the pollinator spectrum as well as ecological measurements (e.g. nectar sugar concentration and volume). Analyses reveal five flower types based on flower size and pigmentation, spatial arrangement of the floral tube and presence/absence of nectar guides and conspicuous outer staminodes. Each type is associated with a specific functional pollinator group leading to the description of distinct pollination syndromes. The 'small (horizontal)' flowers are predominantly pollinated by small bees (Thrinchostoma spp., Allodapula ornaticeps), the 'large (horizontal)' and 'medium-sized (horizontal)' flowers by medium-sized bees (Amegilla vivida, Thrinchostoma bicometes), the 'locked (horizontal)' flowers by large bees (Xylocopa nigrita, X. varipes) and the '(large) vertical' flowers by sunbirds. The longevity of Marantaceae individuals and the omnipresence of their pollinators allowed the specialization to a given functional pollinator group. Intermediate ecological values, however, make occasional pollinator overlaps possible, indicating potential pathways of pollinator shifts. Similar radiation tendencies observed on other continents hint at similar selective pressures and evolutionary constraints.

  11. Pollination of Cambessedesia wurdackii in Brazilian campo rupestre vegetation, with special reference to crepuscular bees.

    PubMed

    Franco, Emanuella Lopes; Gimenes, Miriam

    2011-01-01

    Cambessedesia wurdackii Martins (Myrtales: Melastomataceae) is presumably endemic to the Chapada Diamantina, Bahia State, Brazil. A majority of the species of this family are pollinated by diurnal bees that buzz the floral anthers to collect pollen. The present work examined the interactions between C. wurdackii and visiting bees, focusing on temporal, morphological, and behavioral features, especially in regards to the crepuscular bees Megalopta sodalis (Vachal) (Hymenoptera: Halictidae) and Ptiloglossa off. dubia Moure (Hymenoptera: Colletidae). The study was undertaken in an area of campo rupestre montane savanna vegetation located in the Chapada Diamantina Mountains of Bahia State, Brazil, between August/2007 and July/2008. Flowering in C. wurdackii occurred from April through July, with a peak in May. A total of 592 visits by diurnal and crepuscular bees to the flowers of C. wurdackii were recorded, with a majority of the visits made by M. sodalis and P. dubia (92%) near sunrise and sunset. The anthers of C. wurdackii are arranged in two tiers, which favors cross pollination. The morphological, temporal and behavioral characteristics of M. sodalis and P. dubia indicated that they were potential pollinators of C. wurdackii, in spite of the fact that the colorful and showy flowers of this species are more typical of a diurnal melittophilous pollination syndrome.

  12. Pollination of Cambessedesia wurdackii in Brazilian Campo Rupestre Vegetation, with Special Reference to Crepuscular Bees

    PubMed Central

    Franco, Emanuella Lopes; Gimenes, Miriam

    2011-01-01

    Cambessedesia wurdackii Martins (Myrtales: Melastomataceae) is presumably endemic to the Chapada Diamantina, Bahia State, Brazil. A majority of the species of this family are pollinated by diurnal bees that buzz the floral anthers to collect pollen. The present work examined the interactions between C. wurdackii and visiting bees, focusing on temporal, morphological, and behavioral features, especially in regards to the crepuscular bees Megalopta sodalis (Vachal) (Hymenoptera: Halictidae) and Ptiloglossa off. dubia Moure (Hymenoptera: Colletidae). The study was undertaken in an area of campo rupestre montane savanna vegetation located in the Chapada Diamantina Mountains of Bahia State, Brazil, between August/2007 and July/2008. Flowering in C. wurdackii occurred from April through July, with a peak in May. A total of 592 visits by diurnal and crepuscular bees to the flowers of C. wurdackii were recorded, with a majority of the visits made by M. sodalis and P. dubia (92%) near sunrise and sunset. The anthers of C. wurdackii are arranged in two tiers, which favors cross pollination. The morphological, temporal and behavioral characteristics of M. sodalis and P. dubia indicated that they were potential pollinators of C. wurdackii, in spite of the fact that the colorful and showy flowers of this species are more typical of a diurnal melittophilous pollination syndrome. PMID:22208813

  13. Understanding Barriers to Participation in Cost-Share Programs For Pollinator Conservation by Wisconsin (USA) Cranberry Growers.

    PubMed

    Gaines-Day, Hannah R; Gratton, Claudio

    2017-08-01

    The expansion of modern agriculture has led to the loss and fragmentation of natural habitat, resulting in a global decline in biodiversity, including bees. In many countries, farmers can participate in cost-share programs to create natural habitat on their farms for the conservation of beneficial insects, such as bees. Despite their dependence on bee pollinators and the demonstrated commitment to environmental stewardship, participation in such programs by Wisconsin cranberry growers has been low. The objective of this study was to understand the barriers that prevent participation by Wisconsin cranberry growers in cost-share programs for on-farm conservation of native bees. We conducted a survey of cranberry growers (n = 250) regarding farming practices, pollinators, and conservation. Although only 10% of growers were aware of federal pollinator cost-share programs, one third of them were managing habitat for pollinators without federal aid. Once informed of the programs, 50% of growers expressed interest in participating. Fifty-seven percent of growers manage habitat for other wildlife, although none receive cost-share funding to do so. Participation in cost-share programs could benefit from outreach activities that promote the programs, a reduction of bureaucratic hurdles to participate, and technical support for growers on how to manage habitat for wild bees.

  14. Understanding Barriers to Participation in Cost-Share Programs For Pollinator Conservation by Wisconsin (USA) Cranberry Growers

    PubMed Central

    Gratton, Claudio

    2017-01-01

    The expansion of modern agriculture has led to the loss and fragmentation of natural habitat, resulting in a global decline in biodiversity, including bees. In many countries, farmers can participate in cost-share programs to create natural habitat on their farms for the conservation of beneficial insects, such as bees. Despite their dependence on bee pollinators and the demonstrated commitment to environmental stewardship, participation in such programs by Wisconsin cranberry growers has been low. The objective of this study was to understand the barriers that prevent participation by Wisconsin cranberry growers in cost-share programs for on-farm conservation of native bees. We conducted a survey of cranberry growers (n = 250) regarding farming practices, pollinators, and conservation. Although only 10% of growers were aware of federal pollinator cost-share programs, one third of them were managing habitat for pollinators without federal aid. Once informed of the programs, 50% of growers expressed interest in participating. Fifty-seven percent of growers manage habitat for other wildlife, although none receive cost-share funding to do so. Participation in cost-share programs could benefit from outreach activities that promote the programs, a reduction of bureaucratic hurdles to participate, and technical support for growers on how to manage habitat for wild bees. PMID:28763038

  15. Microbial ecology of the hive and pollination landscape: Bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    Nearly all eukaryotes are host to beneficial or benign bacteria in their gut lumen that are either vertically inherited or acquired from the environment. While the core bacteria of the honey bee gut is becoming evident, the influence of the pollination environment on honey bee-associated microbial p...

  16. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands.

    PubMed

    Biesmeijer, J C; Roberts, S P M; Reemer, M; Ohlemüller, R; Edwards, M; Peeters, T; Schaffers, A P; Potts, S G; Kleukers, R; Thomas, C D; Settele, J; Kunin, W E

    2006-07-21

    Despite widespread concern about declines in pollination services, little is known about the patterns of change in most pollinator assemblages. By studying bee and hoverfly assemblages in Britain and the Netherlands, we found evidence of declines (pre-versus post-1980) in local bee diversity in both countries; however, divergent trends were observed in hoverflies. Depending on the assemblage and location, pollinator declines were most frequent in habitat and flower specialists, in univoltine species, and/or in nonmigrants. In conjunction with this evidence, outcrossing plant species that are reliant on the declining pollinators have themselves declined relative to other plant species. Taken together, these findings strongly suggest a causal connection between local extinctions of functionally linked plant and pollinator species.

  17. Bumble Bee Fauna of Palouse Prairie: Survey of Native Bee Pollinators in a Fragmented Ecosystem

    PubMed Central

    Hatten, T. D.; Looney, C.; Strange, J. P.; Bosque-Pérez, N. A.

    2013-01-01

    Bumble bees, Bombus Latreille (Hymenoptera: Apidae:), are dominant pollinators in the northern hemisphere, providing important pollination services for commercial crops and innumerable wild plants. Nationwide declines in several bumble bee species and habitat losses in multiple ecosystems have raised concerns about conservation of this important group. In many regions, such as the Palouse Prairie, relatively little is known about bumble bee communities, despite their critical ecosystem functions. Pitfall trap surveys for ground beetles in Palouse prairie remnants conducted in 2002–2003 contained considerable by-catch of bumble bees. The effects of landscape context, remnant features, year, and season on bumble bee community composition were examined. Additionally, bees captured in 2002–2003 were compared with historic records for the region to assess changes in the presence of individual species. Ten species of bumble bee were captured, representing the majority of the species historically known from the region. Few detectable differences in bumble bee abundances were found among remnants. Community composition differed appreciably, however, based on season, landscape context, and elevation, resulting in different bee assemblages between western, low-lying remnants and eastern, higherelevation remnants. The results suggest that conservation of the still species-rich bumble bee fauna should take into account variability among prairie remnants, and further work is required to adequately explain bumble bee habitat associations on the Palouse. PMID:23902138

  18. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States.

    PubMed

    Williams, Neal M; Ward, Kimiora L; Pope, Nathaniel; Isaacs, Rufus; Wilson, Julianna; May, Emily A; Ellis, Jamie; Daniels, Jaret; Pence, Akers; Ullmann, Katharina; Peters, Jeff

    2015-12-01

    Global trends in pollinator-dependent crops have raised awareness of the need to support managed and wild bee populations to ensure sustainable crop production. Provision of sufficient forage resources is a key element for promoting bee populations within human impacted landscapes, particularly those in agricultural lands where demand for pollination service is high and land use and management practices have reduced available flowering resources. Recent government incentives in North America and Europe support the planting of wildflowers to benefit pollinators; surprisingly, in North America there has been almost no rigorous testing of the performance of wildflower mixes, or their ability to support wild bee abundance and diversity. We tested different wildflower mixes in a spatially replicated, multiyear study in three regions of North America where production of pollinator-dependent crops is high: Florida, Michigan, and California. In each region, we quantified flowering among wildflower mixes composed of annual and perennial species, and with high and low relative diversity. We measured the abundance and species richness of wild bees, honey bees, and syrphid flies at each mix over two seasons. In each region, some but not all wildflower mixes provided significantly greater floral display area than unmanaged weedy control plots. Mixes also attracted greater abundance and richness of wild bees, although the identity of best mixes varied among regions. By partitioning floral display size from mix identity we show the importance of display size for attracting abundant and diverse wild bees. Season-long monitoring also revealed that designing mixes to provide continuous bloom throughout the growing season is critical to supporting the greatest pollinator species richness. Contrary to expectation, perennials bloomed in their first season, and complementarity in attraction of pollinators among annuals and perennials suggests that inclusion of functionally diverse species may provide the greatest benefit. Wildflower mixes may be particularly important for providing resources for some taxa, such as bumble bees, which are known to be in decline in several regions of North America. No mix consistently attained the full diversity that was planted. Further study is needed on how to achieve the desired floral display and diversity from seed mixes.

  19. Pollinator Protection

    EPA Pesticide Factsheets

    What the EPA is doing to protect bees and other pollinators from pesticides; including addressing the issue of Colony Collapse Disorder (CCD), risk assessment, decline in pollinator health in general, and why pollinators are important.

  20. Floral Nectar Guide Patterns Discourage Nectar Robbing by Bumble Bees

    PubMed Central

    Leonard, Anne S.; Brent, Joshua; Papaj, Daniel R.; Dornhaus, Anna

    2013-01-01

    Floral displays are under selection to both attract pollinators and deter antagonists. Here we show that a common floral trait, a nectar guide pattern, alters the behavior of bees that can act opportunistically as both pollinators and as antagonists. Generally, bees access nectar via the floral limb, transporting pollen through contact with the plant’s reproductive structures; however bees sometimes extract nectar from a hole in the side of the flower that they or other floral visitors create. This behavior is called “nectar robbing” because bees may acquire the nectar without transporting pollen. We asked whether the presence of a symmetric floral nectar guide pattern on artificial flowers affected bumble bees’ (Bombus impatiens) propensity to rob or access nectar “legitimately.” We discovered that nectar guides made legitimate visits more efficient for bees than robbing, and increased the relative frequency of legitimate visits, compared to flowers lacking nectar guides. This study is the first to show that beyond speeding nectar discovery, a nectar guide pattern can influence bees’ flower handling in a way that could benefit the plant. PMID:23418475

  1. Large-Range Movements of Neotropical Orchid Bees Observed via Radio Telemetry

    PubMed Central

    Wikelski, Martin; Moxley, Jerry; Eaton-Mordas, Alexander; López-Uribe, Margarita M.; Holland, Richard; Moskowitz, David; Roubik, David W.; Kays, Roland

    2010-01-01

    Neotropical orchid bees (Euglossini) are often cited as classic examples of trapline-foragers with potentially extensive foraging ranges. If long-distance movements are habitual, rare plants in widely scattered locations may benefit from euglossine pollination services. Here we report the first successful use of micro radio telemetry to track the movement of an insect pollinator in a complex and forested environment. Our results indicate that individual male orchid bees (Exaerete frontalis) habitually use large rainforest areas (at least 42–115 ha) on a daily basis. Aerial telemetry located individuals up to 5 km away from their core areas, and bees were often stationary, for variable periods, between flights to successive localities. These data suggest a higher degree of site fidelity than what may be expected in a free living male bee, and has implications for our understanding of biological activity patterns and the evolution of forest pollinators. PMID:20520813

  2. Complementary crops and landscape features sustain wild bee communities.

    PubMed

    Martins, Kyle T; Albert, Cécile H; Lechowicz, Martin J; Gonzalez, Andrew

    2018-06-01

    Wild bees, which are important for commercial pollination, depend on floral and nesting resources both at farms and in the surrounding landscape. Mass-flowering crops are only in bloom for a few weeks and unable to support bee populations that persist throughout the year. Farm fields and orchards that flower in succession potentially can extend the availability of floral resources for pollinators. However, it is unclear whether the same bee species or genera will forage from one crop to the next, which bees specialize on particular crops, and to what degree inter-crop visitation patterns will be mediated by landscape context. We therefore studied local- and landscape-level drivers of bee diversity and species turnover in apple orchards, blueberry fields, and raspberry fields that bloom sequentially in southern Quebec, Canada. Despite the presence of high bee species turnover, orchards and small fruit fields complemented each other phenologically by supporting two bee genera essential to their pollination: mining bees (Andrena spp.) and bumble bees (Bombus spp.). A number of bee species specialized on apple, blueberry, or raspberry blossoms, suggesting that all three crops could be used to promote regional bee diversity. Bee diversity (rarefied richness, wild bee abundance) was highest across crops in landscapes containing hedgerows, meadows, and suburban areas that provide ancillary nesting and floral resources throughout the spring and summer. Promoting phenological complementarity in floral resources at the farmstead and landscape scales is essential to sustaining diverse wild bee populations. © 2018 by the Ecological Society of America.

  3. The conservation and restoration of wild bees.

    PubMed

    Winfree, Rachael

    2010-05-01

    Bees pollinate most of the world's wild plant species and provide economically valuable pollination services to crops; yet knowledge of bee conservation biology lags far behind other taxa such as vertebrates and plants. There are few long-term data on bee populations, which makes their conservation status difficult to assess. The best-studied groups are the genus Bombus (the bumble bees), and bees in the EU generally; both of these are clearly declining. However, it is not known to what extent these groups represent the approximately 20,000 species of bees globally. As is the case for insects in general, bees are underrepresented in conservation planning and protection efforts. For example, only two bee species are on the global IUCN Red List, and no bee is listed under the U.S. Endangered Species Act, even though many bee species are known to be in steep decline or possibly extinct. At present, bee restoration occurs mainly in agricultural contexts, funded by government programs such as agri-environment schemes (EU) and the Farm Bill (USA). This is a promising approach given that many bee species can use human-disturbed habitats, and bees provide valuable pollination services to crops. However, agricultural restorations only benefit species that persist in agricultural landscapes, and they are more expensive than preserving natural habitat elsewhere. Furthermore, such restorations benefit bees in only about half of studied cases. More research is greatly needed in many areas of bee conservation, including basic population biology, bee restoration in nonagricultural contexts, and the identification of disturbance-sensitive bee species.

  4. Differences between the quality of strawberries (Fragaria x ananassa) pollinated by the stingless bees Scaptotrigona aff. depilis and Nannotrigona testaceicornis.

    PubMed

    Roselino, A C; Santos, S B; Hrncir, M; Bego, L R

    2009-05-12

    We investigated the success of two stingless bee species in pollinating strawberries in greenhouses. Three greenhouses and one open field area were used; one greenhouse had only strawberry plants (control), another (G1) had three colonies of Scaptotrigona aff. depilis and another (G2) had three colonies of Nannotrigona testaceicornis. In the open field area, the flowers could be visited by any bee. The total production of fruits was counted and a random sample (N = 100) from each area was used to measure weight, length, circumference, and achenes number (N = 5). The percentages of deformed strawberries were: 23% (no bees); 2% (greenhouses with bees) and 13% (open field). The strawberries from the greenhouse with N. testaceicornis and the open field were heavier than those from the greenhouses with no bees and with S. depilis. The fruit circumference was largest in the greenhouses with bees. The achenes number did not differ among the experimental areas. The strawberries produced in the greenhouses with stingless bees had more quality and greater commercial value than the fruits produced in the open field area and the greenhouse without bees. We conclude that stingless bees are efficient pollinators of strawberry flowers cultivated in greenhouses.

  5. Resource effects on solitary bee reproduction in a managed crop pollination system

    USDA-ARS?s Scientific Manuscript database

    The number of solitary bees (Megachile rotundata) released for pollination in a managed system (Medicago sativa seed production) and the number of flowers available for brood provisioning may affect reproduction through maternal resource allocation and investment. Overwhelming, limited, or adequate...

  6. The Birds and the Bees...and the Bats.

    ERIC Educational Resources Information Center

    Foote, MaryAnn

    1990-01-01

    Pollination vectors of a variety of types are described including beetles, bees, flies, moths, birds, bats, and the wind. Some of the adaptations of plants designed to help facilitate pollination are discussed. Strategies for incorporating this information into a lesson plan are suggested. (CW)

  7. Seed-parent fecundity distributions in bee-pollinated forage legume polycrosses

    USDA-ARS?s Scientific Manuscript database

    Modeling expected fecundity distributions in bee-pollinated forage legume polycrosses allows more accurate assessment of effective polycross size and its inbreeding consequences. In this study, polycross size (N) standardized seed-parent fecundity frequencies [(Pfi – (1/N))/(1/N)] were modeled on 16...

  8. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status

    USDA-ARS?s Scientific Manuscript database

    Worldwide pollinator declines are attributed to a number of factors, including pesticide exposures. Neonicotinoid insecticides specifically have been detected in surface waters, non-target vegetation, and bee products, but the risks posed by environmental exposures are still not well understood. Pol...

  9. Honey Bees Avoid Nectar Colonized by Three Bacterial Species, But Not by a Yeast Species, Isolated from the Bee Gut

    PubMed Central

    Good, Ashley P.; Gauthier, Marie-Pierre L.; Vannette, Rachel L.; Fukami, Tadashi

    2014-01-01

    The gut microflora of the honey bee, Apis mellifera, is receiving increasing attention as a potential determinant of the bees’ health and their efficacy as pollinators. Studies have focused primarily on the microbial taxa that appear numerically dominant in the bee gut, with the assumption that the dominant status suggests their potential importance to the bees’ health. However, numerically minor taxa might also influence the bees’ efficacy as pollinators, particularly if they are not only present in the gut, but also capable of growing in floral nectar and altering its chemical properties. Nonetheless, it is not well understood whether honey bees have any feeding preference for or against nectar colonized by specific microbial species. To test whether bees exhibit a preference, we conducted a series of field experiments at an apiary using synthetic nectar inoculated with specific species of bacteria or yeast that had been isolated from the bee gut, but are considered minor components of the gut microflora. These species had also been found in floral nectar. Our results indicated that honey bees avoided nectar colonized by the bacteria Asaia astilbes, Erwinia tasmaniensis, and Lactobacillus kunkeei, whereas the yeast Metschnikowia reukaufii did not affect the feeding preference of the insects. Our results also indicated that avoidance of bacteria-colonized nectar was caused not by the presence of the bacteria per se, but by the chemical changes to nectar made by the bacteria. These findings suggest that gut microbes may not only affect the bees’ health as symbionts, but that some of the microbes may possibly affect the efficacy of A. mellifera as pollinators by altering nectar chemistry and influencing their foraging behavior. PMID:24466119

  10. Leaf Fertilizers Affect Survival and Behavior of the Neotropical Stingless Bee Friesella schrottkyi (Meliponini: Apidae: Hymenoptera).

    PubMed

    Rodrigues, Cleiton G; Krüger, Alexandra P; Barbosa, Wagner F; Guedes, Raul Narciso C

    2016-04-11

    The ongoing concern about bee decline has largely focused on honey bees and neonicotinoid insecticides, while native pollinators such as Neotropical stingless bees and agrochemicals such as other insecticide groups, pesticides in general, and fertilizers-especially leaf fertilizers-remain neglected as potential contributors to pollination decline. In an effort to explore this knowledge gap, we assessed the lethal and sublethal behavioral impact of heavy metal-containing leaf fertilizers in a native pollinator of ecological importance in the Neotropics: the stingless beeFriesella schrottkyi(Friese). Two leaf fertilizers-copper sulfate (24% Cu) and a micronutrient mix (Arrank L: 5% S, 5% Zn, 3% Mn, 0.6% Cu, 0.5% B, and 0.06% Mo)-were used in oral and contact exposure bioassays. The biopesticide spinosad and water were used as positive and negative controls, respectively. Copper sulfate compromised the survival of stingless bee workers, particularly with oral exposure, although less than spinosad under contact exposure. Sublethal exposure to both leaf fertilizers at their field rates also caused significant effects in exposed workers. Copper sulfate enhanced flight take-off on stingless bee workers, unlike workers exposed to the micronutrient mix. There was no significant effect of leaf fertilizers on the overall activity and walking behavior of worker bees. No significant effect was observed for the respiration rate of worker bees under contact exposure, but workers orally exposed to the micronutrient mix exhibited a reduced respiration rate. Therefore, leaf fertilizers do affectF. schrottkyi, what may also occur with other stingless bees, potentially compromising their pollination activity deserving attention. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change.

    PubMed

    Giannini, Tereza C; Tambosi, Leandro R; Acosta, André L; Jaffé, Rodolfo; Saraiva, Antonio M; Imperatriz-Fonseca, Vera L; Metzger, Jean Paul

    2015-01-01

    Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata), a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC). We then used this information, the bee's flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use schemes. Overall, our proposed methodological framework could help design novel conservational and agricultural practices that can be crucial to conserve ecosystem services by buffering the joint effect of habitat configuration and climate change.

  12. Floral reward, advertisement and attractiveness to honey bees in dioecious Salix caprea.

    PubMed

    Dötterl, Stefan; Glück, Ulrike; Jürgens, Andreas; Woodring, Joseph; Aas, Gregor

    2014-01-01

    In dioecious, zoophilous plants potential pollinators have to be attracted to both sexes and switch between individuals of both sexes for pollination to occur. It often has been suggested that males and females require different numbers of visits for maximum reproductive success because male fertility is more likely limited by access to mates, whereas female fertility is rather limited by resource availability. According to sexual selection theory, males therefore should invest more in pollinator attraction (advertisement, reward) than females. However, our knowledge on the sex specific investment in floral rewards and advertisement, and its effects on pollinator behaviour is limited. Here, we use an approach that includes chemical, spectrophotometric, and behavioural studies i) to elucidate differences in floral nectar reward and advertisement (visual, olfactory cues) in dioecious sallow, Salix caprea, ii) to determine the relative importance of visual and olfactory floral cues in attracting honey bee pollinators, and iii) to test for differential attractiveness of female and male inflorescence cues to honey bees. Nectar amount and sugar concentration are comparable, but sugar composition varies between the sexes. Olfactory sallow cues are more attractive to honey bees than visual cues; however, a combination of both cues elicits the strongest behavioural responses in bees. Male flowers are due to the yellow pollen more colourful and emit a higher amount of scent than females. Honey bees prefer the visual but not the olfactory display of males over those of females. In all, the data of our multifaceted study are consistent with the sexual selection theory and provide novel insights on how the model organism honey bee uses visual and olfactory floral cues for locating host plants.

  13. Floral Reward, Advertisement and Attractiveness to Honey Bees in Dioecious Salix caprea

    PubMed Central

    Dötterl, Stefan; Glück, Ulrike; Jürgens, Andreas; Woodring, Joseph; Aas, Gregor

    2014-01-01

    In dioecious, zoophilous plants potential pollinators have to be attracted to both sexes and switch between individuals of both sexes for pollination to occur. It often has been suggested that males and females require different numbers of visits for maximum reproductive success because male fertility is more likely limited by access to mates, whereas female fertility is rather limited by resource availability. According to sexual selection theory, males therefore should invest more in pollinator attraction (advertisement, reward) than females. However, our knowledge on the sex specific investment in floral rewards and advertisement, and its effects on pollinator behaviour is limited. Here, we use an approach that includes chemical, spectrophotometric, and behavioural studies i) to elucidate differences in floral nectar reward and advertisement (visual, olfactory cues) in dioecious sallow, Salix caprea, ii) to determine the relative importance of visual and olfactory floral cues in attracting honey bee pollinators, and iii) to test for differential attractiveness of female and male inflorescence cues to honey bees. Nectar amount and sugar concentration are comparable, but sugar composition varies between the sexes. Olfactory sallow cues are more attractive to honey bees than visual cues; however, a combination of both cues elicits the strongest behavioural responses in bees. Male flowers are due to the yellow pollen more colourful and emit a higher amount of scent than females. Honey bees prefer the visual but not the olfactory display of males over those of females. In all, the data of our multifaceted study are consistent with the sexual selection theory and provide novel insights on how the model organism honey bee uses visual and olfactory floral cues for locating host plants. PMID:24676333

  14. Optimizing fluctuating thermal regime storage of developing Megachile rotundata

    USDA-ARS?s Scientific Manuscript database

    The alfalfa leafcutting bee, Megachile rotundata, is the primary pollinator for alfalfa seed production in North America. Under current management practice developing pupae are incubated at 29ºC until the adults emerge for pollination. If unfavorable spring weather delays peak alfalfa bloom, bee m...

  15. Milkweed: A resource for increasing stink bug parasitism and aiding insect pollinator and monarch butterfly conservation

    USDA-ARS?s Scientific Manuscript database

    The flowers of milkweed species can produce a rich supply of nectar, and therefore, planting an insecticide-free milkweed habitat in agricultural farmscapes could possibly conserve monarch butterflies, bees and other insect pollinators, as well as enhance parasitism of insect pests. In peanut-cotton...

  16. Bumble bees (Bombus spp) along a gradient of increasing urbanization.

    PubMed

    Ahrné, Karin; Bengtsson, Jan; Elmqvist, Thomas

    2009-01-01

    Bumble bees and other wild bees are important pollinators of wild flowers and several cultivated crop plants, and have declined in diversity and abundance during the last decades. The main cause of the decline is believed to be habitat destruction and fragmentation associated with urbanization and agricultural intensification. Urbanization is a process that involves dramatic and persistent changes of the landscape, increasing the amount of built-up areas while decreasing the amount of green areas. However, urban green areas can also provide suitable alternative habitats for wild bees. We studied bumble bees in allotment gardens, i.e. intensively managed flower rich green areas, along a gradient of urbanization from the inner city of Stockholm towards more rural (periurban) areas. Keeping habitat quality similar along the urbanization gradient allowed us to separate the effect of landscape change (e.g. proportion impervious surface) from variation in habitat quality. Bumble bee diversity (after rarefaction to 25 individuals) decreased with increasing urbanization, from around eight species on sites in more rural areas to between five and six species in urban allotment gardens. Bumble bee abundance and species composition were most affected by qualities related to the management of the allotment areas, such as local flower abundance. The variability in bumble bee visits between allotment gardens was higher in an urban than in a periurban context, particularly among small and long-tongued bumble bee species. Our results suggest that allotment gardens and other urban green areas can serve as important alternatives to natural habitats for many bumble bee species, but that the surrounding urban landscape influences how many species that will be present. The higher variability in abundance of certain species in the most urban areas may indicate a weaker reliability of the ecosystem service pollination in areas strongly influenced by human activity.

  17. Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan.

    PubMed

    Radzevičiūtė, Rita; Theodorou, Panagiotis; Husemann, Martin; Japoshvili, George; Kirkitadze, Giorgi; Zhusupbaeva, Aigul; Paxton, Robert J

    2017-06-01

    The essential ecosystem service of pollination is provided largely by insects, which are considered threatened by diverse biotic and abiotic global change pressures. RNA viruses are one such pressure, and have risen in prominence as a major threat for honey bees (Apis mellifera) and global apiculture, as well as a risk factor for other bee species through pathogen spill-over between managed honey bees and sympatric wild pollinator communities. Yet despite their potential role in global bee decline, the prevalence of honey bee-associated RNA viruses in wild bees is poorly known from both geographic and taxonomic perspectives. We screened members of pollinator communities (honey bees, bumble bees and other wild bees belonging to four families) collected from apple orchards in Georgia, Germany and Kyrgyzstan for six common honey bee-associated RNA virus complexes encompassing nine virus targets. The Deformed wing virus complex (DWV genotypes A and B) had the highest prevalence across all localities and host species and was the only virus complex found in wild bee species belonging to all four studied families. Based on amplification of negative-strand viral RNA, we found evidence for viral replication in wild bee species of DWV-A/DWV-B (hosts: Andrena haemorrhoa and several Bombus spp.) and Black queen cell virus (hosts: Anthophora plumipes, several Bombus spp., Osmia bicornis and Xylocopa spp.). Viral amplicon sequences revealed that DWV-A and DWV-B are regionally distinct but identical in two or more bee species at any one site, suggesting virus is shared amongst sympatric bee taxa. This study demonstrates that honey bee associated RNA viruses are geographically and taxonomically widespread, likely infective in wild bee species, and shared across bee taxa. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The evolution of Cayaponia (Cucurbitaceae): Repeated shifts from bat to bee pollination and long-distance dispersal to Africa 2-5 million years ago.

    PubMed

    Duchen, Pablo; Renner, Susanne S

    2010-07-01

    The Cucurbitaceae genus Cayaponia comprises ∼60 species that occur from Uruguay to the southern United States and the Caribbean; C. africana occurs in West Africa and on Madagascar. Pollination is by bees or bats, raising the question of the evolutionary direction and frequency of pollinator shifts. Studies that investigated such shifts in other clades have suggested that bat pollination might be an evolutionary end point. • Plastid and nuclear DNA sequences were obtained for 50 accessions representing 30 species of Cayaponia and close relatives, and analyses were carried out to test monophyly, infer divergence times, and reconstruct ancestral states for habitat preferences and pollination modes. • The phylogeny shows that Cayaponia is monophyletic as long as Selysia (a genus with four species from Central and South America) is included. The required nomenclatural transfers are made in this paper. African and Madagascan accessions of C. africana form a clade that is part of a polytomy with Caribbean and South American species, and the inferred divergence time of 2-5 Ma implies a transoceanic dispersal event from the New World to Africa. The ancestral state reconstructions suggest that Cayaponia originated in tropical forests from where open savannas were reached several times and that bee pollination arose from bat pollination, roughly concomitant with the shifts from forests to savanna habitats. • Cayaponia provides the first example of evolutionary transitions from bat to bee pollination as well as another instance of transoceanic dispersal from the New World to Africa.

  19. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea.

    PubMed

    Thairu, Margaret W; Brunet, Johanne

    2015-05-01

    Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. Published by Oxford University Press on behalf of the Annals of Botany Company 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Radiation of Pollination Systems in the Iridaceae of sub-Saharan Africa

    PubMed Central

    GOLDBLATT, PETER; MANNING, JOHN C.

    2006-01-01

    • Background Seventeen distinct pollination systems are known for genera of sub-Saharan African Iridaceae and recurrent shifts in pollination system have evolved in those with ten or more species. Pollination by long-tongued anthophorine bees foraging for nectar and coincidentally acquiring pollen on some part of their bodies is the inferred ancestral pollination strategy for most genera of the large subfamilies Iridoideae and Crocoideae and may be ancestral for the latter. Derived strategies include pollination by long-proboscid flies, large butterflies, night-flying hovering and settling moths, hopliine beetles and sunbirds. Bee pollination is diverse, with active pollen collection by female bees occurring in several genera, vibratile systems in a few and non-volatile oil as a reward in one species. Long-proboscid fly pollination, which is apparently restricted to southern Africa, includes four separate syndromes using different sets of flies and plant species in different parts of the subcontinent. Small numbers of species use bibionid flies, short-proboscid flies or wasps for their pollination; only about 2 % of species use multiple pollinators and can be described as generalists. • Scope Using pollination observations for 375 species and based on repeated patterns of floral attractants and rewards, we infer pollination mechanisms for an additional 610 species. Matching pollination system to phylogeny or what is known about species relationships based on shared derived features, we infer repeated shifts in pollination system in some genera, as frequently as one shift for every five or six species of southern African Babiana or Gladiolus. Specialized systems using pollinators of one pollination group, or even a single pollinator species are the rule in the family. Shifts in pollination system are more frequent in genera of Crocoideae that have bilaterally symmetric flowers and a perianth tube, features that promote adaptive radiation by facilitating precise shifts in pollen placement, in conjunction with changes in flower colour, scent and tube length. • Conclusions Diversity of pollination systems explains in part the huge species diversity of Iridaceae in sub-Saharan Africa, and permits species packing locally. Pollination shifts are, however, seen as playing a secondary role in speciation by promoting reproductive isolation in peripheral, ecologically distinct populations in areas of diverse topography, climate and soils. Pollination of Iridaceae in Eurasia and the New World, where the family is also well represented, is poorly studied but appears less diverse, although pollination by both pollen- and oil-collecting bees is frequent and bird pollination rare. PMID:16377653

  1. Radiation of pollination systems in the Iridaceae of sub-Saharan Africa.

    PubMed

    Goldblatt, Peter; Manning, John C

    2006-03-01

    Seventeen distinct pollination systems are known for genera of sub-Saharan African Iridaceae and recurrent shifts in pollination system have evolved in those with ten or more species. Pollination by long-tongued anthophorine bees foraging for nectar and coincidentally acquiring pollen on some part of their bodies is the inferred ancestral pollination strategy for most genera of the large subfamilies Iridoideae and Crocoideae and may be ancestral for the latter. Derived strategies include pollination by long-proboscid flies, large butterflies, night-flying hovering and settling moths, hopliine beetles and sunbirds. Bee pollination is diverse, with active pollen collection by female bees occurring in several genera, vibratile systems in a few and non-volatile oil as a reward in one species. Long-proboscid fly pollination, which is apparently restricted to southern Africa, includes four separate syndromes using different sets of flies and plant species in different parts of the subcontinent. Small numbers of species use bibionid flies, short-proboscid flies or wasps for their pollination; only about 2 % of species use multiple pollinators and can be described as generalists. Using pollination observations for 375 species and based on repeated patterns of floral attractants and rewards, we infer pollination mechanisms for an additional 610 species. Matching pollination system to phylogeny or what is known about species relationships based on shared derived features, we infer repeated shifts in pollination system in some genera, as frequently as one shift for every five or six species of southern African Babiana or Gladiolus. Specialized systems using pollinators of one pollination group, or even a single pollinator species are the rule in the family. Shifts in pollination system are more frequent in genera of Crocoideae that have bilaterally symmetric flowers and a perianth tube, features that promote adaptive radiation by facilitating precise shifts in pollen placement, in conjunction with changes in flower colour, scent and tube length. Diversity of pollination systems explains in part the huge species diversity of Iridaceae in sub-Saharan Africa, and permits species packing locally. Pollination shifts are, however, seen as playing a secondary role in speciation by promoting reproductive isolation in peripheral, ecologically distinct populations in areas of diverse topography, climate and soils. Pollination of Iridaceae in Eurasia and the New World, where the family is also well represented, is poorly studied but appears less diverse, although pollination by both pollen- and oil-collecting bees is frequent and bird pollination rare.

  2. Climate change: impact on honey bee populations and diseases.

    PubMed

    Le Conte, Y; Navajas, M

    2008-08-01

    The European honey bee, Apis mellifera, is the most economically valuable pollinator of agricultural crops worldwide. Bees are also crucial in maintaining biodiversity by pollinating numerous plant species whose fertilisation requires an obligatory pollinator. Apis mellifera is a species that has shown great adaptive potential, as it is found almost everywhere in the world and in highly diverse climates. In a context of climate change, the variability of the honey bee's life-history traits as regards temperature and the environment shows that the species possesses such plasticity and genetic variability that this could give rise to the selection of development cycles suited to new environmental conditions. Although we do not know the precise impact of potential environmental changes on honey bees as a result of climate change, there is a large body of data at our disposal indicating that environmental changes have a direct influence on honey bee development. In this article, the authors examine the potential impact of climate change on honey bee behaviour, physiology and distribution, as well as on the evolution of the honey bee's interaction with diseases. Conservation measures will be needed to prevent the loss of this rich genetic diversity of honey bees and to preserve ecotypes that are so valuable for world biodiversity.

  3. To be on the safe site - Ungroomed spots on the bee's body and their importance for pollination.

    PubMed

    Koch, Laura; Lunau, Klaus; Wester, Petra

    2017-01-01

    Flower-visiting bees collect large quantities of pollen to feed their offspring. Pollen deposited in the bees' transport organs is lost for the flowers' pollination. It has been hypothesised that specific body areas, bees cannot groom, serve as 'safe sites' for pollen transfer between flowers. For the first time, we experimentally demonstrated the position, area and pollen amount of safe sites at the examples of Apis mellifera and Bombus terrestris by combining artificial contamination of the bees' body with pine or sunflower pollen and the subsequent bees' incomplete grooming. We found safe sites on the forehead, the dorsal thorax and waist, and on the dorsal and ventral abdomen of the bees. These areas were less groomed by the bees' legs. The largest amount of pollen was found on the waist, followed by the dorsal areas of thorax and abdomen. At the example of Salvia pratensis, S. officinalis and Borago officinalis, we experimentally demonstrated with fluorescent dye that the flowers' pollen-sacs and stigma contact identical safe sites. These results confirm that pollen deposition on the bees' safe sites improves pollen transfer to stigmas of conspecific flowers sti. Future research will demonstrate the importance of safe sites for plant pollination under field conditions.

  4. Analyses of avocado (Persea americana) nectar properties and their perception by honey bees (Apis mellifera).

    PubMed

    Afik, O; Dag, A; Kerem, Z; Shafir, S

    2006-09-01

    Honey bees are important avocado pollinators. However, due to the low attractiveness of flowers, pollination is often inadequate. Previous work has revealed that avocado honey is relatively unattractive to honey bees when compared with honey from competing flowers. We characterized avocado honey and nectar with respect to their odor, color, and composition of sugars, phenolic compounds, and minerals. Furthermore, we tested how honey bees perceive these parameters, using the proboscis extension response bioassay and preference experiments with free-flying bees. Naïve bees were indifferent to odors of avocado and citrus flowers and honey. Experienced bees, which were collected in the field during the blooming season, responded preferentially to odor of citrus flowers. The unique sugar composition of avocado nectar, which contains almost exclusively sucrose and a low concentration of the rare carbohydrate perseitol, and the dark brown color of avocado honey, had no negative effects on its attractiveness to the bees. Phenolic compounds extracted from avocado honey were attractive to bees and adding them to a solution of sucrose increased its attractiveness. Compared with citrus nectar and nonavocado honey, avocado nectar and honey were rich in a wide range of minerals, including potassium, phosphorus, magnesium, sulfur, iron, and copper. Potassium and phosphorus, the two major minerals, both had a repellent effect on the bees. Possible explanations for the presence of repellent components in avocado nectar are discussed.

  5. Sequential generations of honey bee (Apis mellifera) queens produced using cryopreserved semen.

    PubMed

    Hopkins, Brandon K; Herr, Charles; Sheppard, Walter S

    2012-01-01

    Much of the world's food production is dependent on honey bees for pollination, and expanding food production will further increase the demand for managed pollination services. Apiculturists outside the native range of the honey bee, in the Americas, Australia and eastern Asia, have used only a few of the 27 described subspecies of honey bees (Apis mellifera) for beekeeping purposes. Within the endemic ranges of a particular subspecies, hybridisation can threaten native subspecies when local beekeepers import and propagate non-native honey bees. For many threatened species, cryopreserved germplasm can provide a resource for the preservation of diversity and recovery of endangered populations. However, although instrumental insemination of queen honey bees is well established, the absence of an effective means to cryopreserve honey bee semen has limited the success of efforts to preserve genetic diversity within the species or to develop repositories of honey bee germplasm for breeding purposes. Herein we report that some queens inseminated with cryopreserved semen were capable of producing a substantial number of fertilised offspring. These diploid female larvae were used to produce two additional sequential generations of new queens, which were then back-crossed to the same stock of frozen semen. Our results demonstrate the ability to produce queens using cryopreserved honey bee spermatozoa and the potential for the establishment of a honey bee genetic repository.

  6. Breeding system and pollination of a narrowly endemic herb of the Lower Florida Keys: impacts of the urban-wildland interface.

    PubMed

    Liu, Hong; Koptur, Suzanne

    2003-08-01

    We examined the breeding system and pollination of Chamaecrista keyensis Pennell (Fabaceae: Caesalpinioideae) and the effects of urban edge and mosquito control on reproduction of this rare endemic herb of the Lower Florida Keys. Controlled hand-pollination treatments were applied to plants in the field. Although C. keyensis flowers are self-compatible, they are not capable of automatic selfing. Inbreeding depression was observed in both seed set and percentage seed germination. Bees of seven genera were observed visiting C. keyensis flowers during the peak flowering season (June to July). Only Xylocopa micans and Melissodes spp. may be effective pollinators for C. keyensis, as they were the only bees that "buzz pollinate" this species, which has poricidal anther dehiscence. Chamaecrista keyensis received substantially more visits by X. micans, but fewer visits from Melissodes spp. in urban-edge vs. forest sites. Aerial mosquito spraying may exacerbate the existing pollinator limitation suffered by C. keyensis by reducing the number of visits by the buzz-pollinating bees. Individuals of C. keyensis at urban edges produced fewer seeds per fruit than did individuals in a pristine forest mainly because of greater insect seed predation.

  7. Blueberry floral attributes that enhance the pollinations efficiency of an oligolectic bee, osmia ribifloris cockerell (megachilidae:apoidea)

    USDA-ARS?s Scientific Manuscript database

    We evaluated relationships between floral morphology of 23 genotypes of southern blueberries and indicators of pollination efficiency (fruit set, fruit abortion, seed number, and berry size) for Osmia ribifloris Cockerell, a manageable solitary bee. Cultivated blueberry taxa had the largest flowers ...

  8. The role of honey bees as pollinators in natural areas

    Treesearch

    Clare E. Aslan; Christina T. Liang; Ben Galindo; Hill Kimberly; Walter Topete

    2016-01-01

    The western or European honey bee (Apis mellifera) is the primary managed pollinator in US agricultural systems, and its importance for food production is widely recognized. However, the role of A. mellifera as an introduced species in natural areas is potentially more complicated. The impact of A. mellifera...

  9. Co-acquisition of pesticide resitance within the hive

    USDA-ARS?s Scientific Manuscript database

    The Western honey bee Apis mellifera is of major economic importance for its honey production and as the main pollinator of agricultural crops. 90 percent of all commercial pollination is performed by managed colonies of honey bees making it a $15 billion industry. Globally, 87 of the leading 115 fo...

  10. Testing a pollen-parent fecundity distribution model on seed-parent fecundity distributions in bee-pollinated forage legume polycrosses

    USDA-ARS?s Scientific Manuscript database

    Random mating (i.e., panmixis) is a fundamental assumption in quantitative genetics. In outcrossing bee-pollinated perennial forage legume polycrosses, mating is assumed by default to follow theoretical random mating. This assumption informs breeders of expected inbreeding estimates based on polycro...

  11. Nectar replenishment maintains the neutral effects of nectar robbing on female reproductive success of Salvia przewalskii (Lamiaceae), a plant pollinated and robbed by bumble bees.

    PubMed

    Ye, Zhong-Ming; Jin, Xiao-Fang; Wang, Qing-Feng; Yang, Chun-Feng; Inouye, David W

    2017-04-01

    It has been suggested that the dynamics of nectar replenishment could differ for flowers after being nectar robbed or visited legitimately, but further experimental work is needed to investigate this hypothesis. This study aimed to assess the role of nectar replenishment in mediating the effects of nectar robbing on pollinator behaviour and plant reproduction. Plant-robber-pollinator interactions in an alpine plant, Salvia przewalskii , were studied. It is pollinated by long-tongued Bombus religiosus and short-tongued B. friseanus , but robbed by B. friseanus . Nectar production rates for flowers after they were either robbed or legitimately visited were compared, and three levels of nectar robbing were created to detect the effects of nectar robbing on pollinator behaviour and plant reproduction. Nectar replenishment did not differ between flowers that had been robbed or legitimately visited. Neither fruit set nor seed set was significantly affected by nectar robbing. In addition, nectar robbing did not significantly affect visitation rate, flowers visited within a plant per foraging bout, or flower handling time of the legitimate pollinators. However, a tendency for a decrease in relative abundance of the pollinator B. religiosus with an increase of nectar robbing was found. Nectar robbing did not affect female reproductive success because nectar replenishment ensures that pollinators maintain their visiting activity to nectar-robbed flowers. Nectar replenishment might be a defence mechanism against nectar robbing to enhance reproductive fitness by maintaining attractiveness to pollinators. Further studies are needed to reveal the potential for interference competition among bumble bees foraging as robbers and legitimate visitors, and to investigate variation of nectar robbing in communities with different bumble bee species composition. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. Bumble bee nest abundance, foraging distance, and host-plant reproduction: implications for management and conservation.

    PubMed

    Geib, Jennifer C; Strange, James P; Galenj, Candace

    2015-04-01

    Recent reports of global declines in pollinator species imply an urgent need to assess the abundance of native pollinators and density-dependent benefits for linked plants. In this study, we investigated (1) pollinator nest distributions and estimated colony abundances, (2) the relationship between abundances of foraging workers and the number of nests they represent, (3) pollinator foraging ranges, and (4) the relationship between pollinator abundance and plant reproduction. We examined these questions in an alpine ecosystem in the Colorado Rocky Mountains, focusing on four alpine bumble bee species (Bombus balteatus, B. flavifrons, B. bifarius, and B. sylvicola), and two host plants that differ in their degrees of pollinator specialization (Trifolium dasyphyllum and T. parryi). Using microsatellites, we found that estimated colony abundances among Bombus species ranged from ~18 to 78 colonies/0.01 km2. The long-tongued species B. balteatus was most common, especially high above treeline, but the subalpine species B. bifarius was unexpectedly abundant for this elevation range. Nests detected among sampled foragers of each species were correlated with the number of foragers caught. Foraging ranges were smaller than expected for all Bombus species, ranging from 25 to 110 m. Fruit set for the specialized plant, Trifolium parryi, was positively related to the abundance of its Bombus pollinator. In contrast, fruit set for the generalized plant, T. dasyphyllum, was related to abundance of all Bombus species. Because forager abundance was related to nest abundance of each Bombus species and was an equally effective predictor of plant fecundity, forager inventories are probably suitable for assessing the health of outcrossing plant populations. However, nest abundance, rather than forager abundance, better reflects demographic and genetic health in populations of eusocial pollinators such as bumble bees. Development of models incorporating the parameters we have measured here (nest abundance, forager abundance, and foraging distance) could increase the usefulness of foraging worker inventories in nionitoring, managing, and conserving pollinator populations.

  13. Self-pollination rate and floral-display size in Asclepias syriaca (Common Milkweed) with regard to floral-visitor taxa.

    PubMed

    Howard, Aaron F; Barrows, Edward M

    2014-06-23

    Animals fertilize thousands of angiosperm species whose floral-display sizes can significantly influence pollinator behavior and plant reproductive success. Many studies have measured the interactions among pollinator behavior, floral-display size, and plant reproductive success, but few studies have been able to separate the effects of pollinator behavior and post-pollination processes on angiosperm sexual reproduction. In this study, we utilized the highly self-incompatible pollinium-pollination system of Asclepias syriaca (Common Milkweed) to quantify how insect visitors influenced male reproductive success measured as pollen removal, female reproductive success measured as pollen deposition, and self-pollination rate. We also determined how floral-display size impacts both visitor behavior and self-pollination rate. Four insect taxonomic orders visited A. syriaca: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We focused on three groups of visitor taxa within two orders (Hymenoptera and Lepidoptera) with sample sizes large enough for quantitative analysis: Apis mellifera (Western Honey Bee), Bombus spp. (bumble bees) and lepidopterans (butterflies and moths). Qualitatively, lepidopterans had the highest pollinator importance values, but the large variability in the lepidopteran data precluded meaningful interpretation of much of their behavior. The introduced A. mellifera was the most effective and most important diurnal pollinator with regard to both pollen removal and pollen deposition. However, when considering the self-incompatibility of A. syriaca, A. mellifera was not the most important pollinator because of its high self-pollination rate as compared to Bombus spp. Additionally, the rate of self-pollination increased more rapidly with the number of flowers per inflorescence in A. mellifera than in the native Bombus spp. Apis mellifera's high rate of self-pollination may have significant negative effects on both male and female reproductive successes in A. syriaca, causing different selection on floral-display size than native pollinators.

  14. Disentangling urban habitat and matrix effects on wild bee species.

    PubMed

    Fischer, Leonie K; Eichfeld, Julia; Kowarik, Ingo; Buchholz, Sascha

    2016-01-01

    In face of a dramatic decline of wild bee species in many rural landscapes, potential conservation functions of urban areas gain importance. Yet effects of urbanization on pollinators, and in particular on wild bees, remain ambiguous and not comprehensively understood. This is especially true for amenity grassland and extensively managed wastelands within large-scale residential housing areas. Using Berlin as a study region, we aimed to investigate (a) if these greenspaces are accepted by wild bee assemblages as foraging habitats; (b) how assemblage structure of bees and individual bee species are affected by different habitat (e.g., management, flower density) and urban matrix variables (e.g., isolation, urbanization); and (c) to what extent grassland restoration can promote bees in urban environments. In summer 2012, we collected 62 bee species belonging to more than 20% of the taxa known for Berlin. Urbanization significantly affected species composition of bees; 18 species were affiliated to different levels of urbanization. Most bee species were not affected by any of the environmental variables tested, and urbanization had a negative effect only for one bee species. Further, we determined that restoration of diverse grasslands positively affected bee species richnesss in urban environments. We conclude that differently structured and managed greenspaces in large-scale housing areas can provide additional foraging habitats and refuges for pollinators. This supports approaches towards a biodiversity friendly management within urban regions and may be of particular importance given that anthropogenic pressure is increasing in many rural landscapes.

  15. Disentangling urban habitat and matrix effects on wild bee species

    PubMed Central

    2016-01-01

    In face of a dramatic decline of wild bee species in many rural landscapes, potential conservation functions of urban areas gain importance. Yet effects of urbanization on pollinators, and in particular on wild bees, remain ambiguous and not comprehensively understood. This is especially true for amenity grassland and extensively managed wastelands within large-scale residential housing areas. Using Berlin as a study region, we aimed to investigate (a) if these greenspaces are accepted by wild bee assemblages as foraging habitats; (b) how assemblage structure of bees and individual bee species are affected by different habitat (e.g., management, flower density) and urban matrix variables (e.g., isolation, urbanization); and (c) to what extent grassland restoration can promote bees in urban environments. In summer 2012, we collected 62 bee species belonging to more than 20% of the taxa known for Berlin. Urbanization significantly affected species composition of bees; 18 species were affiliated to different levels of urbanization. Most bee species were not affected by any of the environmental variables tested, and urbanization had a negative effect only for one bee species. Further, we determined that restoration of diverse grasslands positively affected bee species richnesss in urban environments. We conclude that differently structured and managed greenspaces in large-scale housing areas can provide additional foraging habitats and refuges for pollinators. This supports approaches towards a biodiversity friendly management within urban regions and may be of particular importance given that anthropogenic pressure is increasing in many rural landscapes. PMID:27917318

  16. Seasonal cycles, phylogenetic assembly, and functional diversity of orchid bee communities.

    PubMed

    Ramírez, Santiago R; Hernández, Carlos; Link, Andres; López-Uribe, Margarita M

    2015-05-01

    Neotropical rainforests sustain some of the most diverse terrestrial communities on Earth. Euglossine (or orchid) bees are a diverse lineage of insect pollinators distributed throughout the American tropics, where they provide pollination services to a staggering diversity of flowering plant taxa. Elucidating the seasonal patterns of phylogenetic assembly and functional trait diversity of bee communities can shed new light into the mechanisms that govern the assembly of bee pollinator communities and the potential effects of declining bee populations. Male euglossine bees collect, store, and accumulate odoriferous compounds (perfumes) to subsequently use during courtship display. Thus, synthetic chemical baits can be used to attract and monitor euglossine bee populations. We conducted monthly censuses of orchid bees in three sites in the Magdalena valley of Colombia - a region where Central and South American biotas converge - to investigate the structure, diversity, and assembly of euglossine bee communities through time in relation to seasonal climatic cycles. In particular, we tested the hypothesis that phylogenetic community structure and functional trait diversity changed in response to seasonal rainfall fluctuations. All communities exhibited strong to moderate phylogenetic clustering throughout the year, with few pronounced bursts of phylogenetic overdispersion that coincided with the transition from wet-to-dry seasons. Despite the heterogeneous distribution of functional traits (e.g., body size, body mass, and proboscis length) and the observed seasonal fluctuations in phylogenetic diversity, we found that functional trait diversity, evenness, and divergence remained constant during all seasons in all communities. However, similar to the pattern observed with phylogenetic diversity, functional trait richness fluctuated markedly with rainfall in all sites. These results emphasize the importance of considering seasonal fluctuations in community assembly and provide a glimpse to the potential effects that climatic alterations may have on both pollinator communities and the ecosystem services they provide.

  17. Consumption of a nectar alkaloid reduces pathogen load in bumble bees.

    PubMed

    Manson, Jessamyn S; Otterstatter, Michael C; Thomson, James D

    2010-01-01

    Diet has a significant effect on pathogen infections in animals and the consumption of secondary metabolites can either enhance or mitigate infection intensity. Secondary metabolites, which are commonly associated with herbivore defense, are also frequently found in floral nectar. One hypothesized function of this so-called toxic nectar is that it has antimicrobial properties, which may benefit insect pollinators by reducing the intensity of pathogen infections. We tested whether gelsemine, a nectar alkaloid of the bee-pollinated plant Gelsemium sempervirens, could reduce pathogen loads in bumble bees infected with the gut protozoan Crithidia bombi. In our first laboratory experiment, artificially infected bees consumed a daily diet of gelsemine post-infection to simulate continuous ingestion of alkaloid-rich nectar. In the second experiment, bees were inoculated with C. bombi cells that were pre-exposed to gelsemine, simulating the direct effects of nectar alkaloids on pathogen cells that are transmitted at flowers. Gelsemine significantly reduced the fecal intensity of C. bombi 7 days after infection when it was consumed continuously by infected bees, whereas direct exposure of the pathogen to gelsemine showed a non-significant trend toward reduced infection. Lighter pathogen loads may relieve bees from the behavioral impairments associated with the infection, thereby improving their foraging efficiency. If the collection of nectar secondary metabolites by pollinators is done as a means of self-medication, pollinators may selectively maintain secondary metabolites in the nectar of plants in natural populations.

  18. Morphological Complexity as a Floral Signal: From Perception by Insect Pollinators to Co-Evolutionary Implications.

    PubMed

    Krishna, Shivani; Keasar, Tamar

    2018-06-06

    Morphologically complex flowers are characterized by bilateral symmetry, tube-like shapes, deep corolla tubes, fused petals, and/or poricidal anthers, all of which constrain the access of insect visitors to floral nectar and pollen rewards. Only a subset of potential pollinators, mainly large bees, learn to successfully forage on such flowers. Thus, complexity may comprise a morphological filter that restricts the range of visitors and thereby increases food intake for successful foragers. Such pollinator specialization, in turn, promotes flower constancy and reduces cross-species pollen transfer, providing fitness benefits to plants with complex flowers. Since visual signals associated with floral morphological complexity are generally honest (i.e., indicate food rewards), pollinators need to perceive and process them. Physiological studies show that bees detect distant flowers through long-wavelength sensitive photoreceptors. Bees effectively perceive complex shapes and learn the positions of contours based on their spatial frequencies. Complex flowers require long handling times by naive visitors, and become highly profitable only for experienced foragers. To explore possible pathways towards the evolution of floral complexity, we discuss cognitive mechanisms that potentially allow insects to persist on complex flowers despite low initial foraging gains, suggest experiments to test these mechanisms, and speculate on their adaptive value.

  19. [Bee diversity in Tecoma stans (L.) Kunth (Bignoniaceae): importance for pollination and fruit production].

    PubMed

    Silva, Cláudia I; Augusto, Solange C; Sofia, Silvia H; Moscheta, Ismar S

    2007-01-01

    Tecoma stans (L.) Kunth is an exotic plant in Brazil, commonly distributed in urban areas, which is considered an invasive species in crop and pasture areas. In this study, the floral biology and the behavior of bees in flowers of T. stans from three urban areas in southeastern Brazil were investigated. In all study sites, T. stans was an important food resource to the Apoidea to 48 species of bees. Centris tarsata Smith and Exomalopsis fulvofasciata Smith (Hymenoptera: Apidae) were the effective pollinators more abundant, while Scaptotrigona depilis Moure (Hymenoptera: Apidae) was the more frequent robber species. The most part of T. stans visitors (87.5%) exploited exclusively nectar, which varied in sugar concentration depending on the day period and flower phase. In all flower stages, higher averages of nectar concentration (26.4% to 32.7%) occurred from 10 am to 2 pm. The presence of osmophore in the petals and protandry were detected. In two urban areas the number of visitors varied significantly during the day. The greatest abundance of pollinators occurred when pollen availability was higher and flowers showed receptive stigma, which could be contributing to the reproductive success of T. stans. The results indicate that the production of fruits increased in plants that received a higher number of effective pollinators.

  20. Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators.

    PubMed

    Cariveau, Daniel P; Williams, Neal M; Benjamin, Faye E; Winfree, Rachael

    2013-07-01

    More diverse biological communities may provide ecosystem services that are less variable over space or time. However, the mechanisms underlying this relationship are rarely investigated empirically in real-world ecosystems. Here, we investigate how a potentially important stabilising mechanism, response diversity, the differential response to environmental change among species, stabilises pollination services against land-use change. We measured crop pollination services provided by native bees across land-use gradients in three crop systems. We found that bee species responded differentially to increasing agricultural land cover in all three systems, demonstrating that response diversity occurs. Similarly, we found response diversity in pollination services in two of the systems. However, there was no evidence that response diversity, in general, stabilised ecosystem services. Our results suggest that either response diversity is not the primary stabilising mechanism in our system, or that new measures of response diversity are needed that better capture the stabilising effects it provides. © 2013 John Wiley & Sons Ltd/CNRS.

  1. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe.

    PubMed

    Hass, Annika L; Kormann, Urs G; Tscharntke, Teja; Clough, Yann; Baillod, Aliette Bosem; Sirami, Clélia; Fahrig, Lenore; Martin, Jean-Louis; Baudry, Jacques; Bertrand, Colette; Bosch, Jordi; Brotons, Lluís; Burel, Françoise; Georges, Romain; Giralt, David; Marcos-García, María Á; Ricarte, Antonio; Siriwardena, Gavin; Batáry, Péter

    2018-02-14

    Agricultural intensification is one of the main causes for the current biodiversity crisis. While reversing habitat loss on agricultural land is challenging, increasing the farmland configurational heterogeneity (higher field border density) and farmland compositional heterogeneity (higher crop diversity) has been proposed to counteract some habitat loss. Here, we tested whether increased farmland configurational and compositional heterogeneity promote wild pollinators and plant reproduction in 229 landscapes located in four major western European agricultural regions. High-field border density consistently increased wild bee abundance and seed set of radish ( Raphanus sativus ), probably through enhanced connectivity. In particular, we demonstrate the importance of crop-crop borders for pollinator movement as an additional experiment showed higher transfer of a pollen analogue along crop-crop borders than across fields or along semi-natural crop borders. By contrast, high crop diversity reduced bee abundance, probably due to an increase of crop types with particularly intensive management. This highlights the importance of crop identity when higher crop diversity is promoted. Our results show that small-scale agricultural systems can boost pollinators and plant reproduction. Agri-environmental policies should therefore aim to halt and reverse the current trend of increasing field sizes and to reduce the amount of crop types with particularly intensive management. © 2018 The Author(s).

  2. Pollen Load and Flower Constancy of Three Species of Stingless Bees (Hymenoptera, Apidae, Meliponinae)

    PubMed Central

    Pangestika, Norita Widya; Atmowidi, Tri; Kahono, Sih

    2017-01-01

    The genera of stingless bees play an important role as pollinators of plants. These bees are actively involved in the pollination of agricultural crops and known to have preferences in selecting flowers to pollinate. The aims of this study were to analyse the pollen load and flower constancy in Tetragonula laeviceps, Lepidotrigona terminata, and Heterotrigona itama. Each individual of species stingless bees collected and was put in a 1.5 mL micro-tube contain 0.5 mL 70% ethanol:glycerol (4:1). Pollen loads on each individual of stingless bees was counted by hemocytometer. Flower constancy of stingless bees was measured based on percentage of pollen type loaded on the body. Results showed that the pollen loads of H. itama was the highest (31392 pollen grains) followed by L. terminata (23017 pollen grains) and T. laeviceps (8015 pollen grains). These species also demonstrated different flower constancy, T. laeviceps on Poaceae flowers (76.49%), L. terminata on Euphorbiaceae flowers (80.46%), and H. itama on Solanaceae flowers (83.33%). PMID:28890769

  3. Taxonomic description of in situ bee pollen from the middle Eocene of Germany.

    PubMed

    Grímsson, FriĐgeir; Zetter, Reinhard; Labandeira, Conrad C; Engel, Michael S; Wappler, Torsten

    2017-01-02

    The middle Eocene Messel and Eckfeld localities are renowned for their excellently preserved faunas and diverse floras. Here we describe for the first time pollen from insect-pollinated plants found in situ on well-preserved ancient bees using light and scanning electron microscopy. There have been 140 pollen types reported from Messel and 162 pollen types from Eckfeld. Here we document 23 pollen types, six from Messel and 18 from Eckfeld (one is shared). The taxa reported here are all pollinated by insects and mostly not recovered in the previously studied dispersed fossil pollen records. Typically, a single or two pollen types are found on each fossil bee specimen, the maximum number of distinct pollen types on a single individual is five. Only five of the 23 pollen types obtained are angiosperms of unknown affinity, the remainder cover a broad taxonomic range of angiosperm trees and include members of several major clades: monocots (1 pollen type), fabids (7), malvids (4), asterids (5) and other core eudicots (1). Seven types each can be assigned to individual genera or infrafamilial clades. Since bees visit only flowers in the relative vicinity of their habitat, the recovered pollen provides a unique insight into the autochthonous palaeo-flora. The coexistence of taxa such as Decodon, Elaeocarpus, Mortoniodendron and other Tilioideae, Mastixoideae, Olax, Pouteria and Nyssa confirms current views that diverse, thermophilic forests thrived at the Messel and Eckfeld localities, probably under a warm subtropical, fully humid climate. Our study calls for increased attention to pollen found in situ on pollen-harvesting insects such as bees, which can provide new insights on insect-pollinated plants and complement even detailed palaeo-palynological knowledge obtained mostly from pollen of wind-pollinated plants in the dispersed pollen record of sediments. In the case of Elaeocarpus, Mortoniodendron, Olax and Pouteria the pollen collected by the middle Eocene bees represent the earliest unambiguous records of their respective genera.

  4. Taxonomic description of in situ bee pollen from the middle Eocene of Germany

    PubMed Central

    Grímsson, FriĐgeir; Zetter, Reinhard; Labandeira, Conrad C.; Engel, Michael S.; Wappler, Torsten

    2017-01-01

    Abstract The middle Eocene Messel and Eckfeld localities are renowned for their excellently preserved faunas and diverse floras. Here we describe for the first time pollen from insect-pollinated plants found in situ on well-preserved ancient bees using light and scanning electron microscopy. There have been 140 pollen types reported from Messel and 162 pollen types from Eckfeld. Here we document 23 pollen types, six from Messel and 18 from Eckfeld (one is shared). The taxa reported here are all pollinated by insects and mostly not recovered in the previously studied dispersed fossil pollen records. Typically, a single or two pollen types are found on each fossil bee specimen, the maximum number of distinct pollen types on a single individual is five. Only five of the 23 pollen types obtained are angiosperms of unknown affinity, the remainder cover a broad taxonomic range of angiosperm trees and include members of several major clades: monocots (1 pollen type), fabids (7), malvids (4), asterids (5) and other core eudicots (1). Seven types each can be assigned to individual genera or infrafamilial clades. Since bees visit only flowers in the relative vicinity of their habitat, the recovered pollen provides a unique insight into the autochthonous palaeo-flora. The coexistence of taxa such as Decodon, Elaeocarpus, Mortoniodendron and other Tilioideae, Mastixoideae, Olax, Pouteria and Nyssa confirms current views that diverse, thermophilic forests thrived at the Messel and Eckfeld localities, probably under a warm subtropical, fully humid climate. Our study calls for increased attention to pollen found in situ on pollen-harvesting insects such as bees, which can provide new insights on insect-pollinated plants and complement even detailed palaeo-palynological knowledge obtained mostly from pollen of wind-pollinated plants in the dispersed pollen record of sediments. In the case of Elaeocarpus, Mortoniodendron, Olax and Pouteria the pollen collected by the middle Eocene bees represent the earliest unambiguous records of their respective genera. PMID:28057943

  5. Interactive effects among ecosystem services and management practices on crop production: pollination in coffee agroforestry systems.

    PubMed

    Boreux, Virginie; Kushalappa, Cheppudira G; Vaast, Philippe; Ghazoul, Jaboury

    2013-05-21

    Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables.

  6. Pollination syndromes in African Marantaceae

    PubMed Central

    Ley, Alexandra C.; Claßen-Bockhoff, Regine

    2009-01-01

    Background and Aims The Marantaceae (550 spp.) is the most derived family in the order Zingiberales and exhibits a complex explosive pollination mechanism. To understand the evolutionary significance of this unique process of pollen transfer, comparative morphological and ecological studies were conducted in Gabon. Methods During a total stay of 11 months, 31 species of Marantaceae were investigated at different sites in Gabon. The study included analyses of floral diversity, observations on the pollinator spectrum as well as ecological measurements (e.g. nectar sugar concentration and volume). Key Results Analyses reveal five flower types based on flower size and pigmentation, spatial arrangement of the floral tube and presence/absence of nectar guides and conspicuous outer staminodes. Each type is associated with a specific functional pollinator group leading to the description of distinct pollination syndromes. The ‘small (horizontal)’ flowers are predominantly pollinated by small bees (Thrinchostoma spp., Allodapula ornaticeps), the ‘large (horizontal)’ and ‘medium-sized (horizontal)’ flowers by medium-sized bees (Amegilla vivida, Thrinchostoma bicometes), the ‘locked (horizontal)’ flowers by large bees (Xylocopa nigrita, X. varipes) and the ‘(large) vertical’ flowers by sunbirds. Conclusions The longevity of Marantaceae individuals and the omnipresence of their pollinators allowed the specialization to a given functional pollinator group. Intermediate ecological values, however, make occasional pollinator overlaps possible, indicating potential pathways of pollinator shifts. Similar radiation tendencies observed on other continents hint at similar selective pressures and evolutionary constraints. PMID:19443460

  7. A Temporal Dimension to the Influence of Pollen Rewards on Bee Behaviour and Fecundity in Aloe tenuior

    PubMed Central

    Duffy, Karl J.; Johnson, Steven D.; Peter, Craig I.

    2014-01-01

    The net effect of pollen production on fecundity in plants can range from negative – when self-pollen interferes with fecundity due to incompatibility mechanisms, to positive – when pollen availability is associated with increased pollinator visitation and fecundity due to its utilization as a reward. We investigated the responses of bees to pollen and nectar rewards, and the effects of these rewards on pollen deposition and fecundity in the hermaphroditic succulent shrub Aloe tenuior. Self-pollinated plants failed to set fruit, but their ovules were regularly penetrated by self-pollen tubes, which uniformly failed to develop into seeds as expected from ovarian self-incompatibility (or strong early inbreeding depression). Bees consistently foraged for pollen during the morning and early afternoon, but switched to nectar in the late afternoon. As a consequence of this differential foraging, we were able to test the relative contribution to fecundity of pollen- versus nectar-collecting flower visitors. We exposed emasculated and intact flowers in either the morning or late afternoon to foraging bees and showed that emasculation reduced pollen deposition by insects in the morning, but had little effect in the afternoon. Despite the potential for self-pollination to result in ovule discounting due to late-acting self-sterility, fecundity was severely reduced in artificially emasculated plants. Although there were temporal fluctuations in reward preference, most bee visits were for pollen rewards. Therefore the benefit of providing pollen that is accessible to bee foragers outweighs any potential costs to fitness in terms of gender interference in this species. PMID:24755611

  8. The reluctant visitor: an alkaloid in toxic nectar can reduce olfactory learning and memory in Asian honey bees.

    PubMed

    Zhang, Junjun; Wang, Zhengwei; Wen, Ping; Qu, Yufeng; Tan, Ken; Nieh, James C

    2018-03-01

    The nectar of the thunder god vine, Tripterygium hypoglaucum , contains a terpenoid, triptolide (TRP), that may be toxic to the sympatric Asian honey bee, Apis cerana , because honey produced from this nectar is toxic to bees. However, these bees will forage on, recruit for, and pollinate this plant during a seasonal dearth of preferred food sources. Olfactory learning plays a key role in forager constancy and pollination, and we therefore tested the effects of acute and chronic TRP feeding on forager olfactory learning, using proboscis extension reflex conditioning. At concentrations of 0.5-10 µg TRP ml -1 , there were no learning effects of acute exposure. However, memory retention (1 h after the last learning trial) significantly decreased by 56% following acute consumption of 0.5 µg TRP ml -1 Chronic exposure did not alter learning or memory, except at high concentrations (5 and 10 µg TRP ml -1 ). TRP concentrations in nectar may therefore not significantly harm plant pollination. Surprisingly, TRP slightly increased bee survival, and thus other components in T. hypoglaucum honey may be toxic. Long-term exposure to TRP could have colony effects but these may be ameliorated by the bees' aversion to T. hypoglaucum nectar when other food sources are available and, perhaps, by detoxification mechanisms. The co-evolution of this plant and its reluctant visitor may therefore likely illustrate a classic compromise between the interests of both actors. © 2018. Published by The Company of Biologists Ltd.

  9. The role of pollinators in maintaining variation in flower color in the Rocky Mountain columbine, Aquilegia coerulea

    USDA-ARS?s Scientific Manuscript database

    Flower color varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea. The abundance of hawkmoths and bumble bees, the two major pollinators of this plant species, also varies among populations. We investigated the preference of hawkmoths and bumble bees for flower col...

  10. Floral traits influencing plant attractiveness to three bee species: Consequences for plant reproductive success

    USDA-ARS?s Scientific Manuscript database

    The ability to attract pollinators is crucial to plants that rely on insects for pollination. We examined and contrasted the role of floral display size and flower color in attracting three bee species to Medicago sativa and determined the relationships between plant attractiveness and seed set for ...

  11. A re-examination of the pollinator crisis.

    PubMed

    Martin, Cyrus

    2015-10-05

    Reports of colony collapse disorder in bees and studies showing the toxicity of neonicotinoid pesticides have led to claims that we are experiencing a pollinator crisis. As Cyrus Martin reports, however, the issue is complex with threats to bees being multifold and the status of populations unclear due to a surprising lack of data.

  12. Use of video surveillance to measure the influences of habitat management and landscape composition on pollinator visitation and pollen deposition in pumpkin (Cucurbita pepo) agroecosystems

    PubMed Central

    Phillips, Benjamin W.

    2015-01-01

    Pumpkin (Cucurbita pepo) production relies on insect-mediated pollination, which is provided by managed and wild pollinators. The goals of this study were to measure the visitation frequency, longevity and temporal activity patterns of pumpkin pollinators and to determine if local habitat management and landscape composition affected this pollination service. We used video surveillance to monitor bee acitivty within male and female pumpkin flowers in 2011 and 2012 across a pollination window of 0600–1200 h. We also quantified the amount of pollen deposited in female flowers across this time period. In 2011, A. mellifera made significantly more floral visits than other bees, and in 2012 Bombus spp. was the dominant pumpkin pollinator. We found variation in visitation among male and female pumpkin flowers, with A. mellifera visiting female flowers more often and spending longer per visit within them than male flowers in both 2011 and 2012. The squash bee P. pruinosa visited male flowers more frequently in 2012, but individuals spent equal time in both flower sexes. We did not find variation in the timing of flower visitation among species across the observed pollination window. In both 2011 and 2012 we found that the majority of pollen deposition occurred within the first two hours (0600–0800 h) of observation; there was no difference between the pollen deposited during this two-hour period and full pollination window (0600–1200 h). Local additions of sweet alyssum floral strips or a field buffer strip of native wildflowers did not have an effect on the foraging activity of bees or pollen deposition. However, semi-natural and urban habitats in the surrounding landscape were positively correlated with the frequency of flower visitation by wild pollinators and the amount of pollen deposited within female flowers. PMID:26587337

  13. Use of video surveillance to measure the influences of habitat management and landscape composition on pollinator visitation and pollen deposition in pumpkin (Cucurbita pepo) agroecosystems.

    PubMed

    Phillips, Benjamin W; Gardiner, Mary M

    2015-01-01

    Pumpkin (Cucurbita pepo) production relies on insect-mediated pollination, which is provided by managed and wild pollinators. The goals of this study were to measure the visitation frequency, longevity and temporal activity patterns of pumpkin pollinators and to determine if local habitat management and landscape composition affected this pollination service. We used video surveillance to monitor bee acitivty within male and female pumpkin flowers in 2011 and 2012 across a pollination window of 0600-1200 h. We also quantified the amount of pollen deposited in female flowers across this time period. In 2011, A. mellifera made significantly more floral visits than other bees, and in 2012 Bombus spp. was the dominant pumpkin pollinator. We found variation in visitation among male and female pumpkin flowers, with A. mellifera visiting female flowers more often and spending longer per visit within them than male flowers in both 2011 and 2012. The squash bee P. pruinosa visited male flowers more frequently in 2012, but individuals spent equal time in both flower sexes. We did not find variation in the timing of flower visitation among species across the observed pollination window. In both 2011 and 2012 we found that the majority of pollen deposition occurred within the first two hours (0600-0800 h) of observation; there was no difference between the pollen deposited during this two-hour period and full pollination window (0600-1200 h). Local additions of sweet alyssum floral strips or a field buffer strip of native wildflowers did not have an effect on the foraging activity of bees or pollen deposition. However, semi-natural and urban habitats in the surrounding landscape were positively correlated with the frequency of flower visitation by wild pollinators and the amount of pollen deposited within female flowers.

  14. The safety of thiamethoxam to pollinating bumble bees (Bombus terrestris L.) when applied to tomato plants through drip irrigation.

    PubMed

    Alarcón, A L; Cánovas, M; Senn, R; Correia, R

    2005-01-01

    Thiamethoxam, mainly sold under the trademark of Actara, is a neonicotinoid widely used in covered vegetables for the control of aphids and whiteflies. In these crops, and particularly in covered tomatoes, bumble-bees are used for cross-pollination as an alternative to labour intensive manual techniques. In this study, made on tomatoes grown in separated greenhouse plots in Murcia, Southern Spain, thiamethoxam was applied through drip irrigation at a rate of 200 g ai/ha, and as a split application of the same rate, to evaluate the effects on pollinating bumble bees compared to a foliar application of a toxic standard. The results showed that the toxic foliar standard had a clear effect on the pollination of tomato flowers, declining to zero pollination two weeks after application, whereas both the single and split drip irrigation applications of Actara had no effect on pollination when compared to the control plots. The count of dead adults and larvae did not show any differences between the treatments, whereas the measurement of sugar water consumption was shown to correlate well with pollination. The consumption of sugar water declined in the toxic standard plots by 69% with respect to the control, whilst the decline in lower dose drip irrigation application was only 3%. In regard to hive weight, and number of adults and brood after destructive sampling; there were no statistical differences between the treatments but a negative effect of the foliar treatment was observed. Based on these results we can conclude that a split application of Actara applied in drip irrigation to the soil/substrate has no effect on the bumble-bees used in tomatoes for pollination.

  15. Why is the lawn buzzing?

    PubMed Central

    2014-01-01

    Abstract Graminoids, including grasses, are frequently described in the botanical literature as being wind-pollinated. This paper offers visual evidence for insect pollination of a grass. Three of the bees involved were found to have 100% grass pollen in their pollen sacs. In reviewing the literature for this paper, it was evident that those working with bees are well aware that these insects often pollinate graminoids. It is not clear why this information has not been incorporated into the botanical literature. PMID:24891835

  16. Field Margins, Foraging Distances and Their Impacts on Nesting Pollinator Success

    PubMed Central

    Rands, Sean A.; Whitney, Heather M.

    2011-01-01

    The areas of wild land around the edges of agricultural fields are a vital resource for many species. These include insect pollinators, to whom field margins provide both nest sites and important resources (especially when adjacent crops are not in flower). Nesting pollinators travel relatively short distances from the nest to forage: most species of bee are known to travel less than two kilometres away. In order to ensure that these pollinators have sufficient areas of wild land within reach of their nests, agricultural landscapes need to be designed to accommodate the limited travelling distances of nesting pollinators. We used a spatially-explicit modelling approach to consider whether increasing the width of wild strips of land within the agricultural landscape will enhance the amount of wild resources available to a nesting pollinator, and if it would impact differently on pollinators with differing foraging strategies. This was done both by creating field structures with a randomised geography, and by using landscape data based upon the British agricultural landscape. These models demonstrate that enhancing field margins should lead to an increase in the availability of forage to pollinators that nest within the landscape. With the exception of species that only forage within a very short range of their nest (less than 125 m), a given amount of field margin manipulation should enhance the proportion of land available to a pollinator for foraging regardless of the distance over which it normally travels to find food. A fixed amount of field edge manipulation should therefore be equally beneficial for both longer-distance nesting foragers such as honeybees, and short-distance foragers such as solitary bees. PMID:21991390

  17. Honey bee (Hymenoptera: Apidae) foraging in response to preconditioning with onion flower scent compounds.

    PubMed

    Silva, Erin M; Dean, Bill B; Hiller, Larry K

    2003-10-01

    Onion (Allium cepa L.) seed production has long been plagued with yield problems because of lack of pollination by the honey bee, Apis mellifera L. To attempt to attract more pollinators to the onion seed production field, honey bees were conditioned to associate onion floral odor components with a reward. Isolated nucleus hives of honey bees were fed 30% sucrose solutions scented with a 0.2% solution of onion floral odor compounds. After feeding on these solutions for 6 wk, bees were not found to prefer onion flowers to two competing food sources, carrot and alfalfa flowers, at the 5% significance level. However, there was an overall trend indicating a change in honey bee behavior, with fewer "trained" bees visiting alfalfa and carrot and more visiting onion. Thus, it may be possible to alter honey bee behavior with preconditioning but probably not to a degree that would be economically significant.

  18. Response of wild bees (Hymenoptera: Apoidea: Anthophila) to surrounding land cover in Wisconsin pickling cucumber.

    PubMed

    Lowenstein, D M; Huseth, A S; Groves, R L

    2012-06-01

    Cucumber (Cucumis sativus L.) is among the plants highly dependent on insect-mediated pollination, but little is known about its unmanaged pollinators. Both domestic and wild bee populations in central Wisconsin pickling cucumber fields were assessed using a combination of pan trapping and floral observations before and during bloom. Together with land cover analyses extending 2,000 m from field centers, the relationship of land cover components and bee abundance and diversity were examined. Over a 2-yr sample interval distributed among 18 experimental sites, 3,185 wild bees were collected representing >60 species. A positive association was found between both noncrop and herbaceous areas with bee abundance and diversity only during bloom. Response of bee abundance and diversity to land cover was strongest at larger buffers presumably because of the heterogeneous nature of the landscape and connectivity between crop and noncrop areas. These results are consistent with previous research that has found a weak response of wild bees to surrounding vegetation in moderately fragmented areas. A diverse community of wild bees is present within the fields of a commercial cucumber system, and there is evidence of floral visitation by unmanaged bees. This evidence emphasizes the importance of wild pollinators in fragmented landscapes and the need for additional research to investigate the effectiveness of individual species in pollen deposition.

  19. Predator crypsis enhances behaviourally mediated indirect effects on plants by altering bumblebee foraging preferences

    PubMed Central

    Ings, Thomas C.; Chittka, Lars

    2009-01-01

    Predators of pollinators can influence pollination services and plant fitness via both consumptive (reducing pollinator density) and non-consumptive (altering pollinator behaviour) effects. However, a better knowledge of the mechanisms underlying behaviourally mediated indirect effects of predators is necessary to properly understand their role in community dynamics. We used the tripartite relationship between bumblebees, predatory crab spiders and flowers to ask whether behaviourally mediated effects are localized to flowers harbouring predators, or whether bees extend their avoidance to entire plant species. In a tightly controlled laboratory environment, bumblebees (Bombus terrestris) were exposed to a random mixture of equally rewarding yellow and white artificial flowers, but foraging on yellow flowers was very risky: bees had a 25 per cent chance of receiving a simulated predation attempt by ‘robotic’ crab spiders. As bees learnt to avoid ‘dangerous’ flowers, their foraging preferences changed and they began to visit fewer yellow flowers than expected by chance. Bees avoided spider-free yellow flowers as well as dangerous yellow flowers when spiders were more difficult to detect (the colour of yellow spiders was indistinguishable from that of yellow flowers). Therefore, this interaction between bee learning and predator crypsis could lead flower species harbouring cryptic predators to suffer from reduced reproductive success. PMID:19324797

  20. High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop

    PubMed Central

    McArt, Scott H.; Fersch, Ashley A.; Milano, Nelson J.; Truitt, Lauren L.; Böröczky, Katalin

    2017-01-01

    Honey bees provide critical pollination services for many agricultural crops. While the contribution of pesticides to current hive loss rates is debated, remarkably little is known regarding the magnitude of risk to bees and mechanisms of exposure during pollination. Here, we show that pesticide risk in recently accumulated beebread was above regulatory agency levels of concern for acute or chronic exposure at 5 and 22 of the 30 apple orchards, respectively, where we placed 120 experimental hives. Landscape context strongly predicted focal crop pollen foraging and total pesticide residues, which were dominated by fungicides. Yet focal crop pollen foraging was a poor predictor of pesticide risk, which was driven primarily by insecticides. Instead, risk was positively related to diversity of non-focal crop pollen sources. Furthermore, over 60% of pesticide risk was attributed to pesticides that were not sprayed during the apple bloom period. These results suggest the majority of pesticide risk to honey bees providing pollination services came from residues in non-focal crop pollen, likely contaminated wildflowers or other sources. We suggest a greater understanding of the specific mechanisms of non-focal crop pesticide exposure is essential for minimizing risk to bees and improving the sustainability of grower pest management programs. PMID:28422139

  1. Inbreeding in Mimulus guttatus Reduces Visitation by Bumble Bee Pollinators

    PubMed Central

    Carr, David E.; Roulston, T’ai H.; Hart, Haley

    2014-01-01

    Inbreeding in plants typically reduces individual fitness but may also alter ecological interactions. This study examined the effect of inbreeding in the mixed-mating annual Mimulus guttatus on visitation by pollinators (Bombus impatiens) in greenhouse experiments. Previous studies of M. guttatus have shown that inbreeding reduced corolla size, flower number, and pollen quantity and quality. Using controlled crosses, we produced inbred and outbred families from three different M. guttatus populations. We recorded the plant genotypes that bees visited and the number of flowers probed per visit. In our first experiment, bees were 31% more likely to visit outbred plants than those selfed for one generation and 43% more likely to visit outbred plants than those selfed for two generations. Inbreeding had only a small effect on the number of flowers probed once bees arrived at a genotype. These differences were explained partially by differences in mean floral display and mean flower size, but even when these variables were controlled statistically, the effect of inbreeding remained large and significant. In a second experiment we quantified pollen viability from inbred and self plants. Bees were 37–54% more likely to visit outbred plants, depending on the population, even when controlling for floral display size. Pollen viability proved to be as important as floral display in predicting pollinator visitation in one population, but the overall explanatory power of a multiple regression model was weak. Our data suggested that bees use cues in addition to display size, flower size, and pollen reward quality in their discrimination of inbred plants. Discrimination against inbred plants could have effects on plant fitness and thereby reinforce selection for outcrossing. Inbreeding in plant populations could also reduce resource quality for pollinators, potentially resulting in negative effects on pollinator populations. PMID:25036035

  2. A reassessment of the function of floral nectar in Croton suberosus (Euphorbiaceae): A reward for plant defenders and pollinators.

    PubMed

    Narbona, Eduardo; Dirzo, Rodolfo

    2010-04-01

    Typically, plant-pollinator interactions are recognized as mutualistic relationships. Flower visitors, however, can potentially play multiple roles. The floral nectar in Croton suberosus has been proposed to operate as a reward for predators, especially the wasp Polistes instabilis (Vespidae), which kills herbivorous insects, while the plant has been thought to be mainly wind-pollinated. In this study, we reassessed the pollination mode of C. suberosus and the possible role of its flower visitors. Pollinator exclusion experiments demonstrated that C. suberosus should be considered a strictly entomophilous species. Inflorescences of C. suberosus were visited by a diverse entomofauna involving 28 taxa belonging to six orders; however, wasps and bees were the only visitors that carried C. suberosus pollen. The visitation rate of wasps was approximately four times that of bees. This observation, combined with the fact that the small size of bees makes effective contact of their bodies with the stigma difficult, strongly suggests that large wasps are responsible for most of the effective pollination of C. suberosus. Among the wasp visitors, P. instabilis seems to be one of the most important. These findings expose an unusual plant-insect interaction, in which the plant provides nectar and wasps pollinate and defend the plant.

  3. Context-dependent medicinal effects of anabasine and infection-dependent toxicity in bumble bees.

    PubMed

    Palmer-Young, Evan C; Hogeboom, Alison; Kaye, Alexander J; Donnelly, Dash; Andicoechea, Jonathan; Connon, Sara June; Weston, Ian; Skyrm, Kimberly; Irwin, Rebecca E; Adler, Lynn S

    2017-01-01

    Floral phytochemicals are ubiquitous in nature, and can function both as antimicrobials and as insecticides. Although many phytochemicals act as toxins and deterrents to consumers, the same chemicals may counteract disease and be preferred by infected individuals. The roles of nectar and pollen phytochemicals in pollinator ecology and conservation are complex, with evidence for both toxicity and medicinal effects against parasites. However, it remains unclear how consistent the effects of phytochemicals are across different parasite lineages and environmental conditions, and whether pollinators actively self-medicate with these compounds when infected. Here, we test effects of the nectar alkaloid anabasine, found in Nicotiana, on infection intensity, dietary preference, and survival and performance of bumble bees (Bombus impatiens). We examined variation in the effects of anabasine on infection with different lineages of the intestinal parasite Crithidia under pollen-fed and pollen-starved conditions. We found that anabasine did not reduce infection intensity in individual bees infected with any of four Crithidia lineages that were tested in parallel, nor did anabasine reduce infection intensity in microcolonies of queenless workers. In addition, neither anabasine nor its isomer, nicotine, was preferred by infected bees in choice experiments, and infected bees consumed less anabasine than did uninfected bees under no-choice conditions. Furthermore, anabasine exacerbated the negative effects of infection on bee survival and microcolony performance. Anabasine reduced infection in only one experiment, in which bees were deprived of pollen and post-pupal contact with nestmates. In this experiment, anabasine had antiparasitic effects in bees from only two of four colonies, and infected bees exhibited reduced-rather than increased-phytochemical consumption relative to uninfected bees. Variation in the effect of anabasine on infection suggests potential modulation of tritrophic interactions by both host genotype and environmental variables. Overall, our results demonstrate that Bombus impatiens prefer diets without nicotine and anabasine, and suggest that the medicinal effects and toxicity of anabasine may be context dependent. Future research should identify the specific environmental and genotypic factors that determine whether nectar phytochemicals have medicinal or deleterious effects on pollinators.

  4. Internal hive temperature as a means of monitoring honey bee colony health in a migratory beekeeping operation before and during winter

    USDA-ARS?s Scientific Manuscript database

    Internal temperatures of honey bee hives kept at different sites in North Dakota were monitored before and during winter to evaluate the effects of treatment, in the form of exposure to commercial pollination, and location on colony health. In October, hives exposed to commercial pollination durin...

  5. Physical interaction between floral specialist bees Ptilothrix bombiformis (Cresson) (Hymenoptera: Apidae) enhances pollination of hibiscus (section Trionum: Malvaceae)

    USDA-ARS?s Scientific Manuscript database

    Specialist bees, those species with narrow dietary niches, rely on a few related species of floral hosts for food. Accordingly, specialists are thought of as being more efficient pollinators than are generalists. There is growing evidence, however, that this is not true in all cases. For example, we...

  6. Pollinating bees crucial to farming wildflower seed for U.S. habitat restoration

    Treesearch

    James H. Cane

    2008-01-01

    Federal land managers desire seed of Great Basin perennial wildflowers, mixed with grass and shrub seed, for restoration of millions of acres of sagebrush communities degraded by altered wildfire regimes, and exotic grasses and forbs. For 15 candidate wildflower species to be farmed for seed production, all were found to need pollinators, typically bees (Apiformes),...

  7. Changes in Orchid Bee Communities Across Forest-Agroecosystem Boundaries in Brazilian Atlantic Forest Landscapes.

    PubMed

    De Aguiar, Willian Moura; Sofia, Silvia H; Melo, Gabriel A R; Gaglianone, Maria Cristina

    2015-12-01

    Deforestation has dramatically reduced the extent of Atlantic Forest cover in Brazil. Orchid bees are key pollinators in neotropical forest, and many species are sensitive to anthropogenic interference. In this sense understanding the matrix permeability for these bees is important for maintaining genetic diversity and pollination services. Our main objective was to assess whether the composition, abundance, and diversity of orchid bees in matrices differed from those in Atlantic forest. To do this we sampled orchid bees at 4-mo intervals from 2007 to 2009 in remnants of Atlantic Forest, and in the surrounding pasture and eucalyptus matrices. The abundance, richness, and diversity of orchid bees diminished significantly from the forest fragment toward the matrix points in the eucalyptus and pasture. Some common or intermediate species in the forest areas, such as Eulaema cingulata (F.) and Euglossa fimbriata Moure, respectively, become rare species in the matrices. Our results show that the orchid bee community is affected by the matrices surrounding the forest fragments. They also suggest that connections between forest fragments need to be improved using friendly matrices that can provide more favorable conditions for bees and increase their dispersal between fragments. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Bee-Wild about Pollinators!

    ERIC Educational Resources Information Center

    Johnson, Bonnie; Kil, Jenny; Evans, Elaine; Koomen, Michele Hollingsworth

    2014-01-01

    With their sunny stripes and fuzzy bodies, bees are beloved--but unfortunately, they are in trouble. Bee decline, of both wild bees as well as managed bees like honey bees, has been in the news for the last several years. Habitat loss, diseases, pests, and pesticides have made it difficult for bees to survive in many parts of our world (Walsh…

  9. Diet overlap of mammalian herbivores and native bees: implications for managing co-occurring grazers and pollinators

    Treesearch

    Sandra J. DeBano; Samantha M. Roof; Mary M. Rowland; Lauren A. Smith

    2016-01-01

    Many federal, state, and tribal agencies, as well as nonprofit organizations, have recently increased efforts to understand how natural areas can be managed to enhance native pollinators and the ecosystem services they provide. However, managing this important group must be balanced with other services that natural areas provide including hunting, timber production,...

  10. Cephalaria transsylvanica-Based Flower Strips as Potential Food Source for Bees during Dry Periods in European Mediterranean Basin Countries

    PubMed Central

    Benelli, Giovanni; Benvenuti, Stefano; Desneux, Nicolas; Canale, Angelo

    2014-01-01

    The introduction of sown wildflower strips favours the establishment of pollinator communities, with special reference to social Apoidea. Here, we evaluated the late summer flowering Cephalaria transsylvanica as suitable species for strips providing food for pollinators in paucity periods. C. transsylvanica showed no particular requirements in terms of seed germination and growth during summer. This plant had an excellent potential of self-seeding and competitiveness towards weed competitors. C. transsylvanica prevented from entomophilous pollination showed inbreeding depression, with a decrease in seed-set and accumulation of seed energy reserves. However, C. transsylvanica did not appear to be vulnerable in terms of pollination biology since it had a wide range of pollinators including bees, hoverflies and Lepidoptera. C. transsylvanica was visited mainly by honeybees and bumblebees and these latter pollinators increased their visits on C. transsylvanica flowers during early autumn. This plant may be useful as an abundant source of pollen during food paucity periods, such as autumn. We proposed C. transsylvanica for incorporation into flower strips to be planted in non-cropped farmlands in intensively managed agricultural areas as well as in proximity of beehives. The latter option may facilitate the honeybees collecting pollen and nectar for the colony, thereby ensuring robustness to overcome the winter season. PMID:24676345

  11. Cephalaria transsylvanica-based flower strips as potential food source for bees during dry periods in European Mediterranean basin countries.

    PubMed

    Benelli, Giovanni; Benvenuti, Stefano; Desneux, Nicolas; Canale, Angelo

    2014-01-01

    The introduction of sown wildflower strips favours the establishment of pollinator communities, with special reference to social Apoidea. Here, we evaluated the late summer flowering Cephalaria transsylvanica as suitable species for strips providing food for pollinators in paucity periods. C. transsylvanica showed no particular requirements in terms of seed germination and growth during summer. This plant had an excellent potential of self-seeding and competitiveness towards weed competitors. C. transsylvanica prevented from entomophilous pollination showed inbreeding depression, with a decrease in seed-set and accumulation of seed energy reserves. However, C. transsylvanica did not appear to be vulnerable in terms of pollination biology since it had a wide range of pollinators including bees, hoverflies and Lepidoptera. C. transsylvanica was visited mainly by honeybees and bumblebees and these latter pollinators increased their visits on C. transsylvanica flowers during early autumn. This plant may be useful as an abundant source of pollen during food paucity periods, such as autumn. We proposed C. transsylvanica for incorporation into flower strips to be planted in non-cropped farmlands in intensively managed agricultural areas as well as in proximity of beehives. The latter option may facilitate the honeybees collecting pollen and nectar for the colony, thereby ensuring robustness to overcome the winter season.

  12. Foraging behavior of honey bees (hymenoptera: Apidae) on Brassica nigra and B. rapa grown under simulated ambient and enhanced UV-B radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, S.A.; Robinson, G.E.; Conner, J.K.

    Two species of mustard, Brassica nigra and B. rapa, were grown under simulated ambient and enhanced ultraviolet-B (UV-B) radiation and exposed to pollinators, Apis mellifera L. Observations were made to determine whether UV-B-induced changes in these plants affected pollinator behavior. Total duration of the foraging trip, number of flowers visited, foraging time per flower, search time per flower, total amount of pollen collected, and pollen collected per flower were measured. There were no significant differences between UV-B treatments in any of the behaviors measured or in any of the pollen measurements. These results suggest that increases in the amount ofmore » solar UV-B reaching the earth`s surface may not have a negative effect on the relationship between these members of the genus Brassica and their honey bee pollinators. 28 refs., 2 figs., 1 tab.« less

  13. Migratory Bee Hive Transportation Contributes Insignificantly to Transgenic Pollen Movement Between Spatially Isolated Alfalfa Seed Fields.

    PubMed

    Boyle, Natalie K; Kesoju, Sandya R; Greene, Stephanie L; Martin, Ruth C; Walsh, Douglas B

    2017-02-01

    Contracted commercial beekeeping operations provide an essential pollination service to many agricultural systems worldwide. Increased use of genetically engineered crops in agriculture has raised concerns over pollinator-mediated gene flow between transgenic and conventional agricultural varieties. This study evaluated whether contracted migratory beekeeping practices influence transgenic pollen flow among spatially isolated alfalfa fields. Twelve honey bee (Apis mellifera L.) colonies were permitted to forage on transgenic alfalfa blossoms for 1 wk in Touchet, WA. The hives were then transported 112 km to caged conventional alfalfa plots following one and two nights of isolation (8 and 32 h, respectively) from the transgenic source. Alfalfa seed harvested from the conventional plots was assessed for the presence of the transgene using a new seedling germination assay. We found that 8 h of isolation from a transgenic alfalfa source virtually eliminated the incidence of cross-pollination between the two varieties.

  14. Effective pollinators of Asian sacred lotus (Nelumbo nucifera): contemporary pollinators may not reflect the historical pollination syndrome

    PubMed Central

    Li, Jiao-Kun; Huang, Shuang-Quan

    2009-01-01

    Background and Aims If stabilizing selection by pollinators is a prerequisite for pollinator-mediated floral evolution, spatiotemporal variation in the pollinator assemblage may confuse the plant–pollinator interaction in a given species. Here, effective pollinators in a living fossil plant Nelumbo nucifera (Nelumbonaceae) were examined to test whether beetles are major pollinators as predicted by its pollination syndrome. Methods Pollinators of N. nucifera were investigated in 11 wild populations and one cultivated population, and pollination experiments were conducted to examine the pollinating role of two major pollinators (bees and beetles) in three populations. Key Results Lotus flowers are protogynous, bowl shaped and without nectar. The fragrant flowers can be self-heating during anthesis and produce around 1 million pollen grains per flower. It was found that bees and flies were the most frequent flower visitors in wild populations, contributing on average 87·9 and 49·4 % of seed set in Mishan and Lantian, respectively. Beetles were only found in one wild population and in the cultivated population, but the pollinator exclusion experiments showed that beetles were effective pollinators of Asian sacred lotus. Conclusions This study indicated that in their pollinating role, beetles, probable pollinators for this thermoregulating plant, had been replaced by some generalist insects in the wild. This finding implies that contemporary pollinators may not reflect the pollination syndrome. PMID:19617594

  15. Where have all the blue flowers gone: pollinator responses and selection on flower colour in New Zealand Wahlenbergia albomarginata.

    PubMed

    Campbell, D R; Bischoff, M; Lord, J M; Robertson, A W

    2012-02-01

    Although pollinators are thought to select on flower colour, few studies have experimentally decoupled effects of colour from correlated traits on pollinator visitation and pollen transfer. We combined selection analysis and phenotypic manipulations to measure the effect of petal colour on visitation and pollen export at two spatial scales in Wahlenbergia albomarginata. This species is representative of many New Zealand alpine herbs that have secondarily evolved white or pale flowers. The major pollinators, solitary bees, exerted phenotypic selection on flower size but not colour, quantified by bee vision. When presented with manipulated flowers, bees visited flowers painted blue to resemble a congener over white flowers in large, but not small, experimental arrays. Pollen export was higher for blue flowers in large arrays. Pollinator preference does not explain the pale colouration of W. albomarginata, as commonly hypothesized. Absence of bright blue could be driven instead by indirect selection of correlated characters. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  16. How to look like a mallow: evidence of floral mimicry between Turneraceae and Malvaceae.

    PubMed

    Benitez-Vieyra, Santiago; Hempel de Ibarra, Natalie; Wertlen, Anna M; Cocucci, Andrea A

    2007-09-22

    Abundant, many-flowered plants represent reliable and rich food sources for animal pollinators, and may even sustain guilds of specialized pollinators. Contrastingly, rare plants need alternative strategies to ensure pollinators' visitation and faithfulness. Flower mimicry, i.e. the sharing of a similar flower colour and display pattern by different plant species, is a means by which a rare species can exploit a successful model and increase its pollination services. The relationship between two or more rewarding flower mimic species, or Müllerian mimicry, has been proposed as mutualistic, in contrast to the unilaterally beneficial Batesian floral mimicry. In this work, we show that two different geographical colour phenotypes of Turnera sidoides ssp. pinnatifida resemble co-flowering Malvaceae in colour as seen by bees' eyes, and that these pollinators do not distinguish between them when approaching flowers in choice tests. Main pollinators of T. sidoides are bees specialized for collecting pollen in Malvaceae. We demonstrate that the similarity between at least one of the geographical colour phenotypes of T. sidoides and co-flowering Malvaceae is adaptive, since the former obtains more pollination services when growing together with its model than when growing alone. Instead of the convergent evolution pattern attributed to Müllerian mimicry, our data rather suggest an advergent evolution pattern, because only T. sidoides seems to have evolved to be more similar to its malvaceous models.

  17. The Effect of Nest Box Distribution on Sustainable Propagation of Osmia lignaria (Hymenoptera: Megachilidae) in Commercial Tart Cherry Orchards

    PubMed Central

    Pitts-Singer, T. L.

    2017-01-01

    The blue orchard bee, Osmia lignaria (Say), is a solitary bee that is an excellent pollinator of tree fruit orchards. Due to the annual rising costs of honey bee hive rentals, many orchardists are eager to develop management tools and practices to support O. lignaria as an alternative pollinator. Establishing O. lignaria pollination as a sustainable industry requires careful consideration of both bee and orchard management. Here, we test the effect of artificial nest box distribution on in-orchard propagation of O. lignaria in Utah commercial tart cherry orchards. Two nest box distributions were compared across three paired, 1.2-ha plots. One distribution, traditionally employed by O. lignaria consultants, included a centrally located tote for mass-nesting with smaller, surrounding ‘satellite’ nest boxes at orchard margins. The other distribution was composed of smaller, more equally distributed nest boxes throughout the 1.2-ha plots. Significantly higher propagation of O. lignaria was observed in the latter nest box distribution, although all treatments resulted in bee return exceeding the number of bees initially released. These findings provide support for the use of O. lignaria in tart cherry orchards, and demonstrate how simple changes to bee set-up and management can influence propagation efforts. PMID:28365763

  18. Within-Colony Variation in the Immunocompetency of Managed and Feral Honey Bees (Apis mellifera L.) in Different Urban Landscapes

    PubMed Central

    Appler, R. Holden; Frank, Steven D.; Tarpy, David R.

    2015-01-01

    Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living) and managed (beekeeper-owned) honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and around Raleigh, NC, USA. We then analyzed adult workers using two standard bioassays for insect immune function (encapsulation response and phenoloxidase activity). We found that there was far more variation within colonies for encapsulation response or phenoloxidase activity than among rural to urban landscapes, and we did not observe any significant difference in immune response between feral and managed bees. These findings suggest that social pollinators, like honey bees, may be sufficiently robust or variable in their immune responses to obscure any subtle effects of urbanization. Additional studies of immune physiology and disease ecology of social and solitary bees in urban, suburban, and natural ecosystems will provide insights into the relative effects of changing urban environments on several important factors that influence pollinator productivity and health. PMID:26529020

  19. Within-Colony Variation in the Immunocompetency of Managed and Feral Honey Bees (Apis mellifera L.) in Different Urban Landscapes.

    PubMed

    Appler, R Holden; Frank, Steven D; Tarpy, David R

    2015-10-29

    Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living) and managed (beekeeper-owned) honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and around Raleigh, NC, USA. We then analyzed adult workers using two standard bioassays for insect immune function (encapsulation response and phenoloxidase activity). We found that there was far more variation within colonies for encapsulation response or phenoloxidase activity than among rural to urban landscapes, and we did not observe any significant difference in immune response between feral and managed bees. These findings suggest that social pollinators, like honey bees, may be sufficiently robust or variable in their immune responses to obscure any subtle effects of urbanization. Additional studies of immune physiology and disease ecology of social and solitary bees in urban, suburban, and natural ecosystems will provide insights into the relative effects of changing urban environments on several important factors that influence pollinator productivity and health.

  20. The bee, the flower, and the electric field: electric ecology and aerial electroreception.

    PubMed

    Clarke, Dominic; Morley, Erica; Robert, Daniel

    2017-09-01

    Bees and flowering plants have a long-standing and remarkable co-evolutionary history. Flowers and bees evolved traits that enable pollination, a process that is as important to plants as it is for pollinating insects. From the sensory ecological viewpoint, bee-flower interactions rely on senses such as vision, olfaction, humidity sensing, and touch. Recently, another sensory modality has been unveiled; the detection of the weak electrostatic field that arises between a flower and a bee. Here, we present our latest understanding of how these electric interactions arise and how they contribute to pollination and electroreception. Finite-element modelling and experimental evidence offer new insights into how these interactions are organised and how they can be further studied. Focussing on pollen transfer, we deconstruct some of the salient features of the three ingredients that enable electrostatic interactions, namely the atmospheric electric field, the capacity of bees to accumulate positive charge, and the propensity of plants to be relatively negatively charged. This article also aims at highlighting areas in need of further investigation, where more research is required to better understand the mechanisms of electrostatic interactions and aerial electroreception.

  1. Economic Risk of Bee Pollination in Maine Wild Blueberry, Vaccinium angustifolium.

    PubMed

    Asare, Eric; Hoshide, Aaron K; Drummond, Francis A; Criner, George K; Chen, Xuan

    2017-10-01

    Recent pollinator declines highlight the importance of evaluating economic risk of agricultural systems heavily dependent on rented honey bees or native pollinators. Our study analyzed variability of native bees and honey bees, and the risks these pose to profitability of Maine's wild blueberry industry. We used cross-sectional data from organic, low-, medium-, and high-input wild blueberry producers in 1993, 1997-1998, 2005-2007, and from 2011 to 2015 (n = 162 fields). Data included native and honey bee densities (count/m2/min) and honey bee stocking densities (hives/ha). Blueberry fruit set, yield, and honey bee hive stocking density models were estimated. Fruit set is impacted about 1.6 times more by native bees than honey bees on a per bee basis. Fruit set significantly explained blueberry yield. Honey bee stocking density in fields predicted honey bee foraging densities. These three models were used in enterprise budgets for all four systems from on-farm surveys of 23 conventional and 12 organic producers (2012-2013). These budgets formed the basis of Monte Carlo simulations of production and profit. Stochastic dominance of net farm income (NFI) cumulative distribution functions revealed that if organic yields are high enough (2,345 kg/ha), organic systems are economically preferable to conventional systems. However, if organic yields are lower (724 kg/ha), it is riskier with higher variability of crop yield and NFI. Although medium-input systems are stochastically dominant with lower NFI variability compared with other conventional systems, the high-input system breaks even with the low-input system if honey bee hive rental prices triple in the future. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  2. The effects of nectar addition on pollen removal and geitonogamy in the non-rewarding orchid Anacamptis morio.

    PubMed Central

    Johnson, Steven D.; Peter, Craig I.; Agren, Jon

    2004-01-01

    It has been suggested that the absence of floral rewards in many orchid species causes pollinators to probe fewer flowers on a plant, and thus reduces geitonogamy, i.e. self-pollination between flowers, which may result in inbreeding depression and reduced pollen export. We examined the effects of nectar addition on pollinator visitation and pollen transfer by tracking the fate of colour-labelled pollen in Anacamptis morio, a non-rewarding orchid species pollinated primarily by queen bumble-bees. Addition of nectar to spurs of A. morio significantly increased the number of flowers probed by bumble-bees, the time spent on an inflorescence, pollinarium removal and the proportion of removed pollen involved in self-pollination through geitonogamy, but did not affect pollen carryover (the fraction of a pollinarium carried over from one flower to the next). Only visits that exceeded 18 s resulted in geitonogamy, as this is the time taken for removed pollinaria to bend into a position to strike the stigma. A mutation for nectar production in A. morio would result in an initial 3.8-fold increase in pollinarium removal per visit, but also increase geitonogamous self-pollination from less than 10% of pollen depositions to ca. 40%. Greater efficiency of pollen export will favour deceptive plants when pollinators are relatively common and most pollinaria are removed from flowers or when inbreeding depression is severe. These findings provide empirical support both for Darwin's contention that pollinarium bending is an anti-selfing mechanism in orchids and for the idea that floral deception serves to maximize the efficiency of pollen export. PMID:15255098

  3. Invasive species management restores a plant-pollinator mutualism in Hawaii

    USGS Publications Warehouse

    Hanna, Cause; Foote, David; Kremen, Claire

    2013-01-01

    1.The management and removal of invasive species may give rise to unanticipated changes in plant–pollinator mutualisms because they can alter the composition and functioning of plant–pollinator interactions in a variety of ways. To utilize a functional approach for invasive species management, we examined the restoration of plant–pollinator mutualisms following the large-scale removal of an invasive nectar thief and arthropod predator, Vespula pensylvanica. 2.We reduced V. pensylvanica populations in large plots managed over multiple years to examine the response of plant–pollinator mutualisms and the fruit production of a functionally important endemic Hawaiian tree species, Metrosideros polymorpha. To integrate knowledge of the invader's behaviour and the plant's mating system, we determined the efficacy of V. pensylvanica as a pollinator of M. polymorpha and quantified the dependence of M. polymorpha on animal pollination (e.g. level of self-compatibility and pollen limitation). 3.The reduction of V. pensylvanica in managed sites, when compared to unmanaged sites, resulted in a significant increase in the visitation rates of effective bee pollinators (e.g. introduced Apis mellifera and native Hylaeus spp.) and in the fruit production of M. polymorpha. 4.Apis mellifera, following the management of V. pensylvanica, appears to be acting as a substitute pollinator for M. polymorpha, replacing extinct or threatened bird and bee species in our study system. 5.Synthesis and applications. Fruit production of the native M. polymorpha was increased after management of the invasive pollinator predator V. pensylvanica; however, the main pollinators were no longer native but introduced. This research thus demonstrates the diverse impacts of introduced species on ecological function and the ambiguous role they play in restoration. We recommend incorporating ecological function and context into invasive species management as this approach may enable conservation managers to simultaneously minimize the negative and maximize the positive impacts (e.g. taxon substitution) of introduced species. Such novel restoration approaches are needed, especially in highly degraded ecosystems.

  4. Crop-emptying rate and the design of pesticide risk assessment schemes in the honey bee and wild bees (Hymenoptera: Apidae).

    PubMed

    Fournier, Alice; Rollin, Orianne; Le Féon, Violette; Decourtye, Axel; Henry, Mickaël

    2014-02-01

    Recent scientific literature and reports from official sanitary agencies have pointed out the deficiency of current pesticide risk assessment processes regarding sublethal effects on pollinators. Sublethal effects include troubles in learning performance, orientation skills, or mobility, with possible contribution to substantial dysfunction at population scale. However, the study of sublethal effects is currently limited by considerable knowledge gaps, particularly for the numerous pollinators other than the honey bee Apis mellifera L.--the traditional model for pesticide risk assessment in pollinators. Here, we propose to use the crop-emptying time as a rule of thumb to guide the design of oral exposure experiments in the honey bee and wild bees. The administration of contaminated sucrose solutions is typically followed by a fasting time lapse to allow complete assimilation before the behavioral tests. The fasting duration should at least encompass the crop-emptying time, because no absorption takes place in the crop. We assessed crop-emptying rate in fasted bees and how it relates 1) with sucrose solution concentration in the honey bee and 2) with body mass in wild bees. Fasting duration required for complete crop emptying in honey bees fed 20 microl of a 50% sucrose solution was nearly 2 h. Actual fasting durations are usually shorter in toxicological studies, suggesting incomplete crop emptying, and therefore partial assimilation of experimental solutions that could imply underestimation of sublethal effects. We also found faster crop-emptying rates in large wild bees compared with smaller wild bees, and suggest operative rules to adapt sublethal assessment schemes accordingly.

  5. Introduction of Non-Native Pollinators Can Lead to Trans-Continental Movement of Bee-Associated Fungi.

    PubMed

    Hedtke, Shannon M; Blitzer, Eleanor J; Montgomery, Graham A; Danforth, Bryan N

    2015-01-01

    Bees are essential pollinators for many flowering plants, including agriculturally important crops such as apple. As geographic ranges of bees or their host plants change as a result of human activities, we need to identify pathogens that could be transmitted among newly sympatric species to evaluate and anticipate their effects on bee communities. We used PCR screening and DNA sequencing to evaluate exposure to potentially disease-causing microorganisms in a pollinator of apple, the horned mason bee (Osmia cornifrons). We did not detect microsporidia, Wolbachia, or trypanosomes, which are common pathogens of bees, in any of the hundreds of mason bees screened. We did detect both pathogenic and apathogenic (saprophytic) fungal species in the genus Ascosphaera (chalkbrood), an unidentified species of Aspergillus fungus, and a strain of bacteria in the genus Paenibacillus that is probably apathogenic. We detected pathogenic fungal strains in asymptomatic adult bees that therefore may be carriers of disease. We demonstrate that fungi from the genus Ascosphaera have been transported to North America along with the bee from its native range in Japan, and that O. cornifrons is exposed to fungi previously only identified from nests of other related bee species. Further study will be required to quantify pathogenicity and health effects of these different microbial species on O. cornifrons and on closely-related native North American mason bees that may now be exposed to novel pathogens. A global perspective is required for pathogen research as geographic ranges of insects and microorganisms shift due to intentional or accidental introductions.

  6. Responses of Varroa-resistant honey bees (Apis mellifera L.) to Deformed wing virus

    USDA-ARS?s Scientific Manuscript database

    The negative impact of Deformedwing virus (DWV) on European honey bees Apis mellifera is magnified by Varroa destructor parasitism. This study compared the responses of two Varroa-resistant honey bee stocks, pure Russian honey bees (RHB) and out-crossed Varroa Sensitive Hygienic bees, Pol-line (POL)...

  7. Biopesticide-induced behavioral and morphological alterations in the stingless bee Melipona quadrifasciata.

    PubMed

    Barbosa, Wagner F; Tomé, Hudson Vaner V; Bernardes, Rodrigo C; Siqueira, Maria Augusta L; Smagghe, Guy; Guedes, Raul Narciso C

    2015-09-01

    Because of their natural origin, biopesticides are assumed to be less harmful to beneficial insects, including bees, and therefore their use has been widely encouraged for crop protection. There is little evidence, however, to support this ingrained notion of biopesticide safety to pollinators. Because larval exposure is still largely unexplored in ecotoxicology and risk assessment on bees, an investigation was performed on the lethal and sublethal effects of a diet treated with 2 bioinsecticides, azadirachtin and spinosad, on the stingless bee, Melipona quadrifasciata, which is one of the most important pollinators in the Neotropics. Survival of stingless bee larvae was significantly compromised at doses above 210 ng a.i./bee for azadirachtin and 114 ng a.i./bee for spinosad. No sublethal effect was observed on larvae developmental time, but doses of both compounds negatively affected pupal body mass. Azadirachtin produced deformed pupae and adults as a result of its insect growth regulator properties, but spinosad was more harmful and produced greater numbers of deformed individuals. Only spinosad compromised walking activity of the adult workers at doses as low as 2.29 ng a.i./bee, which is 1/5000 of the maximum field recommended rate. In conclusion, the results demonstrated that bioinsecticides can pose significant risks to native pollinators with lethal and sublethal effects; future investigations are needed on the likelihood of such effects under field conditions. © 2015 SETAC.

  8. Reduced abundance and earlier collection of bumble bee workers under intensive cultivation of a mass-flowering prairie crop.

    PubMed

    Galpern, Paul; Johnson, Sarah A; Retzlaff, Jennifer L; Chang, Danielle; Swann, John

    2017-04-01

    One of the most commonly seeded crops in Canada is canola, a cultivar of oilseed rape ( Brassica napus ). As a mass-flowering crop grown intensively throughout the Canadian Prairies, canola has the potential to influence pollinator success across tens of thousands of square kilometers of cropland. Bumble bees ( Bombus sp.) are efficient pollinators of many types of native and crop plants. We measured the influence of this mass-flowering crop on the abundance and phenology of bumble bees, and on another species of social bee (a sweat bee; Halictus rubicundus ), by continuously deploying traps at different levels of canola cultivation intensity, spanning the start and end of canola bloom. Queen bumble bees were more abundant in areas with more canola cover, indicating that this crop is attractive to queens. However, bumble bee workers were significantly fewer in these locations later in the season, suggesting reduced colony success. The median collection dates of workers of three bumble bee species were earlier near canola fields, suggesting a dynamic response of colonies to the increased floral resources. Different species experienced this shift to different extents. The sweat bee was not affected by canola cultivation intensity. Our findings suggest that mass-flowering crops such as canola are attractive to bumble bee queens and therefore may lead to higher rates of colony establishment, but also that colonies established near this crop may be less successful. We propose that the effect on bumble bees can be mitigated by spacing the crop more evenly with respect to alternate floral resources.

  9. A Lévy-flight diffusion model to predict transgenic pollen dispersal.

    PubMed

    Vallaeys, Valentin; Tyson, Rebecca C; Lane, W David; Deleersnijder, Eric; Hanert, Emmanuel

    2017-01-01

    The containment of genetically modified (GM) pollen is an issue of significant concern for many countries. For crops that are bee-pollinated, model predictions of outcrossing rates depend on the movement hypothesis used for the pollinators. Previous work studying pollen spread by honeybees, the most important pollinator worldwide, was based on the assumption that honeybee movement can be well approximated by Brownian motion. A number of recent studies, however, suggest that pollinating insects such as bees perform Lévy flights in their search for food. Such flight patterns yield much larger rates of spread, and so the Brownian motion assumption might significantly underestimate the risk associated with GM pollen outcrossing in conventional crops. In this work, we propose a mechanistic model for pollen dispersal in which the bees perform truncated Lévy flights. This assumption leads to a fractional-order diffusion model for pollen that can be tuned to model motion ranging from pure Brownian to pure Lévy. We parametrize our new model by taking the same pollen dispersal dataset used in Brownian motion modelling studies. By numerically solving the model equations, we show that the isolation distances required to keep outcrossing levels below a certain threshold are substantially increased by comparison with the original predictions, suggesting that isolation distances may need to be much larger than originally thought. © 2017 The Author(s).

  10. A Lévy-flight diffusion model to predict transgenic pollen dispersal

    PubMed Central

    Vallaeys, Valentin; Tyson, Rebecca C.; Lane, W. David; Deleersnijder, Eric

    2017-01-01

    The containment of genetically modified (GM) pollen is an issue of significant concern for many countries. For crops that are bee-pollinated, model predictions of outcrossing rates depend on the movement hypothesis used for the pollinators. Previous work studying pollen spread by honeybees, the most important pollinator worldwide, was based on the assumption that honeybee movement can be well approximated by Brownian motion. A number of recent studies, however, suggest that pollinating insects such as bees perform Lévy flights in their search for food. Such flight patterns yield much larger rates of spread, and so the Brownian motion assumption might significantly underestimate the risk associated with GM pollen outcrossing in conventional crops. In this work, we propose a mechanistic model for pollen dispersal in which the bees perform truncated Lévy flights. This assumption leads to a fractional-order diffusion model for pollen that can be tuned to model motion ranging from pure Brownian to pure Lévy. We parametrize our new model by taking the same pollen dispersal dataset used in Brownian motion modelling studies. By numerically solving the model equations, we show that the isolation distances required to keep outcrossing levels below a certain threshold are substantially increased by comparison with the original predictions, suggesting that isolation distances may need to be much larger than originally thought. PMID:28123097

  11. Interactive effects among ecosystem services and management practices on crop production: Pollination in coffee agroforestry systems

    PubMed Central

    Boreux, Virginie; Kushalappa, Cheppudira G.; Vaast, Philippe; Ghazoul, Jaboury

    2013-01-01

    Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables. PMID:23671073

  12. A survey of cavity-nesting bees and wasps in loblolly pine stands of the Savannah River Site, Aiken County, South Carolina.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, S.; Hanula, J., L.

    2004-03-10

    Horn, Scott, and James L. Hanula. 2004. A survey of cavity-nesting bees and wasps in loblolly pine stands of the Savannah River Site, Aiken County, South Carolina. 39(3): 464-469. Abstract: In recent years concern over widespread losses in biodiversity has grown to include a possible decline of many native pollinators, primarily bees. Factors such as habitat fragmentation, agricultural practices, use of pesticides, the introduction of invasive species, or changes in land use may negatively impact these vital organisims. Most reported studies show that human impacts on pollinators are overwhelmingly negative. Reductions in pollinator populations may profoundly impact plant population dynamicsmore » and ecosystem function. Little baseline data exists on the diversity and relative abundance of bees and wasps in southern forests. The objective of this study was to develop a simple, effective method of surveying cavity-nesting bees and wasps and to determine species diversity in mature forests of loblolly pine, the most widely planted tree species in the southern United States.« less

  13. Nectar supplementation changes pollinator behaviour and pollination mode in Pedicularis dichotoma: implications for evolutionary transitions.

    PubMed

    Tong, Ze-Yu; Wang, Xiang-Ping; Wu, Ling-Yun; Huang, Shuang-Quan

    2018-06-07

    Gain or loss of floral nectar, an innovation in floral traits, has occurred in diverse lineages of flowering plants, but the causes of reverse transitions (gain of nectar) remain unclear. Phylogenetic studies show multiple gains and losses of floral nectar in the species-rich genus Pedicularis. Here we explore how experimental addition of nectar to a supposedly nectarless species, P. dichotoma, influences pollinator foraging behaviour. The liquid (nectar) at the base of the corolla tube in P. dichotoma was investigated during anthesis. Sugar components were measured by high-performance liquid chromatography. To understand evolutionary transitions of nectar, artificial nectar was added to corolla tubes and the reactions of bumble-bee pollinators to extra nectar were examined. A quarter of unmanipulated P. dichotoma plants contained measurable nectar, with 0.01-0.49 μL per flower and sugar concentrations ranging from 4 to 39 %. The liquid surrounding the ovaries in the corolla tubes was sucrose-dominant nectar, as in two sympatric nectariferous Pedicularis species. Bumble-bees collected only pollen from control (unmanipulated) flowers of P. dichotoma, adopting a sternotribic pollination mode, but switched to foraging for nectar in manipulated (nectar-supplemented) flowers, adopting a nototribic pollination mode as in nectariferous species. This altered foraging behaviour did not place pollen on the ventral side of the bees, and sternotribic pollination also decreased. Our study is the first to quantify variation in nectar production in a supposedly 'nectarless' Pedicularis species. Flower manipulations by adding nectar suggested that gain (or loss) of nectar would quickly result in an adaptive behavioural shift in the pollinator, producing a new location for pollen deposition and stigma contact without a shift to other pollinators. Frequent gains of nectar in Pedicularis species would be beneficial by enhancing pollinator attraction in unpredictable pollination environments.

  14. A pollinator shift explains floral divergence in an orchid species complex in South Africa

    PubMed Central

    Peter, Craig I.; Johnson, Steven D.

    2014-01-01

    Background and Aims Floral diversification driven by shifts between pollinators has been one of the key explanations for the radiation of angiosperms. According to the Grant–Stebbins model of pollinator-driven speciation, these shifts result in morphologically distinct ‘ecotypes’ which may eventually become recognizable as species. The current circumscription of the food-deceptive southern African orchid Eulophia parviflora encompasses a highly variable monophyletic species complex. In this study, two forms were identified within this complex that differ in distribution, floral morphology, scent chemistry and phenology, and a test was made of whether these differences represent adaptations for different pollinators. Methods and Results Multivariate analysis of floral and vegetative traits revealed that there are at least two discrete morphological forms in the species complex. Field observations revealed that each form is pollinated by a different insect species, and thus represent distinct ecotypes. The early-flowering coastal form which has long spurs and floral scent dominated by sesquiterpene compounds is pollinated exclusively by the long-tongued bee Amegilla fallax (Apidae, Anthophorinae), while the late-flowering inland form with short spurs and floral scent dominated by benzenoid compounds is pollinated exclusively by the beetle Cyrtothyrea marginalis (Cetoniinae; Scarabaeidae). Choice experiments in a Y-maze olfactometer showed that beetles are preferentially attracted to the scent of the short-spurred form. A spur-shortening experiment showed that long spurs are required for effective pollination of the bee-pollinated form. Although it was initially thought likely that divergence occurred across a geographical pollinator gradient, plants of the long-spurred form were effectively pollinated when transplanted to an inland locality outside the natural coastal range of this form. Thus, the underlying geographical basis for the evolution of ecotypes in the E. parviflora complex remains uncertain, although early flowering in the long-spurred form to exploit the emergence of naïve bees may restrict this form to coastal areas where there is no frost that would damage flower buds. Later flowering of the short-spurred form coincides closely with the emergence of the pollinating beetles following winter frosts. Conclusions This study identifies a shift between bee and beetle pollination as the main driver of floral divergence in an orchid species complex. Floral scent and spur length appear to be key traits in mediating this evolutionary transition. PMID:24107684

  15. A pollinator shift explains floral divergence in an orchid species complex in South Africa.

    PubMed

    Peter, Craig I; Johnson, Steven D

    2014-01-01

    Floral diversification driven by shifts between pollinators has been one of the key explanations for the radiation of angiosperms. According to the Grant-Stebbins model of pollinator-driven speciation, these shifts result in morphologically distinct 'ecotypes' which may eventually become recognizable as species. The current circumscription of the food-deceptive southern African orchid Eulophia parviflora encompasses a highly variable monophyletic species complex. In this study, two forms were identified within this complex that differ in distribution, floral morphology, scent chemistry and phenology, and a test was made of whether these differences represent adaptations for different pollinators. Multivariate analysis of floral and vegetative traits revealed that there are at least two discrete morphological forms in the species complex. Field observations revealed that each form is pollinated by a different insect species, and thus represent distinct ecotypes. The early-flowering coastal form which has long spurs and floral scent dominated by sesquiterpene compounds is pollinated exclusively by the long-tongued bee Amegilla fallax (Apidae, Anthophorinae), while the late-flowering inland form with short spurs and floral scent dominated by benzenoid compounds is pollinated exclusively by the beetle Cyrtothyrea marginalis (Cetoniinae; Scarabaeidae). Choice experiments in a Y-maze olfactometer showed that beetles are preferentially attracted to the scent of the short-spurred form. A spur-shortening experiment showed that long spurs are required for effective pollination of the bee-pollinated form. Although it was initially thought likely that divergence occurred across a geographical pollinator gradient, plants of the long-spurred form were effectively pollinated when transplanted to an inland locality outside the natural coastal range of this form. Thus, the underlying geographical basis for the evolution of ecotypes in the E. parviflora complex remains uncertain, although early flowering in the long-spurred form to exploit the emergence of naïve bees may restrict this form to coastal areas where there is no frost that would damage flower buds. Later flowering of the short-spurred form coincides closely with the emergence of the pollinating beetles following winter frosts. This study identifies a shift between bee and beetle pollination as the main driver of floral divergence in an orchid species complex. Floral scent and spur length appear to be key traits in mediating this evolutionary transition.

  16. Two Ways of Acquiring Environmental Knowledge: By Encountering Living Animals at a Beehive and by Observing Bees via Digital Tools

    ERIC Educational Resources Information Center

    Schönfelder, Mona L.; Bogner, Franz X.

    2017-01-01

    Pollinating animals are profoundly affected by the current loss of biodiversity, a problem that is of concern to science, policy-makers and the public. One possibility to raise awareness for pollinator conservation is education. Unfortunately, insects such as bees are often perceived as frightening creatures; a negative emotion that may hinder…

  17. Bees: An up-close look at pollinators around the world

    USGS Publications Warehouse

    Droege, Sam; Packer, Laurence

    2015-01-01

    While we eat, work, and sleep, bees are busy around the world. More than 20,000 species are in constant motion! They pollinate plants of all types and keep our natural world intact. In Bees, you'll find a new way to appreciate these tiny wonders. Sam Droege and Laurence Packer present more than 100 of the most eye-catching bees from around the world as you've never seen them: up-close and with stunning detail. You'll stare into alien-like faces. You'll get lost in mesmerizing colors and patterns, patches and stripes of arresting yellow or blue. Whether you linger on your first close look at the Western Domesticated Honey Bee or excitedly flip straight to the rare Dinagapostemon sicheli, there's no doubt you'll be blown away by the beauty of bees.

  18. Disentangling geographical, biotic, and abiotic drivers of plant diversity in neotropical Ruellia (Acanthaceae).

    PubMed

    Tripp, Erin A; Tsai, Yi-Hsin Erica

    2017-01-01

    It has long been hypothesized that biotic interactions are important drivers of biodiversity evolution, yet such interactions have been relatively less studied than abiotic factors owing to the inherent complexity in and the number of types of such interactions. Amongst the most prominent of biotic interactions worldwide are those between plants and pollinators. In the Neotropics, the most biodiverse region on Earth, hummingbird and bee pollination have contributed substantially to plant fitness. Using comparative methods, we test the macroevolutionary consequences of bird and bee pollination within a species rich lineage of flowering plants: Ruellia. We additionally explore impacts of species occupancy of ever-wet rainforests vs. dry ecosystems including cerrado and seasonally dry tropical forests. We compared outcomes based on two different methods of model selection: a traditional approach that utilizes a series of transitive likelihood ratio tests as well as a weighted model averaging approach. Analyses yield evidence for increased net diversification rates among Neotropical Ruellia (compared to Paleotropical lineages) as well as among hummingbird-adapted species. In contrast, we recovered no evidence of higher diversification rates among either bee- or non-bee-adapted lineages and no evidence for higher rates among wet or dry habitat lineages. Understanding fully the factors that have contributed to biases in biodiversity across the planet will ultimately depend upon incorporating knowledge of biotic interactions as well as connecting microevolutionary processes to macroevolutionary patterns.

  19. Disentangling geographical, biotic, and abiotic drivers of plant diversity in neotropical Ruellia (Acanthaceae)

    PubMed Central

    Tsai, Yi-Hsin Erica

    2017-01-01

    It has long been hypothesized that biotic interactions are important drivers of biodiversity evolution, yet such interactions have been relatively less studied than abiotic factors owing to the inherent complexity in and the number of types of such interactions. Amongst the most prominent of biotic interactions worldwide are those between plants and pollinators. In the Neotropics, the most biodiverse region on Earth, hummingbird and bee pollination have contributed substantially to plant fitness. Using comparative methods, we test the macroevolutionary consequences of bird and bee pollination within a species rich lineage of flowering plants: Ruellia. We additionally explore impacts of species occupancy of ever-wet rainforests vs. dry ecosystems including cerrado and seasonally dry tropical forests. We compared outcomes based on two different methods of model selection: a traditional approach that utilizes a series of transitive likelihood ratio tests as well as a weighted model averaging approach. Analyses yield evidence for increased net diversification rates among Neotropical Ruellia (compared to Paleotropical lineages) as well as among hummingbird-adapted species. In contrast, we recovered no evidence of higher diversification rates among either bee- or non-bee-adapted lineages and no evidence for higher rates among wet or dry habitat lineages. Understanding fully the factors that have contributed to biases in biodiversity across the planet will ultimately depend upon incorporating knowledge of biotic interactions as well as connecting microevolutionary processes to macroevolutionary patterns. PMID:28472046

  20. Contrasting bee pollination in two co-occurring distylic species of Cordia (Cordiaceae, Boraginales) in the Brazilian semi-arid Caatinga: generalist in C. globosa vs. specialist in C. leucocephala.

    PubMed

    Machado, Isabel C; Lopes, Ariadna V; Sazima, Marlies

    2010-12-01

    In this study we compare the reproductive biology of Cordia globosa and C. leucocephala (Cordiaceae, Boraginales; formerly referred to Boraginaceae) to understand the functioning of the floral morphs and the relations with their effective pollinators. The species are synchronopatric, distylic, and self-incompatible. Though they share melittophilous traits, the main visitor and pollinator of C. globosa was the generalist and exotic bee Apis mellifera, while the only one of C. leucocephala was the oligoletic bee Ceblurgus longipalpis. These two latter species are restricted to the Caatinga of NE Brazil, contrasting with the wide distribution of Cordia globosa. While the fruit-set for C. globosa was high, independently if the pollen donor/stigma receptor was a pin (long-styled) or thrum (short-styled) individual, in C. leucocephala the fruit-set was low and occurred only when a thrum individual was the pollen donor. This raises the possibility of this species moving towards dioecy. The high natural fruit-set of C. globosa confirms the generalist bee as its effective pollinator. The low fruit-set after manual crosses in C. leucocephala may be due to low pollen viability. Additionally, the low natural fruit-set (two times lower than after crosses) may be related with the foraging behavior of the specialist pollinator.

  1. Local Plant Diversity Across Multiple Habitats Supports a Diverse Wild Bee Community in Pennsylvania Apple Orchards.

    PubMed

    Kammerer, Melanie A; Biddinger, David J; Rajotte, Edwin G; Mortensen, David A

    2016-02-01

    Wild pollinators supply essential, historically undervalued pollination services to crops and other flowering plant communities with great potential to ensure agricultural production against the loss of heavily relied upon managed pollinators. Local plant communities provision wild bees with crucial floral and nesting resources, but the distribution of floristic diversity among habitat types in North American agricultural landscapes and its effect on pollinators are diverse and poorly understood, especially in orchard systems. We documented floristic diversity in typical mid-Atlantic commercial apple (Malus domestica Borkh.) orchards including the forest and orchard-forest edge ("edge") habitats surrounding orchards in a heterogeneous landscape in south-central Pennsylvania, USA. We also assessed the correlation between plant richness and orchard pollinator communities. In this apple production region, edge habitats are the most species rich, supporting 146 out of 202 plant species recorded in our survey. Plant species richness in the orchard and edge habitats were significant predictors of bee species richness and abundance in the orchard, as well as landscape area of the forest and edge habitats. Both the quantity and quality of forest and edges close to orchards play a significant role in provisioning a diverse wild bee community in this agroecosystem. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Self-pollination rate and floral-display size in Asclepias syriaca (Common Milkweed) with regard to floral-visitor taxa

    PubMed Central

    2014-01-01

    Background Animals fertilize thousands of angiosperm species whose floral-display sizes can significantly influence pollinator behavior and plant reproductive success. Many studies have measured the interactions among pollinator behavior, floral-display size, and plant reproductive success, but few studies have been able to separate the effects of pollinator behavior and post-pollination processes on angiosperm sexual reproduction. In this study, we utilized the highly self-incompatible pollinium-pollination system of Asclepias syriaca (Common Milkweed) to quantify how insect visitors influenced male reproductive success measured as pollen removal, female reproductive success measured as pollen deposition, and self-pollination rate. We also determined how floral-display size impacts both visitor behavior and self-pollination rate. Results Four insect taxonomic orders visited A. syriaca: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We focused on three groups of visitor taxa within two orders (Hymenoptera and Lepidoptera) with sample sizes large enough for quantitative analysis: Apis mellifera (Western Honey Bee), Bombus spp. (bumble bees) and lepidopterans (butterflies and moths). Qualitatively, lepidopterans had the highest pollinator importance values, but the large variability in the lepidopteran data precluded meaningful interpretation of much of their behavior. The introduced A. mellifera was the most effective and most important diurnal pollinator with regard to both pollen removal and pollen deposition. However, when considering the self-incompatibility of A. syriaca, A. mellifera was not the most important pollinator because of its high self-pollination rate as compared to Bombus spp. Additionally, the rate of self-pollination increased more rapidly with the number of flowers per inflorescence in A. mellifera than in the native Bombus spp. Conclusions Apis mellifera’s high rate of self-pollination may have significant negative effects on both male and female reproductive successes in A. syriaca, causing different selection on floral-display size than native pollinators. PMID:24958132

  3. Floral features, pollination biology and breeding system of Chloraea membranacea Lindl. (Orchidaceae: Chloraeinae)

    PubMed Central

    Sanguinetti, Agustin; Buzatto, Cristiano Roberto; Pedron, Marcelo; Davies, Kevin L.; Ferreira, Pedro Maria de Abreu; Maldonado, Sara; Singer, Rodrigo B.

    2012-01-01

    Background and Aims The pollination biology of very few Chloraeinae orchids has been studied to date, and most of these studies have focused on breeding systems and fruiting success. Chloraea membranacea Lindl. is one of the few non-Andean species in this group, and the aim of the present contribution is to elucidate the pollination biology, functional floral morphology and breeding system in native populations of this species from Argentina (Buenos Aires) and Brazil (Rio Grande do Sul State). Methods Floral features were examined using light microscopy, and scanning and transmission electron microscopy. The breeding system was studied by means of controlled pollinations applied to plants, either bagged in the field or cultivated in a glasshouse. Pollination observations were made on natural populations, and pollinator behaviour was recorded by means of photography and video. Key Results Both Argentinean and Brazilian plants were very consistent regarding all studied features. Flowers are nectarless but scented and anatomical analysis indicates that the dark, clavate projections on the adaxial labellar surface are osmophores (scent-producing glands). The plants are self-compatible but pollinator-dependent. The fruit-set obtained through cross-pollination and manual self-pollination was almost identical. The main pollinators are male and female Halictidae bees that withdraw the pollinarium when leaving the flower. Remarkably, the bees tend to visit more than one flower per inflorescence, thus promoting self-pollination (geitonogamy). Fruiting success in Brazilian plants reached 60·78 % in 2010 and 46 % in 2011. Some pollinarium-laden female bees were observed transferring pollen from the carried pollinarium to their hind legs. The use of pollen by pollinators is a rare record for Orchidaceae in general. Conclusions Chloraea membrancea is pollinated by deceit. Together, self-compatibility, pollinarium texture, pollinator abundance and behaviour may account for the observed high fruiting success. It is suggested that a reappraisal and re-analysis of important flower features in Chloraeinae orchids is necessary. PMID:23071217

  4. Floral features, pollination biology and breeding system of Chloraea membranacea Lindl. (Orchidaceae: Chloraeinae).

    PubMed

    Sanguinetti, Agustin; Buzatto, Cristiano Roberto; Pedron, Marcelo; Davies, Kevin L; Ferreira, Pedro Maria de Abreu; Maldonado, Sara; Singer, Rodrigo B

    2012-12-01

    The pollination biology of very few Chloraeinae orchids has been studied to date, and most of these studies have focused on breeding systems and fruiting success. Chloraea membranacea Lindl. is one of the few non-Andean species in this group, and the aim of the present contribution is to elucidate the pollination biology, functional floral morphology and breeding system in native populations of this species from Argentina (Buenos Aires) and Brazil (Rio Grande do Sul State). Floral features were examined using light microscopy, and scanning and transmission electron microscopy. The breeding system was studied by means of controlled pollinations applied to plants, either bagged in the field or cultivated in a glasshouse. Pollination observations were made on natural populations, and pollinator behaviour was recorded by means of photography and video. Both Argentinean and Brazilian plants were very consistent regarding all studied features. Flowers are nectarless but scented and anatomical analysis indicates that the dark, clavate projections on the adaxial labellar surface are osmophores (scent-producing glands). The plants are self-compatible but pollinator-dependent. The fruit-set obtained through cross-pollination and manual self-pollination was almost identical. The main pollinators are male and female Halictidae bees that withdraw the pollinarium when leaving the flower. Remarkably, the bees tend to visit more than one flower per inflorescence, thus promoting self-pollination (geitonogamy). Fruiting success in Brazilian plants reached 60·78 % in 2010 and 46 % in 2011. Some pollinarium-laden female bees were observed transferring pollen from the carried pollinarium to their hind legs. The use of pollen by pollinators is a rare record for Orchidaceae in general. Chloraea membrancea is pollinated by deceit. Together, self-compatibility, pollinarium texture, pollinator abundance and behaviour may account for the observed high fruiting success. It is suggested that a reappraisal and re-analysis of important flower features in Chloraeinae orchids is necessary.

  5. Ants and ant scent reduce bumblebee pollination of artificial flowers.

    PubMed

    Cembrowski, Adam R; Tan, Marcus G; Thomson, James D; Frederickson, Megan E

    2014-01-01

    Ants on flowers can disrupt pollination by consuming rewards or harassing pollinators, but it is difficult to disentangle the effects of these exploitative and interference forms of competition on pollinator behavior. Using highly rewarding and quickly replenishing artificial flowers that simulate male or female function, we allowed bumblebees (Bombus impatiens) to forage (1) on flowers with or without ants (Myrmica rubra) and (2) on flowers with or without ant scent cues. Bumblebees transferred significantly more pollen analogue both to and from ant-free flowers, demonstrating that interference competition with ants is sufficient to modify pollinator foraging behavior. Bees also removed significantly less pollen analogue from ant-scented flowers than from controls, making this the first study to show that bees can use ant scent to avoid harassment at flowers. Ant effects on pollinator behavior, possibly in addition to their effects on pollen viability, may contribute to the evolution of floral traits minimizing ant visitation.

  6. Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape.

    PubMed

    Budge, G E; Garthwaite, D; Crowe, A; Boatman, N D; Delaplane, K S; Brown, M A; Thygesen, H H; Pietravalle, S

    2015-08-13

    Chronic exposure to neonicotinoid insecticides has been linked to reduced survival of pollinating insects at both the individual and colony level, but so far only experimentally. Analyses of large-scale datasets to investigate the real-world links between the use of neonicotinoids and pollinator mortality are lacking. Moreover, the impacts of neonicotinoid seed coatings in reducing subsequent applications of foliar insecticide sprays and increasing crop yield are not known, despite the supposed benefits of this practice driving widespread use. Here, we combine large-scale pesticide usage and yield observations from oilseed rape with those detailing honey bee colony losses over an 11 year period, and reveal a correlation between honey bee colony losses and national-scale imidacloprid (a neonicotinoid) usage patterns across England and Wales. We also provide the first evidence that farmers who use neonicotinoid seed coatings reduce the number of subsequent applications of foliar insecticide sprays and may derive an economic return. Our results inform the societal discussion on the pollinator costs and farming benefits of prophylactic neonicotinoid usage on a mass flowering crop.

  7. Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape

    NASA Astrophysics Data System (ADS)

    Budge, G. E.; Garthwaite, D.; Crowe, A.; Boatman, N. D.; Delaplane, K. S.; Brown, M. A.; Thygesen, H. H.; Pietravalle, S.

    2015-08-01

    Chronic exposure to neonicotinoid insecticides has been linked to reduced survival of pollinating insects at both the individual and colony level, but so far only experimentally. Analyses of large-scale datasets to investigate the real-world links between the use of neonicotinoids and pollinator mortality are lacking. Moreover, the impacts of neonicotinoid seed coatings in reducing subsequent applications of foliar insecticide sprays and increasing crop yield are not known, despite the supposed benefits of this practice driving widespread use. Here, we combine large-scale pesticide usage and yield observations from oilseed rape with those detailing honey bee colony losses over an 11 year period, and reveal a correlation between honey bee colony losses and national-scale imidacloprid (a neonicotinoid) usage patterns across England and Wales. We also provide the first evidence that farmers who use neonicotinoid seed coatings reduce the number of subsequent applications of foliar insecticide sprays and may derive an economic return. Our results inform the societal discussion on the pollinator costs and farming benefits of prophylactic neonicotinoid usage on a mass flowering crop.

  8. A novel mutualism between an ant-plant and its resident pollinator

    NASA Astrophysics Data System (ADS)

    Shenoy, Megha; Borges, Renee M.

    2008-01-01

    Pollination systems in which the host plant provides breeding sites for pollinators, invariably within flowers, are usually highly specialized mutualisms. We found that the pollinating bee Braunsapis puangensis breeds within the caulinary domatia of the semi-myrmecophyte Humboldtia brunonis (Fabaceae), an unusual ant-plant that is polymorphic for the presence of domatia and harbours a diverse invertebrate fauna including protective and non-protective ants in its domatia. B. puangensis is the most common flower visitor that carries the highest proportion of H. brunonis pollen. This myrmecophyte is pollen limited and cross-pollinated by bees in the daytime. Hence, the symbiotic pollinator could provide a benefit to trees bearing domatia by alleviating this limitation. We therefore report for the first time an unspecialised mutualism in which a pollinator is housed in a plant structure other than flowers. Here, the cost to the plant is lower than for conventional brood-site pollination mutualisms where the pollinator develops at the expense of plant reproductive structures. Myrmecophytes housing resident pollinators are unusual, as ants are known to be enemies of pollinators, and housing them together may decrease the benefits that these residents could individually provide to the host plant.

  9. Pollination Services at Risk: Asian Dust Poses a Threat on Pollinators' Navigation

    NASA Astrophysics Data System (ADS)

    Cho, Y.

    2016-12-01

    Beijing was hit by a massive sandstorm, which is known as Asian dust or Yellow sand phenomenon in April 2015. The city was enveloped by sand, and the reported visibility was less than 1 km. People could neither work outside nor drive. But can bees forage for their food in this sandy air? The hypothesis in this proposed study is as follows: honey bee (Apis mellifera)'s foraging activity is impeded when Asian dust is severe since the particulate matters dusted on flowers prevent the bees from noticing the ultraviolet marking of the flowers. In an experimental study, flowers dusted with PM 10 showed no specific ultraviolet nectar guides as they do in clear weather. The transport of sand and dust by wind is a powerful erosional force, fills the atmosphere with suspended dust aerosols. The dust, in the atmospheric science, generally refers to solid inorganic particles that can be readily suspended by wind. Once the bees fail to forage as this study hypothesized, they will starve to death, then plant-pollinator interaction will be threatened. Failure of bees' activity can result in loss of pollination services which could significantly affect the maintenance of the ecosystem stability as a whole. Though this research specifically studies the Asian phenomenon, it should be understood in a global context since the dust is believed to be transported one full circuit around the globe.

  10. Pollen extracts and constituent sugars increase growth of a trypanosomatid parasite of bumble bees

    PubMed Central

    Thursfield, Lucy

    2017-01-01

    Phytochemicals produced by plants, including at flowers, function in protection against plant diseases, and have a long history of use against trypanosomatid infection. Floral nectar and pollen, the sole food sources for many species of insect pollinators, contain phytochemicals that have been shown to reduce trypanosomatid infection in bumble and honey bees when fed as isolated compounds. Nectar and pollen, however, consist of phytochemical mixtures, which can have greater antimicrobial activity than do single compounds. This study tested the hypothesis that pollen extracts would inhibit parasite growth. Extracts of six different pollens were tested for direct inhibitory activity against cell cultures of the bumble bee trypanosomatid gut parasite Crithidia bombi. Surprisingly, pollen extracts increased parasite growth rather than inhibiting it. Pollen extracts contained high concentrations of sugars, mainly the monosaccharides glucose and fructose. Experimental manipulations of growth media showed that supplemental monosaccharides (glucose and fructose) increased maximum cell density, while a common floral phytochemical (caffeic acid) with inhibitory activity against other trypanosomatids had only weak inhibitory effects on Crithidia bombi. These results indicate that, although pollen is essential for bees and other pollinators, pollen may promote growth of intestinal parasites that are uninhibited by pollen phytochemicals and, as a result, can benefit from the nutrients that pollen provides. PMID:28503378

  11. The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee Euglossa dilemma

    PubMed Central

    Brand, Philipp; Saleh, Nicholas; Pan, Hailin; Li, Cai; Kapheim, Karen M.; Ramírez, Santiago R.

    2017-01-01

    Bees provide indispensable pollination services to both agricultural crops and wild plant populations, and several species of bees have become important models for the study of learning and memory, plant–insect interactions, and social behavior. Orchid bees (Apidae: Euglossini) are especially important to the fields of pollination ecology, evolution, and species conservation. Here we report the nuclear and mitochondrial genome sequences of the orchid bee Euglossa dilemma Bembé & Eltz. E. dilemma was selected because it is widely distributed, highly abundant, and it was recently naturalized in the southeastern United States. We provide a high-quality assembly of the 3.3 Gb genome, and an official gene set of 15,904 gene annotations. We find high conservation of gene synteny with the honey bee throughout 80 MY of divergence time. This genomic resource represents the first draft genome of the orchid bee genus Euglossa, and the first draft orchid bee mitochondrial genome, thus representing a valuable resource to the research community. PMID:28701376

  12. The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee Euglossa dilemma.

    PubMed

    Brand, Philipp; Saleh, Nicholas; Pan, Hailin; Li, Cai; Kapheim, Karen M; Ramírez, Santiago R

    2017-09-07

    Bees provide indispensable pollination services to both agricultural crops and wild plant populations, and several species of bees have become important models for the study of learning and memory, plant-insect interactions, and social behavior. Orchid bees (Apidae: Euglossini) are especially important to the fields of pollination ecology, evolution, and species conservation. Here we report the nuclear and mitochondrial genome sequences of the orchid bee Euglossa dilemma Bembé & Eltz. E. dilemma was selected because it is widely distributed, highly abundant, and it was recently naturalized in the southeastern United States. We provide a high-quality assembly of the 3.3 Gb genome, and an official gene set of 15,904 gene annotations. We find high conservation of gene synteny with the honey bee throughout 80 MY of divergence time. This genomic resource represents the first draft genome of the orchid bee genus Euglossa , and the first draft orchid bee mitochondrial genome, thus representing a valuable resource to the research community. Copyright © 2017 Brand et al.

  13. Agrochemical-induced stress in stingless bees: peculiarities, underlying basis, and challenges.

    PubMed

    Lima, M A P; Martins, G F; Oliveira, E E; Guedes, R N C

    2016-10-01

    The toxicological stress induced by pesticides, particularly neonicotinoid insecticides, and its consequences in bees has been the focus of much recent attention, particularly for honey bees. However, the emphasis on honey bees and neonicotinoids has led to neglect of the relevance of stingless bees, the prevailing pollinators of natural and agricultural tropical ecosystems, and of other agrochemicals, including other pesticides and even leaf fertilizers. Consequently, studies focusing on agrochemical effects on stingless bees are sparse, usually limited to histopathological studies, and lack a holistic assessment of the effects of these compounds on physiology and behavior. Such effects have consequences for individual and colony fitness and are likely to affect both the stingless bee populations and the associated community, thereby producing a hierarchy of consequences thus far overlooked. Herein, we review the current literature on stingless bee-agrochemical interactions and discuss the underlying mechanisms involved in reported stress symptoms, as well as the potential consequences based on the peculiarities of these pollinators.

  14. Nectar Attracts Foraging Honey Bees with Components of Their Queen Pheromones.

    PubMed

    Liu, Fanglin; Gao, Jie; Di, Nayan; Adler, Lynn S

    2015-11-01

    Floral nectar often contains chemicals that are deterrent to pollinators, presenting potential challenges to outcrossing plant species. Plants may be able to co-opt pollinator chemical signals to mitigate the negative effects of nectar deterrent compounds on pollination services. We found that buckwheat (Fagopyrum esculentum) and Mexican sunflower (Tithonia diversifolia) produce nectar with abundant phenolics, including three components of the Apis honeybee queen mandibular pheromone (QMP). In addition, these nectars contain a non-pheromonal phenolic, chlorogenic acid (CA), which was toxic to honeybees, and T. diversifolia nectar also contained isochlorogenic acid (IA). Fresh nectar or solutions containing nectar phenolics reduced Apis individual feeding compared to sucrose solutions. However, freely foraging bees preferred solutions with QMP components to control solutions, and QMP components over-rode or reversed avoidance of CA and IA. Furthermore, prior exposure to the presence or just the odor of QMP components removed the deterrent effects of CA and IA. By mimicking the honey bee pheromone blend, nectar may maintain pollinator attraction in spite of deterrent nectar compounds.

  15. Physiological plasticity of metabolic rates in the invasive honey bee and an endemic Australian bee species.

    PubMed

    Tomlinson, Sean; Dixon, Kingsley W; Didham, Raphael K; Bradshaw, S Don

    2015-12-01

    Seasonal variation in metabolic rate and evaporative water loss as a function of ambient temperature were compared in two species of bees. The endemic blue-banded bee, Amegilla chlorocyanea, is a solitary species that is an important pollinator in the south-west Australian biodiversity hotspot. Responses were compared with the European honeybee, Apis mellifera, naturalised in Western Australia almost 200 years ago. Metabolic rate increased exponentially with temperature to a peak in both species, and then declined rapidly, with unique scaling exponents and peaks for all species-by-season comparisons. Early in the austral summer, Apis was less thermally tolerant than Amegilla, but the positions reversed later in the foraging season. There were also significant exponential increases in evaporative water loss with increasing temperature, and both season and species contributed to significantly different responses. Apis maintained relatively consistent thermal performance of metabolic rate between seasons, but at the expense of increased rates of evaporative water loss later in summer. In contrast, Amegilla had dramatically increased metabolic requirements later in summer, but maintained consistent thermal performance of evaporative water loss. Although both species acclimated to higher thermal tolerance, the physiological strategies underpinning the acclimation differed. These findings may have important implications for understanding the responses of these and other pollinators to changing environments and for their conservation management.

  16. Pollination of Cypripedium plectrochilum (Orchidaceae) by Lasioglossum spp. (Halictidae): the roles of generalist attractants versus restrictive floral architecture.

    PubMed

    Li, P; Luo, Y; Bernhardt, P; Kou, Y; Perner, H

    2008-03-01

    The pollination of Cypripedium plectrochilum Franch. was studied in the Huanglong Nature Reserve, Sichuan, China. Although large bees (Bombus, Apis), small bees (Ceratina, Lasioglossum), ants (Formica sp.), true flies (Diptera) and a butterfly were all found to visit the flowers, only small bees, including three Lasioglossum spp. (L. viridiclaucum, L. sichuanense and L. sp.; Halictidae) and one Ceratina sp., carried the flower's pollen and contacted the receptive stigma. Measurements of floral architecture showed that interior floral dimensions best fit the exterior dimensions of Lasioglossum spp., leading to the consistent deposition and stigmatic reception of dorsally-placed, pollen smears. The floral fragrance was dominated by one ketone, 3-methyl-Decen-2-one. The conversion rate of flowers into capsules in open (insect) pollinated flowers at the site was more than 38%. We conclude that, while pigmentation patterns and floral fragrance attracted a wide variety of insect foragers, canalization of interior floral dimensions ultimately determined the spectrum of potential pollinators in this generalist, food-mimic flower. A review of the literature showed that the specialised mode of pollination-by-deceit in C. plectrochilum, limiting pollinators to a narrow and closely related guild of 'dupes' is typical for other members of this genus.

  17. Many to flower, few to fruit: the reproductive biology of Hamamelis virginiana (Hamamelidaceae).

    PubMed

    Anderson, Gregory J; Hill, James D

    2002-01-01

    Hamamelis virginiana flowers from late September to late November. In 1977, we began studying the reproductive biology of this eastern North American arborescent shrub by examining floral phenology and rewards, pollen-ovule ratios, breeding system, pollination, pollinator and resource limitation, and seed dispersal. The homogamous, self-incompatible flowers emit a faint odor, bear nectar with sucrose ratios typical of bee- and fly-pollinated flowers, and produce abundant sticky pollen. Flowers were visited infrequently by insects representing six orders. Flies were the most common floral visitors, specifically members of the genus Bradysia, but small bees also carried high percentages of Hamamelis pollen. Despite high pollen/ovule ratios (11 445 grains/ovule), bees and flies are likely pollinators, as experiments indicate wind pollination is less likely. Pollen quantity and resource availability did not appear to limit reproductive output, but pollen quality did. Tests of >40 000 flowers showed natural fruit set to be <1%. The flowering time, breeding system, and clumped distribution of plants, likely due in part to limited seed dispersal, combine to yield this remarkably low fruit set. Because all other species of Hamamelis flower from late winter to early summer, it may be that H. virginiana evolved a fall flowering phenology to avoid competition for pollinators with the closely related H. vernalis.

  18. Parasite infection accelerates age polyethism in young honey bees

    PubMed Central

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C.

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  19. Parasite infection accelerates age polyethism in young honey bees.

    PubMed

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-02-25

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens.

  20. 'Bee hotels' as tools for native pollinator conservation: a premature verdict?

    PubMed

    MacIvor, J Scott; Packer, Laurence

    2015-01-01

    Society is increasingly concerned with declining wild bee populations. Although most bees nest in the ground, considerable effort has centered on installing 'bee hotels'--also known as nest boxes or trap nests--which artificially aggregate nest sites of above ground nesting bees. Campaigns to 'save the bees' often promote these devices despite the absence of data indicating they have a positive effect. From a survey of almost 600 bee hotels set up over a period of three years in Toronto, Canada, introduced bees nested at 32.9% of sites and represented 24.6% of more than 27,000 total bees and wasps recorded (47.1% of all bees recorded). Native bees were parasitized more than introduced bees and females of introduced bee species provisioned nests with significantly more female larva each year. Native wasps were significantly more abundant than both native and introduced bees and occupied almost 3/4 of all bee hotels each year; further, introduced wasps were the only group to significantly increase in relative abundance year over year. More research is needed to elucidate the potential pitfalls and benefits of using bee hotels in the conservation and population dynamics of wild native bees.

  1. A Survey of Cavity-Nesting Bees and Wasps in Loblolly Pine Stands of the Savannah River Site, Aiken County, South Carolina

    Treesearch

    Scott Horn; James L. Hanula

    2004-01-01

    In recent years concern over widespread losses in biodiversity has grown to include a possible decline of many native pollinators, primarily bees (Buchmann and Nabhan 1996, The Forgotten Pollinators, Island Press). Factors such as habitat fragmentation, agricultural practices, use of pesticides, the introduction of invasive species, or changes in land use may...

  2. Ensuring That Army Infrastructure Meets Strategic Needs

    DTIC Science & Technology

    2008-01-01

    alterations and pesticide usage have degraded natural ecosystems so much that few wild bees are left. Farmers who relied on wild bees for pollination...critical habitat, and wetlands , by time and specific location. It will track 10 types of restrictions: no digging, no training, no bivouacking, no...biotechnology, plant pollination, ecotourism, and the harvest of food, animals, and pharmaceuticals from the wild (Pimentel et al., 1997). For - 76

  3. Pollination and floral ecology of Arundina graminifolia (Orchidaceae) at the northern border of the species' natural distribution.

    PubMed

    Sugiura, Naoto

    2014-01-01

    Arundina graminifolia is an early successional plant on Iriomote Island, the Ryukyus, Japan, where it is endangered. Populations flower for more than half a year, and many inflorescences bloom for one to several months. The nectarless gullet flowers, which open for up to six days, are self-compatible but cannot self-pollinate spontaneously; thus they rely on pollinating agents for capsule production. Field observations at two habitats identified at least six species of bees and wasps, primarily mate-seeking males of Megachile yaeyamaensis and Thyreus takaonis, as legitimate pollinators. Thus, this orchid is a pollinator generalist, probably owing to its long blooming period and simple flower morphology. Carpenter bees, which were previously reported to pollinate this orchid, frequently visited flowers but were too large to crawl into the labellum chamber and never pollinated the flowers. Extrafloral nectaries on inflorescences attracted approximately 40 insect taxa but were not involved with pollination. Fruit-set ratios at the population level varied spatiotemporally but were generally low (5.2-12.4 %), presumably owing to infrequent flower visits by mate-seeking pollinators and the lack of food rewards to pollinators.

  4. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them.

    PubMed

    Vanengelsdorp, Dennis; Meixner, Marina Doris

    2010-01-01

    Honey bees are a highly valued resource around the world. They are prized for their honey and wax production and depended upon for pollination of many important crops. While globally honey bee populations have been increasing, the rate of increase is not keeping pace with demand. Further, honey bee populations have not been increasing in all parts of the world, and have declined in many nations in Europe and in North America. Managed honey bee populations are influenced by many factors including diseases, parasites, pesticides, the environment, and socio-economic factors. These factors can act alone or in combination with each other. This review highlights the present day value of honey bees, followed by a detailed description of some of the historical and present day factors that influence honey bee populations, with particular emphasis on colony populations in Europe and the United States. Copyright 2009 Elsevier Inc. All rights reserved.

  5. Nest suitability, fine-scale population structure and male-mediated dispersal of a solitary ground nesting bee in an urban landscape.

    PubMed

    López-Uribe, Margarita M; Morreale, Stephen J; Santiago, Christine K; Danforth, Bryan N

    2015-01-01

    Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei's GST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for enhancing bee population abundance and connectivity in human dominated habitats and highlights the critical contribution of landscape genetic studies for enhanced conservation and management of native pollinators.

  6. Nest Suitability, Fine-Scale Population Structure and Male-Mediated Dispersal of a Solitary Ground Nesting Bee in an Urban Landscape

    PubMed Central

    López-Uribe, Margarita M.; Morreale, Stephen J.; Santiago, Christine K.; Danforth, Bryan N.

    2015-01-01

    Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei’s GST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for enhancing bee population abundance and connectivity in human dominated habitats and highlights the critical contribution of landscape genetic studies for enhanced conservation and management of native pollinators. PMID:25950429

  7. ‘Bee Hotels’ as Tools for Native Pollinator Conservation: A Premature Verdict?

    PubMed Central

    MacIvor, J. Scott; Packer, Laurence

    2015-01-01

    Society is increasingly concerned with declining wild bee populations. Although most bees nest in the ground, considerable effort has centered on installing ‘bee hotels’—also known as nest boxes or trap nests—which artificially aggregate nest sites of above ground nesting bees. Campaigns to ‘save the bees’ often promote these devices despite the absence of data indicating they have a positive effect. From a survey of almost 600 bee hotels set up over a period of three years in Toronto, Canada, introduced bees nested at 32.9% of sites and represented 24.6% of more than 27,000 total bees and wasps recorded (47.1% of all bees recorded). Native bees were parasitized more than introduced bees and females of introduced bee species provisioned nests with significantly more female larva each year. Native wasps were significantly more abundant than both native and introduced bees and occupied almost 3/4 of all bee hotels each year; further, introduced wasps were the only group to significantly increase in relative abundance year over year. More research is needed to elucidate the potential pitfalls and benefits of using bee hotels in the conservation and population dynamics of wild native bees. PMID:25785609

  8. Honey bee (Apis mellifera) colony health and pathogen composition in migratory beekeeping operations involved in California almond pollination

    PubMed Central

    Daughenbaugh, Katie F.; Radford, Rosemarie; Kegley, Susan E.

    2017-01-01

    Honey bees are important pollinators of agricultural crops. Pathogens and other factors have been implicated in high annual losses of honey bee colonies in North America and some European countries. To further investigate the relationship between multiple factors, including pathogen prevalence and abundance and colony health, we monitored commercially managed migratory honey bee colonies involved in California almond pollination in 2014. At each sampling event, honey bee colony health was assessed, using colony population size as a proxy for health, and the prevalence and abundance of seven honey bee pathogens was evaluated using PCR and quantitative PCR, respectively. In this sample cohort, pathogen prevalence and abundance did not correlate with colony health, but did correlate with the date of sampling. In general, pathogen prevalence (i.e., the number of specific pathogens harbored within a colony) was lower early in the year (January—March) and was greater in the summer, with peak prevalence occurring in June. Pathogen abundance in individual honey bee colonies varied throughout the year and was strongly associated with the sampling date, and was influenced by beekeeping operation, colony health, and mite infestation level. Together, data from this and other observational cohort studies that monitor individual honey bee colonies and precisely account for sampling date (i.e., day of year) will lead to a better understanding of the influence of pathogens on colony mortality and the effects of other factors on these associations. PMID:28817641

  9. Trap Nesting Wasps and Bees in Agriculture: A Comparison of Sown Wildflower and Fallow Plots in Florida

    PubMed Central

    Smithers, Cherice; Irvin, Allyn; Stanley-Stahr, Cory; Daniels, Jaret C.; Ellis, James D.

    2017-01-01

    Wildflower strip plantings in intensive agricultural systems have become a widespread tool for promoting pollination services and biological conservation because of their use by wasps and bees. Many of the trap-nesting wasps are important predators of common crop pests, and cavity-nesting bees that utilize trap-nests are important pollinators for native plants and many crops. The impact of wildflower strips on the nesting frequency of trap-nesting wasps or bees within localized areas has not been thoroughly investigated. Trap-nests made of bamboo reeds (Bambusa sp.) were placed adjacent to eight 0.1 ha wildflower plots and paired fallow areas (control plots) to determine if wildflower strips encourage the nesting of wasps and bees. From August 2014 to November 2015, occupied reeds were gathered and adults were collected as they emerged from the trap-nests. Treatment (wildflower or fallow plots) did not impact the number of occupied reeds or species richness of trap-nesting wasps using the occupied reeds. The wasps Pachodynerus erynnis, Euodynerus megaera, Parancistrocerus pedestris, and Isodontia spp. were the most common trap-nesting species collected. Less than 2% of the occupied reeds contained bees, and all were from the genus Megachile. The nesting wasp and bee species demonstrated preferences for reeds with certain inside diameters (IDs). The narrow range of ID preferences exhibited by each bee/wasp may provide opportunities to take advantage of their natural histories for biological control and/or pollination purposes. PMID:28994726

  10. Honey bee (Apis mellifera) colony health and pathogen composition in migratory beekeeping operations involved in California almond pollination.

    PubMed

    Glenny, William; Cavigli, Ian; Daughenbaugh, Katie F; Radford, Rosemarie; Kegley, Susan E; Flenniken, Michelle L

    2017-01-01

    Honey bees are important pollinators of agricultural crops. Pathogens and other factors have been implicated in high annual losses of honey bee colonies in North America and some European countries. To further investigate the relationship between multiple factors, including pathogen prevalence and abundance and colony health, we monitored commercially managed migratory honey bee colonies involved in California almond pollination in 2014. At each sampling event, honey bee colony health was assessed, using colony population size as a proxy for health, and the prevalence and abundance of seven honey bee pathogens was evaluated using PCR and quantitative PCR, respectively. In this sample cohort, pathogen prevalence and abundance did not correlate with colony health, but did correlate with the date of sampling. In general, pathogen prevalence (i.e., the number of specific pathogens harbored within a colony) was lower early in the year (January-March) and was greater in the summer, with peak prevalence occurring in June. Pathogen abundance in individual honey bee colonies varied throughout the year and was strongly associated with the sampling date, and was influenced by beekeeping operation, colony health, and mite infestation level. Together, data from this and other observational cohort studies that monitor individual honey bee colonies and precisely account for sampling date (i.e., day of year) will lead to a better understanding of the influence of pathogens on colony mortality and the effects of other factors on these associations.

  11. Nectar chemistry mediates the behavior of parasitized bees: consequences for plant fitness.

    PubMed

    Richardson, Leif L; Bowers, M Deane; Irwin, Rebecca E

    2016-02-01

    Plants produce an array of secondary metabolites that play important ecological roles as anti-herbivore and anti-pathogen defenses. Many herbivores experience physiological costs when they consume secondary metabolites, yet some also benefit, for example when these chemicals confer resistance to parasites and predators. Secondary metabolites are often present in nectar and pollen, which is paradoxical given that floral rewards are important in the attraction of mutualists rather than deterrence of antagonists. Motivated by studies of interactions among plants, herbivores, and parasites, as well as research showing that secondary metabolites can reduce bee disease, we characterized the occurrence of two iridoid glycosides, aucubin and catalpol, in floral rewards and other tissues of the bee pollinated plant, Chelone glabra. We then experimentally investigated effects of nectar iridoid glycoside concentrations on the foraging behavior of bumble bee pollinators naturally afflicted by a parasitoid fly and a protozoan intestinal parasite, and subsequent effects on an estimate of plant reproduction. We found that floral nectar had lower iridoid glycoside concentrations than leaves, pollen, and corollas, and that, compared to those plant parts, the relative ratio of the two primary iridoid glycosides, aucubin and catalpol, was reversed in nectar. Whether bees carried parasitoid fly larvae did not affect their response to nectar chemistry; however, there was a significant interaction between protozoan parasite infection and nectar treatment, with infected bees foraging longer at flowers with high compared to low nectar iridoid glycoside concentrations. Parasitized bees were also more likely to return to inflorescences with high iridoid glycoside nectar. Consequently, flowers in the high iridoid glycoside nectar treatment donated significantly more pollen to conspecific stigmas than did flowers in the low iridoid glycoside treatment, suggesting an increase in male plant fitness. Taken together, these results demonstrate that nectar secondary metabolites can mediate the behavior of pollinators with subsequent benefits for estimates of plant reproduction.

  12. Honey bee disease overview

    USDA-ARS?s Scientific Manuscript database

    Sexual reproduction of many crops and the majority of wild plants is dependent on animal pollination through insects, birds, bats and others, with insects playing the major role. The majority of crops requiring pollination are dependent on managed pollinators, and especially on managed honeybees. Lo...

  13. The power and promise of applying genomics to honey bee health.

    PubMed

    Grozinger, Christina M; Robinson, Gene E

    2015-08-01

    New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species.

  14. Toxicology: Bee P450s Take the Sting out of Cyanoamidine Neonicotinoids.

    PubMed

    Feyereisen, René

    2018-05-07

    The neonicotinoid insecticides have raised concerns regarding the health of bee pollinators. New research has identified a P450 enzyme that protects honey bees and bumble bees from the toxicity of two neonicotinoids, thiacloprid and acetamiprid. This P450 enzyme provides a margin of safety to bees. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Pollinator decline - an ecological calamity in the making?

    PubMed

    Rhodes, Christopher J

    2018-06-01

    Since pollination by insects is vitally important for much of global crop production, and to provide pollination services more widely throughout the planetary ecosystems, the prospect of an imminent 'pollination crisis', due to a die-off of flying insects, is most disquieting, to say the least. Indeed, the term 'ecological Armageddon' has been used in the media. However, to know whether or not a wholesale decline in flying pollinators (including non-bee species) is occurring across the world is very difficult, due to an insufficiency of geographically widespread and long-term data. Bees, as the best documented species, can be seen to be suffering from chronic exposure to a range of stressors, which include: a loss of abundance and diversity of flowers, and a decline in suitable habitat for them to build nests; long-term exposure to agrochemicals, including pesticides such as neonicotinoids; and infection by parasites and pathogens, many inadvertently spread by the actions of humans. It is likely that climate change may impact further on particular pollinators, for example bumble bees, which are cool-climate specialists. Moreover, the co-operative element of various different stress factors should be noted; thus, for example, exposure to pesticides is known to diminish detoxification mechanisms and also immune responses, hence lowering the resistance of bees to parasitic infections. It is further conspicuous that for those wild non-bee insects - principally moths and butterflies - where data are available, the picture is also one of significant population losses. Alarmingly, a recent study in Germany indicated that a decline in the biomass of flying insects had occurred by 76% in less than three decades, as sampled in nature reserves across the country. Accordingly, to fully answer the question posed in the title of this article 'pollinator decline - an ecological calamity in the making?' will require many more detailed, more geographically encompassing, more species-inclusive, and longer-term studies, but the available evidence points to a clear 'probably', and the precautionary principle would suggest this is not a prospect we can afford to ignore.

  16. The neonicotinoid pesticide, imidacloprid, affects Bombus impatiens (bumblebee) sonication behavior when consumed at doses below the LD50.

    PubMed

    Switzer, Callin M; Combes, Stacey A

    2016-08-01

    We investigated changes in sonication (or buzz-pollination) behavior of Bombus impatiens bumblebees, after consumption of the neonicotinoid pesticide, imidacloprid. We measured sonication frequency, sonication length, and flight (wing beat) frequency of marked bees collecting pollen from Solanum lycopsersicum (tomato), and then randomly assigned bees to consume 0, 0.0515, 0.515, or 5.15 ng of imidacloprid. We recorded the number of bees in each treatment group that resumed sonication behavior after consuming imidacloprid, and re-measured sonication and flight behavior for these bees. We did not find evidence that consuming 0.0515 ng imidacloprid affected the sonication length, sonication frequency, or flight frequency for bees that sonicated after consuming imidacloprid; we were unable to test changes in these variables for bees that consumed 0.515 or 5.15 ng because we did not observe enough of these bees sonicating after treatment. We performed Cox proportional hazard regression to determine whether consuming imidacloprid affected the probability of engaging in further sonication behavior on S. lycopersicum and found that bumblebees who consumed 0.515 or 5.15 ng of imidacloprid were significantly less likely to sonicate after treatment than bees who consumed no imidacloprid. At the end of the experiment, we classified bees as dead or alive; our data suggest a trend of increasing mortality with higher doses of imidacloprid. Our results show that even modest doses of imidacloprid can significantly affect the likelihood of bumblebees engaging in sonication, a behavior critical for the pollination of a variety of crops and other plants.

  17. Decline and conservation of bumble bees.

    PubMed

    Goulson, D; Lye, G C; Darvill, B

    2008-01-01

    Declines in bumble bee species in the past 60 years are well documented in Europe, where they are driven primarily by habitat loss and declines in floral abundance and diversity resulting from agricultural intensification. Impacts of habitat degradation and fragmentation are likely to be compounded by the social nature of bumble bees and their largely monogamous breeding system, which renders their effective population size low. Hence, populations are susceptible to stochastic extinction events and inbreeding. In North America, catastrophic declines of some bumble bee species since the 1990s are probably attributable to the accidental introduction of a nonnative parasite from Europe, a result of global trade in domesticated bumble bee colonies used for pollination of greenhouse crops. Given the importance of bumble bees as pollinators of crops and wildflowers, steps must be taken to prevent further declines. Suggested measures include tight regulation of commercial bumble bee use and targeted use of environmentally comparable schemes to enhance floristic diversity in agricultural landscapes.

  18. Do managed bees drive parasite spread and emergence in wild bees?

    PubMed

    Graystock, Peter; Blane, Edward J; McFrederick, Quinn S; Goulson, Dave; Hughes, William O H

    2016-04-01

    Bees have been managed and utilised for honey production for centuries and, more recently, pollination services. Since the mid 20th Century, the use and production of managed bees has intensified with hundreds of thousands of hives being moved across countries and around the globe on an annual basis. However, the introduction of unnaturally high densities of bees to areas could have adverse effects. Importation and deployment of managed honey bee and bumblebees may be responsible for parasite introductions or a change in the dynamics of native parasites that ultimately increases disease prevalence in wild bees. Here we review the domestication and deployment of managed bees and explain the evidence for the role of managed bees in causing adverse effects on the health of wild bees. Correlations with the use of managed bees and decreases in wild bee health from territories across the globe are discussed along with suggestions to mitigate further health reductions in wild bees.

  19. Bumblebees are not deterred by ecologically relevant concentrations of nectar toxins.

    PubMed

    Tiedeken, Erin Jo; Stout, Jane C; Stevenson, Philip C; Wright, Geraldine A

    2014-05-01

    Bees visit flowers to collect nectar and pollen that contain nutrients and simultaneously facilitate plant sexual reproduction. Paradoxically, nectar produced to attract pollinators often contains deterrent or toxic plant compounds associated with herbivore defence. The functional significance of these nectar toxins is not fully understood, but they may have a negative impact on pollinator behaviour and health, and, ultimately, plant pollination. This study investigates whether a generalist bumblebee, Bombus terrestris, can detect naturally occurring concentrations of nectar toxins. Using paired-choice experiments, we identified deterrence thresholds for five compounds found in the nectar of bee-pollinated plants: quinine, caffeine, nicotine, amygdalin and grayanotoxin. The deterrence threshold was determined when bumblebees significantly preferred a sucrose solution over a sucrose solution containing the compound. Bumblebees had the lowest deterrence threshold for the alkaloid quinine (0.01 mmol l(-1)); all other compounds had higher deterrence thresholds, above the natural concentration range in floral nectar. Our data, combined with previous work using honeybees, suggest that generalist bee species have poor acuity for the detection of nectar toxins. The fact that bees do not avoid nectar-relevant concentrations of these compounds likely indicates that it is difficult for them to learn to associate floral traits with the presence of toxins, thus maintaining this trait in plant populations.

  20. Bumble bee parasite strains vary in resistance to phytochemicals

    PubMed Central

    Palmer-Young, Evan C.; Sadd, Ben M.; Stevenson, Philip C.; Irwin, Rebecca E.; Adler, Lynn S.

    2016-01-01

    Nectar and pollen contain diverse phytochemicals that can reduce disease in pollinators. However, prior studies showed variable effects of nectar chemicals on infection, which could reflect variable phytochemical resistance among parasite strains. Inter-strain variation in resistance could influence evolutionary interactions between plants, pollinators, and pollinator disease, but testing direct effects of phytochemicals on parasites requires elimination of variation between bees. Using cell cultures of the bumble bee parasite Crithidia bombi, we determined (1) growth-inhibiting effects of nine floral phytochemicals and (2) variation in phytochemical resistance among four parasite strains. C. bombi growth was unaffected by naturally occurring concentrations of the known antitrypanosomal phenolics gallic acid, caffeic acid, and chlorogenic acid. However, C. bombi growth was inhibited by anabasine, eugenol, and thymol. Strains varied >3-fold in phytochemical resistance, suggesting that selection for phytochemical resistance could drive parasite evolution. Inhibitory concentrations of thymol (4.53–22.2 ppm) were similar to concentrations in Thymus vulgaris nectar (mean 5.2 ppm). Exposure of C. bombi to naturally occurring levels of phytochemicals—either within bees or during parasite transmission via flowers—could influence infection in nature. Flowers that produce antiparasitic phytochemicals, including thymol, could potentially reduce infection in Bombus populations, thereby counteracting a possible contributor to pollinator decline. PMID:27883009

  1. Bumble bee parasite strains vary in resistance to phytochemicals.

    PubMed

    Palmer-Young, Evan C; Sadd, Ben M; Stevenson, Philip C; Irwin, Rebecca E; Adler, Lynn S

    2016-11-24

    Nectar and pollen contain diverse phytochemicals that can reduce disease in pollinators. However, prior studies showed variable effects of nectar chemicals on infection, which could reflect variable phytochemical resistance among parasite strains. Inter-strain variation in resistance could influence evolutionary interactions between plants, pollinators, and pollinator disease, but testing direct effects of phytochemicals on parasites requires elimination of variation between bees. Using cell cultures of the bumble bee parasite Crithidia bombi, we determined (1) growth-inhibiting effects of nine floral phytochemicals and (2) variation in phytochemical resistance among four parasite strains. C. bombi growth was unaffected by naturally occurring concentrations of the known antitrypanosomal phenolics gallic acid, caffeic acid, and chlorogenic acid. However, C. bombi growth was inhibited by anabasine, eugenol, and thymol. Strains varied >3-fold in phytochemical resistance, suggesting that selection for phytochemical resistance could drive parasite evolution. Inhibitory concentrations of thymol (4.53-22.2 ppm) were similar to concentrations in Thymus vulgaris nectar (mean 5.2 ppm). Exposure of C. bombi to naturally occurring levels of phytochemicals-either within bees or during parasite transmission via flowers-could influence infection in nature. Flowers that produce antiparasitic phytochemicals, including thymol, could potentially reduce infection in Bombus populations, thereby counteracting a possible contributor to pollinator decline.

  2. Bumblebees are not deterred by ecologically relevant concentrations of nectar toxins

    PubMed Central

    Tiedeken, Erin Jo; Stout, Jane C.; Stevenson, Philip C.; Wright, Geraldine A.

    2014-01-01

    Bees visit flowers to collect nectar and pollen that contain nutrients and simultaneously facilitate plant sexual reproduction. Paradoxically, nectar produced to attract pollinators often contains deterrent or toxic plant compounds associated with herbivore defence. The functional significance of these nectar toxins is not fully understood, but they may have a negative impact on pollinator behaviour and health, and, ultimately, plant pollination. This study investigates whether a generalist bumblebee, Bombus terrestris, can detect naturally occurring concentrations of nectar toxins. Using paired-choice experiments, we identified deterrence thresholds for five compounds found in the nectar of bee-pollinated plants: quinine, caffeine, nicotine, amygdalin and grayanotoxin. The deterrence threshold was determined when bumblebees significantly preferred a sucrose solution over a sucrose solution containing the compound. Bumblebees had the lowest deterrence threshold for the alkaloid quinine (0.01 mmol l−1); all other compounds had higher deterrence thresholds, above the natural concentration range in floral nectar. Our data, combined with previous work using honeybees, suggest that generalist bee species have poor acuity for the detection of nectar toxins. The fact that bees do not avoid nectar-relevant concentrations of these compounds likely indicates that it is difficult for them to learn to associate floral traits with the presence of toxins, thus maintaining this trait in plant populations. PMID:24526720

  3. Reduced pollinator service and elevated pollen limitation at the geographic range limit of an annual plant.

    PubMed

    Moeller, David A; Geber, Monica A; Eckhart, Vincent M; Tiffin, Peter

    2012-05-01

    Mutualisms are well known to influence individual fitness and the population dynamics of partner species, but little is known about whether they influence species distributions and the location of geographic range limits. Here, we examine the contribution of plant-pollinator interactions to the geographic range limit of the California endemic plant Clarkia xantiana ssp. xantiana. We show that pollinator availability declined from the center to the margin of the geographic range consistently across four years of study. This decline in pollinator availability was caused to a greater extent by variation in the abundance of generalist rather than specialist bee pollinators. Climate data suggest that patterns of precipitation in the current and previous year drove variation in bee abundance because of its effects on cues for bee emergence in the current year and the abundance of floral resources in the previous year. Experimental floral manipulations showed that marginal populations had greater outcross pollen limitation of reproduction, in parallel with the decline in pollinator abundance. Although plants are self-compatible, we found no evidence that autonomous selfing contributes to reproduction, and thus no evidence that it alleviates outcross pollen limitation in marginal populations. Furthermore, we found no association between the distance to the range edge and selfing rate, as estimated from sequence and microsatellite variation, indicating that the mating system has not evolved in response to the pollination environment at the range periphery. Overall, our results suggest that dependence on pollinators for reproduction may be an important constraint limiting range expansion in this system.

  4. How specialised is bird pollination in the Cactaceae?

    PubMed

    Gorostiague, P; Ortega-Baes, P

    2016-01-01

    Many cactus species produce 'bird' flowers; however, the reproductive biology of the majority of these species has not been studied. Here, we report on a study of the pollination of two species from the Cleistocactus genus, cited as an ornithophilous genus, in the context of the different ways in which they are specialised to bird pollination. In addition, we re-evaluate the level of specialisation of previous studies of cacti with bird pollination and evaluate how common phenotypic specialisation to birds is in this family. Both Cleistocactus species exhibited ornithophilous floral traits. Cleistocactus baumannii was pollinated by hummingbirds, whereas Cleistocactus smaragdiflorus was pollinated by hummingbirds and bees. Pollination by birds has been recorded in 27 cactus species, many of which exhibit ornithophilous traits; however, they show generalised pollination systems with bees, bats or moths in addition to birds being their floral visitors. Of all cactus species, 27% have reddish flowers. This trait is associated with diurnal anthesis and a tubular shape. Phenotypic specialisation to bird pollination is recognised in many cactus species; however, it is not predictive of functional and ecological specialisation in this family. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Dual Effect of Phenolic Nectar on Three Floral Visitors of Elsholtzia rugulosa (Lamiaceae) in SW China.

    PubMed

    Zhang, Feng-Ping; Yang, Qiu-Yun; Zhang, Shi-Bao

    2016-01-01

    Some plants secrete toxic nectar to appeal to most effective pollinators and deter non-pollinators or nectar thieves; however available information about ecological function of toxic nectar remains scarce. Elsholtzia rugulosa stands out as a plant with toxic nectar recorded in SW China. We focused on the functional significance of the phenolic compound that imparts toxic to the nectar of E. rugulosa. The effects of phenolic nectar were studied in three visitors of the flowers of the winter-blooming E. rugulosa Hemsl. (Lamiaceae) in SW China. The pollinating species Apis cerana Fabricius (Apidae; Asian honey bee) and two occasional visitors, Vespa velutina Lepeletier (Vespidae; yellow-legged Asian hornet) and Bombus eximius Smith (Apidae; a bumble bee) were tested for their preferences for low and high concentrations of 4-hydroxybenzoic acid in hexose and sucrose solutions. The pollinator is important for the plant, which is dependent on pollinator visits to attain a higher seed production and it is most likely that the combination of phenolic toxic nectar and the adaptation to phenolic nectar by A. cerana delivers an evolutionary advantage to both actors. The low and high concentrations of the phenolic acid were nearly totally refused by both occasional visitors V. velutina and B. eximius and were preferred by the pollinator A. cerana. E. rugulosa gains by having a much higher seed production and the pollinating honey bee by having an exclusive and reliable food source during the winter season at high altitudes in SW China. We found that the function of the toxic phenolic compound has dual roles by appealing to legitimate pollinators and deterring non-pollinators of E. rugulosa.

  6. The Effects of Crop Intensification on the Diversity of Native Pollinator Communities.

    PubMed

    Mogren, Christina L; Rand, Tatyana A; Fausti, Scott W; Lundgren, Jonathan G

    2016-08-01

    Increases in agricultural conversion are leading to declines in native grasslands and natural resources critical for beneficial insects. However, little is known regarding how these changes affect pollinator diversity. Land use types were categorized within 300 m and 3 km radii of pollinator sampling locations in Brookings County, SD. Pollinator abundance and species richness were regressed on the proportion of the landscape dedicated to row crops, grass and pasture, forage crops, small grains, and aquatic habitats using variance components modeling. Row crops had a negative effect on bee abundance at 300 m, after fixed effects modeling accounted for outliers skewing this relationship. At 3 km, corn positively affected bee abundance and richness, while soybean acreage decreased species richness. The landscape matrix of outlying sites consisted of large monocultured areas with few alternative habitat types available, leading to inflated populations of Melissodes and Halictidae. Syrphids had a positive parabolic relationship between diversity and row crops, indicating potential for competitive exclusion from intermediate landscapes. Unlike other studies, landscape diversity within 300 m was not found to significantly benefit pollinator diversity. Within especially agriculturally developed areas of the region, high abundances of pollinators suggest selection for a few dominant species. There was no effect of forage crops or aquatic habitats on pollinator diversity, indicating that less highly managed areas still represent degraded habitat within the landscape. Incorporating pollinator-friendly crops at the farm level throughout the region is likely to enhance pollinator diversity by lessening the negative effects of large monocultures. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Decreasing Abundance, Increasing Diversity and Changing Structure of the Wild Bee Community (Hymenoptera: Anthophila) along an Urbanization Gradient

    PubMed Central

    Fortel, Laura; Henry, Mickaël; Guilbaud, Laurent; Guirao, Anne Laure; Kuhlmann, Michael; Mouret, Hugues; Rollin, Orianne; Vaissière, Bernard E.

    2014-01-01

    Background Wild bees are important pollinators that have declined in diversity and abundance during the last decades. Habitat destruction and fragmentation associated with urbanization are reported as part of the main causes of this decline. Urbanization involves dramatic changes of the landscape, increasing the proportion of impervious surface while decreasing that of green areas. Few studies have investigated the effects of urbanization on bee communities. We assessed changes in the abundance, species richness, and composition of wild bee community along an urbanization gradient. Methodology/Principal Findings Over two years and on a monthly basis, bees were sampled with colored pan traps and insect nets at 24 sites located along an urbanization gradient. Landscape structure within three different radii was measured at each study site. We captured 291 wild bee species. The abundance of wild bees was negatively correlated with the proportion of impervious surface, while species richness reached a maximum at an intermediate (50%) proportion of impervious surface. The structure of the community changed along the urbanization gradient with more parasitic species in sites with an intermediate proportion of impervious surface. There were also greater numbers of cavity-nesting species and long-tongued species in sites with intermediate or higher proportion of impervious surface. However, urbanization had no effect on the occurrence of species depending on their social behavior or body size. Conclusions/Significance We found nearly a third of the wild bee fauna known from France in our study sites. Indeed, urban areas supported a diverse bee community, but sites with an intermediate level of urbanization were the most speciose ones, including greater proportion of parasitic species. The presence of a diverse array of bee species even in the most urbanized area makes these pollinators worthy of being a flagship group to raise the awareness of urban citizens about biodiversity. PMID:25118722

  8. Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient.

    PubMed

    Fortel, Laura; Henry, Mickaël; Guilbaud, Laurent; Guirao, Anne Laure; Kuhlmann, Michael; Mouret, Hugues; Rollin, Orianne; Vaissière, Bernard E

    2014-01-01

    Wild bees are important pollinators that have declined in diversity and abundance during the last decades. Habitat destruction and fragmentation associated with urbanization are reported as part of the main causes of this decline. Urbanization involves dramatic changes of the landscape, increasing the proportion of impervious surface while decreasing that of green areas. Few studies have investigated the effects of urbanization on bee communities. We assessed changes in the abundance, species richness, and composition of wild bee community along an urbanization gradient. Over two years and on a monthly basis, bees were sampled with colored pan traps and insect nets at 24 sites located along an urbanization gradient. Landscape structure within three different radii was measured at each study site. We captured 291 wild bee species. The abundance of wild bees was negatively correlated with the proportion of impervious surface, while species richness reached a maximum at an intermediate (50%) proportion of impervious surface. The structure of the community changed along the urbanization gradient with more parasitic species in sites with an intermediate proportion of impervious surface. There were also greater numbers of cavity-nesting species and long-tongued species in sites with intermediate or higher proportion of impervious surface. However, urbanization had no effect on the occurrence of species depending on their social behavior or body size. We found nearly a third of the wild bee fauna known from France in our study sites. Indeed, urban areas supported a diverse bee community, but sites with an intermediate level of urbanization were the most speciose ones, including greater proportion of parasitic species. The presence of a diverse array of bee species even in the most urbanized area makes these pollinators worthy of being a flagship group to raise the awareness of urban citizens about biodiversity.

  9. Consequences of a warming climate for social organisation in sweat bees.

    PubMed

    Schürch, Roger; Accleton, Christopher; Field, Jeremy

    The progression from solitary living to caste-based sociality is commonly regarded as a major evolutionary transition. However, it has recently been shown that in some taxa, sociality may be plastic and dependent on local conditions. If sociality can be environmentally driven, the question arises as to how projected climate change will influence features of social organisation that were previously thought to be of macroevolutionary proportions. Depending on the time available in spring during which a foundress can produce worker offspring, the sweat bee Halictus rubicundus is either social or solitary. We analysed detailed foraging data in relation to climate change predictions for Great Britain to assess when and where switches from a solitary to social lifestyle may be expected. We demonstrate that worker numbers should increase throughout Great Britain under predicted climate change scenarios, and importantly, that sociality should appear in northern areas where it has never before been observed. This dramatic shift in social organisation due to climate change should lead to a bigger workforce being available for summer pollination and may contribute towards mitigating the current pollinator crisis. The sweat bee Halictus rubicundus is socially polymorphic, expressing both solitary and social forms, and is socially plastic, capable of transitioning from solitary to social forms, depending on local environmental conditions. Here, we analyse detailed foraging data in relation to climate change predictions for Great Britain to show that worker numbers and sociality both increase under predicted climate change scenarios. Especially dramatic will be the appearance of social H. rubicundus nests in the north of Britain, where previously only solitary forms are found. Particularly, if more taxa are found to be socially plastic, environmentally driven shifts in social organisation may help to mitigate future pollinator crises by providing more individuals for pollination.

  10. Creating and Evaluating Artificial Domiciles for Bumble Bees

    ERIC Educational Resources Information Center

    Golick, Douglas A.; Ellis, Marion D.; Beecham, Brady

    2006-01-01

    Bumble bees are valuable pollinators of native and cultivated flora. Despite our knowledge of bumble bee nest site selection, most efforts to attract bumble bees to artificial domiciles have been met with limited success. Creating and evaluating artificial domiciles provides students an opportunity to investigate a real problem. In this lesson,…

  11. Colonies of bumble bees (Bombus impatiens) produce fewer workers, less bee biomass, and have smaller mother queens following fungicide exposure

    USDA-ARS?s Scientific Manuscript database

    Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing serious declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possib...

  12. Landscaping pebbles attract nesting by the native ground-nesting bee Halictus rubicundus (Hymenoptera: Halictidae)

    USDA-ARS?s Scientific Manuscript database

    Most species of bees nest underground. Recent interest in pollinator-friendly gardens and landscaping focuses on planting suitable flowering species for bees, but we know little about providing for the ground-nesting needs of bees other than leaving them bare dirt surfaces. In this study, a surfac...

  13. Ascosphaera apis, the entomopathogenic fungus affecting larvae of native bees (Xylocopa augusti): First report in South America.

    PubMed

    Reynaldi, Francisco J; Lucia, Mariano; Genchi Garcia, María L

    2015-01-01

    Nowadays several invertebrate pollinators of crops and wild plants are in decline as result of multiple and, sometimes, unknown factors; among them, the modern agricultural practices, pests and diseases are postulated as the most important factors. Bees of the genus Xylocopa are considered effective pollinators of passion fruit crops in tropical regions, as well as important pollinators in wild plants, but these bees are attacked by several pathogens that affect different stages in their life cycle. The fungal species of the genus Ascosphaera are commonly associated with social and solitary bee larvae causing chalkbrood disease. The aim of the present study was to demonstrate the presence of Ascosphaera apis affecting larvae of Xylocopa augusti in South America. For this purpose, A. apis was isolated from affected larvae in YGPSA medium. Final identification was run out by three techniques: (1) Microscopic examination of the hyphae and sizes of the fruiting bodies; (2) Mating test, and specific sexual compatibility test, and (3) PCR detection, using specific primers. This study demonstrates for the first time the presence of A. apis affecting larvae of X. augusti in South America. The evidence of A. apis affecting the larvae of X. augusti, and the fact that the sharing of pathogens between different bee species has been underestimated, suggests the need for further epidemiological studies in order to determine not only the prevalence of this pathogen among wild pollinators, but also its relationship to the sudden collapse of honey bee colonies in this region. Copyright © 2014 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  14. Foraging traits modulate stingless bee community disassembly under forest loss.

    PubMed

    Lichtenberg, Elinor M; Mendenhall, Chase D; Brosi, Berry

    2017-10-01

    Anthropogenic land use change is an important driver of impacts to biological communities and the ecosystem services they provide. Pollination is one ecosystem service that may be threatened by community disassembly. Relatively little is known about changes in bee community composition in the tropics, where pollination limitation is most severe and land use change is rapid. Understanding how anthropogenic changes alter community composition and functioning has been hampered by high variability in responses of individual species. Trait-based approaches, however, are emerging as a potential method for understanding responses of ecologically similar species to global change. We studied how communities of tropical, eusocial stingless bees (Apidae: Meliponini) disassemble when forest is lost. These bees are vital tropical pollinators that exhibit high trait diversity, but are under considerable threat from human activities. We compared functional traits of stingless bee species found in pastures surrounded by differing amounts of forest in an extensively deforested landscape in southern Costa Rica. Our results suggest that foraging traits modulate competitive interactions that underlie community disassembly patterns. In contrast to both theoretical predictions and temperate bee communities, we found that stingless bee species with the widest diet breadths were less likely to persist in sites with less forest. These wide-diet-breadth species also tend to be solitary foragers, and are competitively subordinate to group-foraging stingless bee species. Thus, displacement by dominant, group-foraging species may make subordinate species more dependent on the larger or more diversified resource pool that natural habitats offer. We also found that traits that may reduce reliance on trees-nesting in the ground or inside nests of other species-correlated with persistence in highly deforested landscapes. The functional trait perspective we employed enabled capturing community processes in analyses and suggests that land use change may disassemble bee communities via different mechanisms in temperate and tropical areas. Our results further suggest that community processes, such as competition, can be important regulators of community disassembly under land use change. A better understanding of community disassembly processes is critical for conserving and restoring pollinator communities and the ecosystem services and functions they provide. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  15. Size and Sex-Dependent Shrinkage of Dutch Bees during One-and-a-Half Centuries of Land-Use Change.

    PubMed

    Oliveira, Mikail O; Freitas, Breno M; Scheper, Jeroen; Kleijn, David

    2016-01-01

    Land-use change and global warming are important factors driving bee decline, but it is largely unknown whether these drivers have resulted in changes in the life-history traits of bees. Recent studies have shown a stronger population decline of large- than small-bodied bee species, suggesting there may have been selective pressure on large, but not on small species to become smaller. Here we test this hypothesis by analyzing trends in bee body size of 18 Dutch species over a 147-year period using specimens from entomological collections. Large-bodied female bees shrank significantly faster than small-bodied female bees (6.5% and 0.5% respectively between 1900 and 2010). Changes in temperature during the flight period of bees did not influence the size-dependent shrinkage of female bees. Male bees did not shrink significantly over the same time period. Our results could imply that under conditions of declining habitat quantity and quality it is advantageous for individuals to be smaller. The size and sex-dependent responses of bees point towards an evolutionary response but genetic studies are required to confirm this. The declining body size of the large bee species that currently dominate flower visitation of both wild plants and insect-pollinated crops may have negative consequences for pollination service delivery.

  16. The effects of ingested aqueous aluminum on floral fidelity and foraging strategy in honey bees (Apis mellifera).

    PubMed

    Chicas-Mosier, Ana M; Cooper, Bree A; Melendez, Alexander M; Pérez, Melina; Oskay, Devrim; Abramson, Charles I

    2017-09-01

    Pollinator decline is of international concern because of the economic services these organisms provide. Commonly cited sources of decline are toxicants, habitat fragmentation, and parasites. Toxicant exposure can occur through uptake and distribution from plant tissues and resources such as pollen and nectar. Metals such as aluminum can be distributed to pollinators and other herbivores through this route especially in acidified or mined areas. A free-flying artificial flower patch apparatus was used to understand how two concentrations of aluminum (2mg/L and 20mg/L) may affect the learning, orientation, and foraging behaviors of honey bees (Apis mellifera) in Turkey. The results show that a single dose of aluminum immediately affects the floral decision making of honey bees potentially by altering sucrose perception, increasing activity level, or reducing the likelihood of foraging on safer or uncontaminated resource patches. We conclude that aluminum exposure may be detrimental to foraging behaviors and potentially to other ecologically relevant behaviors. Copyright © 2017. Published by Elsevier Inc.

  17. The power and promise of applying genomics to honey bee health

    PubMed Central

    Robinson, Gene E.

    2015-01-01

    New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species. PMID:26273565

  18. Mimicry on the QT(L): genetics of speciation in Mimulus.

    PubMed

    Bleiweiss, R

    2001-08-01

    Ecological studies suggest that hummingbird-pollinated plants in North America mimic each other to increase visitation by birds. Published quantitative trait locus (QTL) data for two Mimulus species indicate that floral traits associated with hummingbird versus bee pollination results from a few loci with major effects on morphology, as predicted by classical models for the evolution of mimicry. Thus, the architecture of genetic divergence associated with speciation may depend on the ecological context.

  19. HiveScience: A Citizen Science Project for Beekeepers

    EPA Science Inventory

    Honey bee health is affected by multiple factors including parasites, disease, poor nutrition, pesticides and agronomic practices. The value of honey bees goes far beyond providing honey; honey bees pollinate 90 commercial crops and add $11.5 billion in value to agricultural cro...

  20. The Effect of Nest Box Distribution on Sustainable Propagation of Osmia lignaria (Hymenoptera: Megachilidae) in Commercial Tart Cherry Orchards.

    PubMed

    Boyle, N K; Pitts-Singer, T L

    2017-01-01

    The blue orchard bee, Osmia lignaria (Say), is a solitary bee that is an excellent pollinator of tree fruit orchards. Due to the annual rising costs of honey bee hive rentals, many orchardists are eager to develop management tools and practices to support O. lignaria as an alternative pollinator. Establishing O. lignaria pollination as a sustainable industry requires careful consideration of both bee and orchard management. Here, we test the effect of artificial nest box distribution on in-orchard propagation of O. lignaria in Utah commercial tart cherry orchards. Two nest box distributions were compared across three paired, 1.2-ha plots. One distribution, traditionally employed by O. lignaria consultants, included a centrally located tote for mass-nesting with smaller, surrounding 'satellite' nest boxes at orchard margins. The other distribution was composed of smaller, more equally distributed nest boxes throughout the 1.2-ha plots. Significantly higher propagation of O. lignaria was observed in the latter nest box distribution, although all treatments resulted in bee return exceeding the number of bees initially released. These findings provide support for the use of O. lignaria in tart cherry orchards, and demonstrate how simple changes to bee set-up and management can influence propagation efforts. Published by Oxford University Press on behalf of the Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  1. Lethal and sub-lethal effects of spinosad on bumble bees (Bombus impatiens Cresson).

    PubMed

    Morandin, Lora A; Winston, Mark L; Franklin, Michelle T; Abbott, Virginia A

    2005-07-01

    Recent developments of new families of pesticides and growing awareness of the importance of wild pollinators for crop pollination have stimulated interest in potential effects of novel pesticides on wild bees. Yet pesticide toxicity studies on wild bees remain rare, and few studies have included long-term monitoring of bumble bee colonies or testing of foraging ability after pesticide exposure. Larval bees feeding on exogenous pollen and exposed to pesticides during development may result in lethal or sub-lethal effects during the adult stage. We tested the effects of a naturally derived biopesticide, spinosad, on bumble bee (Bombus impatiens Cresson) colony health, including adult mortality, brood development, weights of emerging bees and foraging efficiency of adults that underwent larval development during exposure to spinosad. We monitored colonies from an early stage, over a 10-week period, and fed spinosad to colonies in pollen at four levels: control, 0.2, 0.8 and 8.0 mg kg(-1), during weeks 2 through 5 of the experiment. At concentrations that bees would likely encounter in pollen in the wild (0.2-0.8 mg kg(-1)) we detected minimal negative effects to bumble bee colonies. Brood and adult mortality was high at 8.0 mg kg(-1) spinosad, about twice the level that bees would be exposed to in a 'worst case' field scenario, resulting in colony death two to four weeks after initial pesticide exposure. At more realistic concentrations there were potentially important sub-lethal effects. Adult worker bees exposed to spinosad during larval development at 0.8 mg kg(-1) were slower foragers on artificial complex flower arrays than bees from low or no spinosad treated colonies. Inclusion of similar sub-lethal assays to detect effects of pesticides on pollinators would aid in development of environmentally responsible pest management strategies. Copyright 2005 Society of Chemical Industry

  2. Floral resource availability from groundcover promotes bee abundance in coffee agroecosystems.

    PubMed

    Fisher, Kaleigh; Gonthier, David J; Ennis, Katherine K; Perfecto, Ivette

    2017-09-01

    Patterns of bee abundance and diversity across different spatial scales have received thorough research consideration. However, the impact of short- and long-term temporal resource availability on biodiversity has been less explored. This is highly relevant in tropical agricultural systems for pollinators, as many foraging periods of pollinators extend beyond flowering of any single crop species. In this study, we sought to understand how bee communities in tropical agroecosystems changed between seasons, and if short- and long-term floral resource availability influenced their diversity and abundance. We used a threshold analysis approach in order to explore this relationship at two time scales. This study took place in a region dominated by coffee agroecosystems in Southern Mexico. This was an ideal system because the landscape offers a range of coffee management regimes that maintain heterogeneity in floral resource availability spatially and temporally. We found that the bee community varies significantly between seasons. There were higher abundances of native social, solitary and managed honey bees during the dry season when coffee flowers. Additionally, we found that floral resources from groundcover, but not trees, were associated with bee abundance. Further, the temporal scale of the availability of these resources is important, whereby short-term floral resource availability appears particularly important in maintaining high bee abundance at sites with lower seasonal complementarity. We argue that in addition to spatial resource heterogeneity, temporal resource heterogeneity is critical in explaining bee community patterns, and should thus be considered to promote pollinator conservation. © 2017 by the Ecological Society of America.

  3. Fearful Foragers: Honey Bees Tune Colony and Individual Foraging to Multi-Predator Presence and Food Quality

    PubMed Central

    Tan, Ken; Hu, Zongwen; Chen, Weiwen; Wang, Zhengwei; Wang, Yuchong; Nieh, James C.

    2013-01-01

    Fear can have strong ecosystem effects by giving predators a role disproportionate to their actual kill rates. In bees, fear is shown through foragers avoiding dangerous food sites, thereby reducing the fitness of pollinated plants. However, it remains unclear how fear affects pollinators in a complex natural scenario involving multiple predator species and different patch qualities. We studied hornets, Vespa velutina (smaller) and V. tropica (bigger) preying upon the Asian honey bee, Apis cerana in China. Hornets hunted bees on flowers and were attacked by bee colonies. Bees treated the bigger hornet species (which is 4 fold more massive) as more dangerous. It received 4.5 fold more attackers than the smaller hornet species. We tested bee responses to a three-feeder array with different hornet species and varying resource qualities. When all feeders offered 30% sucrose solution (w/w), colony foraging allocation, individual visits, and individual patch residence times were reduced according to the degree of danger. Predator presence reduced foraging visits by 55–79% and residence times by 17–33%. When feeders offered different reward levels (15%, 30%, or 45% sucrose), colony and individual foraging favored higher sugar concentrations. However, when balancing food quality against multiple threats (sweeter food corresponding to higher danger), colonies exhibited greater fear than individuals. Colonies decreased foraging at low and high danger patches. Individuals exhibited less fear and only decreased visits to the high danger patch. Contrasting individual with emergent colony-level effects of fear can thus illuminate how predators shape pollination by social bees. PMID:24098734

  4. Colony-level variation in pollen collection and foraging preferences among wild-caught bumble bees (Hymenoptera: Apidae).

    PubMed

    Saifuddin, Mustafa; Jha, Shalene

    2014-04-01

    Given that many pollinators have exhibited dramatic declines related to habitat destruction, an improved understanding of pollinator resource collection across human-altered landscapes is essential to conservation efforts. Despite the importance of bumble bees (Bombus spp.) as global pollinators, little is known regarding how pollen collection patterns vary between individuals, colonies, and landscapes. In this study, Vosnesensky bumble bees (Bombus vosnesenskii Radoszkowski) were collected from a range of human-altered and natural landscapes in northern California. Extensive vegetation surveys and Geographic Information System (GIS)-based habitat classifications were conducted at each site, bees were genotyped to identify colony mates, and pollen loads were examined to identify visited plants. In contrast to predictions based on strong competitive interactions, pollen load composition was significantly more similar for bees captured in a shared study region compared with bees throughout the research area but was not significantly more similar for colony mates. Preference analyses revealed that pollen loads were not composed of the most abundant plant species per study region. The majority of ranked pollen preference lists were significantly correlated for pairwise comparisons of colony mates and individuals within a study region, whereas the majority of pairwise comparisons of ranked pollen preference lists between individuals located at separate study regions were uncorrelated. Results suggest that pollen load composition and foraging preferences are similar for bees throughout a shared landscape regardless of colony membership. The importance of native plant species in pollen collection is illustrated through preference analyses, and we suggest prioritization of specific rare native plant species for enhanced bumble bee pollen collection.

  5. A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations

    PubMed Central

    Shi, Mang; Buchmann, Gabriele; Blacquière, Tjeerd; Beekman, Madeleine; Ashe, Alyson

    2017-01-01

    ABSTRACT Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees (Apis mellifera) has changed dramatically since the emergence of the parasitic mite Varroa destructor, which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa. This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales. Collapsing Varroa-infected colonies are often overwhelmed with high levels of picornaviruses. To examine the underlying viral diversity in honey bees, we employed viral metatranscriptomics analyses on three geographically diverse Varroa-resistant populations from Europe, Africa, and the Pacific. We describe seven novel viruses from a range of diverse viral families, including two viruses that are present in all three locations. In honey bees, small RNA sequences indicate that these viruses are processed by Dicer and the RNA interference pathway, whereas Varroa mites produce strikingly novel small RNA patterns. This work increases the number and diversity of known honey bee viruses and will ultimately contribute to improved disease management in our most important agricultural pollinator. PMID:28515299

  6. A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations.

    PubMed

    Remnant, Emily J; Shi, Mang; Buchmann, Gabriele; Blacquière, Tjeerd; Holmes, Edward C; Beekman, Madeleine; Ashe, Alyson

    2017-08-15

    Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees ( Apis mellifera ) has changed dramatically since the emergence of the parasitic mite Varroa destructor , which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales Collapsing Varroa -infected colonies are often overwhelmed with high levels of picornaviruses. To examine the underlying viral diversity in honey bees, we employed viral metatranscriptomics analyses on three geographically diverse Varroa- resistant populations from Europe, Africa, and the Pacific. We describe seven novel viruses from a range of diverse viral families, including two viruses that are present in all three locations. In honey bees, small RNA sequences indicate that these viruses are processed by Dicer and the RNA interference pathway, whereas Varroa mites produce strikingly novel small RNA patterns. This work increases the number and diversity of known honey bee viruses and will ultimately contribute to improved disease management in our most important agricultural pollinator. Copyright © 2017 Remnant et al.

  7. Combined pesticide exposure severely affects individual- and colony-level traits in bees

    PubMed Central

    Gill, Richard J.; Ramos-Rodriguez, Oscar; Raine, Nigel E.

    2012-01-01

    Reported widespread declines of wild and managed insect pollinators have serious consequences for global ecosystem services and agricultural production1-3. Bees contribute around 80% of insect pollination, so it is imperative we understand and mitigate the causes of current declines4-6. Recent studies have implicated the role of pesticides as exposure to these chemicals has been associated with changes in bee behaviour7-11 and reductions in colony queen production12. However the key link between changes in individual behaviour and consequent impact at the colony level has not been shown. Social bee colonies depend on the collective performance of numerous individual workers. So whilst field-level pesticide concentrations can have a subtle/sublethal effect at the individual level8, it is not known whether bee societies can buffer such effects or if it results in a severe cumulative effect at the colony level. Furthermore, widespread agricultural intensification means bees are exposed to numerous pesticides when foraging13-15, yet the possible combinatorial effects of pesticide exposure have rarely been investigated16,17. Here we show that chronic exposure of bumblebees to two pesticides (neonicotinoid and pyrethroid) at concentrations that could approximate field-level exposure impairs natural foraging behaviour and increases worker mortality leading to significant reductions in brood development and colony success. We found worker foraging performance, particularly pollen collecting efficiency, was significantly reduced with observed knock-on effects for forager recruitment, worker losses and overall worker productivity. Moreover, we provide evidence that combinatorial exposure to pesticides increases the propensity of colonies to fail. PMID:23086150

  8. Does Passive Sampling Accurately Reflect the Bee (Apoidea: Anthophila) Communities Pollinating Apple and Sour Cherry Orchards?

    PubMed

    Gibbs, Jason; Joshi, Neelendra K; Wilson, Julianna K; Rothwell, Nikki L; Powers, Karen; Haas, Mike; Gut, Larry; Biddinger, David J; Isaacs, Rufus

    2017-06-01

    During bloom of spring orchard crops, bees are the primary providers of pollination service. Monitoring these insects for research projects is often done by timed observations or by direct aerial netting, but there has been increasing interest in blue vane traps as an efficient passive approach to collecting bees. Over multiple spring seasons in Michigan and Pennsylvania, orchards were monitored for wild bees using timed netting from crop flowers and blue vane traps. This revealed a distinctly different community of wild bees captured using the two methods, suggesting that blue vane traps can complement but cannot replace direct aerial netting. The bee community in blue vane traps was generally composed of nonpollinating species, which can be of interest for broader biodiversity studies. In particular, blue vane traps caught Eucera atriventris (Smith), Eucera hamata (Bradley), Bombus fervidus (F.), and Agapostemon virescens (F.) that were never collected from the orchard crop flowers during the study period. Captures of bee species in nets was generally stable across the 3 yr, whereas we observed significant declines in the abundance of Lasioglossum pilosum (Smith) and Eucera spp. trapped using blue vane traps during the project, suggesting local overtrapping of reproductive individuals. We conclude that blue vane traps are a useful tool for expanding insights into bee communities within orchard crop systems, but they should be used with great caution to avoid local extirpation of these important insects. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Flowers help bees cope with uncertainty: signal detection and the function of floral complexity

    PubMed Central

    Leonard, Anne S.; Dornhaus, Anna; Papaj, Daniel R.

    2011-01-01

    Plants often attract pollinators with floral displays composed of visual, olfactory, tactile and gustatory stimuli. Since pollinators' responses to each of these stimuli are usually studied independently, the question of why plants produce multi-component floral displays remains relatively unexplored. Here we used signal detection theory to test the hypothesis that complex displays reduce a pollinator's uncertainty about the floral signal. Specifically, we asked whether one component of the floral display, scent, improved a bee's certainty about the value of another component, color hue. We first trained two groups of bumble bees (Bombus impatiens Cresson) to discriminate between rewarding and unrewarding artificial flowers of slightly different hues in the presence vs absence of scent. In a test phase, we presented these bees with a gradient of floral hues and assessed their ability to identify the hue rewarded during training. We interpreted the extent to which bees' preferences were biased away from the unrewarding hue (‘peak shift’) as an indicator of uncertainty in color discrimination. Our data show that the presence of an olfactory signal reduces uncertainty regarding color: not only was color learning facilitated on scented flowers but also bees showed a lower amount of peak shift in the presence of scent. We explore potential mechanisms by which scent might reduce uncertainty about color, and discuss the broader significance of our results for our understanding of signal evolution. PMID:21147975

  10. Trapline foraging by pollinators: its ontogeny, economics and possible consequences for plants.

    PubMed

    Ohashi, Kazuharu; Thomson, James D

    2009-06-01

    Trapline foraging (repeated sequential visits to a series of feeding locations) has been often observed in pollinators collecting nectar or pollen from flowers. Although field studies on bumble-bees and hummingbirds have clarified fundamental aspects of this behaviour, trapline foraging still poses several difficult questions from the perspectives of both animals and plants. These questions include whether and how traplining improves foraging performance, how animals develop traplines with accumulating foraging experience, and how traplining affects pollen flow or plant reproduction. First, we review our previous work performed by using computer simulations and indoor flight-cage experiments with bumble-bees foraging from arrays of automated feeders. Our findings include the following: (1) traplining benefits foragers that are competing for resources that replenish in a decelerating way, (2) traplining is a learned behaviour that develops over a period of hours and (3) the establishment of traplines could be hampered by spatial configuration of plants such as zigzags. Second, using a simulation model linking pollinator movement and pollen transfer, we consider how service by pollinators with different foraging patterns (searchers or trapliners) would affect pollen flow. Traplining increases mating distance and mate diversity, and reduces 'iterogamy' (self-pollination caused by return visits) at the population level. Furthermore, increased visitation rates can have opposite effects on the reproductive success of a plant, depending on whether the visitors are traplining or searching. Finally, we discuss possible consequences of traplining for plants in the light of new experimental work and modelling. We suggest that trapline foraging by pollinators increases variation among plant populations in genetic diversity, inbreeding depression and contributions of floral traits to plant fitness, which should in turn affect the rates and directions of floral evolution. More theoretical and empirical studies are needed to clarify possible outcomes of such a neglected side of pollination.

  11. Apple Pollination: Demand Depends on Variety and Supply Depends on Pollinator Identity

    PubMed Central

    Garratt, M. P. D.; Breeze, T. D.; Boreux, V.; Coston, D. J.; Jenner, N.; Dean, R.; Westbury, D. B.; Biesmeijer, J. C.; Potts, S. G.

    2016-01-01

    Insect pollination underpins apple production but the extent to which different pollinator guilds supply this service, particularly across different apple varieties, is unknown. Such information is essential if appropriate orchard management practices are to be targeted and proportional to the potential benefits pollinator species may provide. Here we use a novel combination of pollinator effectiveness assays (floral visit effectiveness), orchard field surveys (flower visitation rate) and pollinator dependence manipulations (pollinator exclusion experiments) to quantify the supply of pollination services provided by four different pollinator guilds to the production of four commercial varieties of apple. We show that not all pollinators are equally effective at pollinating apples, with hoverflies being less effective than solitary bees and bumblebees, and the relative abundance of different pollinator guilds visiting apple flowers of different varieties varies significantly. Based on this, the taxa specific economic benefits to UK apple production have been established. The contribution of insect pollinators to the economic output in all varieties was estimated to be £92.1M across the UK, with contributions varying widely across taxa: solitary bees (£51.4M), honeybees (£21.4M), bumblebees (£18.6M) and hoverflies (£0.7M). This research highlights the differences in the economic benefits of four insect pollinator guilds to four major apple varieties in the UK. This information is essential to underpin appropriate investment in pollination services management and provides a model that can be used in other entomolophilous crops to improve our understanding of crop pollination ecology. PMID:27152628

  12. Apple Pollination: Demand Depends on Variety and Supply Depends on Pollinator Identity.

    PubMed

    Garratt, M P D; Breeze, T D; Boreux, V; Fountain, M T; McKerchar, M; Webber, S M; Coston, D J; Jenner, N; Dean, R; Westbury, D B; Biesmeijer, J C; Potts, S G

    2016-01-01

    Insect pollination underpins apple production but the extent to which different pollinator guilds supply this service, particularly across different apple varieties, is unknown. Such information is essential if appropriate orchard management practices are to be targeted and proportional to the potential benefits pollinator species may provide. Here we use a novel combination of pollinator effectiveness assays (floral visit effectiveness), orchard field surveys (flower visitation rate) and pollinator dependence manipulations (pollinator exclusion experiments) to quantify the supply of pollination services provided by four different pollinator guilds to the production of four commercial varieties of apple. We show that not all pollinators are equally effective at pollinating apples, with hoverflies being less effective than solitary bees and bumblebees, and the relative abundance of different pollinator guilds visiting apple flowers of different varieties varies significantly. Based on this, the taxa specific economic benefits to UK apple production have been established. The contribution of insect pollinators to the economic output in all varieties was estimated to be £92.1M across the UK, with contributions varying widely across taxa: solitary bees (£51.4M), honeybees (£21.4M), bumblebees (£18.6M) and hoverflies (£0.7M). This research highlights the differences in the economic benefits of four insect pollinator guilds to four major apple varieties in the UK. This information is essential to underpin appropriate investment in pollination services management and provides a model that can be used in other entomolophilous crops to improve our understanding of crop pollination ecology.

  13. 78 FR 55694 - SFIREG Full Committee; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... compost at biologically significant concentrations. 3. Status of pollinator protection efforts. 4. Bee... and procedure, Aminopyralid, Bees, Compost, Endangered and threatened species, Health, Pesticides and...

  14. Find Best Management Practices to Protect Pollinators

    EPA Pesticide Factsheets

    Resources and ways to reduce potential pesticide exposure to honey bees and other pollinators include new pesticide labels, neonicotinoid insecticide information, reducing dust from treated seed, and state-level efforts.

  15. Bumble bees of the western United States

    USDA-ARS?s Scientific Manuscript database

    Bumble bees (genus Bombus) are critical pollinators of flowering plants. Thirty species of bumble bees are native to the western United States and this publication is a guide to the natural history and identification of these species. We present phenology graphs, host-plant associations, detailed ...

  16. A Meta-Analysis of Effects of Bt Crops on Honey Bees (Hymenoptera: Apidae)

    PubMed Central

    Duan, Jian J.; Marvier, Michelle; Huesing, Joseph; Dively, Galen; Huang, Zachary Y.

    2008-01-01

    Background Honey bees (Apis mellifera L.) are the most important pollinators of many agricultural crops worldwide and are a key test species used in the tiered safety assessment of genetically engineered insect-resistant crops. There is concern that widespread planting of these transgenic crops could harm honey bee populations. Methodology/Principal Findings We conducted a meta-analysis of 25 studies that independently assessed potential effects of Bt Cry proteins on honey bee survival (or mortality). Our results show that Bt Cry proteins used in genetically modified crops commercialized for control of lepidopteran and coleopteran pests do not negatively affect the survival of either honey bee larvae or adults in laboratory settings. Conclusions/Significance Although the additional stresses that honey bees face in the field could, in principle, modify their susceptibility to Cry proteins or lead to indirect effects, our findings support safety assessments that have not detected any direct negative effects of Bt crops for this vital insect pollinator. PMID:18183296

  17. Chalkbrood Transmission in the Alfalfa Leafcutting Bee: The Impact of Disinfecting Bee Cocoons in Loose Cell Management Systems

    USDA-ARS?s Scientific Manuscript database

    A good understanding of pathogen transmission in a host population should illuminate methods for disease prevention and control. A case in point for this is the alfalfa leafcutting bee (Megachile rotundata), a solitary bee which is used extensively for pollination of alfalfa grown for seed. Propaga...

  18. Defining the Insect Pollinator Community Found in Iowa Corn and Soybean Fields: Implications for Pollinator Conservation.

    PubMed

    Wheelock, M J; Rey, K P; O'Neal, M E

    2016-10-01

    Although corn (Zea mays L.) and soybeans (Glycine max L.) do not require pollination, they offer floral resources used by insect pollinators. We asked if a similar community of insect pollinators visits these crops in central Iowa, a landscape dominated by corn and soybean production. We used modified pan traps (i.e., bee bowls) in both corn and soybean fields during anthesis and used nonmetric multidimensional scaling (NMS) to compare the communities found in the two crops. Summed across both crops, 6,704 individual insects were captured representing at least 60 species, morphospecies, or higher-level taxa. Thirty-four species were collected in both crops, 19 collected only in corn and seven were collected only in soybean. The most abundant taxa were Lasioglossum [Dialictus] spp., Agapostemon virescens Cresson, Melissodes bimaculata (Lepeletier), and Toxomerus marginatus (Say), which accounted for 65% of the insect pollinators collected from both crops. Although social bees (Apis mellifera L. and Bombus spp.) were found in both crops, they accounted for only 0.5% of all insects captured. The NMS analysis revealed a shared community of pollinators composed of mostly solitary, ground nesting bees. Many of these species have been found in other crop fields throughout North America. Although corn and soybean are grown in landscapes that are often highly disturbed, these data suggest that a community of pollinators can persist within them. We suggest approaches to conserving this community based on partnering with activities that aim to lessen the environmental impact of annual crop production. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Insects, birds and lizards as pollinators of the largest-flowered Scrophularia of Europe and Macaronesia.

    PubMed

    Ortega-Olivencia, Ana; Rodríguez-Riaño, Tomás; Pérez-Bote, José L; López, Josefa; Mayo, Carlos; Valtueña, Francisco J; Navarro-Pérez, Marisa

    2012-01-01

    It has traditionally been considered that the flowers of Scrophularia are mainly pollinated by wasps. We studied the pollination system of four species which stand out for their large and showy flowers: S. sambucifolia and S. grandiflora (endemics of the western Mediterranean region), S. trifoliata (an endemic of the Tyrrhenian islands) and S. calliantha (an endemic of the Canary Islands). Our principal aim was to test whether these species were pollinated by birds or showed a mixed pollination system between insects and birds. Censuses and captures of insects and birds were performed to obtain pollen load transported and deposited on the stigmas. Also, a qualitative and quantitative analysis of the flowers and inflorescences was carried out. Flowers were visited by Hymenoptera and by passerine birds. The Canarian species was the most visited by birds, especially by Phylloscopus canariensis, and its flowers were also accessed by juveniles of the lizard Gallotia stehlini. The most important birds in the other three species were Sylvia melanocephala and S. atricapilla. The most important insect-functional groups in the mixed pollination system were: honey-bees and wasps in S. sambucifolia; bumble-bees and wasps in S. grandiflora; wasps in S. trifoliata; and a small bee in S. calliantha. The species studied show a mixed pollination system between insects and passerine birds. In S. calliantha there is, in addition, a third agent (juveniles of Gallotia stehlini). The participation of birds in this mixed pollination system presents varying degrees of importance because, while in S. calliantha they are the main pollinators, in the other species they interact to complement the insects which are the main pollinators. A review of different florae showed that the large showy floral morphotypes of Scrophularia are concentrated in the western and central Mediterranean region, Macaronesia and USA (New Mexico).

  20. Insects, birds and lizards as pollinators of the largest-flowered Scrophularia of Europe and Macaronesia

    PubMed Central

    Ortega-Olivencia, Ana; Rodríguez-Riaño, Tomás; Pérez-Bote, José L.; López, Josefa; Mayo, Carlos; Valtueña, Francisco J.; Navarro-Pérez, Marisa

    2012-01-01

    Background and Aims It has traditionally been considered that the flowers of Scrophularia are mainly pollinated by wasps. We studied the pollination system of four species which stand out for their large and showy flowers: S. sambucifolia and S. grandiflora (endemics of the western Mediterranean region), S. trifoliata (an endemic of the Tyrrhenian islands) and S. calliantha (an endemic of the Canary Islands). Our principal aim was to test whether these species were pollinated by birds or showed a mixed pollination system between insects and birds. Methods Censuses and captures of insects and birds were performed to obtain pollen load transported and deposited on the stigmas. Also, a qualitative and quantitative analysis of the flowers and inflorescences was carried out. Key Results Flowers were visited by Hymenoptera and by passerine birds. The Canarian species was the most visited by birds, especially by Phylloscopus canariensis, and its flowers were also accessed by juveniles of the lizard Gallotia stehlini. The most important birds in the other three species were Sylvia melanocephala and S. atricapilla. The most important insect-functional groups in the mixed pollination system were: honey-bees and wasps in S. sambucifolia; bumble-bees and wasps in S. grandiflora; wasps in S. trifoliata; and a small bee in S. calliantha. Conclusions The species studied show a mixed pollination system between insects and passerine birds. In S. calliantha there is, in addition, a third agent (juveniles of Gallotia stehlini). The participation of birds in this mixed pollination system presents varying degrees of importance because, while in S. calliantha they are the main pollinators, in the other species they interact to complement the insects which are the main pollinators. A review of different florae showed that the large showy floral morphotypes of Scrophularia are concentrated in the western and central Mediterranean region, Macaronesia and USA (New Mexico). PMID:22021816

  1. Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change

    PubMed Central

    Giannini, Tereza C.; Tambosi, Leandro R.; Acosta, André L.; Jaffé, Rodolfo; Saraiva, Antonio M.; Imperatriz-Fonseca, Vera L.; Metzger, Jean Paul

    2015-01-01

    Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata), a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC). We then used this information, the bee’s flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use schemes. Overall, our proposed methodological framework could help design novel conservational and agricultural practices that can be crucial to conserve ecosystem services by buffering the joint effect of habitat configuration and climate change. PMID:26091014

  2. Grower networks support adoption of innovations in pollination management: The roles of social learning, technical learning, and personal experience.

    PubMed

    Garbach, Kelly; Morgan, Geoffrey P

    2017-12-15

    Management decisions underpinning availability of ecosystem services and the organisms that provide them in agroecosystems, such as pollinators and pollination services, have emerged as a foremost consideration for both conservation and crop production goals. There is growing evidence that innovative management practices can support diverse pollinators and increase crop pollination. However, there is also considerable debate regarding factors that support adoption of these innovative practices. This study investigated pollination management practices and related knowledge systems in a major crop producing region of southwest Michigan in the United States, where 367 growers were surveyed to evaluate adoption of three innovative practices that are at various stages of adoption. The goals of this quantitative, social survey were to investigate grower experience with concerns and benefits associated with each practice, as well as the influence of grower networks, which are comprised of contacts that reflect potential pathways for social and technical learning. The results demonstrated that 17% of growers adopted combinations of bees (e.g. honey bees, Apis mellifera, with other species), representing an innovation in use by early adopters; 49% of growers adopted flowering cover crops, an innovation in use by the early majority 55% of growers retained permanent habitat for pollinators, an innovation in use by the late majority. Not all growers adopted innovative practices. We found that growers' personal experience with potential benefits and concerns related to the management practices had significant positive and negative relationships, respectively, with adoption of all three innovations. The influence of these communication links likely has different levels of importance, depending on the stage of the adoption that a practice is experiencing in the agricultural community. Social learning was positively associated with adopting the use of combinations of bees, highlighting the potentially critical roles of peer-to-peer networks and social learning in supporting early stages of adoption of innovations. Engaging with grower networks and understanding grower experience with benefits and concerns associated with innovative practices is needed to inform outreach, extension, and policy efforts designed to stimulate management innovations in agroecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. An analysis of the energetic reward offered by field bean (Vicia faba) flowers: Nectar, pollen, and operative force.

    PubMed

    Bailes, Emily J; Pattrick, Jonathan G; Glover, Beverley J

    2018-03-01

    Global consumption of crops with a yield that is dependent on animal pollinators is growing, with greater areas planted each year. However, the floral traits that influence pollinator visitation are not usually the focus of breeding programmes, and therefore, it is likely that yield improvements may be made by optimizing floral traits to enhance pollinator visitation rates. We investigated the variation present in the floral reward of the bee-pollinated crop Vicia faba (field bean). We examined the genetic potential for breeding flowers with a greater reward into current commercial varieties and used bee behavioral experiments to gain insight into the optimal nectar concentration to maximize bee preference. There was a large range of variation in the amount of pollen and nectar reward of flowers in the genotypes investigated. Bee behavioral experiments using nectar sugar concentrations found in V. faba lines suggest that Bombus terrestris prefers 55% w/w sugar solution over 40% w/w, but has no preference between 55% w/w and 68% w/w sugar solution. We provide a first indication of the force required to open V. faba flowers. Our results provide a valuable starting point toward breeding for varieties with optimized floral reward. Field studies are now needed to verify whether the genetic potential for breeding more rewarding flowers can translate into higher yield and yield stability.

  4. Plant-pollinator interactions in tropical monsoon forests in Southeast Asia.

    PubMed

    Kato, Makoto; Kosaka, Yasuyuki; Kawakita, Atsushi; Okuyama, Yudai; Kobayashi, Chisato; Phimminith, Thavy; Thongphan, Daovorn

    2008-11-01

    Forests with different flora and vegetation types harbor different assemblages of flower visitors, and plant-pollinator interactions vary among forests. In monsoon-dominated East and Southeast Asia, there is a characteristic gradient in climate along latitude, creating a broad spectrum of forest types with potentially diverse pollinator communities. To detect a geographical pattern of plant-pollinator interactions, we investigated flowering phenology and pollinator assemblages in the least-studied forest type, i.e., tropical monsoon forest, in the Vientiane plain in Laos. Throughout the 5-year study, we observed 171 plant species blooming and detected flower visitors on 145 species. Flowering occurred throughout the year, although the number of flowering plant species peaked at the end of dry season. The dominant canopy trees, including Dipterocarpaceae, bloomed annually, in contrast to the supra-annual general flowering that occurs in Southeast Asian tropical rain forests. Among the 134 native plant species, 68 were pollinated by hymenopterans and others by lepidopterans, beetles, flies, or diverse insects. Among the observed bees, Xylocopa, megachilids, and honeybees mainly contributed to the pollination of canopy trees, whereas long-tongued Amegilla bees pollinated diverse perennials with long corolla tubes. This is the first community-level study of plant-pollinator interactions in an Asian tropical monsoon forest ecosystem.

  5. Partners in Pollinator Protection

    EPA Pesticide Factsheets

    Partners include USDA, states, international organizations, and stakeholders such as NGOs and bee keepers. Efforts include identifying and using best management practices to reduce honey bee exposure to dust from pesticide-treated seed.

  6. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers.

    PubMed

    Goulson, Dave; Nicholls, Elizabeth; Botías, Cristina; Rotheray, Ellen L

    2015-03-27

    Bees are subject to numerous pressures in the modern world. The abundance and diversity of flowers has declined; bees are chronically exposed to cocktails of agrochemicals, and they are simultaneously exposed to novel parasites accidentally spread by humans. Climate change is likely to exacerbate these problems in the future. Stressors do not act in isolation; for example, pesticide exposure can impair both detoxification mechanisms and immune responses, rendering bees more susceptible to parasites. It seems certain that chronic exposure to multiple interacting stressors is driving honey bee colony losses and declines of wild pollinators, but such interactions are not addressed by current regulatory procedures, and studying these interactions experimentally poses a major challenge. In the meantime, taking steps to reduce stress on bees would seem prudent; incorporating flower-rich habitat into farmland, reducing pesticide use through adopting more sustainable farming methods, and enforcing effective quarantine measures on bee movements are all practical measures that should be adopted. Effective monitoring of wild pollinator populations is urgently needed to inform management strategies into the future. Copyright © 2015, American Association for the Advancement of Science.

  7. Behavior of bumble bee pollinators of Aralia hispida Vent. (Araliaceae).

    PubMed

    Thomson, James D; Maddison, Wayne P; Plowright, R C

    1982-09-01

    The andromonoecious plant Aralia hispida has a complicated blooming schedule involving alternations between male and female phases.Nectar and pollen are released gradually through the day. Plants vary considerably in number of flowers per umbel and number of umbels per plant. The major pollinators, bumble bees, show several characteristic behaviors in response to the plant's presentation. 1. Foraging bees preferentially visit umbels that bear large numbers of open, male-phase flowers. They also prefer shoots with large numbers of umbels. 2. If bees have received high nectar rewards at one umbel, they are more likely to visit a neighboring umbel rather than leaving the area. On drained umbels, bees probe more empty flowers before rejecting the umbel if they have been rewarded just previously. 3. Individual bees restrict their foraging to limited areas. Within these areas, they concentrate their visits on certain shoots which they tend to visit in repeatable sequences, or "traplines". It is inappropriate to consider these bees as "searching". 4. We discuss some of the implications of these data for two areas of current theoretical interest: plant reproductive strategies and optimal foraging.

  8. A fluorescent method for visualization of Nosema infection in whole-mount honey bee tissues.

    PubMed

    Snow, Jonathan W

    2016-03-01

    Honey bees are critical pollinators in both agricultural and ecological settings. The Nosema species, ceranae and apis, are microsporidian parasites that are pathogenic to honey bees. While current methods for detecting Nosema infection have key merits, additional techniques with novel properties for studying the cell biology of Nosema infection are highly desirable. We demonstrate that whole-mount staining of honey bee midgut tissue with chitin-binding agent Fluorescent Brightener 28 and DNA dye Propidium Iodide allows for observation of Nosema infection in structurally intact tissue, providing a new tool for increasing our understanding of Nosema infection at the cellular and tissue level. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Variations in thermal history lead to dyssynchronous diapause development

    USDA-ARS?s Scientific Manuscript database

    The alfalfa leafcutting bee, Megachile rotundata, is the world’s most intensively managed solitary bee and the primary pollinator for alfalfa seed production. Managed bees are subjected to thermal regimes for overwintering and subsequent adult emergence in time for alfalfa bloom. In nature, first ge...

  10. Pollinator Risk Assessment Guidance

    EPA Pesticide Factsheets

    This Guidance is part of a long-term strategy to advance the science of assessing the risks posed by pesticides to honey bees, giving risk managers the means to further improve pollinator protection in our regulatory decisions.

  11. EPA Actions to Protect Pollinators

    EPA Pesticide Factsheets

    Pesticide risk management must be based on sound science, consistent with the laws under which pesticides are regulated in the United States. EPA has been working aggressively to protect bees and other pollinators from pesticide exposures.

  12. Nectar, Floral Morphology and Pollination Syndrome in Loasaceae subfam. Loasoideae (Cornales)

    PubMed Central

    ACKERMANN, MARKUS; WEIGEND, MAXIMILIAN

    2006-01-01

    • Background and Aims Loasaceae subfam. Loasoideae are mostly distributed in South America (sea level to over 4500 m) with a wide range of animals documented as pollinators. The aim was to investigate correlations between nectar parameters, flower morphology, pollination syndrome and phylogeny. • Methods Nectar was collected from 29 species from seven genera in the subfamily. Concentration and volumes were measured and the amount of sugar calculated. Correlations of nectar data were plotted on a ternary graph and nectar characteristics compared with flower visitors, floral morphology and phylogenetic data. • Key Results Sugar concentrations are generally higher than reported for most plant families in the literature. The species investigated can be roughly grouped as follows. Group I: plants with approx. 1·5(–3·5) µL nectar with (40–)60–80 % sugar and 0·19–2 mg sugar flower−1; with small, white, star-shaped corollas, pollinated by short-tongued bees. Groups II, III and IV: plants with mostly orange, balloon-, saucer-, bowl- or bell-shaped corollas. Group II: plants with approx. 9–14 µL nectar with 40–60 % sugar and 4–10 mg sugar flower−1; mostly visited by long-tongued bees and/or hummingbirds. Group III: plants with 40–100 µL nectar with 30–40 % sugar and 14–36 mg sugar flower–1, mostly visited by hummingbirds. Group IV: geoflorous plants with 80–90 µL with 10–15 % sugar and 8·5–12 mg sugar flower–1, presumably visited by small mammals. Groups II and III include species visited by bees and/or hummingbirds. • Conclusions Pollinator switches from short-tongued bees via long-tongued bees to hummingbirds appear to have taken place repeatedly in the genera Nasa, Loasa and Caiophora. Changes in nectar amount and concentration appear to evolve rapidly with little phylogenetic constraint. PMID:16820408

  13. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function.

    PubMed

    Burkle, Laura A; Marlin, John C; Knight, Tiffany M

    2013-03-29

    Using historic data sets, we quantified the degree to which global change over 120 years disrupted plant-pollinator interactions in a temperate forest understory community in Illinois, USA. We found degradation of interaction network structure and function and extirpation of 50% of bee species. Network changes can be attributed to shifts in forb and bee phenologies resulting in temporal mismatches, nonrandom species extinctions, and loss of spatial co-occurrences between extant species in modified landscapes. Quantity and quality of pollination services have declined through time. The historic network showed flexibility in response to disturbance; however, our data suggest that networks will be less resilient to future changes.

  14. Floral guilds of bees in sagebrush steppe: Comparing bee usage of wildflowers available for postfire restoration

    USDA-ARS?s Scientific Manuscript database

    Healthy plant communities of the American sagebrush-steppe consist of mostly wind-pollinated shrubs and grasses interspersed with a diverse mix of mostly spring-blooming, herbaceous perennial wildflowers. Native, non-social bees are the common floral visitors, but their floral associations and abund...

  15. The effect of photobleaching on bee (Hymenoptera: Apoidea) setae color and its implications for studying aging and behavior

    USDA-ARS?s Scientific Manuscript database

    Studies of foraging ecology and plant-pollinator interactions benefit from a number of bee (Hymenoptera: Apoidea) characteristics including morphometric measurements, natural history and age. Historically, bee age has been estimated using measurements of wing wear and integument color change. Wing w...

  16. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    Populations of pollinators are in decline worldwide. These declines are best documented in honey bees and are due to a combination of stressors. In particular, pesticides have been linked to decreased longevity and performance in honey bees; however, the molecular and physiological pathways mediatin...

  17. Effects of natural and synthetic alarm pheromone and individual pheromone components on foraging behavior of the giant Asian honey bee, Apis dorsata.

    PubMed

    Li, Jianjun; Wang, Zhengwei; Tan, Ken; Qu, Yufeng; Nieh, James C

    2014-10-01

    Social pollinators such as honey bees face attacks from predators not only at the nest, but also during foraging. Pollinating honey bees can therefore release alarm pheromones that deter conspecifics from visiting dangerous inflorescences. However, the effect of alarm pheromone and its chemical components upon bee avoidance of dangerous food sources remains unclear. We tested the responses of giant honey bee foragers, Apis dorsata, presented with alarm pheromone at a floral array. Foragers investigated the inflorescence with natural alarm pheromone, but 3.3-fold more foragers preferred to land on the 'safe' inflorescence without alarm pheromone. Using gas chromatography-mass spectrometry analysis, we identified eight chemical components in the alarm pheromone, of which three components (1-octanol, decanal and gamma-octanoic lactone) have not previously been reported in this species. We bioassayed six major compounds and found that a synthetic mixture of these compounds elicited behaviors statistically indistinguishable from responses to natural alarm pheromone. By testing each compound separately, we show that gamma-octanoic lactone, isopentyl acetate and (E)-2-decen-1-yl acetate are active compounds that elicit significant alarm responses. Gamma-octanoic lactone elicited the strongest response to a single compound and has not been previously reported in honey bee alarm pheromone. Isopentyl acetate is widely found in the alarm pheromones of sympatric Asian honey bee species, and thus alarmed A. dorsata foragers may produce information useful for conspecifics and heterospecifics, thereby broadening the effects of alarm information on plant pollination. © 2014. Published by The Company of Biologists Ltd.

  18. Functionality of Varroa-resistant honey bees (Hymenoptera: Apidae) when used for western U.S. honey production and almond pollination.

    PubMed

    Rinderer, Tihomas E; Danka, Robert G; Johnson, Stephanie; Bourgeois, A Lelania; Frake, Amanda M; Villa, José D; De Guzman, Lilia I; Harris, Jeffrey W

    2014-04-01

    Two types of honey bees, Apis mellifera L., bred for resistance to Varroa destructor Anderson & Trueman, were evaluated for performance when used for honey production in Montana, and for almond pollination the following winter. Colonies of Russian honey bees and outcrossed honey bees with Varroa-sensitive hygiene (VSH) were compared with control colonies of Italian honey bees. All colonies were managed without miticide treatments. In total, 185 and 175 colonies were established for trials in 2010-2011 and 2011-2012, respectively. Survival of colonies with original queens or with supersedure queens was similar among stocks for both years. Colony sizes of the Varroa-resistant stocks were as large as or larger than the control colonies during periods critical to honey production and almond pollination. Honey production varied among stocks. In the first year, all stocks produced similar amounts of honey. In the second year, Russian honey bees colonies produced less honey than the control colonies. V. destructor infestations also varied among stocks. In the first year, control colonies had more infesting mites than either of the Varroa-resistant stocks, especially later in the year. In the second year, the control and outcrossed Varroa-sensitive hygiene colonies had high and damaging levels of infestation while the Russian honey bees colonies maintained lower levels of infestation. Infestations of Acarapis woodi (Rennie) were generally infrequent and low. All the stocks had similarly high Nosema ceranae infections in the spring and following winter of both years. Overall, the two Varroa-resistant stocks functioned adequately in this model beekeeping system.

  19. The Influence of Climatic Seasonality on the Diversity of Different Tropical Pollinator Groups

    PubMed Central

    Abrahamczyk, Stefan; Kluge, Jürgen; Gareca, Yuvinka; Reichle, Steffen; Kessler, Michael

    2011-01-01

    Tropical South America is rich in different groups of pollinators, but the biotic and abiotic factors determining the geographical distribution of their species richness are poorly understood. We analyzed the species richness of three groups of pollinators (bees and wasps, butterflies, hummingbirds) in six tropical forests in the Bolivian lowlands along a gradient of climatic seasonality and precipitation ranging from 410 mm to 6250 mm. At each site, we sampled the three pollinator groups and their food plants twice for 16 days in both the dry and rainy seasons. The richness of the pollinator groups was related to climatic factors by linear regressions. Differences in species numbers between pollinator groups were analyzed by Wilcoxon tests for matched pairs and the proportion in species numbers between pollinator groups by correlation analyses. Species richness of hummingbirds was most closely correlated to the continuous availability of food, that of bees and wasps to the number of food plant species and flowers, and that of butterflies to air temperature. Only the species number of butterflies differed significantly between seasons. We were not able to find shifts in the proportion of species numbers of the different groups of pollinators along the study gradient. Thus, we conclude that the diversity of pollinator guilds is determined by group-specific factors and that the constant proportions in species numbers of the different pollinator groups constitute a general pattern. PMID:22073268

  20. Firm efficiency and returns-to-scale in the honey bee pollination services industry

    USDA-ARS?s Scientific Manuscript database

    Honeybees are well-known for producing honey, but they also provide critical ecosystem services through pollination (Goulson, 2003; Potts et al., 2010; Ványi et al., 2012). This pollination service is vital to the production of many cash crops, on which the U.S. agricultural sector depends (Aizen an...

  1. The Effects of the Insect Growth Regulators Methoxyfenozide and Pyriproxyfen and the Acaricide Bifenazate on Honey Bee (Hymenoptera: Apidae) Forager Survival.

    PubMed

    Fisher, Adrian; Colman, Chet; Hoffmann, Clint; Fritz, Brad; Rangel, Juliana

    2018-04-02

    The honey bee (Apis mellifera L. (Hymenoptera: Apidae)) contributes an essential role in the U.S. economy by pollinating major agricultural crops including almond, which depends entirely on honey bee pollination for successful nut set. Almond orchards are often treated with pesticides to control a variety of pests and pathogens, particularly during bloom. While the effects to honey bee health of some insecticides, particularly neonicotinoids, have received attention recently, the impact of other types of insecticides on honey bee health is less clear. In this study, we examined the effects to honey bee forager survival of three non-neonicotinoid pesticides widely used during the 2014 California almond bloom. We collected foragers from a local apiary and exposed them to three pesticides at the label dose, or at doses ranging from 0.5 to 3 times the label dose rate. The selected pesticides included the insect growth regulators methoxyfenozide and pyriproxyfen, and the acaricide bifenazate. We simulated field exposure of honey bees to these pesticides during aerial application in almond orchards by using a wind tunnel and atomizer set up with a wind speed of 2.9 m/s. Experimental groups consisting of 30-40 foragers each were exposed to either untreated controls or pesticide-laden treatments and were monitored every 24 hr over a 10-d period. Our results revealed a significant negative effect of all pesticides tested on forager survival. Therefore, we suggest increased caution in the application of these pesticides in almond orchards or any agricultural crop during bloom to avoid colony health problems.

  2. Caffeinated forage tricks honeybees into increasing foraging and recruitment behaviors.

    PubMed

    Couvillon, Margaret J; Al Toufailia, Hasan; Butterfield, Thomas M; Schrell, Felix; Ratnieks, Francis L W; Schürch, Roger

    2015-11-02

    In pollination, plants provide food reward to pollinators who in turn enhance plant reproduction by transferring pollen, making the relationship largely cooperative; however, because the interests of plants and pollinators do not always align, there exists the potential for conflict, where it may benefit both to cheat the other [1, 2]. Plants may even resort to chemistry: caffeine, a naturally occurring, bitter-tasting, pharmacologically active secondary compound whose main purpose is to detract herbivores, is also found in lower concentrations in the nectar of some plants, even though nectar, unlike leaves, is made to be consumed by pollinators. [corrected]. A recent laboratory study showed that caffeine may lead to efficient and effective foraging by aiding honeybee memory of a learned olfactory association [4], suggesting that caffeine may enhance bee reward perception. However, without field data, the wider ecological significance of caffeinated nectar remains difficult to interpret. Here we demonstrate in the field that caffeine generates significant individual- and colony-level effects in free-flying worker honeybees. Compared to a control, a sucrose solution with field-realistic doses of caffeine caused honeybees to significantly increase their foraging frequency, waggle dancing probability and frequency, and persistency and specificity to the forage location, resulting in a quadrupling of colony-level recruitment. An agent-based model also demonstrates how caffeine-enhanced foraging may reduce honey storage. Overall, caffeine causes bees to overestimate forage quality, tempting the colony into sub-optimal foraging strategies, which makes the relationship between pollinator and plant less mutualistic and more exploitative. VIDEO ABSTRACT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Amino acid and carbohydrate tradeoffs by honey bee nectar foragers and their implications for plant-pollinator interactions.

    PubMed

    Hendriksma, Harmen P; Oxman, Karmi L; Shafir, Sharoni

    2014-10-01

    Honey bees are important pollinators, requiring floral pollen and nectar for nutrition. Nectar is rich in sugars, but contains additional nutrients, including amino acids (AAs). We tested the preferences of free-flying foragers between 20 AAs at 0.1% w/w in sucrose solutions in an artificial meadow. We found consistent preferences amongst AAs, with essential AAs preferred over nonessential AAs. The preference of foragers correlated negatively with AA induced deviations in pH values, as compared to the control. Next, we quantified tradeoffs between attractive and deterrent AAs at the expense of carbohydrates in nectar. Bees were attracted by phenylalanine, willing to give up 84units sucrose for 1unit AA. They were deterred by glycine, and adding 100 or more units of sucrose could resolve to offset 1unit AA. In addition, we tested physiological effects of AA nutrition on forager homing performance. In a no-choice context, caged bees showed indifference to 0.1% proline, leucine, glycine or phenylalanine in sucrose solutions. Furthermore, flight tests gave no indication that AA nutrition affected flight capacity directly. In contrast, low carbohydrate nutrition reduced the performance of bees, with important methodological implications for homing studies that evaluate the effect of substances that may affect imbibition of sugar solution. In conclusion, low AA concentrations in nectar relative to pollen suggest a limited role in bee nutrition. Most of the 20 AAs evoked a neutral to a mild deterrent response in bees, thus it seems unlikely that bees respond to AAs in nectar as a cue to assess nutritional quality. Nonetheless, free choice behavior of foraging bees is influenced, for instance by phenylalanine and glycine. Thus, AAs in nectar may affect plant-pollinator interactions and thereby exhibit a selective pressure on the flora in the honey bee habitat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.).

    PubMed

    Hladun, Kristen R; Parker, David R; Tran, Khoa D; Trumble, John T

    2013-01-01

    Selenium (Se) has contaminated areas in the western USA where pollination is critical to the functioning of both agricultural and natural ecosystems, yet we know little about how Se can impact pollinators. In a two-year semi-field study, the weedy plant Raphanus sativus (radish) was exposed to three selenate treatments and two pollination treatments to evaluate the effects on pollinator-plant interactions. Honey bee (Apis mellifera L.) pollinators were observed to readily forage on R. sativus for both pollen and nectar despite high floral Se concentrations. Se treatment increased both seed abortion (14%) and decreased plant biomass (8-9%). Herbivory by birds and aphids was reduced on Se-treated plants, indicating a potential reproductive advantage for the plant. Our study sheds light on how pollutants such as Se can impact the pollination ecology of a plant that accumulates even moderate amounts of Se. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Planting of neonicotinoid-coated corn raises honey bee mortality and sets back colony development.

    PubMed

    Samson-Robert, Olivier; Labrie, Geneviève; Chagnon, Madeleine; Fournier, Valérie

    2017-01-01

    Worldwide occurrences of honey bee colony losses have raised concerns about bee health and the sustainability of pollination-dependent crops. While multiple causal factors have been identified, seed coating with insecticides of the neonicotinoid family has been the focus of much discussion and research. Nonetheless, few studies have investigated the impacts of these insecticides under field conditions or in commercial beekeeping operations. Given that corn-seed coating constitutes the largest single use of neonicotinoid, our study compared honey bee mortality from commercial apiaries located in two different agricultural settings, i.e. corn-dominated areas and corn-free environments, during the corn planting season. Data was collected in 2012 and 2013 from 26 bee yards. Dead honey bees from five hives in each apiary were counted and collected, and samples were analyzed using a multi-residue LC-MS/MS method. Long-term effects on colony development were simulated based on a honey bee population dynamic model. Mortality survey showed that colonies located in a corn-dominated area had daily mortality counts 3.51 times those of colonies from corn crop-free sites. Chemical analyses revealed that honey bees were exposed to various agricultural pesticides during the corn planting season, but were primarily subjected to neonicotinoid compounds (54% of analysed samples contained clothianidin, and 31% contained both clothianidin and thiamethoxam). Performance development simulations performed on hive populations' show that increased mortality during the corn planting season sets back colony development and bears contributions to collapse risk but, most of all, reduces the effectiveness and value of colonies for pollination services. Our results also have implications for the numerous large-scale and worldwide-cultivated crops that currently rely on pre-emptive use of neonicotinoid seed treatments.

  6. Planting of neonicotinoid-coated corn raises honey bee mortality and sets back colony development

    PubMed Central

    Samson-Robert, Olivier; Labrie, Geneviève; Chagnon, Madeleine

    2017-01-01

    Worldwide occurrences of honey bee colony losses have raised concerns about bee health and the sustainability of pollination-dependent crops. While multiple causal factors have been identified, seed coating with insecticides of the neonicotinoid family has been the focus of much discussion and research. Nonetheless, few studies have investigated the impacts of these insecticides under field conditions or in commercial beekeeping operations. Given that corn-seed coating constitutes the largest single use of neonicotinoid, our study compared honey bee mortality from commercial apiaries located in two different agricultural settings, i.e. corn-dominated areas and corn-free environments, during the corn planting season. Data was collected in 2012 and 2013 from 26 bee yards. Dead honey bees from five hives in each apiary were counted and collected, and samples were analyzed using a multi-residue LC-MS/MS method. Long-term effects on colony development were simulated based on a honey bee population dynamic model. Mortality survey showed that colonies located in a corn-dominated area had daily mortality counts 3.51 times those of colonies from corn crop-free sites. Chemical analyses revealed that honey bees were exposed to various agricultural pesticides during the corn planting season, but were primarily subjected to neonicotinoid compounds (54% of analysed samples contained clothianidin, and 31% contained both clothianidin and thiamethoxam). Performance development simulations performed on hive populations’ show that increased mortality during the corn planting season sets back colony development and bears contributions to collapse risk but, most of all, reduces the effectiveness and value of colonies for pollination services. Our results also have implications for the numerous large-scale and worldwide-cultivated crops that currently rely on pre-emptive use of neonicotinoid seed treatments. PMID:28828265

  7. Pollination services enhanced with urbanization despite increasing pollinator parasitism.

    PubMed

    Theodorou, Panagiotis; Radzevičiūtė, Rita; Settele, Josef; Schweiger, Oliver; Murray, Tomás E; Paxton, Robert J

    2016-06-29

    Animal-mediated pollination is required for the reproduction of the majority of angiosperms, and pollinators are therefore essential for ecosystem functioning and the economy. Two major threats to insect pollinators are anthropogenic land-use change and the spread of pathogens, whose effects may interact to impact pollination. Here, we investigated the relative effects on the ecosystem service of pollination of (i) land-use change brought on by agriculture and urbanization as well as (ii) the prevalence of pollinator parasites, using experimental insect pollinator-dependent plant species in natural pollinator communities. We found that pollinator habitat (i.e. availability of nesting resources for ground-nesting bees and local flower richness) was strongly related to flower visitation rates at the local scale and indirectly influenced plant pollination success. At the landscape scale, pollination was positively related to urbanization, both directly and indirectly via elevated visitation rates. Bumblebees were the most abundant pollinator group visiting experimental flowers. Prevalence of trypanosomatids, such as the common bumblebee parasite Crithidia bombi, was higher in urban compared with agricultural areas, a relationship which was mediated through higher Bombus abundance. Yet, we did not find any top-down, negative effects of bumblebee parasitism on pollination. We conclude that urban areas can be places of high transmission of both pollen and pathogens. © 2016 The Author(s).

  8. Pollination services enhanced with urbanization despite increasing pollinator parasitism

    PubMed Central

    Radzevičiūtė, Rita; Murray, Tomás E.

    2016-01-01

    Animal-mediated pollination is required for the reproduction of the majority of angiosperms, and pollinators are therefore essential for ecosystem functioning and the economy. Two major threats to insect pollinators are anthropogenic land-use change and the spread of pathogens, whose effects may interact to impact pollination. Here, we investigated the relative effects on the ecosystem service of pollination of (i) land-use change brought on by agriculture and urbanization as well as (ii) the prevalence of pollinator parasites, using experimental insect pollinator-dependent plant species in natural pollinator communities. We found that pollinator habitat (i.e. availability of nesting resources for ground-nesting bees and local flower richness) was strongly related to flower visitation rates at the local scale and indirectly influenced plant pollination success. At the landscape scale, pollination was positively related to urbanization, both directly and indirectly via elevated visitation rates. Bumblebees were the most abundant pollinator group visiting experimental flowers. Prevalence of trypanosomatids, such as the common bumblebee parasite Crithidia bombi, was higher in urban compared with agricultural areas, a relationship which was mediated through higher Bombus abundance. Yet, we did not find any top-down, negative effects of bumblebee parasitism on pollination. We conclude that urban areas can be places of high transmission of both pollen and pathogens. PMID:27335419

  9. USBombus, a database of contemporary survey data for North American Bumble Bees (Hymenoptera, Apidae, Bombus) distributed in the United States.

    PubMed

    Koch, Jonathan B; Lozier, Jeffrey; Strange, James P; Ikerd, Harold; Griswold, Terry; Cordes, Nils; Solter, Leellen; Stewart, Isaac; Cameron, Sydney A

    2015-01-01

    Bumble bees (Hymenoptera: Apidae, Bombus) are pollinators of wild and economically important flowering plants. However, at least four bumble bee species have declined significantly in population abundance and geographic range relative to historic estimates, and one species is possibly extinct. While a wealth of historic data is now available for many of the North American species found to be in decline in online databases, systematic survey data of stable species is still not publically available. The availability of contemporary survey data is critically important for the future monitoring of wild bumble bee populations. Without such data, the ability to ascertain the conservation status of bumble bees in the United States will remain challenging. This paper describes USBombus, a large database that represents the outcomes of one of the largest standardized surveys of bumble bee pollinators (Hymenoptera, Apidae, Bombus) globally. The motivation to collect live bumble bees across the United States was to examine the decline and conservation status of Bombus affinis, B. occidentalis, B. pensylvanicus, and B. terricola. Prior to our national survey of bumble bees in the United States from 2007 to 2010, there have only been regional accounts of bumble bee abundance and richness. In addition to surveying declining bumble bees, we also collected and documented a diversity of co-occuring bumble bees. However we have not yet completely reported their distribution and diversity onto a public online platform. Now, for the first time, we report the geographic distribution of bumble bees reported to be in decline (Cameron et al. 2011), as well as bumble bees that appeared to be stable on a large geographic scale in the United States (not in decline). In this database we report a total of 17,930 adult occurrence records across 397 locations and 39 species of Bombus detected in our national survey. We summarize their abundance and distribution across the United States and association to different ecoregions. The geospatial coverage of the dataset extends across 41 of the 50 US states, and from 0 to 3500 m a.s.l. Authors and respective field crews spent a total of 512 hours surveying bumble bees from 2007 to 2010. The dataset was developed using SQL server 2008 r2. For each specimen, the following information is generally provided: species, name, sex, caste, temporal and geospatial details, Cartesian coordinates, data collector(s), and when available, host plants. This database has already proven useful for a variety of studies on bumble bee ecology and conservation. However it is not publicly available. Considering the value of pollinators in agriculture and wild ecosystems, this large database of bumble bees will likely prove useful for investigations of the effects of anthropogenic activities on pollinator community composition and conservation status.

  10. The potential for floral mimicry in rewardless orchids: an experimental study.

    PubMed Central

    Gigord, Luc D B; Macnair, M R; Stritesky, M; Smithson, Ann

    2002-01-01

    More than one-third of orchid species do not provide their pollinators with either pollen or nectar rewards. Floral mimicry could explain the maintenance of these rewardless orchid species, but most rewardless orchids do not appear to have a rewarding plant that they mimic specifically. We tested the hypothesis that floral mimicry can occur through similarity based on corolla colour alone, using naive bumble-bees foraging on arrays of plants with one rewarding model species, and one rewardless putative mimic species (Dactylorhiza sambucina) which had two colour morphs. We found that when bees were inexperienced, they visited both rewardless morphs randomly. However, after bees had gained experience with the rewarding model, and it was removed from the experiment, bees resampled preferentially the rewardless morph most similar to it in corolla colour. This is the first clear evidence, to our knowledge, that pollinators could select for floral mimicry. We suggest that floral mimicry can be a selective force acting on rewardless orchids, but only under some ecological conditions. In particular, we argue that selection on early-flowering rewardless orchids that receive visits from a large pool of naive pollinators will be weakly influenced by mimicry. PMID:12079663

  11. Why background colour matters to bees and flowers.

    PubMed

    Bukovac, Zoë; Shrestha, Mani; Garcia, Jair E; Burd, Martin; Dorin, Alan; Dyer, Adrian G

    2017-05-01

    Flowers are often viewed by bee pollinators against a variety of different backgrounds. On the Australian continent, backgrounds are very diverse and include surface examples of all major geological stages of the Earth's history, which have been present during the entire evolutionary period of Angiosperms. Flower signals in Australia are also representative of typical worldwide evolutionary spectral adaptations that enable successful pollination. We measured the spectral properties of 581 natural surfaces, including rocks, sand, green leaves, and dry plant materials, sampled from tropical Cairns through to the southern tip of mainland Australia. We modelled in a hexagon colour space, how interactions between background spectra and flower-like colour stimuli affect reliable discrimination and detection in bee pollinators. We calculated the extent to which a given locus would be conflated with the loci of a different flower-colour stimulus using empirically determined colour discrimination regions for bee vision. Our results reveal that whilst colour signals are robust in homogeneous background viewing conditions, there could be significant pressure on plant flowers to evolve saliently-different colours to overcome background spectral noise. We thus show that perceptual noise has a large influence on how colour information can be used in natural conditions.

  12. The potential for floral mimicry in rewardless orchids: an experimental study.

    PubMed

    Gigord, Luc D B; Macnair, M R; Stritesky, M; Smithson, Ann

    2002-07-07

    More than one-third of orchid species do not provide their pollinators with either pollen or nectar rewards. Floral mimicry could explain the maintenance of these rewardless orchid species, but most rewardless orchids do not appear to have a rewarding plant that they mimic specifically. We tested the hypothesis that floral mimicry can occur through similarity based on corolla colour alone, using naive bumble-bees foraging on arrays of plants with one rewarding model species, and one rewardless putative mimic species (Dactylorhiza sambucina) which had two colour morphs. We found that when bees were inexperienced, they visited both rewardless morphs randomly. However, after bees had gained experience with the rewarding model, and it was removed from the experiment, bees resampled preferentially the rewardless morph most similar to it in corolla colour. This is the first clear evidence, to our knowledge, that pollinators could select for floral mimicry. We suggest that floral mimicry can be a selective force acting on rewardless orchids, but only under some ecological conditions. In particular, we argue that selection on early-flowering rewardless orchids that receive visits from a large pool of naive pollinators will be weakly influenced by mimicry.

  13. Extreme variation in floral characters and its consequences for pollinator attraction among populations of an Andean cactus

    PubMed Central

    Schlumpberger, Boris O.; Cocucci, Andrea A.; Moré, Marcela; Sérsic, Alicia N.; Raguso, Robert A.

    2009-01-01

    Background and aims A South American cactus species, Echinopsis ancistrophora (Cactaceae), with dramatic among-population variation in floral traits is presented. Methods Eleven populations of E. ancistrophora were studied in their habitats in northern Argentina, and comparisons were made of relevant floral traits such as depth, stigma position, nectar volume and sugar concentration, and anthesis time. Diurnal and nocturnal pollinator assemblages were evaluated for populations with different floral trait combinations. Key Results Remarkable geographical variations in floral traits were recorded among the 11 populations throughout the distribution range of E. ancistrophora, with flower lengths ranging from 4·5 to 24·1 cm. Other floral traits associated with pollinator attraction also varied in a population-specific manner, in concert with floral depth. Populations with the shortest flowers showed morning anthesis and those with the longest flowers opened at dusk, whereas those with flowers of intermediate length opened at unusual times (2300–0600 h). Nectar production varied non-linearly with floral length; it was absent to low (population means up to 15 µL) in short- to intermediate-length flowers, but was high (population means up to 170 µL) in the longest tubed flowers. Evidence from light-trapping of moths, pollen carriage on their bodies and moth scale deposition on stigmas suggests that sphingid pollination is prevalent only in the four populations with the longest flowers, in which floral morphological traits and nectar volumes match the classic expectations for the hawkmoth pollination syndrome. All other populations, with flowers 4·5–15 cm long, were pollinated exclusively by solitary bees. Conclusions The results suggest incipient differentiation at the population level and local adaptation to either bee or hawkmoth (potentially plus bee) pollination. PMID:19342397

  14. Nonrandom Composition of Flower Colors in a Plant Community: Mutually Different Co-Flowering Natives and Disturbance by Aliens

    PubMed Central

    Makino, Takashi T.; Yokoyama, Jun

    2015-01-01

    When pollinators use flower color to locate food sources, a distinct color can serve as a reproductive barrier against co-flowering species. This anti-interference function of flower color may result in a community assembly of plant species displaying mutually different flower colors. However, such color dispersion is not ubiquitous, suggesting a variable selection across communities and existence of some opposing factors. We conducted a 30-week study in a plant community and measured the floral reflectances of 244 species. The reflectances were evaluated in insect color spaces (bees, swallowtails, and flies), and the dispersion was compared with random expectations. We found that co-existing colors were overdispersed for each analyzed pollinator type, and this overdispersion was statistically significant for bees. Furthermore, we showed that exclusion of 32 aliens from the analysis significantly increased the color dispersion of native flowers in every color space. This result indicated that aliens disturbed a native plant–pollinator network via similarly colored flowers. Our results demonstrate the masking effects of aliens in the detection of color dispersion of native flowers and that variations in pollinator vision yield different outcomes. Our results also support the hypothesis that co-flowering species are one of the drivers of color diversification and affect the community assembly. PMID:26650121

  15. What You Can Do to Protect Honey Bees and Other Pollinators

    EPA Pesticide Factsheets

    Growers, consumers, and advocates can report bee kills, learn about best management practices, and reduce dust from treated seed. Governments can participate in workgroups. Pesticide manufacturers can learn about pesticide review.

  16. Interactions between fungi and bacteria influence microbial community structure in the Megachile rotundata larval gut

    USDA-ARS?s Scientific Manuscript database

    Recent declines in bee populations coupled with advances in DNA-sequencing technology have sparked a renaissance in studies of bee-associated microbes. Megachile rotundata is the second, only to honey bees, as a crop pollinator, but is stricken by chalkbrood, a disease caused by the fungus Ascosphae...

  17. Evolution: pollen or pollinators - which came first?

    PubMed

    Cappellari, Simone C; Schaefer, Hanno; Davis, Charles C

    2013-04-22

    A new study provides the first broad timeline of bee diversification. Several ancient bee clades are identified as ghost lineages that have left little fossil evidence of their existence. This timeline suggests that the rise of bees coincided with the largest flowering plant clade, the eudicots. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Selection of VSH-derived Pol-line honey bees and evaluation of their Varroa-resistance characteristics

    USDA-ARS?s Scientific Manuscript database

    Honey bees, Apis mellifera, that have high expression of the trait “Varroa sensitive hygiene” (VSH) have good resistance to Varroa destructor. We selected “Pol-line” bees by outcrossing VSH queens in three U.S. commercial beekeeping companies annually during 2008-2014 and selecting colonies with the...

  19. Environmental history impacts on gene expression during diapause development in Megachile rotundata

    USDA-ARS?s Scientific Manuscript database

    The alfalfa leafcutting bee is the primary pollinator used in the production of alfalfa seed in the United States and Canada. The alfalfa leafcutting bee spends approximately 9 months of the year in a dormancy state known as diapause, which makes this the primary stage managed by bee keepers. In ord...

  20. Variation in pollen-donor composition among pollinators in an entomophilous tree species, Castanea crenata, revealed by single-pollen genotyping.

    PubMed

    Hasegawa, Yoichi; Suyama, Yoshihisa; Seiwa, Kenji

    2015-01-01

    In plants, reproductive success is largely determined by the composition of pollen (i.e., self-pollen and outcross-pollen from near and distant pollen-donors) transported as a result of pollinator foraging behavior (e.g., pollen carryover). However, little evidence is available on how and to what extent the pollen carryover affects the pollen-donor composition and on which insect taxa are effective outcross-pollen transporters under field conditions. In this study, we explored roles of foraging behavior of insect pollinators on pollen-donor composition and subsequent reproductive success in a woody plant. We performed paternity analyses based on microsatellite genotyping of individual pollen grains found on diurnal pollinators (i.e., bumblebee, small bee, fly, small beetle, and honeybee) visiting Castanea crenata trees. The outcross-pollen rate was highest in bumblebees (66%), followed by small bees (35%), flies (31%), and small beetles (18%). The effective number of pollen donors, representing pollen carryover, was greater in bumblebees (9.71) than in flies (3.40), small bees (3.32), and small beetles (3.06). The high percentages of pollen from outside the plot on bumblebees (65.4%) and flies (71.2%) compared to small bees (35.3%) and small beetles (13.5%) demonstrated their longer pollen dispersal distances. All of the diurnal insects carried outcross-pollen grains for long distances via pollen carryover. This fact suggests that a wide range of insect taxa are potential outcross-pollen transporters for the self-incompatible C. crenata.

Top