A quantitative model of honey bee colony population dynamics.
Khoury, David S; Myerscough, Mary R; Barron, Andrew B
2011-04-18
Since 2006 the rate of honey bee colony failure has increased significantly. As an aid to testing hypotheses for the causes of colony failure we have developed a compartment model of honey bee colony population dynamics to explore the impact of different death rates of forager bees on colony growth and development. The model predicts a critical threshold forager death rate beneath which colonies regulate a stable population size. If death rates are sustained higher than this threshold rapid population decline is predicted and colony failure is inevitable. The model also predicts that high forager death rates draw hive bees into the foraging population at much younger ages than normal, which acts to accelerate colony failure. The model suggests that colony failure can be understood in terms of observed principles of honey bee population dynamics, and provides a theoretical framework for experimental investigation of the problem.
High population variability and source-sink dynamics in a solitary bee species.
Franzén, Markus; Nilsson, Sven G
2013-06-01
Although solitary bees are considered to play key roles in ecosystem functions, surprisingly few studies have explored their population dynamics. We investigated the population dynamics of a rare, declining, solitary bee (Andrena humilis) in a landscape of 80 km2 in southern Sweden from 2003 to 2011. Only one population was persistent throughout all years studied; most likely this population supplied the surrounding landscape with 11 smaller, temporary local populations. Despite stable pollen availability, the size of the persistent population fluctuated dramatically in a two-year cycle over the nine years, with 490-1230 nests in odd-numbered years and 21-48 nests in even-numbered years. These fluctuations were not significantly related to climatic variables or pollen availability. Nineteen colonization and 14 extinction events were recorded. Occupancy decreased with distance from the persistent population and increased with increasing resource (pollen) availability. There were significant positive correlations between the size of the persistent population and patch occupancy and colonization. Colonizations were generally more common in patches closer to the persistent population, whereas extinctions were independent of distance from the persistent population. Our results highlight the complex population dynamics that exist for this solitary bee species, which could be due to source-sink dynamics, a prolonged diapause, or can represent a bet-hedging strategy to avoid natural enemies and survive in small habitat patches. If large fluctuations in solitary bee populations prove to be widespread, it will have important implications for interpreting ecological relationships, bee conservation, and pollination.
Modeling Honey Bee Populations.
Torres, David J; Ricoy, Ulises M; Roybal, Shanae
2015-01-01
Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population.
Modeling Honey Bee Populations
Torres, David J.; Ricoy, Ulises M.; Roybal, Shanae
2015-01-01
Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population. PMID:26148010
USDA-ARS?s Scientific Manuscript database
Treatment schedules to maintain low levels of Varroa mites in honey bee colonies were tested in hives started from either package bees or splits of larger colonies. The schedules were developed based on predictions of Varroa population growth generated from a mathematical model of honey bee colony ...
Al-Ghamdi, Ahmad A; Adgaba, Nuru; Tadesse, Yilma; Getachew, Awraris; Al-Maktary, Anwer A
2017-07-01
The aims of this study were to assess the seasonal population dynamics and evaluate the performance of Apis mellifera jemenitica (local bee) and introduced hybrid honeybee colonies in the lowlands and highlands of southwestern Saudi Arabia. Data regarding the performance and population dynamics parameters such as brood and adult bee population, amounts of stored pollen and nectar were gathered from the two races (25 colonies of each) for one year (April 2013 through March 2014), and statistically tested. The results indicated that at low lands, local bee colonies maintained relatively high brood and adult bee populations ( P < 0.05) than introduced honeybee colonies and produced more ( P < 0.05) honey. The local bee colonies were able to hoard three times more ( P < 0.05) pollen and built more ( P < 0.05) queen cells than introduced bees in both the low and highland areas. The annual survival rate of local bee colonies was almost double ( P < 0.05) than that of introduced honeybee colonies. Moreover, local bees had greater ( P < 0.05) adult bee and brood populations than imported, throughout the year. The relatively good performance of local colonies could be due to their long year's adaptation to cope with resource scarcity and unpredictable environmental conditions of the regions. The possible reasons for the dwindling of the imported hybrid colonies could be due to continuing to exhibit adaptive characteristics of their original that might not fit well with the new environment.
Modelling food and population dynamics in honey bee colonies.
Khoury, David S; Barron, Andrew B; Myerscough, Mary R
2013-01-01
Honey bees (Apis mellifera) are increasingly in demand as pollinators for various key agricultural food crops, but globally honey bee populations are in decline, and honey bee colony failure rates have increased. This scenario highlights a need to understand the conditions in which colonies flourish and in which colonies fail. To aid this investigation we present a compartment model of bee population dynamics to explore how food availability and bee death rates interact to determine colony growth and development. Our model uses simple differential equations to represent the transitions of eggs laid by the queen to brood, then hive bees and finally forager bees, and the process of social inhibition that regulates the rate at which hive bees begin to forage. We assume that food availability can influence both the number of brood successfully reared to adulthood and the rate at which bees transition from hive duties to foraging. The model predicts complex interactions between food availability and forager death rates in shaping colony fate. Low death rates and high food availability results in stable bee populations at equilibrium (with population size strongly determined by forager death rate) but consistently increasing food reserves. At higher death rates food stores in a colony settle at a finite equilibrium reflecting the balance of food collection and food use. When forager death rates exceed a critical threshold the colony fails but residual food remains. Our model presents a simple mathematical framework for exploring the interactions of food and forager mortality on colony fate, and provides the mathematical basis for more involved simulation models of hive performance.
Sensitivity analyses for simulating pesticide impacts on honey bee colonies
We employ Monte Carlo simulation and sensitivity analysis techniques to describe the population dynamics of pesticide exposure to a honey bee colony using the VarroaPop + Pesticide model. Simulations are performed of hive population trajectories with and without pesti...
Sensitivity analyses for simulating pesticide impacts on honey bee colonies
USDA-ARS?s Scientific Manuscript database
We employ Monte Carlo simulation and sensitivity analysis techniques to describe the population dynamics of pesticide exposure to a honey bee colony using the VarroaPop+Pesticide model. Simulations are performed of hive population trajectories with and without pesticide exposure to determine the eff...
'Bee hotels' as tools for native pollinator conservation: a premature verdict?
MacIvor, J Scott; Packer, Laurence
2015-01-01
Society is increasingly concerned with declining wild bee populations. Although most bees nest in the ground, considerable effort has centered on installing 'bee hotels'--also known as nest boxes or trap nests--which artificially aggregate nest sites of above ground nesting bees. Campaigns to 'save the bees' often promote these devices despite the absence of data indicating they have a positive effect. From a survey of almost 600 bee hotels set up over a period of three years in Toronto, Canada, introduced bees nested at 32.9% of sites and represented 24.6% of more than 27,000 total bees and wasps recorded (47.1% of all bees recorded). Native bees were parasitized more than introduced bees and females of introduced bee species provisioned nests with significantly more female larva each year. Native wasps were significantly more abundant than both native and introduced bees and occupied almost 3/4 of all bee hotels each year; further, introduced wasps were the only group to significantly increase in relative abundance year over year. More research is needed to elucidate the potential pitfalls and benefits of using bee hotels in the conservation and population dynamics of wild native bees.
‘Bee Hotels’ as Tools for Native Pollinator Conservation: A Premature Verdict?
MacIvor, J. Scott; Packer, Laurence
2015-01-01
Society is increasingly concerned with declining wild bee populations. Although most bees nest in the ground, considerable effort has centered on installing ‘bee hotels’—also known as nest boxes or trap nests—which artificially aggregate nest sites of above ground nesting bees. Campaigns to ‘save the bees’ often promote these devices despite the absence of data indicating they have a positive effect. From a survey of almost 600 bee hotels set up over a period of three years in Toronto, Canada, introduced bees nested at 32.9% of sites and represented 24.6% of more than 27,000 total bees and wasps recorded (47.1% of all bees recorded). Native bees were parasitized more than introduced bees and females of introduced bee species provisioned nests with significantly more female larva each year. Native wasps were significantly more abundant than both native and introduced bees and occupied almost 3/4 of all bee hotels each year; further, introduced wasps were the only group to significantly increase in relative abundance year over year. More research is needed to elucidate the potential pitfalls and benefits of using bee hotels in the conservation and population dynamics of wild native bees. PMID:25785609
Honey bee hemocyte profiling by flow cytometry.
Marringa, William J; Krueger, Michael J; Burritt, Nancy L; Burritt, James B
2014-01-01
Multiple stress factors in honey bees are causing loss of bee colonies worldwide. Several infectious agents of bees are believed to contribute to this problem. The mechanisms of honey bee immunity are not completely understood, in part due to limited information about the types and abundances of hemocytes that help bees resist disease. Our study utilized flow cytometry and microscopy to examine populations of hemolymph particulates in honey bees. We found bee hemolymph includes permeabilized cells, plasmatocytes, and acellular objects that resemble microparticles, listed in order of increasing abundance. The permeabilized cells and plasmatocytes showed unexpected differences with respect to properties of the plasma membrane and labeling with annexin V. Both permeabilized cells and plasmatocytes failed to show measurable mitochondrial membrane potential by flow cytometry using the JC-1 probe. Our results suggest hemolymph particulate populations are dynamic, revealing significant differences when comparing individual hive members, and when comparing colonies exposed to diverse conditions. Shifts in hemocyte populations in bees likely represent changing conditions or metabolic differences of colony members. A better understanding of hemocyte profiles may provide insight into physiological responses of honey bees to stress factors, some of which may be related to colony failure.
Honey Bee Hemocyte Profiling by Flow Cytometry
Marringa, William J.; Krueger, Michael J.; Burritt, Nancy L.; Burritt, James B.
2014-01-01
Multiple stress factors in honey bees are causing loss of bee colonies worldwide. Several infectious agents of bees are believed to contribute to this problem. The mechanisms of honey bee immunity are not completely understood, in part due to limited information about the types and abundances of hemocytes that help bees resist disease. Our study utilized flow cytometry and microscopy to examine populations of hemolymph particulates in honey bees. We found bee hemolymph includes permeabilized cells, plasmatocytes, and acellular objects that resemble microparticles, listed in order of increasing abundance. The permeabilized cells and plasmatocytes showed unexpected differences with respect to properties of the plasma membrane and labeling with annexin V. Both permeabilized cells and plasmatocytes failed to show measurable mitochondrial membrane potential by flow cytometry using the JC-1 probe. Our results suggest hemolymph particulate populations are dynamic, revealing significant differences when comparing individual hive members, and when comparing colonies exposed to diverse conditions. Shifts in hemocyte populations in bees likely represent changing conditions or metabolic differences of colony members. A better understanding of hemocyte profiles may provide insight into physiological responses of honey bees to stress factors, some of which may be related to colony failure. PMID:25285798
Annual dynamics of wild bee densities: attractiveness and productivity effects of oilseed rape.
Riedinger, Verena; Mitesser, Oliver; Hovestadt, Thomas; Steffan-Dewenter, Ingolf; Holzschuh, Andrea
2015-05-01
Mass-flowering crops may affect long-term population dynamics, but effects on pollinators have never been studied across several years. We monitored wild bees in oilseed rape fields in 16 landscapes in Germany in two consecutive years. Effects on bee densities of landscape oilseed rape cover in the years of monitoring and in the previous years were evaluated with landscape data from three consecutive years. We fit empirical data to a mechanistic model to provide estimates for oilseed rape attractiveness and its effect on bee productivity in comparison to the rest of the landscape, and we evaluated consequences for pollinator densities in consecutive years. Our results show that high oilseed rape cover in the previous year enhances current densities of wild bees (except for bumble bees). Moreover, we show a strong attractiveness of and dilution on (i.e., decreasing bee densities with increasing landscape oilseed rape cover) oilseed rape for bees during flowering in the current year, modifying the effect of the previous year's oilseed rape cover in the case of wild bees (excluding Bombus). As long as other factors such as nesting sites or natural enemies do not limit bee reproduction, our findings suggest long-term positive effects of mass-flowering crops on bee populations, at least for non-Bombus generalists, which possibly help to maintain crop pollination services even when crop area increases. Similar effects are conceivable for other organisms providing ecosystem services in annual crops and should be considered in future studies.
Crone, Elizabeth E; Williams, Neal M
2016-04-01
Bumble bee (Bombus) species are ecologically and economically important pollinators, and many species are in decline. In this article, we develop a mechanistic model to analyse growth trajectories of Bombus vosnesenskii colonies in relation to floral resources and land use. Queen production increased with floral resources and was higher in semi-natural areas than on conventional farms. However, the most important parameter for queen production was the colony growth rate per flower, as opposed to the average number of available flowers. This result indicates the importance of understanding mechanisms of colony growth, in order to predict queen production and enhance bumble bee population viability. Our work highlights the importance of interpreting bumble bee conservation efforts in the context of overall population dynamics and provides a framework for doing so. © 2016 John Wiley & Sons Ltd/CNRS.
Su, Weixing; Chen, Hanning; Liu, Fang; Lin, Na; Jing, Shikai; Liang, Xiaodan; Liu, Wei
2017-03-01
There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC) for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell's pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.
Abbo, Pendo M; Kawasaki, Joshua K; Hamilton, Michele; Cook, Steven C; DeGrandi-Hoffman, Gloria; Li, Wen Feng; Liu, Jie; Chen, Yan Ping
2017-06-01
There has been growing concern over declines in populations of honey bees and other pollinators which are a vital part to our food security. It is imperative to identify factors responsible for accelerated declines in bee populations and develop solutions for reversing bee losses. While exact causes of colony losses remain elusive, risk factors thought to play key roles are ectoparasitic mites Varroa destructor and neonicotinoid pesticides. The present study aims to investigate effects of a neonicotinoid pesticide Imidacloprid and Varroa mites individually on survivorship, growth, physiology, virus dynamics and immunity of honey bee workers. Our study provides clear evidence that the exposure to sublethal doses of Imidacloprid could exert a significantly negative effect on health and survival of honey bees. We observed a significant reduction in the titer of vitellogenin (Vg), an egg yolk precursor that regulates the honey bees development and behavior and often are linked to energy homeostasis, in bees exposed to Imidacloprid. This result indicates that sublethal exposure to neonicotinoid could lead to increased energy usage in honey bees as detoxification is a energy-consuming metabolic process and suggests that Vg could be a useful biomarker for measuring levels of energy stress and sublethal effects of pesticides on honey bees. Measurement of the quantitative effects of different levels of Varroa mite infestation on the replication dynamic of Deformed wing virus (DWV), an RNA virus associated with Varroa infestation, and expression level of immune genes yields unique insights into how honey bees respond to stressors under laboratory conditions. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources.
Thomson, Diane M
2016-10-01
Time series of abundances are critical for understanding how abiotic factors and species interactions affect population dynamics, but are rarely linked with experiments and also scarce for bee pollinators. This gap is important given concerns about declines in some bee species. I monitored honey bee (Apis mellifera) and bumble bee (Bombus spp.) foragers in coastal California from 1999, when feral A. mellifera populations were low due to Varroa destructor, until 2014. Apis mellifera increased substantially, except between 2006 and 2011, coinciding with declines in managed populations. Increases in A. mellifera strongly correlated with declines in Bombus and reduced diet overlap between them, suggesting resource competition consistent with past experimental results. Lower Bombus numbers also correlated with diminished floral resources. Declines in floral abundances were associated with drought and reduced spring rainfall. These results illustrate how competition with an introduced species may interact with climate to drive local decline of native pollinators. © 2016 John Wiley & Sons Ltd/CNRS.
Impacts of neonicotinoid use on long-term population changes in wild bees in England.
Woodcock, Ben A; Isaac, Nicholas J B; Bullock, James M; Roy, David B; Garthwaite, David G; Crowe, Andrew; Pywell, Richard F
2016-08-16
Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines.
Impacts of neonicotinoid use on long-term population changes in wild bees in England
NASA Astrophysics Data System (ADS)
Woodcock, Ben A.; Isaac, Nicholas J. B.; Bullock, James M.; Roy, David B.; Garthwaite, David G.; Crowe, Andrew; Pywell, Richard F.
2016-08-01
Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines.
Impacts of neonicotinoid use on long-term population changes in wild bees in England
Woodcock, Ben A.; Isaac, Nicholas J. B.; Bullock, James M.; Roy, David B.; Garthwaite, David G.; Crowe, Andrew; Pywell, Richard F.
2016-01-01
Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines. PMID:27529661
Genetic structure of the gentle Africanized honey bee population (gAHB) in Puerto Rico.
Galindo-Cardona, Alberto; Acevedo-Gonzalez, Jenny P; Rivera-Marchand, Bert; Giray, Tugrul
2013-08-06
The Africanized honey bee is one of the most spectacular invasions in the Americas. African bees escaped from apiaries in Brazil in 1956, spread over Americas and by 1994 they were reported in Puerto Rico. In contrast to other places, the oceanic island conditions in Puerto Rico may mean a single introduction and different dynamics of the resident European and new-coming Africanized bees.To examine the genetic variation of honey bee feral populations and colonies from different locations in Puerto Rico, we used eight known polymorphic microsatellite loci. In Puerto Rico, gAHB population does not show any genetic structure (Fst = 0.0783), and is best described as one honey bee population, product of hybridization of AHB and EHB. The genetic variability in this Africanized population was similar to that reported in studies from Texas. We observed that European private allele frequencies are high in all but one locus. This contrasts with mainland Africanized populations, where European allele frequencies are diminished. Two loci with European private alleles, one on Linkage Group 7, known to carry two known defensiveness Quantitative Trait Loci (QTLs), and the other on Linkage Group 1, known to carry three functionally studied genes and 11 candidate genes associated with Varroa resistance mechanisms were respectively, significantly greater or lower in European allele frequency than the other loci with European private alleles. Genetic structure of Puerto Rico gAHB differs from mainland AHB populations, probably representing evolutionary processes on the island.
Genetic structure of the gentle Africanized honey bee population (gAHB) in Puerto Rico
2013-01-01
Background The Africanized honey bee is one of the most spectacular invasions in the Americas. African bees escaped from apiaries in Brazil in 1956, spread over Americas and by 1994 they were reported in Puerto Rico. In contrast to other places, the oceanic island conditions in Puerto Rico may mean a single introduction and different dynamics of the resident European and new-coming Africanized bees. To examine the genetic variation of honey bee feral populations and colonies from different locations in Puerto Rico, we used eight known polymorphic microsatellite loci. Results In Puerto Rico, gAHB population does not show any genetic structure (Fst = 0.0783), and is best described as one honey bee population, product of hybridization of AHB and EHB. The genetic variability in this Africanized population was similar to that reported in studies from Texas. We observed that European private allele frequencies are high in all but one locus. This contrasts with mainland Africanized populations, where European allele frequencies are diminished. Two loci with European private alleles, one on Linkage Group 7, known to carry two known defensiveness Quantitative Trait Loci (QTLs), and the other on Linkage Group 1, known to carry three functionally studied genes and 11 candidate genes associated with Varroa resistance mechanisms were respectively, significantly greater or lower in European allele frequency than the other loci with European private alleles. Conclusions Genetic structure of Puerto Rico gAHB differs from mainland AHB populations, probably representing evolutionary processes on the island. PMID:23915100
Rapid behavioral maturation accelerates failure of stressed honey bee colonies
Perry, Clint J.; Myerscough, Mary R.; Barron, Andrew B.
2015-01-01
Many complex factors have been linked to the recent marked increase in honey bee colony failure, including pests and pathogens, agrochemicals, and nutritional stressors. It remains unclear, however, why colonies frequently react to stressors by losing almost their entire adult bee population in a short time, resulting in a colony population collapse. Here we examine the social dynamics underlying such dramatic colony failure. Bees respond to many stressors by foraging earlier in life. We manipulated the demography of experimental colonies to induce precocious foraging in bees and used radio tag tracking to examine the consequences of precocious foraging for their performance. Precocious foragers completed far fewer foraging trips in their life, and had a higher risk of death in their first flights. We constructed a demographic model to explore how this individual reaction of bees to stress might impact colony performance. In the model, when forager death rates were chronically elevated, an increasingly younger forager force caused a positive feedback that dramatically accelerated terminal population decline in the colony. This resulted in a breakdown in division of labor and loss of the adult population, leaving only brood, food, and few adults in the hive. This study explains the social processes that drive rapid depopulation of a colony, and we explore possible strategies to prevent colony failure. Understanding the process of colony failure helps identify the most effective strategies to improve colony resilience. PMID:25675508
Rapid behavioral maturation accelerates failure of stressed honey bee colonies.
Perry, Clint J; Søvik, Eirik; Myerscough, Mary R; Barron, Andrew B
2015-03-17
Many complex factors have been linked to the recent marked increase in honey bee colony failure, including pests and pathogens, agrochemicals, and nutritional stressors. It remains unclear, however, why colonies frequently react to stressors by losing almost their entire adult bee population in a short time, resulting in a colony population collapse. Here we examine the social dynamics underlying such dramatic colony failure. Bees respond to many stressors by foraging earlier in life. We manipulated the demography of experimental colonies to induce precocious foraging in bees and used radio tag tracking to examine the consequences of precocious foraging for their performance. Precocious foragers completed far fewer foraging trips in their life, and had a higher risk of death in their first flights. We constructed a demographic model to explore how this individual reaction of bees to stress might impact colony performance. In the model, when forager death rates were chronically elevated, an increasingly younger forager force caused a positive feedback that dramatically accelerated terminal population decline in the colony. This resulted in a breakdown in division of labor and loss of the adult population, leaving only brood, food, and few adults in the hive. This study explains the social processes that drive rapid depopulation of a colony, and we explore possible strategies to prevent colony failure. Understanding the process of colony failure helps identify the most effective strategies to improve colony resilience.
Chronic sublethal stress causes bee colony failure.
Bryden, John; Gill, Richard J; Mitton, Robert A A; Raine, Nigel E; Jansen, Vincent A A
2013-12-01
Current bee population declines and colony failures are well documented yet poorly understood and no single factor has been identified as a leading cause. The evidence is equivocal and puzzling: for instance, many pathogens and parasites can be found in both failing and surviving colonies and field pesticide exposure is typically sublethal. Here, we investigate how these results can be due to sublethal stress impairing colony function. We mathematically modelled stress on individual bees which impairs colony function and found how positive density dependence can cause multiple dynamic outcomes: some colonies fail while others thrive. We then exposed bumblebee colonies to sublethal levels of a neonicotinoid pesticide. The dynamics of colony failure, which we observed, were most accurately described by our model. We argue that our model can explain the enigmatic aspects of bee colony failures, highlighting an important role for sublethal stress in colony declines. © 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
Chronic sublethal stress causes bee colony failure
Bryden, John; Gill, Richard J; Mitton, Robert A A; Raine, Nigel E; Jansen, Vincent A A; Hodgson, David
2013-01-01
Current bee population declines and colony failures are well documented yet poorly understood and no single factor has been identified as a leading cause. The evidence is equivocal and puzzling: for instance, many pathogens and parasites can be found in both failing and surviving colonies and field pesticide exposure is typically sublethal. Here, we investigate how these results can be due to sublethal stress impairing colony function. We mathematically modelled stress on individual bees which impairs colony function and found how positive density dependence can cause multiple dynamic outcomes: some colonies fail while others thrive. We then exposed bumblebee colonies to sublethal levels of a neonicotinoid pesticide. The dynamics of colony failure, which we observed, were most accurately described by our model. We argue that our model can explain the enigmatic aspects of bee colony failures, highlighting an important role for sublethal stress in colony declines. PMID:24112478
Artificial bee colony algorithm with dynamic multi-population
NASA Astrophysics Data System (ADS)
Zhang, Ming; Ji, Zhicheng; Wang, Yan
2017-07-01
To improve the convergence rate and make a balance between the global search and local turning abilities, this paper proposes a decentralized form of artificial bee colony (ABC) algorithm with dynamic multi-populations by means of fuzzy C-means (FCM) clustering. Each subpopulation periodically enlarges with the same size during the search process, and the overlapping individuals among different subareas work for delivering information acting as exploring the search space with diffusion of solutions. Moreover, a Gaussian-based search equation with redefined local attractor is proposed to further accelerate the diffusion of the best solution and guide the search towards potential areas. Experimental results on a set of benchmarks demonstrate the competitive performance of our proposed approach.
Effects of infection on honey bee population dynamics: a model.
Betti, Matt I; Wahl, Lindi M; Zamir, Mair
2014-01-01
We propose a model that combines the dynamics of the spread of disease within a bee colony with the underlying demographic dynamics of the colony to determine the ultimate fate of the colony under different scenarios. The model suggests that key factors in the survival or collapse of a honey bee colony in the face of an infection are the rate of transmission of the infection and the disease-induced death rate. An increase in the disease-induced death rate, which can be thought of as an increase in the severity of the disease, may actually help the colony overcome the disease and survive through winter. By contrast, an increase in the transmission rate, which means that bees are being infected at an earlier age, has a drastic deleterious effect. Another important finding relates to the timing of infection in relation to the onset of winter, indicating that in a time interval of approximately 20 days before the onset of winter the colony is most affected by the onset of infection. The results suggest further that the age of recruitment of hive bees to foraging duties is a good early marker for the survival or collapse of a honey bee colony in the face of infection, which is consistent with experimental evidence but the model provides insight into the underlying mechanisms. The most important result of the study is a clear distinction between an exposure of the honey bee colony to an environmental hazard such as pesticides or insecticides, or an exposure to an infectious disease. The results indicate unequivocally that in the scenarios that we have examined, and perhaps more generally, an infectious disease is far more hazardous to the survival of a bee colony than an environmental hazard that causes an equal death rate in foraging bees.
Effects of Infection on Honey Bee Population Dynamics: A Model
Betti, Matt I.; Wahl, Lindi M.; Zamir, Mair
2014-01-01
We propose a model that combines the dynamics of the spread of disease within a bee colony with the underlying demographic dynamics of the colony to determine the ultimate fate of the colony under different scenarios. The model suggests that key factors in the survival or collapse of a honey bee colony in the face of an infection are the rate of transmission of the infection and the disease-induced death rate. An increase in the disease-induced death rate, which can be thought of as an increase in the severity of the disease, may actually help the colony overcome the disease and survive through winter. By contrast, an increase in the transmission rate, which means that bees are being infected at an earlier age, has a drastic deleterious effect. Another important finding relates to the timing of infection in relation to the onset of winter, indicating that in a time interval of approximately 20 days before the onset of winter the colony is most affected by the onset of infection. The results suggest further that the age of recruitment of hive bees to foraging duties is a good early marker for the survival or collapse of a honey bee colony in the face of infection, which is consistent with experimental evidence but the model provides insight into the underlying mechanisms. The most important result of the study is a clear distinction between an exposure of the honey bee colony to an environmental hazard such as pesticides or insecticides, or an exposure to an infectious disease. The results indicate unequivocally that in the scenarios that we have examined, and perhaps more generally, an infectious disease is far more hazardous to the survival of a bee colony than an environmental hazard that causes an equal death rate in foraging bees. PMID:25329468
Locke, Barbara; Forsgren, Eva; de Miranda, Joachim R.
2014-01-01
The honey bee ectoparasitic mite, Varroa destructor, has a world-wide distribution and inflicts more damage than all other known apicultural diseases. However, Varroa-induced colony mortality is more accurately a result of secondary virus infections vectored by the mite. This means that honey bee resistance to Varroa may include resistance or tolerance to virus infections. The aim of this study was to see if this is the case for a unique population of mite-resistant (MR) European honey bees on the island of Gotland, Sweden. This population has survived uncontrolled mite infestation for over a decade, developing specific mite-related resistance traits to do so. Using RT-qPCR techniques, we monitored late season virus infections, Varroa mite infestation and honey bee colony population dynamics in the Gotland MR population and compared this to mite-susceptible (MS) colonies in a close by apiary. From summer to autumn the deformed wing virus (DWV) titres increased similarly between the MR and MS populations, while the black queen cell virus (BQCV) and sacbrood virus (SBV) titres decreased substantially in the MR population compared to the MS population by several orders of magnitude. The MR colonies all survived the following winter with high mite infestation, high DWV infection, small colony size and low proportions of autumn brood, while the MS colonies all perished. Possible explanations for these changes in virus titres and their relevance to Varroa resistance and colony winter survival are discussed. PMID:24926792
Flight of the bumble bee: Buzzes predict pollination services.
Miller-Struttmann, Nicole E; Heise, David; Schul, Johannes; Geib, Jennifer C; Galen, Candace
2017-01-01
Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30-52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to bee population declines.
Flight of the bumble bee: Buzzes predict pollination services
Heise, David; Schul, Johannes; Geib, Jennifer C.; Galen, Candace
2017-01-01
Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30–52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to bee population declines. PMID:28591213
Fuller, Zachary L; Niño, Elina L; Patch, Harland M; Bedoya-Reina, Oscar C; Baumgarten, Tracey; Muli, Elliud; Mumoki, Fiona; Ratan, Aakrosh; McGraw, John; Frazier, Maryann; Masiga, Daniel; Schuster, Stephen; Grozinger, Christina M; Miller, Webb
2015-07-10
With the development of inexpensive, high-throughput sequencing technologies, it has become feasible to examine questions related to population genetics and molecular evolution of non-model species in their ecological contexts on a genome-wide scale. Here, we employed a newly developed suite of integrated, web-based programs to examine population dynamics and signatures of selection across the genome using several well-established tests, including F ST, pN/pS, and McDonald-Kreitman. We applied these techniques to study populations of honey bees (Apis mellifera) in East Africa. In Kenya, there are several described A. mellifera subspecies, which are thought to be localized to distinct ecological regions. We performed whole genome sequencing of 11 worker honey bees from apiaries distributed throughout Kenya and identified 3.6 million putative single-nucleotide polymorphisms. The dense coverage allowed us to apply several computational procedures to study population structure and the evolutionary relationships among the populations, and to detect signs of adaptive evolution across the genome. While there is considerable gene flow among the sampled populations, there are clear distinctions between populations from the northern desert region and those from the temperate, savannah region. We identified several genes showing population genetic patterns consistent with positive selection within African bee populations, and between these populations and European A. mellifera or Asian Apis florea. These results lay the groundwork for future studies of adaptive ecological evolution in honey bees, and demonstrate the use of new, freely available web-based tools and workflows ( http://usegalaxy.org/r/kenyanbee ) that can be applied to any model system with genomic information.
On the Effects of Artificial Feeding on Bee Colony Dynamics: A Mathematical Model
Paiva, Juliana Pereira Lisboa Mohallem; Paiva, Henrique Mohallem; Esposito, Elisa; Morais, Michelle Manfrini
2016-01-01
This paper proposes a new mathematical model to evaluate the effects of artificial feeding on bee colony population dynamics. The proposed model is based on a classical framework and contains differential equations that describe the changes in the number of hive bees, forager bees, and brood cells, as a function of amounts of natural and artificial food. The model includes the following elements to characterize the artificial feeding scenario: a function to model the preference of the bees for natural food over artificial food; parameters to quantify the quality and palatability of artificial diets; a function to account for the efficiency of the foragers in gathering food under different environmental conditions; and a function to represent different approaches used by the beekeeper to feed the hive with artificial food. Simulated results are presented to illustrate the main characteristics of the model and its behavior under different scenarios. The model results are validated with experimental data from the literature involving four different artificial diets. A good match between simulated and experimental results was achieved. PMID:27875589
Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies
Betti, Matthew; LeClair, Josh; Wahl, Lindi M.; Zamir, Mair
2017-01-01
We present a model and associated simulation package (www.beeplusplus.ca) to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites) have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++) and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers. PMID:28287445
Yu, Linsheng; Zou, Yunding; Bi, Shoudong; Wu, Houzhang; Cao, Yifeng
2006-08-01
In 2002 to approximately 2004, an investigation was made on the bee population dynamics and its relationships with the ecological environment in four ecological regions of Anhui Province. The results indicated that in the mountainous areas of south and west Anhui, there were 46 and 37 species of nectariferous plants, and the distribution density of Apis cerena cerena population was 2.01 and 1.95 colony x km(-2), respectively. In Jianghuai area and Huaibei plain, there were 17 and 12 species of nectariferous plants, which had concentrated and short flowering period and fitted for Apis mellifera Ligustica oysterring and producing, and the distribution density of Apis cerena cerena population was 0. 06 and 0. 02 colony x km(-2), respectively. Bee population fluctuation and distribution was affected by wasp predation. The breeding proportion of Apis cerena cerena to local apis population was 41.5%, 36.8%, 3.1% and 1.1%, and that of Apis mellifera Ligustica was 58.5%, 63.2%, 96.9% and 98.9% in the mountainous areas of south and west Anhui, Jianghuai area, and Huaibei plain, respectively.
Patch dynamics of a foraging assemblage of bees.
Wright, David Hamilton
1985-03-01
The composition and dynamics of foraging assemblages of bees were examined from the standpoint of species-level arrival and departure processes in patches of flowers. Experiments with bees visiting 4 different species of flowers in subalpine meadows in Colorado gave the following results: 1) In enriched patches the rates of departure of bees were reduced, resulting in increases in both the number of bees per species and the average number of species present. 2) The reduction in bee departure rates from enriched patches was due to mechanical factors-increased flower handling time, and to behavioral factors-an increase in the number of flowers visited per inflorescence and in the number of inflorescences visited per patch. Bees foraging in enriched patches could collect nectar 30-45% faster than those foraging in control patches. 3) The quantitative changes in foraging assemblages due to enrichment, in terms of means and variances of species population sizes, fraction of time a species was present in a patch, and in mean and variance of the number of species present, were in reasonable agreement with predictions drawn from queuing theory and studies in island biogeography. 4) Experiments performed with 2 species of flowers with different corolla tube lengths demonstrated that manipulation of resources of differing availability had unequal effects on particular subsets of the larger foraging community. The arrival-departure process of bees on flowers and the immigration-extinction process of species on islands are contrasted, and the value of the stochastic, species-level approach to community composition is briefly discussed.
Assessing Wild Bee Biodiversity in Cranberry Agroenvironments: Influence of Natural Habitats.
Gervais, Amélie; Fournier, Valérie; Sheffield, Cory S; Chagnon, Madeleine
2017-08-01
The conservation of bee populations for pollination in agricultural landscapes has attracted a lot of recent research interest, especially for crop industries undergoing expansion to meet increased production demands. In Canada, much growth has been occurring with commercial cranberry production, a field crop which is largely dependent on bee pollination. Wild bee pollinators could be negatively impacted by losses of natural habitat surrounding cranberry fields to accommodate increased production, but growers have little insight on how to manage their lands to maximize the presence of wild bees. Here, we described a 2-yr study where bee diversity and species composition were investigated to better understand the dynamic between natural habitat and cranberry fields. Bees were sampled using pan-traps and hand netting both within cranberry fields and in one of the three adjacent natural habitat types once a week during the crop flowering period. We found that bee community composition among cranberry fields did not differ based on the respective adjacent habitat type, but fields bordered by meadows were marginally less diverse than fields bordered by forest. As one would expect, field and natural habitat communities differed in terms of species composition and species richness. There was no evidence that one type of natural habitat was more favorable for the bees than another. Future agrobiodiversity studies should simultaneously examine bee diversity comprised in both crop fields and adjacent natural environments to better understand the species dynamics essential to the preservation of pollination services. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Keller, Alexander; Grimmer, Gudrun; Steffan-Dewenter, Ingolf
2013-01-01
Microbial activity is known to have profound impact on bee ecology and physiology, both by beneficial and pathogenic effects. Most information about such associations is available for colony-building organisms, and especially the honey bee. There, active manipulations through worker bees result in a restricted diversity of microbes present within the colony environment. Microbial diversity in solitary bee nests remains unstudied, although their larvae face a very different situation compared with social bees by growing up in isolated compartments. Here, we assessed the microbiota present in nests and pre-adults of Osmia bicornis, the red mason bee, by culture-independent pyrosequencing. We found high bacterial diversity not comparable with honey bee colonies. We identified a variety of bacteria potentially with positive or negative interactions for bee larvae. However, most of the other diverse bacteria present in the nests seem to originate from environmental sources through incorporated nest building material and stored pollen. This diversity of microorganisms may cause severe larval mortality and require specific physiological or symbiotic adaptations against microbial threats. They may however also profit from such a diverse environment through gain of mutualistic partners. We conclude that further studies of microbiota interaction in solitary bees will improve the understanding of fitness components and populations dynamics. PMID:24205188
Keller, Alexander; Grimmer, Gudrun; Steffan-Dewenter, Ingolf
2013-01-01
Microbial activity is known to have profound impact on bee ecology and physiology, both by beneficial and pathogenic effects. Most information about such associations is available for colony-building organisms, and especially the honey bee. There, active manipulations through worker bees result in a restricted diversity of microbes present within the colony environment. Microbial diversity in solitary bee nests remains unstudied, although their larvae face a very different situation compared with social bees by growing up in isolated compartments. Here, we assessed the microbiota present in nests and pre-adults of Osmia bicornis, the red mason bee, by culture-independent pyrosequencing. We found high bacterial diversity not comparable with honey bee colonies. We identified a variety of bacteria potentially with positive or negative interactions for bee larvae. However, most of the other diverse bacteria present in the nests seem to originate from environmental sources through incorporated nest building material and stored pollen. This diversity of microorganisms may cause severe larval mortality and require specific physiological or symbiotic adaptations against microbial threats. They may however also profit from such a diverse environment through gain of mutualistic partners. We conclude that further studies of microbiota interaction in solitary bees will improve the understanding of fitness components and populations dynamics.
Williams, Geoffrey R.; Shutler, Dave; Burgher-MacLellan, Karen L.; Rogers, Richard E. L.
2014-01-01
Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species. PMID:24987989
Williams, Geoffrey R; Shutler, Dave; Burgher-MacLellan, Karen L; Rogers, Richard E L
2014-01-01
Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species.
Torto, Baldwyn; Fombong, Ayuka T; Arbogast, Richard T; Teal, Peter E A
2010-12-01
The population dynamics of the honey bee pest Aethina tumida Murray (small hive beetle) have been studied in the United States with flight and Langstroth hive bottom board traps baited with pollen dough inoculated with a yeast Kodamaea ohmeri associated with the beetle. However, little is known about the population dynamics of the beetle in its native host range. Similarly baited Langstroth hive bottom board traps were used to monitor the occurrence and seasonal abundance of the beetle in honey bee colonies at two beekeeping locations in Kenya. Trap captures indicated that the beetle was present in honey bee colonies in low numbers all year round, but it was most abundant during the rainy season, with over 80% trapped during this period. The survival of larvae was tested in field releases under dry and wet soil conditions, and predators of larvae were identified. The actvity and survival of the beetle were strongly influenced by a combination of abiotic and biotic factors. Larval survival was higher during wet (28%) than dry (1.1%) conditions, with pupation occurring mostly at 0-15 cm and 11-20 cm, respectively, beneath the surface soil during these periods. The ant Pheidole megacephala was identified as a key predator of larvae at this site, and more active during the dry than wet seasons. These observations imply that intensive trapping during the rainy season could reduce the population of beetles infesting hives in subsequent seasons especially in places where the beetle is a serious pest. © 2010 Entomological Society of America
Meeus, Ivan; Pisman, Matti; Smagghe, Guy; Piot, Niels
2018-04-01
Wild bee decline is a multi-factorial problem, yet it is crucial to understand the impact of a single driver. Hereto the interaction effects of wild bee decline with multiple natural and anthropogenic stressors need to be clear. This is also true for the driver 'pathogens', as stressor induced disturbances of natural host-pathogen dynamics can unbalance settled virulence equilibria. Invasive species, bee domestication, habitat loss, climate changes and insecticides are recognized drivers of wild bee decline, but all influence host-pathogen dynamics as well. Many wild bee pathogens have multiple hosts, which relaxes the host-density limitation of virulence evolution. In conclusion, disturbances of bee-pathogen dynamics can be compared to a game of Russian roulette. Copyright © 2018. Published by Elsevier Inc.
A new bee species that excavates sandstone nests.
Orr, Michael C; Griswold, Terry; Pitts, James P; Parker, Frank D
2016-09-12
Humanity has long been fascinated by animals with apparently unfavorable lifestyles [1]. Nesting habits are especially important because they can limit where organisms live, thereby driving population, community, and even ecosystem dynamics [2]. The question arises, then, why bees nest in active termite mounds [3] or on the rim of degassing volcanoes, seemingly preferring such hardship [4]. Here, we present a new bee species that excavates sandstone nests, Anthophora (Anthophoroides) pueblo Orr (described in Supplemental Information, published with this article online), despite the challenges already inherent to desert life. Ultimately, the benefits of nesting in sandstone appear to outweigh the associated costs in this system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Both population size and patch quality affect local extinctions and colonizations.
Franzén, Markus; Nilsson, Sven G
2010-01-07
Currently, the habitat of many species is fragmented, resulting in small local populations with individuals occasionally dispersing between the remaining habitat patches. In a solitary bee metapopulation, extinction probability was related to both local bee population sizes and pollen resources measured as host plant population size. Patch size, on the other hand, had no additional predictive power. The turnover rate of local bee populations in 63 habitat patches over 4 years was high, with 72 extinction events and 31 colonization events, but the pollen plant population was stable with no extinctions or colonizations. Both pollen resources and bee populations had strong and independent effects on extinction probability, but connectivity was not of importance. Colonizations occurred more frequently within larger host plant populations. For metapopulation survival of the bee, large pollen plant populations are essential, independent of current bee population size.
Planting of neonicotinoid-coated corn raises honey bee mortality and sets back colony development.
Samson-Robert, Olivier; Labrie, Geneviève; Chagnon, Madeleine; Fournier, Valérie
2017-01-01
Worldwide occurrences of honey bee colony losses have raised concerns about bee health and the sustainability of pollination-dependent crops. While multiple causal factors have been identified, seed coating with insecticides of the neonicotinoid family has been the focus of much discussion and research. Nonetheless, few studies have investigated the impacts of these insecticides under field conditions or in commercial beekeeping operations. Given that corn-seed coating constitutes the largest single use of neonicotinoid, our study compared honey bee mortality from commercial apiaries located in two different agricultural settings, i.e. corn-dominated areas and corn-free environments, during the corn planting season. Data was collected in 2012 and 2013 from 26 bee yards. Dead honey bees from five hives in each apiary were counted and collected, and samples were analyzed using a multi-residue LC-MS/MS method. Long-term effects on colony development were simulated based on a honey bee population dynamic model. Mortality survey showed that colonies located in a corn-dominated area had daily mortality counts 3.51 times those of colonies from corn crop-free sites. Chemical analyses revealed that honey bees were exposed to various agricultural pesticides during the corn planting season, but were primarily subjected to neonicotinoid compounds (54% of analysed samples contained clothianidin, and 31% contained both clothianidin and thiamethoxam). Performance development simulations performed on hive populations' show that increased mortality during the corn planting season sets back colony development and bears contributions to collapse risk but, most of all, reduces the effectiveness and value of colonies for pollination services. Our results also have implications for the numerous large-scale and worldwide-cultivated crops that currently rely on pre-emptive use of neonicotinoid seed treatments.
A Multistrategy Optimization Improved Artificial Bee Colony Algorithm
Liu, Wen
2014-01-01
Being prone to the shortcomings of premature and slow convergence rate of artificial bee colony algorithm, an improved algorithm was proposed. Chaotic reverse learning strategies were used to initialize swarm in order to improve the global search ability of the algorithm and keep the diversity of the algorithm; the similarity degree of individuals of the population was used to characterize the diversity of population; population diversity measure was set as an indicator to dynamically and adaptively adjust the nectar position; the premature and local convergence were avoided effectively; dual population search mechanism was introduced to the search stage of algorithm; the parallel search of dual population considerably improved the convergence rate. Through simulation experiments of 10 standard testing functions and compared with other algorithms, the results showed that the improved algorithm had faster convergence rate and the capacity of jumping out of local optimum faster. PMID:24982924
Rangel, Juliana; Giresi, Melissa; Pinto, Maria Alice; Baum, Kristen A; Rubink, William L; Coulson, Robert N; Johnston, John Spencer
2016-04-01
The arrival to the United States of the Africanized honey bee, a hybrid between European subspecies and the African subspecies Apis mellifera scutellata, is a remarkable model for the study of biological invasions. This immigration has created an opportunity to study the dynamics of secondary contact of honey bee subspecies from African and European lineages in a feral population in South Texas. An 11-year survey of this population (1991-2001) showed that mitochondrial haplotype frequencies changed drastically over time from a resident population of eastern and western European maternal ancestry, to a population dominated by the African haplotype. A subsequent study of the nuclear genome showed that the Africanization process included bidirectional gene flow between European and Africanized honey bees, giving rise to a new panmictic mixture of A. m. scutellata- and European-derived genes. In this study, we examined gene flow patterns in the same population 23 years after the first hybridization event occurred. We found 28 active colonies inhabiting 92 tree cavities surveyed in a 5.14 km(2) area, resulting in a colony density of 5.4 colonies/km(2). Of these 28 colonies, 25 were of A. m. scutellata maternal ancestry, and three were of western European maternal ancestry. No colonies of eastern European maternal ancestry were detected, although they were present in the earlier samples. Nuclear DNA revealed little change in the introgression of A. m. scutellata-derived genes into the population compared to previous surveys. Our results suggest this feral population remains an admixed swarm with continued low levels of European ancestry and a greater presence of African-derived mitochondrial genetic composition.
Rahimi, A; Mirmoayedi, A; Kahrizi, D; Zarei, L; Jamali, S
2016-04-30
Honey bee is one of the most important insects considering its role in agriculture,ecology and economy as a whole. In this study, the genetic diversity of different Iranian honey bee populations was evaluated using inter simple sequence repeat (ISSR) markers. During May to September 2014, 108 young worker honey bees were collected from six different populations in 30 different geoclimatic locations from Golestan, Mazendaran, Guilan, West Azerbaijan, East Azerbaijan, Ardebil provinces of Iran. DNA was extracted from the worker honey bees. The quality and quantity of extracted DNA were measured. A set of ten primers were screened with the laboratory populations of honey bees. The number of fragments produced in the different honey bee populations varied from 3 to 10, varying within 150 to 1500 bp. The used ten ISSR primers generated 40 polymorphic fragments, and the average heterozygosity for each primer was 0.266. Maximum numbers of bands were recorded for primer A1. A dendrogram based on the Unweighted Pair Group Method with Arithmetic mean (UPGMA) method generated two sub-clusters. Honey bee populations of Golestan, Mazendaran, Guilan provinces were located in the first group. The second group included honey bee populations of Ardebil, West Azerbaijan, East Azerbaijan provinces, but this group showed a close relationship with other populations. The results showed obviously the ability of the ISSR marker technique to detect the genetic diversity among the honey bee populations.
A discrete particle model reproducing collective dynamics of a bee swarm.
Bernardi, Sara; Colombi, Annachiara; Scianna, Marco
2018-02-01
In this article, we present a microscopic discrete mathematical model describing collective dynamics of a bee swarm. More specifically, each bee is set to move according to individual strategies and social interactions, the former involving the desire to reach a target destination, the latter accounting for repulsive/attractive stimuli and for alignment processes. The insects tend in fact to remain sufficiently close to the rest of the population, while avoiding collisions, and they are able to track and synchronize their movement to the flight of a given set of neighbors within their visual field. The resulting collective behavior of the bee cloud therefore emerges from non-local short/long-range interactions. Differently from similar approaches present in the literature, we here test different alignment mechanisms (i.e., based either on an Euclidean or on a topological neighborhood metric), which have an impact also on the other social components characterizing insect behavior. A series of numerical realizations then shows the phenomenology of the swarm (in terms of pattern configuration, collective productive movement, and flight synchronization) in different regions of the space of free model parameters (i.e., strength of attractive/repulsive forces, extension of the interaction regions). In this respect, constraints in the possible variations of such coefficients are here given both by reasonable empirical observations and by analytical results on some stability characteristics of the defined pairwise interaction kernels, which have to assure a realistic crystalline configuration of the swarm. An analysis of the effect of unconscious random fluctuations of bee dynamics is also provided. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ecological and evolutionary approaches to managing honey bee disease
Brosi, Berry J.; Delaplane, Keith S.; Boots, Michael; de Roode, Jacobus C.
2017-01-01
Honey bee declines are a serious threat to global agricultural security and productivity. While multiple factors contribute to these declines, parasites are a key driver. Disease problems in honey bees have intensified in recent years, despite increasing attention to addressing them. Here we argue that we must focus on the principles of disease ecology and evolution to understand disease dynamics, assess the severity of disease threats, and manage these threats via honey bee management. We cover the ecological context of honey bee disease, including both host and parasite factors driving current transmission dynamics, and then discuss evolutionary dynamics including how beekeeping management practices may drive selection for more virulent parasites. We then outline how ecological and evolutionary principles can guide disease mitigation in honey bees, including several practical management suggestions for addressing short- and long-term disease dynamics and consequences. PMID:29046562
Parameter sensitivity analysis for pesticide impacts on honeybee colonies
We employ Monte Carlo simulation and linear sensitivity analysis techniques to describe the dynamics of a bee exposure model, VarroaPop. Daily simulations are performed that simulate hive population trajectories, taking into account queen strength, foraging success, weather, colo...
Sobol’ sensitivity analysis for stressor impacts on honeybee colonies
We employ Monte Carlo simulation and nonlinear sensitivity analysis techniques to describe the dynamics of a bee exposure model, VarroaPop. Daily simulations are performed of hive population trajectories, taking into account queen strength, foraging success, mite impacts, weather...
Vanengelsdorp, Dennis; Meixner, Marina Doris
2010-01-01
Honey bees are a highly valued resource around the world. They are prized for their honey and wax production and depended upon for pollination of many important crops. While globally honey bee populations have been increasing, the rate of increase is not keeping pace with demand. Further, honey bee populations have not been increasing in all parts of the world, and have declined in many nations in Europe and in North America. Managed honey bee populations are influenced by many factors including diseases, parasites, pesticides, the environment, and socio-economic factors. These factors can act alone or in combination with each other. This review highlights the present day value of honey bees, followed by a detailed description of some of the historical and present day factors that influence honey bee populations, with particular emphasis on colony populations in Europe and the United States. Copyright 2009 Elsevier Inc. All rights reserved.
Liu, Fang; Shi, Tengfei; Huang, Sisi; Yu, Linsheng; Bi, Shoudong
2016-01-01
The Mount Huang eastern honey bees ( Apis cerana ) are an endemic population, which is well adapted to the local agricultural and ecological environment. In this study, the genetic structure of seven eastern honey bees ( A. cerana ) populations from Mount Huang in China were analyzed by SSR (simple sequence repeat) markers. The results revealed that 16 pairs of primers used amplified a total of 143 alleles. The number of alleles per locus ranged from 6 to 13, with a mean value of 8.94 alleles per locus. Observed and expected heterozygosities showed mean values of 0.446 and 0.831 respectively. UPGMA cluster analysis grouped seven eastern honey bees in three groups. The results obtained show a high genetic diversity in the honey bee populations studied in Mount Huang, and high differentiation among all the populations, suggesting that scarce exchange of honey bee species happened in Mount Huang. Our study demonstrated that the Mount Huang honey bee populations still have a natural genome worth being protected for conservation.
Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A; van der Linden, Giel T J; Schaminée, Joop H J; Siepel, Henk; Kleijn, David
2014-12-09
Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species.
Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A.; van der Linden, Giel T. J.; Schaminée, Joop H. J.; Siepel, Henk; Kleijn, David
2014-01-01
Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species. PMID:25422416
Multilevel Spatial Structure Impacts on the Pollination Services of Comarum palustre (Rosaceae)
Somme, Laurent; Mayer, Carolin; Jacquemart, Anne-Laure
2014-01-01
Habitat destruction and fragmentation accelerate pollinator decline, consequently disrupting ecosystem processes such as pollination. To date, the impacts of multilevel spatial structure on pollination services have rarely been addressed. We focused on the effects of population spatial structure on the pollination services of Comarum palustre at three levels (i.e. within-population, between-populations and landscape). For three years, we investigated 14 Belgian populations, which differed in their within-population flower density, population surface, closure (i.e. proportion of the population edge that consisted of woody elements) and isolation (i.e. percentage of woody area cover within a 500 m radius from the population centre). We tested whether these spatial characteristics impact on pollinator abundance and visitation rate and thus, reproductive success of C. palustre. Insects were observed in 15 randomly-chosen plots in each population. We tested for pollen limitation with supplemental hand-cross pollination. Bumble bees and solitary bees were the major pollinators through all populations. Within populations, plots with high flower densities attracted high numbers of bumble bees and other insects. High bumble bee and solitary bee abundance was observed in populations presenting high proportions of woody edges and in populations within landscapes presenting high proportions of woody areas. Seed set resulting from open pollination varied with bumble bee and solitary bee visitation rate, leading to increased pollen limitation when pollinators were scarce. Since the reproductive success depended on the visitation rate of the main pollinators, which depended on multilevel spatial structure, wetland management plans should pay special attention to favour a mosaic of biotopes, including nesting sites and food resources for insects. This study particularly supports the relevance of a mix wetlands and woody habitats to bees. PMID:24915450
Multilevel spatial structure impacts on the pollination services of Comarum palustre (Rosaceae).
Somme, Laurent; Mayer, Carolin; Jacquemart, Anne-Laure
2014-01-01
Habitat destruction and fragmentation accelerate pollinator decline, consequently disrupting ecosystem processes such as pollination. To date, the impacts of multilevel spatial structure on pollination services have rarely been addressed. We focused on the effects of population spatial structure on the pollination services of Comarum palustre at three levels (i.e. within-population, between-populations and landscape). For three years, we investigated 14 Belgian populations, which differed in their within-population flower density, population surface, closure (i.e. proportion of the population edge that consisted of woody elements) and isolation (i.e. percentage of woody area cover within a 500 m radius from the population centre). We tested whether these spatial characteristics impact on pollinator abundance and visitation rate and thus, reproductive success of C. palustre. Insects were observed in 15 randomly-chosen plots in each population. We tested for pollen limitation with supplemental hand-cross pollination. Bumble bees and solitary bees were the major pollinators through all populations. Within populations, plots with high flower densities attracted high numbers of bumble bees and other insects. High bumble bee and solitary bee abundance was observed in populations presenting high proportions of woody edges and in populations within landscapes presenting high proportions of woody areas. Seed set resulting from open pollination varied with bumble bee and solitary bee visitation rate, leading to increased pollen limitation when pollinators were scarce. Since the reproductive success depended on the visitation rate of the main pollinators, which depended on multilevel spatial structure, wetland management plans should pay special attention to favour a mosaic of biotopes, including nesting sites and food resources for insects. This study particularly supports the relevance of a mix wetlands and woody habitats to bees.
Ferreira, Kátia Maria; Carvalho, Airton Torres; Martins, Celso Feitosa; Fernandes, Carlo Rivero; Del Lama, Marco Antonio
2017-01-01
Partamona seridoensis is an endemic stingless bee from the Caatinga, a Neotropical dry forest in northeastern Brazil. Like other stingless bees, this species plays an important ecological role as a pollinator. The aim of the present study was to investigate the genetic structure and evolutionary history of P. seridoensis across its current geographic range. Workers from 84 nests from 17 localities were analyzed for COI and Cytb genic regions. The population structure tests (Bayesian phylogenetic inference, AMOVA and haplotype network) consistently characterized two haplogroups (northwestern and eastern), with little gene flow between them, generating a high differentiation between them as well as among the populations within each haplogroup. The Mantel test revealed no isolation by distance. No evidence of a potential geographic barrier in the present that could explain the diversification between the P. seridoensis haplogroups was found. However, Pleistocene climatic changes may explain this differentiation, since the initial time for the P. seridoensis lineages diversification took place during the mid-Pleistocene, specifically the interglacial period, when the biota is presumed to have been more associated with dry conditions and had more restricted, fragmented geographical distribution. This event may have driven diversification by isolating the two haplogroups. Otherwise, the climatic changes in the late Pleistocene must not have drastically affected the population dynamics of P. seridoensis, since the Bayesian Skyline Plot did not reveal any substantial fluctuation in effective population size in either haplogroup. Considering its importance and the fact that it is an endemic bee from a very threatened Neotropical dry forest, the results herein could be useful to the development of conservation strategies for P. seridoensis. PMID:28410408
Miranda, Elder Assis; Ferreira, Kátia Maria; Carvalho, Airton Torres; Martins, Celso Feitosa; Fernandes, Carlo Rivero; Del Lama, Marco Antonio
2017-01-01
Partamona seridoensis is an endemic stingless bee from the Caatinga, a Neotropical dry forest in northeastern Brazil. Like other stingless bees, this species plays an important ecological role as a pollinator. The aim of the present study was to investigate the genetic structure and evolutionary history of P. seridoensis across its current geographic range. Workers from 84 nests from 17 localities were analyzed for COI and Cytb genic regions. The population structure tests (Bayesian phylogenetic inference, AMOVA and haplotype network) consistently characterized two haplogroups (northwestern and eastern), with little gene flow between them, generating a high differentiation between them as well as among the populations within each haplogroup. The Mantel test revealed no isolation by distance. No evidence of a potential geographic barrier in the present that could explain the diversification between the P. seridoensis haplogroups was found. However, Pleistocene climatic changes may explain this differentiation, since the initial time for the P. seridoensis lineages diversification took place during the mid-Pleistocene, specifically the interglacial period, when the biota is presumed to have been more associated with dry conditions and had more restricted, fragmented geographical distribution. This event may have driven diversification by isolating the two haplogroups. Otherwise, the climatic changes in the late Pleistocene must not have drastically affected the population dynamics of P. seridoensis, since the Bayesian Skyline Plot did not reveal any substantial fluctuation in effective population size in either haplogroup. Considering its importance and the fact that it is an endemic bee from a very threatened Neotropical dry forest, the results herein could be useful to the development of conservation strategies for P. seridoensis.
NASA Astrophysics Data System (ADS)
Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba
2015-07-01
Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress.
Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba
2015-01-01
Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress. PMID:26212690
Schwarz, Ryan S; Teixeira, Érica Weinstein; Tauber, James P; Birke, Juliane M; Martins, Marta Fonseca; Fonseca, Isabela; Evans, Jay D
2014-01-01
Two species of Spiroplasma (Mollicutes) bacteria were isolated from and described as pathogens of the European honey bee, Apis mellifera, ∼30 years ago but recent information on them is lacking despite global concern to understand bee population declines. Here we provide a comprehensive survey for the prevalence of these two Spiroplasma species in current populations of honey bees using improved molecular diagnostic techniques to assay multiyear colony samples from North America (U.S.A.) and South America (Brazil). Significant annual and seasonal fluctuations of Spiroplasma apis and Spiroplasma melliferum prevalence in colonies from the U.S.A. (n = 616) and Brazil (n = 139) occurred during surveys from 2011 through 2013. Overall, 33% of U.S.A. colonies and 54% of Brazil colonies were infected by Spiroplasma spp., where S. melliferum predominated over S. apis in both countries (25% vs. 14% and 44% vs. 38% frequency, respectively). Colonies were co-infected by both species more frequently than expected in both countries and at a much higher rate in Brazil (52%) compared to the U.S.A. (16.5%). U.S.A. samples showed that both species were prevalent not only during spring, as expected from prior research, but also during other seasons. These findings demonstrate that the model of honey bee spiroplasmas as springtime-restricted pathogens needs to be broadened and their role as occasional pathogens considered in current contexts. PMID:24771723
Native bees and plant pollination
Ginsberg, H.S.
2004-01-01
Bees are important pollinators, but evidence suggests that numbers of some species are declining. Decreases have been documented in the honey bee, Apis mellifera (which was introduced to North America), but there are no monitoring programs for the vast majority of native species, so we cannot be sure about the extent of this problem. Recent efforts to develop standardized protocols for bee sampling will help us collect the data needed to assess trends in bee populations. Unfortunately, diversity of bee life cycles and phenologies, and the large number of rare species, make it difficult to assess trends in bee faunas. Changes in bee populations can affect plant reproduction, which can influence plant population density and cover, thus potentially modifying horizontal and vertical structure of a community, microclimate near the ground, patterns of nitrogen deposition, etc. These potential effects of changes in pollination patterns have not been assessed in natural communities. Effects of management actions on bees and other pollinators should be considered in conservation planning.
De Smet, Lina; Hatjina, Fani; Ioannidis, Pavlos; Hamamtzoglou, Anna; Schoonvaere, Karel; Francis, Frédéric; Meeus, Ivan; Smagghe, Guy; de Graaf, Dirk C
2017-01-01
In this study, different context-dependent effects of imidacloprid exposure on the honey bee response were studied. Honey bees were exposed to different concentrations of imidacloprid during a time period of 40 days. Next to these variables, a laboratory-field comparison was conducted. The influence of the chronic exposure on gene expression levels was determined using an in-house developed microarray targeting different immunity-related and detoxification genes to determine stress-related gene expression changes. Increased levels of the detoxification genes encoding, CYP9Q3 and CYT P450, were detected in imidacloprid-exposed honey bees. The different context-dependent effects of imidacloprid exposure on honey bees were confirmed physiologically by decreased hypopharyngeal gland sizes. Honey bees exposed to imidacloprid in laboratory cages showed a general immunosuppression and no detoxification mechanisms were triggered significantly, while honey bees in-field showed a resilient response with an immune stimulation at later time points. However, the treated colonies had a brood and population decline tendency after the first brood cycle in the field. In conclusion, this study highlighted the different context-dependent effects of imidacloprid exposure on the honey bee response. These findings warn for possible pitfalls concerning the generalization of results based on specific experiments with short exposure times. The increased levels of CYT P450 and CYP9Q3 combined with an immune response reaction can be used as markers for bees which are exposed to pesticides in the field.
Ioannidis, Pavlos; Hamamtzoglou, Anna; Schoonvaere, Karel; Francis, Frédéric; Meeus, Ivan; Smagghe, Guy; de Graaf, Dirk C.
2017-01-01
In this study, different context-dependent effects of imidacloprid exposure on the honey bee response were studied. Honey bees were exposed to different concentrations of imidacloprid during a time period of 40 days. Next to these variables, a laboratory-field comparison was conducted. The influence of the chronic exposure on gene expression levels was determined using an in-house developed microarray targeting different immunity-related and detoxification genes to determine stress-related gene expression changes. Increased levels of the detoxification genes encoding, CYP9Q3 and CYT P450, were detected in imidacloprid-exposed honey bees. The different context-dependent effects of imidacloprid exposure on honey bees were confirmed physiologically by decreased hypopharyngeal gland sizes. Honey bees exposed to imidacloprid in laboratory cages showed a general immunosuppression and no detoxification mechanisms were triggered significantly, while honey bees in-field showed a resilient response with an immune stimulation at later time points. However, the treated colonies had a brood and population decline tendency after the first brood cycle in the field. In conclusion, this study highlighted the different context-dependent effects of imidacloprid exposure on the honey bee response. These findings warn for possible pitfalls concerning the generalization of results based on specific experiments with short exposure times. The increased levels of CYT P450 and CYP9Q3 combined with an immune response reaction can be used as markers for bees which are exposed to pesticides in the field. PMID:28182641
Limited social plasticity in the socially polymorphic sweat bee Lasioglossum calceatum.
Davison, P J; Field, J
2018-01-01
Eusociality is characterised by a reproductive division of labour, where some individuals forgo direct reproduction to instead help raise kin. Socially polymorphic sweat bees are ideal models for addressing the mechanisms underlying the transition from solitary living to eusociality, because different individuals in the same species can express either eusocial or solitary behaviour. A key question is whether alternative social phenotypes represent environmentally induced plasticity or predominantly genetic differentiation between populations. In this paper, we focus on the sweat bee Lasioglossum calceatum , in which northern or high-altitude populations are solitary, whereas more southern or low-altitude populations are typically eusocial. To test whether social phenotype responds to local environmental cues, we transplanted adult females from a solitary, northern population, to a southern site where native bees are typically eusocial. Nearly all native nests were eusocial, with foundresses producing small first brood (B1) females that became workers. In contrast, nine out of ten nests initiated by transplanted bees were solitary, producing female offspring that were the same size as the foundress and entered directly into hibernation. Only one of these ten nests became eusocial. Social phenotype was unlikely to be related to temperature experienced by nest foundresses when provisioning B1 offspring, or by B1 emergence time, both previously implicated in social plasticity seen in two other socially polymorphic sweat bees. Our results suggest that social polymorphism in L. calceatum predominantly reflects genetic differentiation between populations, and that plasticity is in the process of being lost by bees in northern populations. Phenotypic plasticity is thought to play a key role in the early stages of the transition from solitary to eusocial behaviour, but may then be lost if environmental conditions become less variable. Socially polymorphic sweat bees exhibit either solitary or eusocial behaviour in different geographic populations, depending on the length of the nesting season. We tested for plasticity in the socially polymorphic sweat bee Lasioglossum calceatum by transplanting nest foundresses from a northern, non-eusocial population to a southern, eusocial population. Plasticity would be detected if transplanted bees exhibited eusocial behaviour. We found that while native bees were eusocial, 90% of transplanted bees and their offspring did not exhibit traits associated with eusociality. Environmental variables such as time of offspring emergence or temperatures experienced by foundresses during provisioning could not explain these differences. Our results suggest that the ability of transplanted bees to express eusociality is being lost, and that social polymorphism predominantly reflects genetic differences between populations.
López-Uribe, Margarita M; Morreale, Stephen J; Santiago, Christine K; Danforth, Bryan N
2015-01-01
Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei's GST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for enhancing bee population abundance and connectivity in human dominated habitats and highlights the critical contribution of landscape genetic studies for enhanced conservation and management of native pollinators.
López-Uribe, Margarita M.; Morreale, Stephen J.; Santiago, Christine K.; Danforth, Bryan N.
2015-01-01
Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei’s GST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for enhancing bee population abundance and connectivity in human dominated habitats and highlights the critical contribution of landscape genetic studies for enhanced conservation and management of native pollinators. PMID:25950429
Allee effects and colony collapse disorder in honey bees
USDA-ARS?s Scientific Manuscript database
We propose a mathematical model to quantify the hypothesis that a major ultimate cause of Colony Collapse Disorder (CCD) in honey bees is the presence of an Allee effect in the growth dynamics of honey bee colonies. In the model, both recruitment of adult bees as well as mortality of adult bees have...
Colony Level Prevalence and Intensity of Nosema ceranae in Honey Bees (Apis mellifera L.)
Lucas, Hannah M.; Webster, Thomas C.; Sagili, Ramesh R.
2016-01-01
Nosema ceranae is a widely prevalent microsporidian parasite in the western honey bee. There is considerable uncertainty regarding infection dynamics of this important pathogen in honey bee colonies. Understanding the infection dynamics at the colony level may aid in development of a reliable sampling protocol for N. ceranae diagnosis, and provide insights into efficient treatment strategies. The primary objective of this study was to characterize the prevalence (proportion of the sampled bees found infected) and intensity (number of spores per bee) of N. ceranae infection in bees from various age cohorts in a colony. We examined N. ceranae infection in both overwintered colonies that were naturally infected with N. ceranae and in quadruple cohort nucleus colonies that were established and artificially inoculated with N. ceranae. We also examined and quantified effects of N. ceranae infection on hypopharyngeal gland protein content and gut pH. There was no correlation between the prevalence and intensity of N. ceranae infection in composite samples (pooled bee samples used for analysis). Our results indicated that the prevalence and intensity of N. ceranae infection is significantly influenced by honey bee age. The N. ceranae infection prevalence values from composite samples of background bees (unmarked bees collected from four different locations in a colony) were not significantly different from those pertaining to marked-bee age cohorts specific to each sampling date. The foraging-aged bees had a higher prevalence of N. ceranae infection when compared to nurse-aged bees. N. ceranae did not have a significant effect on hypopharyngeal gland protein content. Further, there was no significant difference in mean gut pH of N. ceranae infected bees and non-infected bees. This study provides comprehensive insights into N. ceranae infection dynamics at the colony level, and also demonstrates the effects of N. ceranae infection on hypopharyngeal gland protein content and midgut pH. PMID:27658258
A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations
Shi, Mang; Buchmann, Gabriele; Blacquière, Tjeerd; Beekman, Madeleine; Ashe, Alyson
2017-01-01
ABSTRACT Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees (Apis mellifera) has changed dramatically since the emergence of the parasitic mite Varroa destructor, which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa. This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales. Collapsing Varroa-infected colonies are often overwhelmed with high levels of picornaviruses. To examine the underlying viral diversity in honey bees, we employed viral metatranscriptomics analyses on three geographically diverse Varroa-resistant populations from Europe, Africa, and the Pacific. We describe seven novel viruses from a range of diverse viral families, including two viruses that are present in all three locations. In honey bees, small RNA sequences indicate that these viruses are processed by Dicer and the RNA interference pathway, whereas Varroa mites produce strikingly novel small RNA patterns. This work increases the number and diversity of known honey bee viruses and will ultimately contribute to improved disease management in our most important agricultural pollinator. PMID:28515299
A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations.
Remnant, Emily J; Shi, Mang; Buchmann, Gabriele; Blacquière, Tjeerd; Holmes, Edward C; Beekman, Madeleine; Ashe, Alyson
2017-08-15
Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees ( Apis mellifera ) has changed dramatically since the emergence of the parasitic mite Varroa destructor , which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales Collapsing Varroa -infected colonies are often overwhelmed with high levels of picornaviruses. To examine the underlying viral diversity in honey bees, we employed viral metatranscriptomics analyses on three geographically diverse Varroa- resistant populations from Europe, Africa, and the Pacific. We describe seven novel viruses from a range of diverse viral families, including two viruses that are present in all three locations. In honey bees, small RNA sequences indicate that these viruses are processed by Dicer and the RNA interference pathway, whereas Varroa mites produce strikingly novel small RNA patterns. This work increases the number and diversity of known honey bee viruses and will ultimately contribute to improved disease management in our most important agricultural pollinator. Copyright © 2017 Remnant et al.
Impact of managed honey bee viruses on wild bees.
Tehel, Anja; Brown, Mark Jf; Paxton, Robert J
2016-08-01
Several viruses found in the Western honey bee (Apis mellifera) have recently been detected in other bee species, raising the possibility of spill-over from managed to wild bee species. Alternatively, these viruses may be shared generalists across flower-visiting insects. Here we explore the former hypothesis, pointing out weaknesses in the current evidence, particularly in relation to deformed wing virus (DWV), and highlighting research areas that may help test it. Data so far suggest that DWV spills over from managed to wild bee species and has the potential to cause population decline. That DWV and other viruses of A. mellifera are found in other bee species needs to be considered for the sustainable management of bee populations. Copyright © 2016 Elsevier B.V. All rights reserved.
Dynamic microbiome evolution in social bees
Kwong, Waldan K.; Medina, Luis A.; Koch, Hauke; Sing, Kong-Wah; Soh, Eunice Jia Yu; Ascher, John S.; Jaffé, Rodolfo; Moran, Nancy A.
2017-01-01
The highly social (eusocial) corbiculate bees, comprising the honey bees, bumble bees, and stingless bees, are ubiquitous insect pollinators that fulfill critical roles in ecosystem services and human agriculture. Here, we conduct wide sampling across the phylogeny of these corbiculate bees and reveal a dynamic evolutionary history behind their microbiota, marked by multiple gains and losses of gut associates, the presence of generalist as well as host-specific strains, and patterns of diversification driven, in part, by host ecology (for example, colony size). Across four continents, we found that different host species have distinct gut communities, largely independent of geography or sympatry. Nonetheless, their microbiota has a shared heritage: The emergence of the eusocial corbiculate bees from solitary ancestors appears to coincide with the acquisition of five core gut bacterial lineages, supporting the hypothesis that host sociality facilitates the development and maintenance of specialized microbiomes. PMID:28435856
Reproductive biology of Varroa destructor in Africanized honey bees (Apis mellifera).
Calderón, R A; van Veen, J W; Sommeijer, M J; Sanchez, L A
2010-04-01
Since its first contact with Apis mellifera, the population dynamics of the parasitic mite Varroa destructor varies from one region to another. In many regions of the world, apiculture has come to depend on the use of acaricides, because of the extensive damage caused by varroa to bee colonies. At present, the mite is considered to contribute to the recent decline of honey bee colonies in North America and Europe. Because in tropical climates worker brood rearing and varroa reproduction occurs all year round, it could be expected that here the impact of the parasite will be even more devastating. Yet, this has not been the case in tropical areas of South America. In Brazil, varroa was introduced more than 30 years ago and got established at low levels of infestation, without causing apparent damage to apiculture with Africanized honey bees (AHB). The tolerance of AHB to varroa is apparently attributable, at least in part, to resistance in the bees. The low fertility of this parasite in Africanized worker brood and the grooming and hygienic behavior of the bees are referred as important factors in keeping mite infestation low in the colonies. It has also been suggested that the type of mite influences the level of tolerance in a honey bee population. The Korea haplotype is predominant in unbalanced host-parasite systems, as exist in Europe, whereas in stable systems, as in Brazil, the Japan haplotype used to predominate. However, the patterns of varroa genetic variation have changed in Brazil. All recently sampled mites were of the Korea haplotype, regardless whether the mites had reproduced or not. The fertile mites on AHB in Brazil significantly increased from 56% in the 1980s to 86% in recent years. Nevertheless, despite the increased fertility, no increase in mite infestation rates in the colonies has been detected so far. A comprehensive literature review of varroa reproduction data, focusing on fertility and production of viable female mites, was conducted to provide insight into the Africanized bee host-parasite relationship.
Bernauer, Olivia M; Gaines-Day, Hannah R; Steffan, Shawn A
2015-06-01
Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens). Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems.
Muli, Elliud; Patch, Harland; Frazier, Maryann; Frazier, James; Torto, Baldwyn; Baumgarten, Tracey; Kilonzo, Joseph; Kimani, James Ng'ang'a; Mumoki, Fiona; Masiga, Daniel; Tumlinson, James; Grozinger, Christina
2014-01-01
In East Africa, honey bees (Apis mellifera) provide critical pollination services and income for small-holder farmers and rural families. While honey bee populations in North America and Europe are in decline, little is known about the status of honey bee populations in Africa. We initiated a nationwide survey encompassing 24 locations across Kenya in 2010 to evaluate the numbers and sizes of honey bee colonies, assess the presence of parasites (Varroa mites and Nosema microsporidia) and viruses, identify and quantify pesticide contaminants in hives, and assay for levels of hygienic behavior. Varroa mites were present throughout Kenya, except in the remote north. Levels of Varroa were positively correlated with elevation, suggesting that environmental factors may play a role in honey bee host-parasite interactions. Levels of Varroa were negatively correlated with levels of hygienic behavior: however, while Varroa infestation dramatically reduces honey bee colony survival in the US and Europe, in Kenya Varroa presence alone does not appear to impact colony size. Nosema apis was found at three sites along the coast and one interior site. Only a small number of pesticides at low concentrations were found. Of the seven common US/European honey bee viruses, only three were identified but, like Varroa, were absent from northern Kenya. The number of viruses present was positively correlated with Varroa levels, but was not correlated with colony size or hygienic behavior. Our results suggest that Varroa, the three viruses, and Nosema have been relatively recently introduced into Kenya, but these factors do not yet appear to be impacting Kenyan bee populations. Thus chemical control for Varroa and Nosema are not necessary for Kenyan bees at this time. This study provides baseline data for future analyses of the possible mechanisms underlying resistance to and the long-term impacts of these factors on African bee populations.
Frazier, James; Torto, Baldwyn; Baumgarten, Tracey; Kilonzo, Joseph; Kimani, James Ng'ang'a; Mumoki, Fiona; Masiga, Daniel; Tumlinson, James; Grozinger, Christina
2014-01-01
In East Africa, honey bees (Apis mellifera) provide critical pollination services and income for small-holder farmers and rural families. While honey bee populations in North America and Europe are in decline, little is known about the status of honey bee populations in Africa. We initiated a nationwide survey encompassing 24 locations across Kenya in 2010 to evaluate the numbers and sizes of honey bee colonies, assess the presence of parasites (Varroa mites and Nosema microsporidia) and viruses, identify and quantify pesticide contaminants in hives, and assay for levels of hygienic behavior. Varroa mites were present throughout Kenya, except in the remote north. Levels of Varroa were positively correlated with elevation, suggesting that environmental factors may play a role in honey bee host-parasite interactions. Levels of Varroa were negatively correlated with levels of hygienic behavior: however, while Varroa infestation dramatically reduces honey bee colony survival in the US and Europe, in Kenya Varroa presence alone does not appear to impact colony size. Nosema apis was found at three sites along the coast and one interior site. Only a small number of pesticides at low concentrations were found. Of the seven common US/European honey bee viruses, only three were identified but, like Varroa, were absent from northern Kenya. The number of viruses present was positively correlated with Varroa levels, but was not correlated with colony size or hygienic behavior. Our results suggest that Varroa, the three viruses, and Nosema have been relatively recently introduced into Kenya, but these factors do not yet appear to be impacting Kenyan bee populations. Thus chemical control for Varroa and Nosema are not necessary for Kenyan bees at this time. This study provides baseline data for future analyses of the possible mechanisms underlying resistance to and the long-term impacts of these factors on African bee populations. PMID:24740399
Stress-mediated Allee effects can cause the sudden collapse of honey bee colonies.
Booton, Ross D; Iwasa, Yoh; Marshall, James A R; Childs, Dylan Z
2017-05-07
The recent rapid decline in global honey bee populations could have significant implications for ecological systems, economics and food security. No single cause of honey bee collapse has yet to be identified, although pesticides, mites and other pathogens have all been shown to have a sublethal effect. We present a model of a functioning bee hive and introduce external stress to investigate the impact on the regulatory processes of recruitment to the forager class, social inhibition and the laying rate of the queen. The model predicts that constant density-dependent stress acting through an Allee effect on the hive can result in sudden catastrophic switches in dynamical behaviour and the eventual collapse of the hive. The model proposes that around a critical point the hive undergoes a saddle-node bifurcation, and that a small increase in model parameters can have irreversible consequences for the entire hive. We predict that increased stress levels can be counteracted by a higher laying rate of the queen, lower levels of forager recruitment or lower levels of natural mortality of foragers, and that increasing social inhibition can not maintain the colony under high levels of stress. We lay the theoretical foundation for sudden honey bee collapse in order to facilitate further experimental and theoretical consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Varroa mites are an external parasite of honey bees and a leading cause of colony losses worldwide. Varroa populations can be controlled with miticides, but mite resistant stocks such as the Russian honey bee (RHB) also are available. RHB and other mite resistant stock limit Varroa population growth...
Wojcik, Victoria A; Morandin, Lora A; Davies Adams, Laurie; Rourke, Kelly E
2018-06-05
Supporting managed honey bees by pasturing in natural landscapes has come under review due to concerns that honey bees could negatively impact the survival of wild bees through competition for floral resources. Critique and assessment of the existing body of published literature against our criteria focussing on studies that can support best management resulted in 19 experimental papers. Indirect measures of competition examining foraging patterns and behavior yielded equivocal results. Direct measures of reproduction and growth were investigated in only seven studies, with six indicating negative impacts to wild bees from the presence of managed honey bees. Three of these studies examined fitness impacts to BombusLatreille and all three indicated reduced growth or reduced reproductive output. Because there is a severe lack of literature, yet potential that honey bee presence could negatively impact wild bees, exemplified with bumble bee studies, we advocate for further research into the fitness impacts of competition between managed and wild pollinators. Conservative approaches should be taken with respect to pasturing honey bees on natural lands with sensitive bumble bee populations. Correspondingly, forage opportunities for honey bees in managed, agricultural landscapes, should be increased in an effort to reduce potential pressure and infringement on wild bee populations in natural areas.
Planting of neonicotinoid-coated corn raises honey bee mortality and sets back colony development
Samson-Robert, Olivier; Labrie, Geneviève; Chagnon, Madeleine
2017-01-01
Worldwide occurrences of honey bee colony losses have raised concerns about bee health and the sustainability of pollination-dependent crops. While multiple causal factors have been identified, seed coating with insecticides of the neonicotinoid family has been the focus of much discussion and research. Nonetheless, few studies have investigated the impacts of these insecticides under field conditions or in commercial beekeeping operations. Given that corn-seed coating constitutes the largest single use of neonicotinoid, our study compared honey bee mortality from commercial apiaries located in two different agricultural settings, i.e. corn-dominated areas and corn-free environments, during the corn planting season. Data was collected in 2012 and 2013 from 26 bee yards. Dead honey bees from five hives in each apiary were counted and collected, and samples were analyzed using a multi-residue LC-MS/MS method. Long-term effects on colony development were simulated based on a honey bee population dynamic model. Mortality survey showed that colonies located in a corn-dominated area had daily mortality counts 3.51 times those of colonies from corn crop-free sites. Chemical analyses revealed that honey bees were exposed to various agricultural pesticides during the corn planting season, but were primarily subjected to neonicotinoid compounds (54% of analysed samples contained clothianidin, and 31% contained both clothianidin and thiamethoxam). Performance development simulations performed on hive populations’ show that increased mortality during the corn planting season sets back colony development and bears contributions to collapse risk but, most of all, reduces the effectiveness and value of colonies for pollination services. Our results also have implications for the numerous large-scale and worldwide-cultivated crops that currently rely on pre-emptive use of neonicotinoid seed treatments. PMID:28828265
Silva, M D; Ramalho, M; Monteiro, D
2014-08-01
As most stingless bee species depend on preexisting cavities, principally tree hollows, nesting site availability may represent an important restriction in the structuring of their forest communities. The present study examined the spatial dynamics of stingless bee communities in an area of Atlantic Forest by evaluating their swarming to trap-nests. The field work was performed in the Michelin Ecological Reserve (MER) on the southeastern coast of the state of Bahia, Brazil. Seven hundred and twenty trap-nests were distributed within two forest habitats in advanced and initial stages of regeneration. The trap-nests were monitored between September 2009 and March 2011. Twenty-five trap-nests were occupied by five bee species, resulting in a capture ratio of 0.035 swarms/trap (approximately 0.14 swarms/ha), corresponding to 10 swarms/year (0.056 swarms/ha/year). According to previous study at MER, the most abundant species in natural nests were also the most common in trap-nests in the two forest habitats examined, with the exception of Melipona scutellaris Latreille. Swarms of higher numbers of species were captured in initial regeneration stage forests than in advanced regeneration stage areas, and differences in species compositions were significant between both habitats (p = 0.03); these apparent differences were not consistent, however, when considering richness (p = 0.14) and total abundance (p = 0.08). The present study suggests the existence of a minimum cavity size threshold of approximately 1 L for most local species of stingless bees and sustains the hypothesis of a mass effect of Tetragonisca angustula Latreille populations from surrounding disturbed habitats on the MER forest community in terms of propagule (swarm) pressure. Examining swarm densities with trap-nests can be a promising technique for comparative analyses of the carrying capacities of forest habitats for stingless bee colonies, as long as size thresholds of cavities for nesting are taken into consideration.
Nesting habits influence population genetic structure of a bee living in anthropogenic disturbance.
Vickruck, J L; Richards, M H
2017-05-01
While most organisms are negatively affected by anthropogenic disturbance, a few species thrive in landscapes altered by humans. Typically, native bees are negatively impacted by anthropogenic environmental change, including habitat alteration and climate change. Here, we investigate the population structure of the eastern carpenter bee Xylocopa virginica, a generalist pollinator with a broad geographic range spanning eastern North America. Eastern carpenter bees now nest almost exclusively in artificial wooden structures, linking their geographic distribution and population structure to human activities and disturbance. To investigate the population structure of these bees, we sampled females from 16 different populations from across their range. Nine species-specific microsatellite loci showed that almost all populations are genetically distinct, but with high levels of genetic diversity and low levels of inbreeding overall. Broadly speaking, populations clustered into three distinct genetic groups: a northern group, a western group and a core group. The northern group had low effective population sizes, decreased genetic variability and the highest levels of inbreeding in the data set, suggesting that carpenter bees may be expanding their range northward. The western group was genetically distinct, but lacked signals of a recent range expansion. Climatic data showed that summer and winter temperatures explained a significant amount of the genetic differentiation seen among populations, while precipitation did not. Our results indicate that X. virginica may be one of the rare 'anthrophilic' species that thrive in the face of anthropogenic disturbance. © 2017 John Wiley & Sons Ltd.
Diploid male dynamics under different numbers of sexual alleles and male dispersal abilities.
Faria, Luiz R R; Soares, Elaine Della Giustina; Carmo, Eduardo do; Oliveira, Paulo Murilo Castro de
2016-09-01
Insects in the order Hymenoptera (bees, wasps and ants) present an haplodiploid system of sexual determination in which fertilized eggs become females and unfertilized eggs males. Under single locus complementary sex-determination (sl-CSD) system, the sex of a specimen depends on the alleles at a single locus: when diploid, an individual will be a female if heterozygous and male if homozygous. Significant diploid male (DM) production may drive a population to an extinction scenario called "diploid male vortex". We aimed at studying the dynamics of populations of a sl-CSD organism under several combinations of two parameters: male flight abilities and number of sexual alleles. In these simulations, we evaluated the frequency of DM and a genetic diversity measure over 10,000 generations. The number of sexual alleles varied from 10 to 100 and, at each generation, a male offspring might fly to another random site within a varying radius R. Two main results emerge from our simulations: (i) the number of DM depends more on male flight radius than on the number of alleles; (ii) in large geographic regions, the effect of males flight radius on the allelic diversity turns out much less pronounced than in small regions. In other words, small regions where inbreeding normally appears recover genetic diversity due to large flight radii. These results may be particularly relevant when considering the population dynamics of species with increasingly limited dispersal ability (e.g., forest-dependent species of euglossine bees in fragmented landscapes).
Transcriptional responses in honey bee larvae infected with chalkbrood fungus
USDA-ARS?s Scientific Manuscript database
Diseases and other stress factors working synergistically weaken honey bee health and may play a major role in the losses of bee populations in recent years. Among a large number of bee diseases, chalkbrood has been on the rise. We present here the experimental identification of honey bee genes that...
Population genetics of commercial and feral honey bees in Western Australia.
Chapman, Nadine C; Lim, Julianne; Oldroyd, Benjamin P
2008-04-01
Due to the introduction of exotic honey bee (Apis mellifera L.) diseases in the eastern states, the borders of the state of Western Australia were closed to the import of bees for breeding and other purposes > 25 yr ago. To provide genetically improved stock for the industry, a closed population breeding program was established that now provides stock for the majority of Western Australian beekeepers. Given concerns that inbreeding may have resulted from the closed population breeding structure, we assessed the genetic diversity within and between the breeding lines by using microsatellite and mitochondrial markers. We found that the breeding population still maintains considerable genetic diversity, despite 25 yr of selective breeding. We also investigated the genetic distance of the closed population breeding program to that of beekeepers outside of the program, and the feral Western Australian honey bee population. The feral population is genetically distinct from the closed population, but not from the genetic stock maintained by beekeepers outside of the program. The honey bees of Western Australia show three mitotypes, originating from two subspecies: Apis mellifera ligustica (mitotypes C1 and M7b) and Apis mellifera iberica (mitotype M6). Only mitotypes C1 and M6 are present in the commercial populations. The feral population contains all three mitotypes.
Ramírez, Santiago R; Eltz, Thomas; Fritzsch, Falko; Pemberton, Robert; Pringle, Elizabeth G; Tsutsui, Neil D
2010-08-01
Male orchid bees collect volatiles, from both floral and non-floral sources, that they expose as pheromone analogues (perfumes) during courtship display. The chemical profile of these perfumes, which includes terpenes and aromatic compounds, is both species-specific and divergent among closely related lineages. Thus, fragrance composition is thought to play an important role in prezygotic reproductive isolation in euglossine bees. However, because orchid bees acquire fragrances entirely from exogenous sources, the chemical composition of male perfumes is prone to variation due to environmental heterogeneity across habitats. We used Gas Chromatography/Mass Spectrometry (GC/MS) to characterize the perfumes of 114 individuals of the green orchid bee (Euglossa aff. viridissima) sampled from five native populations in Mesoamerica and two naturalized populations in the southeastern United States. We recorded a total of 292 fragrance compounds from hind-leg extracts, and found that overall perfume composition was different for each population. We detected a pronounced chemical dissimilarity between native (Mesoamerica) and naturalized (U.S.) populations that was driven both by proportional differences of common compounds as well as the presence of a few chemicals unique to each population group. Despite these differences, our data also revealed remarkable qualitative consistency in the presence of several major fragrance compounds across distant populations from dissimilar habitats. In addition, we demonstrate that naturalized bees are attracted to and collect large quantities of triclopyr 2-butoxyethyl ester, the active ingredient of several commercially available herbicides. By comparing incidence values and consistency indices across populations, we identify putative functional compounds that may play an important role in courtship signaling in this species of orchid bee.
Eltz, Thomas; Fritzsch, Falko; Pemberton, Robert; Pringle, Elizabeth G.; Tsutsui, Neil D.
2010-01-01
Male orchid bees collect volatiles, from both floral and non-floral sources, that they expose as pheromone analogues (perfumes) during courtship display. The chemical profile of these perfumes, which includes terpenes and aromatic compounds, is both species-specific and divergent among closely related lineages. Thus, fragrance composition is thought to play an important role in prezygotic reproductive isolation in euglossine bees. However, because orchid bees acquire fragrances entirely from exogenous sources, the chemical composition of male perfumes is prone to variation due to environmental heterogeneity across habitats. We used Gas Chromatography/Mass Spectrometry (GC/MS) to characterize the perfumes of 114 individuals of the green orchid bee (Euglossa aff. viridissima) sampled from five native populations in Mesoamerica and two naturalized populations in the southeastern United States. We recorded a total of 292 fragrance compounds from hind-leg extracts, and found that overall perfume composition was different for each population. We detected a pronounced chemical dissimilarity between native (Mesoamerica) and naturalized (U.S.) populations that was driven both by proportional differences of common compounds as well as the presence of a few chemicals unique to each population group. Despite these differences, our data also revealed remarkable qualitative consistency in the presence of several major fragrance compounds across distant populations from dissimilar habitats. In addition, we demonstrate that naturalized bees are attracted to and collect large quantities of triclopyr 2-butoxyethyl ester, the active ingredient of several commercially available herbicides. By comparing incidence values and consistency indices across populations, we identify putative functional compounds that may play an important role in courtship signaling in this species of orchid bee. Electronic supplementary material The online version of this article (doi:10.1007/s10886-010-9821-3) contains supplementary material, which is available to authorized users. PMID:20623328
Long-term ecology of euglossine orchid-bees (Apidae: Euglossini) in Panama.
Roubik, D W; Ackerman, J D
1987-09-01
Abundance patterns during 6-7 years and orchid visitation were determined for 51 species of the 57 local euglossine bees. Male bees were counted at 3 chemical attractants presented in the same manner each month. Sites were separated by 75 km but included wet Atlantic forest at 500 m elevation, moist forest at 180 m near Barro Colorado Island, and cloud forest at 900 m near the Pacific ocean. 1. From 15 to 30 euglossine species of 4 genera were active in each month and site; monthly species number and general bee abundance were positively correlated. Many species had 3 annual abundance peaks (range 1-4) and were active throughout the year, but peak annual abundances rarely occurred during late wet or early dry seasons. In contrast, Eufriesea generally were present as adults only 1-2 months in a year. 2. Euglossine populations were exceptionally stable. Species at each site were more stable than any known insect population, and stability and abundance were positively associated. However, year-to-year population stability and the degree of seasonality were not correlated. Among the three sites, the more diverse (species rich) bee assemblages displayed lower stability; these were the wetter and upland sites. 3. The most abundant bees visited more orchid species. Eg. and El. each visited and average of 4 orchid species (range 0-13); Ex. and Ef. visited 0-3. Stable populations did not visit more or fewer orchid species than did unstable populations. 4. Less than 68% of species at each site visited orchid flowers; less than a few dozen of the 100-800 bees counted in a day carried orchid pollinaria. Over 20% of the euglossine species never were seen with pollinaria at any site and probably seldom visit orchids in central Panama. 5. Most bee species visited 1 or no fragrance orchids in a given habitat. Orchids tended to utilize common pollinators that seldom included more than 1 species, and they utilized stable or unstable, seasonal or aseasonal bees. However, the most stable and abundant bee, Eg. imperialis, rarely pollinated orchids; fewer than 10 of ca. 20000 bees carried pollinaria. 6. Orchids may interact primarily with discrete seasonal bee population peaks-probably the emerging adults. Although specialized orchid preferences are implicated for species that visit few or no local orchids but pollinate other species and carry pollinaria in other areas, euglossine bees do not need orchids to survive or reproduce.
Long foraging distances impose high costs on offspring production in solitary bees.
Zurbuchen, Antonia; Cheesman, Stephanie; Klaiber, Jeannine; Müller, Andreas; Hein, Silke; Dorn, Silvia
2010-05-01
1. Solitary bees are central place foragers returning to their nests several times a day with pollen and nectar to provision their brood cells. They are especially susceptible to landscape changes that lead to an increased spatial separation of suitable nesting sites and flower rich host plant stands. While knowledge of bee foraging ranges is currently growing, quantitative data on the costs of foraging flights are very scarce, although such data are crucial to understand bee population dynamics. 2. In this study, the impact of increased foraging distance on the duration of foraging bouts and on the number of brood cells provisioned per time unit was experimentally quantified in the two pollen specialist solitary bee species Hoplitis adunca and Chelostoma rapunculi. Females nesting at different sites foraged under the same environmental conditions on a single large and movable flowering host plant patch in an otherwise host plant free landscape. 3. The number of brood cells provisioned per time unit by H. adunca was found to decrease by 23%, 31% and 26% with an increase in the foraging distance by 150, 200 and 300 m, respectively. The number of brood cells provisioned by C. rapunculi decreased by 46% and 36% with an increase in the foraging distance by 500 and 600 m, respectively. 4. Contrary to expectation, a widely scattered arrangement of host plants did not result in longer mean duration of a foraging bout in H. adunca compared to a highly aggregated arrangement, which might be due to a reduced flight directionality combined with a high rate of revisitation of already depleted flowers in the aggregated plant arrangement or by a stronger competition and disturbance by other flower visitors. 5. The results of this study clearly indicate that a close neighbourhood of suitable nesting and foraging habitats is crucial for population persistence and thus conservation of endangered solitary bee species.
The conservation and restoration of wild bees.
Winfree, Rachael
2010-05-01
Bees pollinate most of the world's wild plant species and provide economically valuable pollination services to crops; yet knowledge of bee conservation biology lags far behind other taxa such as vertebrates and plants. There are few long-term data on bee populations, which makes their conservation status difficult to assess. The best-studied groups are the genus Bombus (the bumble bees), and bees in the EU generally; both of these are clearly declining. However, it is not known to what extent these groups represent the approximately 20,000 species of bees globally. As is the case for insects in general, bees are underrepresented in conservation planning and protection efforts. For example, only two bee species are on the global IUCN Red List, and no bee is listed under the U.S. Endangered Species Act, even though many bee species are known to be in steep decline or possibly extinct. At present, bee restoration occurs mainly in agricultural contexts, funded by government programs such as agri-environment schemes (EU) and the Farm Bill (USA). This is a promising approach given that many bee species can use human-disturbed habitats, and bees provide valuable pollination services to crops. However, agricultural restorations only benefit species that persist in agricultural landscapes, and they are more expensive than preserving natural habitat elsewhere. Furthermore, such restorations benefit bees in only about half of studied cases. More research is greatly needed in many areas of bee conservation, including basic population biology, bee restoration in nonagricultural contexts, and the identification of disturbance-sensitive bee species.
Mueller, Matthias Y; Moritz, Robin FA; Kraus, F Bernhard
2012-01-01
Drone aggregations are a widespread phenomenon in many stingless bee species (Meliponini), but the ultimate and proximate causes for their formation are still not well understood. One adaptive explanation for this phenomenon is the avoidance of inbreeding, which is especially detrimental for stingless bees due to the combined effects of the complementary sex-determining system and the small effective population size caused by eusociality and monandry. We analyzed the temporal genetic dynamics of a drone aggregation of the stingless bee Scaptotrigona mexicana with microsatellite markers over a time window of four weeks. We estimated the drones of the aggregation to originate from a total of 55 colonies using sibship re-construction. There was no detectable temporal genetic differentiation or sub-structuring in the aggregation. Most important, we could exclude all colonies in close proximity of the aggregation as origin of the drones in the aggregation, implicating that they originate from more distant colonies. We conclude that the diverse genetic composition and the distant origin of the drones of the S. mexicana drone congregation provides an effective mechanism to avoid mating among close relatives. PMID:22833802
Mueller, Matthias Y; Moritz, Robin Fa; Kraus, F Bernhard
2012-06-01
Drone aggregations are a widespread phenomenon in many stingless bee species (Meliponini), but the ultimate and proximate causes for their formation are still not well understood. One adaptive explanation for this phenomenon is the avoidance of inbreeding, which is especially detrimental for stingless bees due to the combined effects of the complementary sex-determining system and the small effective population size caused by eusociality and monandry. We analyzed the temporal genetic dynamics of a drone aggregation of the stingless bee Scaptotrigona mexicana with microsatellite markers over a time window of four weeks. We estimated the drones of the aggregation to originate from a total of 55 colonies using sibship re-construction. There was no detectable temporal genetic differentiation or sub-structuring in the aggregation. Most important, we could exclude all colonies in close proximity of the aggregation as origin of the drones in the aggregation, implicating that they originate from more distant colonies. We conclude that the diverse genetic composition and the distant origin of the drones of the S. mexicana drone congregation provides an effective mechanism to avoid mating among close relatives.
Switanek, Matthew; Crailsheim, Karl; Truhetz, Heimo; Brodschneider, Robert
2017-02-01
Insect pollinators are essential to global food production. For this reason, it is alarming that honey bee (Apis mellifera) populations across the world have recently seen increased rates of mortality. These changes in colony mortality are often ascribed to one or more factors including parasites, diseases, pesticides, nutrition, habitat dynamics, weather and/or climate. However, the effect of climate on colony mortality has never been demonstrated. Therefore, in this study, we focus on longer-term weather conditions and/or climate's influence on honey bee winter mortality rates across Austria. Statistical correlations between monthly climate variables and winter mortality rates were investigated. Our results indicate that warmer and drier weather conditions in the preceding year were accompanied by increased winter mortality. We subsequently built a statistical model to predict colony mortality using temperature and precipitation data as predictors. Our model reduces the mean absolute error between predicted and observed colony mortalities by 9% and is statistically significant at the 99.9% confidence level. This is the first study to show clear evidence of a link between climate variability and honey bee winter mortality. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.
Complementary crops and landscape features sustain wild bee communities.
Martins, Kyle T; Albert, Cécile H; Lechowicz, Martin J; Gonzalez, Andrew
2018-06-01
Wild bees, which are important for commercial pollination, depend on floral and nesting resources both at farms and in the surrounding landscape. Mass-flowering crops are only in bloom for a few weeks and unable to support bee populations that persist throughout the year. Farm fields and orchards that flower in succession potentially can extend the availability of floral resources for pollinators. However, it is unclear whether the same bee species or genera will forage from one crop to the next, which bees specialize on particular crops, and to what degree inter-crop visitation patterns will be mediated by landscape context. We therefore studied local- and landscape-level drivers of bee diversity and species turnover in apple orchards, blueberry fields, and raspberry fields that bloom sequentially in southern Quebec, Canada. Despite the presence of high bee species turnover, orchards and small fruit fields complemented each other phenologically by supporting two bee genera essential to their pollination: mining bees (Andrena spp.) and bumble bees (Bombus spp.). A number of bee species specialized on apple, blueberry, or raspberry blossoms, suggesting that all three crops could be used to promote regional bee diversity. Bee diversity (rarefied richness, wild bee abundance) was highest across crops in landscapes containing hedgerows, meadows, and suburban areas that provide ancillary nesting and floral resources throughout the spring and summer. Promoting phenological complementarity in floral resources at the farmstead and landscape scales is essential to sustaining diverse wild bee populations. © 2018 by the Ecological Society of America.
Requier, Fabrice; Odoux, Jean-François; Tamic, Thierry; Moreau, Nathalie; Henry, Mickaël; Decourtye, Axel; Bretagnolle, Vincent
2015-06-01
In intensive farmland habitats, pollination of wild flowers and crops may be threatened by the widespread decline of pollinators. The honey bee decline, in particular, appears to result from the combination of multiple stresses, including diseases, pathogens, and pesticides. The reduction of semi-natural habitats is also suspected to entail floral resource scarcity for bees. Yet, the seasonal dynamics and composition of the honey bee diet remains poorly documented to date. In this study, we studied the seasonal contribution of mass-flowering crops (rapeseed and sunflower) vs. other floral resources, as well as the influence of nutritional quality and landscape composition on pollen diet composition over five consecutive years. From April to October, the mass of pollen and nectar collected by honey bees followed a bimodal seasonal trend, marked by a two-month period of low food supply between the two oilseed crop mass-flowerings (ending in May for rapeseed and July for sunflower). Bees collected nectar mainly from crops while pollen came from a wide diversity of herbaceous and woody plant species in semi-natural habitats or from weeds in crops. Weed species constituted the bulk of the honey bee diet between the mass flowering crop periods (up to 40%) and are therefore suspected to play a critical role at this time period. The pollen diet composition was related to the nutritional value of the collected pollen and by the local landscape composition. Our study highlights (1) a food supply depletion period of both pollen and nectar resources during late spring, contemporaneously with the demographic peak of honey bee populations, (2) a high botanical richness of pollen diet, mostly proceeding from trees and weeds, and (3) a pollen diet composition influenced by the local landscape composition. Our results therefore support the Agri-Environmental Schemes intended to promote honey bees and beekeeping sustainability through the enhancement of flower availability in agricultural landscapes.
Ecological adaptation of diverse honey bee (Apis mellifera) populations.
Parker, Robert; Melathopoulos, Andony P; White, Rick; Pernal, Stephen F; Guarna, M Marta; Foster, Leonard J
2010-06-15
Honey bees are complex eusocial insects that provide a critical contribution to human agricultural food production. Their natural migration has selected for traits that increase fitness within geographical areas, but in parallel their domestication has selected for traits that enhance productivity and survival under local conditions. Elucidating the biochemical mechanisms of these local adaptive processes is a key goal of evolutionary biology. Proteomics provides tools unique among the major 'omics disciplines for identifying the mechanisms employed by an organism in adapting to environmental challenges. Through proteome profiling of adult honey bee midgut from geographically dispersed, domesticated populations combined with multiple parallel statistical treatments, the data presented here suggest some of the major cellular processes involved in adapting to different climates. These findings provide insight into the molecular underpinnings that may confer an advantage to honey bee populations. Significantly, the major energy-producing pathways of the mitochondria, the organelle most closely involved in heat production, were consistently higher in bees that had adapted to colder climates. In opposition, up-regulation of protein metabolism capacity, from biosynthesis to degradation, had been selected for in bees from warmer climates. Overall, our results present a proteomic interpretation of expression polymorphisms between honey bee ecotypes and provide insight into molecular aspects of local adaptation or selection with consequences for honey bee management and breeding. The implications of our findings extend beyond apiculture as they underscore the need to consider the interdependence of animal populations and their agro-ecological context.
Brettell, L. E.; Martin, S. J.
2017-01-01
The ecto-parasitic mite Varroa destructor has transformed the previously inconsequential Deformed Wing Virus (DWV) into the most important honey bee viral pathogen responsible for the death of millions of colonies worldwide. Naturally, DWV persists as a low level covert infection transmitted between nest-mates. It has long been speculated that Varroa via immunosuppression of the bees, activate a covert infection into an overt one. Here we show that despite Varroa feeding on a population of 20–40 colonies for over 30 years on the remote island of Fernando de Noronha, Brazil no such activation has occurred and DWV loads have remained at borderline levels of detection. This supports the alternative theory that for a new vector borne viral transmission cycle to start, an outbreak of an overt infection must first occur within the host. Therefore, we predict that this honey bee population is a ticking time-bomb, protected by its isolated position and small population size. This unique association between mite and bee persists due to the evolution of low Varroa reproduction rates. So the population is not adapted to tolerate Varroa and DWV, rather the viral quasispecies has simply not yet evolved the necessary mutations to produce a virulent variant. PMID:28393875
Brettell, L E; Martin, S J
2017-04-10
The ecto-parasitic mite Varroa destructor has transformed the previously inconsequential Deformed Wing Virus (DWV) into the most important honey bee viral pathogen responsible for the death of millions of colonies worldwide. Naturally, DWV persists as a low level covert infection transmitted between nest-mates. It has long been speculated that Varroa via immunosuppression of the bees, activate a covert infection into an overt one. Here we show that despite Varroa feeding on a population of 20-40 colonies for over 30 years on the remote island of Fernando de Noronha, Brazil no such activation has occurred and DWV loads have remained at borderline levels of detection. This supports the alternative theory that for a new vector borne viral transmission cycle to start, an outbreak of an overt infection must first occur within the host. Therefore, we predict that this honey bee population is a ticking time-bomb, protected by its isolated position and small population size. This unique association between mite and bee persists due to the evolution of low Varroa reproduction rates. So the population is not adapted to tolerate Varroa and DWV, rather the viral quasispecies has simply not yet evolved the necessary mutations to produce a virulent variant.
Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis.
Davis, Emily S; Murray, Tomás E; Fitzpatrick, Una; Brown, Mark J F; Paxton, Robert J
2010-11-01
Globally, there is concern over the decline of bees, an ecologically important group of pollinating insects. Genetic studies provide insights into population structure that are crucial for conservation management but that would be impossible to obtain by conventional ecological methods. Yet conservation genetic studies of bees have primarily focussed on social species rather than the more species-rich solitary bees. Here, we investigate the population structure of Colletes floralis, a rare and threatened solitary mining bee, in Ireland and Scotland using nine microsatellite loci. Genetic diversity was surprisingly as high in Scottish (Hebridean island) populations at the extreme northwestern edge of the species range as in mainland Irish populations further south. Extremely high genetic differentiation among populations was detected; multilocus F(ST) was up to 0.53, and and D(est) were even higher (maximum: 0.85 and 1.00, respectively). A pattern of isolation by distance was evident for sites separated by land. Water appears to act as a substantial barrier to gene flow yet sites separated by sea did not exhibit isolation by distance. C. floralis populations are extremely isolated and probably not in regional migration-drift equilibrium. GIS-based landscape genetic analysis reveals urban areas as a potential and substantial barrier to gene flow. Our results highlight the need for urgent site-specific management action to halt the decline of this and potentially other rare solitary bees. © 2010 Blackwell Publishing Ltd.
USDA-ARS?s Scientific Manuscript database
Pesticides are implicated in current bee declines. Wild bees that nest or forage within agroecosystems may be exposed to numerous pesticides applied throughout their life cycles, with potential additive or synergistic effects. In pollinator-dependent crops, pesticides may reduce bee populations, cre...
Watts, Stella; Sapir, Yuval; Segal, Bosmat; Dafni, Amots
2013-01-01
Background and Aims The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented. Methods Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated. Key Results The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal–low deposition pollinators, whereas honey-bees were high removal–low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas. Conclusions Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside reserves, where the bulk of Oncocyclus iris species are protected. PMID:23275630
Watts, Stella; Sapir, Yuval; Segal, Bosmat; Dafni, Amots
2013-03-01
The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented. Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated. The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal-low deposition pollinators, whereas honey-bees were high removal-low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas. Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside reserves, where the bulk of Oncocyclus iris species are protected.
Sampling bee communities using pan traps: alternative methods increase sample size
USDA-ARS?s Scientific Manuscript database
Monitoring of the status of bee populations and inventories of bee faunas require systematic sampling. Efficiency and ease of implementation has encouraged the use of pan traps to sample bees. Efforts to find an optimal standardized sampling method for pan traps have focused on pan trap color. Th...
Status of breeding and use of Russian and VSH bees world-wide
USDA-ARS?s Scientific Manuscript database
Research at the USDA Honey Bee Breeding, Genetics and Physiology Laboratory produced two types of honey bees (Apis mellifera) with resistance to Varroa destructor. Colonies of these bees host mite populations that remain small enough to allow beekeepers to eliminate or reduce miticide treatments. S...
Yao, Jianxiu; Zhu, Yu Cheng; Adamczyk, John; Luttrell, Randall
2018-07-01
Acephate (organophosphate) is frequently used to control piercing/sucking insects in field crops in southern United States, which may pose a risk to honey bees. In this study, toxicity of acephate (formulation Bracket ® 97) was examined in honey bees through feeding treatments with sublethal (pollen residue level: 0.168 mg/L) and median-lethal (LC 50 : 6.97 mg/L) concentrations. Results indicated that adult bees treated with acephate at residue concentration did not show significant increase in mortality, but esterase activity was significantly suppressed. Similarly, bees treated with binary mixtures of acephate with six formulated pesticides (all at residue dose) consistently showed lower esterase activity and body weight. Clothianidin, λ-cyhalothrin, oxamyl, tetraconazole, and chlorpyrifos may interact with acephate significantly to reduce body weight in treated bees. The dose response data (LC50: 6.97 mg/L) revealed a relatively higher tolerance to acephate in Stoneville bee population (USA) than populations elsewhere, although in general the population is still very sensitive to the organophosphate. In addition to killing 50% of the treated bees acephate (6.97 mg/L) inhibited 79.9%, 20.4%, and 29.4% of esterase, Glutathione S-transferase (GST), and acetylcholinesterase (AChE) activities, respectively, in survivors after feeding treatment for 48 h. However, P450 activity was elevated 20% in bees exposed to acephate for 48 h. Even though feeding on sublethal acephate did not kill honey bees directly, chronic toxicity to honey bee was noticeable in body weight loss and esterase suppression, and its potential risk of synergistic interactions with other formulated pesticides should not be ignored. Published by Elsevier Inc.
Chakrabarti, Priyadarshini; Sarkar, Sagartirtha; Basu, Parthiba
2018-05-01
Pesticides have been reported to be one of the major drivers in the global pollinator losses. The large-scale decline in honey bees, an important pollinator group, has resulted in comprehensive studies on honey bee colonies. Lack of information on native wild pollinators has paved the way for this study, which highlights the underlying evolutionary changes occurring in the wild honey bee populations exposed to pesticides along an agricultural intensification landscape. The study reports an increased genetic diversity in native Apis cerana Fabricius (Hymenoptera: Apidae) populations continually exposed to pesticide stress. An increased heterozygosity, evidenced by a higher electrophoretic banding pattern, was observed in the pesticide-exposed populations for two isozymes involved with xenobiotic metabolism-esterase and glucose-6-phosphate dehydrogenase. Differential banding patterns also revealed a higher percentage of polymorphic loci, number of polymorphic bands, Nei's genetic distance, etc. observed in these populations in the Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) experiments using three random decamer primers. Higher heterozygosity, being indicative of a more resistant population, implies population survival within the threshold pesticide stress. This study reports such changes for the first time in native wild Indian honey bee populations exposed to pesticides and has far-reaching implications on the population adaptability under pesticide stress.
Zayed, A; Packer, L
2007-10-01
Strong evidence exists for global declines in pollinator populations. Data on the population genetics of solitary bees, especially diet specialists, are generally lacking. We studied the population genetics of the oligolectic bee Lasioglossum oenotherae, a specialist on the pollen of evening primrose (Onagraceae), by genotyping 455 females from 15 populations across the bee's North American range at six hyper-variable microsatellite loci. We found significant levels of genetic differentiation between populations, even at small geographic scales, as well as significant patterns of isolation by distance. However, using multilocus genotype assignment tests, we detected 11 first-generation migrants indicating that L. oenotherae's sub-populations are experiencing ongoing gene flow. Southern populations of L. oenotherae were significantly more likely to deviate from Hardy-Weinberg equilibrium and from genotypic equilibrium, suggesting regional differences in gene flow and/or drift and inbreeding. Short-term N(e) estimated using temporal changes in allele frequencies in several populations ranged from approximately 223 to 960. We discuss our findings in terms of the conservation genetics of specialist pollinators, a group of considerable ecological importance.
Do managed bees drive parasite spread and emergence in wild bees?
Graystock, Peter; Blane, Edward J; McFrederick, Quinn S; Goulson, Dave; Hughes, William O H
2016-04-01
Bees have been managed and utilised for honey production for centuries and, more recently, pollination services. Since the mid 20th Century, the use and production of managed bees has intensified with hundreds of thousands of hives being moved across countries and around the globe on an annual basis. However, the introduction of unnaturally high densities of bees to areas could have adverse effects. Importation and deployment of managed honey bee and bumblebees may be responsible for parasite introductions or a change in the dynamics of native parasites that ultimately increases disease prevalence in wild bees. Here we review the domestication and deployment of managed bees and explain the evidence for the role of managed bees in causing adverse effects on the health of wild bees. Correlations with the use of managed bees and decreases in wild bee health from territories across the globe are discussed along with suggestions to mitigate further health reductions in wild bees.
Parasite pressures on feral honey bees (Apis mellifera sp.).
Thompson, Catherine E; Biesmeijer, Jacobus C; Allnutt, Theodore R; Pietravalle, Stéphane; Budge, Giles E
2014-01-01
Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty in locating and sampling colonies, which often nest in inaccessible locations such as church spires and tree tops. In addition, little is known about the provenance of feral colonies and whether they represent a reservoir of Varroa tolerant material that could be used in apiculture. Samples of forager bees were collected from paired feral and managed honey bee colonies and screened for the presence of ten honey bee pathogens and pests using qPCR. Prevalence and quantity was similar between the two groups for the majority of pathogens, however feral honey bees contained a significantly higher level of deformed wing virus than managed honey bee colonies. An assessment of the honey bee race was completed for each colony using three measures of wing venation. There were no apparent differences in wing morphometry between feral and managed colonies, suggesting feral colonies could simply be escapees from the managed population. Interestingly, managed honey bee colonies not treated for Varroa showed similar, potentially lethal levels of deformed wing virus to that of feral colonies. The potential for such findings to explain the large fall in the feral population and the wider context of the importance of feral colonies as potential pathogen reservoirs is discussed.
Viral epidemiology of the adult Apis Mellifera infested by the Varroa destructor mite.
Bernardi, Sara; Venturino, Ezio
2016-05-01
The ectoparasitic mite Varroa destructor has become one of the major worldwide threats for apiculture. Varroa destructor attacks the honey bee Apis mellifera weakening its host by sucking hemolymph. However, the damage to bee colonies is not strictly related to the parasitic action of the mite but it derives, above all, from its action as vector increasing the transmission of many viral diseases such as acute paralysis (ABPV) and deformed wing viruses (DWV), that are considered among the main causes of CCD (Colony Collapse Disorder). In this work we discuss an [Formula: see text] model that describes how the presence of the mite affects the epidemiology of these viruses on adult bees. The acronym [Formula: see text] means that the disease affects both populations. In fact it accounts for the bee and mite populations, that are each divided among the S (susceptible) and I (infected) states. We characterize the system behavior, establishing that ultimately either only healthy bees survive, or the disease becomes endemic and mites are wiped out. Another dangerous alternative is the Varroa invasion scenario with the extinction of healthy bees. The final possible configuration is the coexistence equilibrium in which honey bees share their infected hive with mites. The analysis is in line with some observed facts in natural honey bee colonies. Namely, these diseases are endemic. Further, if the mite population is present, necessarily the viral infection occurs. The findings of this study indicate that a low horizontal transmission rate of the virus among honey bees in beehives will help in protecting bee colonies from Varroa infestation and viral epidemics.
Parasite Pressures on Feral Honey Bees (Apis mellifera sp.)
Thompson, Catherine E.; Biesmeijer, Jacobus C.; Allnutt, Theodore R.; Pietravalle, Stéphane; Budge, Giles E.
2014-01-01
Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty in locating and sampling colonies, which often nest in inaccessible locations such as church spires and tree tops. In addition, little is known about the provenance of feral colonies and whether they represent a reservoir of Varroa tolerant material that could be used in apiculture. Samples of forager bees were collected from paired feral and managed honey bee colonies and screened for the presence of ten honey bee pathogens and pests using qPCR. Prevalence and quantity was similar between the two groups for the majority of pathogens, however feral honey bees contained a significantly higher level of deformed wing virus than managed honey bee colonies. An assessment of the honey bee race was completed for each colony using three measures of wing venation. There were no apparent differences in wing morphometry between feral and managed colonies, suggesting feral colonies could simply be escapees from the managed population. Interestingly, managed honey bee colonies not treated for Varroa showed similar, potentially lethal levels of deformed wing virus to that of feral colonies. The potential for such findings to explain the large fall in the feral population and the wider context of the importance of feral colonies as potential pathogen reservoirs is discussed. PMID:25126840
Kalev, Haim; Shafir, Sharoni; Sela, Ilan
2012-01-01
The mite Varroa destructor is an obligatory ectoparasite of the honey bee (Apis mellifera) and is one of the major threats to apiculture worldwide. We previously reported that honey bees fed on double-stranded RNA (dsRNA) with a sequence homologous to that of the Israeli acute paralysis virus are protected from the viral disease. Here we show that dsRNA ingested by bees is transferred to the Varroa mite and from mite on to a parasitized bee. This cross-species, reciprocal exchange of dsRNA between bee and Varroa engendered targeted gene silencing in the latter, and resulted in an over 60% decrease in the mite population. Thus, transfer of gene-silencing-triggering molecules between this invertebrate host and its ectoparasite could lead to a conceptually novel approach to Varroa control. PMID:23308063
Tuell, Julianna K; Isaacs, Rufus
2010-06-01
Wild bee conservation is regarded as essential for sustainable production of pollinator-dependent crops, yet little is known about the effects on wild bee communities of typical insect pest management programs used postbloom. We developed an insecticide program risk (IPR) index to quantify the relative risk to wild bees of insecticide programs applied to blueberry fields. This was used to determine the relationship between IPR and the abundance, diversity, and richness of wild bee communities sampled during three successive flowering seasons. In 2 of 3 yr, bee abundance and species richness declined with increasing IPR. Bee diversity declined with IPR in one of 3 yr. These results indicate that wild bee communities are negatively affected by increasingly intensive chemical pest management activities in crop fields and that interyear variability in bee populations has the potential to mask such effects in short-term studies. When several wild bee species were analyzed separately, two of three solitary and one of three social blueberry-foraging species declined with increasing IPR values, suggesting that different life histories and nesting habits may help some bee populations escape the negative effects of insecticides applied after bloom. Pollinator conservation programs aimed strictly at reducing insecticide use may have varying success, depending on the biology of the target bee species. The IPR index provides a standard method to compare pest management programs for their potential effect on wild bee communities, with broad application for use in other agricultural systems.
Levin, Sofia; Galbraith, David; Sela, Noa; Erez, Tal; Grozinger, Christina M; Chejanovsky, Nor
2017-01-01
The viral ecology of bee communities is complex, where viruses are readily shared among co-foraging bee species. Additionally, in honey bees ( Apis mellifera ), many viruses are transmitted - and their impacts exacerbated - by the parasitic Varroa destructor mite. Thus far, the viruses found to be shared across bee species and transmitted by V. destructor mites are positive-sense single-stranded RNA viruses. Recently, a negative-sense RNA enveloped virus, Apis rhabdovirus-1 (ARV-1), was found in A. mellifera honey bees in Africa, Europe, and islands in the Pacific. Here, we describe the identification - using a metagenomics approach - of ARV-1 in two bee species ( A. mellifera and Bombus impatiens ) and in V. destructor mites from populations collected in the United States and Israel. We confirmed the presence of ARV-1 in pools of A. mellifera , B. impatiens , and V. destructor from Israeli and U.S. populations by RT-PCR and found that it can reach high titers in individual honey bees and mites (10 7 -10 8 viral genomic copies per individual). To estimate the prevalence of ARV-1 in honey bee populations, we screened 104 honey bee colonies across Israel, with 21 testing ARV-1-positive. Tagged-primer-mediated RT-PCR analysis detected the presence of the positive-sense ARV-1 RNA in A. mellifera and V. destructor , indicating that ARV-1 replicates in both hosts. This is the first report of the presence of ARV-1 in B. impatiens and of the replication of a rhabdovirus in A. mellifera and V. destructor . Our data suggest that Varroa mites could act as an ARV-1 vector; however, the presence of ARV-1 in B. impatiens (which are not parasitized by Varroa ) suggests that it may not require the mite for transmission and ARV-1 may be shared among co-foraging bee species. Given that ARV-1 is found in non-Apis bee species, and because "ARV" is used for the Adelaide River virus, we propose that this virus should be called bee rhabdovirus 1 and abbreviated BRV-1. These results greatly expand our understanding of the diversity of viruses that can infect bee communities, though further analysis is required to determine how infection with this virus impacts these different hosts.
USDA-ARS?s Scientific Manuscript database
Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing serious declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possib...
Bee Mite ID - an online resource on identification of mites associated with bees of the World
USDA-ARS?s Scientific Manuscript database
Parasitic mites are known to be a factor in recent declines in bee pollinator populations. In particular, Varroa destructor, an introduced parasite and disease vector, has decimated colonies of the western honey bee, one of the most important agricultural pollinators in the world. Further, global tr...
Glaum, Paul; Simao, Maria-Carolina; Vaidya, Chatura; Fitch, Gordon; Iulinao, Benjamin
2017-05-01
Native bee populations are critical sources of pollination. Unfortunately, native bees are declining in abundance and diversity. Much of this decline comes from human land-use change. While the effects of large-scale agriculture on native bees are relatively well understood, the effects of urban development are less clear. Understanding urbanity's effect on native bees requires consideration of specific characteristics of both particular bee species and their urban landscape. We surveyed bumble-bee ( Bombus spp.) abundance and diversity in gardens across multiple urban centres in southeastern Michigan. There are significant declines in Bombus abundance and diversity associated with urban development when measured on scales in-line with Bombus flight ability. These declines are entirely driven by declines in females; males showed no response to urbanization. We hypothesize that this is owing to differing foraging strategies between the sexes, and it suggests reduced Bombus colony density in more urban areas. While urbanity reduced Bombus prevalence, results in Detroit imply that 'shrinking cities' potentially offer unique urban paradigms that must be considered when studying wild bee ecology. Results show previously unidentified differences in the effects of urbanity on female and male bumble-bee populations and suggest that urban landscapes can be managed to support native bee conservation.
Simao, Maria-Carolina; Vaidya, Chatura; Fitch, Gordon; Iulinao, Benjamin
2017-01-01
Native bee populations are critical sources of pollination. Unfortunately, native bees are declining in abundance and diversity. Much of this decline comes from human land-use change. While the effects of large-scale agriculture on native bees are relatively well understood, the effects of urban development are less clear. Understanding urbanity's effect on native bees requires consideration of specific characteristics of both particular bee species and their urban landscape. We surveyed bumble-bee (Bombus spp.) abundance and diversity in gardens across multiple urban centres in southeastern Michigan. There are significant declines in Bombus abundance and diversity associated with urban development when measured on scales in-line with Bombus flight ability. These declines are entirely driven by declines in females; males showed no response to urbanization. We hypothesize that this is owing to differing foraging strategies between the sexes, and it suggests reduced Bombus colony density in more urban areas. While urbanity reduced Bombus prevalence, results in Detroit imply that ‘shrinking cities’ potentially offer unique urban paradigms that must be considered when studying wild bee ecology. Results show previously unidentified differences in the effects of urbanity on female and male bumble-bee populations and suggest that urban landscapes can be managed to support native bee conservation. PMID:28573023
Decline and conservation of bumble bees.
Goulson, D; Lye, G C; Darvill, B
2008-01-01
Declines in bumble bee species in the past 60 years are well documented in Europe, where they are driven primarily by habitat loss and declines in floral abundance and diversity resulting from agricultural intensification. Impacts of habitat degradation and fragmentation are likely to be compounded by the social nature of bumble bees and their largely monogamous breeding system, which renders their effective population size low. Hence, populations are susceptible to stochastic extinction events and inbreeding. In North America, catastrophic declines of some bumble bee species since the 1990s are probably attributable to the accidental introduction of a nonnative parasite from Europe, a result of global trade in domesticated bumble bee colonies used for pollination of greenhouse crops. Given the importance of bumble bees as pollinators of crops and wildflowers, steps must be taken to prevent further declines. Suggested measures include tight regulation of commercial bumble bee use and targeted use of environmentally comparable schemes to enhance floristic diversity in agricultural landscapes.
In vivo and in vitro infection dynamics of honey bee viruses.
Carrillo-Tripp, Jimena; Dolezal, Adam G; Goblirsch, Michael J; Miller, W Allen; Toth, Amy L; Bonning, Bryony C
2016-02-29
The honey bee (Apis mellifera) is commonly infected by multiple viruses. We developed an experimental system for the study of such mixed viral infections in newly emerged honey bees and in the cell line AmE-711, derived from honey bee embryos. When inoculating a mixture of iflavirids [sacbrood bee virus (SBV), deformed wing virus (DWV)] and dicistrovirids [Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV)] in both live bee and cell culture assays, IAPV replicated to higher levels than other viruses despite the fact that SBV was the major component of the inoculum mixture. When a different virus mix composed mainly of the dicistrovirid Kashmir bee virus (KBV) was tested in cell culture, the outcome was a rapid increase in KBV but not IAPV. We also sequenced the complete genome of an isolate of DWV that covertly infects the AmE-711 cell line, and found that this virus does not prevent IAPV and KBV from accumulating to high levels and causing cytopathic effects. These results indicate that different mechanisms of virus-host interaction affect virus dynamics, including complex virus-virus interactions, superinfections, specific virus saturation limits in cells and virus specialization for different cell types.
USDA-ARS?s Scientific Manuscript database
A good understanding of pathogen transmission in a host population should illuminate methods for disease prevention and control. A case in point for this is the alfalfa leafcutting bee (Megachile rotundata), a solitary bee which is used extensively for pollination of alfalfa grown for seed. Propaga...
Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite
Mikheyev, Alexander S.; Tin, Mandy M. Y.; Arora, Jatin; Seeley, Thomas D.
2015-01-01
Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation. PMID:26246313
Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite.
Mikheyev, Alexander S; Tin, Mandy M Y; Arora, Jatin; Seeley, Thomas D
2015-08-06
Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation.
Bosch, J; Bosch, J; Kemp, W P
2002-02-01
The development of a bee species as a new crop pollinator starts with the identification of a pollination-limited crop production deficit and the selection of one or more candidate pollinator species. The process continues with a series of studies on the developmental biology, pollinating efficacy, nesting behaviour, preference for different nesting substrates, and population dynamics of the candidate pollinator. Parallel studies investigate the biology of parasites, predators and pathogens. The information gained in these studies is combined with information on the reproductive biology of the crop to design a management system. Complete management systems should provide guidelines on rearing and releasing methods, bee densities required for adequate pollination, nesting materials, and control against parasites, predators and pathogens. Management systems should also provide methods to ensure a reliable pollinator supply. Pilot tests on a commercial scale are then conducted to test and eventually refine the management system. The process culminates with the delivery of a viable system to manage and sustain the new pollinator on a commercial scale. The process is illustrated by the development of three mason bees, Osmia cornifrons (Radoszkowski), O. lignaria Say and O. cornuta (Latreille) as orchard pollinators in Japan, the USA and Europe, respectively.
Sampson, B J; Rinehart, T A; Kirker, G T; Stringer, S J; Werle, C T
2015-12-01
We investigated fitness in natural populations of a managed solitary bee Osmia ribifloris Cockerell (Hymenoptera: Megachilidae) from sites separated from 400 to 2,700 km. Parental wild bees originated in central Texas (TX), central-northern Utah (UT), and central California (CA). They were then intercrossed and raised inside a mesh enclosure in southern Mississippi (MS). Females from all possible mated pairs of O. ribifloris produced F1 broods with 30-40% female cocoons and outcrossed progeny were 30% heavier. Mitochondrial (COI) genomes of the four populations revealed three distinct clades, a TX-CA clade, a UT clade, and an MS clade, the latter (MS) representing captive progeny of CA and UT bees. Although classified as separate subspecies, TX and CA populations from 30° N to 38° N latitude shared 98% similarity in COI genomes and the greatest brood biomass per nest straw (600- to 700-mg brood). Thus, TX and CA bees show greater adaptation for southern U.S. sites. In contrast, UT-sourced bees were more distantly related to TX and CA bees and also produced ∼50% fewer brood. These results, taken together, confirm that adult O. ribifloris from all trap-nest sites are genetically compatible, but some phenotypic variation exists that could affect this species performance as a commercial blueberry pollinator. Males, their sperm, or perhaps a substance in their sperm helped stabilize our captive bee population by promoting legitimate nesting over nest usurpation. Otherwise, without insemination, 50% fewer females nested (they nested 14 d late) and 20% usurped nests, killing 33-67% of brood in affected nests. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
Liu, Hong; Pemberton, Robert W
2009-03-01
Our understanding of the effects of introduced invasive pollinators on plants has been exclusively drawn from studies on introduced social bees. One might expect, however, that the impacts of introduced solitary bees, with much lower population densities and fewer foragers, would be small. Yet little is known about the potential effects of naturalized solitary bees on the environment. We took advantage of the recent naturalization of an orchid bee, Euglossa viridissima, in southern Florida to study the effects of this solitary bee on reproduction of Solanum torvum, an invasive shrub. Flowers of S. torvum require specialized buzz pollination. Through timed floral visitor watches and two pollination treatments (control and pollen supplementation) at three forest edge and three open area sites, we found that the fruit set of S. torvum was pollen limited at the open sites where the native bees dominate, but was not pollen limited at the forest sites where the invasive orchid bees dominate. The orchid bee's pollination efficiency was nearly double that of the native halictid bees, and was also slightly higher than that of the native carpenter bee. Experiments using small and large mesh cages (to deny or allow E. viridissima access, respectively) at one forest site indicated that when the orchid bee was excluded, the flowers set one-quarter as many fruit as when the bee was allowed access. The orchid bee was the most important pollinator of the weed at the forest sites, which could pose additional challenges to the management of this weed in the fragmented, endangered tropical hardwood forests in the region. This specialized invasive mutualism may promote populations of both the orchid bee and this noxious weed. Invasive solitary bees, particularly species that are specialized pollinators, appear to have more importance than has previously been recognized.
Li, Zhiguo; Su, Songkun; Hamilton, Michele; Yan, Limin; Chen, Yanping
2014-07-01
We demonstrated that honey bee viruses including Deformed wing virus (DWV), Black queen cell virus (BQCV) and Israeli acute paralysis virus (IAPV) could infect and replicate in the fungal pathogen Ascosphaera apis that causes honey bee chalkbrood disease, revealing a novel biological feature of honey bee viruses. The phylogenetic analysis show that viruses of fungal and honey bee origins form two clusters in the phylogenetic trees distinctly and that host range of honey bee viruses is dynamic. Further studies are warranted to investigate the impact of the viruses on the fitness of their fungal host and phenotypic effects the virus-fungus combination has on honey bee hosts. Published by Elsevier Inc.
The African honey bee: factors contributing to a successful biological invasion.
Scott Schneider, Stanley; DeGrandi-Hoffman, Gloria; Smith, Deborah Roan
2004-01-01
The African honey bee subspecies Apis mellifera scutellata has colonized much of the Americas in less than 50 years and has largely replaced European bees throughout its range in the New World. The African bee therefore provides an excellent opportunity to examine the factors that influence invasion success. We provide a synthesis of recent research on the African bee, concentrating on its ability to displace European honey bees. Specifically, we consider (a) the genetic composition of the expanding population and the symmetry of gene flow between African and European bees, (b) the mechanisms that favor the preservation of the African genome, and (c) the possible range and impact of the African bee in the United States.
Williams, Neal M; Kremen, Claire
2007-04-01
Within mosaic landscapes, many organisms depend on attributes of the environment that operate over scales ranging from a single habitat patch to the entire landscape. One such attribute is resource distribution. Organisms' reliance on resources from within a local patch vs. those found among habitats throughout the landscape will depend on local habitat quality, patch quality, and landscape composition. The ability of individuals to move among complementary habitat types to obtain various resources may be a critical mechanism underlying the dynamics of animal populations and ultimately the level of biodiversity at different spatial scales. We examined the effects that local habitat type and landscape composition had on offspring production and survival of the solitary bee Osmia lignaria in an agri-natural landscape in California (U.S.A.). Female bees were placed on farms that did not use pesticides (organic farms), on farms that did use pesticides (conventional farms), or in seminatural riparian habitats. We identified pollens collected by bees nesting in different habitat types and matched these to pollens of flowering plants from throughout the landscape. These data enabled us to determine the importance of different plant species and habitat types in providing food for offspring, and how this importance changed with landscape and local nesting-site characteristics. We found that increasing isolation from natural habitat significantly decreased offspring production and survival for bees nesting at conventional farms, had weaker effects on bees in patches of seminatural habitat, and had little impact on those at organic farm sites. Pollen sampled from nests showed that females nesting in both farm and seminatural habitats relied on pollen from principally native plant species growing in seminatural habitat. Thus connectivity among habitats was critical for offspring production. Females nesting on organic farms were buffered to isolation effects by switching to floral resources growing at the farm site when seminatural areas were too distant. Overall local habitat conditions (farm management practices) can help bolster pollinators, but maintaining functional connectivity among habitats will likely be critical for persistence of pollinator populations as natural habitats are increasingly fragmented by human activities.
Microbiome structure influences infection by the parasite Crithidia bombi in bumble bees.
Mockler, Blair K; Kwong, Waldan K; Moran, Nancy A; Koch, Hauke
2018-01-26
Recent declines in bumble bee populations are of great concern, and have prompted critical evaluations of the role of pathogen introductions and host resistance in bee health. One factor that may influence host resilience when facing infection is the gut microbiota. Previous experiments with Bombus terrestris , a European bumble bee, showed that the gut microbiota can protect against Crithidia bombi , a widespread trypanosomatid parasite of bumble bees. However, the particular characteristics of the microbiome responsible for this protective effect have thus far eluded identification. Using wild and commercially-sourced Bombus impatiens , an important North American pollinator, we conducted cross-wise microbiota transplants to naïve hosts of both backgrounds, and challenged them with Crithidia As with B. terrestris , we find that microbiota-dependent protection against Crithidia operates in B. impatiens Lower Crithidia infection loads were experimentally associated with high microbiome diversity, large gut bacterial populations, and the presence of Apibacter , Lactobacillus Firm-5, and Gilliamella in the gut community. These results indicate that even subtle differences between gut community structures can have a significant impact on the microbiome's ability to defend against parasite infections. Importance Many wild bumble bee populations are under threat by human activity, including through introductions of pathogens via commercially-raised bees. Recently, it was found that the bumble bee gut microbiota can help defend against a common parasite, Crithidia bombi , but the particular factors contributing to this protection are unknown. Using both wild and commercially-raised bees, we conduct microbiota transplants to show that microbiome diversity, total gut bacterial load, and the presence of certain core members of the microbiota may all impact bee susceptibility to Crithidia infection. Bee origin (genetic background) was also a factor. Finally, by examining this phenomenon in a previously uninvestigated bee species, our study demonstrates that microbiome-mediated resistance to Crithidia is conserved across multiple bumble bee species. These findings highlight how intricate interactions between hosts, microbiomes, and parasites can have wide-ranging consequences for the health of ecologically important species. Copyright © 2018 American Society for Microbiology.
Highly Dynamic and Adaptive Traffic Congestion Avoidance in Real-Time Inspired by Honey Bee Behavior
NASA Astrophysics Data System (ADS)
Wedde, Horst F.; Lehnhoff, Sebastian; van Bonn, Bernhard; Bay, Z.; Becker, S.; Böttcher, S.; Brunner, C.; Büscher, A.; Fürst, T.; Lazarescu, A. M.; Rotaru, E.; Senge, S.; Steinbach, B.; Yilmaz, F.; Zimmermann, T.
Traffic congestions have become a major problem in metropolitan areas world-wide, within and between cities, to an extent where they make driving and transportation times largely unpredictable. Due to the highly dynamic character of congestion building and dissolving this phenomenon appears even to resist a formal treatment. Static approaches, and even more their global management, have proven counterproductive in practice. Given the latest progress in VANET technology and the remarkable commercially driven efforts like in the European C2C consortium, or the VSC Project in the US, allow meanwhile to tackle various aspects of traffic regulation through VANET communication. In this paper we introduce a novel, completely decentralized multi-agent routing algorithm (termed BeeJamA) which we have derived from the foraging behavior of honey bees. It is highly dynamic, adaptive, robust, and scalable, and it allows for both avoiding congestions, and minimizing traveling times to individual destinations. Vehicle guidance is provided well ahead of every intersection, depending on the individual speeds. Thus strict deadlines are imposed on, and respected by, the BeeJamA algorithm. We report on extensive simulation experiments which show the superior performance of BeeJamA over conventional approaches.
Effects of invasive parasites on bumble bee declines.
Meeus, Ivan; Brown, Mark J F; De Graaf, Dirk C; Smagghe, Guy
2011-08-01
Bumble bees are a group of pollinators that are both ecologically and economically important and declining worldwide. Numerous mechanisms could be behind this decline, and the spread of parasites from commercial colonies into wild populations has been implicated recently in North America. Commercial breeding may lead to declines because commercial colonies may have high parasite loads, which can lead to colonization of native bumble bee populations; commercial rearing may allow higher parasite virulence to evolve; and global movement of commercial colonies may disrupt spatial patterns in local adaptation between hosts and parasites. We assessed parasite virulence, transmission mode, and infectivity. Microparasites and so-called honey bee viruses may pose the greatest threat to native bumble bee populations because certain risk factors are present; for example, the probability of horizontal transmission of the trypanosome parasite Crithidia bombi is high. The microsporidian parasite Nosema bombi may play a role in declines of bumble bees in the United States. Preliminary indications that C. bombi and the neogregarine Apicystis bombi may not be native in parts of South America. We suggest that the development of molecular screening protocols, thorough sanitation efforts, and cooperation among nongovernmental organizations, governments, and commercial breeders might immediately mitigate these threats. © 2011 Society for Conservation Biology.
Bees brought to their knees: microbes affecting honey bee health.
Evans, Jay D; Schwarz, Ryan S
2011-12-01
The biology and health of the honey bee Apis mellifera has been of interest to human societies for centuries. Research on honey bee health is surging, in part due to new tools and the arrival of colony-collapse disorder (CCD), an unsolved decline in bees from parts of the United States, Europe, and Asia. Although a clear understanding of what causes CCD has yet to emerge, these efforts have led to new microbial discoveries and avenues to improve our understanding of bees and the challenges they face. Here we review the known honey bee microbes and highlight areas of both active and lagging research. Detailed studies of honey bee-pathogen dynamics will help efforts to keep this important pollinator healthy and will give general insights into both beneficial and harmful microbes confronting insect colonies. Copyright © 2011. Published by Elsevier Ltd.
Impacts of Austrian Climate Variability on Honey Bee Mortality
NASA Astrophysics Data System (ADS)
Switanek, Matt; Brodschneider, Robert; Crailsheim, Karl; Truhetz, Heimo
2015-04-01
Global food production, as it is today, is not possible without pollinators such as the honey bee. It is therefore alarming that honey bee populations across the world have seen increased mortality rates in the last few decades. The challenges facing the honey bee calls into question the future of our food supply. Beside various infectious diseases, Varroa destructor is one of the main culprits leading to increased rates of honey bee mortality. Varroa destructor is a parasitic mite which strongly depends on honey bee brood for reproduction and can wipe out entire colonies. However, climate variability may also importantly influence honey bee breeding cycles and bee mortality rates. Persistent weather events affects vegetation and hence foraging possibilities for honey bees. This study first defines critical statistical relationships between key climate indicators (e.g., precipitation and temperature) and bee mortality rates across Austria, using 6 consecutive years of data. Next, these leading indicators, as they vary in space and time, are used to build a statistical model to predict bee mortality rates and the respective number of colonies affected. Using leave-one-out cross validation, the model reduces the Root Mean Square Error (RMSE) by 21% with respect to predictions made with the mean mortality rate and the number of colonies. Furthermore, a Monte Carlo test is used to establish that the model's predictions are statistically significant at the 99.9% confidence level. These results highlight the influence of climate variables on honey bee populations, although variability in climate, by itself, cannot fully explain colony losses. This study was funded by the Austrian project 'Zukunft Biene'.
Pitts-Singer, Theresa L; Bosch, Jordi
2010-02-01
The alfalfa leafcutting bee, Megachile rotundata (Fabricius), is used to pollinate alfalfa, Medicago sativa L., for seed production in the United States and Canada. It is difficult to reliably sustain commercial M. rotundata populations in the United States because of problems with disease, parasites, predators, and unexplained mortality. One possible explanation for early immature mortality is that, relative to floral availability, superfluous numbers of bees are released in alfalfa fields where resources quickly become limited. Our objective was to determine how M. rotundata density affects bee nesting, pollination efficiency, and reproductive success. Various numbers of bees were released into enclosures on an alfalfa field, but only 10-90% of released female bees established nests. Therefore, a "bee density index" was derived for each enclosure from the number of established females and number of open flowers over time. As the density index increased, significant reductions occurred in the number of pollinated flowers, number of nests, and number of cells produced per bee, as well as the percentage of cells that produced viable prepupae by summer's end and the percentage that produced adult bees. The percentage of cells resulting in early brood mortality (i.e., pollen balls) significantly increased as the density index increased. We conclude that bee nest establishment, pollination efficiency, and reproductive success are compromised when bee densities are high relative to floral resource availability. Open field studies are needed to determine commercial bee densities that result in sustainable bee populations and adequate pollination for profitable alfalfa seed production.
Ascher, John S.; Holway, David A.
2017-01-01
Despite a large number of ecological studies that document diversity loss resulting from anthropogenic disturbance, surprisingly few consider how disturbance affects temporal patterns of diversity that result from seasonal turnover of species. Temporal dynamics can play an important role in the structure and function of biological assemblages. Here, we investigate the temporal diversity patterns of bee faunas in Southern California coastal sage scrub ecosystems that have been extensively fragmented by urbanization. Using a two-year dataset of 235 bee species (n = 12,036 specimens), we compared 1-ha plots in scrub fragments and scrub reserves with respect to three components of temporal diversity: overall plot-level diversity pooled over time (temporal gamma diversity), diversity at discrete points in time (temporal alpha diversity), and seasonal turnover in assemblage composition (temporal beta diversity). Compared to reserves, fragments harbored bee assemblages with lower species richness and assemblage evenness both when summed across temporal samples (i.e., lower temporal gamma diversity) and at single points in time (i.e., lower temporal alpha diversity). Bee assemblages in fragments also exhibited reduced seasonal turnover (i.e., lower temporal beta diversity). While fragments and reserves did not differ in overall bee abundance, bee abundance in fragments peaked later in the season compared to that in reserves. Our results argue for an increased awareness of temporal diversity patterns, as information about the distinct components of temporal diversity is essential both for characterizing the assemblage dynamics of seasonal organisms and for identifying potential impacts of anthropogenic disturbance on ecosystem function through its effects on assemblage dynamics. PMID:28854229
Colony Collapse Disorder: A Descriptive Study
vanEngelsdorp, Dennis; Evans, Jay D.; Saegerman, Claude; Mullin, Chris; Haubruge, Eric; Nguyen, Bach Kim; Frazier, Maryann; Frazier, Jim; Cox-Foster, Diana; Chen, Yanping; Underwood, Robyn; Tarpy, David R.; Pettis, Jeffery S.
2009-01-01
Background Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L.) colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD) because the main trait was a rapid loss of adult worker bees. We initiated a descriptive epizootiological study in order to better characterize CCD and compare risk factor exposure between populations afflicted by and not afflicted by CCD. Methods and Principal Findings Of 61 quantified variables (including adult bee physiology, pathogen loads, and pesticide levels), no single measure emerged as a most-likely cause of CCD. Bees in CCD colonies had higher pathogen loads and were co-infected with a greater number of pathogens than control populations, suggesting either an increased exposure to pathogens or a reduced resistance of bees toward pathogens. Levels of the synthetic acaricide coumaphos (used by beekeepers to control the parasitic mite Varroa destructor) were higher in control colonies than CCD-affected colonies. Conclusions/Significance This is the first comprehensive survey of CCD-affected bee populations that suggests CCD involves an interaction between pathogens and other stress factors. We present evidence that this condition is contagious or the result of exposure to a common risk factor. Potentially important areas for future hypothesis-driven research, including the possible legacy effect of mite parasitism and the role of honey bee resistance to pesticides, are highlighted. PMID:19649264
Colony collapse disorder: a descriptive study.
Vanengelsdorp, Dennis; Evans, Jay D; Saegerman, Claude; Mullin, Chris; Haubruge, Eric; Nguyen, Bach Kim; Frazier, Maryann; Frazier, Jim; Cox-Foster, Diana; Chen, Yanping; Underwood, Robyn; Tarpy, David R; Pettis, Jeffery S
2009-08-03
Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L.) colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD) because the main trait was a rapid loss of adult worker bees. We initiated a descriptive epizootiological study in order to better characterize CCD and compare risk factor exposure between populations afflicted by and not afflicted by CCD. Of 61 quantified variables (including adult bee physiology, pathogen loads, and pesticide levels), no single measure emerged as a most-likely cause of CCD. Bees in CCD colonies had higher pathogen loads and were co-infected with a greater number of pathogens than control populations, suggesting either an increased exposure to pathogens or a reduced resistance of bees toward pathogens. Levels of the synthetic acaricide coumaphos (used by beekeepers to control the parasitic mite Varroa destructor) were higher in control colonies than CCD-affected colonies. This is the first comprehensive survey of CCD-affected bee populations that suggests CCD involves an interaction between pathogens and other stress factors. We present evidence that this condition is contagious or the result of exposure to a common risk factor. Potentially important areas for future hypothesis-driven research, including the possible legacy effect of mite parasitism and the role of honey bee resistance to pesticides, are highlighted.
Rapid parallel evolution overcomes global honey bee parasite.
Oddie, Melissa; Büchler, Ralph; Dahle, Bjørn; Kovacic, Marin; Le Conte, Yves; Locke, Barbara; de Miranda, Joachim R; Mondet, Fanny; Neumann, Peter
2018-05-16
In eusocial insect colonies nestmates cooperate to combat parasites, a trait called social immunity. However, social immunity failed for Western honey bees (Apis mellifera) when the ectoparasitic mite Varroa destructor switched hosts from Eastern honey bees (Apis cerana). This mite has since become the most severe threat to A. mellifera world-wide. Despite this, some isolated A. mellifera populations are known to survive infestations by means of natural selection, largely by supressing mite reproduction, but the underlying mechanisms of this are poorly understood. Here, we show that a cost-effective social immunity mechanism has evolved rapidly and independently in four naturally V. destructor-surviving A. mellifera populations. Worker bees of all four 'surviving' populations uncapped/recapped worker brood cells more frequently and targeted mite-infested cells more effectively than workers in local susceptible colonies. Direct experiments confirmed the ability of uncapping/recapping to reduce mite reproductive success without sacrificing nestmates. Our results provide striking evidence that honey bees can overcome exotic parasites with simple qualitative and quantitative adaptive shifts in behaviour. Due to rapid, parallel evolution in four host populations this appears to be a key mechanism explaining survival of mite infested colonies.
Chávez-Galarza, Julio; Henriques, Dora; Johnston, J Spencer; Carneiro, Miguel; Rufino, José; Patton, John C; Pinto, M Alice
2015-06-01
Dissecting diversity patterns of organisms endemic to Iberia has been truly challenging for a variety of taxa, and the Iberian honey bee is no exception. Surveys of genetic variation in the Iberian honey bee are among the most extensive for any honey bee subspecies. From these, differential and complex patterns of diversity have emerged, which have yet to be fully resolved. Here, we used a genome-wide data set of 309 neutrally tested single nucleotide polymorphisms (SNPs), scattered across the 16 honey bee chromosomes, which were genotyped in 711 haploid males. These SNPs were analysed along with an intergenic locus of the mtDNA, to reveal historical patterns of population structure across the entire range of the Iberian honey bee. Overall, patterns of population structure inferred from nuclear loci by multiple clustering approaches and geographic cline analysis were consistent with two major clusters forming a well-defined cline that bisects Iberia along a northeastern-southwestern axis, a pattern that remarkably parallels that of the mtDNA. While a mechanism of primary intergradation or isolation by distance could explain the observed clinal variation, our results are more consistent with an alternative model of secondary contact between divergent populations previously isolated in glacial refugia, as proposed for a growing list of other Iberian taxa. Despite current intense honey bee management, human-mediated processes have seemingly played a minor role in shaping Iberian honey bee genetic structure. This study highlights the complexity of the Iberian honey bee patterns and reinforces the importance of Iberia as a reservoir of Apis mellifera diversity. © 2015 John Wiley & Sons Ltd.
DeGrandi-Hoffman, Gloria; Ahumada, Fabiana; Danka, Robert; Chambers, Mona; DeJong, Emily Watkins; Hidalgo, Geoff
2017-06-01
Varroa (Varroa destructor Anderson and Trueman) is an external parasite of honey bees (Apis mellifera L.) and a leading cause of colony losses worldwide. Varroa populations can be controlled with miticides, but mite-resistant stocks such as the Russian honey bee (RHB) also are available. Russian honey bee and other mite-resistant stocks limit Varroa population growth by affecting factors that contribute to mite reproduction. However, mite population growth is not entirely due to reproduction. Numbers of foragers with mites (FWM) entering and leaving hives also affect the growth of mite populations. If FWM significantly contribute to Varroa population growth, mite numbers in RHB colonies might not differ from unselected lines (USL). Foragers with mites were monitored at the entrances of RHB and USL hives from August to November, 2015, at two apiary sites. At site 1, RHB colonies had fewer FWM than USL and smaller phoretic mite populations. Russian honey bee also had fewer infested brood cells and lower percentages with Varroa offspring than USL. At site 2, FWM did not differ between RHB and USL, and phoretic mite populations were not significantly different. At both sites, there were sharp increases in phoretic mite populations from September to November that corresponded with increasing numbers of FWM. Under conditions where FWM populations are similar between RHB and USL, attributes that contribute to mite resistance in RHB may not keep Varroa population levels below that of USL. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
Hartmann, Ulrike; Forsgren, Eva; Charrière, Jean-Daniel; Neumann, Peter; Gauthier, Laurent
2015-05-22
Apis mellifera filamentous virus (AmFV) is a large double stranded DNA virus of honey bees, but its relationship with other parasites and prevalence are poorly known. We analyzed individual honey bees from three colonies at different times post emergence in order to monitor the dynamics of the AmFV gut colonization under natural conditions. Prevalence and loads of microsporidia and trypanosomes were also recorded, as well as five common honey bee RNA viruses. The results show that a high proportion of bees get infected with AmFV during the first week post-emergence (75%) and that AmFV DNA levels remained constant. A similar pattern was observed for microsporidia while trypanosomes seem to require more time to colonize the gut. No significant associations between these three infections were found, but significant positive correlations were observed between AmFV and RNA viruses. In parallel, the prevalence of AmFV in France and Sweden was assessed from pooled honey bee workers. The data indicate that AmFV is almost ubiquitous, and does not seem to follow seasonal patterns, although higher viral loads were significantly detected in spring. A high prevalence of AmFV was also found in winter bees, without obvious impact on overwintering of the colonies.
Hartmann, Ulrike; Forsgren, Eva; Charrière, Jean-Daniel; Neumann, Peter; Gauthier, Laurent
2015-01-01
Apis mellifera filamentous virus (AmFV) is a large double stranded DNA virus of honey bees, but its relationship with other parasites and prevalence are poorly known. We analyzed individual honey bees from three colonies at different times post emergence in order to monitor the dynamics of the AmFV gut colonization under natural conditions. Prevalence and loads of microsporidia and trypanosomes were also recorded, as well as five common honey bee RNA viruses. The results show that a high proportion of bees get infected with AmFV during the first week post-emergence (75%) and that AmFV DNA levels remained constant. A similar pattern was observed for microsporidia while trypanosomes seem to require more time to colonize the gut. No significant associations between these three infections were found, but significant positive correlations were observed between AmFV and RNA viruses. In parallel, the prevalence of AmFV in France and Sweden was assessed from pooled honey bee workers. The data indicate that AmFV is almost ubiquitous, and does not seem to follow seasonal patterns, although higher viral loads were significantly detected in spring. A high prevalence of AmFV was also found in winter bees, without obvious impact on overwintering of the colonies. PMID:26008705
Routes of pesticide exposure in solitary, cavity-nesting bees
USDA-ARS?s Scientific Manuscript database
The declines of pollinator health and populations are a current commercial and ecological concern. In particular, challenges related to maintaining healthy commercial honey bee (Apis mellifera L.) populations continue. Agricultural practices, such as the use of agrochemicals, are among factors that ...
USDA-ARS?s Scientific Manuscript database
Varroa mites are a serious pest of honey bees and the leading cause of colony losses. Varroa have relatively low reproductive rates, so populations should not increase rapidly, but often they do. Other factors might contribute to the growth of Varroa populations including mite migration into colonie...
Aquino, Italo S; Abramson, Charles I; Soares, Ademilson E E; Fernandes, Andrea Cardoso; Benbassat, Danny
2004-06-01
Experiments are reported on learning in virgin Africanized honey bee queens (Apis mellifera L.). Queens restrained in a "Pavlovian harness" received a pairing of hexanal odor with a 1.8-M feeding of sucrose solution. Compared to explicitly unpaired controls, acquisition was rapid in reaching about 90%. Acquisition was also rapid in queens receiving an unconditioned stimulus of "bee candy" or an unconditioned stimulus administered by worker bees. During extinction the conditioned response declines. The steepest decline was observed in queens receiving an unconditioned stimulus of bee candy. These findings extend previous work on learning of Afrianized honey bee workers to a population of queen bees.
Moeller, David A; Geber, Monica A; Eckhart, Vincent M; Tiffin, Peter
2012-05-01
Mutualisms are well known to influence individual fitness and the population dynamics of partner species, but little is known about whether they influence species distributions and the location of geographic range limits. Here, we examine the contribution of plant-pollinator interactions to the geographic range limit of the California endemic plant Clarkia xantiana ssp. xantiana. We show that pollinator availability declined from the center to the margin of the geographic range consistently across four years of study. This decline in pollinator availability was caused to a greater extent by variation in the abundance of generalist rather than specialist bee pollinators. Climate data suggest that patterns of precipitation in the current and previous year drove variation in bee abundance because of its effects on cues for bee emergence in the current year and the abundance of floral resources in the previous year. Experimental floral manipulations showed that marginal populations had greater outcross pollen limitation of reproduction, in parallel with the decline in pollinator abundance. Although plants are self-compatible, we found no evidence that autonomous selfing contributes to reproduction, and thus no evidence that it alleviates outcross pollen limitation in marginal populations. Furthermore, we found no association between the distance to the range edge and selfing rate, as estimated from sequence and microsatellite variation, indicating that the mating system has not evolved in response to the pollination environment at the range periphery. Overall, our results suggest that dependence on pollinators for reproduction may be an important constraint limiting range expansion in this system.
Schöning, Caspar
2017-01-01
Understanding the genetic basis of adaption is a central task in biology. Populations of the honey bee Apis mellifera that inhabit the mountain forests of East Africa differ in behavior and morphology from those inhabiting the surrounding lowland savannahs, which likely reflects adaptation to these habitats. We performed whole genome sequencing on 39 samples of highland and lowland bees from two pairs of populations to determine their evolutionary affinities and identify the genetic basis of these putative adaptations. We find that in general, levels of genetic differentiation between highland and lowland populations are very low, consistent with them being a single panmictic population. However, we identify two loci on chromosomes 7 and 9, each several hundred kilobases in length, which exhibit near fixation for different haplotypes between highland and lowland populations. The highland haplotypes at these loci are extremely rare in samples from the rest of the world. Patterns of segregation of genetic variants suggest that recombination between haplotypes at each locus is suppressed, indicating that they comprise independent structural variants. The haplotype on chromosome 7 harbors nearly all octopamine receptor genes in the honey bee genome. These have a role in learning and foraging behavior in honey bees and are strong candidates for adaptation to highland habitats. Molecular analysis of a putative breakpoint indicates that it may disrupt the coding sequence of one of these genes. Divergence between the highland and lowland haplotypes at both loci is extremely high suggesting that they are ancient balanced polymorphisms that greatly predate divergence between the extant honey bee subspecies. PMID:28542163
Railway Embankments as New Habitat for Pollinators in an Agricultural Landscape
Moroń, Dawid; Skórka, Piotr; Lenda, Magdalena; Rożej-Pabijan, Elżbieta; Wantuch, Marta; Kajzer-Bonk, Joanna; Celary, Waldemar; Mielczarek, Łukasz Emil; Tryjanowski, Piotr
2014-01-01
Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (semi)natural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments) in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies) when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated) ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground. PMID:25054427
Techer, Maéva Angélique; Clémencet, Johanna; Simiand, Christophe; Turpin, Patrick; Garnery, Lionel; Reynaud, Bernard; Delatte, Hélène
2017-01-01
With globalization the Western honey bee has become a nearly cosmopolitan species, but it was originally restricted to the Old World. This renowned model of biodiversity has diverged into five evolutionary lineages and several geographic "subspecies." If Apis mellifera unicolor is indubitably an African subspecies endemic to Madagascar, its relationship with honey bees from three archipelagos in the southwest Indian Ocean (SWIO) hotspot of biodiversity is misunderstood. We compared recent mtDNA diversity data to an original characterization of the nuclear diversity from honey bees in the Mascarenes and Comoros archipelagos, using 14 microsatellites, but also additional mtDNA tRNALeu-cox2 analysis. Our sampling offers the most comprehensive dataset for the SWIO populations with a total of 3,270 colonies from 10 islands compared with 855 samples from Madagascar, 113 from Africa, and 138 from Europe. Comprehensive mitochondrial screening confirmed that honey bees from La Réunion, Mauritius, and Comoros archipelagos are mainly of African origin (88.1% out of 2,746 colonies) and that coexistence with European lineages occurs only in the Mascarenes. PCA, Bayesian, and genetic differentiation analysis showed that African colonies are not significantly distinct on each island, but have diversified among islands and archipelagos. FST levels progressively decreased in significance from European and African continental populations, to SWIO insular and continental populations, and finally among islands from the same archipelago. Among African populations, Madagascar shared a nuclear background with and was most closely related to SWIO island populations (except Rodrigues). Only Mauritius Island presented clear cytoplasmic disequilibrium and genetic structure characteristic of an admixed population undergoing hybridization, in this case, between A. m. unicolor and A. m. ligustica, A. m. carnica and A. m. mellifera-like individuals. Finally, global genetic clustering analysis helped to better depict the colonization and introduction pattern of honey bee populations in these archipelagos.
Clémencet, Johanna; Simiand, Christophe; Turpin, Patrick; Garnery, Lionel; Reynaud, Bernard; Delatte, Hélène
2017-01-01
With globalization the Western honey bee has become a nearly cosmopolitan species, but it was originally restricted to the Old World. This renowned model of biodiversity has diverged into five evolutionary lineages and several geographic “subspecies.” If Apis mellifera unicolor is indubitably an African subspecies endemic to Madagascar, its relationship with honey bees from three archipelagos in the southwest Indian Ocean (SWIO) hotspot of biodiversity is misunderstood. We compared recent mtDNA diversity data to an original characterization of the nuclear diversity from honey bees in the Mascarenes and Comoros archipelagos, using 14 microsatellites, but also additional mtDNA tRNALeu-cox2 analysis. Our sampling offers the most comprehensive dataset for the SWIO populations with a total of 3,270 colonies from 10 islands compared with 855 samples from Madagascar, 113 from Africa, and 138 from Europe. Comprehensive mitochondrial screening confirmed that honey bees from La Réunion, Mauritius, and Comoros archipelagos are mainly of African origin (88.1% out of 2,746 colonies) and that coexistence with European lineages occurs only in the Mascarenes. PCA, Bayesian, and genetic differentiation analysis showed that African colonies are not significantly distinct on each island, but have diversified among islands and archipelagos. FST levels progressively decreased in significance from European and African continental populations, to SWIO insular and continental populations, and finally among islands from the same archipelago. Among African populations, Madagascar shared a nuclear background with and was most closely related to SWIO island populations (except Rodrigues). Only Mauritius Island presented clear cytoplasmic disequilibrium and genetic structure characteristic of an admixed population undergoing hybridization, in this case, between A. m. unicolor and A. m. ligustica, A. m. carnica and A. m. mellifera-like individuals. Finally, global genetic clustering analysis helped to better depict the colonization and introduction pattern of honey bee populations in these archipelagos. PMID:29281653
Sudden deaths and colony population decline in Greek honey bee colonies.
Bacandritsos, N; Granato, A; Budge, G; Papanastasiou, I; Roinioti, E; Caldon, M; Falcaro, C; Gallina, A; Mutinelli, F
2010-11-01
During June and July of 2009, sudden deaths, tremulous movements and population declines of adult honey bees were reported by the beekeepers in the region of Peloponnesus (Mt. Mainalo), Greece. A preliminary study was carried out to investigate these unexplained phenomena in this region. In total, 37 bee samples, two brood frames containing honey bee brood of various ages, eight sugar samples and four sugar patties were collected from the affected colonies. The samples were tested for a range of pests, pathogens and pesticides. Symptomatic adult honey bees tested positive for Varroa destructor, Nosema ceranae, Chronic bee paralysis virus (CBPV), Acute paralysis virus (ABPV), Deformed wing virus (DWV), Sacbrood virus (SBV) and Black queen cell virus (BQCV), but negative for Acarapis woodi. American Foulbrood was absent from the brood samples. Chemical analysis revealed that amitraz, thiametoxan, clothianidin and acetamiprid were all absent from symptomatic adult bees, sugar and sugar patty samples. However, some bee samples, were contaminated with imidacloprid in concentrations between 14 ng/g and 39 ng/g tissue. We present: the infection of Greek honey bees by multiple viruses; the presence of N. ceranae in Greek honey bees and the first record of imidacloprid (neonicotonoid) residues in Greek honey bee tissues. The presence of multiple pathogens and pesticides made it difficult to associate a single specific cause to the depopulation phenomena observed in Greece, although we believe that viruses and N. ceranae synergistically played the most important role. A follow-up in-depth survey across all Greek regions is required to provide context to these preliminary findings. Copyright © 2010 Elsevier Inc. All rights reserved.
Chanpanitkitchote, Pichaya; Chen, Yanping; Evans, Jay D; Li, Wenfeng; Li, Jianghong; Hamilton, Michele; Chantawannakul, Panuwan
2018-01-01
Viruses, and especially RNA viruses, constantly change and adapt to new host species and vectors, posing a potential threat of new and reemerging infectious diseases. Honey bee Acute bee paralysis virus (ABPV) and Deformed wing virus (DWV) are two of the most common honey bee viruses found in European honey bees Apis mellifera and have been implicated in worldwide Varroa-associated bee colony losses. Previous studies have shown that DWV has jumped hosts several times in history causing infection in multiple host species. In the present study, we show that DWV infection could be detected in the Asian honey bee, A. cerana, and the parasitic mite Tropilaelaps mercedesae, confirming previous findings that DWV is a multi-host pathogen and supporting the notion that the high prevalence of DWV in honey bee host populations could be attributed to the high adaptability of this virus. Furthermore, our study provides the first evidence that ABPV occurs in both A. cerana and T. mercedesae in northern Thailand. The geographical proximity of host species likely played an important role in the initial exposure and the subsequent cross-species transmission of these viruses. Phylogenetic analyses suggest that ABPV might have moved from T. mercedesae to A. mellifera and to A. cerana while DWV might have moved in the opposite direction from A. cerana to A. mellifera and T. mercedesae. This result may reflect the differences in virus life history and virus-host interactions, warranting further investigation of virus transmission, epidemiology, and impacts of virus infections in the new hosts. The results from this study indicate that viral populations will continue to evolve and likely continue to expand host range, increasing the need for effective surveillance and control of virus infections in honey bee populations. Copyright © 2017 Elsevier Inc. All rights reserved.
Genetic variability in captive populations of the stingless bee Tetragonisca angustula.
Santiago, Leandro R; Francisco, Flávio O; Jaffé, Rodolfo; Arias, Maria C
2016-08-01
Low genetic variability has normally been considered a consequence of animal husbandry and a major contributing factor to declining bee populations. Here, we performed a molecular analysis of captive and wild populations of the stingless bee Tetragonisca angustula, one of the most commonly kept species across South America. Microsatellite analyses showed similar genetic variability between wild and captive populations However, captive populations showed lower mitochondrial genetic variability. Male-mediated gene flow, transport and division of nests are suggested as the most probable explanations for the observed patterns of genetic structure. We conclude that increasing the number of colonies kept through nest divisions does not negatively affect nuclear genetic variability, which seems to be maintained by small-scale male dispersal and human-mediated nest transport. However, the transport of nests from distant localities should be practiced with caution given the high genetic differentiation observed between samples from western and eastern areas. The high genetic structure verified is the result of a long-term evolutionary process, and bees from distant localities may represent unique evolutionary lineages.
Viral prevalence increases with regional colony abundance in honey bee drones (Apis mellifera L).
Forfert, Nadège; Natsopoulou, Myrsini E; Paxton, Robert J; Moritz, Robin F A
2016-10-01
Transmission among colonies is a central feature for the epidemiology of honey bee pathogens. High colony abundance may promote transmission among colonies independently of apiary layout, making colony abundance a potentially important parameter determining pathogen prevalence in populations of honey bees. To test this idea, we sampled male honey bees (drones) from seven distinct drone congregation areas (DCA), and used their genotypes to estimate colony abundance at each site. A multiplex ligation dependent probe amplification assay (MLPA) was used to assess the prevalence of ten viruses, using five common viral targets, in individual drones. There was a significant positive association between colony abundance and number of viral infections. This result highlights the potential importance of high colony abundance for pathogen prevalence, possibly because high population density facilitates pathogen transmission. Pathogen prevalence in drones collected from DCAs may be a useful means of estimating the disease status of a population of honey bees during the mating season, especially for localities with a large number of wild or feral colonies. Copyright © 2016 Elsevier B.V. All rights reserved.
Cresswell, James E; Desneux, Nicolas; vanEngelsdorp, Dennis
2012-06-01
Honey bees are important pollinators of both crops and wild plants. Pesticide regimes that threaten their sustainability should therefore be assessed. As an example, evidence that the agricultural use of neonicotinoid pesticides is a cause of the recently observed declines in honey bees is examined. The aim is to define exacting demographic conditions for a detrimental factor to precipitate a population decline, and Hill's epidemiological 'causality criteria' are employed as a structured process for making an expert judgement about the proposition that trace dietary neonicotinoids in nectar and pollen cause population declines in honey bees. In spite of the absence of decisive experimental results, the analysis shows that, while the proposition is a substantially justified conjecture in the context of current knowledge, it is also substantially contraindicated by a wide variety of circumstantial epidemiological evidence. It is concluded that dietary neonicotinoids cannot be implicated in honey bee declines, but this position is provisional because important gaps remain in current knowledge. Avenues for further investigations to resolve this longstanding uncertainty are therefore identified. Copyright © 2012 Society of Chemical Industry.
Investigating the viral ecology of global bee communities with high-throughput metagenomics.
Galbraith, David A; Fuller, Zachary L; Ray, Allyson M; Brockmann, Axel; Frazier, Maryann; Gikungu, Mary W; Martinez, J Francisco Iturralde; Kapheim, Karen M; Kerby, Jeffrey T; Kocher, Sarah D; Losyev, Oleksiy; Muli, Elliud; Patch, Harland M; Rosa, Cristina; Sakamoto, Joyce M; Stanley, Scott; Vaudo, Anthony D; Grozinger, Christina M
2018-06-11
Bee viral ecology is a fascinating emerging area of research: viruses exert a range of effects on their hosts, exacerbate impacts of other environmental stressors, and, importantly, are readily shared across multiple bee species in a community. However, our understanding of bee viral communities is limited, as it is primarily derived from studies of North American and European Apis mellifera populations. Here, we examined viruses in populations of A. mellifera and 11 other bee species from 9 countries, across 4 continents and Oceania. We developed a novel pipeline to rapidly and inexpensively screen for bee viruses. This pipeline includes purification of encapsulated RNA/DNA viruses, sequence-independent amplification, high throughput sequencing, integrated assembly of contigs, and filtering to identify contigs specifically corresponding to viral sequences. We identified sequences for (+)ssRNA, (-)ssRNA, dsRNA, and ssDNA viruses. Overall, we found 127 contigs corresponding to novel viruses (i.e. previously not observed in bees), with 27 represented by >0.1% of the reads in a given sample, and 7 contained an RdRp or replicase sequence which could be used for robust phylogenetic analysis. This study provides a sequence-independent pipeline for viral metagenomics analysis, and greatly expands our understanding of the diversity of viruses found in bee communities.
Overwintering temperature and body condition shift emergence dates of spring-emerging solitary bees.
Schenk, Mariela; Mitesser, Oliver; Hovestadt, Thomas; Holzschuh, Andrea
2018-01-01
Solitary bees in seasonal environments must align their life-cycles with favorable environmental conditions and resources; the timing of their emergence is highly fitness relevant. In several bee species, overwintering temperature influences both emergence date and body weight at emergence. High variability in emergence dates among specimens overwintering at the same temperatures suggests that the timing of emergence also depends on individual body conditions. However, possible causes for this variability, such as individual differences in body size or weight, have been rarely studied. In a climate chamber experiment using two spring-emerging mason bees ( Osmia cornuta and O. bicornis ), we investigated the relationship between temperature, emergence date, body weight, and body size, the last of which is not affected by overwintering temperature. Our study showed that body weight declined during hibernation more strongly in warm than in cold overwintering temperatures. Although bees emerged earlier in warm than in cold overwintering temperatures, at the time of emergence, bees in warm overwintering temperatures had lower body weights than bees in cold overwintering temperatures (exception of male O. cornuta ). Among specimens that experienced the same overwintering temperatures, small and light bees emerged later than their larger and heavier conspecifics. Using a simple mechanistic model we demonstrated that spring-emerging solitary bees use a strategic approach and emerge at a date that is most promising for their individual fitness expectations. Our results suggest that warmer overwintering temperatures reduce bee fitness by causing a decrease in body weight at emergence. We showed furthermore that in order to adjust their emergence dates, bees use not only temperature but also their individual body condition as triggers. This may explain differing responses to climate warming within and among bee populations and may have consequences for bee-plant interactions as well as for the persistence of bee populations under climate change.
Taxonomic and functional trait diversity of wild bees in different urban settings.
Normandin, Étienne; Vereecken, Nicolas J; Buddle, Christopher M; Fournier, Valérie
2017-01-01
Urbanization is one of the major anthropogenic processes contributing to local habitat loss and extirpation of numerous species, including wild bees, the most widespread pollinators. Little is known about the mechanisms through which urbanization impacts wild bee communities, or the types of urban green spaces that best promote their conservation in cities. The main objective of this study was to describe and compare wild bee community diversity, structure, and dynamics in two Canadian cities, Montreal and Quebec City. A second objective was to compare functional trait diversity among three habitat types (cemeteries, community gardens and urban parks) within each city. Bees were collected using pan traps and netting on the same 46 sites, multiple times, over the active season in 2012 and 2013. A total of 32,237 specimens were identified, representing 200 species and 6 families, including two new continental records, Hylaeus communis Nylander (1852) and Anthidium florentinum (Fabricius, 1775). Despite high community evenness, we found significant abundance of diverse species, including exotic ones. Spatio-temporal analysis showed higher stability in the most urbanized city (Montreal) but low nestedness of species assemblages among the three urban habitats in both cities. Our study demonstrates that cities are home to diverse communities of wild bees, but in turn affect bee community structure and dynamics. We also found that community gardens harbour high levels of functional trait diversity. Urban agriculture therefore contributes substantially to the provision of functionally diverse bee communities and possibly to urban pollination services.
Taxonomic and functional trait diversity of wild bees in different urban settings
Buddle, Christopher M.; Fournier, Valérie
2017-01-01
Urbanization is one of the major anthropogenic processes contributing to local habitat loss and extirpation of numerous species, including wild bees, the most widespread pollinators. Little is known about the mechanisms through which urbanization impacts wild bee communities, or the types of urban green spaces that best promote their conservation in cities. The main objective of this study was to describe and compare wild bee community diversity, structure, and dynamics in two Canadian cities, Montreal and Quebec City. A second objective was to compare functional trait diversity among three habitat types (cemeteries, community gardens and urban parks) within each city. Bees were collected using pan traps and netting on the same 46 sites, multiple times, over the active season in 2012 and 2013. A total of 32,237 specimens were identified, representing 200 species and 6 families, including two new continental records, Hylaeus communis Nylander (1852) and Anthidium florentinum (Fabricius, 1775). Despite high community evenness, we found significant abundance of diverse species, including exotic ones. Spatio-temporal analysis showed higher stability in the most urbanized city (Montreal) but low nestedness of species assemblages among the three urban habitats in both cities. Our study demonstrates that cities are home to diverse communities of wild bees, but in turn affect bee community structure and dynamics. We also found that community gardens harbour high levels of functional trait diversity. Urban agriculture therefore contributes substantially to the provision of functionally diverse bee communities and possibly to urban pollination services. PMID:28286711
Infection dynamics of Nosema ceranae in honey bee midgut and host cell apoptosis.
Kurze, Christoph; Le Conte, Yves; Kryger, Per; Lewkowski, Oleg; Müller, Thomas; Moritz, Robin F A
2018-05-01
Nosema ceranae is an intracellular microsporidian parasite that infects epithelial cells of the honey bee (Apis mellifera) midgut. Previous studies have shown that Nosema may alter cell renewal and apoptosis in honey bees. We found that the amount of apoptotic cells progressively declines from the anterior towards posterior regions of the midgut in Nosema-infected sensitive bees. There was no such pattern in the infected Nosema tolerant honey bees and controls. These data provide additional evidence that N. ceranae appears to alter apoptosis in its host cells for its own advantage. Copyright © 2018 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Populations of pollinators are in decline worldwide. These declines are best documented in honey bees and are due to a combination of stressors. In particular, pesticides have been linked to decreased longevity and performance in honey bees; however, the molecular and physiological pathways mediatin...
Responses to Varroa by honey bees with different levels of Varroa Sensitive Hygiene
USDA-ARS?s Scientific Manuscript database
The mite-resistance trait called suppression of mite reproduction (SMR) is a form of hygienic behavior that we have named varroa sensitive hygiene (VSH). With VSH, adult worker bees (Apis mellifera) disrupt the population growth of parasitic mites (Varroa destructor) by removing mite-infested bee p...
Robert L. Johnson
2008-01-01
Sexual reproductive success in wild plant populations is dependent upon the ability to bank seed for when environmental conditions favor seedling recruitment. Seed production in many plant populations requires the pollination services of local bee populations. A loss in bee diversity as a result of exotic plant invasion or revegetation practices which do not adequately...
Functional roles and metabolic niches in the honey bee gut microbiota.
Bonilla-Rosso, Germán; Engel, Philipp
2018-06-01
Gut microbiota studies on diverse animals facilitate our understanding of the general principles governing microbiota-host interactions. The honey bee adds a relevant study system due to the simplicity and experimental tractability of its gut microbiota, but also because bees are important pollinators that suffer from population declines worldwide. The use of gnotobiotic bees combined with genetic tools, 'omics' analysis, and experimental microbiology has recently provided important insights about the impact of the microbiota on bee health and the general functioning of gut ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.
de Mattos, Igor Medici; Soares, Ademilson E E; Tarpy, David R
2018-01-01
Honey bee (Apis mellifera L.) populations have been experiencing notable mortality in Europe and North America. No single cause has been identified for these dramatic losses, but rather multiple interacting factors are likely responsible (such as pesticides, malnutrition, habitat loss, and pathogens). Paraquat is one of the most widely used non-selective herbicides, especially in developing countries. This herbicide is considered slightly toxic to honey bees, despite being reported as a highly effective inducer of oxidative stress in a wide range of living systems. Here, we test the effects of paraquat on the expression of detoxification and antioxidant-related genes, as well as on the dynamics of pathogen titers. Moreover, we tested the effects of pollen as mitigating factor to paraquat exposure. Our results show significant changes in the expression of several antioxidant-related and detoxification-related genes in the presence of paraquat, as well as an increase of pathogens titers. Finally, we demonstrate a mitigating effect of pollen through the up-regulation of specific genes and improvement of survival of bees exposed to paraquat. The presence of pollen in the diet was also correlated with a reduced prevalence of Nosema and viral pathogens. We discuss the importance of honey bees' nutrition, especially the availability of pollen, on colony losses chronically reported in the USA and Europe.
Neonicotinoid pesticide reduces bumble bee colony growth and queen production.
Whitehorn, Penelope R; O'Connor, Stephanie; Wackers, Felix L; Goulson, Dave
2012-04-20
Growing evidence for declines in bee populations has caused great concern because of the valuable ecosystem services they provide. Neonicotinoid insecticides have been implicated in these declines because they occur at trace levels in the nectar and pollen of crop plants. We exposed colonies of the bumble bee Bombus terrestris in the laboratory to field-realistic levels of the neonicotinoid imidacloprid, then allowed them to develop naturally under field conditions. Treated colonies had a significantly reduced growth rate and suffered an 85% reduction in production of new queens compared with control colonies. Given the scale of use of neonicotinoids, we suggest that they may be having a considerable negative impact on wild bumble bee populations across the developed world.
The power and promise of applying genomics to honey bee health.
Grozinger, Christina M; Robinson, Gene E
2015-08-01
New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species.
Non-bee insects are important contributors to global crop pollination.
Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A; Garratt, Michael P D; Howlett, Brad G; Winfree, Rachael; Cunningham, Saul A; Mayfield, Margaret M; Arthur, Anthony D; Andersson, Georg K S; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G; Chacoff, Natacha P; Entling, Martin H; Foully, Benjamin; Freitas, Breno M; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R; Gross, Caroline L; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q; Lindström, Sandra A M; Mandelik, Yael; Monteiro, Victor M; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E; Pereira, Natália de O; Pisanty, Gideon; Potts, Simon G; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G; Stanley, Dara A; Stout, Jane C; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H; Viana, Blandina F; Woyciechowski, Michal
2016-01-05
Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.
Non-bee insects are important contributors to global crop pollination
Bartomeus, Ignasi; Garibaldi, Lucas A.; Garratt, Michael P. D.; Howlett, Brad G.; Winfree, Rachael; Cunningham, Saul A.; Mayfield, Margaret M.; Arthur, Anthony D.; Andersson, Georg K. S.; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G.; Chacoff, Natacha P.; Entling, Martin H.; Foully, Benjamin; Freitas, Breno M.; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R.; Gross, Caroline L.; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q.; Lindström, Sandra A. M.; Mandelik, Yael; Monteiro, Victor M.; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E.; de O. Pereira, Natália; Pisanty, Gideon; Potts, Simon G.; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S.; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G.; Stanley, Dara A.; Stout, Jane C.; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H.; Viana, Blandina F.; Woyciechowski, Michal
2016-01-01
Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25–50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines. PMID:26621730
Inbreeding in Mimulus guttatus Reduces Visitation by Bumble Bee Pollinators
Carr, David E.; Roulston, T’ai H.; Hart, Haley
2014-01-01
Inbreeding in plants typically reduces individual fitness but may also alter ecological interactions. This study examined the effect of inbreeding in the mixed-mating annual Mimulus guttatus on visitation by pollinators (Bombus impatiens) in greenhouse experiments. Previous studies of M. guttatus have shown that inbreeding reduced corolla size, flower number, and pollen quantity and quality. Using controlled crosses, we produced inbred and outbred families from three different M. guttatus populations. We recorded the plant genotypes that bees visited and the number of flowers probed per visit. In our first experiment, bees were 31% more likely to visit outbred plants than those selfed for one generation and 43% more likely to visit outbred plants than those selfed for two generations. Inbreeding had only a small effect on the number of flowers probed once bees arrived at a genotype. These differences were explained partially by differences in mean floral display and mean flower size, but even when these variables were controlled statistically, the effect of inbreeding remained large and significant. In a second experiment we quantified pollen viability from inbred and self plants. Bees were 37–54% more likely to visit outbred plants, depending on the population, even when controlling for floral display size. Pollen viability proved to be as important as floral display in predicting pollinator visitation in one population, but the overall explanatory power of a multiple regression model was weak. Our data suggested that bees use cues in addition to display size, flower size, and pollen reward quality in their discrimination of inbred plants. Discrimination against inbred plants could have effects on plant fitness and thereby reinforce selection for outcrossing. Inbreeding in plant populations could also reduce resource quality for pollinators, potentially resulting in negative effects on pollinator populations. PMID:25036035
THE SEARCH DYNAMICS OF RECRUITED HONEY BEES, APIS MELLIFERA LIGUSTICA SPINOLA.
Friesen, Larry Jon
1973-02-01
Some variables in the recruitment process of honey bees were studied as they affected the distribution and success of the searching population in the field. The dance language and odor dependence hypotheses were contrasted and their predictions compared with the following observations. 1. Recruits were attracted to the odors from the food which were carried by foragers and were dependent on these odors for success. 2. A monitoring of recruit densities in the field demonstrated an association of searchers with the forager flight path. 3. The degree of correspondence between the distribution of recruits and the direction of the flight path to the feeding site was correlated with wind direction, not search efficiency. 4. Feeding stations upwind of the hive provided the highest recruit success rates, shortest search times, and the least dependence on wind speed. Downwind stations provided the lowest recruit success rates, the longest search times, and the greatest dependence on wind speed. 5. A disproportionate increase in recruit success with an increase in the number of foragers visiting a feeding site was correlated with the density of the foragers in the field. 6. Increased bee densities at the feeding site, even with bees from different hives, increased recruit success and shortened search times. 7. The progression of and the extremely long intervals between the onset of recruit arrivals at areas along the forager flight path suggested communication among bees in the field and a dependence of recruit success on the density and growth of the searching population. These observations are compatible with an odor dependent search behavior and together fail to support the predictions of the dance language hypothesis. Dance attendants appeared to have been conditioned to the odors associated with returning foragers and, after leaving the hive, entered a searching population dependent on these odors for success. The dependence of recruit success on food odor at the feeding station, the density of foragers between this station and the hive, and the direction of the wind indicates that the integrity of the forager flight path was extremely important to this success. The distributions and extended search times of recruits indicated a search behavior based on positive anemotaxis during the perception of the proper combination of odors and negative anemotaxis after the loss of this stimulation.
USDA-ARS?s Scientific Manuscript database
Recent declines in honey bee populations and increasing demand for insect-pollinated crops raise concerns about pollinator shortages. Pesticide exposure and pathogens may interact to have strong negative effects on managed honey bee colonies. Such findings are of great concern given the large number...
Interactions of tropilaelaps mercedesae, honey bee viruses, and immune response in Apis mellifera
USDA-ARS?s Scientific Manuscript database
Tropilaelaps mites are the major health threat to Apis mellifera colonies in Asia because of their widespread occurrence, rapid population growth and potential ability to transfer bee viruses. Honey bee immune responses in the presence of feeding mites may occur in response to mite feeding, to the ...
USDA-ARS?s Scientific Manuscript database
Recent declines in bee populations coupled with advances in DNA-sequencing technology have sparked a renaissance in studies of bee-associated microbes. Megachile rotundata is the second, only to honey bees, as a crop pollinator, but is stricken by chalkbrood, a disease caused by the fungus Ascosphae...
A Genome Wide Genotyping Study To Find Candidate Genes That Influence Varroa-Sensitive Hygiene (VSH)
USDA-ARS?s Scientific Manuscript database
Varroa parasitism of honey bees is widely considered by apicultural researchers to be the greatest threat to beekeeping. Varroa-sensitive hygiene (VSH) is one of two identified behaviors that are highly important for controlling the growth of Varroa mite populations in bee hives. Bees exhibiting th...
Recipe for a Busy Bee: MicroRNAs in Honey Bee Caste Determination
Skogerboe, Geir; Dai, Shuanjin; Li, Wenfeng; Li, Zhiguo; Liu, Fang; Ni, Ruifeng; Guo, Yu; Chen, Shenglu; Zhang, Shaowu; Chen, Runsheng
2013-01-01
Social caste determination in the honey bee is assumed to be determined by the dietary status of the young larvae and translated into physiological and epigenetic changes through nutrient-sensing pathways. We have employed Illumina/Solexa sequencing to examine the small RNA content in the bee larval food, and show that worker jelly is enriched in miRNA complexity and abundance relative to royal jelly. The miRNA levels in worker jelly were 7–215 fold higher than in royal jelly, and both jellies showed dynamic changes in miRNA content during the 4th to 6th day of larval development. Adding specific miRNAs to royal jelly elicited significant changes in queen larval mRNA expression and morphological characters of the emerging adult queen bee. We propose that miRNAs in the nurse bee secretions constitute an additional element in the regulatory control of caste determination in the honey bee. PMID:24349106
Resource diversity and landscape-level homogeneity drive native bee foraging.
Jha, Shalene; Kremen, Claire
2013-01-08
Given widespread declines in pollinator communities and increasing global reliance on pollinator-dependent crops, there is an acute need to develop a mechanistic understanding of native pollinator population and foraging biology. Using a population genetics approach, we determine the impact of habitat and floral resource distributions on nesting and foraging patterns of a critical native pollinator, Bombus vosnesenskii. Our findings demonstrate that native bee foraging is far more plastic and extensive than previously believed and does not follow a simple optimal foraging strategy. Rather, bumble bees forage further in pursuit of species-rich floral patches and in landscapes where patch-to-patch variation in floral resources is less, regardless of habitat composition. Thus, our results reveal extreme foraging plasticity and demonstrate that floral diversity, not density, drives bee foraging distance. Furthermore, we find a negative impact of paved habitat and a positive impact of natural woodland on bumble bee nesting densities. Overall, this study reveals that natural and human-altered landscapes can be managed for increased native bee nesting and extended foraging, dually enhancing biodiversity and the spatial extent of pollination services.
Simulating a base population in honey bee for molecular genetic studies
2012-01-01
Background Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Results Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ2 statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r2 values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. Conclusion We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to constitute a genomic dataset compatible with the simulation studies necessary to optimize breeding programs. The source code together with an instruction file is freely accessible at http://msproteomics.org/Research/Misc/honeybeepopulationsimulator.html PMID:22520469
Simulating a base population in honey bee for molecular genetic studies.
Gupta, Pooja; Conrad, Tim; Spötter, Andreas; Reinsch, Norbert; Bienefeld, Kaspar
2012-06-27
Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ(2) statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r(2) values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to constitute a genomic dataset compatible with the simulation studies necessary to optimize breeding programs. The source code together with an instruction file is freely accessible at http://msproteomics.org/Research/Misc/honeybeepopulationsimulator.html.
Diversity and human perceptions of bees (Hymenoptera: Apoidea) in Southeast Asian megacities.
Sing, Kong-Wah; Wang, Wen-Zhi; Wan, Tao; Lee, Ping-Shin; Li, Zong-Xu; Chen, Xing; Wang, Yun-Yu; Wilson, John-James
2016-10-01
Urbanization requires the conversion of natural land cover to cover with human-constructed elements and is considered a major threat to biodiversity. Bee populations, globally, are under threat; however, the effect of rapid urban expansion in Southeast Asia on bee diversity has not been investigated. Given the pressing issues of bee conservation and urbanization in Southeast Asia, coupled with complex factors surrounding human-bee coexistence, we investigated bee diversity and human perceptions of bees in four megacities. We sampled bees and conducted questionnaires at three different site types in each megacity: a botanical garden, central business district, and peripheral suburban areas. Overall, the mean species richness and abundance of bees were significantly higher in peripheral suburban areas than central business districts; however, there were no significant differences in the mean species richness and abundance between botanical gardens and peripheral suburban areas or botanical gardens and central business districts. Urban residents were unlikely to have seen bees but agreed that bees have a right to exist in their natural environment. Residents who did notice and interact with bees, even though being stung, were more likely to have positive opinions towards the presence of bees in cities.
Identifying bacterial predictors of honey bee health.
Budge, Giles E; Adams, Ian; Thwaites, Richard; Pietravalle, Stéphane; Drew, Georgia C; Hurst, Gregory D D; Tomkies, Victoria; Boonham, Neil; Brown, Mike
2016-11-01
Non-targeted approaches are useful tools to identify new or emerging issues in bee health. Here, we utilise next generation sequencing to highlight bacteria associated with healthy and unhealthy honey bee colonies, and then use targeted methods to screen a wider pool of colonies with known health status. Our results provide the first evidence that bacteria from the genus Arsenophonus are associated with poor health in honey bee colonies. We also discovered Lactobacillus and Leuconostoc spp. were associated with healthier honey bee colonies. Our results highlight the importance of understanding how the wider microbial population relates to honey bee colony health. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Domestication of honey bees was associated with expansion of genetic diversity.
Oldroyd, Benjamin P
2012-09-01
Humans have been keeping honey bees, Apis mellifera, in artificial hives for over 7000 years. Long enough, one might imagine, for some genetic changes to have occurred in domestic bees that would distinguish them from their wild ancestors. Indeed, some have argued that the recent mysterious and widespread losses of commercial bee colonies, are due in part to inbreeding. In this issue of Molecular Ecology, Harpur et al. (2012) show that the domestication of honey bees, rather than reducing genetic variance in the population, has increased it. It seems that the commercial honey bees of Canada are a mongrel lot, with far more variability than their ancestors in Europe. © 2012 Blackwell Publishing Ltd.
USDA-ARS?s Scientific Manuscript database
Meeting the nutritional needs of our growing human population will be increasingly dependent on bees and other pollinators that provide the essential delivery of pollen to crop flowers during bloom. Honey bees have experienced population declines in some regions, and similar changes are evident for ...
USDA-ARS?s Scientific Manuscript database
Flower color varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea. The abundance of hawkmoths and bumble bees, the two major pollinators of this plant species, also varies among populations. We investigated the preference of hawkmoths and bumble bees for flower col...
Emsen, Berna; Hamiduzzaman, Mollah Md; Goodwin, Paul H; Guzman-Novoa, Ernesto
2015-01-01
A comparison was made of the prevalence and relative quantification of deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), Kashmir bee virus (KBV), acute bee paralysis virus (ABPV) and sac brood virus (SBV) in brood and adult honey bees (Apis mellifera) from colonies selected for high (HMP) and low (LMP) Varroa destructor mite population growth. Two viruses, ABPV and SBV, were never detected. For adults without mite infestation, DWV, IAPV, BQCV and KBV were detected in the HMP colony; however, only BQCV was detected in the LMP colony but at similar levels as in the HMP colony. With mite infestation, the four viruses were detected in adults of the HMP colony but all at higher amounts than in the LMP colony. For brood without mite infestation, DWV and IAPV were detected in the HMP colony, but no viruses were detected in the LMP colony. With mite infestation of brood, the four viruses were detected in the HMP colony, but only DWV and IAPV were detected and at lower amounts in the LMP colony. An epidemiological explanation for these results is that pre-experiment differences in virus presence and levels existed between the HMP and LMP colonies. It is also possible that low V. destructor population growth in the LMP colony resulted in the bees being less exposed to the mite and thus less likely to have virus infections. LMP and HMP bees may have also differed in susceptibility to virus infection.
Zheng, Benle; Wu, Zaifu; Xu, Baohua
2014-01-01
This study was conducted to investigate the effects of dietary protein levels on honey bee colonies, specifically the population growth, physiology, and longevity of honey bee workers during early spring. Diets containing four different levels of crude protein (25.0, 29.5, 34.0, or 38.5%) and pure pollen (control) were evaluated. Twenty-five colonies of honey bees with sister queens were used in the study. We compared the effects of the different bee diets by measuring population growth, emergent worker weight, midgut proteolytic enzyme activity, hypopharyngeal gland development, and survival. After 48 d, the cumulative number of workers produced by the colonies ranged from 22,420 to 29,519, providing a significant fit to a quadratic equation that predicts the maximum population growth when the diet contains 31.7% crude protein. Significantly greater emergent worker weight, midgut proteolytic enzyme activity, hypopharyngeal gland acini, and survival were observed in the colonies that were fed diets containing 34.0% crude protein compared with the other crude protein levels. Although higher emergent worker weight and survival were observed in the colonies that were fed the control diet, there were no significant differences between the control colonies and the colonies that were fed 34.0% crude protein. Based on these results, we concluded that a dietary crude protein content of 29.5-34.0% is recommended to maximize the reproduction rate of honey bee colonies in early spring. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
Hallett, Allysa C.; Mitchell, Randall J.; Chamberlain, Evan R.
2017-01-01
Abstract Pollinator abundance is declining worldwide and may lower the quantity and quality of pollination services to flowering plant populations. Loss of an important pollinator is often assumed to reduce the amount of pollen received by stigmas of a focal species (pollination success), yet this assumption has rarely been tested experimentally. The magnitude of the effect, if any, may depend on the relative efficiency of the remaining pollinators, and on whether the loss of one pollinator leads to changes in visitation patterns by other pollinators. To explore how a change in pollinator composition influences pollination of Asclepias verticillata, we excluded bumble bees from plots in large and small populations of this milkweed species. We then quantified pollinator visitation rates, pollen export and pollen receipt for control plots and for plots where bumble bees were experimentally excluded. We found that exclusion of bumble bees did not reduce pollen receipt by A. verticillata flowers. Visitation by Polistes wasps increased markedly following bumble bee exclusion, both in small populations (186 % increase) and in large populations (400 % increase). Because Polistes wasps were as efficient as bumble bees at pollen transfer, increased wasp visitation offset lost bumble bee pollination services. Thus, loss of a frequent pollinator will not necessarily lead to a decline in pollination success. When pollinator loss is followed by a shift in the composition and abundance of remaining pollinators, pollination success will depend on the net change in the quantity and quality of pollination services. PMID:28798863
The power and promise of applying genomics to honey bee health
Robinson, Gene E.
2015-01-01
New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species. PMID:26273565
The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis Mellifera
Tsutsui, Neil D.; Ramírez, Santiago R.
2017-01-01
The western honey bee, Apis mellifera, provides critical pollination services to agricultural crops worldwide. However, despite substantial interest and prior investigation, the early evolution and subsequent diversification of this important pollinator remain uncertain. The primary hypotheses place the origin of A. mellifera in either Asia or Africa, with subsequent radiations proceeding from one of these regions. Here, we use two publicly available whole-genome data sets plus newly sequenced genomes and apply multiple population genetic analysis methods to investigate the patterns of ancestry and admixture in native honey bee populations from Europe, Africa, and the Middle East. The combination of these data sets is critical to the analyses, as each contributes samples from geographic locations lacking in the other, thereby producing the most complete set of honey bee populations available to date. We find evidence supporting an origin of A. mellifera in the Middle East or North Eastern Africa, with the A and Y lineages representing the earliest branching lineages. This finding has similarities with multiple contradictory hypotheses and represents a disentangling of genetic relationships, geographic proximity, and secondary contact to produce a more accurate picture of the origins of A. mellifera. We also investigate how previous studies came to their various conclusions based on incomplete sampling of populations, and illustrate the importance of complete sampling in understanding evolutionary processes. These results provide fundamental knowledge about genetic diversity within Old World honey bee populations and offer insight into the complex history of an important pollinator. PMID:28164223
Linking evolutionary lineage with parasite and pathogen prevalence in the Iberian honey bee.
Jara, Laura; Cepero, Almudena; Garrido-Bailón, Encarna; Martín-Hernández, Raquel; Higes, Mariano; De la Rúa, Pilar
2012-05-01
The recent decline in honey bee colonies observed in both European countries and worldwide is of great interest and concern, although the underlying causes remain poorly understood. In recent years, growing evidence has implicated parasites and pathogens in this decline of both the vitality and number of honey bee colonies. The Iberian Peninsula provides an interesting environment in which to study the occurrence of pathogens and parasites in the host honey bee populations due to the presence of two evolutionary lineages in A. m. iberiensis (Western European [M] or African [A]). Here, we provide the first evidence linking the population structure of the Iberian honey bee with the prevalence of some of its most important parasites and pathogens: the Varroa destructor mite and the microsporidia Nosema apis and Nosema ceranae. Using data collected in two surveys conducted in 2006 and 2010 in 41 Spanish provinces, the evolutionary lineage and the presence of the three parasitic organisms cited above were analyzed in a total of 228 colonies. In 2006 N. apis was found in a significantly higher proportion of M lineage honey bees than in the A lineage. However, in 2010 this situation had changed significantly due to a higher prevalence of N. ceranae. We observed no significant relationships in either year between the distributions of V. destructor or N. ceranae and the evolutionary lineage present in A. m. iberiensis colonies, but the effects of these organisms on the genetic diversity of the honey bee populations need further research. Copyright © 2012 Elsevier Inc. All rights reserved.
Slagle, Malinda W; Hendrix, Stephen D
2009-10-01
Loss of insect pollinators due to habitat fragmentation often results in negative effects on plant reproduction, but few studies have simultaneously examined variation in the bee community, site characteristics and plant community characteristics to evaluate their relative effects on plant reproduction in a fragmented habitat. We examined the reproduction of a common tallgrass prairie forb, Amorpha canescens (Fabaceae), in large (>40 ha) and small (<2 ha) prairie remnants in Iowa and Minnesota in relation to the diversity and abundance of its bee visitors, plant population size, and species density of the forb flowering community. We found significant positive effects of the diversity of bees visiting A. canescens on percent fruit set at a site in both years of the study and in 2002 an additional significant positive effect of plant species density. Abundance of bees visiting A. canescens had a significant positive effect on percent fruit set in 2002, but was only marginally significant in 2003. In 2003 but not 2002, the plant species density at the sites had a significant negative effect on the diversity and abundance of bees visiting A. canescens, indicating community-level characteristics can influence the bee community visiting any one species. Site size, a common predictor of plant reproduction in fragmented habitats did not contribute to any models of fruit set and was only marginally related to bee diversity one year. Andrena quintilis, one of the three oligolectic bee species associated with A. canescens, was abundant at all sites, suggesting it has not been significantly affected by fragmentation. Our results show that the diversity of bees visiting A. canescens is important for maintaining fruit set and that bee visitation is still sufficient for at least some fruit set in all populations, suggesting these small remnants act as floral resource oases for bees in landscapes often dominated by agriculture.
USDA-ARS?s Scientific Manuscript database
The small hive beetle (SHB), Aethina tumida, is a major pest of managed honey bee (Apis mellifera) colonies in the United States and Australia, and an emergent threat in Europe. While strong honey bee colonies generally keep SHB populations in check, weak or stressed colonies can succumb to infestat...
Koski, Matthew H; Ison, Jennifer L; Padilla, Ashley; Pham, Angela Q; Galloway, Laura F
2018-06-13
Seemingly mutualistic relationships can be exploited, in some cases reducing fitness of the exploited species. In plants, the insufficient receipt of pollen limits reproduction. While infrequent pollination commonly underlies pollen limitation (PL), frequent interactions with low-efficiency, exploitative pollinators may also cause PL. In the widespread protandrous herb Campanula americana , visitation by three pollinators explained 63% of the variation in PL among populations spanning the range. Bumblebees and the medium-sized Megachile campanulae enhanced reproductive success, but small solitary bees exacerbated PL. To dissect mechanisms behind these relationships, we scored sex-specific floral visitation, and the contributions of each pollinator to plant fitness using single flower visits. Small bees and M. campanulae overvisited male-phase flowers, but bumblebees frequently visited female-phase flowers. Fewer bumblebee visits were required to saturate seed set compared to other bees. Scaling pollinator efficiency metrics to populations, small bees deplete large amounts of pollen due to highly male-biased flower visitation and infrequent pollen deposition. Thus, small bees reduce plant reproduction by limiting pollen available for transfer by efficient pollinators, and appear to exploit the plant-pollinator mutualism, acting as functional parasites to C. americana It is therefore unlikely that small bees will compensate for reproductive failure in C. americana when bumblebees are scarce. © 2018 The Author(s).
Wild bees enhance honey bees' pollination of hybrid sunflower.
Greenleaf, Sarah S; Kremen, Claire
2006-09-12
Pollinators are required for producing 15-30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages.
NASA Astrophysics Data System (ADS)
Kotthoff, Ulrich; Wappler, Torsten; Engel, Michael
2013-04-01
Today honey bees, principally the western honey bee, Apis mellifera, represent a multi-billion dollar agricultural industry. Through the efforts of humans they have become established well outside of their modern native ranges, having been introduced multiple times into the Americas, Australia, New Zealand, New Caledonia, and many areas of Oceania. The native, i.e., non-human influenced, distribution and migration of honey bee species and populations has been a matter of serious and continued debate. Apicultural dogma informs us that the center of origin of honey bees (genus Apis) resides in Asia, with subsequent migration and diversification into Europe and Asia. Recent population genetic studies of the western honey bee, Apis mellifera, slightly modified this received wisdom by suggesting that this species originated in Africa and subsequently reinvaded Eurasia. Research into the historical biogeography of honey bees has ignored entirely the abundant fossil evidence distributed through a variety of Late Paleogene (Oligocene) and Early Neogene (Miocene) deposits, a diversity which is predominantly European in origin, particularly among the most basal species of the genus. We have examined the morphological disparity and affinities of the full living and fossil diversity of honey bees ranging from their earliest origins to the present day. This analysis indicates that honey bees exhibited a greater morphological disparity during the Oligocene and Miocene epochs, a time when the principal lineages were established, and that Apis apparently originated in Europe, spreading from there into Asia, Africa, and North America, with subsequent diversification in the former two regions and extinction in the latter. During the human migrations and colonization honey bees were once again introduced multiple times into the Americas, as well as into Australia and Asia.
Semberg, Emilia; Forsgren, Eva; de Miranda, Joachim R.
2017-01-01
Deformed wing virus (DWV) is a lethal virus of honeybees (Apis mellifera) implicated in elevated colony mortality rates worldwide and facilitated through vector transmission by the ectoparasitic mite Varroa destructor. Clinical, symptomatic DWV infections are almost exclusively associated with high virus titres during pupal development, usually acquired through feeding by Varroa mites when reproducing on bee pupae. Control of the mite population, generally through acaricide treatment, is essential for breaking the DWV epidemic and minimizing colony losses. In this study, we evaluated the effectiveness of remedial mite control on clearing DWV from a colony. DWV titres in adult bees and pupae were monitored at 2 week intervals through summer and autumn in acaricide-treated and untreated colonies. The DWV titres in Apistan treated colonies was reduced 1000-fold relative to untreated colonies, which coincided with both the removal of mites and also a turnover of the bee population in the colony. This adult bee population turnover is probably more critical than previously realized for effective clearing of DWV infections. After this initial reduction, subclinical DWV titres persisted and even increased again gradually during autumn, demonstrating that alternative non-Varroa transmission routes can maintain the DWV titres at significant subclinical levels even after mite removal. The implications of these results for practical recommendations to mitigate deleterious subclinical DWV infections and improving honeybee health management are discussed. PMID:28686725
Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology.
Ogilvie, Jane E; Griffin, Sean R; Gezon, Zachariah J; Inouye, Brian D; Underwood, Nora; Inouye, David W; Irwin, Rebecca E
2017-12-01
Climate change can influence consumer populations both directly, by affecting survival and reproduction, and indirectly, by altering resources. However, little is known about the relative importance of direct and indirect effects, particularly for species important to ecosystem functioning, like pollinators. We used structural equation modelling to test the importance of direct and indirect (via floral resources) climate effects on the interannual abundance of three subalpine bumble bee species. In addition, we used long-term data to examine how climate and floral resources have changed over time. Over 8 years, bee abundances were driven primarily by the indirect effects of climate on the temporal distribution of floral resources. Over 43 years, aspects of floral phenology changed in ways that indicate species-specific effects on bees. Our study suggests that climate-driven alterations in floral resource phenology can play a critical role in governing bee population responses to global change. © 2017 John Wiley & Sons Ltd/CNRS.
USDA-ARS?s Scientific Manuscript database
Commercially available pollen substitute diets for honey bees (Apis mellifera L.) were evaluated for consumption and colony growth (brood and adult populations) and compared with pollen cake and high fructose corn syrup (HFCS). Two trials were conducted; the first for 3 months during the fall and w...
USDA-ARS?s Scientific Manuscript database
In the past decade, there has been growing concern over the decline in populations of honeybees and other pollinators which are vital part of our food security. It is therefore imperative to identify factors that are responsible for accelerated decline in bee population and develop solutions toward ...
Differences in color learning between pollen- and sucrose-rewarded bees
Nicholls, Elizabeth K; Ehrendreich, Doreen; Hempel de Ibarra, Natalie
2015-01-01
What bees learn during pollen collection, and how they might discriminate between flowers on the basis of the quality of this reward, is not well understood. Recently we showed that bees learn to associate colors with differences in pollen rewards. Extending these findings, we present here additional evidence to suggest that the strength and time-course of memory formation may differ between pollen- and sucrose-rewarded bees. Color-naïve honeybees, trained with pollen or sucrose rewards to discriminate colored stimuli, were found to differ in their responses when recalling learnt information after reversal training. Such differences could affect the decision-making and foraging dynamics of individual bees when collecting different types of floral rewards. PMID:26478780
Currie, Robert W.
2016-01-01
Extreme winter losses of honey bee colonies are a major threat to beekeeping but the combinations of factors underlying colony loss remain debatable. We monitored colonies in two environments (colonies wintered indoors or outdoors) and characterized the effects of two parasitic mites, seven viruses, and Nosema on honey bee colony mortality and population loss over winter. Samples were collected from two locations within hives in fall, mid-winter and spring of 2009/2010. Although fall parasite and pathogen loads were similar in outdoor and indoor-wintered colonies, the outdoor-wintered colonies had greater relative reductions in bee population score over winter. Seasonal patterns in deformed wing virus (DWV), black queen cell virus (BQCV), and Nosema level also differed with the wintering environment. DWV and Nosema levels decreased over winter for indoor-wintered colonies but BQCV did not. Both BQCV and Nosema concentration increased over winter in outdoor-wintered colonies. The mean abundance of Varroa decreased and concentration of Sacbrood virus (SBV), Kashmir bee virus (KBV), and Chronic bee paralysis virus (CBPV) increased over winter but seasonal patterns were not affected by wintering method. For most viruses, either entrance or brood area samples were reasonable predictors of colony virus load but there were significant season*sample location interactions for Nosema and BQCV, indicating that care must be taken when selecting samples from a single location. For Nosema spp., the fall entrance samples were better predictors of future infestation levels than were fall brood area samples. For indoor-wintered colonies, Israeli acute paralysis virus IAPV concentration was negatively correlated with spring population size. For outdoor-wintered hives, spring Varroa abundance and DWV concentration were positively correlated with bee loss and negatively correlated with spring population size. Multivariate analyses for fall collected samples indicated higher DWV was associated with colony death as did high SBV for spring-collected samples. PMID:27448049
Parvinen, Kalle; Brännström, Åke
2016-08-01
Species that compete for access to or use of sites, such as parasitic mites attaching to honey bees or apple maggots laying eggs in fruits, can potentially increase their fitness by carefully selecting sites at which they face little or no competition. Here, we systematically investigate the evolution of site-selection strategies among animals competing for discrete sites. By developing and analyzing a mechanistic and population-dynamical model of site selection in which searching individuals encounter sites sequentially and can choose to accept or continue to search based on how many conspecifics are already there, we give a complete characterization of the different site-selection strategies that can evolve. We find that evolution of site-selection stabilizes population dynamics, promotes even distribution of individuals among sites, and occasionally causes evolutionary suicide. We also discuss the broader implications of our findings and propose how they can be reconciled with an earlier study (Nonaka et al. in J Theor Biol 317:96-104, 2013) that reported selection toward ever higher levels of aggregation among sites as a consequence of site-selection.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... of Agriculture to use hop beta acids (CAS Reg. No. none specified) to treat up to 181,000 honey bee... exemption regional request for use of hop beta acids in honey bee hives to control varroa mites. Information... effect on honey bee populations. The parasitic mite is considered the primary pest of honeybees and its...
USDA-ARS?s Scientific Manuscript database
Varroa destructor is a mite parasite of European honey bees, Apis mellifera, that weakens the population, can lead to the death of an entire honey bee colony, and is believed to be the parasite with the most economic impact on beekeeping. The purpose of this study was to estimate the probability of ...
Appler, R. Holden; Frank, Steven D.; Tarpy, David R.
2015-01-01
Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living) and managed (beekeeper-owned) honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and around Raleigh, NC, USA. We then analyzed adult workers using two standard bioassays for insect immune function (encapsulation response and phenoloxidase activity). We found that there was far more variation within colonies for encapsulation response or phenoloxidase activity than among rural to urban landscapes, and we did not observe any significant difference in immune response between feral and managed bees. These findings suggest that social pollinators, like honey bees, may be sufficiently robust or variable in their immune responses to obscure any subtle effects of urbanization. Additional studies of immune physiology and disease ecology of social and solitary bees in urban, suburban, and natural ecosystems will provide insights into the relative effects of changing urban environments on several important factors that influence pollinator productivity and health. PMID:26529020
Appler, R Holden; Frank, Steven D; Tarpy, David R
2015-10-29
Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living) and managed (beekeeper-owned) honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and around Raleigh, NC, USA. We then analyzed adult workers using two standard bioassays for insect immune function (encapsulation response and phenoloxidase activity). We found that there was far more variation within colonies for encapsulation response or phenoloxidase activity than among rural to urban landscapes, and we did not observe any significant difference in immune response between feral and managed bees. These findings suggest that social pollinators, like honey bees, may be sufficiently robust or variable in their immune responses to obscure any subtle effects of urbanization. Additional studies of immune physiology and disease ecology of social and solitary bees in urban, suburban, and natural ecosystems will provide insights into the relative effects of changing urban environments on several important factors that influence pollinator productivity and health.
Summer Flowering Cover Crops Support Wild Bees in Vineyards.
Wilson, Houston; Wong, Jessica S; Thorp, Robbin W; Miles, Albie F; Daane, Kent M; Altieri, Miguel A
2018-02-08
Agricultural expansion and intensification negatively affect pollinator populations and has led to reductions in pollination services across multiple cropping systems. As a result, growers and researchers have utilized the restoration of local and landscape habitat diversity to support pollinators, and wild bees in particular. Although a majority of studies to date have focussed on effects in pollinator-dependent crops such as almond, tomato, sunflower, and watermelon, supporting wild bees in self-pollinated crops, such as grapes, can contribute to broader conservation goals as well as provide other indirect benefits to growers. This study evaluates the influence of summer flowering cover crops and landscape diversity on the abundance and diversity of vineyard bee populations. We showed that diversity and abundance of wild bees were increased on the flowering cover crop, but were unaffected by changes in landscape diversity. These findings indicate that summer flowering cover crops can be used to support wild bees and this could be a useful strategy for grape growers interested in pollinator conservation as part of a broader farmscape sustainability agenda. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Subalpine bumble bee foraging distances and densities in relation to flower availability.
Elliott, Susan E
2009-06-01
Bees feed almost exclusively on nectar and pollen from flowers. However, little is known about how food availability limits bee populations, especially in high elevation areas. Foraging distances and relationships between forager densities and resource availability can provide insights into the potential for food limitation in mobile consumer populations. For example, if floral resources are limited, bee consumers should fly farther to forage, and they should be more abundant in areas with more flowers. I estimated subalpine bumble bee foraging distances by calculating forager recapture probabilities at increasing distances from eight marking locations. I measured forager and flower densities over the flowering season in six half-hectare plots. Because subalpine bumble bees have little time to build their colonies, they may forage over short distances and forager density may not be constrained by flower density. However, late in the season, when floral resources dwindle, foraging distances may increase, and there may be stronger relationships between forager and flower densities. Throughout the flowering season, marked bees were primarily found within 100 m (and never >1,000 m) from their original marking location, suggesting that they typically did not fly far to forage. Although the density of early season foraging queens increased with early-season flower density, the density of mid- and late-season workers and males did not vary with flower density. Short foraging distances and no relationships between mid- and late-season forager and flower densities suggest that high elevation bumble bees may have ample floral resources for colony growth reproduction.
Wild bees enhance honey bees’ pollination of hybrid sunflower
Greenleaf, Sarah S.; Kremen, Claire
2006-01-01
Pollinators are required for producing 15–30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages. PMID:16940358
Speth, Martin T; Kreibich, Claus D; Amdam, Gro V; Münch, Daniel
2015-05-01
Conventional invertebrate models of aging have provided striking examples for the influence of food- and nutrient-sensing on lifespan and stress resilience. On the other hand, studies in highly social insects, such as honey bees, have revealed how social context can shape very plastic life-history traits, for example flexible aging dynamics in the helper caste (workers). It is, however, not understood how food perception and stress resilience are connected in honey bee workers with different social task behaviors and aging dynamics. To explore this linkage, we tested if starvation resilience, which normally declines with age, depends on food responsiveness in honey bees. We studied two typically non-senesced groups of worker bees with different social task behaviors: mature nurses (caregivers) and mature foragers (food collectors). In addition, we included a group of old foragers for which functional senescence is well-established. Bees were individually scored for their food perception by measuring the gustatory response to different sucrose concentrations. Subsequently, individuals were tested for survival under starvation stress. We found that starvation stress resilience, but not gustatory responsiveness differed between workers with different social task behaviors (mature nurses vs. mature foragers). In addition starvation stress resilience differed between foragers with different aging progressions (mature foragers vs. old foragers). Control experiments confirmed that differences in starvation resilience between mature nurses and mature foragers were robust against changing experimental conditions, such as water provision and activity. For all worker groups we established that individuals with low gustatory responsiveness were more resilient to starvation stress. Finally, for the group of rapidly aging foragers we found that low food responsiveness was linked to a delayed age-related decline in starvation resilience. Our study highlights associations between reduced food perception, increased survival capacity and delayed aging in highly social honey bees. We discuss that these associations may involve canonical internal nutrient sensing pathways, which are shared between honey bees and animal models with less plastic aging dynamics. Copyright © 2015 Elsevier Inc. All rights reserved.
Rajotte, Edwin G.; Holmes, Edward C.; Ostiguy, Nancy; vanEngelsdorp, Dennis; Lipkin, W. Ian; dePamphilis, Claude W.; Toth, Amy L.; Cox-Foster, Diana L.
2010-01-01
Although overall pollinator populations have declined over the last couple of decades, the honey bee (Apis mellifera) malady, colony collapse disorder (CCD), has caused major concern in the agricultural community. Among honey bee pathogens, RNA viruses are emerging as a serious threat and are suspected as major contributors to CCD. Recent detection of these viral species in bumble bees suggests a possible wider environmental spread of these viruses with potential broader impact. It is therefore vital to study the ecology and epidemiology of these viruses in the hymenopteran pollinator community as a whole. We studied the viral distribution in honey bees, in their pollen loads, and in other non-Apis hymenopteran pollinators collected from flowering plants in Pennsylvania, New York, and Illinois in the United States. Viruses in the samples were detected using reverse transcriptase-PCR and confirmed by sequencing. For the first time, we report the molecular detection of picorna-like RNA viruses (deformed wing virus, sacbrood virus and black queen cell virus) in pollen pellets collected directly from forager bees. Pollen pellets from several uninfected forager bees were detected with virus, indicating that pollen itself may harbor viruses. The viruses in the pollen and honey stored in the hive were demonstrated to be infective, with the queen becoming infected and laying infected eggs after these virus-contaminated foods were given to virus-free colonies. These viruses were detected in eleven other non-Apis hymenopteran species, ranging from many solitary bees to bumble bees and wasps. This finding further expands the viral host range and implies a possible deeper impact on the health of our ecosystem. Phylogenetic analyses support that these viruses are disseminating freely among the pollinators via the flower pollen itself. Notably, in cases where honey bee apiaries affected by CCD harbored honey bees with Israeli Acute Paralysis virus (IAPV), nearby non-Apis hymenopteran pollinators also had IAPV, while those near apiaries without IAPV did not. In containment greenhouse experiments, IAPV moved from infected honey bees to bumble bees and from infected bumble bees to honey bees within a week, demonstrating that the viruses could be transmitted from one species to another. This study adds to our present understanding of virus epidemiology and may help explain bee disease patterns and pollinator population decline in general. PMID:21203504
Emsen, Berna; Hamiduzzaman, Mollah Md.; Goodwin, Paul H.; Guzman-Novoa, Ernesto
2015-01-01
A comparison was made of the prevalence and relative quantification of deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), Kashmir bee virus (KBV), acute bee paralysis virus (ABPV) and sac brood virus (SBV) in brood and adult honey bees (Apis mellifera) from colonies selected for high (HMP) and low (LMP) Varroa destructor mite population growth. Two viruses, ABPV and SBV, were never detected. For adults without mite infestation, DWV, IAPV, BQCV and KBV were detected in the HMP colony; however, only BQCV was detected in the LMP colony but at similar levels as in the HMP colony. With mite infestation, the four viruses were detected in adults of the HMP colony but all at higher amounts than in the LMP colony. For brood without mite infestation, DWV and IAPV were detected in the HMP colony, but no viruses were detected in the LMP colony. With mite infestation of brood, the four viruses were detected in the HMP colony, but only DWV and IAPV were detected and at lower amounts in the LMP colony. An epidemiological explanation for these results is that pre-experiment differences in virus presence and levels existed between the HMP and LMP colonies. It is also possible that low V. destructor population growth in the LMP colony resulted in the bees being less exposed to the mite and thus less likely to have virus infections. LMP and HMP bees may have also differed in susceptibility to virus infection. PMID:25723540
Antennal responses of an oligolectic bee and its cleptoparasite to plant volatiles.
Dötterl, Stefan
2008-05-01
Cleptoparasitic or cuckoo bees lay their eggs in nests of other bees, and the parasitic larvae feed the food that had been provided for the host larvae. Nothing is known about the specific signals used by the cuckoo bees for host nest finding, but previous studies have shown that olfactory cues originating from the host bee alone, or the host bee and the larval provision are essential. Here, I compared by using gas chromatography coupled to electroantennographic detection (GC-EAD) the antennal responses of the oligolectic oil-bee Macropis fulvipes and their cleptoparasite, Epeoloides coecutiens, to dynamic headspace scent samples of Lysimachia punctata, a pollen and oil host of Macropis. Both bee species respond to some scent compounds emitted by L. punctata, and two compounds, which were also found in scent samples collected from a Macropis nest entrance, elicited clear signals in the antennae of both species. These compounds may not only play a role for host plant detection by Macropis, but also for host nest detection by Epeoloides. I hypothesise that oligolectic bees and their cleptoparasites use the same compounds for host plant and host nest detection, respectively.
Identification of Multiple Loci Associated with Social Parasitism in Honeybees
Pirk, Christian W.; Allsopp, Mike H.
2016-01-01
In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis. PMID:27280405
Identification of Multiple Loci Associated with Social Parasitism in Honeybees.
Wallberg, Andreas; Pirk, Christian W; Allsopp, Mike H; Webster, Matthew T
2016-06-01
In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.
The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis Mellifera.
Cridland, Julie M; Tsutsui, Neil D; Ramírez, Santiago R
2017-02-01
The western honey bee, Apis mellifera, provides critical pollination services to agricultural crops worldwide. However, despite substantial interest and prior investigation, the early evolution and subsequent diversification of this important pollinator remain uncertain. The primary hypotheses place the origin of A. mellifera in either Asia or Africa, with subsequent radiations proceeding from one of these regions. Here, we use two publicly available whole-genome data sets plus newly sequenced genomes and apply multiple population genetic analysis methods to investigate the patterns of ancestry and admixture in native honey bee populations from Europe, Africa, and the Middle East. The combination of these data sets is critical to the analyses, as each contributes samples from geographic locations lacking in the other, thereby producing the most complete set of honey bee populations available to date. We find evidence supporting an origin of A. mellifera in the Middle East or North Eastern Africa, with the A and Y lineages representing the earliest branching lineages. This finding has similarities with multiple contradictory hypotheses and represents a disentangling of genetic relationships, geographic proximity, and secondary contact to produce a more accurate picture of the origins of A. mellifera. We also investigate how previous studies came to their various conclusions based on incomplete sampling of populations, and illustrate the importance of complete sampling in understanding evolutionary processes. These results provide fundamental knowledge about genetic diversity within Old World honey bee populations and offer insight into the complex history of an important pollinator. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Size and Sex-Dependent Shrinkage of Dutch Bees during One-and-a-Half Centuries of Land-Use Change.
Oliveira, Mikail O; Freitas, Breno M; Scheper, Jeroen; Kleijn, David
2016-01-01
Land-use change and global warming are important factors driving bee decline, but it is largely unknown whether these drivers have resulted in changes in the life-history traits of bees. Recent studies have shown a stronger population decline of large- than small-bodied bee species, suggesting there may have been selective pressure on large, but not on small species to become smaller. Here we test this hypothesis by analyzing trends in bee body size of 18 Dutch species over a 147-year period using specimens from entomological collections. Large-bodied female bees shrank significantly faster than small-bodied female bees (6.5% and 0.5% respectively between 1900 and 2010). Changes in temperature during the flight period of bees did not influence the size-dependent shrinkage of female bees. Male bees did not shrink significantly over the same time period. Our results could imply that under conditions of declining habitat quantity and quality it is advantageous for individuals to be smaller. The size and sex-dependent responses of bees point towards an evolutionary response but genetic studies are required to confirm this. The declining body size of the large bee species that currently dominate flower visitation of both wild plants and insect-pollinated crops may have negative consequences for pollination service delivery.
Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection.
Oddie, Melissa A Y; Dahle, Bjørn; Neumann, Peter
2017-01-01
Managed, feral and wild populations of European honey bee subspecies, Apis mellifera , are currently facing severe colony losses globally. There is consensus that the ectoparasitic mite Varroa destructor , that switched hosts from the Eastern honey bee Apis cerana to the Western honey bee A. mellifera , is a key factor driving these losses. For >20 years, breeding efforts have not produced European honey bee colonies that can survive infestations without the need for mite control. However, at least three populations of European honey bees have developed this ability by means of natural selection and have been surviving for >10 years without mite treatments. Reduced mite reproductive success has been suggested as a key factor explaining this natural survival. Here, we report a managed A. mellifera population in Norway, that has been naturally surviving consistent V. destructor infestations for >17 years. Surviving colonies and local susceptible controls were evaluated for mite infestation levels, mite reproductive success and two potential mechanisms explaining colony survival: grooming of adult worker bees and Varroa Sensitive Hygiene (VSH): adult workers specifically detecting and removing mite-infested brood. Mite infestation levels were significantly lower in surviving colonies and mite reproductive success was reduced by 30% when compared to the controls. No significant differences were found between surviving and control colonies for either grooming or VSH. Our data confirm that reduced mite reproductive success seems to be a key factor for natural survival of infested A. mellifera colonies. However, neither grooming nor VSH seem to explain colony survival. Instead, other behaviors of the adult bees seem to be sufficient to hinder mite reproductive success, because brood for this experiment was taken from susceptible donor colonies only. To mitigate the global impact of V. destructor , we suggest learning more from nature, i.e., identifying the obviously efficient mechanisms favored by natural selection.
Obstacle traversal and route choice in flying honeybees: Evidence for individual handedness
Ong, Marielle; Bulmer, Michael; Groening, Julia
2017-01-01
Flying insects constantly face the challenge of choosing efficient, safe and collision-free routes while navigating through dense foliage. We examined the route-choice behavior of foraging honeybees when they encountered a barrier which could be traversed by flying through one of two apertures, positioned side by side. When the bees’ choice behavior was averaged over the entire tested population, the two apertures were chosen with equal frequency when they were equally wide. When the apertures were of different width, the bees, on average, showed a preference for the wider aperture, which increased sharply with the difference between the aperture widths. Thus, bees are able to discriminate the widths of oncoming gaps and choose the passage which is presumably safer and quicker to transit. Examination of the behavior of individual bees revealed that, when the two apertures were equally wide, ca. 55% of the bees displayed no side bias in their choices. However, the remaining 45% showed varying degrees of bias, with one half of them preferring the left-hand aperture, and the other half the right-hand aperture. The existence of distinct individual biases was confirmed by measuring the times required by biased bees to transit various aperture configurations: The transit time was longer if a bee’s intrinsic bias forced it to engage with the narrower aperture. Our results show that, at the population level, bees do not exhibit ‘handedness’ in choosing routes; however, individual bees display an idiosyncratic bias that can range from a strong left bias, through zero bias, to a strong right bias. In honeybees, previous studies of olfactory and visual learning have demonstrated clear biases at the population level. To our knowledge, our study is the first to uncover the existence of individually distinct biases in honeybees. We also show how a distribution of biases among individual honeybees can be advantageous in facilitating rapid transit of a group of bees through a cluttered environment, without any centralized decision-making or control. PMID:29095830
Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection
Dahle, Bjørn; Neumann, Peter
2017-01-01
Background Managed, feral and wild populations of European honey bee subspecies, Apis mellifera, are currently facing severe colony losses globally. There is consensus that the ectoparasitic mite Varroa destructor, that switched hosts from the Eastern honey bee Apis cerana to the Western honey bee A. mellifera, is a key factor driving these losses. For >20 years, breeding efforts have not produced European honey bee colonies that can survive infestations without the need for mite control. However, at least three populations of European honey bees have developed this ability by means of natural selection and have been surviving for >10 years without mite treatments. Reduced mite reproductive success has been suggested as a key factor explaining this natural survival. Here, we report a managed A. mellifera population in Norway, that has been naturally surviving consistent V. destructor infestations for >17 years. Methods Surviving colonies and local susceptible controls were evaluated for mite infestation levels, mite reproductive success and two potential mechanisms explaining colony survival: grooming of adult worker bees and Varroa Sensitive Hygiene (VSH): adult workers specifically detecting and removing mite-infested brood. Results Mite infestation levels were significantly lower in surviving colonies and mite reproductive success was reduced by 30% when compared to the controls. No significant differences were found between surviving and control colonies for either grooming or VSH. Discussion Our data confirm that reduced mite reproductive success seems to be a key factor for natural survival of infested A. mellifera colonies. However, neither grooming nor VSH seem to explain colony survival. Instead, other behaviors of the adult bees seem to be sufficient to hinder mite reproductive success, because brood for this experiment was taken from susceptible donor colonies only. To mitigate the global impact of V. destructor, we suggest learning more from nature, i.e., identifying the obviously efficient mechanisms favored by natural selection. PMID:29085753
Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin
2013-09-01
Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted "mountain refugia hypothesis" states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity.
Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine.
du Rand, Esther E; Smit, Salome; Beukes, Mervyn; Apostolides, Zeno; Pirk, Christian W W; Nicolson, Susan W
2015-07-02
Insecticides are thought to be among the major factors contributing to current declines in bee populations. However, detoxification mechanisms in healthy, unstressed honey bees are poorly characterised. Alkaloids are naturally encountered in pollen and nectar, and we used nicotine as a model compound to identify the mechanisms involved in detoxification processes in honey bees. Nicotine and neonicotinoids have similar modes of action in insects. Our metabolomic and proteomic analyses show active detoxification of nicotine in bees, associated with increased energetic investment and also antioxidant and heat shock responses. The increased energetic investment is significant in view of the interactions of pesticides with diseases such as Nosema spp which cause energetic stress and possible malnutrition. Understanding how healthy honey bees process dietary toxins under unstressed conditions will help clarify how pesticides, alone or in synergy with other stress factors, lead to declines in bee vitality.
Cane, James H.; Minckley, Robert L.; Danforth, Bryan N.
2016-01-01
Squash was first domesticated in Mexico and is now found throughout North America (NA) along with Peponapis pruinosa, a pollen specialist bee species of the squash genus Cucurbita. The origin and spread of squash cultivation is well-studied archaeologically and phylogenetically; however, no study has documented how cultivation of this or any other crop has influenced species in mutualistic interactions. We used molecular markers to reconstruct the demographic range expansion and colonization routes of P. pruinosa from its native range into temperate NA. Populations east of the Rocky Mountains expanded from the wild host plant's range in Mexico and were established by a series of founder events. Eastern North America was most likely colonized from squash bee populations in the present-day continental Midwest USA and not from routes that followed the Gulf and Atlantic coasts from Mexico. Populations of P. pruinosa west of the Rockies spread north from the warm deserts much more recently, showing two genetically differentiated populations with no admixture: one in California and the other one in eastern Great Basin. These bees have repeatedly endured severe bottlenecks as they colonized NA, following human spread of their Cucurbita pollen hosts during the Holocene. PMID:27335417
The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee Euglossa dilemma
Brand, Philipp; Saleh, Nicholas; Pan, Hailin; Li, Cai; Kapheim, Karen M.; Ramírez, Santiago R.
2017-01-01
Bees provide indispensable pollination services to both agricultural crops and wild plant populations, and several species of bees have become important models for the study of learning and memory, plant–insect interactions, and social behavior. Orchid bees (Apidae: Euglossini) are especially important to the fields of pollination ecology, evolution, and species conservation. Here we report the nuclear and mitochondrial genome sequences of the orchid bee Euglossa dilemma Bembé & Eltz. E. dilemma was selected because it is widely distributed, highly abundant, and it was recently naturalized in the southeastern United States. We provide a high-quality assembly of the 3.3 Gb genome, and an official gene set of 15,904 gene annotations. We find high conservation of gene synteny with the honey bee throughout 80 MY of divergence time. This genomic resource represents the first draft genome of the orchid bee genus Euglossa, and the first draft orchid bee mitochondrial genome, thus representing a valuable resource to the research community. PMID:28701376
The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee Euglossa dilemma.
Brand, Philipp; Saleh, Nicholas; Pan, Hailin; Li, Cai; Kapheim, Karen M; Ramírez, Santiago R
2017-09-07
Bees provide indispensable pollination services to both agricultural crops and wild plant populations, and several species of bees have become important models for the study of learning and memory, plant-insect interactions, and social behavior. Orchid bees (Apidae: Euglossini) are especially important to the fields of pollination ecology, evolution, and species conservation. Here we report the nuclear and mitochondrial genome sequences of the orchid bee Euglossa dilemma Bembé & Eltz. E. dilemma was selected because it is widely distributed, highly abundant, and it was recently naturalized in the southeastern United States. We provide a high-quality assembly of the 3.3 Gb genome, and an official gene set of 15,904 gene annotations. We find high conservation of gene synteny with the honey bee throughout 80 MY of divergence time. This genomic resource represents the first draft genome of the orchid bee genus Euglossa , and the first draft orchid bee mitochondrial genome, thus representing a valuable resource to the research community. Copyright © 2017 Brand et al.
Agrochemical-induced stress in stingless bees: peculiarities, underlying basis, and challenges.
Lima, M A P; Martins, G F; Oliveira, E E; Guedes, R N C
2016-10-01
The toxicological stress induced by pesticides, particularly neonicotinoid insecticides, and its consequences in bees has been the focus of much recent attention, particularly for honey bees. However, the emphasis on honey bees and neonicotinoids has led to neglect of the relevance of stingless bees, the prevailing pollinators of natural and agricultural tropical ecosystems, and of other agrochemicals, including other pesticides and even leaf fertilizers. Consequently, studies focusing on agrochemical effects on stingless bees are sparse, usually limited to histopathological studies, and lack a holistic assessment of the effects of these compounds on physiology and behavior. Such effects have consequences for individual and colony fitness and are likely to affect both the stingless bee populations and the associated community, thereby producing a hierarchy of consequences thus far overlooked. Herein, we review the current literature on stingless bee-agrochemical interactions and discuss the underlying mechanisms involved in reported stress symptoms, as well as the potential consequences based on the peculiarities of these pollinators.
Ko, Chong-Yu; Chen, Yue-Wen; Nai, Yu-Shin
2017-04-01
The presence of pesticides in the beekeeping environment is one of the most serious problems that impacts the life of a honey bee. Pesticides can be brought back to the beehive after the bees have foraged on flowers that have been sprayed with pesticides. Pesticide contaminated food can be exchanged between workers which then feed larvae and therefore can potentially affect the development of honey bees. Thus, residual pesticides in the environment can become a chronic damaging factor to honey bee populations and gradually lead to colony collapse. In the presented protocol, honey bee feeding methods are described and applied to either an individual honey bee or to a colony. Here, the insect growth regulator (IGR) pyriproxyfen (PPN), which is widely used to control pest insects and is harmful to the development of honey bee larvae and pupae, is used as the pesticide. The presenting procedure can be applied to other potentially harmful chemicals or honeybee pathogens for further studies.
A Mathematical Model for the Bee Hive of Apis Mellifera
NASA Astrophysics Data System (ADS)
Antonioni, Alberto; Bellom, Fabio Enrici; Montabone, Andrea; Venturino, Ezio
2010-09-01
In this work we introduce and discuss a model for the bee hive, in which only adult bees and drones are modeled. The role that the latter have in the system is interesting, their population can retrieve even if they are totally absent from the bee hive. The feasibility and stability of the equilibria is studied numerically. A simplified version of the model shows the importance of the drones' role, in spite of the fact that it allows only a trivial equilibrium. For this simplified system, no Hopf bifurcations are shown to arise.
Non-Specific dsRNA-Mediated Antiviral Response in the Honey Bee
Flenniken, Michelle L.; Andino, Raul
2013-01-01
Honey bees are essential pollinators of numerous agricultural crops. Since 2006, honey bee populations have suffered considerable annual losses that are partially attributed to Colony Collapse Disorder (CCD). CCD is an unexplained phenomenon that correlates with elevated incidence of pathogens, including RNA viruses. Honey bees are eusocial insects that live in colonies of genetically related individuals that work in concert to gather and store nutrients. Their social organization provides numerous benefits, but also facilitates pathogen transmission between individuals. To investigate honey bee antiviral defense mechanisms, we developed an RNA virus infection model and discovered that administration of dsRNA, regardless of sequence, reduced virus infection. Our results suggest that dsRNA, a viral pathogen associated molecular pattern (PAMP), triggers an antiviral response that controls virus infection in honey bees. PMID:24130869
Pigozzo, Camila M; Neves, Edinaldo L; Jacobi, Claudia M; Viana, Blandina F
2007-01-01
An analysis of the foraging behavior of the bee Xylocopa (Neoxylocopa) cearensis Ducke among shrubs of Cuphea brachiata Koehne (Lythraceae), a key component in the Abaeté coastal sand dunes, Salvador, BA, Brazil, suggests that this bee is very important for the maintenance of the plant population, performing the pollination. This dispersal, however, is spatially restricted, so the populations in the area are likely to be highly structured genetically.
Responses of Honey Bees to Lethal and Sublethal Doses of Formulated Clothianidin Alone and Mixtures.
Yao, Jianxiu; Zhu, Yu Cheng; Adamczyk, John
2018-06-08
The widespread use of neonicotinoid insecticides has sparked concern over the toxicity risk to honey bees (Apis mellifera L. (Hymenoptera: Apidae)). In this study, feeding treatments with the clothianidin formulation at 2.6 ppb (residue concentration) or its binary mixtures with five representative pesticides (classes) did not influence on adult survivorship, but all treatments caused significantly lower body weight than controls. Most binary mixtures at residue levels showed minor or no interaction on body weight loss, and synergistic interaction was detected only from the mixture of clothianidin + λ-cyhalothrin. Chlorpyrifos alone and the mixture of clothianidin + chlorpyrifos significantly suppressed esterase (EST) activity, while most treatments of individual pesticides and mixtures had no effect on EST and glutathione S-transferase (GST) activities. However, ingestion of clothianidin at 2.6 ppb significantly enhanced P450 oxidase activity by 19%. The LC50 of formulated clothianidin was estimated at 0.53 ppm active ingredient, which is equivalent to 25.4 ng clothianidin per bee (LD50) based on the average sugar consumption of 24 µl per bee per day. In addition to mortality, ingestion of clothianidin at LC50 significantly reduced bee body weight by 12%. P450 activities were also significantly induced at 24 and 48 h in clothianidin-treated bees, while no significant difference was found in GST and EST activities. Further examinations revealed that the expression of an important CYP9q1 detoxification gene was significantly induced by clothianidin. Thus, data consistently indicated that P450s were involved in clothianidin detoxification in honey bees. Although the honey bee population in Stoneville (MS, United States) had sixfold lower susceptibility than other reported populations, clothianidin had very high oral toxicity to bees.
Guzman-Novoa, Ernesto; Emsen, Berna; Unger, Peter; Espinosa-Montaño, Laura G; Petukhova, Tatiana
2012-07-01
The objective of this study was to demonstrate genotypic variability and analyze the relationships between the infestation levels of the parasitic mite Varroa destructor in honey bee (Apis mellifera) colonies, the rate of damage of fallen mites, and the intensity with which bees of different genotypes groom themselves to remove mites from their bodies. Sets of paired genotypes that are presumably susceptible and resistant to the varroa mite were compared at the colony level for number of mites falling on sticky papers and for proportion of damaged mites. They were also compared at the individual level for intensity of grooming and mite removal success. Bees from the "resistant" colonies had lower mite population rates (up to 15 fold) and higher percentages of damaged mites (up to 9 fold) than bees from the "susceptible" genotypes. At the individual level, bees from the "resistant" genotypes performed significantly more instances of intense grooming (up to 4 fold), and a significantly higher number of mites were dislodged from the bees' bodies by intense grooming than by light grooming (up to 7 fold) in all genotypes. The odds of mite removal were high and significant for all "resistant" genotypes when compared with the "susceptible" genotypes. The results of this study strongly suggest that grooming behavior and the intensity with which bees perform it, is an important component in the resistance of some honey bee genotypes to the growth of varroa mite populations. The implications of these results are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.
Seasonal cycles, phylogenetic assembly, and functional diversity of orchid bee communities.
Ramírez, Santiago R; Hernández, Carlos; Link, Andres; López-Uribe, Margarita M
2015-05-01
Neotropical rainforests sustain some of the most diverse terrestrial communities on Earth. Euglossine (or orchid) bees are a diverse lineage of insect pollinators distributed throughout the American tropics, where they provide pollination services to a staggering diversity of flowering plant taxa. Elucidating the seasonal patterns of phylogenetic assembly and functional trait diversity of bee communities can shed new light into the mechanisms that govern the assembly of bee pollinator communities and the potential effects of declining bee populations. Male euglossine bees collect, store, and accumulate odoriferous compounds (perfumes) to subsequently use during courtship display. Thus, synthetic chemical baits can be used to attract and monitor euglossine bee populations. We conducted monthly censuses of orchid bees in three sites in the Magdalena valley of Colombia - a region where Central and South American biotas converge - to investigate the structure, diversity, and assembly of euglossine bee communities through time in relation to seasonal climatic cycles. In particular, we tested the hypothesis that phylogenetic community structure and functional trait diversity changed in response to seasonal rainfall fluctuations. All communities exhibited strong to moderate phylogenetic clustering throughout the year, with few pronounced bursts of phylogenetic overdispersion that coincided with the transition from wet-to-dry seasons. Despite the heterogeneous distribution of functional traits (e.g., body size, body mass, and proboscis length) and the observed seasonal fluctuations in phylogenetic diversity, we found that functional trait diversity, evenness, and divergence remained constant during all seasons in all communities. However, similar to the pattern observed with phylogenetic diversity, functional trait richness fluctuated markedly with rainfall in all sites. These results emphasize the importance of considering seasonal fluctuations in community assembly and provide a glimpse to the potential effects that climatic alterations may have on both pollinator communities and the ecosystem services they provide.
Fleming, James C; Schmehl, Daniel R; Ellis, James D
2015-01-01
Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts.
Forrest, Jessica R K; Chisholm, Sarah P M
2017-02-01
Warm temperatures are required for insect flight. Consequently, warming could benefit many high-latitude and high-altitude insects by increasing opportunities for foraging or oviposition. However, warming can also alter species interactions, including interactions with natural enemies, making the net effect of rising temperatures on population growth rate difficult to predict. We investigated the temperature-dependence of nesting activity and lifetime reproductive output over 3 yr in subalpine populations of a pollen-specialist bee, Osmia iridis. Rates of nest provisioning increased with ambient temperatures and with availability of floral resources, as expected. However, warmer conditions did not increase lifetime reproductive output. Lifetime offspring production was best explained by rates of brood parasitism (by the wasp Sapyga), which increased with temperature. Direct observations of bee and parasite activity suggest that although activity of both species is favored by warmer temperatures, bees can be active at lower ambient temperatures, while wasps are active only at higher temperatures. Thus, direct benefits to the bees of warmer temperatures were nullified by indirect costs associated with increased parasite activity. To date, most studies of climate-change effects on pollinators have focused on changing interactions between pollinators and their floral host-plants (i.e., bottom-up processes). Our results suggest that natural enemies (i.e., top-down forces) can play a key role in pollinator population regulation and should not be overlooked in forecasts of pollinator responses to climate change. © 2016 by the Ecological Society of America.
Gage, Stephanie L; Kramer, Catherine; Calle, Samantha; Carroll, Mark; Heien, Michael; DeGrandi-Hoffman, Gloria
2018-02-19
Nosema sp. is an internal parasite of the honey bee, Apis mellifera , and one of the leading contributors to colony losses worldwide. This parasite is found in the honey bee midgut and has profound consequences for the host's physiology. Nosema sp. impairs foraging performance in honey bees, yet, it is unclear whether this parasite affects the bee's neurobiology. In this study, we examined whether Nosema sp. affects odor learning and memory and whether the brains of parasitized bees show differences in amino acids and biogenic amines. We took newly emerged bees and fed them with Nosema ceranae At approximate nurse and forager ages, we employed an odor-associative conditioning assay using the proboscis extension reflex and two bioanalytical techniques to measure changes in brain chemistry. We found that nurse-aged bees infected with N. ceranae significantly outperformed controls in odor learning and memory, suggestive of precocious foraging, but by forager age, infected bees showed deficits in learning and memory. We also detected significant differences in amino acid concentrations, some of which were age specific, as well as altered serotonin, octopamine, dopamine and l-dopa concentrations in the brains of parasitized bees. These findings suggest that N. ceranae infection affects honey bee neurobiology and may compromise behavioral tasks. These results yield new insight into the host-parasite dynamic of honey bees and N. ceranae , as well as the neurochemistry of odor learning and memory under normal and parasitic conditions. © 2018. Published by The Company of Biologists Ltd.
Ramirez, Santiago R; Dean, Cheryl A; Sciligo, Amber; Tsutsui, Neil D
2018-01-01
Abstract The western honey bee, Apis mellifera, is an enormously influential pollinator in both natural and managed ecosystems. In North America, this species has been introduced numerous times from a variety of different source populations in Europe and Africa. Since then, feral populations have expanded into many different environments across their broad introduced range. Here, we used whole genome sequencing of historical museum specimens and newly collected modern populations from California (USA) to analyze the impact of demography and selection on introduced populations during the past 105 years. We find that populations from both northern and southern California exhibit pronounced genetic changes, but have changed in different ways. In northern populations, honey bees underwent a substantial shift from western European to eastern European ancestry since the 1960s, whereas southern populations are dominated by the introgression of Africanized genomes during the past two decades. Additionally, we identify an isolated island population that has experienced comparatively little change over a large time span. Fine-scale comparison of different populations and time points also revealed SNPs that differ in frequency, highlighting a number of genes that may be important for recent adaptations in these introduced populations. PMID:29346588
Kissinger, Christina N; Cameron, Sydney A; Thorp, Robbin W; White, Brendan; Solter, Leellen F
2011-07-01
Pathogens have been implicated as potential factors in the recent decline of some North American bumble bee (Bombus) species, but little information has been reported about the natural enemy complex of bumble bees in the United States. We targeted bumble bee populations in a state-wide survey in Illinois and several sites in California and Oregon where declines have been reported to determine presence and prevalence of natural enemies. Based on our observations, most parasites and pathogens appear to be widespread generalists among bumble bee species, but susceptibility to some natural enemies appeared to vary. Copyright © 2011 Elsevier Inc. All rights reserved.
Floral abundance, richness, and spatial distribution drive urban garden bee communities.
Plascencia, M; Philpott, S M
2017-10-01
In urban landscapes, gardens provide refuges for bee diversity, but conservation potential may depend on local and landscape features. Foraging and population persistence of bee species, as well as overall pollinator community structure, may be supported by the abundance, richness, and spatial distribution of floral resources. Floral resources strongly differ in urban gardens. Using hand netting and pan traps to survey bees, we examined whether abundance, richness, and spatial distribution of floral resources, as well as ground cover and garden landscape surroundings influence bee abundance, species richness, and diversity on the central coast of California. Differences in floral abundance and spatial distribution, as well as urban cover in the landscape, predicted different bee community variables. Abundance of all bees and of honeybees (Apis mellifera) was lower in sites with more urban land cover surrounding the gardens. Honeybee abundance was higher in sites with patchy floral resources, whereas bee species richness and bee diversity was higher in sites with more clustered floral resources. Surprisingly, bee species richness and bee diversity was lower in sites with very high floral abundance, possibly due to interactions with honeybees. Other studies have documented the importance of floral abundance and landscape surroundings for bees in urban gardens, but this study is the first to document that the spatial arrangement of flowers strongly predicts bee abundance and richness. Based on these findings, it is likely that garden managers may promote bee conservation by managing for floral connectivity and abundance within these ubiquitous urban habitats.
Magnus, Roxane M; Tripodi, Amber D; Szalanski, Allen L
2014-06-01
To study the genetic diversity of honey bees (Apis mellifera L.) from unmanaged colonies in the United States, we sequenced a portion of the mitochondrial DNA COI-COII region. From the 530 to 1,230 bp amplicon, we observed 23 haplotypes from 247 samples collected from 12 states, representing three of the four A. mellifera lineages known to have been imported into the United States (C, M, and O). Six of the 13 C lineage haplotypes were not found in previous queen breeder studies in the United States. The O lineage accounted for 9% of unmanaged colonies which have not yet been reported in queen breeder studies. The M lineage accounted for a larger portion of unmanaged samples (7%) than queen breeder samples (3%). Based on our mitochondrial DNA data, the genetic diversity of unmanaged honey bees in the United States differs significantly from that of queen breeder populations (p < 0.00001). The detection of genetically distinct maternal lineages of unmanaged honey bees suggests that these haplotypes may have existed outside the managed honey bee population for a long period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, S.; Hanula, J., L.
2004-03-10
Horn, Scott, and James L. Hanula. 2004. A survey of cavity-nesting bees and wasps in loblolly pine stands of the Savannah River Site, Aiken County, South Carolina. 39(3): 464-469. Abstract: In recent years concern over widespread losses in biodiversity has grown to include a possible decline of many native pollinators, primarily bees. Factors such as habitat fragmentation, agricultural practices, use of pesticides, the introduction of invasive species, or changes in land use may negatively impact these vital organisims. Most reported studies show that human impacts on pollinators are overwhelmingly negative. Reductions in pollinator populations may profoundly impact plant population dynamicsmore » and ecosystem function. Little baseline data exists on the diversity and relative abundance of bees and wasps in southern forests. The objective of this study was to develop a simple, effective method of surveying cavity-nesting bees and wasps and to determine species diversity in mature forests of loblolly pine, the most widely planted tree species in the southern United States.« less
The canary in the coalmine; bee declines as an indicator of environmental health.
Goulson, Dave; Nicholls, Elizabeth
2016-09-01
Bee declines have received much attention of late, but there is considerable debate and confusion as to the extent, significance and causes of declines. In part, this reflects conflation of data for domestic honeybees, numbers of which are largely driven by economic factors, with those for wild bees, many of which have undergone marked range contractions but for the majority of which we have no good data on population size. There is no doubt that bees are subject to numerous pressures in the modern world. The abundance and diversity of flowers has declined along with availability of suitable nest sites, bees are chronically exposed to cocktails of agrochemicals, and they are simultaneously exposed to novel parasites and pathogens accidentally spread by humans. Climate change is likely to exacerbate these problems in the future, particularly for cool- climate specialists such as bumblebees. Stressors do not act in isolation; for example pesticide exposure can impair both detoxification mechanisms and immune responses, rendering bees more susceptible to parasites. It seems certain that chronic exposure to multiple, interacting stressors is driving honeybee colony losses and declines of wild pollinators. Bees have a high profile and so their travails attract attention, but these same stressors undoubtedly bear upon other wild organisms, many of which are not monitored and have few champions. Those wild insects for which we do have population data (notably butterflies and moths) are overwhelmingly also in decline. We argue that bee declines are indicators of pervasive and ongoing environmental damage that is likely to impact broadly on biodiversity and the ecosystem services it provides.
Reproduction and survival of a solitary bee along native and exotic floral resource gradients.
Palladini, Jennifer D; Maron, John L
2014-11-01
Native bee abundance has long been assumed to be limited by floral resources. This paradigm has been established in large measure because more bees are often found in areas supporting greater floral abundance. This could result from attraction to resource-rich sites as well as greater local demographic performance in sites supporting high floral abundance; however, demographic performance is usually unknown. Factors other than floral resources such as availability of nest sites, pressure from natural enemies, or whether floral resources are from a mixed native or mostly monodominant exotic assemblage might influence survival or fecundity and hence abundance. We examined how the survival and fecundity of the native solitary bee Osmia lignaria varied along a gradient in floral resource abundance. We released bees alongside a nest block at 27 grassland sites in Montana (USA) that varied in floral abundance and the extent of invasion by exotic forbs. We monitored nest construction and the fate of offspring within each nest. The number of nests established was positively related to native forb abundance and was negatively related to exotic forb species richness. Fecundity was positively related to native forb species richness; however, offspring mortality caused by the brood parasite Tricrania stansburyi was significantly greater in native-dominated sites. These results suggest that native floral resources can positively influence bee populations, but that the relationship between native floral resources and bee population performance is not straightforward. Rather, bees may face a trade-off between high offspring production and low offspring survival in native-dominated sites.
Laycock, Ian; Cotterell, Katie C; O'Shea-Wheller, Thomas A; Cresswell, James E
2014-02-01
Neonicotinoid pesticides are currently implicated in the decline of wild bee populations. Bumble bees, Bombus spp., are important wild pollinators that are detrimentally affected by ingestion of neonicotinoid residues. To date, imidacloprid has been the major focus of study into the effects of neonicotinoids on bumble bee health, but wild populations are increasingly exposed to alternative neonicotinoids such as thiamethoxam. To investigate whether environmentally realistic levels of thiamethoxam affect bumble bee performance over a realistic exposure period, we exposed queenless microcolonies of Bombus terrestris L. workers to a wide range of dosages up to 98 μgkg(-1) in dietary syrup for 17 days. Results showed that bumble bee workers survived fewer days when presented with syrup dosed at 98 μg thiamethoxamkg(-1), while production of brood (eggs and larvae) and consumption of syrup and pollen in microcolonies were significantly reduced by thiamethoxam only at the two highest concentrations (39, 98 μgkg(-1)). In contrast, we found no detectable effect of thiamethoxam at levels typically found in the nectars of treated crops (between 1 and 11 μgkg(-1)). By comparison with published data, we demonstrate that during an exposure to field-realistic concentrations lasting approximately two weeks, brood production in worker bumble bees is more sensitive to imidacloprid than thiamethoxam. We speculate that differential sensitivity arises because imidacloprid produces a stronger repression of feeding in bumble bees than thiamethoxam, which imposes a greater nutrient limitation on production of brood. © 2013 Published by Elsevier Inc.
Sex determination: balancing selection in the honey bee.
Charlesworth, Deborah
2004-07-27
Sequences of alleles of the honey bee's primary sex-determining gene have extremely high diversity, with many amino acid variants, suggesting that different alleles of this gene have been maintained in populations for very long evolutionary times.
Yang, Bu; Peng, Guangda; Li, Tianbang; Kadowaki, Tatsuhiko
2013-02-01
China has the largest number of managed honey bee colonies, which produce the highest quantity of honey and royal jelly in the world; however, the presence of honey bee pathogens and parasites has never been rigorously identified in Chinese apiaries. We thus conducted a molecular survey of honey bee RNA viruses, Nosema microsporidia, protozoan parasites, and tracheal mites associated with nonnative Apis mellifera ligustica and native Apis cerana cerana colonies in China. We found the presence of black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), and sacbrood virus (SBV), but not that of acute bee paralysis virus (ABPV) or Kashmir bee virus (KBV). DWV was the most prevalent in the tested samples. Phylogenies of Chinese viral isolates demonstrated that genetically heterogeneous populations of BQCV, CBPV, DWV, and A. cerana-infecting SBV, and relatively homogenous populations of IAPV and A. meliifera-infecting new strain of SBV with single origins, are spread in Chinese apiaries. Similar to previous observations in many countries, Nosema ceranae, but not Nosema apis, was prevalent in the tested samples. Crithidia mellificae, but not Apicystis bombi was found in five samples, including one A. c. cerana colony, demonstrating that C. mellificae is capable of infecting multiple honey bee species. Based on kinetoplast-encoded cytochrome b sequences, the C. mellificae isolate from A. c. cerana represents a novel haplotype with 19 nucleotide differences from the Chinese and Japanese isolates from A. m. ligustica. This suggests that A. c. cerana is the native host for this specific haplotype. The tracheal mite, Acarapis woodi, was detected in one A. m. ligustica colony. Our results demonstrate that honey bee RNA viruses, N. ceranae, C. mellificae, and tracheal mites are present in Chinese apiaries, and some might be originated from native Asian honey bees.
Do managed bees have negative effects on wild bees?: A systematic review of the literature
Gratton, Claudio
2017-01-01
Managed bees are critical for crop pollination worldwide. As the demand for pollinator-dependent crops increases, so does the use of managed bees. Concern has arisen that managed bees may have unintended negative impacts on native wild bees, which are important pollinators in both agricultural and natural ecosystems. The goal of this study was to synthesize the literature documenting the effects of managed honey bees and bumble bees on wild bees in three areas: (1) competition for floral and nesting resources, (2) indirect effects via changes in plant communities, including the spread of exotic plants and decline of native plants, and (3) transmission of pathogens. The majority of reviewed studies reported negative effects of managed bees, but trends differed across topical areas. Of studies examining competition, results were highly variable with 53% reporting negative effects on wild bees, while 28% reported no effects and 19% reported mixed effects (varying with the bee species or variables examined). Equal numbers of studies examining plant communities reported positive (36%) and negative (36%) effects, with the remainder reporting no or mixed effects. Finally, the majority of studies on pathogen transmission (70%) reported potential negative effects of managed bees on wild bees. However, most studies across all topical areas documented the potential for impact (e.g. reporting the occurrence of competition or pathogens), but did not measure direct effects on wild bee fitness, abundance, or diversity. Furthermore, we found that results varied depending on whether managed bees were in their native or non-native range; managed bees within their native range had lesser competitive effects, but potentially greater effects on wild bees via pathogen transmission. We conclude that while this field has expanded considerably in recent decades, additional research measuring direct, long-term, and population-level effects of managed bees is needed to understand their potential impact on wild bees. PMID:29220412
Do managed bees have negative effects on wild bees?: A systematic review of the literature.
Mallinger, Rachel E; Gaines-Day, Hannah R; Gratton, Claudio
2017-01-01
Managed bees are critical for crop pollination worldwide. As the demand for pollinator-dependent crops increases, so does the use of managed bees. Concern has arisen that managed bees may have unintended negative impacts on native wild bees, which are important pollinators in both agricultural and natural ecosystems. The goal of this study was to synthesize the literature documenting the effects of managed honey bees and bumble bees on wild bees in three areas: (1) competition for floral and nesting resources, (2) indirect effects via changes in plant communities, including the spread of exotic plants and decline of native plants, and (3) transmission of pathogens. The majority of reviewed studies reported negative effects of managed bees, but trends differed across topical areas. Of studies examining competition, results were highly variable with 53% reporting negative effects on wild bees, while 28% reported no effects and 19% reported mixed effects (varying with the bee species or variables examined). Equal numbers of studies examining plant communities reported positive (36%) and negative (36%) effects, with the remainder reporting no or mixed effects. Finally, the majority of studies on pathogen transmission (70%) reported potential negative effects of managed bees on wild bees. However, most studies across all topical areas documented the potential for impact (e.g. reporting the occurrence of competition or pathogens), but did not measure direct effects on wild bee fitness, abundance, or diversity. Furthermore, we found that results varied depending on whether managed bees were in their native or non-native range; managed bees within their native range had lesser competitive effects, but potentially greater effects on wild bees via pathogen transmission. We conclude that while this field has expanded considerably in recent decades, additional research measuring direct, long-term, and population-level effects of managed bees is needed to understand their potential impact on wild bees.
Steffan, Shawn A; Dharampal, Prarthana S; Diaz-Garcia, Luis; Currie, Cameron R; Zalapa, Juan; Hittinger, Chris Todd
2017-10-09
Growers often use fungicide sprays during bloom to protect crops against disease, which exposes bees to fungicide residues. Although considered "bee-safe," there is mounting evidence that fungicide residues in pollen are associated with bee declines (for both honey and bumble bee species). While the mechanisms remain relatively unknown, researchers have speculated that bee-microbe symbioses are involved. Microbes play a pivotal role in the preservation and/or processing of pollen, which serves as nutrition for larval bees. By altering the microbial community, it is likely that fungicides disrupt these microbe-mediated services, and thereby compromise bee health. This manuscript describes the protocols used to investigate the indirect mechanism(s) by which fungicides may be causing colony decline. Cage experiments exposing bees to fungicide-treated flowers have already provided the first evidence that fungicides cause profound colony losses in a native bumble bee (Bombus impatiens). Using field-relevant doses of fungicides, a series of experiments have been developed to provide a finer description of microbial community dynamics of fungicide-exposed pollen. Shifts in the structural composition of fungal and bacterial assemblages within the pollen microbiome are investigated by next-generation sequencing and metagenomic analysis. Experiments developed herein have been designed to provide a mechanistic understanding of how fungicides affect the microbiome of pollen-provisions. Ultimately, these findings should shed light on the indirect pathway through which fungicides may be causing colony declines.
Fleming, James C.; Schmehl, Daniel R.; Ellis, James D.
2015-01-01
Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony’s nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees’ consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees’ midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts. PMID:26226229
Landscape and Local Correlates of Bee Abundance and Species Richness in Urban Gardens.
Quistberg, Robyn D; Bichier, Peter; Philpott, Stacy M
2016-03-31
Urban gardens may preserve biodiversity as urban population densities increase, but this strongly depends on the characteristics of the gardens and the landscapes in which they are embedded. We investigated whether local and landscape characteristics are important correlates of bee (Hymenoptera: Apiformes) abundance and species richness in urban community gardens. We worked in 19 gardens in the California central coast and sampled bees with aerial nets and pan traps. We measured local characteristics (i.e., vegetation and ground cover) and used the USGS National Land Cover Database to classify the landscape surrounding our garden study sites at 2 km scales. We classified bees according to nesting type (i.e., cavity, ground) and body size and determined which local and landscape characteristics correlate with bee community characteristics. We found 55 bee species. One landscape and several local factors correlated with differences in bee abundance and richness for all bees, cavity-nesting bees, ground-nesting bees, and different sized bees. Generally, bees were more abundant and species rich in bigger gardens, in gardens with higher floral abundance, less mulch cover, more bare ground, and with more grass. Medium bees were less abundant in sites surrounded by more medium intensity developed land within 2 km. The fact that local factors were generally more important drivers of bee abundance and richness indicates a potential for gardeners to promote bee conservation by altering local management practices. In particular, increasing floral abundance, decreasing use of mulch, and providing bare ground may promote bees in urban gardens. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kuster, Ryan D; Boncristiani, Humberto F; Rueppell, Olav
2014-05-15
The ectoparasitic Varroa destructor mite is a major contributor to the ongoing honey bee health crisis. Varroa interacts with honey bee viruses, exacerbating their pathogenicity. In addition to vectoring viruses, immunosuppression of the developing honey bee hosts by Varroa has been proposed to explain the synergy between viruses and mites. However, the evidence for honey bee immune suppression by V. destructor is contentious. We systematically studied the quantitative effects of experimentally introduced V. destructor mites on immune gene expression at five specific time points during the development of the honey bee hosts. Mites reproduced normally and were associated with increased titers of deformed wing virus in the developing bees. Our data on different immune genes show little evidence for immunosuppression of honey bees by V. destructor. Experimental wounding of developing bees increases relative immune gene expression and deformed wing virus titers. Combined, these results suggest that mite feeding activity itself and not immunosuppression may contribute to the synergy between viruses and mites. However, our results also suggest that increased expression of honey bee immune genes decreases mite reproductive success, which may be explored to enhance mite control strategies. Finally, our expression data for multiple immune genes across developmental time and different experimental treatments indicates co-regulation of several of these genes and thus improves our understanding of the understudied honey bee immune system. © 2014. Published by The Company of Biologists Ltd.
Life history strategy of the honey bee, Apis mellifera.
Seeley, Thomas D
1978-01-01
The feral honey bee queens (colonies) of central New York State (USA) show a K-type life history strategy. Their demographic characteristics include low early life mortality, low reproductive rate, long lifespan, high population stability and repeated reproductions. Identifying the life history strategy of these bees reveals the general pattern of selection for competitive ability, rather than productivity, which has shaped their societies. Selection for competitive power explains the adaptiveness (compared with alternatives found in many other insect societies) of the large perennial colonies, infrequent but expensive offspring, and efficient foraging which characterize the social organization of these bees.
Gómez, José M; Bosch, Jordi; Perfectti, Francisco; Fernández, J D; Abdelaziz, Mohamed; Camacho, J P M
2008-10-07
An adaptive role of corolla shape has been often asserted without an empirical demonstration of how natural selection acts on this trait. In generalist plants, in which flowers are visited by diverse pollinator fauna that commonly vary spatially, detecting pollinator-mediated selection on corolla shape is even more difficult. In this study, we explore the mechanisms promoting selection on corolla shape in the generalist crucifer Erysimum mediohispanicum Polatschek (Brassicaceae). We found that the main pollinators of E. mediohispanicum (large bees, small bees and bee flies) discriminate between different corolla shapes when offered artificial flowers without reward. Importantly, different pollinators prefer different shapes: bees prefer flowers with narrow petals, whereas bee flies prefer flowers with rounded overlapping petals. We also found that flowers with narrow petals (those preferred by bees) produce both more pollen and nectar than those with rounded petals. Finally, different plant populations were visited by different faunas. As a result, we found spatial variation in the selection acting on corolla shape. Selection favoured flowers with narrow petals in the populations where large or small bees are the most abundant pollinator groups. Our study suggests that pollinators, by preferring flowers with high reward, exert strong selection on the E. mediohispanicum corolla shape. The geographical variation in the pollinator-mediated selection on E. mediohispanicum corolla shape suggests that phenotypic evolution and diversification can occur in this complex floral trait even without specialization.
Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees.
Wood, Sarah C; Kozii, Ivanna V; Koziy, Roman V; Epp, Tasha; Simko, Elemir
2018-01-01
Thiamethoxam, clothianidin, and imidacloprid are the most commonly used neonicotinoid insecticides on the Canadian prairies. There is widespread contamination of nectar and pollen with neonicotinoids, at concentrations which are sublethal for honey bees (Apis mellifera Linnaeus). We compared the effects of chronic, sublethal exposure to the three most commonly used neonicotinoids on honey bee colonies established from New Zealand packaged bees using colony weight gain, brood area, and population size as measures of colony performance. From May 7 to July 29, 2016 (12 weeks), sixty-eight colonies received weekly feedings of sugar syrup and pollen patties containing 0 nM, 20 nM (median environmental dose), or 80 nM (high environmental dose) of one of three neonicotinoids (thiamethoxam, clothianidin, and imidacloprid). Colonies were weighed at three-week intervals. Brood area and population size were determined from digital images of colonies at week 12. Statistical analyses were performed by ANOVA and mixed models. There was a significant negative effect (-30%, p<0.01) on colony weight gain (honey production) after 9 and 12 weeks of exposure to 80 nM of thiamethoxam, clothianidin, or imidacloprid and on bee cluster size (-21%, p<0.05) after 12 weeks. Analysis of brood area and number of adult bees lacked adequate (>80%) statistical power to detect an effect. Chronic exposure of honey bees to high environmental doses of neonicotinoids has negative effects on honey production. Brood area appears to be less sensitive to detect sublethal effects of neonicotinoids.
Tarpy, David R; Delaney, Deborah A; Seeley, Thomas D
2015-01-01
Across their introduced range in North America, populations of feral honey bee (Apis mellifera L.) colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens-and the increased intracolony genetic diversity it confers-has been attributed, in part, to improved disease resistance and may be a factor in the survival of these populations of feral colonies. We estimated the mating frequencies of queens in feral colonies in the Arnot Forest in New York State to determine if the level of polyandry of these queens is especially high and so might contribute to their survival success. We genotyped the worker offspring from 10 feral colonies in the Arnot Forest of upstate New York, as well as those from 20 managed colonies closest to this forest. We found no significant differences in mean mating frequency between the feral and managed queens, suggesting that queens in the remote, low-density population of colonies in the Arnot Forest are neither mate-limited nor adapted to mate at an especially high frequency. These findings support the hypothesis that the hyperpolyandry of honey bees has been shaped on an evolutionary timescale rather than on an ecological one.
Tarpy, David R.; Delaney, Deborah A.; Seeley, Thomas D.
2015-01-01
Across their introduced range in North America, populations of feral honey bee (Apis mellifera L.) colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens—and the increased intracolony genetic diversity it confers—has been attributed, in part, to improved disease resistance and may be a factor in the survival of these populations of feral colonies. We estimated the mating frequencies of queens in feral colonies in the Arnot Forest in New York State to determine if the level of polyandry of these queens is especially high and so might contribute to their survival success. We genotyped the worker offspring from 10 feral colonies in the Arnot Forest of upstate New York, as well as those from 20 managed colonies closest to this forest. We found no significant differences in mean mating frequency between the feral and managed queens, suggesting that queens in the remote, low-density population of colonies in the Arnot Forest are neither mate-limited nor adapted to mate at an especially high frequency. These findings support the hypothesis that the hyperpolyandry of honey bees has been shaped on an evolutionary timescale rather than on an ecological one. PMID:25775410
Kwong, Waldan K.; McFrederick, Quinn; Anderson, Kirk E.; Barribeau, Seth Michael; Chandler, James Angus; Cornman, R. Scott; Dainat, Jacques; Doublet, Vincent; Emery, Olivier; Evans, Jay D.; Farinelli, Laurent; Flenniken, Michelle L.; Granberg, Fredrik; Grasis, Juris A.; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G.; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J.; Powell, Eli; Sadd, Ben M.; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Schwarz, Ryan S.; vanEngelsdorp, Dennis
2016-01-01
ABSTRACT As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health. PMID:27118586
Engel, Philipp; Kwong, Waldan K.; McFrederick, Quinn; Anderson, Kirk E.; Barribeau, Seth Michael; Chandler, James Angus; Cornman, Robert S.; Dainat, Jacques; de Miranda, Joachim R.; Doublet, Vincent; Emery, Olivier; Evans, Jay D.; Farinelli, Laurent; Flenniken, Michelle L.; Granberg, Fredrik; Grasis, Juris A.; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G.; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J.; Powell, Eli; Sadd, Ben M.; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Song, Se Jin; Schwarz, Ryan S.; vanEngelsdorp, Dennis; Dainat, Benjamin
2016-01-01
As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.
Engel, Philipp; Kwong, Waldan K; McFrederick, Quinn; Anderson, Kirk E; Barribeau, Seth Michael; Chandler, James Angus; Cornman, R Scott; Dainat, Jacques; de Miranda, Joachim R; Doublet, Vincent; Emery, Olivier; Evans, Jay D; Farinelli, Laurent; Flenniken, Michelle L; Granberg, Fredrik; Grasis, Juris A; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J; Powell, Eli; Sadd, Ben M; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Song, Se Jin; Schwarz, Ryan S; vanEngelsdorp, Dennis; Dainat, Benjamin
2016-04-26
As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health. Copyright © 2016 Engel et al.
Rinkevich, Frank D.; Margotta, Joseph W.; Pittman, Jean M.; Ottea, James A.
2016-01-01
Background. The age of an insect strongly influences many aspects of behavior and reproduction. The interaction of age and behavior is epitomized in the temporal polyethism of honey bees in which young adult bees perform nurse and maintenance duties within the colony, while older bees forage for nectar and pollen. Task transition is dynamic and driven by colony needs. However, an abundance of precocious foragers or overage nurses may have detrimental effects on the colony. Additionally, honey bee age affects insecticide sensitivity. Therefore, determining the age of a set of individual honey bees would be an important measurement of colony health. Pteridines are purine-based pigment molecules found in many insect body parts. Pteridine levels correlate well with age, and wild caught insects may be accurately aged by measuring pteridine levels. The relationship between pteridines and age varies with a number of internal and external factors among many species. Thus far, no studies have investigated the relationship of pteridines with age in honey bees. Methods. We established single-cohort colonies to obtain age-matched nurse and forager bees. Bees of known ages were also sampled from colonies with normal demographics. Nurses and foragers were collected every 3–5 days for up to 42 days. Heads were removed and weighed before pteridines were purified and analyzed using previously established fluorometric methods. Results. Our analysis showed that pteridine levels significantly increased with age in a linear manner in both single cohort colonies and colonies with normal demography. Pteridine levels were higher in foragers than nurses of the same age in bees from single cohort colonies. Head weight significantly increased with age until approximately 28-days of age and then declined for both nurse and forager bees in single cohort colonies. A similar pattern of head weight in bees from colonies with normal demography was observed but head weight was highest in 8-day old nurse bees and there was no relationship of head weight with age of foragers. Discussion. Although the relationship between pteridine levels and age was significant, variation in the data yielded a +4-day range in age estimation. This allows an unambiguous method to determine whether a bee may be a young nurse or old forager in colonies with altered demographics as in the case of single cohort colonies. Pteridine levels in bees do not correlate with age as well as in other insects. However, most studies used insects reared under tightly controlled laboratory conditions, while we used free-living bees. The dynamics of head weight change with age is likely to be due to growth and atrophy of the hypopharyngeal glands. Taken together, these methods represent a useful tool for assessing the age of an insect. Future studies utilizing these methods will provide a more holistic view of colony health. PMID:27413635
Variation in and responses to brood pheromone of the honey bee (Apis mellifera L.).
Metz, Bradley N; Pankiw, Tanya; Tichy, Shane E; Aronstein, Katherine A; Crewe, Robin M
2010-04-01
The 10 fatty acid ester components of brood pheromone were extracted from larvae of different populations of USA and South African honey bees and subjected to gas chromatography-mass spectrometry quantitative analysis. Extractable amounts of brood pheromone were not significantly different by larval population; however, differences in the proportions of components enabled us to classify larval population of 77% of samples correctly by discriminant analysis. Honeybee releaser and primer pheromone responses to USA, Africanized and-European pheromone blends were tested. Texas-Africanized and Georgia-European colonies responded with a significantly greater ratio of returning pollen foragers when treated with a blend from the same population than from a different population. There was a significant interaction of pheromone blend by adult population source among Georgia-European bees for modulation of sucrose response threshold, a primer response. Brood pheromone blend variation interacted with population for pollen foraging response of colonies, suggesting a self recognition cue for this pheromone releaser behavior. An interaction of pheromone blend and population for priming sucrose response thresholds among workers within the first week of adult life suggested a more complex interplay of genotype, ontogeny, and pheromone blend.
Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin
2013-01-01
Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted “mountain refugia hypothesis” states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity. PMID:24223262
Kiwifruit Flower Odor Perception and Recognition by Honey Bees, Apis mellifera.
Twidle, Andrew M; Mas, Flore; Harper, Aimee R; Horner, Rachael M; Welsh, Taylor J; Suckling, David M
2015-06-17
Volatile organic compounds (VOCs) from male and female kiwifruit (Actinidia deliciosa 'Hayward') flowers were collected by dynamic headspace sampling. Honey bee (Apis mellifera) perception of the flower VOCs was tested using gas chromatography coupled to electroantennogram detection. Honey bees consistently responded to six compounds present in the headspace of female kiwifruit flowers and five compounds in the headspace of male flowers. Analysis of the floral volatiles by gas chromatography-mass spectrometry and microscale chemical derivatization showed the compounds to be nonanal, 2-phenylethanol, 4-oxoisophorone, (3E,6E)-α-farnesene, (6Z,9Z)-heptadecadiene, and (8Z)-heptadecene. Bees were then trained via olfactory conditioning of the proboscis extension response (PER) to synthetic mixtures of these compounds using the ratios present in each flower type. Honey bees trained to the synthetic mixtures showed a high response to the natural floral extracts, indicating that these may be the key compounds for honey bee perception of kiwifruit flower odor.
Shape and dynamics of thermoregulating honey bee clusters.
Sumpter, D J; Broomhead, D S
2000-05-07
A model of simple algorithmic "agents" acting in a discrete temperature field is used to investigate the movement of individuals in thermoregulating honey bee (Apis mellifera) clusters. Thermoregulation in over-wintering clusters is thought to be the result of individual bees attempting to regulate their own body temperatures. At ambient temperatures above 0( degrees )C, a clustering bee will move relative to its neighbours so as to put its local temperature within some ideal range. The proposed model incorporates this behaviour into an algorithm for bee agents moving on a two-dimensional lattice. Heat transport on the lattice is modelled by a discrete diffusion process. Computer simulation of this model demonstrates qualitative behaviour which agrees with that of real honey bee clusters. In particular, we observe the formation of both disc- and ring-like cluster shapes. The simulation also suggests that at lower ambient temperatures, clusters do not always have a stable shape but can oscillate between insulating rings of different sizes and densities. Copyright 2000 Academic Press.
López-Uribe, Margarita M; Cane, James H; Minckley, Robert L; Danforth, Bryan N
2016-06-29
Squash was first domesticated in Mexico and is now found throughout North America (NA) along with Peponapis pruinosa, a pollen specialist bee species of the squash genus Cucurbita The origin and spread of squash cultivation is well-studied archaeologically and phylogenetically; however, no study has documented how cultivation of this or any other crop has influenced species in mutualistic interactions. We used molecular markers to reconstruct the demographic range expansion and colonization routes of P. pruinosa from its native range into temperate NA. Populations east of the Rocky Mountains expanded from the wild host plant's range in Mexico and were established by a series of founder events. Eastern North America was most likely colonized from squash bee populations in the present-day continental Midwest USA and not from routes that followed the Gulf and Atlantic coasts from Mexico. Populations of P. pruinosa west of the Rockies spread north from the warm deserts much more recently, showing two genetically differentiated populations with no admixture: one in California and the other one in eastern Great Basin. These bees have repeatedly endured severe bottlenecks as they colonized NA, following human spread of their Cucurbita pollen hosts during the Holocene. © 2016 The Author(s).
Country-specific effects of neonicotinoid pesticides on honey bees and wild bees.
Woodcock, B A; Bullock, J M; Shore, R F; Heard, M S; Pereira, M G; Redhead, J; Ridding, L; Dean, H; Sleep, D; Henrys, P; Peyton, J; Hulmes, S; Hulmes, L; Sárospataki, M; Saure, C; Edwards, M; Genersch, E; Knäbe, S; Pywell, R F
2017-06-30
Neonicotinoid seed dressings have caused concern world-wide. We use large field experiments to assess the effects of neonicotinoid-treated crops on three bee species across three countries (Hungary, Germany, and the United Kingdom). Winter-sown oilseed rape was grown commercially with either seed coatings containing neonicotinoids (clothianidin or thiamethoxam) or no seed treatment (control). For honey bees, we found both negative (Hungary and United Kingdom) and positive (Germany) effects during crop flowering. In Hungary, negative effects on honey bees (associated with clothianidin) persisted over winter and resulted in smaller colonies in the following spring (24% declines). In wild bees ( Bombus terrestris and Osmia bicornis ), reproduction was negatively correlated with neonicotinoid residues. These findings point to neonicotinoids causing a reduced capacity of bee species to establish new populations in the year following exposure. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
USDA-ARS?s Scientific Manuscript database
Approximately 30 years ago, two species of mollicute bacteria in the genus Spiroplasma were isolated and described from adult Western honey bees (Apis mellifera). Denominated for their host as Spiroplasma apis and Spiroplasma melliferum, these bacteria were uniquely isolated during springtime and h...
Bee diversity assemblage on pigeon pea, Cajanus cajan along habitat gradient.
Makkar, Gurpreet Singh; Chhuneja, Pardeep K
2016-11-01
The regional bee diversity was investigated on pigeon pea in three agroclimatic zones of Punjab state in northern India. Of the total nine species recorded, population of Megachilids, in particular, was significantly higher in all the three zones. Appraisal of diversity metrics revealed highest bee community diversity in Sub-mountain Undulating zone, followed by Central Plain zone, while least diversity was noted in Western zone, which highlighted the effect of habitat on species richness and abundance. Diurnal variations were evident with the most diverse bee communities recorded at 11:00 hr, followed by at 14:00 and 08:00 hr, with the lowest community diversity at 17:00 hr. The relative abundance of bee species was highly in favour of non-Apis species than Apis species. The results obtained can be used in the application of risk management through planned plant protection measures, study of plant-pollinator interactions along with conservation and augmentation of bee species.
Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees.
Peck, David T; Smith, Michael L; Seeley, Thomas D
2016-01-01
Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation.
Prado-Silva, Arlete; Nunes, Lorena Andrade; Dos Santos, Jádilla Mendes; Affonso, Paulo Roberto Antunes de Mello; Waldschmidt, Ana Maria
2018-05-01
Bees are major pollinators of both native flora and cultured crops. Nonetheless, despite their key functional role in ecosystems and agriculture, bee populations have been affected worldwide by deforestation and contamination by insecticides. Conversely, little is known about the effects of pesticides on morphogenetic development of neotropical stingless bees. We compared the fluctuating asymmetry (FA) in newly emerged bees and foragers of Melipona quadrifasciata anthidioides exposed to pesticides (experimental greenhouse and cultivated field). In addition, visitation behavior of foragers was inferred from pollen analyses and direct observation. A significant increase of FA (P < 0.001) was detected in bees from the greenhouse. Even though pesticides might affect their development, foragers seem to avoid contaminated plants whenever possible, as confirmed by pollen and visitation analyses. Consequently, the conservation of natural forests in agricultural landscapes is essential to ensure the health of colonies in stingless bees.
Exposure of native bees foraging in an agricultural landscape to current-use pesticides.
Hladik, Michelle L; Vandever, Mark; Smalling, Kelly L
2016-01-15
The awareness of insects as pollinators and indicators of environmental quality has grown in recent years, partially in response to declines in honey bee (Apis mellifera) populations. While most pesticide research has focused on honey bees, there has been less work on native bee populations. To determine the exposure of native bees to pesticides, bees were collected from an existing research area in northeastern Colorado in both grasslands (2013-2014) and wheat fields (2014). Traps were deployed bi-monthly during the summer at each land cover type and all bees, regardless of species, were composited as whole samples and analyzed for 136 current-use pesticides and degradates. This reconnaissance approach provides a sampling of all species and represents overall pesticide exposure (internal and external). Nineteen pesticides and degradates were detected in 54 composite samples collected. Compounds detected in >2% of the samples included: insecticides thiamethoxam (46%), bifenthrin (28%), clothianidin (24%), chlorpyrifos (17%), imidacloprid (13%), fipronil desulfinyl (7%; degradate); fungicides azoxystrobin (17%), pyraclostrobin (11%), fluxapyroxad (9%), and propiconazole (9%); herbicides atrazine (19%) and metolachlor (9%). Concentrations ranged from 1 to 310 ng/g for individual pesticides. Pesticides were detected in samples collected from both grasslands and wheat fields; the location of the sample and the surrounding land cover at the 1000 m radius influenced the pesticides detected but because of a small number of temporally comparable samples, correlations between pesticide concentration and land cover were not significant. The results show native bees collected in an agricultural landscape are exposed to multiple pesticides, these results can direct future research on routes/timing of pesticide exposure and the design of future conservation efforts for pollinators. Published by Elsevier B.V.
Exposure of native bees foraging in an agricultural landscape to current-use pesticides
Hladik, Michelle; Vandever, Mark W.; Smalling, Kelly L.
2016-01-01
The awareness of insects as pollinators and indicators of environmental quality has grown in recent years, partially in response to declines in honey bee (Apis mellifera) populations. While most pesticide research has focused on honey bees, there has been less work on native bee populations. To determine the exposure of native bees to pesticides, bees were collected from an existing research area in northeastern Colorado from two land cover types: grasslands (2013-2014) and wheat fields (2014). Traps were deployed bi-monthly during the summer at each land cover type and all bees, regardless of species, were composited as whole samples and analyzed for 136 current-use pesticides and degradates. This reconnaissance approach provides a sampling of all species and represents overall pesticide exposure (internal and external). Nineteen pesticides and degradates were detected in 54 composite samples collected. Compounds detected in >10% of the samples included the insecticides thiamethoxam (46%), bifenthrin (28%), clothianidin (24%), chlorpyrifos (17%), and imidacloprid (13%), the fungicides azoxystrobin (17%), and pyraclostrobin (11%), and the herbicide atrazine (19%). Concentrations ranged from 1.1 to 312 ng/g for individual pesticides. Pesticides were detected in samples collected from both grasslands and wheat fields; the location of the sample and the surrounding land cover at the 1000 m buffer influenced the pesticides detected but because of a small number of temporally comparable samples, correlations between pesticide concentration and land cover were not significant. The results show native bees collected in both grasslands and wheat fields are exposed to multiple pesticides, these results can direct future research on routes/timing of pesticide exposure and the design of future conservation efforts for pollinators.
Cridland, Julie M; Ramirez, Santiago R; Dean, Cheryl A; Sciligo, Amber; Tsutsui, Neil D
2018-02-01
The western honey bee, Apis mellifera, is an enormously influential pollinator in both natural and managed ecosystems. In North America, this species has been introduced numerous times from a variety of different source populations in Europe and Africa. Since then, feral populations have expanded into many different environments across their broad introduced range. Here, we used whole genome sequencing of historical museum specimens and newly collected modern populations from California (USA) to analyze the impact of demography and selection on introduced populations during the past 105 years. We find that populations from both northern and southern California exhibit pronounced genetic changes, but have changed in different ways. In northern populations, honey bees underwent a substantial shift from western European to eastern European ancestry since the 1960s, whereas southern populations are dominated by the introgression of Africanized genomes during the past two decades. Additionally, we identify an isolated island population that has experienced comparatively little change over a large time span. Fine-scale comparison of different populations and time points also revealed SNPs that differ in frequency, highlighting a number of genes that may be important for recent adaptations in these introduced populations. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Lester, Philip J; Bosch, Peter J; Gruber, Monica A M; Kapp, Eugene A; Peng, Lifeng; Brenton-Rule, Evan C; Buchanan, Joe; Stanislawek, Wlodek L; Archer, Michael; Corley, Juan C; Masciocchi, Maitè; Van Oystaeyen, Annette; Wenseleers, Tom
2015-01-01
When invasive species move to new environments they typically experience population bottlenecks that limit the probability that pathogens and parasites are also moved. The invasive species may thus be released from biotic interactions that can be a major source of density-dependent mortality, referred to as enemy release. We examined for evidence of enemy release in populations of the common wasp (Vespula vulgaris), which attains high densities and represents a major threat to biodiversity in its invaded range. Mass spectrometry proteomic methods were used to compare the microbial communities in wasp populations in the native (Belgium and England) and invaded range (Argentina and New Zealand). We found no evidence of enemy release, as the number of microbial taxa was similar in both the introduced and native range. However, some evidence of distinctiveness in the microbial communities was observed between countries. The pathogens observed were similar to a variety of taxa observed in honey bees. These taxa included Nosema, Paenibacillus, and Yersina spp. Genomic methods confirmed a diversity of Nosema spp., Actinobacteria, and the Deformed wing and Kashmir bee viruses. We also analysed published records of bacteria, viruses, nematodes and fungi from both V. vulgaris and the related invader V. germanica. Thirty-three different microorganism taxa have been associated with wasps including Kashmir bee virus and entomophagous fungi such as Aspergillus flavus. There was no evidence that the presence or absence of these microorganisms was dependent on region of wasp samples (i.e. their native or invaded range). Given the similarity of the wasp pathogen fauna to that from honey bees, the lack of enemy release in wasp populations is probably related to spill-over or spill-back from bees and other social insects. Social insects appear to form a reservoir of generalist parasites and pathogens, which makes the management of wasp and bee disease difficult.
Lester, Philip J.; Kapp, Eugene A.; Peng, Lifeng; Brenton-Rule, Evan C.; Buchanan, Joe; Stanislawek, Wlodek L.; Archer, Michael; Corley, Juan C.; Masciocchi, Maitè; Van Oystaeyen, Annette; Wenseleers, Tom
2015-01-01
When invasive species move to new environments they typically experience population bottlenecks that limit the probability that pathogens and parasites are also moved. The invasive species may thus be released from biotic interactions that can be a major source of density-dependent mortality, referred to as enemy release. We examined for evidence of enemy release in populations of the common wasp (Vespula vulgaris), which attains high densities and represents a major threat to biodiversity in its invaded range. Mass spectrometry proteomic methods were used to compare the microbial communities in wasp populations in the native (Belgium and England) and invaded range (Argentina and New Zealand). We found no evidence of enemy release, as the number of microbial taxa was similar in both the introduced and native range. However, some evidence of distinctiveness in the microbial communities was observed between countries. The pathogens observed were similar to a variety of taxa observed in honey bees. These taxa included Nosema, Paenibacillus, and Yersina spp. Genomic methods confirmed a diversity of Nosema spp., Actinobacteria, and the Deformed wing and Kashmir bee viruses. We also analysed published records of bacteria, viruses, nematodes and fungi from both V. vulgaris and the related invader V. germanica. Thirty-three different microorganism taxa have been associated with wasps including Kashmir bee virus and entomophagous fungi such as Aspergillus flavus. There was no evidence that the presence or absence of these microorganisms was dependent on region of wasp samples (i.e. their native or invaded range). Given the similarity of the wasp pathogen fauna to that from honey bees, the lack of enemy release in wasp populations is probably related to spill-over or spill-back from bees and other social insects. Social insects appear to form a reservoir of generalist parasites and pathogens, which makes the management of wasp and bee disease difficult. PMID:25798856
Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study
de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina
2013-01-01
Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings. PMID:23569417
Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study.
de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina
2013-03-01
Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.
Propolis counteracts some threats to honey bee health
USDA-ARS?s Scientific Manuscript database
Honey bee (Apis mellifera) populations in North America and Europe are currently experiencing high and unsustainable annual losses. It is critically important to understand the impact of individual stressors and the interactions among stressors in order to develop solutions to increase colony health...
National protocol framework for the inventory and monitoring of bees
Droege, Sam; Engler, Joseph D.; Sellers, Elizabeth A.; Lee O'Brien,
2016-01-01
This national protocol framework is a standardized tool for the inventory and monitoring of the approximately 4,200 species of native and non-native bee species that may be found within the National Wildlife Refuge System (NWRS) administered by the U.S. Fish and Wildlife Service (USFWS). However, this protocol framework may also be used by other organizations and individuals to monitor bees in any given habitat or location. Our goal is to provide USFWS stations within the NWRS (NWRS stations are land units managed by the USFWS such as national wildlife refuges, national fish hatcheries, wetland management districts, conservation areas, leased lands, etc.) with techniques for developing an initial baseline inventory of what bee species are present on their lands and to provide an inexpensive, simple technique for monitoring bees continuously and for monitoring and evaluating long-term population trends and management impacts. The latter long-term monitoring technique requires a minimal time burden for the individual station, yet can provide a good statistical sample of changing populations that can be investigated at the station, regional, and national levels within the USFWS’ jurisdiction, and compared to other sites within the United States and Canada. This protocol framework was developed in cooperation with the United States Geological Survey (USGS), the USFWS, and a worldwide network of bee researchers who have investigated the techniques and methods for capturing bees and tracking population changes. The protocol framework evolved from field and lab-based investigations at the USGS Bee Inventory and Monitoring Laboratory at the Patuxent Wildlife Research Center in Beltsville, Maryland starting in 2002 and was refined by a large number of USFWS, academic, and state groups. It includes a Protocol Introduction and a set of 8 Standard Operating Procedures or SOPs and adheres to national standards of protocol content and organization. The Protocol Narrative describes the history and need for the protocol framework and summarizes the basic elements of objectives, sampling design, field methods, training, data management, analysis, and reporting. The SOPs provide more detail and specific instructions for implementing the protocol framework. A central database, for managing all the resulting data is under development. We welcome use of this protocol framework by our partners, as appropriate for their bee inventory and monitoring objectives.
Galpern, Paul; Johnson, Sarah A; Retzlaff, Jennifer L; Chang, Danielle; Swann, John
2017-04-01
One of the most commonly seeded crops in Canada is canola, a cultivar of oilseed rape ( Brassica napus ). As a mass-flowering crop grown intensively throughout the Canadian Prairies, canola has the potential to influence pollinator success across tens of thousands of square kilometers of cropland. Bumble bees ( Bombus sp.) are efficient pollinators of many types of native and crop plants. We measured the influence of this mass-flowering crop on the abundance and phenology of bumble bees, and on another species of social bee (a sweat bee; Halictus rubicundus ), by continuously deploying traps at different levels of canola cultivation intensity, spanning the start and end of canola bloom. Queen bumble bees were more abundant in areas with more canola cover, indicating that this crop is attractive to queens. However, bumble bee workers were significantly fewer in these locations later in the season, suggesting reduced colony success. The median collection dates of workers of three bumble bee species were earlier near canola fields, suggesting a dynamic response of colonies to the increased floral resources. Different species experienced this shift to different extents. The sweat bee was not affected by canola cultivation intensity. Our findings suggest that mass-flowering crops such as canola are attractive to bumble bee queens and therefore may lead to higher rates of colony establishment, but also that colonies established near this crop may be less successful. We propose that the effect on bumble bees can be mitigated by spacing the crop more evenly with respect to alternate floral resources.
Spore load and immune response of honey bees naturally infected by Nosema ceranae.
Li, Wenfeng; Evans, Jay D; Li, Jianghong; Su, Songkun; Hamilton, Michele; Chen, Yanping
2017-12-01
Nosema ceranae causes widespread infection in adult workers of European honey bees, Apis mellifera, and has often been linked to honey bee colony losses worldwide. Previous investigations of honey bee immune response to N. ceranae infection were largely based on laboratory experiment, however, little is known about the immune response of honey bees that are naturally infected by N. ceranae. Here, we compared the infection levels of N. ceranae in three different categories of adult bees (emergent bees, nurses, and foragers) and detected the host immune response to the N. ceranae infection under natural conditions. Our studies showed that the Nosema spore load and infection prevalence varied among the different types of adult workers, and both of them increased as honey bees aged: No infection was detected in emergent bees, nurses had a medium spore load and prevalence, while foragers were with the highest Nosema infection level and prevalence. Quantification of the mRNA levels of antimicrobial peptides (abaecin, apidaecin, defensin-1, defensin-2, and hymenoptaecin) and microbial recognition proteins (PGRP-S1, PGRP-S2, PGRP-S3, PGRP-LC, GNBP1-1, and GNBP1-2) confirmed the involvement of the Toll and/or Imd immune pathways in the host response to N. ceranae infection, and revealed an activation of host immune response by N. ceranae infection under natural conditions. Additionally, the levels of immune response were positively correlated with the Nosema spore loads in the infected bees. The information gained from this study will be relevant to the predictive modeling of honey bee disease dynamics for Nosema disease prevention and management.
2011-01-01
Background Malnutrition is a major factor affecting animal health, resistance to disease and survival. In honey bees (Apis mellifera), pollen, which is the main dietary source of proteins, amino acids and lipids, is essential to adult bee physiological development while reducing their susceptibility to parasites and pathogens. However, the molecular mechanisms underlying pollen's nutritive impact on honey bee health remained to be determined. For that purpose, we investigated the influence of pollen nutrients on the transcriptome of worker bees parasitized by the mite Varroa destructor, known for suppressing immunity and decreasing lifespan. The 4 experimental groups (control bees without a pollen diet, control bees fed with pollen, varroa-parasitized bees without a pollen diet and varroa-parasitized bees fed with pollen) were analyzed by performing a digital gene expression (DGE) analysis on bee abdomens. Results Around 36, 000 unique tags were generated per DGE-tag library, which matched about 8, 000 genes (60% of the genes in the honey bee genome). Comparing the transcriptome of bees fed with pollen and sugar and bees restricted to a sugar diet, we found that pollen activates nutrient-sensing and metabolic pathways. In addition, those nutrients had a positive influence on genes affecting longevity and the production of some antimicrobial peptides. However, varroa parasitism caused the development of viral populations and a decrease in metabolism, specifically by inhibiting protein metabolism essential to bee health. This harmful effect was not reversed by pollen intake. Conclusions The DGE-tag profiling methods used in this study proved to be a powerful means for analyzing transcriptome variation related to nutrient intake in honey bees. Ultimately, with such an approach, applying genomics tools to nutrition research, nutrigenomics promises to offer a better understanding of how nutrition influences body homeostasis and may help reduce the susceptibility of bees to (less virulent) pathogens. PMID:21985689
Thummajitsakul, Sirikul; Klinbunga, Sirawut; Sittipraneed, Siriporn
2011-08-01
Genetic diversity and population differentiation of the stingless bee Tetragonula pagdeni (Schwarz) was assessed using single-strand conformational polymorphism (SSCP) analysis of a large subunit of the ribosomal RNA gene (16S rRNA). High levels of genetic variation among individuals within each population (North, Northeast, Central, Prachuap Khiri Khan, Chumphon, and Peninsular Thailand) of T. pagdeni were observed. Analysis of molecular variance indicated significant genetic differentiation among the six geographic populations (Φ (PT) = 0.28, P < 0.001) and between samples collected from north and south of the Isthmus of Kra (Φ (PT) = 0.18, P < 0.001). In addition, Φ (PT) values between all pairwise comparisons were statistically significant (P < 0.01), indicating strong degrees of intraspecific population differentiation. Therefore, PCR-SSCP is a simple and cost-effective technique applicable for routine population genetic analyses in T. pagdeni and other stingless bees. The results also provide an important baseline for the conservation and management of this ecologically important species.
Torné-Noguera, Anna; Rodrigo, Anselm; Arnan, Xavier; Osorio, Sergio; Barril-Graells, Helena; da Rocha-Filho, Léo Correia; Bosch, Jordi
2014-01-01
Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500–1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks. PMID:24824445
Torné-Noguera, Anna; Rodrigo, Anselm; Arnan, Xavier; Osorio, Sergio; Barril-Graells, Helena; da Rocha-Filho, Léo Correia; Bosch, Jordi
2014-01-01
Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500-1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks.
Boncristiani, Humberto F.; Evans, Jay D.; Chen, Yanping; Pettis, Jeff; Murphy, Charles; Lopez, Dawn L.; Simone-Finstrom, Michael; Strand, Micheline; Tarpy, David R.; Rueppell, Olav
2013-01-01
The ongoing decline of honey bee health worldwide is a serious economic and ecological concern. One major contributor to the decline are pathogens, including several honey bee viruses. However, information is limited on the biology of bee viruses and molecular interactions with their hosts. An experimental protocol to test these systems was developed, using injections of Israeli Acute Paralysis Virus (IAPV) into honey bee pupae reared ex-situ under laboratory conditions. The infected pupae developed pronounced but variable patterns of disease. Symptoms varied from complete cessation of development with no visual evidence of disease to rapid darkening of a part or the entire body. Considerable differences in IAPV titer dynamics were observed, suggesting significant variation in resistance to IAPV among and possibly within honey bee colonies. Thus, selective breeding for virus resistance should be possible. Gene expression analyses of three separate experiments suggest IAPV disruption of transcriptional homeostasis of several fundamental cellular functions, including an up-regulation of the ribosomal biogenesis pathway. These results provide first insights into the mechanisms of IAPV pathogenicity. They mirror a transcriptional survey of honey bees afflicted with Colony Collapse Disorder and thus support the hypothesis that viruses play a critical role in declining honey bee health. PMID:24039938
Bushmann, Sara L; Drummond, Francis A
2015-08-01
Insect-mediated pollination is critical for lowbush blueberry (Ericaceae: Vaccinium angustifolium Aiton) fruit development. Past research shows a persistent presence of wild bees (Hymenoptera: Apoidea) providing pollination services even when commercial pollinators are present. We undertook the study to 1) provide a description of bee communities found in lowbush blueberry-growing regions, 2) identify field characteristics or farm management practices that influence those communities, 3) identify key wild bee pollinators that provide pollination services for the blueberry crop, and 4) identify non-crop plants found within the cropping system that provide forage for wild bees. During a 4-year period, we collected solitary and eusocial bees in over 40 fields during and after blueberry bloom, determining a management description for each field. We collected 4,474 solitary bees representing 124 species and 1,315 summer bumble bees representing nine species. No bumble bee species were previously unknown in Maine, yet we document seven solitary bee species new for the state. These include species of the genera Nomada, Lasioglossum, Calliopsis, and Augochloropsis. No field characteristic or farm management practice related to bee community structure, except bumble bee species richness was higher in certified organic fields. Pollen analysis determined scopal loads of 67-99% ericaceous pollen carried by five species of Andrena. Our data suggest two native ericaceous plants, Kalmia angustifolia L. and Gaylussacia baccata (Wangenheim), provide important alternative floral resources. We conclude that Maine blueberry croplands are populated with a species-rich bee community that fluctuates in time and space. We suggest growers develop and maintain wild bee forage and nest sites. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Microsatellite loci for the stingless bee Melipona rufiventris (Hymenoptera: Apidae).
Lopes, Denilce Meneses; D Silva, Filipe Oliveira; Fernandes Salomão, Tânia Maria; Campos, Lúcio Antônio D Oliveira; Tavares, Mara Garcia
2009-05-01
Eight microsatellite primers were developed from ISSR (intersimple sequence repeats) markers for the stingless bee Melipona rufiventris. These primers were tested in 20 M. rufiventris workers, representing a single population from Minas Gerais state. The number of alleles per locus ranged from 2 to 5 (mean = 2.63) and the observed and expected heterozygosity values ranged from 0.00 to 0.44 (mean = 0.20) and from 0.05 to 0.68 (mean = 0.31), respectively. Several loci were also polymorphic in M. quadrifasciata, M. bicolor, M. mandacaia and Partamona helleri and should prove useful in population studies of other stingless bees. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.
Hybrid origins of Australian honey bees (Apis mellifera)
USDA-ARS?s Scientific Manuscript database
With increased globalisation and homogenisation the maintenance of genetic integrity of local populations of agriculturally important species is of increasing concern. The honey bee provides an interesting perspective as it is both domesticated and wild, with a large native range and much larger int...
Chaskopoulou, Alexandra; Thrasyvoulou, Andreas; Goras, Georgios; Tananaki, Chrysoula; Latham, Mark D; Kashefi, Javid; Pereira, Roberto M; Koehler, Philip G
2014-05-01
We assessed the nontarget effects of ultra-low-volume (ULV) aerial adulticiding with two new water-based, unsynergized pyrethroid formulations, Aqua-K-Othrine (FFAST antievaporant technology, 2% deltamethrin) and Pesguard S102 (10% d-phenothrin). A helicopter with GPS navigation technology was used. One application rate was tested per formulation that corresponded to 1.00 g (AI)/ha of deltamethrin and 7.50 g (AI)/ha of d-phenothrin. Three beneficial nontarget organisms were used: honey bees (domesticated hives), family Apidae (Apis mellifera L.); mealybug destroyers, family Coccinellidae (Cryptolaemus montrouzieri Mulsant); and green lacewings, family Chrysopidae (Chrysoperla carnea (Stephens)). No significant nontarget mortalities were observed. No bees exhibited signs of sublethal exposure to insecticides. Beehives exposed to the insecticidal applications remained healthy and productive, performed as well as the control hives and increased in weight (25-30%), in adult bee population (14-18%), and in brood population (15-19%).
Nosema ceranae in South American Native Stingless Bees and Social Wasp.
Porrini, Martín Pablo; Porrini, Leonardo Pablo; Garrido, Paula Melisa; de Melo E Silva Neto, Carlos; Porrini, Darío Pablo; Muller, Fernando; Nuñez, Laura Alejandra; Alvarez, Leopoldo; Iriarte, Pedro Fernandez; Eguaras, Martín Javier
2017-11-01
Besides the incipient research effort, the role of parasites as drivers of the reduction affecting pollinator populations is mostly unknown. Given the worldwide extension of the beekeeping practice and the diversity of pathogens affecting Apis mellifera populations, honey bee colonies are a certain source of parasite dispersion to other species. Here, we communicate the detection of the microsporidium Nosema ceranae, a relatively new parasite of honey bees, in stingless bees (Meliponini) and the social wasp Polybia scutellaris (Vespidae) samples from Argentina and Brazil by means of duplex PCR. Beyond the geographic location of the nests, N. ceranae was detected in seven from the eight Meliponini species analyzed, while Nosema apis, another common parasite of A. mellifera, was absent in all samples tested. Further research is necessary to determine if the presence of the parasite is also associated with established infection in host tissues. The obtained information enriches the current knowledge about pathologies that can infect or, at least, be vectored by native wild pollinators from South America.
Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees
Kozii, Ivanna V.; Koziy, Roman V.; Epp, Tasha; Simko, Elemir
2018-01-01
Background Thiamethoxam, clothianidin, and imidacloprid are the most commonly used neonicotinoid insecticides on the Canadian prairies. There is widespread contamination of nectar and pollen with neonicotinoids, at concentrations which are sublethal for honey bees (Apis mellifera Linnaeus). Objective We compared the effects of chronic, sublethal exposure to the three most commonly used neonicotinoids on honey bee colonies established from New Zealand packaged bees using colony weight gain, brood area, and population size as measures of colony performance. Methods From May 7 to July 29, 2016 (12 weeks), sixty-eight colonies received weekly feedings of sugar syrup and pollen patties containing 0 nM, 20 nM (median environmental dose), or 80 nM (high environmental dose) of one of three neonicotinoids (thiamethoxam, clothianidin, and imidacloprid). Colonies were weighed at three-week intervals. Brood area and population size were determined from digital images of colonies at week 12. Statistical analyses were performed by ANOVA and mixed models. Results There was a significant negative effect (-30%, p<0.01) on colony weight gain (honey production) after 9 and 12 weeks of exposure to 80 nM of thiamethoxam, clothianidin, or imidacloprid and on bee cluster size (-21%, p<0.05) after 12 weeks. Analysis of brood area and number of adult bees lacked adequate (>80%) statistical power to detect an effect. Conclusions Chronic exposure of honey bees to high environmental doses of neonicotinoids has negative effects on honey production. Brood area appears to be less sensitive to detect sublethal effects of neonicotinoids. PMID:29293609
Christen, Verena; Fent, Karl
2017-07-01
Pesticides are implicated in the decline of honey bee populations. Many insecticides are neurotoxic and act by different modes of actions. Although a link between insecticide exposure and changed behaviour has been made, molecular effects underlying these effects are poorly understood. Here we elucidated molecular effects at environmental realistic concentrations of two organophosphates, chlorpyrifos and malathion, the pyrethroid cypermethrin, and the ryanodine receptor activator, chlorantraniliprole. We assessed transcriptional alterations of selected genes at three exposure times (24 h, 48 h, 72 h) in caged honey bees exposed to different concentrations of these compounds. Our targeted gene expression concept focused on several transcripts, including nicotinic acetylcholine receptor α 1 and α 2 (nAChRα1, nAChRα2) subunits, the multifunctional gene vitellogenin, immune system related genes of three immune system pathways, genes belonging to the detoxification system and ER stress genes. Our data indicate a dynamic pattern of expressional changes at different exposure times. All four insecticides induced strong alterations in the expression of immune system related genes suggesting negative implications for honey bee health, as well as cytochrome P450 enzyme transcripts suggesting an interference with metabolism. Exposure to neurotoxic chlorpyrifos, malathion and cypermethrin resulted in up-regulation of nAChRα1 and nAChRα2. Moreover, alterations in the expression of vitellogenin occurred, which suggests implications on foraging activity. Chlorantraniliprole induced ER stress which may be related to toxicity. The comparison of all transcriptional changes indicated that the expression pattern is rather compound-specific and related to its mode of action, but clusters of common transcriptional changes between different compounds occurred. As transcriptional alterations occurred at environmental concentrations our data provide a molecular basis for observed adverse effects of these insecticides to bees. Copyright © 2017 Elsevier Ltd. All rights reserved.
Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera).
Kapheim, Karen M; Rao, Vikyath D; Yeoman, Carl J; Wilson, Brenda A; White, Bryan A; Goldenfeld, Nigel; Robinson, Gene E
2015-01-01
Host-symbiont dynamics are known to influence host phenotype, but their role in social behavior has yet to be investigated. Variation in life history across honey bee (Apis mellifera) castes may influence community composition of gut symbionts, which may in turn influence caste phenotypes. We investigated the relationship between host-symbiont dynamics and social behavior by characterizing the hindgut microbiome among distinct honey bee castes: queens, males and two types of workers, nurses and foragers. Despite a shared hive environment and mouth-to-mouth food transfer among nestmates, we detected separation among gut microbiomes of queens, workers, and males. Gut microbiomes of nurses and foragers were similar to previously characterized honey bee worker microbiomes and to each other, despite differences in diet, activity, and exposure to the external environment. Queen microbiomes were enriched for bacteria that may enhance metabolic conversion of energy from food to egg production. We propose that the two types of workers, which have the highest diversity of operational taxonomic units (OTUs) of bacteria, are central to the maintenance of the colony microbiome. Foragers may introduce new strains of bacteria to the colony from the environment and transfer them to nurses, who filter and distribute them to the rest of the colony. Our results support the idea that host-symbiont dynamics influence microbiome composition and, reciprocally, host social behavior.
Climate change: impact on honey bee populations and diseases.
Le Conte, Y; Navajas, M
2008-08-01
The European honey bee, Apis mellifera, is the most economically valuable pollinator of agricultural crops worldwide. Bees are also crucial in maintaining biodiversity by pollinating numerous plant species whose fertilisation requires an obligatory pollinator. Apis mellifera is a species that has shown great adaptive potential, as it is found almost everywhere in the world and in highly diverse climates. In a context of climate change, the variability of the honey bee's life-history traits as regards temperature and the environment shows that the species possesses such plasticity and genetic variability that this could give rise to the selection of development cycles suited to new environmental conditions. Although we do not know the precise impact of potential environmental changes on honey bees as a result of climate change, there is a large body of data at our disposal indicating that environmental changes have a direct influence on honey bee development. In this article, the authors examine the potential impact of climate change on honey bee behaviour, physiology and distribution, as well as on the evolution of the honey bee's interaction with diseases. Conservation measures will be needed to prevent the loss of this rich genetic diversity of honey bees and to preserve ecotypes that are so valuable for world biodiversity.
Flexible social organization and high incidence of drifting in the sweat bee, Halictus scabiosae.
Ulrich, Yuko; Perrin, Nicolas; Chapuisat, Michel
2009-04-01
The very diverse social systems of sweat bees make them interesting models to study social evolution. Here we focus on the dispersal behaviour and social organization of Halictus scabiosae, a common yet poorly known species of Europe. By combining field observations and genetic data, we show that females have multiple reproductive strategies, which generates a large diversity in the social structure of nests. A detailed microsatellite analysis of 60 nests revealed that 55% of the nests contained the offspring of a single female, whereas the rest had more complex social structures, with three clear cases of multiple females reproducing in the same nest and frequent occurrence of unrelated individuals. Drifting among nests was surprisingly common, as 16% of the 122 nests in the overall sample and 44% of the nests with complex social structure contained females that had genotypes consistent with being full-sisters of females sampled in other nests of the population. Drifters originated from nests with an above-average productivity and were unrelated to their nestmates, suggesting that drifting might be a strategy to avoid competition among related females. The sex-specific comparison of genetic differentiation indicated that dispersal was male-biased, which would reinforce local resource competition among females. The pattern of genetic differentiation among populations was consistent with a dynamic process of patch colonization and extinction, as expected from the unstable, anthropogenic habitat of this species. Overall, our data show that H. scabiosae varies greatly in dispersal behaviour and social organization. The surprisingly high frequency of drifters echoes recent findings in wasps and bees, calling for further investigation of the adaptive basis of drifting in the social insects.
Zaluski, Rodrigo; Kadri, Samir Moura; Alonso, Diego Peres; Martins Ribolla, Paulo Eduardo; de Oliveira Orsi, Ricardo
2015-05-01
Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies. © 2015 SETAC.
The potential conservation value of unmowed powerline strips for native bees
Russell, K.N.; Ikerd, H.; Droege, S.
2005-01-01
The land area covered by powerline easements in the United States exceeds the area of almost all national parks, including Yellowstone. In parts of Europe and the US, electric companies have altered their land management practices from periodic mowing to extraction of tall vegetation combined with the use of selective herbicides. To investigate whether this alternate management practice might produce higher quality habitat for native bees, we compared the bee fauna collected in unmowed powerline corridors and in nearby mowed grassy fields at the Patuxent Wildlife Research Center (MD). Powerline sites had more spatially and numerically rare species and a richer bee community than the grassy fields, although the difference was less pronounced than we expected. Powerline sites also had more parasitic species and more cavitynesting bees. Bee communities changed progressively through the season, but differences between the site types were persistent. The surrounding, nongrassland landscape likely has a strong influence on the bee species collected at the grassland sites, as some bees may be foraging in the grasslands but nesting elsewhere. Improving habitat for native bees will help ameliorate the loss of pollination services caused by the collapse of wild and managed honeybee populations. This study suggests that powerline strips have the potential to provide five million acres of bee-friendly habitat in the US if utilities more generally adopt appropriate management practices.
Sequential generations of honey bee (Apis mellifera) queens produced using cryopreserved semen.
Hopkins, Brandon K; Herr, Charles; Sheppard, Walter S
2012-01-01
Much of the world's food production is dependent on honey bees for pollination, and expanding food production will further increase the demand for managed pollination services. Apiculturists outside the native range of the honey bee, in the Americas, Australia and eastern Asia, have used only a few of the 27 described subspecies of honey bees (Apis mellifera) for beekeeping purposes. Within the endemic ranges of a particular subspecies, hybridisation can threaten native subspecies when local beekeepers import and propagate non-native honey bees. For many threatened species, cryopreserved germplasm can provide a resource for the preservation of diversity and recovery of endangered populations. However, although instrumental insemination of queen honey bees is well established, the absence of an effective means to cryopreserve honey bee semen has limited the success of efforts to preserve genetic diversity within the species or to develop repositories of honey bee germplasm for breeding purposes. Herein we report that some queens inseminated with cryopreserved semen were capable of producing a substantial number of fertilised offspring. These diploid female larvae were used to produce two additional sequential generations of new queens, which were then back-crossed to the same stock of frozen semen. Our results demonstrate the ability to produce queens using cryopreserved honey bee spermatozoa and the potential for the establishment of a honey bee genetic repository.
Gentle Africanized bees on an oceanic island
Rivera-Marchand, Bert; Oskay, Devrim; Giray, Tugrul
2012-01-01
Oceanic islands have reduced resources and natural enemies and potentially affect life history traits of arriving organisms. Among the most spectacular invasions in the Western hemisphere is that of the Africanized honeybee. We hypothesized that in the oceanic island Puerto Rico, Africanized bees will exhibit differences from the mainland population such as for defensiveness and other linked traits. We evaluated the extent of Africanization through three typical Africanized traits: wing size, defensive behavior, and resistance to Varroa destructor mites. All sampled colonies were Africanized by maternal descent, with over 65% presence of European alleles at the S-3 nuclear locus. In two assays evaluating defense, Puerto Rican bees showed low defensiveness similar to European bees. In morphology and resistance to mites, Africanized bees from Puerto Rico are similar to other Africanized bees. In behavioral assays on mechanisms of resistance to Varroa, we directly observed that Puerto Rican Africanized bees groomed-off and bit the mites as been observed in other studies. In no other location, Africanized bees have reduced defensiveness while retaining typical traits such as wing size and mite resistance. This mosaic of traits that has resulted during the invasion of an oceanic island has implications for behavior, evolution, and agriculture. PMID:23144660
Dutka, Alexandrea; McNulty, Alison; Williamson, Sally M
2015-01-01
There is currently a great deal of concern about population declines in pollinating insects. Many potential threats have been identified which may adversely affect the behaviour and health of both honey bees and bumble bees: these include pesticide exposure, and parasites and pathogens. Whether biological pest control agents adversely affect bees has been much less well studied: it is generally assumed that biological agents are safer for wildlife than chemical pesticides. The aim of this study was to test whether entomopathogenic nematodes sold as biological pest control products could potentially have adverse effects on the bumble bee Bombus terrestris. One product was a broad spectrum pest control agent containing both Heterorhabditis sp. and Steinernema sp., the other product was specifically for weevil control and contained only Steinernema kraussei. Both nematode products caused ≥80% mortality within the 96 h test period when bees were exposed to soil containing entomopathogenic nematodes at the recommended field concentration of 50 nematodes per cm(2) soil. Of particular concern is the fact that nematodes from the broad spectrum product could proliferate in the carcasses of dead bees, and therefore potentially infect a whole bee colony or spread to the wider environment.
Absence of Leishmaniinae and Nosematidae in stingless bees
Nunes-Silva, Patrícia; Piot, Niels; Meeus, Ivan; Blochtein, Betina; Smagghe, Guy
2016-01-01
Bee pollination is an indispensable component of global food production and plays a crucial role in sustainable agriculture. The worldwide decline of bee populations, including wild pollinators, poses a threat to this system. However, most studies to date are situated in temperate regions where Apini and Bombini are very abundant pollinators. Tropical and subtropical regions where stingless bees (Apidae: Meliponini) are generally very common, are often overlooked. These bees also face pressure due to deforestation and agricultural intensification as well as the growing use and spread of exotic pollinators as Apis mellifera and Bombus species. The loss or decline of this important bee tribe would have a large impact on their provided ecosystem services, in both wild and agricultural landscapes. The importance of pollinator diseases, which can contribute to decline, has not been investigated so far in this bee tribe. Here we report on the first large pathogen screening of Meliponini species in southern Brazil. Remarkably we observed that there was an absence of Leishmaniinae and Nosematidae, and a very low occurrence of Apicystis bombi. Our data on disease prevalence in both understudied areas and species, can greatly improve our knowledge on the distribution of pathogens among bee species. PMID:27586080
Watson, J C; Wolf, A T; Ascher, J S
2011-06-01
Wild bees provide vital pollination services for many native and agricultural plant species, yet the landscape conditions needed to support wild bee populations are not well understood or appreciated. We assessed the influence of landscape composition on bee abundance and species richness in apple (Malus spp.) orchards of northeastern Wisconsin during the spring flowering period. A diverse community of bee species occurs in these apple orchards, dominated by wild bees in the families Andrenidae and Halictidae and the honey bee, Apis mellifera L. Proportion of forest area in the surrounding landscape was a significant positive predictor of wild bee abundance in orchards, with strongest effects at a GIS (Geographic Information Systems) buffer distance of 1,000 m or greater. Forest area also was positively associated with species richness, showing strongest effects at a buffer distance of 2,000 m. Nonagricultural developed land (homes, lawns, etcetera) was significantly negatively associated with species richness at buffer distances >750 m and wild bee abundance in bowl traps at all distances. Other landscape variables statistically associated with species richness or abundance of wild bees included proportion area of pasture (positive) and proportion area of roads (negative). Forest area was not associated with honey bee abundance at any buffer distance. These results provide clear evidence that the landscape surrounding apple orchards, especially the proportion of forest area, affects richness and abundance of wild bees during the spring flowering period and should be a part of sustainable land management strategies in agro-ecosystems of northeastern Wisconsin and other apple growing regions.
Spivak, Marla; Mader, Eric; Vaughan, Mace; Euliss, Ned H.
2011-01-01
The loss of biodiversity is a trend that is garnering much concern. As organisms have evolved mutualistic and synergistic relationships, the loss of one or a few species can have a much wider environmental impact. Since much pollination is facilitated by bees, the reported colony collapse disorder has many worried of widespread agricultural fallout and thus deleterious impact on human foodstocks. In this Feature, Spivak et al. review what is known of the present state of bee populations and provide information on how to mitigate and reverse the trend.
Evaluating the effects of mosquito control adulticides on honey bees
USDA-ARS?s Scientific Manuscript database
While mosquito control adulticides can be effective in rapidly reducing mosquito populations during times of high arbovirus transmission, the impacts of these control measures on pollinators has been of recent interest. The purpose of our study was to evaluate mosquito and honey bee mortality using ...
Bee declines driven by combined stress from parasites, pesticides, and lack of flowers.
Goulson, Dave; Nicholls, Elizabeth; Botías, Cristina; Rotheray, Ellen L
2015-03-27
Bees are subject to numerous pressures in the modern world. The abundance and diversity of flowers has declined; bees are chronically exposed to cocktails of agrochemicals, and they are simultaneously exposed to novel parasites accidentally spread by humans. Climate change is likely to exacerbate these problems in the future. Stressors do not act in isolation; for example, pesticide exposure can impair both detoxification mechanisms and immune responses, rendering bees more susceptible to parasites. It seems certain that chronic exposure to multiple interacting stressors is driving honey bee colony losses and declines of wild pollinators, but such interactions are not addressed by current regulatory procedures, and studying these interactions experimentally poses a major challenge. In the meantime, taking steps to reduce stress on bees would seem prudent; incorporating flower-rich habitat into farmland, reducing pesticide use through adopting more sustainable farming methods, and enforcing effective quarantine measures on bee movements are all practical measures that should be adopted. Effective monitoring of wild pollinator populations is urgently needed to inform management strategies into the future. Copyright © 2015, American Association for the Advancement of Science.
Bumble bees regulate their intake of essential protein and lipid pollen macronutrients.
Vaudo, A D; Stabler, D; Patch, H M; Tooker, J F; Grozinger, C M; Wright, G A
2016-12-15
Bee population declines are linked to the reduction of nutritional resources due to land-use intensification, yet we know little about the specific nutritional needs of many bee species. Pollen provides bees with their primary source of protein and lipids, but nutritional quality varies widely among host-plant species. Therefore, bees might have adapted to assess resource quality and adjust their foraging behavior to balance nutrition from multiple food sources. We tested the ability of two bumble bee species, Bombus terrestris and Bombus impatiens, to regulate protein and lipid intake. We restricted B. terrestris adults to single synthetic diets varying in protein:lipid ratios (P:L). The bees over-ate protein on low-fat diets and over-ate lipid on high-fat diets to reach their targets of lipid and protein, respectively. The bees survived best on a 10:1 P:L diet; the risk of dying increased as a function of dietary lipid when bees ate diets with lipid contents greater than 5:1 P:L. Hypothesizing that the P:L intake target of adult worker bumble bees was between 25:1 and 5:1, we presented workers from both species with unbalanced but complementary paired diets to determine whether they self-select their diet to reach a specific intake target. Bees consumed similar amounts of proteins and lipids in each treatment and averaged a 14:1 P:L for B. terrestris and 12:1 P:L for B. impatiens These results demonstrate that adult worker bumble bees likely select foods that provide them with a specific ratio of P:L. These P:L intake targets could affect pollen foraging in the field and help explain patterns of host-plant species choice by bumble bees. © 2016. Published by The Company of Biologists Ltd.
Koch, Jonathan B; Lozier, Jeffrey; Strange, James P; Ikerd, Harold; Griswold, Terry; Cordes, Nils; Solter, Leellen; Stewart, Isaac; Cameron, Sydney A
2015-01-01
Bumble bees (Hymenoptera: Apidae, Bombus) are pollinators of wild and economically important flowering plants. However, at least four bumble bee species have declined significantly in population abundance and geographic range relative to historic estimates, and one species is possibly extinct. While a wealth of historic data is now available for many of the North American species found to be in decline in online databases, systematic survey data of stable species is still not publically available. The availability of contemporary survey data is critically important for the future monitoring of wild bumble bee populations. Without such data, the ability to ascertain the conservation status of bumble bees in the United States will remain challenging. This paper describes USBombus, a large database that represents the outcomes of one of the largest standardized surveys of bumble bee pollinators (Hymenoptera, Apidae, Bombus) globally. The motivation to collect live bumble bees across the United States was to examine the decline and conservation status of Bombus affinis, B. occidentalis, B. pensylvanicus, and B. terricola. Prior to our national survey of bumble bees in the United States from 2007 to 2010, there have only been regional accounts of bumble bee abundance and richness. In addition to surveying declining bumble bees, we also collected and documented a diversity of co-occuring bumble bees. However we have not yet completely reported their distribution and diversity onto a public online platform. Now, for the first time, we report the geographic distribution of bumble bees reported to be in decline (Cameron et al. 2011), as well as bumble bees that appeared to be stable on a large geographic scale in the United States (not in decline). In this database we report a total of 17,930 adult occurrence records across 397 locations and 39 species of Bombus detected in our national survey. We summarize their abundance and distribution across the United States and association to different ecoregions. The geospatial coverage of the dataset extends across 41 of the 50 US states, and from 0 to 3500 m a.s.l. Authors and respective field crews spent a total of 512 hours surveying bumble bees from 2007 to 2010. The dataset was developed using SQL server 2008 r2. For each specimen, the following information is generally provided: species, name, sex, caste, temporal and geospatial details, Cartesian coordinates, data collector(s), and when available, host plants. This database has already proven useful for a variety of studies on bumble bee ecology and conservation. However it is not publicly available. Considering the value of pollinators in agriculture and wild ecosystems, this large database of bumble bees will likely prove useful for investigations of the effects of anthropogenic activities on pollinator community composition and conservation status.
Urlacher, Elodie; Devaud, Jean-Marc; Mercer, Alison R
2017-01-01
As honey bee populations worldwide are declining there is an urgent need for a deeper understanding of stress reactivity in these important insects. Our data indicate that stress responses in bees (Apis mellifera L.) may be mediated by neuropeptides identified, on the basis of sequence similarities, as allatostatins (ASTA, ASTC and ASTCC). Effects of allatostatin injection are compared with stress-related changes in learning performance induced by the honeybee alarm pheromone, isopentylacetate (IPA). We find that bees can exhibit two markedly different responses to IPA, with opposing effects on learning behaviour and memory generalisation, and that strikingly similar responses can be elicited by allatostatins, in particular ASTCC. These findings lend support to the hypothesis that allatostatins mediate stress reactivity in honey bees and suggest responses to stress in these insects are state dependent.
Grundel, R.; Jean, R.P.; Frohnapple, K.J.; Glowacki, G.A.; Scott, P.E.; Pavlovic, N.B.
2010-01-01
Given bees' central effect on vegetation communities, it is important to understand how and why bee distributions vary across ecological gradients. We examined how plant community composition, plant diversity, nesting suitability, canopy cover, land use, and fire history affected bee distribution across an open-forest gradient in northwest Indiana, USA, a gradient similar to the historic Midwest United States landscape mosaic. When considered with the other predictors, plant community composition was not a significant predictor of bee community composition. Bee abundance was negatively related to canopy cover and positively to recent fire frequency, bee richness was positively related to plant richness and abundance of potential nesting resources, and bee community composition was significantly related to plant richness, soil characteristics potentially related to nesting suitability, and canopy cover. Thus, bee abundance was predicted by a different set of environmental characteristics than was bee species richness, and bee community composition was predicted, in large part, by a combination of the significant predictors of bee abundance and richness. Differences in bee community composition along the woody vegetation gradient were correlated with relative abundance of oligolectic, or diet specialist, bees. Because oligoleges were rarer than diet generalists and were associated with open habitats, their populations may be especially affected by degradation of open habitats. More habitat-specialist bees were documented for open and forest/scrub habitats than for savanna/woodland habitats, consistent with bees responding to habitats of intermediate woody vegetation density, such as savannas, as ecotones rather than as distinct habitat types. Similarity of bee community composition, similarity of bee abundance, and similarity of bee richness between sites were not significantly related to proximity of sites to each other. Nestedness analysis indicated that species composition in species-poor sites was not merely a subset of species composition at richer sites. The lack of significant proximity or nestedness effects suggests that factors at a small spatial scale strongly influence bees' use of sites. The findings indicate that patterns of plant diversity, nesting resource availability, recent fire, and habitat shading, present at the scale of a few hundred meters, are key determinants of bee community patterns in the mosaic open-savanna-forest landscape. ?? 2010 by the Ecological Society of America.
Guseman, Alex J.; Miller, Kaliah; Kunkle, Grace; Dively, Galen P.; Pettis, Jeffrey S.; Evans, Jay D.; vanEngelsdorp, Dennis; Hawthorne, David J.
2016-01-01
Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporters. We evaluate the use of ivermectin as a model substrate for these transporters. Compounds that increase sensitivity of bees to ivermectin may be inhibiting key transporters. We show that several compounds commonly encountered by honey bees (fumagillin, Pristine, quercetin) significantly increased honey bee mortality due to ivermectin and significantly reduced the LC50 of ivermectin suggesting that they may interfere with transporter function. These inhibitors also significantly increased honey bees sensitivity to the neonicotinoid insecticide acetamiprid. This mechanism-based strategy may dramatically reduce the number of tests needed to assess the possibility of adverse combinations among pesticides. We also demonstrate an in vivo transporter assay that provides physical evidence of transporter inhibition by tracking the dynamics of a fluorescent substrate of these transporters (Rhodamine B) in bee tissues. Significantly more Rhodamine B remains in the head and hemolymph of bees pretreated with higher concentrations of the transporter inhibitor verapamil. Mechanism-based strategies for simplifying the assessment of adverse chemical interactions such as described here could improve our ability to identify those combinations that pose significantly greater risk to bees and perhaps improve the risk assessment protocols for honey bees and similar sensitive species. PMID:26840460
Guseman, Alex J; Miller, Kaliah; Kunkle, Grace; Dively, Galen P; Pettis, Jeffrey S; Evans, Jay D; vanEngelsdorp, Dennis; Hawthorne, David J
2016-01-01
Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporters. We evaluate the use of ivermectin as a model substrate for these transporters. Compounds that increase sensitivity of bees to ivermectin may be inhibiting key transporters. We show that several compounds commonly encountered by honey bees (fumagillin, Pristine, quercetin) significantly increased honey bee mortality due to ivermectin and significantly reduced the LC50 of ivermectin suggesting that they may interfere with transporter function. These inhibitors also significantly increased honey bees sensitivity to the neonicotinoid insecticide acetamiprid. This mechanism-based strategy may dramatically reduce the number of tests needed to assess the possibility of adverse combinations among pesticides. We also demonstrate an in vivo transporter assay that provides physical evidence of transporter inhibition by tracking the dynamics of a fluorescent substrate of these transporters (Rhodamine B) in bee tissues. Significantly more Rhodamine B remains in the head and hemolymph of bees pretreated with higher concentrations of the transporter inhibitor verapamil. Mechanism-based strategies for simplifying the assessment of adverse chemical interactions such as described here could improve our ability to identify those combinations that pose significantly greater risk to bees and perhaps improve the risk assessment protocols for honey bees and similar sensitive species.
An inert pesticide adjuvant synergizes viral pathogenicity and mortality in honey bee larvae
USDA-ARS?s Scientific Manuscript database
Honey bees are highly valued for their pollination services in agricultural settings, and recent declines in managed populations have caused concern. Colony losses following a major pollination event in the United States, almond pollination, have been characterized by brood mortality with specific s...
Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites
USDA-ARS?s Scientific Manuscript database
Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema sp., and several viruses. These pathogens may be ...
Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees
Smith, Michael L.; Seeley, Thomas D.
2016-01-01
Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation. PMID:27942015
A Meta-Analysis of Effects of Bt Crops on Honey Bees (Hymenoptera: Apidae)
Duan, Jian J.; Marvier, Michelle; Huesing, Joseph; Dively, Galen; Huang, Zachary Y.
2008-01-01
Background Honey bees (Apis mellifera L.) are the most important pollinators of many agricultural crops worldwide and are a key test species used in the tiered safety assessment of genetically engineered insect-resistant crops. There is concern that widespread planting of these transgenic crops could harm honey bee populations. Methodology/Principal Findings We conducted a meta-analysis of 25 studies that independently assessed potential effects of Bt Cry proteins on honey bee survival (or mortality). Our results show that Bt Cry proteins used in genetically modified crops commercialized for control of lepidopteran and coleopteran pests do not negatively affect the survival of either honey bee larvae or adults in laboratory settings. Conclusions/Significance Although the additional stresses that honey bees face in the field could, in principle, modify their susceptibility to Cry proteins or lead to indirect effects, our findings support safety assessments that have not detected any direct negative effects of Bt crops for this vital insect pollinator. PMID:18183296
Chen, Chao; Wang, Huihua; Liu, Zhiguang; Chen, Xiao; Tang, Jiao; Meng, Fanming; Shi, Wei
2018-06-20
The mechanisms by which organisms adapt to variable environments are a fundamental question in evolutionary biology and are important to protect important species in response to a changing climate. An interesting candidate to study this question is the honey bee Apis cerana, a keystone pollinator with a wide distribution throughout a large variety of climates, that exhibits rapid dispersal. Here, we re-sequenced the genome of 180 A. cerana individuals from eighteen populations throughout China. Using a population genomics approach, we observed considerable genetic variation in A. cerana. Patterns of genetic differentiation indicate high divergence at the subspecies level, and physical barriers rather than distance are the driving force for population divergence. Estimations of divergence time suggested that the main branches diverged between 300 and 500 ka. Analyses of the population history revealed a substantial influence of the Earth's climate on the effective population size of A. cerana, as increased population sizes were observed during warmer periods. Further analyses identified candidate genes under natural selection that are potentially related to honey bee cognition, temperature adaptation, and olfactory. Based on our results, A. cerana may have great potential in response to climate change. Our study provides fundamental knowledge of the evolution and adaptation of A. cerana.
Roberts, John M K; Anderson, Denis L; Durr, Peter A
2018-06-01
The viral landscape of the honey bee (Apismellifera) has changed as a consequence of the global spread of the parasitic mite Varroa destructor and accompanying virulent strains of the iflavirus deformed wing virus (DWV), which the mite vectors. The presence of DWV in honey bee populations is known to influence the occurrence of other viruses, suggesting that the current known virome of A. mellifera may be undercharacterized. Here we tested this hypothesis by examining the honey bee virome in Australia, which is uniquely free of parasitic mites or DWV. Using a high-throughput sequencing (HTS) approach, we examined the RNA virome from nine pools of A. mellifera across Australia. In addition to previously reported honey bee viruses, several other insect viruses were detected, including strains related to aphid lethal paralysis virus (ALPV) and Rhopalosiphum padi virus (RhPV), which have recently been identified as infecting honey bees in the USA, as well as several other viruses recently found in Drosophila spp. A further 42 putative novel insect virus genomes spanning the order Picornavirales were assembled, which significantly increases the known viral diversity in A. mellifera. Among these novel genomes, we identified several that were similar (but different) to key A. mellifera viruses, such as DWV, that warrant further investigation. We propose that A. mellifera may be preferentially infected with viruses of the order Picornavirales and that a diverse population of these viruses may be representative of a Varroa-free landscape.
Cardoso-Júnior, Carlos A.M.; Fujimura, Patrícia Tieme; Santos-Júnior, Célio Dias; Borges, Naiara Araújo; Ueira-Vieira, Carlos; Hartfelder, Klaus; Goulart, Luiz Ricardo; Bonetti, Ana Maria
2017-01-01
Abstract Stingless bees of the genus Melipona, have long been considered an enigmatic case among social insects for their mode of caste determination, where in addition to larval food type and quantity, the genotype also has a saying, as proposed over 50 years ago by Warwick E. Kerr. Several attempts have since tried to test his Mendelian two-loci/two-alleles segregation hypothesis, but only recently a single gene crucial for sex determination in bees was evidenced to be sex-specifically spliced and also caste-specifically expressed in a Melipona species. Since alternative splicing is frequently associated with epigenetic marks, and the epigenetic status plays a major role in setting the caste phenotype in the honey bee, we investigated here epigenetic chromatin modification in the stingless bee Melipona scutellaris. We used an ELISA-based methodology to quantify global methylation status and western blot assays to reveal histone modifications. The results evidenced DNA methylation/demethylation events in larvae and pupae, and significant differences in histone methylation and phosphorylation between newly emerged adult queens and workers. The epigenetic dynamics seen in this stingless bee species represent a new facet in the caste determination process in Melipona bees and suggest a possible mechanism that is likely to link a genotype component to the larval diet and adult social behavior of these bees. PMID:28257527
Cardoso-Júnior, Carlos A M; Fujimura, Patrícia Tieme; Santos-Júnior, Célio Dias; Borges, Naiara Araújo; Ueira-Vieira, Carlos; Hartfelder, Klaus; Goulart, Luiz Ricardo; Bonetti, Ana Maria
2017-01-01
Stingless bees of the genus Melipona, have long been considered an enigmatic case among social insects for their mode of caste determination, where in addition to larval food type and quantity, the genotype also has a saying, as proposed over 50 years ago by Warwick E. Kerr. Several attempts have since tried to test his Mendelian two-loci/two-alleles segregation hypothesis, but only recently a single gene crucial for sex determination in bees was evidenced to be sex-specifically spliced and also caste-specifically expressed in a Melipona species. Since alternative splicing is frequently associated with epigenetic marks, and the epigenetic status plays a major role in setting the caste phenotype in the honey bee, we investigated here epigenetic chromatin modification in the stingless bee Melipona scutellaris. We used an ELISA-based methodology to quantify global methylation status and western blot assays to reveal histone modifications. The results evidenced DNA methylation/demethylation events in larvae and pupae, and significant differences in histone methylation and phosphorylation between newly emerged adult queens and workers. The epigenetic dynamics seen in this stingless bee species represent a new facet in the caste determination process in Melipona bees and suggest a possible mechanism that is likely to link a genotype component to the larval diet and adult social behavior of these bees.
Kanga, Lambert H B; Adamczyk, John; Patt, Joseph; Gracia, Carlos; Cascino, John
2010-12-01
A user-friendly method to deliver Metarhizium spores to honey bee colonies for control of Varroa mites was developed and tested. Patty blend formulations protected the fungal spores at brood nest temperatures and served as an improved delivery system of the fungus to bee hives. Field trials conducted in 2006 in Texas using freshly harvested spores indicated that patty blend formulations of 10 g of conidia per hive (applied twice) significantly reduced the numbers of mites per adult bee, mites in sealed brood cells, and residual mites at the end of the 47-day experimental period. Colony development in terms of adult bee populations and brood production also improved. Field trials conducted in 2007 in Florida using less virulent spores produced mixed results. Patty blends of 10 g of conidia per hive (applied twice) were less successful in significantly reducing the number of mites per adult bee. However, hive survivorship and colony strength were improved, and the numbers of residual mites were significantly reduced at the end of the 42-day experimental period. The overall results from 2003 to 2008 field trials indicated that it was critical to have fungal spores with good germination, pathogenicity and virulence. We determined that fungal spores (1 × 10(10) viable spores per gram) with 98% germination and high pathogenicity (95% mite mortality at day 7) provided successful control of mite populations in established honey bee colonies at 10 g of conidia per hive (applied twice). Overall, microbial control of Varroa mite with M. anisopliae is feasible and could be a useful component of an integrated pest management program.
da Silva, Cláudia Inês; Bordon, Natali Gomes; da Rocha Filho, Léo Correia; Garófalo, Carlos Alberto
2012-12-01
The euglossine bee Eulaema nigrita plays an important role for the pollination of native and economically important plants, such as the sweet passion-fruit Passiflora alata. E. nigrita uniquely collects the nectar from the flowers of P. alata, nevertheless, it needs to visit other plants to collect pollen, nectar and other resources for its survival. There are two methods to identify the species of plants used by bees in their diet: by direct observation of the bees in the flowers, and through identification of pollen grains present in brood cells, feces, or in the bees' body. In order to identify the other plants that E. nigrita visits, we analyzed samples of pollen grains removed from the bee's body in the course of the flowering period of P. alata. Among our results, the flora visited by E. nigrita comprised 40 species from 32 genera and 19 families, some of them used as a pollen source or just nectar. In spite of being a polyletic species, E. nigrita exhibited preference for some plant species with poricidal anthers. P. alata which has high sugar concentration nectar was the main source of nectar for this bee in the studied area. Nonetheless, the pollinic analysis indicated that others nectariferous plant species are necessary to keep the populations of E. nigrita. Studies such as this one are important since they indicate supplementary pollen-nectar sources which must be used for the conservation of the populations of E. nigrita in crops neighbouring areas. In the absence of pollinators, growers are forced to pay for hand pollination, which increases production costs; keeping pollinators in cultivated areas is still more feasible to ensure sweet passion fruit production.
Toporcák, J; Legáth, J; Kul'ková, J
1992-07-01
Increasing numbers of specialists have been concerned with the problem of friendly environment in relation to man as well as to farm and wild animals. Greater interest in the biological monitoring of environment and ecosystem contamination can be observed. Determination of residues of organic and inorganic substances in bees (Apis mellifera) and in their products is one of effective possibilities of environmental pollution monitoring. Our work was aimed at the study of mercury levels in bees and their products. Mercury levels were determined in the head, abdomen and thorax of bees (Apis mellifera) from 20 bee populations coming from industrially contaminated areas with a dominant load of mercury (10 populations) and from uncontaminated areas. Mercury levels were determined simultaneously in honey coming from both contaminated and uncontaminated areas. The following mercury levels were found in bees from the contaminated area: heads 0.029-0.385 mg/kg, thorax 0.028-0.595 mg/kg and abdomen 0.083-2.255 mg/kg. Mercury levels in samples from uncontaminated areas ranged from 0.004 to 0.024 mg/kg in the heads, from 0.004 to 0.008 mg/kg in the thorax and from 0.008 to 0.020 mg/kg in the abdomen. In honey samples from the contaminated and uncontaminated areas mercury levels ranged from 0.050 to 0.212 mg/kg and from 0.001 to 0.003 mg/kg, respectively. The results of sample analyses for mercury loads in bees and honey from both contaminated and uncontaminated areas are given in Tab. I. Mean mercury levels in the single parts of the body in Apis mellifera and in honey from contaminated and uncontaminated areas are given in Figs. 1, 2, 3.(ABSTRACT TRUNCATED AT 250 WORDS)
Landscape spatial configuration is a key driver of wild bee demographics.
Neokosmidis, Lazaros; Tscheulin, Thomas; Devalez, Jelle; Petanidou, Theodora
2018-02-01
The majority of studies investigating the effects of landscape composition and configuration on bee populations have been conducted in regions of intensive agricultural production, ignoring regions which are dominated by seminatural habitats, such as the islands of the Aegean Archipelago. In addition, research so far has focused on the landscape impacts on bees sampled in cropped fields while the landscape effects on bees inhabiting seminatural habitats are understudied. Here, we investigate the impact of the landscape on wild bee assemblages in 66 phryganic (low scrubland) communities on 8 Aegean islands. We computed landscape metrics (total area and total perimeter-area ratio) in 4 concentric circles (250, 500, 750, and 1000 m) around the center of each bee sampling site including 3 habitat groups (namely phrygana, cultivated land, and natural forests). We further measured the local flower cover in 25 quadrats distributed randomly at the center of each sampling site. We found that the landscape scale is more important than the local scale in shaping abundance and species richness of bees. Furthermore, habitat configuration was more important than the total area of habitats, probably because it affects bees' movement across the landscape. Phrygana and natural forests had a positive effect on bee demographics, while cultivated land had a negative effect. This demonstrates that phryganic specialists drive bee assemblages in these seminatural landscapes. This finding, together with the shown importance of landscape scale, should be considered for the management of wild bees with special emphasis placed on the spatial configuration of seminatural habitats. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Zayed, Amro; Whitfield, Charles W.
2008-01-01
Apis mellifera originated in Africa and extended its range into Eurasia in two or more ancient expansions. In 1956, honey bees of African origin were introduced into South America, their descendents admixing with previously introduced European bees, giving rise to the highly invasive and economically devastating “Africanized” honey bee. Here we ask whether the honey bee's out-of-Africa expansions, both ancient and recent (invasive), were associated with a genome-wide signature of positive selection, detected by contrasting genetic differentiation estimates (FST) between coding and noncoding SNPs. In native populations, SNPs in protein-coding regions had significantly higher FST estimates than those in noncoding regions, indicating adaptive evolution in the genome driven by positive selection. This signal of selection was associated with the expansion of honey bees from Africa into Western and Northern Europe, perhaps reflecting adaptation to temperate environments. We estimate that positive selection acted on a minimum of 852–1,371 genes or ≈10% of the bee's coding genome. We also detected positive selection associated with the invasion of African-derived honey bees in the New World. We found that introgression of European-derived alleles into Africanized bees was significantly greater for coding than noncoding regions. Our findings demonstrate that Africanized bees exploited the genetic diversity present from preexisting introductions in an adaptive way. Finally, we found a significant negative correlation between FST estimates and the local GC content surrounding coding SNPs, suggesting that AT-rich genes play an important role in adaptive evolution in the honey bee. PMID:18299560
Zayed, Amro; Whitfield, Charles W
2008-03-04
Apis mellifera originated in Africa and extended its range into Eurasia in two or more ancient expansions. In 1956, honey bees of African origin were introduced into South America, their descendents admixing with previously introduced European bees, giving rise to the highly invasive and economically devastating "Africanized" honey bee. Here we ask whether the honey bee's out-of-Africa expansions, both ancient and recent (invasive), were associated with a genome-wide signature of positive selection, detected by contrasting genetic differentiation estimates (F(ST)) between coding and noncoding SNPs. In native populations, SNPs in protein-coding regions had significantly higher F(ST) estimates than those in noncoding regions, indicating adaptive evolution in the genome driven by positive selection. This signal of selection was associated with the expansion of honey bees from Africa into Western and Northern Europe, perhaps reflecting adaptation to temperate environments. We estimate that positive selection acted on a minimum of 852-1,371 genes or approximately 10% of the bee's coding genome. We also detected positive selection associated with the invasion of African-derived honey bees in the New World. We found that introgression of European-derived alleles into Africanized bees was significantly greater for coding than noncoding regions. Our findings demonstrate that Africanized bees exploited the genetic diversity present from preexisting introductions in an adaptive way. Finally, we found a significant negative correlation between F(ST) estimates and the local GC content surrounding coding SNPs, suggesting that AT-rich genes play an important role in adaptive evolution in the honey bee.
Fournier, Alice; Rollin, Orianne; Le Féon, Violette; Decourtye, Axel; Henry, Mickaël
2014-02-01
Recent scientific literature and reports from official sanitary agencies have pointed out the deficiency of current pesticide risk assessment processes regarding sublethal effects on pollinators. Sublethal effects include troubles in learning performance, orientation skills, or mobility, with possible contribution to substantial dysfunction at population scale. However, the study of sublethal effects is currently limited by considerable knowledge gaps, particularly for the numerous pollinators other than the honey bee Apis mellifera L.--the traditional model for pesticide risk assessment in pollinators. Here, we propose to use the crop-emptying time as a rule of thumb to guide the design of oral exposure experiments in the honey bee and wild bees. The administration of contaminated sucrose solutions is typically followed by a fasting time lapse to allow complete assimilation before the behavioral tests. The fasting duration should at least encompass the crop-emptying time, because no absorption takes place in the crop. We assessed crop-emptying rate in fasted bees and how it relates 1) with sucrose solution concentration in the honey bee and 2) with body mass in wild bees. Fasting duration required for complete crop emptying in honey bees fed 20 microl of a 50% sucrose solution was nearly 2 h. Actual fasting durations are usually shorter in toxicological studies, suggesting incomplete crop emptying, and therefore partial assimilation of experimental solutions that could imply underestimation of sublethal effects. We also found faster crop-emptying rates in large wild bees compared with smaller wild bees, and suggest operative rules to adapt sublethal assessment schemes accordingly.
Mattila, Heather R.; Rios, Daniela; Walker-Sperling, Victoria E.; Roeselers, Guus; Newton, Irene L. G.
2012-01-01
Recent losses of honey bee colonies have led to increased interest in the microbial communities that are associated with these important pollinators. A critical function that bacteria perform for their honey bee hosts, but one that is poorly understood, is the transformation of worker-collected pollen into bee bread, a nutritious food product that can be stored for long periods in colonies. We used 16S rRNA pyrosequencing to comprehensively characterize in genetically diverse and genetically uniform colonies the active bacterial communities that are found on honey bees, in their digestive tracts, and in bee bread. This method provided insights that have not been revealed by past studies into the content and benefits of honey bee-associated microbial communities. Colony microbiotas differed substantially between sampling environments and were dominated by several anaerobic bacterial genera never before associated with honey bees, but renowned for their use by humans to ferment food. Colonies with genetically diverse populations of workers, a result of the highly promiscuous mating behavior of queens, benefited from greater microbial diversity, reduced pathogen loads, and increased abundance of putatively helpful bacteria, particularly species from the potentially probiotic genus Bifidobacterium. Across all colonies, Bifidobacterium activity was negatively correlated with the activity of genera that include pathogenic microbes; this relationship suggests a possible target for understanding whether microbes provide protective benefits to honey bees. Within-colony diversity shapes microbiotas associated with honey bees in ways that may have important repercussions for colony function and health. Our findings illuminate the importance of honey bee-bacteria symbioses and examine their intersection with nutrition, pathogen load, and genetic diversity, factors that are considered key to understanding honey bee decline. PMID:22427917
Pettis, Jeffery S.; Lichtenberg, Elinor M.; Andree, Michael; Stitzinger, Jennie; Rose, Robyn; vanEngelsdorp, Dennis
2013-01-01
Recent declines in honey bee populations and increasing demand for insect-pollinated crops raise concerns about pollinator shortages. Pesticide exposure and pathogens may interact to have strong negative effects on managed honey bee colonies. Such findings are of great concern given the large numbers and high levels of pesticides found in honey bee colonies. Thus it is crucial to determine how field-relevant combinations and loads of pesticides affect bee health. We collected pollen from bee hives in seven major crops to determine 1) what types of pesticides bees are exposed to when rented for pollination of various crops and 2) how field-relevant pesticide blends affect bees’ susceptibility to the gut parasite Nosema ceranae. Our samples represent pollen collected by foragers for use by the colony, and do not necessarily indicate foragers’ roles as pollinators. In blueberry, cranberry, cucumber, pumpkin and watermelon bees collected pollen almost exclusively from weeds and wildflowers during our sampling. Thus more attention must be paid to how honey bees are exposed to pesticides outside of the field in which they are placed. We detected 35 different pesticides in the sampled pollen, and found high fungicide loads. The insecticides esfenvalerate and phosmet were at a concentration higher than their median lethal dose in at least one pollen sample. While fungicides are typically seen as fairly safe for honey bees, we found an increased probability of Nosema infection in bees that consumed pollen with a higher fungicide load. Our results highlight a need for research on sub-lethal effects of fungicides and other chemicals that bees placed in an agricultural setting are exposed to. PMID:23894612
Engel, Juan C.; Ruby, J. Graham; Ganem, Donald; Andino, Raul; DeRisi, Joseph L.
2011-01-01
Honey bees (Apis mellifera) play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD). Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼1011 viruses per honey bee). Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January. PMID:21687739
Runckel, Charles; Flenniken, Michelle L; Engel, Juan C; Ruby, J Graham; Ganem, Donald; Andino, Raul; DeRisi, Joseph L
2011-01-01
Honey bees (Apis mellifera) play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD). Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼10(11) viruses per honey bee). Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January.
Lowenstein, D M; Huseth, A S; Groves, R L
2012-06-01
Cucumber (Cucumis sativus L.) is among the plants highly dependent on insect-mediated pollination, but little is known about its unmanaged pollinators. Both domestic and wild bee populations in central Wisconsin pickling cucumber fields were assessed using a combination of pan trapping and floral observations before and during bloom. Together with land cover analyses extending 2,000 m from field centers, the relationship of land cover components and bee abundance and diversity were examined. Over a 2-yr sample interval distributed among 18 experimental sites, 3,185 wild bees were collected representing >60 species. A positive association was found between both noncrop and herbaceous areas with bee abundance and diversity only during bloom. Response of bee abundance and diversity to land cover was strongest at larger buffers presumably because of the heterogeneous nature of the landscape and connectivity between crop and noncrop areas. These results are consistent with previous research that has found a weak response of wild bees to surrounding vegetation in moderately fragmented areas. A diverse community of wild bees is present within the fields of a commercial cucumber system, and there is evidence of floral visitation by unmanaged bees. This evidence emphasizes the importance of wild pollinators in fragmented landscapes and the need for additional research to investigate the effectiveness of individual species in pollen deposition.
Dynamic Range Compression in the Honey Bee Auditory System toward Waggle Dance Sounds
Tsujiuchi, Seiya; Sivan-Loukianova, Elena; Eberl, Daniel F.; Kitagawa, Yasuo; Kadowaki, Tatsuhiko
2007-01-01
Honey bee foragers use a “waggle dance” to inform nestmates about direction and distance to locations of attractive food. The sound and air flows generated by dancer's wing and abdominal vibrations have been implicated as important cues, but the decoding mechanisms for these dance messages are poorly understood. To understand the neural mechanisms of honey bee dance communication, we analyzed the anatomy of antenna and Johnston's organ (JO) in the pedicel of the antenna, as well as the mechanical and neural response characteristics of antenna and JO to acoustic stimuli, respectively. The honey bee JO consists of about 300–320 scolopidia connected with about 48 cuticular “knobs” around the circumference of the pedicel. Each scolopidium contains bipolar sensory neurons with both type I and II cilia. The mechanical sensitivities of the antennal flagellum are specifically high in response to low but not high intensity stimuli of 265–350 Hz frequencies. The structural characteristics of antenna but not JO neurons seem to be responsible for the non-linear responses of the flagellum in contrast to mosquito and fruit fly. The honey bee flagellum is a sensitive movement detector responding to 20 nm tip displacement, which is comparable to female mosquito. Furthermore, the JO neurons have the ability to preserve both frequency and temporal information of acoustic stimuli including the “waggle dance” sound. Intriguingly, the response of JO neurons was found to be age-dependent, demonstrating that the dance communication is only possible between aged foragers. These results suggest that the matured honey bee antennae and JO neurons are best tuned to detect 250–300 Hz sound generated during “waggle dance” from the distance in a dark hive, and that sufficient responses of the JO neurons are obtained by reducing the mechanical sensitivity of the flagellum in a near-field of dancer. This nonlinear effect brings about dynamic range compression in the honey bee auditory system. PMID:17311102
Dynamic range compression in the honey bee auditory system toward waggle dance sounds.
Tsujiuchi, Seiya; Sivan-Loukianova, Elena; Eberl, Daniel F; Kitagawa, Yasuo; Kadowaki, Tatsuhiko
2007-02-21
Honey bee foragers use a "waggle dance" to inform nestmates about direction and distance to locations of attractive food. The sound and air flows generated by dancer's wing and abdominal vibrations have been implicated as important cues, but the decoding mechanisms for these dance messages are poorly understood. To understand the neural mechanisms of honey bee dance communication, we analyzed the anatomy of antenna and Johnston's organ (JO) in the pedicel of the antenna, as well as the mechanical and neural response characteristics of antenna and JO to acoustic stimuli, respectively. The honey bee JO consists of about 300-320 scolopidia connected with about 48 cuticular "knobs" around the circumference of the pedicel. Each scolopidium contains bipolar sensory neurons with both type I and II cilia. The mechanical sensitivities of the antennal flagellum are specifically high in response to low but not high intensity stimuli of 265-350 Hz frequencies. The structural characteristics of antenna but not JO neurons seem to be responsible for the non-linear responses of the flagellum in contrast to mosquito and fruit fly. The honey bee flagellum is a sensitive movement detector responding to 20 nm tip displacement, which is comparable to female mosquito. Furthermore, the JO neurons have the ability to preserve both frequency and temporal information of acoustic stimuli including the "waggle dance" sound. Intriguingly, the response of JO neurons was found to be age-dependent, demonstrating that the dance communication is only possible between aged foragers. These results suggest that the matured honey bee antennae and JO neurons are best tuned to detect 250-300 Hz sound generated during "waggle dance" from the distance in a dark hive, and that sufficient responses of the JO neurons are obtained by reducing the mechanical sensitivity of the flagellum in a near-field of dancer. This nonlinear effect brings about dynamic range compression in the honey bee auditory system.
Thairu, Margaret W.; Brunet, Johanne
2015-01-01
Background and Aims Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Methods Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Key Results Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Conclusions Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. PMID:25808657
Ortega-Beltran, Alejandro; Moral, Juan; Puckett, Ryan D; Morgan, David P; Cotty, Peter J; Michailides, Themis J
2018-01-01
Interactions between pathogenic and nonpathogenic fungal species in the tree canopy are complex and can determine if disease will manifest in the plant and in other organisms such as honey bees. Seasonal dynamics of fungi were studied in an almond orchard in California where experimental release of the atoxigenic biopesticide Aspergillus flavus AF36 to displace toxigenic Aspergillus strains has been conducted for five years. The presence of the vegetative compatibility group (VCG) YV36, to which AF36 belongs, in the blossoms, and the honey bees that attend these blossoms, was assessed. In blossoms, A. flavus frequencies ranged from 0 to 4.5%, depending on the year of study. Frequencies of honey bees carrying A. flavus ranged from 6.5 to 10%. Only one A. flavus isolate recovered from a blossom in 2016 belonged to YV36, while members of the VCG were not detected contaminating honey bees. Exposure of pollinator honey bees to AF36 was detected to be very low. The density of several Aspergillus species was found to increase during almond hull split and throughout the final stages of maturation; this also occurred in pistachio orchards during the maturation period. Additionally, we found that AF36 effectively limited almond aflatoxin contamination in laboratory assays. This study provides knowledge and understanding of the seasonal dynamics of Aspergillus fungi and will help design aflatoxin management strategies for almond. The evidence of the low levels of VCG YV36 encountered on almond blossoms and bees during pollination and AF36's effectiveness in limiting aflatoxin contamination in almond provided additional support for the registration of AF36 with USEPA to use in almond in California.
Lundin, Ola; Rundlöf, Maj; Smith, Henrik G.; Fries, Ingemar; Bommarco, Riccardo
2015-01-01
It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines. PMID:26313444
Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Fries, Ingemar; Bommarco, Riccardo
2015-01-01
It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines.
Gisder, Sebastian; Möckel, Nadine; Linde, Andreas; Genersch, Elke
2011-02-01
The population of managed honey bees has been dramatically declining in the recent past in many regions of the world. Consensus now seems to be that pathogens and parasites (e.g. the ectoparasitic mite Varroa destructor, the microsporidium Nosema ceranae and viruses) play a major role in this demise. However, little is known about host-pathogen interactions for bee pathogens and attempts to develop novel strategies to combat bee diseases have been hampered by this gap in our knowledge. One reason for this dire situation is the complete lack of cell cultures for the propagation and study of bee pathogens. Here we present a cell culture model for two honey bee-pathogenic microsporidian species, Nosema apis and N. ceranae. Our cell culture system is based on a lepidopteran cell line, which proved to be susceptible to infection by both N. ceranae and N. apis and enabled us to illustrate the entire life cycle of these microsporidia. We observed hitherto undescribed spindle-shaped meronts and confirmed our findings in infected bees. Our cell culture model provides a previously unavailable means to explore the nature of interactions between the honey bee and its pathogen complex at a mechanistic level and will allow the development of novel treatment strategies.
Geslin, Benoît; Le Féon, Violette; Folschweiller, Morgane; Flacher, Floriane; Carmignac, David; Motard, Eric; Perret, Samuel; Dajoz, Isabelle
2016-09-01
Given the predicted expansion of cities throughout the world, understanding the effect of urbanization on bee fauna is a major issue for the conservation of bees. The aim of this study was to understand how urbanization affects wild bee assemblages along a gradient of impervious surfaces and to determine the influence of landscape composition and floral resource availability on these assemblages. We chose 12 sites with a proportion of impervious surfaces (soil covered by parking, roads, and buildings) ranging from 0.06% to 64.31% within a 500 m radius. We collected using pan trapping and estimated the landscape composition of the sites within a 500 m radius and the species richness of plant assemblages within a 200 m radius. We collected 1104 bees from 74 species. The proportion of impervious surfaces at the landscape scale had a negative effect on wild bee abundance and species richness, whereas local flower composition had no effect. Ground-nesting bees were particularly sensitive to the urbanization gradient. This study provides new evidences of the impact of urbanization on bee assemblages and the proportion of impervious surfaces at the landscape scale emerged as a key factor that drives those assemblages.
Lefebvre, Vincent; Fontaine, Colin; Villemant, Claire; Daugeron, Christophe
2014-01-01
Pollination is one of the most important ecosystem services and bees the most important pollinators. As a population decline of bees has been documented in numerous regions of the world, it is crucial to develop understanding on other possible pollinators. Here, we study the potential pollination impact of Diptera, and among them Empidinae, in an alpine environment, where the abundance of bees is naturally lower. Interactions between 19 entomophilous plants and their flower visitors were recorded in a subalpine meadow in the French Alps during six weeks. Visitation frequencies were used to build the flower–visitor network. Our results show that interactions between flies and plants are dominant; flies represent more than 60% of all visitors, with 54% of them being Empidinae. We especially found that flies, Empidinae and bees are the main visitors of 11, three and one plants, respectively. When considering both bees and Syrphidae together, six plants were more visited by Empidinae; when considering bees and Syrphidae separately, 10 plants were more visited by Empidinae than by bees or Syrphidae. The results support the idea that flies widely replace bees as main flower visitors at altitude, and among them the Empidinae might play a key role in pollination. PMID:25376804
Lefebvre, Vincent; Fontaine, Colin; Villemant, Claire; Daugeron, Christophe
2014-11-01
Pollination is one of the most important ecosystem services and bees the most important pollinators. As a population decline of bees has been documented in numerous regions of the world, it is crucial to develop understanding on other possible pollinators. Here, we study the potential pollination impact of Diptera, and among them Empidinae, in an alpine environment, where the abundance of bees is naturally lower. Interactions between 19 entomophilous plants and their flower visitors were recorded in a subalpine meadow in the French Alps during six weeks. Visitation frequencies were used to build the flower-visitor network. Our results show that interactions between flies and plants are dominant; flies represent more than 60% of all visitors, with 54% of them being Empidinae. We especially found that flies, Empidinae and bees are the main visitors of 11, three and one plants, respectively. When considering both bees and Syrphidae together, six plants were more visited by Empidinae; when considering bees and Syrphidae separately, 10 plants were more visited by Empidinae than by bees or Syrphidae. The results support the idea that flies widely replace bees as main flower visitors at altitude, and among them the Empidinae might play a key role in pollination. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Bombus bifarius is a widespread bumble bee that occurs in montane regions of western North America. This species has several major color polymorphisms, and shows evidence of genetic structuring among regional populations. We test whether this structure is evidence for discrete gene flow barriers tha...
USDA-ARS?s Scientific Manuscript database
Honey bee population declines are a global concern. Numerous factors appear to cause the decline including parasites, pathogens, malnutrition and pesticides. Residues of the organophosphate acaricide coumaphos and the neonicotinoid insecticide imidacloprid, widely used to combat Varroa mites and for...
Featured articles from regional centers - National Site for the Regional
Assess Bee Health Goes Viral Seven years ago bee populations were tumbling into decline, threatening a -value commodity. Few pesticides are available for it, because it's a small-market crop with small the key to an incredibly successful soil health and areawide integrated pest management program - and
Response of the honey bee (Apis mellifera L.) proteome to Israeli acute paralysis virus infection
USDA-ARS?s Scientific Manuscript database
Recent declines in honey bee populations worldwide have spurred significant research into the impact of pathogens on colony health. The role of the Israeli Acute Paralysis Virus (IAPV)on hive mortality has become of particular concern since being correlated with colony losses, although the pathogeni...
A re-examination of the pollinator crisis.
Martin, Cyrus
2015-10-05
Reports of colony collapse disorder in bees and studies showing the toxicity of neonicotinoid pesticides have led to claims that we are experiencing a pollinator crisis. As Cyrus Martin reports, however, the issue is complex with threats to bees being multifold and the status of populations unclear due to a surprising lack of data.
Williams, Neal M; Ward, Kimiora L; Pope, Nathaniel; Isaacs, Rufus; Wilson, Julianna; May, Emily A; Ellis, Jamie; Daniels, Jaret; Pence, Akers; Ullmann, Katharina; Peters, Jeff
2015-12-01
Global trends in pollinator-dependent crops have raised awareness of the need to support managed and wild bee populations to ensure sustainable crop production. Provision of sufficient forage resources is a key element for promoting bee populations within human impacted landscapes, particularly those in agricultural lands where demand for pollination service is high and land use and management practices have reduced available flowering resources. Recent government incentives in North America and Europe support the planting of wildflowers to benefit pollinators; surprisingly, in North America there has been almost no rigorous testing of the performance of wildflower mixes, or their ability to support wild bee abundance and diversity. We tested different wildflower mixes in a spatially replicated, multiyear study in three regions of North America where production of pollinator-dependent crops is high: Florida, Michigan, and California. In each region, we quantified flowering among wildflower mixes composed of annual and perennial species, and with high and low relative diversity. We measured the abundance and species richness of wild bees, honey bees, and syrphid flies at each mix over two seasons. In each region, some but not all wildflower mixes provided significantly greater floral display area than unmanaged weedy control plots. Mixes also attracted greater abundance and richness of wild bees, although the identity of best mixes varied among regions. By partitioning floral display size from mix identity we show the importance of display size for attracting abundant and diverse wild bees. Season-long monitoring also revealed that designing mixes to provide continuous bloom throughout the growing season is critical to supporting the greatest pollinator species richness. Contrary to expectation, perennials bloomed in their first season, and complementarity in attraction of pollinators among annuals and perennials suggests that inclusion of functionally diverse species may provide the greatest benefit. Wildflower mixes may be particularly important for providing resources for some taxa, such as bumble bees, which are known to be in decline in several regions of North America. No mix consistently attained the full diversity that was planted. Further study is needed on how to achieve the desired floral display and diversity from seed mixes.
Amores-Arrocha, Antonio; Roldán, Ana; Jiménez-Cantizano, Ana; Caro, Ildefonso; Palacios, Víctor
2018-05-31
The aim of the present study was to compare and analyze the impact of using bee pollen doses (0.1, 0.25, 1, 5, 10 and 20 g/L) as activator in the alcoholic fermentation process of Palomino fino and Riesling wines. In this regard, its influence on the musts composition, the fermentative kinetics, the evolution of the populations of Saccharomyces cerevisiae , the evolution of yeast-assimilable nitrogen and physico-chemical characteristics of final wines has been analyzed. Bee pollen addition produces significant increases in yeast-assimilable nitrogen and maximum yeasts population and exponential velocity reached during alcoholic fermentation. Bee pollen showed an important effect on yeast survival during the death phase. Final wines showed significantly increase in volatile acidity above doses higher than 10 g/L and Comisión Internacional de L'Eclairage parameters (CIELab), color intensity and Abs 420 nm, from 1 g/L. Therefore, pollen could be used as fermentative activator for the alcoholic fermentation of white wines applying doses below of 1 g/L.
Nosema ceranae in Apis mellifera: a 12 years postdetection perspective.
Martín-Hernández, Raquel; Bartolomé, Carolina; Chejanovsky, Nor; Le Conte, Yves; Dalmon, Anne; Dussaubat, Claudia; García-Palencia, Pilar; Meana, Aranzazu; Pinto, M Alice; Soroker, Victoria; Higes, Mariano
2018-04-01
Nosema ceranae is a hot topic in honey bee health as reflected by numerous papers published every year. This review presents an update of the knowledge generated in the last 12 years in the field of N. ceranae research, addressing the routes of transmission, population structure and genetic diversity. This includes description of how the infection modifies the honey bee's metabolism, the immune response and other vital functions. The effects on individual honey bees will have a direct impact on the colony by leading to losses in the adult's population. The absence of clear clinical signs could keep the infection unnoticed by the beekeeper for long periods. The influence of the environmental conditions, beekeeping practices, bee genetics and the interaction with pesticides and other pathogens will have a direct influence on the prognosis of the disease. This review is approached from the point of view of the Mediterranean countries where the professional beekeeping has a high representation and where this pathogen is reported as an important threat. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Clarke, Kylea E; Rinderer, Thomas E; Franck, Pierre; Quezada-Euán, Javier G; Oldroyd, Benjamin P
2002-07-01
Until recently, African and European subspecies of the honeybee (Apis mellifera L.) had been geographically separated for around 10,000 years. However, human-assisted introductions have caused the mixing of large populations of African and European subspecies in South and Central America, permitting an unprecedented opportunity to study a large-scale hybridization event using molecular analyses. We obtained reference populations from Europe, Africa, and South America and used these to provide baseline information for a microsatellite and mitochondrial analysis of the process of Africanization of the bees of the Yucatan Peninsula, Mexico. The genetic structure of the Yucatecan population has changed dramatically over time. The pre-Africanized Yucatecan population (1985) comprised bees that were most similar to samples from southeastern Europe and northern and western Europe. Three years after the arrival of Africanized bees (1989), substantial paternal gene flow had occurred from feral Africanized drones into the resident European population, but maternal gene flow from the invading Africanized population into the local population was negligible. However by 1998, there was a radical shift with both African nuclear alleles (65%) and African-derived mitochondria (61%) dominating the genomes of domestic colonies. We suggest that although European mitochondria may eventually be driven to extinction in the feral population, stable introgression of European nuclear alleles has occurred.
Stalidzans, E; Zacepins, A; Kviesis, A; Brusbardis, V; Meitalovs, J; Paura, L; Bulipopa, N; Liepniece, M
2017-02-01
Honey bee wintering in a wintering building (indoors) with controlled microclimate is used in some cold regions to minimize colony losses due to the hard weather conditions. The behavior and possible state of bee colonies in a dark room, isolated from natural environment during winter season, was studied by indirect temperature measurements to analyze the expression of their annual rhythm when it is not affected by ambient temperature, rain, snow, wind, and daylight. Thus, the observed behavior in the wintering building is initiated solely by bee colony internal processes. Experiments were carried out to determine the dynamics of temperature above the upper hive body and weight dynamics of indoors and outdoors wintered honey bee colonies and their brood-rearing performance in spring. We found significantly lower honey consumption-related weight loss of indoor wintered colonies compared with outdoor colonies, while no significant difference in the amount of open or sealed brood was found, suggesting that wintering building saves food and physiological resources without an impact on colony activity in spring. Indoor wintered colonies, with or without thermal insulation, did not have significant differences in food consumption and brood rearing in spring. The thermal behavior and weight dynamics of all experimental groups has changed in the middle of February possibly due to increased brood-rearing activity. Temperature measurement above the upper hive body is a convenient remote monitoring method of wintering process. Predictability of food consumption in a wintering building, with constant temperature, enables wintering without oversupply of wintering honey. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
James H. Cane; John L. Neff
2011-01-01
Periodic wildfire defines plant community composition and dynamics in many of the world's semi-arid biomes, whose climates and floras also favor wild bee diversity. Invasive flammable grasses, deforestation, historical fire suppression and human ignition are increasing fire frequency and intensifying its severity, as well as introducing fire to previously...
Cresswell, James E; Robert, François-Xavier L; Florance, Hannah; Smirnoff, Nicholas
2014-02-01
Bees in agricultural landscapes are exposed to dietary pesticides such as imidacloprid when they feed from treated mass-flowering crops. Concern about the consequent impact on bees makes it important to understand their resilience. In the laboratory, the authors therefore fed adult worker bees on dosed syrup (125 μg L(-1) of imidacloprid, or 98 μg kg(-1)) either continuously or as a pulsed exposure and measured their behaviour (feeding and locomotory activity) and whole-body residues. On dosed syrup, honey bees maintained much lower bodily levels of imidacloprid than bumblebees (<0.2 ng versus 2.4 ng of imidacloprid per bee). Dietary imidacloprid did not affect the behaviour of honey bees, but it reduced feeding and locomotory activity in bumblebees. After the pulsed exposure, bumblebees cleared bodily imidacloprid after 48 h and recovered behaviourally. The differential behavioural resilience of the two species can be attributed to the observed differential in bodily residues. The ability of bumblebees to recover may be environmentally relevant in wild populations that face transitory exposures from the pulsed blooming of mass-flowering crops. © 2013 Society of Chemical Industry.
Bernardes, Rodrigo Cupertino; Barbosa, Wagner Faria; Martins, Gustavo Ferreira; Lima, Maria Augusta Pereira
2018-06-01
Large-scale pesticide application poses a major threat to bee biodiversity by causing a decline in bee populations that, in turn, compromises ecosystem maintenance and agricultural productivity. Biopesticides are considered an alternative to synthetic pesticides with a focus on reducing potential detrimental effects to beneficial organisms such as bees. The production of healthy queen stingless bees is essential for the survival and reproduction of hives, although it remains unknown whether biopesticides influence stingless bee reproduction. In the present study, we investigated the effects of the biopesticide azadirachtin on the survival, behavior, morphology, development, and reproduction of queens of the stingless bee Partamona helleri (Friese, 1900). The neonicotinoid imidacloprid was used as a toxic reference standard. Queens were orally exposed in vitro to a contaminated diet (containing azadirachtin and imidacloprid) during development. Azadirachtin resulted in reduced survival, similarly to imidacloprid, altered development time, caused deformations, and reduced the size of the queens' reproductive organs. All of these factors could potentially compromise colony survival. Results from the present study showed azadirachtin posed a toxicological hazard to P. helleri queens. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pinto, M Alice; Rubink, William L; Coulson, Robert N; Patton, John C; Johnston, J Spencer
2004-05-01
The invasion of Africanized honeybees (Apis mellifera L.) in the Americas provides a window of opportunity to study the dynamics of secondary contact of subspecies of bees that evolved in allopatry in ecologically distinctive habitats of the Old World. We report here the results of an 11-year mitochondrial DNA survey of a feral honeybee population from southern United States (Texas). The mitochondrial haplotype (mitotype) frequencies changed radically during the 11-year study period. Prior to immigration of Africanized honeybees, the resident population was essentially of eastern and western European maternal ancestry. Three years after detection of the first Africanized swarm there was a mitotype turnover in the population from predominantly eastern European to predominantly A. m. scutellata (ancestor of Africanized honeybees). This remarkable change in the mitotype composition coincided with arrival of the parasitic mite Varroa destructor, which was likely responsible for severe losses experienced by colonies of European ancestry. From 1997 onward the population stabilized with most colonies of A. m. scutellata maternal origin.
NASA Technical Reports Server (NTRS)
Gary, N. E.; Westerdahl, B. B.
1980-01-01
Post treatment brood development was normal and teratological effects were not detected at exposures of 3 to 50 mw sq cm for 30 minutes. Post treatment survival, longevity, orientation, navigation, and memory of adult bees were also normal after exposures of 3 to 50 mw sq cm for 30 minutes. Post treatment longevity of confined bees in the laboratory was normal after exposures of 3 to 50 mw sq cm for 24 hours. Thermoregulation of brood nest, foraging activity, brood rearing, and social interaction were not affected by chronic exposure to 1 mw sq cm during 28 days. In dynamic behavioral bioassays the frequency of entry and duration of activity of unrestrained, foraging adult bees was identical in microwave exposed areas versus control areas.
Role of Human Action in the Spread of Honey Bee (Hymenoptera: Apidae) Pathogens.
Owen, Robert
2017-06-01
The increased annual losses in European honey bee (Apis mellifera) colonies in North America and some other countries is usually attributed to a range of factors including pathogens, poor nutrition, and insecticides. In this essay, I will argue that the global trade in honey bees and migratory beekeeping practices within countries has enabled pathogens to spread quickly. Beekeepers' management strategies have also contributed to the spread of pathogens as well as the development of resistance to miticides and antibiotics, and exacerbated by hobby beekeepers. The opportunities for arresting honey bee declines rest as strongly with individual beekeepers as they do with the dynamics of disease. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives.
Rokop, Z P; Horton, M A; Newton, I L G
2015-10-01
In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members (Fructobacillus and Lactobacillaceae) and honey bee-specific "core" members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro. Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of "noncore" and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives
Rokop, Z. P.; Horton, M. A.
2015-01-01
In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members (Fructobacillus and Lactobacillaceae) and honey bee-specific “core” members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro. Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of “noncore” and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. PMID:26253685
Tracing back the nascence of a new sex-determination pathway to the ancestor of bees and ants
Schmieder, Sandra; Colinet, Dominique; Poirié, Marylène
2012-01-01
In several Hymenoptera, sexual fate is determined by the allelic composition at the complementary sex-determiner locus, a sex-determination mechanism that can strongly affect population dynamics. To date, the molecular identification of complementary sex determiner has only been achieved in the honeybee, where the complementary sex-determiner gene was reported to have arisen from duplication of the feminizer gene. Strikingly, the complementary sex-determiner gene was also proposed to be unique to the honeybee lineage. Here we identify feminizer and complementary sex-determiner orthologues in bumble bees and ants. We further demonstrate that the duplication of feminizer that produced complementary sex determiner occurred before the divergence of Aculeata species (~120 Myr ago). Finally, we provide evidence that the two genes evolved concertedly through gene conversion, complementary sex-determiner evolution being additionally shaped by mosaic patterns of selection. Thus, the complementary sex-determiner gene likely represents the molecular basis for single locus-complementary sex determination in the Aculeata infra-order, and possibly, in the entire Hymenoptera order. PMID:22692538
Stindl, Reinhard; Stindl, Wolfgang
2010-10-01
Einstein is often quoted to have said that without the bee, mankind would have but 4years to live. It is highly unlikely that he made this comment, which was even mentioned in a Lancet article on honey bees. However, the current vanishing of the bees can have serious consequences for human health, because 35% of the human diet is thought to benefit from pollination. Colony collapse disorder (CCD) in honey bees is characterized by the rapid decline of the adult bee population, leaving the brood and the queen poorly or completely unattended, with no dead bodies in or around the hive. A large study found no evidence that the presence or amount of any individual pesticide or infectious agent occurred more frequently or abundantly in CCD-affected colonies. The growing consensus is that honey bees are suffering from comprised immune systems, which allow various infectious pathogens to invade. The question remains, what causes immunosuppression in many colonies of Apis mellifera in North America and Europe? Telomeres are protective DNA structures located at eukaryotic chromosome tips that shorten in the somatic tissues of animals with age. Lifelong tissue regeneration takes place in Apis mellifera, and worker bees have been shown to senesce. In humans, a vast amount of literature has accumulated on exhausted telomere reserves causing impaired tissue regeneration and age-associated diseases, specifically cancer and immunosuppression. Therefore, we propose a new causative mechanism for the vanishing of the bees: critically short telomeres in long-lived winter bees. We term this the telomere premature aging syndrome. Copyright 2010 Elsevier Ltd. All rights reserved.
Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L).
Berry, Jennifer A; Hood, W Michael; Pietravalle, Stéphane; Delaplane, Keith S
2013-01-01
In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.
Field-Level Sublethal Effects of Approved Bee Hive Chemicals on Honey Bees (Apis mellifera L)
Berry, Jennifer A.; Hood, W. Michael; Pietravalle, Stéphane; Delaplane, Keith S.
2013-01-01
In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals. PMID:24204638
Managing honey bees (Hymenoptera: Apidae) for greenhouse tomato pollination.
Sabara, Holly A; Winston, Mark L
2003-06-01
Although commercially reared colonies of bumble bees (Bombus sp.) are the primary pollinator world-wide for greenhouse tomatoes (Lycopersicon esculentum Mill.) previous research indicates that honey bees (Apis mellifera L.) might be a feasible alternative or supplement to bumble bee pollination. However, management methods for honey bee greenhouse tomato pollination scarcely have been explored. We 1) tested the effect of initial amounts of brood on colony population size and flight activity in screened greenhouses during the winter, and 2) compared foraging from colonies with brood used within screened and unscreened greenhouses during the summer. Brood rearing was maintained at low levels in both brood and no-brood colonies after 21 d during the winter, and emerging honey bees from both treatments had significantly lower weights than bees from outdoor colonies. Honey bee flight activity throughout the day and over the 21 d in the greenhouse was not influenced by initial brood level. In our summer experiment, brood production in screened greenhouses neared zero after 21 d but higher levels of brood were reared in unscreened greenhouses with access to outside forage. Flower visitation measured throughout the day and over the 21 d the colonies were in the greenhouse was not influenced by screening treatment. An economic analysis indicated that managing honey bees for greenhouse tomato pollination would be financially viable for both beekeepers and growers. We conclude that honey bees can be successfully managed for greenhouse tomato pollination in both screened and unscreened greenhouses if the foraging force is maintained by replacing colonies every 3 wk.
Frazier, Maryann T.; Mullin, Chris A.; Frazier, Jim L.; Ashcraft, Sara A.; Leslie, Tim W.; Mussen, Eric C.; Drummond, Frank A.
2015-01-01
Beekeepers who use honey bees (Apis mellifera L.) for crop pollination services, or have colonies making honey on or in close proximity to agricultural crops, are concerned about the reductions of colony foragers and ultimate weakening of their colonies. Pesticide exposure is a potential factor in the loss of foragers. During 2009–2010, we assessed changes in the field force populations of 9–10 colonies at one location per crop on each of the eight crops by counting departing foragers leaving colonies at regular intervals during the respective crop blooming periods. The number of frames of adult bees was counted before and after bloom period. For pesticide analysis, we collected dead and dying bees near the hives, returning foragers, crop flowers, trapped pollen, and corn-flowers associated with the cotton crop. The number of departing foragers changed over time in all crops except almonds; general patterns in foraging activity included declines (cotton), noticeable peaks and declines (alfalfa, blueberries, cotton, corn, and pumpkins), and increases (apples and cantaloupes). The number of adult bee frames increased or remained stable in all crops except alfalfa and cotton. A total of 53 different pesticide residues were identified in samples collected across eight crops. Hazard quotients (HQ) were calculated for the combined residues for all crop-associated samples and separately for samples of dead and dying bees. A decrease in the number of departing foragers in cotton was one of the most substantial crop-associated impacts and presented the highest pesticide risk estimated by a summed pesticide residue HQ. PMID:26453703
BeeDoctor, a Versatile MLPA-Based Diagnostic Tool for Screening Bee Viruses
De Smet, Lina; Ravoet, Jorgen; de Miranda, Joachim R.; Wenseleers, Tom; Mueller, Matthias Y.; Moritz, Robin F. A.; de Graaf, Dirk C.
2012-01-01
The long-term decline of managed honeybee hives in the world has drawn significant attention to the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial role in this phenomenon, with the bee viruses being key players. Most of the currently characterized honeybee viruses (around twenty) are positive stranded RNA viruses. Techniques based on RNA signatures are widely used to determine the viral load in honeybee colonies. High throughput screening for viral loads necessitates the development of a multiplex polymerase chain reaction approach in which different viruses can be targeted simultaneously. A new multiparameter assay, called “BeeDoctor”, was developed based on multiplex-ligation probe dependent amplification (MLPA) technology. This assay detects 10 honeybee viruses in one reaction. “BeeDoctor” is also able to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in honeybee populations. “BeeDoctor” was used for screening 363 samples from apiaries located throughout Flanders; the northern half of Belgium. Using the “BeeDoctor”, virus infections were detected in almost eighty percent of the colonies, with deformed wing virus by far the most frequently detected virus and multiple virus infections were found in 26 percent of the colonies. PMID:23144717
BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses.
De Smet, Lina; Ravoet, Jorgen; de Miranda, Joachim R; Wenseleers, Tom; Mueller, Matthias Y; Moritz, Robin F A; de Graaf, Dirk C
2012-01-01
The long-term decline of managed honeybee hives in the world has drawn significant attention to the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial role in this phenomenon, with the bee viruses being key players. Most of the currently characterized honeybee viruses (around twenty) are positive stranded RNA viruses. Techniques based on RNA signatures are widely used to determine the viral load in honeybee colonies. High throughput screening for viral loads necessitates the development of a multiplex polymerase chain reaction approach in which different viruses can be targeted simultaneously. A new multiparameter assay, called "BeeDoctor", was developed based on multiplex-ligation probe dependent amplification (MLPA) technology. This assay detects 10 honeybee viruses in one reaction. "BeeDoctor" is also able to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in honeybee populations. "BeeDoctor" was used for screening 363 samples from apiaries located throughout Flanders; the northern half of Belgium. Using the "BeeDoctor", virus infections were detected in almost eighty percent of the colonies, with deformed wing virus by far the most frequently detected virus and multiple virus infections were found in 26 percent of the colonies.
Population demography of Australian feral bees (Apis mellifera).
Oldroyd, B P; Thexton, E G; Lawler, S H; Crozier, R H
1997-07-01
Honey-bees are widespread as feral animals in Australia. Their impact on Australian ecosystems is difficult to assess, but may include competition with native fauna for floral resources or nesting sites, or inadequate or inappropriate pollination of native flora. In this 3-year study we examined the demography of the feral bee population in the riparian woodland of Wyperfeld National Park in north-west Victoria. The population is very large but varied considerably in size (50-150 colonies/km 2 ) during the study period (1992-1995). The expected colony lifespan for an established colony is 6.6 years, that for a founder colony (new swarm), 2.7 years. The population is expected to be stable if each colony produces 0.75 swarms per year, which is less than the number predicted on the basis of other studies (2-3 swarms/colony per year). Therefore, the population has considerable capacity for increase. Most colony deaths occurred in the summer, possibly due to high temperatures and lack of water. Colonies showed considerable spatial aggregation, agreeing with earlier findings. When all colonies were eradicated from two 5-ha sites, the average rate of re-occupation was 15 colonies/km 2 per year. Ten swarms of commercial origin were released and were found to have similar survival rates to founder colonies. However, the feral population is self-sustaining, and does not require immigration from the domestic population.
USDA-ARS?s Scientific Manuscript database
Qualitative changes in floral pollen protein have been shown to be an important aspect of pollinator health. Flowering late in the season, goldenrod (Solidago spp.), provides an essential autumnal source of floral pollen for wild bee and honeybee populations prior to winter, with tall or Canada gol...
USDA-ARS?s Scientific Manuscript database
Varroa destructor (Anderson and Truman) trapped on bottom boards were assessed as indirect measurements of colony mite populations and mite fall in colonies of Russian (RHB) and Italian (I) honey bees using 29 candidate measurements. Measurements included damaged and non-damaged younger mites, damag...
USDA-ARS?s Scientific Manuscript database
The ectoparasitic mite Varroa destuctor is a serious threat to beekeeping and crops that rely on honey bee for pollination. The Varroa mite not only causes significant damage to honey bees by feeding on their haemolymph, but also serves as a vector of disease. In addition, the Varroa mite has develo...
Leong, Misha; Ponisio, Lauren C; Kremen, Claire; Thorp, Robbin W; Roderick, George K
2016-03-01
Urbanization and agricultural intensification of landscapes are important drivers of global change, which in turn have direct impacts on local ecological communities leading to shifts in species distributions and interactions. Here, we illustrate how human-altered landscapes, with novel ornamental and crop plant communities, result not only in changes to local community diversity of floral-dependent species, but also in shifts in seasonal abundance of bee pollinators. Three years of data on the spatio-temporal distributions of 91 bee species show that seasonal patterns of abundance and species richness in human-altered landscapes varied significantly less compared to natural habitats in which floral resources are relatively scarce in the dry summer months. These findings demonstrate that anthropogenic environmental changes in urban and agricultural systems, here mediated through changes in plant resources and water inputs, can alter the temporal dynamics of pollinators that depend on them. Changes in phenology of interactions can be an important, though frequently overlooked, mechanism of global change. © 2015 John Wiley & Sons Ltd.
Theeraapisakkun, M; Klinbunga, S; Sittipraneed, S
2010-05-18
A molecular maker for authenticating species origin of the stingless bee (Trigona collina) was developed. Initially, amplified fragment length polymorphism analysis was made of 11 stingless bee species using 64 primer combinations. A 316-bp band found only in T. collina was cloned and sequenced. A primer pair (CUTc1-F/R) was designed and tested for species-specificity in 15 stingless bee species (239 nests). The expected 259-bp fragment was consistently amplified in all T. collina individuals (134/134 nests, 100%). Cross-species amplification was observed in T. pagdeni (43/51 nests; 84.3%), but not in other species. SSCP analysis of CUTc1 unambiguously differentiated T. collina from T. pagdeni. CUTc1 generated three genotypes in Thai T. collina (134 nests). An AA (259/259 bp) genotype was found in all stingless bees from the north (21 nests) and northeast (32 nests), and 23/28 nests from the Central region, whereas a BB (253/253 bp) genotype was observed in most samples from peninsular Thailand (42/53 nests). Heterozygotes exhibiting the AB (253/259 bp) genotype were observed in 5 of 28 nests from Prachuap Khiri Khan located slightly above the Kra ecotone and 11 of 53 nests originated further south of the Kra ecotone. Genotype distribution patterns of CUTc1 clearly indicated intraspecific population differentiation of Thai T. collina.
Silva, Daniel P.; Vilela, Bruno; De Marco, Paulo; Nemésio, André
2014-01-01
The role of past connections between the two major South American forested biomes on current species distribution has been recognized a long time ago. Climatic oscillations that further separated these biomes have promoted parapatric speciation, in which many species had their continuous distribution split, giving rise to different but related species (i.e., different potential distributions and realized niche features). The distribution of many sister species of orchid bees follow this pattern. Here, using ecological niche models and niche analyses, we (1) tested the role of ecological niche differentiation on the divergence between sister orchid-bees (genera Eulaema and Eufriesea) from the Amazon and Atlantic forests, and (2) highlighted interesting areas for new surveys. Amazonian species occupied different realized niches than their Atlantic sister species. Conversely, species of sympatric but distantly related Eulaema bees occupied similar realized niches. Amazonian species had a wide potential distribution in South America, whereas Atlantic Forest species were more limited to the eastern coast of the continent. Additionally, we identified several areas in need of future surveys. Our results show that the realized niche of Atlantic-Amazonian sister species of orchid bees, which have been previously treated as allopatric populations of three species, had limited niche overlap and similarity. These findings agree with their current taxonomy, which treats each of those populations as distinct valid species. PMID:25422941
Santos, Carolina Gonçalves; Hartfelder, Klaus
2015-01-01
Phenotypic plasticity is a hallmark of the caste systems of social insects, expressed in their life history and morphological traits. These are best studied in bees. In their co-evolution with angiosperm plants, the females of corbiculate bees have acquired a specialized structure on their hind legs for collecting pollen. In the highly eusocial bees (Apini and Meliponini), this structure is however only present in workers and absent in queens. By means of histological sections and cell proliferation analysis we followed the developmental dynamics of the hind legs of queens and workers in the fourth and fifth larval instars. In parallel, we generated subtractive cDNA libraries for hind leg discs of queen and worker larvae by means of a Representational Difference Analysis (RDA). From the total of 135 unique sequences we selected 19 for RT-qPCR analysis, where six of these were confirmed as differing significantly in their expression between the two castes in the larval spinning stage. The development of complex structures such as the bees’ hind legs, requires diverse patterning mechanisms and signaling modules, as indicated by the set of differentially expressed genes related with cell adhesion and signaling pathways. PMID:26500430
First detection of Apis mellifera filamentous virus in Apis cerana cerana in China.
Hou, Chunsheng; Li, Beibei; Luo, Yuexiong; Deng, Shuai; Diao, Qingyun
2016-07-01
Although many honey bee RNA viruses have been correlated with colony declines, little is known regarding the potential role of DNA viruses. Here, we examined seemingly healthy and crawling bee samples from China using PCR to identify whether Apis mellifera filamentous virus (AmFV) was present in A. cerana cerana. The highest AmFV infection percentage among Chinese provinces occurred in crawling bees from Gansu province (85.48%), and the lowest was in bees from Beijing (31.58%). A phylogenetic analysis showed that the Chinese isolate of AmFV exhibited a high genetic similarity with isolates from Belgium, Switzerland and USA. This is the first report of AmFV infections in Chinese A. cerana cerana populations. Copyright © 2016 Elsevier Inc. All rights reserved.
Clarke, K E; Oldroyd, B P; Javier, J; Quezada-Euán, G; Rinderer, T E
2001-06-01
Honeybees (Apis mellifera L.) sampled at sites in Europe, Africa and South America were analysed using a mitochondrial DNA restriction fragment length polymorphism (RFLP) marker. These samples were used to provide baseline information for a detailed analysis of the process of Africanization of bees from the neotropical Yucatan peninsula of Mexico. Radical changes in mitochondrial haplotype (mitotype) frequencies were found to have occurred in the 13-year period studied. Prior to the arrival of Africanized bees (1986) the original inhabitants of the Yucatan peninsula appear to have been essentially of southeastern European origin with a smaller proportion having northwestern European ancestry. Three years after the migration of Africanized bees into the area (1989), only very low levels of maternal gene flow from Africanized populations into the resident European populations had occurred. By 1998, however, there was a sizeable increase in the proportion of African mitotypes in domestic populations (61%) with feral populations having 87% of mitotypes classified as African derived. The results suggest that the early stages of Africanization did not involve a rapid replacement of European with African mitotypes and that earlier studies probably overestimated the prevalence of African mitotypes.
The bee tree of life: a supermatrix approach to apoid phylogeny and biogeography.
Hedtke, Shannon M; Patiny, Sébastien; Danforth, Bryan N
2013-07-03
Bees are the primary pollinators of angiosperms throughout the world. There are more than 16,000 described species, with broad variation in life history traits such as nesting habitat, diet, and social behavior. Despite their importance as pollinators, the evolution of bee biodiversity is understudied: relationships among the seven families of bees remain controversial, and no empirical global-level reconstruction of historical biogeography has been attempted. Morphological studies have generally suggested that the phylogeny of bees is rooted near the family Colletidae, whereas many molecular studies have suggested a root node near (or within) Melittidae. Previous molecular studies have focused on a relatively small sample of taxa (~150 species) and genes (seven at most). Public databases contain an enormous amount of DNA sequence data that has not been comprehensively analysed in the context of bee evolution. We downloaded, aligned, concatenated, and analysed all available protein-coding nuclear gene DNA sequence data in GenBank as of October, 2011. Our matrix consists of 20 genes, with over 17,000 aligned nucleotide sites, for over 1,300 bee and apoid wasp species, representing over two-thirds of bee genera. Whereas the matrix is large in terms of number of genes and taxa, there is a significant amount of missing data: only ~15% of the matrix is populated with data. The placement of the root as well as relationships between Andrenidae and other bee families remain ambiguous, as several alternative maximum-likelihood estimates fall within the statistically credible set. However, we recover strong bootstrap support for relationships among many families and for their monophyly. Ancestral geographic range reconstruction suggests a likely origin of bees in the southern hemisphere, with Melittidae ancestrally located within Africa, and Halictidae, Colletidae, and Apidae within the New World. Our study affirms the monophyly of each bee family, sister-taxa relationships between Apidae and Megachilidae (the 'long-tongued bees'), between Colletidae and Stenotritidae, and between Colletidae + Stenotritidae and Halictidae. Our analyses reject a Colletidae-basal hypothesis for family-level relationships and instead support Melittidae as sister to the remaining bees. Southern hemisphere vicariance likely played an important role in early diversification within many bee families.
Superinfection exclusion and the long-term survival of honey bees in Varroa-infested colonies
Mordecai, Gideon J; Brettell, Laura E; Martin, Stephen J; Dixon, David; Jones, Ian M; Schroeder, Declan C
2016-01-01
Over the past 50 years, many millions of European honey bee (Apis mellifera) colonies have died as the ectoparasitic mite, Varroa destructor, has spread around the world. Subsequent studies have indicated that the mite's association with a group of RNA viral pathogens (Deformed Wing Virus, DWV) correlates with colony death. Here, we propose a phenomenon known as superinfection exclusion that provides an explanation of how certain A. mellifera populations have survived, despite Varroa infestation and high DWV loads. Next-generation sequencing has shown that a non-lethal DWV variant ‘type B' has become established in these colonies and that the lethal ‘type A' DWV variant fails to persist in the bee population. We propose that this novel stable host-pathogen relationship prevents the accumulation of lethal variants, suggesting that this interaction could be exploited for the development of an effective treatment that minimises colony losses in the future. PMID:26505829
Skoracki, Maciej; Hromada, Martin; Sikora, Bozena
2017-07-26
A new species, Castosyringophilus meropis sp. n., found in quills of feathers of the European bee-eater Merops apiaster Linnaeus (Coraciiformes: Meropidae) is described. This new species is close to C. claravis Skoracki et Glowska, 2008 and differs, in females, by the presence apunctate coxal fields (vs sparsely punctate in C. claravis) and by the lengths of setae d1 145-180 µm, f2 170-185 µm and ag3 190-215 µm (vs d1 200-220 µm, f2 230-250 µm and ag3 150-170 µm). We present a vast mite material collected from bee-eaters originated from different localities in Europe, Asia and Africa, both breeding and wintering grounds of this bird. It indicates that the whole world population of the European bee-eater is parasitised by this quill mite species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary, N E; Westerdahl, B B
1980-12-01
A system for small animal exposure was developed for treating honey bees, Apis mellifera L., in brood and adult stages, with 2.45 GHz continuous wave microwaves at selected power densities and exposure times. Post-treatment brood development was normal and teratological effects were not detected at exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment survival, longevity, orientation, navigation, and memory of adult bees were also normal after exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment longevity of confined bees in the laboratory was normal after exposures of 3 to 50 mw/cm/sup 2/ for 24 hours.more » Thermoregulation of brood nest, foraging activity, brood rearing, and social interaction were not affected by chronic exposure to 1 mw/cm/sup 2/ during 28 days. In dynamic behavioral bioassays the frequency of entry and duration of activity of unrestrained, foraging adult bees was identical in microwave-exposed (5 to 40 mw/cm/sup 2/) areas versus control areas.« less
NASA Astrophysics Data System (ADS)
Wu-Smart, Judy; Spivak, Marla
2016-08-01
Many factors can negatively affect honey bee (Apis mellifera L.) health including the pervasive use of systemic neonicotinoid insecticides. Through direct consumption of contaminated nectar and pollen from treated plants, neonicotinoids can affect foraging, learning, and memory in worker bees. Less well studied are the potential effects of neonicotinoids on queen bees, which may be exposed indirectly through trophallaxis, or food-sharing. To assess effects on queen productivity, small colonies of different sizes (1500, 3000, and 7000 bees) were fed imidacloprid (0, 10, 20, 50, and 100 ppb) in syrup for three weeks. We found adverse effects of imidacloprid on queens (egg-laying and locomotor activity), worker bees (foraging and hygienic activities), and colony development (brood production and pollen stores) in all treated colonies. Some effects were less evident as colony size increased, suggesting that larger colony populations may act as a buffer to pesticide exposure. This study is the first to show adverse effects of imidacloprid on queen bee fecundity and behavior and improves our understanding of how neonicotinoids may impair short-term colony functioning. These data indicate that risk-mitigation efforts should focus on reducing neonicotinoid exposure in the early spring when colonies are smallest and queens are most vulnerable to exposure.
Wu-Smart, Judy; Spivak, Marla
2016-01-01
Many factors can negatively affect honey bee (Apis mellifera L.) health including the pervasive use of systemic neonicotinoid insecticides. Through direct consumption of contaminated nectar and pollen from treated plants, neonicotinoids can affect foraging, learning, and memory in worker bees. Less well studied are the potential effects of neonicotinoids on queen bees, which may be exposed indirectly through trophallaxis, or food-sharing. To assess effects on queen productivity, small colonies of different sizes (1500, 3000, and 7000 bees) were fed imidacloprid (0, 10, 20, 50, and 100 ppb) in syrup for three weeks. We found adverse effects of imidacloprid on queens (egg-laying and locomotor activity), worker bees (foraging and hygienic activities), and colony development (brood production and pollen stores) in all treated colonies. Some effects were less evident as colony size increased, suggesting that larger colony populations may act as a buffer to pesticide exposure. This study is the first to show adverse effects of imidacloprid on queen bee fecundity and behavior and improves our understanding of how neonicotinoids may impair short-term colony functioning. These data indicate that risk-mitigation efforts should focus on reducing neonicotinoid exposure in the early spring when colonies are smallest and queens are most vulnerable to exposure. PMID:27562025
Robertson, Albert J.; Trost, Brett; Scruten, Erin; Robertson, Thomas; Mostajeran, Mohammad; Connor, Wayne; Kusalik, Anthony; Griebel, Philip; Napper, Scott
2014-01-01
Recent investigations associate Varroa destructor (Mesostigmata: Varroidae) parasitism and its associated pathogens and agricultural pesticides with negative effects on colony health, resulting in sporadic global declines in domestic honeybee (Apis mellifera) populations. These events have motivated efforts to develop research tools that can offer insight into the causes of declining bee health as well as identify biomarkers to guide breeding programs. Here we report the development of a bee-specific peptide array for characterizing global cellular kinase activity in whole bee extracts. The arrays reveal distinct, developmentally-specific signaling profiles between bees with differential susceptibility to infestation by Varroa mites. Gene ontology analysis of the differentially phosphorylated peptides indicates that the differential susceptibility to Varroa mite infestation does not reflect compromised immunity; rather, there is evidence for mite-mediated immune suppression within the susceptible phenotype that may reduce the ability of these bees to counter secondary viral infections. This hypothesis is supported by the demonstration of more diverse viral infections in mite-infested, susceptible adult bees. The bee-specific peptide arrays are an effective tool for understanding the molecular basis of this complex phenotype as well as for the discovery and utilization of phosphorylation biomarkers for breeding programs. PMID:24904639
Wu-Smart, Judy; Spivak, Marla
2016-08-26
Many factors can negatively affect honey bee (Apis mellifera L.) health including the pervasive use of systemic neonicotinoid insecticides. Through direct consumption of contaminated nectar and pollen from treated plants, neonicotinoids can affect foraging, learning, and memory in worker bees. Less well studied are the potential effects of neonicotinoids on queen bees, which may be exposed indirectly through trophallaxis, or food-sharing. To assess effects on queen productivity, small colonies of different sizes (1500, 3000, and 7000 bees) were fed imidacloprid (0, 10, 20, 50, and 100 ppb) in syrup for three weeks. We found adverse effects of imidacloprid on queens (egg-laying and locomotor activity), worker bees (foraging and hygienic activities), and colony development (brood production and pollen stores) in all treated colonies. Some effects were less evident as colony size increased, suggesting that larger colony populations may act as a buffer to pesticide exposure. This study is the first to show adverse effects of imidacloprid on queen bee fecundity and behavior and improves our understanding of how neonicotinoids may impair short-term colony functioning. These data indicate that risk-mitigation efforts should focus on reducing neonicotinoid exposure in the early spring when colonies are smallest and queens are most vulnerable to exposure.
Rinkevich, Frank D.; Danka, Robert G.; Healy, Kristen B.
2017-01-01
Since Varroa mites may cause devastating losses of honey bees through direct feeding, transmitting diseases, and increasing pathogen susceptibility, chemical and mechanical practices commonly are used to reduce mite infestation. While miticide applications are typically the most consistent and efficacious Varroa mite management method, miticide-induced insecticide synergism in honey bees, and the evolution of resistance in Varroa mites are reasonable concerns. We treated colonies with the miticide amitraz (Apivar®), used IPM practices, or left some colonies untreated, and then measured the effect of different levels of mite infestations on the sensitivity of bees to phenothrin, amitraz, and clothianidin. Sensitivity to all insecticides varied throughout the year among and within treatment groups. Clothianidin sensitivity decreased with increasing mite levels, but no such correlation was seen with phenothrin or amitraz. These results show that insecticide sensitivity is dynamic throughout the 5 months test. In-hive amitraz treatment according to the labeled use did not synergize sensitivity to the pesticides tested and this should alleviate concern over potential synergistic effects. Since IPM practices were largely ineffective at reducing Varroa mite infestation, reliance on chemical methods of Varroa mite management is likely to continue. However, miticides must be used judiciously so the long term effectiveness of these compounds can be maximized. These data demonstrate the complex and dynamic variables that contribute to honey bee colony health. The results underscore the importance of controlling for as many of these variables as possible in order to accurately determine the effects of each of these factors as they act alone or in concert with others. PMID:28085045
Queens and Workers Contribute Differently to Adaptive Evolution in Bumble Bees and Honey Bees.
Harpur, Brock A; Dey, Alivia; Albert, Jennifer R; Patel, Sani; Hines, Heather M; Hasselmann, Martin; Packer, Laurence; Zayed, Amro
2017-09-01
Eusociality represents a major transition in evolution and is typified by cooperative brood care and reproductive division of labor between generations. In bees, this division of labor allows queens and workers to phenotypically specialize. Worker traits associated with helping are thought to be crucial to the fitness of a eusocial lineage, and recent studies of honey bees (genus Apis) have found that adaptively evolving genes often have worker-biased expression patterns. It is unclear however if worker-biased genes are disproportionately acted on by strong positive selection in all eusocial insects. We undertook a comparative population genomics study of bumble bees (Bombus) and honey bees to quantify natural selection on queen- and worker-biased genes across two levels of social complexity. Despite sharing a common eusocial ancestor, genes, and gene groups with the highest levels of positive selection were often unique within each genus, indicating that life history and the environment, but not sociality per se, drives patterns of adaptive molecular evolution. We uncovered differences in the contribution of queen- and worker-biased genes to adaptive evolution in bumble bees versus honey bees. Unlike honey bees, where worker-biased genes are enriched for signs of adaptive evolution, genes experiencing positive selection in bumble bees were predominately expressed by reproductive foundresses during the initial solitary-founding stage of colonies. Our study suggests that solitary founding is a major selective pressure and that the loss of queen totipotency may cause a change in the architecture of selective pressures upon the social insect genome. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Assessing Insecticide Hazard to Bumble Bees Foraging on Flowering Weeds in Treated Lawns
Larson, Jonathan L.; Redmond, Carl T.; Potter, Daniel A.
2013-01-01
Maintaining bee-friendly habitats in cities and suburbs can help conserve the vital pollination services of declining bee populations. Despite label precautions not to apply them to blooming plants, neonicotinoids and other residual systemic insecticides may be applied for preventive control of lawn insect pests when spring-flowering weeds are present. Dietary exposure to neonicotinoids adversely affects bees, but the extent of hazard from field usage is controversial. We exposed colonies of the bumble bee Bombus impatiens to turf with blooming white clover that had been treated with clothianidin, a neonicotinoid, or with chlorantraniliprole, the first anthranilic diamide labeled for use on lawns. The sprays were applied at label rate and lightly irrigated. After residues had dried, colonies were confined to forage for six days, and then moved to a non-treated rural site to openly forage and develop. Colonies exposed to clothianidin-treated weedy turf had delayed weight gain and produced no new queens whereas those exposed to chlorantraniliprole-treated plots developed normally compared with controls. Neither bumble bees nor honey bees avoided foraging on treated white clover in open plots. Nectar from clover blooms directly contaminated by spray residues contained 171±44 ppb clothianidin. Notably, neither insecticide adversely impacted bee colonies confined on the treated turf after it had been mown to remove clover blooms present at the time of treatment, and new blooms had formed. Our results validate EPA label precautionary statements not to apply neonicotinoids to blooming nectar-producing plants if bees may visit the treatment area. Whatever systemic hazard through lawn weeds they may pose appears transitory, however, and direct hazard can be mitigated by adhering to label precautions, or if blooms inadvertently are contaminated, by mowing to remove them. Chlorantraniliprole usage on lawns appears non-hazardous to bumble bees. PMID:23776667
Assessing insecticide hazard to bumble bees foraging on flowering weeds in treated lawns.
Larson, Jonathan L; Redmond, Carl T; Potter, Daniel A
2013-01-01
Maintaining bee-friendly habitats in cities and suburbs can help conserve the vital pollination services of declining bee populations. Despite label precautions not to apply them to blooming plants, neonicotinoids and other residual systemic insecticides may be applied for preventive control of lawn insect pests when spring-flowering weeds are present. Dietary exposure to neonicotinoids adversely affects bees, but the extent of hazard from field usage is controversial. We exposed colonies of the bumble bee Bombus impatiens to turf with blooming white clover that had been treated with clothianidin, a neonicotinoid, or with chlorantraniliprole, the first anthranilic diamide labeled for use on lawns. The sprays were applied at label rate and lightly irrigated. After residues had dried, colonies were confined to forage for six days, and then moved to a non-treated rural site to openly forage and develop. Colonies exposed to clothianidin-treated weedy turf had delayed weight gain and produced no new queens whereas those exposed to chlorantraniliprole-treated plots developed normally compared with controls. Neither bumble bees nor honey bees avoided foraging on treated white clover in open plots. Nectar from clover blooms directly contaminated by spray residues contained 171±44 ppb clothianidin. Notably, neither insecticide adversely impacted bee colonies confined on the treated turf after it had been mown to remove clover blooms present at the time of treatment, and new blooms had formed. Our results validate EPA label precautionary statements not to apply neonicotinoids to blooming nectar-producing plants if bees may visit the treatment area. Whatever systemic hazard through lawn weeds they may pose appears transitory, however, and direct hazard can be mitigated by adhering to label precautions, or if blooms inadvertently are contaminated, by mowing to remove them. Chlorantraniliprole usage on lawns appears non-hazardous to bumble bees.
Walking patterns induced by learned odors in the honeybee, Apis mellifera L.
Yamashita, Toshiya; Haupt, S Shuichi; Ikeno, Hidetoshi; Ai, Hiroyuki
2016-01-01
The odor localization strategy induced by odors learned via differential conditioning of the proboscis extension response was investigated in honeybees. In response to reward-associated but not non-reward-associated odors, learners walked longer paths than non-learners and control bees. When orange odor reward association was learned, the path length and the body turn angles were small during odor stimulation and greatly increased after stimulation ceased. In response to orange odor, bees walked locally with alternate left and right turns during odor stimulation to search for the reward-associated odor source. After odor stimulation, bees walked long paths with large turn angles to explore the odor plume. For clove odor, learning-related modulations of locomotion were less pronounced, presumably due to a spontaneous preference for orange in the tested population of bees. This study is the first to describe how an odor-reward association modulates odor-induced walking in bees. © 2016. Published by The Company of Biologists Ltd.
Groff, Shannon C.; Loftin, Cynthia S.; Drummond, Frank; Bushmann, Sara; McGill, Brian J.
2016-01-01
Non-native honeybees historically have been managed for crop pollination, however, recent population declines draw attention to pollination services provided by native bees. We applied the InVEST Crop Pollination model, developed to predict native bee abundance from habitat resources, in Maine's wild blueberry crop landscape. We evaluated model performance with parameters informed by four approaches: 1) expert opinion; 2) sensitivity analysis; 3) sensitivity analysis informed model optimization; and, 4) simulated annealing (uninformed) model optimization. Uninformed optimization improved model performance by 29% compared to expert opinion-informed model, while sensitivity-analysis informed optimization improved model performance by 54%. This suggests that expert opinion may not result in the best parameter values for the InVEST model. The proportion of deciduous/mixed forest within 2000 m of a blueberry field also reliably predicted native bee abundance in blueberry fields, however, the InVEST model provides an efficient tool to estimate bee abundance beyond the field perimeter.
Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup.
Wheeler, Marsha M; Robinson, Gene E
2014-07-17
Severe declines in honey bee populations have made it imperative to understand key factors impacting honey bee health. Of major concern is nutrition, as malnutrition in honey bees is associated with immune system impairment and increased pesticide susceptibility. Beekeepers often feed high fructose corn syrup (HFCS) or sucrose after harvesting honey or during periods of nectar dearth. We report that, relative to honey, chronic feeding of either of these two alternative carbohydrate sources elicited hundreds of differences in gene expression in the fat body, a peripheral nutrient-sensing tissue analogous to vertebrate liver and adipose tissues. These expression differences included genes involved in protein metabolism and oxidation-reduction, including some involved in tyrosine and phenylalanine metabolism. Differences between HFCS and sucrose diets were much more subtle and included a few genes involved in carbohydrate and lipid metabolism. Our results suggest that bees receive nutritional components from honey that are not provided by alternative food sources widely used in apiculture.
Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup
Wheeler, Marsha M.; Robinson, Gene E.
2014-01-01
Severe declines in honey bee populations have made it imperative to understand key factors impacting honey bee health. Of major concern is nutrition, as malnutrition in honey bees is associated with immune system impairment and increased pesticide susceptibility. Beekeepers often feed high fructose corn syrup (HFCS) or sucrose after harvesting honey or during periods of nectar dearth. We report that, relative to honey, chronic feeding of either of these two alternative carbohydrate sources elicited hundreds of differences in gene expression in the fat body, a peripheral nutrient-sensing tissue analogous to vertebrate liver and adipose tissues. These expression differences included genes involved in protein metabolism and oxidation-reduction, including some involved in tyrosine and phenylalanine metabolism. Differences between HFCS and sucrose diets were much more subtle and included a few genes involved in carbohydrate and lipid metabolism. Our results suggest that bees receive nutritional components from honey that are not provided by alternative food sources widely used in apiculture. PMID:25034029
Interactions between pesticides and pathogen susceptibility in honey bees.
O'Neal, Scott T; Anderson, Troy D; Wu-Smart, Judy Y
2018-04-01
There exist a variety of factors that negatively impact the health and survival of managed honey bee colonies, including the spread of parasites and pathogens, loss of habitat, reduced availability or quality of food resources, climate change, poor queen quality, changing cultural and commercial beekeeping practices, as well as exposure to agricultural and apicultural pesticides both in the field and in the hive. These factors are often closely intertwined, and it is unlikely that a single stressor is driving colony losses. There is a growing consensus, however, that increasing prevalence of parasites and pathogens are among the most significant threats to managed bee colonies. Unfortunately, improper management of hives by beekeepers may exacerbate parasite populations and disease transmission. Furthermore, research continues to accumulate that describes the complex and largely harmful interactions that exist between pesticide exposure and bee immunity. This brief review summarizes our progress in understanding the impact of pesticide exposure on bees at the individual, colony, and community level. Copyright © 2018 Elsevier Inc. All rights reserved.
Chen, Chao; Liu, Zhiguang; Pan, Qi; Chen, Xiao; Wang, Huihua; Guo, Haikun; Liu, Shidong; Lu, Hongfeng; Tian, Shilin; Li, Ruiqiang; Shi, Wei
2016-01-01
Studying the genetic signatures of climate-driven selection can produce insights into local adaptation and the potential impacts of climate change on populations. The honey bee (Apis mellifera) is an interesting species to study local adaptation because it originated in tropical/subtropical climatic regions and subsequently spread into temperate regions. However, little is known about the genetic basis of its adaptation to temperate climates. Here, we resequenced the whole genomes of ten individual bees from a newly discovered population in temperate China and downloaded resequenced data from 35 individuals from other populations. We found that the new population is an undescribed subspecies in the M-lineage of A. mellifera (Apis mellifera sinisxinyuan). Analyses of population history show that long-term global temperature has strongly influenced the demographic history of A. m. sinisxinyuan and its divergence from other subspecies. Further analyses comparing temperate and tropical populations identified several candidate genes related to fat body and the Hippo signaling pathway that are potentially involved in adaptation to temperate climates. Our results provide insights into the demographic history of the newly discovered A. m. sinisxinyuan, as well as the genetic basis of adaptation of A. mellifera to temperate climates at the genomic level. These findings will facilitate the selective breeding of A. mellifera to improve the survival of overwintering colonies. PMID:26823447
Bahreini, Rassol; Currie, Robert W
2015-08-01
The objective of this study was to assess the effectiveness of a cooperative breeding program designed to enhance winter survival of honey bees (Apis mellifera L.) when exposed to high levels of varroa (Varroa destructor Anderson and Trueman) in outdoor-wintered and indoor-wintered colonies. Half of the colonies from selected and unselected stocks were randomly assigned to be treated with late autumn oxalic acid treatment or to be left untreated. Colonies were then randomly assigned to be wintered either indoors (n = 37) or outdoors (n = 40). Late autumn treatment with oxalic acid did not improve wintering performance. However, genotype of bees affected colony survival and the proportion of commercially viable colonies in spring, as indicated by greater rates of colony survival and commercially viable colonies for selected stock (43% survived and 33% were viable) in comparison to unselected stock (19% survived and 9% were viable) across all treatment groups. Indoor wintering improved spring bee population score, proportion of colonies surviving, and proportion of commercially viable colonies relative to outdoor wintering (73% of selected stock and 41% of unselected stock survived during indoor wintering). Selected stock showed better "tolerance" to varroa as the selected stock also maintained higher bee populations relative to unselected stock. However, there was no evidence of "resistance" in selected colonies (reduced mite densities). Collectively, this experiment showed that breeding can improve tolerance to varroa and this can help minimize colony loss through winter and improve colony wintering performance. Overall, colony wintering success of both genotypes of bees was better when colonies were wintered indoors than when colonies were wintered outdoors. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Thairu, Margaret W; Brunet, Johanne
2015-05-01
Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. Published by Oxford University Press on behalf of the Annals of Botany Company 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
2013-01-01
Background The honey bee is an economically important species. With a rapid decline of the honey bee population, it is necessary to implement an improved genetic evaluation methodology. In this study, we investigated the applicability of the unified approach and its impact on the accuracy of estimation of breeding values for maternally influenced traits on a simulated dataset for the honey bee. Due to the limitation to the number of individuals that can be genotyped in a honey bee population, the unified approach can be an efficient strategy to increase the genetic gain and to provide a more accurate estimation of breeding values. We calculated the accuracy of estimated breeding values for two evaluation approaches, the unified approach and the traditional pedigree based approach. We analyzed the effects of different heritabilities as well as genetic correlation between direct and maternal effects on the accuracy of estimation of direct, maternal and overall breeding values (sum of maternal and direct breeding values). The genetic and reproductive biology of the honey bee was accounted for by taking into consideration characteristics such as colony structure, uncertain paternity, overlapping generations and polyandry. In addition, we used a modified numerator relationship matrix and a realistic genome for the honey bee. Results For all values of heritability and correlation, the accuracy of overall estimated breeding values increased significantly with the unified approach. The increase in accuracy was always higher for the case when there was no correlation as compared to the case where a negative correlation existed between maternal and direct effects. Conclusions Our study shows that the unified approach is a useful methodology for genetic evaluation in honey bees, and can contribute immensely to the improvement of traits of apicultural interest such as resistance to Varroa or production and behavioural traits. In particular, the study is of great interest for cases where negative correlation between maternal and direct effects and uncertain paternity exist, thus, is of relevance for other species as well. The study also provides an important framework for simulating genomic and pedigree datasets that will prove to be helpful for future studies. PMID:23647776
Gupta, Pooja; Reinsch, Norbert; Spötter, Andreas; Conrad, Tim; Bienefeld, Kaspar
2013-05-06
The honey bee is an economically important species. With a rapid decline of the honey bee population, it is necessary to implement an improved genetic evaluation methodology. In this study, we investigated the applicability of the unified approach and its impact on the accuracy of estimation of breeding values for maternally influenced traits on a simulated dataset for the honey bee. Due to the limitation to the number of individuals that can be genotyped in a honey bee population, the unified approach can be an efficient strategy to increase the genetic gain and to provide a more accurate estimation of breeding values. We calculated the accuracy of estimated breeding values for two evaluation approaches, the unified approach and the traditional pedigree based approach. We analyzed the effects of different heritabilities as well as genetic correlation between direct and maternal effects on the accuracy of estimation of direct, maternal and overall breeding values (sum of maternal and direct breeding values). The genetic and reproductive biology of the honey bee was accounted for by taking into consideration characteristics such as colony structure, uncertain paternity, overlapping generations and polyandry. In addition, we used a modified numerator relationship matrix and a realistic genome for the honey bee. For all values of heritability and correlation, the accuracy of overall estimated breeding values increased significantly with the unified approach. The increase in accuracy was always higher for the case when there was no correlation as compared to the case where a negative correlation existed between maternal and direct effects. Our study shows that the unified approach is a useful methodology for genetic evaluation in honey bees, and can contribute immensely to the improvement of traits of apicultural interest such as resistance to Varroa or production and behavioural traits. In particular, the study is of great interest for cases where negative correlation between maternal and direct effects and uncertain paternity exist, thus, is of relevance for other species as well. The study also provides an important framework for simulating genomic and pedigree datasets that will prove to be helpful for future studies.
Petersen, Jessica D.; Reiners, Stephen; Nault, Brian A.
2013-01-01
Pollinators provide an important service in many crops. Managed honey bees (Apis mellifera L.) are used to supplement pollination services provided by wild bees with the assumption that they will enhance pollination, fruit set and crop yield beyond the levels provided by the wild bees. Recent declines in managed honey bee populations have stimulated interest in finding alternative managed pollinators to service crops. In the eastern U.S., managed hives of the native common eastern bumble bee (Bombus impatiens Cresson) may be an excellent choice. To examine this issue, a comprehensive 2-yr study was conducted to compare fruit yield and bee visits to flowers in pumpkin (Cucurbita pepo L.) fields that were either supplemented with A. mellifera hives, B. impatiens hives or were not supplemented. We compared pumpkin yield, A. mellifera flower visitation frequency and B. impatiens flower visitation frequency between treatments. Results indicated that supplementing pumpkin fields with either A. mellifera or B. impatiens hives did not increase their visitation to pumpkin flowers or fruit yield compared with those that were not supplemented. Next, the relationship between frequency of pumpkin flower visitation by the most prominent bee species (Peponapis pruinosa (Say), B. impatiens and A. mellifera) and fruit yield was determined across all pumpkin fields sampled. Fruit yield increased as the frequency of flower visits by A. mellifera and B. impatiens increased in 2011 and 2012, respectively. These results suggest that supplementation with managed bees may not improve pumpkin production and that A. mellifera and B. impatiens are important pollinators of pumpkin in our system. PMID:23894544
Petersen, Jessica D; Reiners, Stephen; Nault, Brian A
2013-01-01
Pollinators provide an important service in many crops. Managed honey bees (Apis mellifera L.) are used to supplement pollination services provided by wild bees with the assumption that they will enhance pollination, fruit set and crop yield beyond the levels provided by the wild bees. Recent declines in managed honey bee populations have stimulated interest in finding alternative managed pollinators to service crops. In the eastern U.S., managed hives of the native common eastern bumble bee (Bombus impatiens Cresson) may be an excellent choice. To examine this issue, a comprehensive 2-yr study was conducted to compare fruit yield and bee visits to flowers in pumpkin (Cucurbita pepo L.) fields that were either supplemented with A. mellifera hives, B. impatiens hives or were not supplemented. We compared pumpkin yield, A. mellifera flower visitation frequency and B. impatiens flower visitation frequency between treatments. Results indicated that supplementing pumpkin fields with either A. mellifera or B. impatiens hives did not increase their visitation to pumpkin flowers or fruit yield compared with those that were not supplemented. Next, the relationship between frequency of pumpkin flower visitation by the most prominent bee species (Peponapis pruinosa (Say), B. impatiens and A. mellifera) and fruit yield was determined across all pumpkin fields sampled. Fruit yield increased as the frequency of flower visits by A. mellifera and B. impatiens increased in 2011 and 2012, respectively. These results suggest that supplementation with managed bees may not improve pumpkin production and that A. mellifera and B. impatiens are important pollinators of pumpkin in our system.
Hunter, Wayne; Ellis, James; Vanengelsdorp, Dennis; Hayes, Jerry; Westervelt, Dave; Glick, Eitan; Williams, Michael; Sela, Ilan; Maori, Eyal; Pettis, Jeffery; Cox-Foster, Diana; Paldi, Nitzan
2010-12-23
The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsible for up to 30% of the world's food production through pollination of crops. Since fall 2006, honey bees in the U.S. have faced a serious population decline, due in part to a phenomenon called Colony Collapse Disorder (CCD), which is a disease syndrome that is likely caused by several factors. Data from an initial study in which investigators compared pathogens in honey bees affected by CCD suggested a putative role for Israeli Acute Paralysis Virus, IAPV. This is a single stranded RNA virus with no DNA stage placed taxonomically within the family Dicistroviridae. Although subsequent studies have failed to find IAPV in all CCD diagnosed colonies, IAPV has been shown to cause honey bee mortality. RNA interference technology (RNAi) has been used successfully to silence endogenous insect (including honey bee) genes both by injection and feeding. Moreover, RNAi was shown to prevent bees from succumbing to infection from IAPV under laboratory conditions. In the current study IAPV specific homologous dsRNA was used in the field, under natural beekeeping conditions in order to prevent mortality and improve the overall health of bees infected with IAPV. This controlled study included a total of 160 honey bee hives in two discrete climates, seasons and geographical locations (Florida and Pennsylvania). To our knowledge, this is the first successful large-scale real world use of RNAi for disease control.
Beekeeping practices and geographic distance, not land use, drive gene flow across tropical bees.
Jaffé, Rodolfo; Pope, Nathaniel; Acosta, André L; Alves, Denise A; Arias, Maria C; De la Rúa, Pilar; Francisco, Flávio O; Giannini, Tereza C; González-Chaves, Adrian; Imperatriz-Fonseca, Vera L; Tavares, Mara G; Jha, Shalene; Carvalheiro, Luísa G
2016-11-01
Across the globe, wild bees are threatened by ongoing natural habitat loss, risking the maintenance of plant biodiversity and agricultural production. Despite the ecological and economic importance of wild bees and the fact that several species are now managed for pollination services worldwide, little is known about how land use and beekeeping practices jointly influence gene flow. Using stingless bees as a model system, containing wild and managed species that are presumed to be particularly susceptible to habitat degradation, here we examine the main drivers of tropical bee gene flow. We employ a novel landscape genetic approach to analyse data from 135 populations of 17 stingless bee species distributed across diverse tropical biomes within the Americas. Our work has important methodological implications, as we illustrate how a maximum-likelihood approach can be applied in a meta-analysis framework to account for multiple factors, and weight estimates by sample size. In contrast to previously held beliefs, gene flow was not related to body size or deforestation, and isolation by geographic distance (IBD) was significantly affected by management, with managed species exhibiting a weaker IBD than wild ones. Our study thus reveals the critical importance of beekeeping practices in shaping the patterns of genetic differentiation across bee species. Additionally, our results show that many stingless bee species maintain high gene flow across heterogeneous landscapes. We suggest that future efforts to preserve wild tropical bees should focus on regulating beekeeping practices to maintain natural gene flow and enhancing pollinator-friendly habitats, prioritizing species showing a limited dispersal ability. © 2016 John Wiley & Sons Ltd.
Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee.
Bourgeois, A Lelania; Rinderer, Thomas E; Beaman, Lorraine D; Danka, Robert G
2010-01-01
The incidence of nosemosis has increased in recent years due to an emerging infestation of Nosema ceranae in managed honey bee populations in much of the world. A real-time PCR assay was developed to facilitate detection and quantification of both Nosema apis and N. ceranae in both single bee and pooled samples. The assay is a multiplexed reaction in which both species are detected and quantified in a single reaction. The assay is highly sensitive and can detect single copies of the target sequence. Real-time PCR results were calibrated to spore counts generated by standard microscopy procedures. The assay was used to assess bees from commercial apiaries sampled in November 2008 and March 2009. Bees from each colony were pooled. A large amount of variation among colonies was evident, signifying the need to examine large numbers of colonies. Due to sampling constraints, a subset of colonies (from five apiaries) was sampled in both seasons. In November, N. apis levels were 1212+/-148 spores/bee and N. ceranae levels were 51,073+/-31,155 spores/bee. In March, no N. apis was detected, N. ceranae levels were 11,824+/-6304 spores/bee. Changes in N. ceranae levels were evident among apiaries, some increasing and other decreasing. This demonstrates the need for thorough sampling of apiaries and the need for a rapid test for both detection and quantification of both Nosema spp. This assay provides the opportunity for detailed study of disease resistance, infection kinetics, and improvement of disease management practices for honey bees.
Steinmann, Nadja; Corona, Miguel; Neumann, Peter; Dainat, Benjamin
2015-01-01
The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee’s susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions. PMID:26121358
Arechavaleta-Velasco, Miguel E.; Alcala-Escamilla, Karla; Robles-Rios, Carlos; Tsuruda, Jennifer M.; Hunt, Greg J.
2012-01-01
Populations of honey bees in North America have been experiencing high annual colony mortality for 15–20 years. Many apicultural researchers believe that introduced parasites called Varroa mites (V. destructor) are the most important factor in colony deaths. One important resistance mechanism that limits mite population growth in colonies is the ability of some lines of honey bees to groom mites from their bodies. To search for genes influencing this trait, we used an Illumina Bead Station genotyping array to determine the genotypes of several hundred worker bees at over a thousand single-nucleotide polymorphisms in a family that was apparently segregating for alleles influencing this behavior. Linkage analyses provided a genetic map with 1,313 markers anchored to genome sequence. Genotypes were analyzed for association with grooming behavior, measured as the time that individual bees took to initiate grooming after mites were placed on their thoraces. Quantitative-trait-locus interval mapping identified a single chromosomal region that was significant at the chromosome-wide level (p<0.05) on chromosome 5 with a LOD score of 2.72. The 95% confidence interval for quantitative trait locus location contained only 27 genes (honey bee official gene annotation set 2) including Atlastin, Ataxin and Neurexin-1 (AmNrx1), which have potential neurodevelopmental and behavioral effects. Atlastin and Ataxin homologs are associated with neurological diseases in humans. AmNrx1 codes for a presynaptic protein with many alternatively spliced isoforms. Neurexin-1 influences the growth, maintenance and maturation of synapses in the brain, as well as the type of receptors most prominent within synapses. Neurexin-1 has also been associated with autism spectrum disorder and schizophrenia in humans, and self-grooming behavior in mice. PMID:23133594
Arechavaleta-Velasco, Miguel E; Alcala-Escamilla, Karla; Robles-Rios, Carlos; Tsuruda, Jennifer M; Hunt, Greg J
2012-01-01
Populations of honey bees in North America have been experiencing high annual colony mortality for 15-20 years. Many apicultural researchers believe that introduced parasites called Varroa mites (V. destructor) are the most important factor in colony deaths. One important resistance mechanism that limits mite population growth in colonies is the ability of some lines of honey bees to groom mites from their bodies. To search for genes influencing this trait, we used an Illumina Bead Station genotyping array to determine the genotypes of several hundred worker bees at over a thousand single-nucleotide polymorphisms in a family that was apparently segregating for alleles influencing this behavior. Linkage analyses provided a genetic map with 1,313 markers anchored to genome sequence. Genotypes were analyzed for association with grooming behavior, measured as the time that individual bees took to initiate grooming after mites were placed on their thoraces. Quantitative-trait-locus interval mapping identified a single chromosomal region that was significant at the chromosome-wide level (p<0.05) on chromosome 5 with a LOD score of 2.72. The 95% confidence interval for quantitative trait locus location contained only 27 genes (honey bee official gene annotation set 2) including Atlastin, Ataxin and Neurexin-1 (AmNrx1), which have potential neurodevelopmental and behavioral effects. Atlastin and Ataxin homologs are associated with neurological diseases in humans. AmNrx1 codes for a presynaptic protein with many alternatively spliced isoforms. Neurexin-1 influences the growth, maintenance and maturation of synapses in the brain, as well as the type of receptors most prominent within synapses. Neurexin-1 has also been associated with autism spectrum disorder and schizophrenia in humans, and self-grooming behavior in mice.
Audisio, M C; Sabaté, D C; Benítez-Ahrendts, M R
2015-01-01
Lactobacillus johnsonii CRL1647, isolated from the intestinal tract of a worker-bee in Salta, Argentina, was delivered to Apis mellifera L. honey bee colonies according to two different administration schedules: 1×10(5) cfu/ml every 15 days (2011) or monthly (2012). The effect of each treatment on the bee-colony performance was monitored by measuring honey production, and the prevalence of varroasis and nosemosis. Worker bees from each assay were randomly captured 3 days after administration and assayed for the following intestinal culturable and defined bacterial populations: total aerobic microorganisms, Bacillus spp. spores, Lactobacillus spp., Enterococcus spp. and enterobacteria. Interestingly, both treatments generated a similar increase in honey production in treated colonies compared to controls: 36.8% (every 15 days) and 36.3% (monthly). Nosema index always exhibited a reduction when lactobacilli were administered; in turn, Varroa incidence was lower when the lactobacilli were administered once a month. Moreover, the administration of L. johnsonii CRL1647 every 15 days produced an increase in the total number of aerobic microorganisms and in bacteria belonging to the genera Lactobacillus and Enterococcus; at the same time, a decrease was observed in the number of total spores at the end of the treatment. The number of enterobacteria was constant and remained below that of control hives at the end of the assay. On the other hand, the delivery of lactobacilli once a month only showed an increase in the number of bacteria belonging to the genus Lactobacillus; meanwhile, viable counts of the remaining microorganisms assayed were reduced. Even though it seems that both treatments were similar, those bee colonies that received L. johnsonii CRL1647 every 15 days became so strong that they swarmed.
Complementary habitat use by wild bees in agro-natural landscapes.
Mandelik, Yael; Winfree, Rachael; Neeson, Thomas; Kremen, Claire
2012-07-01
Human activity causes abrupt changes in resource availability across the landscape. In order to persist in human-altered landscapes organisms need to shift their habitat use accordingly. Little is known about the mechanisms by which whole communities persist in human-altered landscapes, including the role of complementary habitat use. We define complementary habitat use as the use of different habitats at different times by the same group of species during the course of their activity period. We hypothesize that complementary habitat use is a mechanism through which native bee species persist in human-altered landscapes. To test this idea, we studied wild bee communities in agro-natural landscapes and explored their community-level patterns of habitat and resource use over space and time. The study was conducted in six agro-natural landscapes in the eastern United States, each containing three main bee habitat types (natural habitat, agricultural fields, and old fields). Each of the three habitats exhibited a unique seasonal pattern in amount, diversity, and composition of floral resources, and together they created phenological complementarity in foraging resources for bees. Individual bee species as well as the bee community responded to these spatiotemporal patterns in floral availability and exhibited a parallel pattern of complementary habitat use. The majority of wild bee species, including all the main crop visitors, used fallow areas within crops early in the season, shifted to crops in mid-season, and used old-field habitats later in the season. The natural-forest habitat supported very limited number of bees, mostly visitors of non-crop plants. Old fields are thus an important feature in these arable landscapes for maintaining crop pollination services. Our study provides a detailed examination of how shifts in habitat and resource use may enable bees to persist in highly dynamic agro-natural landscapes, and points to the need for a broad cross-habitat perspective in managing these landscapes.
Schlumpberger, Boris O.; Cocucci, Andrea A.; Moré, Marcela; Sérsic, Alicia N.; Raguso, Robert A.
2009-01-01
Background and aims A South American cactus species, Echinopsis ancistrophora (Cactaceae), with dramatic among-population variation in floral traits is presented. Methods Eleven populations of E. ancistrophora were studied in their habitats in northern Argentina, and comparisons were made of relevant floral traits such as depth, stigma position, nectar volume and sugar concentration, and anthesis time. Diurnal and nocturnal pollinator assemblages were evaluated for populations with different floral trait combinations. Key Results Remarkable geographical variations in floral traits were recorded among the 11 populations throughout the distribution range of E. ancistrophora, with flower lengths ranging from 4·5 to 24·1 cm. Other floral traits associated with pollinator attraction also varied in a population-specific manner, in concert with floral depth. Populations with the shortest flowers showed morning anthesis and those with the longest flowers opened at dusk, whereas those with flowers of intermediate length opened at unusual times (2300–0600 h). Nectar production varied non-linearly with floral length; it was absent to low (population means up to 15 µL) in short- to intermediate-length flowers, but was high (population means up to 170 µL) in the longest tubed flowers. Evidence from light-trapping of moths, pollen carriage on their bodies and moth scale deposition on stigmas suggests that sphingid pollination is prevalent only in the four populations with the longest flowers, in which floral morphological traits and nectar volumes match the classic expectations for the hawkmoth pollination syndrome. All other populations, with flowers 4·5–15 cm long, were pollinated exclusively by solitary bees. Conclusions The results suggest incipient differentiation at the population level and local adaptation to either bee or hawkmoth (potentially plus bee) pollination. PMID:19342397
Francisco, Flávio O; Santiago, Leandro R; Mizusawa, Yuri M; Oldroyd, Benjamin P; Arias, Maria C
2017-10-01
Tetragonisca angustula is one of the most widespread stingless bees in the Neotropics. This species swarms frequently and is extremely successful in urban environments. In addition, it is one of the most popular stingless bee species for beekeeping in Latin America, so nest transportation and trading is common. Nest transportation can change the genetic structure of the host population, reducing inbreeding and increasing homogenization. Here, we evaluate the genetic structure of 17 geographic populations of T. angustula in southern Brazil to quantify the level of genetic differentiation between populations. Analyses were conducted on partially sequenced mitochondrial genes and 11 microsatellite loci of 1002 workers from 457 sites distributed on the mainland and on 3 islands. Our results show that T. angustula populations are highly differentiated as demonstrated by mitochondrial DNA (mtDNA) and microsatellite markers. Of 73 haplotypes, 67 were population-specific. MtDNA diversity was low in 9 populations but microsatellite diversity was moderate to high in all populations. Microsatellite data suggest 10 genetic clusters and low level of gene flow throughout the studied area. However, physical barriers, such as rivers and mountain ranges, or the presence or absence of forest appear to be unrelated to population clusters. Factors such as low dispersal, different ecological conditions, and isolation by distance are most likely shaping the population structure of this species. Thus far, nest transportation has not influenced the general population structure in the studied area. However, due to the genetic structure we found, we recommend that nest transportation should only occur within and between populations that are genetically similar. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Jacques, Antoine; Laurent, Marion; Ribière-Chabert, Magali; Saussac, Mathilde; Bougeard, Stéphanie; Budge, Giles E; Hendrikx, Pascal; Chauzat, Marie-Pierre
2017-01-01
Reports of honey bee population decline has spurred many national efforts to understand the extent of the problem and to identify causative or associated factors. However, our collective understanding of the factors has been hampered by a lack of joined up trans-national effort. Moreover, the impacts of beekeeper knowledge and beekeeping management practices have often been overlooked, despite honey bees being a managed pollinator. Here, we established a standardised active monitoring network for 5 798 apiaries over two consecutive years to quantify honey bee colony mortality across 17 European countries. Our data demonstrate that overwinter losses ranged between 2% and 32%, and that high summer losses were likely to follow high winter losses. Multivariate Poisson regression models revealed that hobbyist beekeepers with small apiaries and little experience in beekeeping had double the winter mortality rate when compared to professional beekeepers. Furthermore, honey bees kept by professional beekeepers never showed signs of disease, unlike apiaries from hobbyist beekeepers that had symptoms of bacterial infection and heavy Varroa infestation. Our data highlight beekeeper background and apicultural practices as major drivers of honey bee colony losses. The benefits of conducting trans-national monitoring schemes and improving beekeeper training are discussed.
Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases.
De Palma, Adriana; Abrahamczyk, Stefan; Aizen, Marcelo A; Albrecht, Matthias; Basset, Yves; Bates, Adam; Blake, Robin J; Boutin, Céline; Bugter, Rob; Connop, Stuart; Cruz-López, Leopoldo; Cunningham, Saul A; Darvill, Ben; Diekötter, Tim; Dorn, Silvia; Downing, Nicola; Entling, Martin H; Farwig, Nina; Felicioli, Antonio; Fonte, Steven J; Fowler, Robert; Franzén, Markus; Goulson, Dave; Grass, Ingo; Hanley, Mick E; Hendrix, Stephen D; Herrmann, Farina; Herzog, Felix; Holzschuh, Andrea; Jauker, Birgit; Kessler, Michael; Knight, M E; Kruess, Andreas; Lavelle, Patrick; Le Féon, Violette; Lentini, Pia; Malone, Louise A; Marshall, Jon; Pachón, Eliana Martínez; McFrederick, Quinn S; Morales, Carolina L; Mudri-Stojnic, Sonja; Nates-Parra, Guiomar; Nilsson, Sven G; Öckinger, Erik; Osgathorpe, Lynne; Parra-H, Alejandro; Peres, Carlos A; Persson, Anna S; Petanidou, Theodora; Poveda, Katja; Power, Eileen F; Quaranta, Marino; Quintero, Carolina; Rader, Romina; Richards, Miriam H; Roulston, T'ai; Rousseau, Laurent; Sadler, Jonathan P; Samnegård, Ulrika; Schellhorn, Nancy A; Schüepp, Christof; Schweiger, Oliver; Smith-Pardo, Allan H; Steffan-Dewenter, Ingolf; Stout, Jane C; Tonietto, Rebecca K; Tscharntke, Teja; Tylianakis, Jason M; Verboven, Hans A F; Vergara, Carlos H; Verhulst, Jort; Westphal, Catrin; Yoon, Hyung Joo; Purvis, Andy
2016-08-11
Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.
Daughenbaugh, Katie F.; Radford, Rosemarie; Kegley, Susan E.
2017-01-01
Honey bees are important pollinators of agricultural crops. Pathogens and other factors have been implicated in high annual losses of honey bee colonies in North America and some European countries. To further investigate the relationship between multiple factors, including pathogen prevalence and abundance and colony health, we monitored commercially managed migratory honey bee colonies involved in California almond pollination in 2014. At each sampling event, honey bee colony health was assessed, using colony population size as a proxy for health, and the prevalence and abundance of seven honey bee pathogens was evaluated using PCR and quantitative PCR, respectively. In this sample cohort, pathogen prevalence and abundance did not correlate with colony health, but did correlate with the date of sampling. In general, pathogen prevalence (i.e., the number of specific pathogens harbored within a colony) was lower early in the year (January—March) and was greater in the summer, with peak prevalence occurring in June. Pathogen abundance in individual honey bee colonies varied throughout the year and was strongly associated with the sampling date, and was influenced by beekeeping operation, colony health, and mite infestation level. Together, data from this and other observational cohort studies that monitor individual honey bee colonies and precisely account for sampling date (i.e., day of year) will lead to a better understanding of the influence of pathogens on colony mortality and the effects of other factors on these associations. PMID:28817641
Sensory coding of nest-site value in honeybee swarms.
Seeley, Thomas D; Visscher, P Kirk
2008-12-01
This study investigates the first stage of the decision-making process of a honeybee swarm as it chooses a nest site: how a scout bee codes the value of a potential nest site in the waggle dances she produces to represent this site. We presented honeybee swarms with a two-alternative choice between a high-value site and a medium-value site and recorded the behavior of individually identifiable scout bees as they reported on these two alternatives. We found that bees performed equally lengthy inspections at the two sites, but that, on the swarm cluster, they performed more dance circuits per bee for the high-value site. We also found that there was much individual-level noise in the coding of site value, but that there were clear population-level differences in total dance circuits produced for the two sites. The first bee to find a site had a high probability of reporting the site with a waggle dance, regardless of its value. This discoverer-should-dance phenomenon may help ensure that a swarm gives attention to all discovered sites. There was rapid decay in the dance response; the number of dance circuits produced by a bee after visiting a site decreased linearly over sequential visits, and eventually each bee ceased visiting her site. This decay, or ;leakage', in the accumulation of bees at a site improves a swarm's decision-making ability by helping a swarm avoid making fast-decision errors.
Glenny, William; Cavigli, Ian; Daughenbaugh, Katie F; Radford, Rosemarie; Kegley, Susan E; Flenniken, Michelle L
2017-01-01
Honey bees are important pollinators of agricultural crops. Pathogens and other factors have been implicated in high annual losses of honey bee colonies in North America and some European countries. To further investigate the relationship between multiple factors, including pathogen prevalence and abundance and colony health, we monitored commercially managed migratory honey bee colonies involved in California almond pollination in 2014. At each sampling event, honey bee colony health was assessed, using colony population size as a proxy for health, and the prevalence and abundance of seven honey bee pathogens was evaluated using PCR and quantitative PCR, respectively. In this sample cohort, pathogen prevalence and abundance did not correlate with colony health, but did correlate with the date of sampling. In general, pathogen prevalence (i.e., the number of specific pathogens harbored within a colony) was lower early in the year (January-March) and was greater in the summer, with peak prevalence occurring in June. Pathogen abundance in individual honey bee colonies varied throughout the year and was strongly associated with the sampling date, and was influenced by beekeeping operation, colony health, and mite infestation level. Together, data from this and other observational cohort studies that monitor individual honey bee colonies and precisely account for sampling date (i.e., day of year) will lead to a better understanding of the influence of pathogens on colony mortality and the effects of other factors on these associations.
Evaluating pollination deficits in pumpkin production in New York.
Petersen, J D; Huseth, A S; Nault, B A
2014-10-01
Potential decreases in crop yield from reductions in bee-mediated pollination services threaten food production demands of a growing population. Many fruit and vegetable growers supplement their fields with bee colonies during crop bloom. The extent to which crop production requires supplementary pollination services beyond those provided by wild bees is not well documented. Pumpkin, Cucurbita pepo L., requires bee-mediated pollination for fruit development. Previous research identified the common eastern bumble bee, Bombus impatiens (Cresson), as the most efficient pumpkin pollinator. Two concomitant studies were conducted to examine pollination deficits in New York pumpkin fields from 2011 to 2013. In the first study, fruit weight, seed set, and B. impatiens visits to pumpkin flowers were compared across fields supplemented with B. impatiens colonies at a recommended stocking density of five colonies per hectare, a high density of 15 colonies per hectare, or not supplemented with bees. In the second study, fruit weight and seed set of pumpkins that received supplemental pollen through hand-pollination were compared with those that were open-pollinated by wild bees. Results indicated that supplementing pumpkin fields with B. impatiens colonies, regardless of stocking density, did not increase fruit weight, seed set, or B. impatiens visits to pumpkin flowers. Fruit weight and seed set did not differ between hand- and open-pollinated treatments. In general, we conclude that pumpkin production in central New York is not limited by inadequate pollination services provided by wild bees and that on average, supplementation with B. impatiens colonies did not improve pumpkin yield.
Gibson, Joshua D; Hunt, Greg J
2016-01-01
The complete mitochondrial genome from an Africanized honey bee population (AHB, derived from Apis mellifera scutellata) was assembled and analyzed. The mitogenome is 16,411 bp long and contains the same gene repertoire and gene order as the European honey bee (13 protein coding genes, 22 tRNA genes and 2 rRNA genes). ND4 appears to use an alternate start codon and the long rRNA gene is 48 bp shorter in AHB due to a deletion in a terminal AT dinucleotide repeat. The dihydrouracil arm is missing from tRNA-Ser (AGN) and tRNA-Glu is missing the TV loop. The A + T content is comparable to the European honey bee (84.7%), which increases to 95% for the 3rd position in the protein coding genes.
Genetic diversity affects colony survivorship in commercial honey bee colonies
NASA Astrophysics Data System (ADS)
Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.
2013-08-01
Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.
Milbrath, Meghan O; van Tran, Toan; Huang, Wei-Fong; Solter, Leellen F; Tarpy, David R; Lawrence, Frank; Huang, Zachary Y
2015-02-01
Honey bees (Apis mellifera) are infected by two species of microsporidia: Nosema apis and Nosemaceranae. Epidemiological evidence indicates that N. ceranae may be replacing N. apis globally in A. mellifera populations, suggesting a potential competitive advantage of N. ceranae. Mixed infections of the two species occur, and little is known about the interactions among the host and the two pathogens that have allowed N. ceranae to become dominant in most geographical areas. We demonstrated that mixed Nosema species infections negatively affected honey bee survival (median survival=15-17days) more than single species infections (median survival=21days and 20days for N. apis and N. ceranae, respectively), with median survival of control bees of 27days. We found similar rates of infection (percentage of bees with active infections after inoculation) for both species in mixed infections, with N. apis having a slightly higher rate (91% compared to 86% for N. ceranae). We observed slightly higher spore counts in bees infected with N. ceranae than in bees infected with N. apis in single microsporidia infections, especially at the midpoint of infection (day 10). Bees with mixed infections of both species had higher spore counts than bees with single infections, but spore counts in mixed infections were highly variable. We did not see a competitive advantage for N. ceranae in mixed infections; N. apis spore counts were either higher or counts were similar for both species and more N. apis spores were produced in 62% of bees inoculated with equal dosages of the two microsporidian species. N. ceranae does not, therefore, appear to have a strong within-host advantage for either infectivity or spore growth, suggesting that direct competition in these worker bee mid-guts is not responsible for its apparent replacement of N. apis. Copyright © 2014 Elsevier Inc. All rights reserved.
Hygienic behaviour in Brazilian stingless bees
Alves, Denise A.; Bento, José M. S.; Marchini, Luis C.; Ratnieks, Francis L. W.
2016-01-01
ABSTRACT Social insects have many defence mechanisms against pests and pathogens. One of these is hygienic behaviour, which has been studied in detail in the honey bee, Apis mellifera. Hygienic honey bee workers remove dead and diseased larvae and pupae from sealed brood cells, thereby reducing disease transfer within the colony. Stingless bees, Meliponini, also rear broods in sealed cells. We investigated hygienic behaviour in three species of Brazilian stingless bees (Melipona scutellaris, Scaptotrigona depilis, Tetragonisca angustula) in response to freeze-killed brood. All three species had high mean levels of freeze-killed brood removal after 48 h ∼99% in M. scutellaris, 80% in S. depilis and 62% in T. angustula (N=8 colonies per species; three trials per colony). These levels are greater than in unselected honey bee populations, ∼46%. In S. depilis there was also considerable intercolony variation, ranging from 27% to 100% removal after 2 days. Interestingly, in the S. depilis colony with the slowest removal of freeze-killed brood, 15% of the adult bees emerging from their cells had shrivelled wings indicating a disease or disorder, which is as yet unidentified. Although the gross symptoms resembled the effects of deformed wing virus in the honey bee, this virus was not detected in the samples. When brood comb from the diseased colony was introduced to the other S. depilis colonies, there was a significant negative correlation between freeze-killed brood removal and the emergence of deformed worker bees (P=0.001), and a positive correlation with the cleaning out of brood cells (P=0.0008). This shows that the more hygienic colonies were detecting and removing unhealthy brood prior to adult emergence. Our results indicate that hygienic behaviour may play an important role in colony health in stingless bees. The low levels of disease normally seen in stingless bees may be because they have effective mechanisms of disease management, not because they lack diseases. PMID:27754850
Hygienic behaviour in Brazilian stingless bees.
Al Toufailia, Hasan; Alves, Denise A; Bento, José M S; Marchini, Luis C; Ratnieks, Francis L W
2016-11-15
Social insects have many defence mechanisms against pests and pathogens. One of these is hygienic behaviour, which has been studied in detail in the honey bee, Apis mellifera Hygienic honey bee workers remove dead and diseased larvae and pupae from sealed brood cells, thereby reducing disease transfer within the colony. Stingless bees, Meliponini, also rear broods in sealed cells. We investigated hygienic behaviour in three species of Brazilian stingless bees (Melipona scutellaris, Scaptotrigona depilis, Tetragonisca angustula) in response to freeze-killed brood. All three species had high mean levels of freeze-killed brood removal after 48 h ∼99% in M. scutellaris, 80% in S. depilis and 62% in T. angustula (N=8 colonies per species; three trials per colony). These levels are greater than in unselected honey bee populations, ∼46%. In S. depilis there was also considerable intercolony variation, ranging from 27% to 100% removal after 2 days. Interestingly, in the S. depilis colony with the slowest removal of freeze-killed brood, 15% of the adult bees emerging from their cells had shrivelled wings indicating a disease or disorder, which is as yet unidentified. Although the gross symptoms resembled the effects of deformed wing virus in the honey bee, this virus was not detected in the samples. When brood comb from the diseased colony was introduced to the other S. depilis colonies, there was a significant negative correlation between freeze-killed brood removal and the emergence of deformed worker bees (P=0.001), and a positive correlation with the cleaning out of brood cells (P=0.0008). This shows that the more hygienic colonies were detecting and removing unhealthy brood prior to adult emergence. Our results indicate that hygienic behaviour may play an important role in colony health in stingless bees. The low levels of disease normally seen in stingless bees may be because they have effective mechanisms of disease management, not because they lack diseases. © 2016. Published by The Company of Biologists Ltd.
Sagastume, Soledad; Martín-Hernández, Raquel; Higes, Mariano; Henriques-Gil, Nuno
2016-10-18
There is great controversy as to whether Microsporidia undergo a sexual cycle. In the paradigmatic case of Nosema ceranae, although there is no morphological evidence of sex, some meiosis-specific genes are present in its reduced genome and there is also high intraspecific variability, with incongruent phylogenies having been systematically obtained. The possibility of sexual recombination is important from an epidemiological standpoint, particularly as N. ceranae is considered to be a major factor in the current disquieting epidemic of widespread bee colony losses. This parasite apparently originated in oriental honey bees, spreading out of Asia and Australia to infect honey bees worldwide. This study had three main objectives: i) to obtain genetic markers that are not part of known multi-copy arrays for strain determination; ii) to shed light on the intraspecific variability and recombination of N. ceranae; and iii) to assess the variability in N. ceranae populations. The answers to these questions are critical to understand the capacity of adaptation of microsporidia. Biallelic polymorphisms were detected at a number of specific points in the five coding loci analyzed from European and Australian isolates of N. ceranae. Heterozygous genotypes were abundant and cloning experiments demonstrate that they reflect the existence of multiple alternative sequences in each isolate. The comparisons of different clones and genotypes clearly indicate that new haplotypes are generated by homologous recombination. The N. ceranae isolates from honey bees correspond to genotypically distinct populations, revealing that individual honey bees may not be infected by a particular clone but rather, a pool of different strains. Homologous recombination implies the existence of a cryptic sex cycle yet to be described in N. ceranae. There are no diagnostic alleles associated with Australian or European origins, nor are there differences between the two hosts, A. cerana and A. mellifera, supporting the absence of biological barriers for N. ceranae transmission. Diversity is high among microsporidia of both these origins, and the maintenance of a high heterozygosis in the recently invaded European populations, could hypothetically underlie the stronger virulence of N. ceranae observed in A. mellifera.
Age structure is critical to the population dynamics and survival of honeybee colonies.
Betti, M I; Wahl, L M; Zamir, M
2016-11-01
Age structure is an important feature of the division of labour within honeybee colonies, but its effects on colony dynamics have rarely been explored. We present a model of a honeybee colony that incorporates this key feature, and use this model to explore the effects of both winter and disease on the fate of the colony. The model offers a novel explanation for the frequently observed phenomenon of 'spring dwindle', which emerges as a natural consequence of the age-structured dynamics. Furthermore, the results indicate that a model taking age structure into account markedly affects the predicted timing and severity of disease within a bee colony. The timing of the onset of disease with respect to the changing seasons may also have a substantial impact on the fate of a honeybee colony. Finally, simulations predict that an infection may persist in a honeybee colony over several years, with effects that compound over time. Thus, the ultimate collapse of the colony may be the result of events several years past.
Danka, R G; Williams, J L; Sugden, E A; Rivera, R
1992-08-01
Field evaluations were made of a baiting system designed for use by regulatory agencies in suppressing populations of undesirable feral honey bees, Apis mellifera L. (e.g., bees posing hazards [especially Africanized bees] and colonies infested with parasitic mites). Bees from feral or simulated feral (hived) colonies were lured with honey and Nasonov pheromone components to feeders dispensing sucrose-honey syrup. After 1-3 wk of passive training to feeders, colonies were treated during active foraging by replacing untreated syrup with syrup containing 500 ppm (mg/liter) acephate (Orthene 75 S). In four trials using hived colonies on Grant Terre Island, LA., 21 of 29 colonies foraged actively enough at baits to be treated, and 20 of the 22 treated were destroyed. In the lower Rio Grande Valley of Texas (two trials at each of two trials), treatments killed 11 of 16 colonies (6 of 10 hived; 50 of 6 feral). Overall results showed that all 11 colonies that collected greater than 25 mg acephate died, whereas 3 of 10 colonies receiving less than 25 mg survived. Delivering adequate doses required a minimum of approximately 100 bees per target colony simultaneously collecting treated syrup. The system destroyed target colonies located up to nearly 700 m away from baits. Major factors limiting efficacy were conditions inhibiting foraging at baits (e.g., competing natural nectar sources and temperatures and winds that restricted bee flight).
APIS—a novel approach for conditioning honey bees
Kirkerud, Nicholas H.; Wehmann, Henja-Niniane; Galizia, C. Giovanni; Gustav, David
2013-01-01
Honey bees perform robustly in different conditioning paradigms. This makes them excellent candidates for studying mechanisms of learning and memory at both an individual and a population level. Here we introduce a novel method of honey bee conditioning: APIS, the Automatic Performance Index System. In an enclosed walking arena where the interior is covered with an electric grid, presentation of odors from either end can be combined with weak electric shocks to form aversive associations. To quantify behavioral responses, we continuously monitor the movement of the bee by an automatic tracking system. We found that escapes from one side to the other, changes in velocity as well as distance and time spent away from the punished odor are suitable parameters to describe the bee's learning capabilities. Our data show that in a short-term memory test the response rate for the conditioned stimulus (CS) in APIS correlates well with response rate obtained from conventional Proboscis Extension Response (PER)-conditioning. Additionally, we discovered that bees modulate their behavior to aversively learned odors by reducing their rate, speed and magnitude of escapes and that both generalization and extinction seem to be different between appetitive and aversive stimuli. The advantages of this automatic system make it ideal for assessing learning rates in a standardized and convenient way, and its flexibility adds to the toolbox for studying honey bee behavior. PMID:23616753
APIS-a novel approach for conditioning honey bees.
Kirkerud, Nicholas H; Wehmann, Henja-Niniane; Galizia, C Giovanni; Gustav, David
2013-01-01
Honey bees perform robustly in different conditioning paradigms. This makes them excellent candidates for studying mechanisms of learning and memory at both an individual and a population level. Here we introduce a novel method of honey bee conditioning: APIS, the Automatic Performance Index System. In an enclosed walking arena where the interior is covered with an electric grid, presentation of odors from either end can be combined with weak electric shocks to form aversive associations. To quantify behavioral responses, we continuously monitor the movement of the bee by an automatic tracking system. We found that escapes from one side to the other, changes in velocity as well as distance and time spent away from the punished odor are suitable parameters to describe the bee's learning capabilities. Our data show that in a short-term memory test the response rate for the conditioned stimulus (CS) in APIS correlates well with response rate obtained from conventional Proboscis Extension Response (PER)-conditioning. Additionally, we discovered that bees modulate their behavior to aversively learned odors by reducing their rate, speed and magnitude of escapes and that both generalization and extinction seem to be different between appetitive and aversive stimuli. The advantages of this automatic system make it ideal for assessing learning rates in a standardized and convenient way, and its flexibility adds to the toolbox for studying honey bee behavior.
Pitts-Singer, Theresa L; Barbour, James D
2017-01-01
The chitin synthesis inhibitor novaluron can suppress pests that affect alfalfa seed production, but can negatively affect reproductive success in the alfalfa pollinator Megachile rotundata. Novaluron is considered to be a reduced-risk insecticide because it disrupts ecdysis and is non-lethal to adult insects, but some exposed adults have fewer eggs and suppressed egg hatch. For this experiment, bees nested in field cages where they were exposed to alfalfa that had never been treated with novaluron, alfalfa that had recently been sprayed or alfalfa that had been sprayed 1 and 2 weeks earlier. Compared with the control, greater proportions of dead eggs and larvae and lower proportions of live prepupae occurred when bees were exposed to recent novaluron sprays as well as one- or two-week old spray residues. Two possible routes of residual pesticide exposure were revealed. Mother bees become contaminated through ingestion or direct contact, or pollen-nectar provisions become contaminated with novaluron (1) on or within leaf pieces that surround provisions or (2) transferred from mother bees' bodies to provisions. We found strong immature mortality effects of novaluron and its residues on M. rotundata. Understanding all possible pesticide exposure routes for pollinating bees enhances decision-making for maintaining bee populations while protecting crops. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Salles, Jérôme; Cardinault, Nicolas; Patrac, Véronique; Berry, Alexandre; Giraudet, Christophe; Collin, Marie-Laure; Chanet, Audrey; Tagliaferri, Camille; Denis, Philippe; Pouyet, Corinne; Boirie, Yves; Walrand, Stéphane
2014-01-01
Although the management of malnutrition is a priority in older people, this population shows a resistance to refeeding. Fresh bee pollen contains nutritional substances of interest for malnourished people. The aim was to evaluate the effect of fresh bee pollen supplementation on refeeding efficiency in old malnourished rats. Male 22-month-old Wistar rats were undernourished by reducing food intake for 12 weeks. The animals were then renourished for three weeks with the same diet supplemented with 0%, 5% or 10% of fresh monofloral bee pollen. Due to changes in both lean mass and fat mass, body weight decreased during malnutrition and increased after refeeding with no between-group differences (p < 0.0001). Rats refed with the fresh bee pollen-enriched diets showed a significant increase in muscle mass compared to restricted rats (p < 0.05). The malnutrition period reduced the muscle protein synthesis rate and mTOR/p70S6kinase/4eBP1 activation, and only the 10%-pollen diet was able to restore these parameters. Mitochondrial activity was depressed with food restriction and was only improved by refeeding with the fresh bee pollen-containing diets. In conclusion, refeeding diets that contain fresh monofloral bee pollen improve muscle mass and metabolism in old, undernourished rats. PMID:25470375
DeGrandi-Hoffman, Gloria; Ahumada, Fabiana; Graham, Henry
2017-08-01
Varroa (Varroa destructor Anderson and Trueman) are a serious pest of European honey bees (Apis mellifera L.), and difficult to control in managed colonies. In our 11-mo longitudinal study, we applied multiple miticide treatments, yet mite numbers remained high and colony losses exceeded 55%. High mortality from varroa in managed apiaries is a departure from the effects of the mite in feral colonies where bees and varroa can coexist. Differences in mite survival strategies and dispersal mechanisms may be contributing factors. In feral colonies, mites can disperse through swarming. In managed apiaries, where swarming is reduced, mites disperse on foragers robbing or drifting from infested hives. Using a honey bee-varroa population model, we show that yearly swarming curtails varroa population growth, enabling colony survival for >5 yr. Without swarming, colonies collapsed by the third year. To disperse, varroa must attach to foragers that then enter other hives. We hypothesize that stress from parasitism and virus infection combined with effects that viruses have on cognitive function may contribute to forager drift and mite and virus dispersal. We also hypothesize that drifting foragers with mites can measurably increase mite populations. Simulations initialized with field data indicate that low levels of drifting foragers with mites can create sharp increases in mite populations in the fall and heavily infested colonies in the spring. We suggest new research directions to investigate factors leading to mite dispersal on foragers, and mite management strategies with consideration of varroa as a migratory pest. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
Dick, Christopher W; Roubik, David W; Gruber, Karl F; Bermingham, Eldredge
2004-12-01
Euglossine bees (Apidae; Euglossini) exclusively pollinate hundreds of orchid species and comprise up to 25% of bee species richness in neotropical rainforests. As one of the first studies of comparative phylogeography in a neotropical insect group, we performed a mitochondrial DNA (mtDNA)-based analysis of 14 euglossine species represented by populations sampled across the Andes and/or across the Amazon basin. The mtDNA divergences within species were consistently low; across the 12 monophyletic species the mean intraspecific divergence among haplotypes was 0.9% (range of means, 0-1.9%). The cytochrome oxidase 1 (CO1) divergence among populations separated by the Andes (N = 11 species) averaged 1.1% (range 0.0-2.0%). The mtDNA CO1 data set displayed homogeneous rates of nucleotide substitution, permitting us to infer dispersal across the cordillera long after the final Andean uplift based on arthropod molecular clocks of 1.2-1.5% divergence per million years. Gene flow across the 3000-km breadth of the Amazon basin was inferred from identical cross-Amazon haplotypes found in five species. Although mtDNA haplotypes for 12 of the 14 euglossine species were monophyletic, a reticulate CO1 phylogeny was recovered in Euglossa cognata and E. mixta, suggesting large ancestral populations and recent speciation. Reference to closely related outgroups suggested recent speciation for the majority of species. Phylogeographical structure across a broad spatial scale is weaker in euglossine bees than in any neotropical group previously examined, and may derive from a combination of Quaternary speciation, population expansion and/or long-distance gene flow.
Dreier, Stephanie; Redhead, John W; Warren, Ian A; Bourke, Andrew F G; Heard, Matthew S; Jordan, William C; Sumner, Seirian; Wang, Jinliang; Carvell, Claire
2014-07-01
Land-use changes have threatened populations of many insect pollinators, including bumble bees. Patterns of dispersal and gene flow are key determinants of species' ability to respond to land-use change, but have been little investigated at a fine scale (<10 km) in bumble bees. Using microsatellite markers, we determined the fine-scale spatial genetic structure of populations of four common Bombus species (B. terrestris, B. lapidarius, B. pascuorum and B. hortorum) and one declining species (B. ruderatus) in an agricultural landscape in Southern England, UK. The study landscape contained sown flower patches representing agri-environment options for pollinators. We found that, as expected, the B. ruderatus population was characterized by relatively low heterozygosity, number of alleles and colony density. Across all species, inbreeding was absent or present but weak (FIS = 0.01-0.02). Using queen genotypes reconstructed from worker sibships and colony locations estimated from the positions of workers within these sibships, we found that significant isolation by distance was absent in B. lapidarius, B. hortorum and B. ruderatus. In B. terrestris and B. pascuorum, it was present but weak; for example, in these two species, expected relatedness of queens founding colonies 1 m apart was 0.02. These results show that bumble bee populations exhibit low levels of spatial genetic structure at fine spatial scales, most likely because of ongoing gene flow via widespread queen dispersal. In addition, the results demonstrate the potential for agri-environment scheme conservation measures to facilitate fine-scale gene flow by creating a more even distribution of suitable habitats across landscapes. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Resource Effects on Solitary Bee Reproduction in a Managed Crop Pollination System.
Pitts-Singer, Theresa L
2015-08-01
Population density may affect solitary bee maternal resource allocation. The number of Megachile rotundata (F.), alfalfa leafcutting bee, females released for seed production of Medicago sativa L., alfalfa, may limit flower availability for nest provisioning. In turn, pollinator abundance also may affect crop yield. The M. sativa pollination system presents an opportunity to test for effects of density dependence and maternal manipulation on M. rotundata reproduction. A multiyear study was performed on M. sativa fields upon which M. rotundata densities were altered to induce low, medium, and high density situations. Numbers of adult bees and open flowers were recorded weekly; bee reproduction variables were collected once. Fields varied in plant performance for each site and year, and the intended bee densities were not realized. Therefore, the variable density index (DI) was derived to describe the number of female bees per area of flowers over the study period. As DI increased, percentages of pollinated flowers, established females, and healthy brood significantly increased, and the number of pollinated flowers per female and of dead or diseased brood significantly decreased. Sex ratio was significantly more female biased as DI increased. Overwintered offspring weights were similar regardless of DI, but significantly differed by year for both sexes, and for males also by field and year × field interaction. Overall, resource limitation was not found in this field study. Other density-dependent factors may have induced a bee dispersal response soon after bees were released in the fields that circumvented the need for, or impact of, maternal manipulation. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by a US Government employee and is in the public domain in the US.
Insulin-like peptide response to nutritional input in honey bee workers.
Ihle, Kate E; Baker, Nicholas A; Amdam, Gro V
2014-10-01
The rise in metabolic disorders in the past decades has heightened focus on achieving a healthy dietary balance in humans. This is also an increasingly important issue in the management of honey bees (Apis mellifera) where poor nutrition has negative effects on health and productivity in agriculture, and nutrition is suggested as a contributing factor in the recent global declines in honey bee populations. As in other organisms, the insulin/insulin-like signaling (IIS) pathway is likely involved in maintaining nutrient homeostasis in honey bees. Honey bees have two insulin-like peptides (Ilps) with differing spatial expression patterns in the fat body suggesting that AmIlp1 potentially functions in lipid metabolism while AmIlp2 is a more general indicator of nutritional status. We fed caged worker bees artificial diets high in carbohydrates, proteins or lipids and measured expression of AmIlp1, AmIlp2, and the insulin receptor substrate (IRS) to test their responses to dietary macronutrients. We also measured lifespan, worker weight and gustatory sensitivity to sugar as measures of individual physical condition. We found that expression of AmIlp1 was affected by diet composition and was highest on a diet high in protein. Expression of AmIlp2 and AmIRS were not affected by diet. Workers lived longest on a diet high in carbohydrates and low in protein and lipids. However, bees fed this diet weighed less than those that received a diet high in protein and low in carbohydrates and lipids. Bees fed the high carbohydrates diet were also more responsive to sugar, potentially indicating greater levels of hunger. These results support a role for AmIlp1 in nutritional homeostasis and provide new insight into how unbalanced diets impact individual honey bee health. Copyright © 2014 Elsevier Ltd. All rights reserved.
No apparent correlation between honey bee forager gut microbiota and honey production.
Horton, Melissa A; Oliver, Randy; Newton, Irene L
2015-01-01
One of the best indicators of colony health for the European honey bee (Apis mellifera) is its performance in the production of honey. Recent research into the microbial communities naturally populating the bee gut raise the question as to whether there is a correlation between microbial community structure and colony productivity. In this work, we used 16S rRNA amplicon sequencing to explore the microbial composition associated with forager bees from honey bee colonies producing large amounts of surplus honey (productive) and compared them to colonies producing less (unproductive). As supported by previous work, the honey bee microbiome was found to be dominated by three major phyla: the Proteobacteria, Bacilli and Actinobacteria, within which we found a total of 23 different bacterial genera, including known "core" honey bee microbiome members. Using discriminant function analysis and correlation-based network analysis, we identified highly abundant members (such as Frischella and Gilliamella) as important in shaping the bacterial community; libraries from colonies with high quantities of these Orbaceae members were also likely to contain fewer Bifidobacteria and Lactobacillus species (such as Firm-4). However, co-culture assays, using isolates from these major clades, were unable to confirm any antagonistic interaction between Gilliamella and honey bee gut bacteria. Our results suggest that honey bee colony productivity is associated with increased bacterial diversity, although this mechanism behind this correlation has yet to be determined. Our results also suggest researchers should not base inferences of bacterial interactions solely on correlations found using sequencing. Instead, we suggest that depth of sequencing and library size can dramatically influence statistically significant results from sequence analysis of amplicons and should be cautiously interpreted.
Gisder, Sebastian; Genersch, Elke
2015-01-01
Many flowering plants in both natural ecosytems and agriculture are dependent on insect pollination for fruit set and seed production. Managed honey bees (Apis mellifera) and wild bees are key pollinators providing this indispensable eco- and agrosystem service. Like all other organisms, bees are attacked by numerous pathogens and parasites. Nosema apis is a honey bee pathogenic microsporidium which is widely distributed in honey bee populations without causing much harm. Its congener Nosema ceranae was originally described as pathogen of the Eastern honey bee (Apis cerana) but jumped host from A. cerana to A. mellifera about 20 years ago and spilled over from A. mellifera to Bombus spp. quite recently. N. ceranae is now considered a deadly emerging parasite of both Western honey bees and bumblebees. Hence, novel and sustainable treatment strategies against N. ceranae are urgently needed to protect honey and wild bees. We here present the development of an in vitro medium throughput screening assay for the identification of candidate agents active against N. ceranae infections. This novel assay is based on our recently developed cell culture model for N. ceranae and coupled with an RT-PCR-ELISA protocol for quantification of N. ceranae in infected cells. The assay has been adapted to the 96-well microplate format to allow automated analysis. Several substances with known (fumagillin) or presumed (surfactin) or no (paromomycin) activity against N. ceranae were tested as well as substances for which no data concerning N. ceranae inhibition existed. While fumagillin and two nitroimidazoles (metronidazole, tinidazole) totally inhibited N. ceranae proliferation, all other test substances were inactive. In summary, the assay proved suitable for substance screening and demonstrated the activity of two synthetic antibiotics against N. ceranae.
Gisder, Sebastian; Genersch, Elke
2015-01-01
Many flowering plants in both natural ecosytems and agriculture are dependent on insect pollination for fruit set and seed production. Managed honey bees (Apis mellifera) and wild bees are key pollinators providing this indispensable eco- and agrosystem service. Like all other organisms, bees are attacked by numerous pathogens and parasites. Nosema apis is a honey bee pathogenic microsporidium which is widely distributed in honey bee populations without causing much harm. Its congener Nosema ceranae was originally described as pathogen of the Eastern honey bee (Apis cerana) but jumped host from A. cerana to A. mellifera about 20 years ago and spilled over from A. mellifera to Bombus spp. quite recently. N. ceranae is now considered a deadly emerging parasite of both Western honey bees and bumblebees. Hence, novel and sustainable treatment strategies against N. ceranae are urgently needed to protect honey and wild bees. We here present the development of an in vitro medium throughput screening assay for the identification of candidate agents active against N. ceranae infections. This novel assay is based on our recently developed cell culture model for N. ceranae and coupled with an RT-PCR-ELISA protocol for quantification of N. ceranae in infected cells. The assay has been adapted to the 96-well microplate format to allow automated analysis. Several substances with known (fumagillin) or presumed (surfactin) or no (paromomycin) activity against N. ceranae were tested as well as substances for which no data concerning N. ceranae inhibition existed. While fumagillin and two nitroimidazoles (metronidazole, tinidazole) totally inhibited N. ceranae proliferation, all other test substances were inactive. In summary, the assay proved suitable for substance screening and demonstrated the activity of two synthetic antibiotics against N. ceranae. PMID:25658121
A computational study on the influence of insect wing geometry on bee flight mechanics
Feaster, Jeffrey; Bayandor, Javid
2017-01-01
ABSTRACT Two-dimensional computational fluid dynamics (CFD) is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee (Bombus pensylvanicus) wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics. PMID:29061734
A computational study on the influence of insect wing geometry on bee flight mechanics.
Feaster, Jeffrey; Battaglia, Francine; Bayandor, Javid
2017-12-15
Two-dimensional computational fluid dynamics (CFD) is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee ( Bombus pensylvanicus ) wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics. © 2017. Published by The Company of Biologists Ltd.
Chen, Chao; Liu, Zhiguang; Pan, Qi; Chen, Xiao; Wang, Huihua; Guo, Haikun; Liu, Shidong; Lu, Hongfeng; Tian, Shilin; Li, Ruiqiang; Shi, Wei
2016-05-01
Studying the genetic signatures of climate-driven selection can produce insights into local adaptation and the potential impacts of climate change on populations. The honey bee (Apis mellifera) is an interesting species to study local adaptation because it originated in tropical/subtropical climatic regions and subsequently spread into temperate regions. However, little is known about the genetic basis of its adaptation to temperate climates. Here, we resequenced the whole genomes of ten individual bees from a newly discovered population in temperate China and downloaded resequenced data from 35 individuals from other populations. We found that the new population is an undescribed subspecies in the M-lineage of A. mellifera (Apis mellifera sinisxinyuan). Analyses of population history show that long-term global temperature has strongly influenced the demographic history of A. m. sinisxinyuan and its divergence from other subspecies. Further analyses comparing temperate and tropical populations identified several candidate genes related to fat body and the Hippo signaling pathway that are potentially involved in adaptation to temperate climates. Our results provide insights into the demographic history of the newly discovered A. m. sinisxinyuan, as well as the genetic basis of adaptation of A. mellifera to temperate climates at the genomic level. These findings will facilitate the selective breeding of A. mellifera to improve the survival of overwintering colonies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Shepherd, S; Lima, M A P; Oliveira, E E; Sharkh, S M; Jackson, C W; Newland, P L
2018-05-21
Extremely low frequency electromagnetic field (ELF EMF) pollution from overhead powerlines is known to cause biological effects across many phyla, but these effects are poorly understood. Honey bees are important pollinators across the globe and due to their foraging flights are exposed to relatively high levels of ELF EMF in proximity to powerlines. Here we ask how acute exposure to 50 Hz ELF EMFs at levels ranging from 20-100 µT, found at ground level below powerline conductors, to 1000-7000 µT, found within 1 m of the conductors, affects honey bee olfactory learning, flight, foraging activity and feeding. ELF EMF exposure was found to reduce learning, alter flight dynamics, reduce the success of foraging flights towards food sources, and feeding. The results suggest that 50 Hz ELF EMFs emitted from powerlines may represent a prominent environmental stressor for honey bees, with the potential to impact on their cognitive and motor abilities, which could in turn reduce their ability to pollinate crops.
The effect of Agaricus brasiliensis extract supplementation on honey bee colonies.
Stevanovic, Jevrosima; Stanimirovic, Zoran; Simeunovic, Predrag; Lakic, Nada; Radovic, Ivica; Sokovic, Marina; Griensven, Leo J L D VAN
2018-01-01
This study was done to discover any beneficial effect of a medicinal mushroom Agaricus brasiliensis extract on the honey bee. Firstly, a laboratory experiment was conducted on 640 bees reared in 32 single-use plastic rearing cups. A. brasiliensis extract proved safe in all doses tested (50, 100 and 150 mg/kg/day) irrespective of feeding mode (sugar syrup or candy). Secondly, a three-year field experiment was conducted on 26 colonies treated with a single dose of A. brasiliensis extract (100 mg/kg/day) added to syrup. Each year the colonies were treated once in autumn and twice in spring. The treatments significantly increased colony strength parameters: brood rearing improvement and adult population growth were noticed more often than the increase in honey production and pollen reserves. These positive effects were mainly observed in April. In conclusion, A. brasiliensis extract is safe for the bees and helps maintaining strong colonies, especially in spring.
Landscape Simplification Constrains Adult Size in a Native Ground-Nesting Bee
Renauld, Miles; Hutchinson, Alena; Loeb, Gregory; Poveda, Katja; Connelly, Heather
2016-01-01
Bees provide critical pollination services to 87% of angiosperm plants; however, the reliability of these services may become threatened as bee populations decline. Agricultural intensification, resulting in the simplification of environments at the landscape scale, greatly changes the quality and quantity of resources available for female bees to provision their offspring. These changes may alter or constrain the tradeoffs in maternal investment allocation between offspring size, number and sex required to maximize fitness. Here we investigate the relationship between landscape scale agricultural intensification and the size and number of individuals within a wild ground nesting bee species, Andrena nasonii. We show that agricultural intensification at the landscape scale was associated with a reduction in the average size of field collected A. nasonii adults in highly agricultural landscapes but not with the number of individuals collected. Small females carried significantly smaller (40%) pollen loads than large females, which is likely to have consequences for subsequent offspring production and fitness. Thus, landscape simplification is likely to constrain allocation of resources to offspring through a reduction in the overall quantity, quality and distribution of resources. PMID:26943127
Stable genetic diversity despite parasite and pathogen spread in honey bee colonies.
Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar
2015-10-01
In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.
Stable genetic diversity despite parasite and pathogen spread in honey bee colonies
NASA Astrophysics Data System (ADS)
Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar
2015-10-01
In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.
Landscape Simplification Constrains Adult Size in a Native Ground-Nesting Bee.
Renauld, Miles; Hutchinson, Alena; Loeb, Gregory; Poveda, Katja; Connelly, Heather
2016-01-01
Bees provide critical pollination services to 87% of angiosperm plants; however, the reliability of these services may become threatened as bee populations decline. Agricultural intensification, resulting in the simplification of environments at the landscape scale, greatly changes the quality and quantity of resources available for female bees to provision their offspring. These changes may alter or constrain the tradeoffs in maternal investment allocation between offspring size, number and sex required to maximize fitness. Here we investigate the relationship between landscape scale agricultural intensification and the size and number of individuals within a wild ground nesting bee species, Andrena nasonii. We show that agricultural intensification at the landscape scale was associated with a reduction in the average size of field collected A. nasonii adults in highly agricultural landscapes but not with the number of individuals collected. Small females carried significantly smaller (40%) pollen loads than large females, which is likely to have consequences for subsequent offspring production and fitness. Thus, landscape simplification is likely to constrain allocation of resources to offspring through a reduction in the overall quantity, quality and distribution of resources.
Beims, Hannes; Wittmann, Johannes; Bunk, Boyke; Spröer, Cathrin; Rohde, Christine; Günther, Gabi; Rohde, Manfred; von der Ohe, Werner; Steinert, Michael
2015-08-15
Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious honey bee brood bacterial disease. We isolated and characterized P. larvae-directed bacteriophages and developed criteria for safe phage therapy. Whole-genome analysis of a highly lytic virus of the family Siphoviridae (HB10c2) provided a detailed safety profile and uncovered its lysogenic nature and a putative beta-lactamase-like protein. To rate its antagonistic activity against the pathogens targeted and to specify potentially harmful effects on the bee population and the environment, P. larvae genotypes ERIC I to IV, representatives of the bee gut microbiota, and a broad panel of members of the order Bacillales were analyzed for phage HB10c2-induced lysis. Breeding assays with infected bee larvae revealed that the in vitro phage activity observed was not predictive of the real-life scenario and therapeutic efficacy. On the basis of the disclosed P. larvae-bacteriophage coevolution, we discuss the future prospects of AFB phage therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Riva, Clémence; Sokolowski, Michel Bc; Normand, Julien; Santos, Jana Sopkova-de Oliveira; Halm-Lemeille, Marie-Pierre
2018-01-31
The ectoparasitic honey bee mite Varroa destructor is a main cause of the gradual decline in honey bees Apis mellifera. Beekeepers currently utilize a wide range of different synthetic acaricides, organic acids and essential oils to keep mite populations under control. Previous work has indicated that pirimicarb may be a new varroacide candidate. The aim of this study was to observe chronic effects on feeding activity in worker honey bees after oral exposure to 1.05 mm pirimicarb. The long-term effects of 24 h exposure to pirimicarb were also tested. After three successive trials, no mortality could be detected at the tested concentration, although oral exposure to pirimicarb had a significant effect on honey bees feeding behavior. Pirimicarb added to a sucrose solution led to a rapid decrease in food intake. These tendencies may be reversed when the pesticide is removed. However, recovery seemed to be trial dependent. This study highlights seasonal variation in honey bee susceptibility, which should be considered in toxicology studies. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Beims, Hannes; Wittmann, Johannes; Bunk, Boyke; Spröer, Cathrin; Rohde, Christine; Günther, Gabi; Rohde, Manfred; von der Ohe, Werner
2015-01-01
Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious honey bee brood bacterial disease. We isolated and characterized P. larvae-directed bacteriophages and developed criteria for safe phage therapy. Whole-genome analysis of a highly lytic virus of the family Siphoviridae (HB10c2) provided a detailed safety profile and uncovered its lysogenic nature and a putative beta-lactamase-like protein. To rate its antagonistic activity against the pathogens targeted and to specify potentially harmful effects on the bee population and the environment, P. larvae genotypes ERIC I to IV, representatives of the bee gut microbiota, and a broad panel of members of the order Bacillales were analyzed for phage HB10c2-induced lysis. Breeding assays with infected bee larvae revealed that the in vitro phage activity observed was not predictive of the real-life scenario and therapeutic efficacy. On the basis of the disclosed P. larvae-bacteriophage coevolution, we discuss the future prospects of AFB phage therapy. PMID:26048941
Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera).
Galbraith, David A; Yang, Xingyu; Niño, Elina Lastro; Yi, Soojin; Grozinger, Christina
2015-03-01
Populations of honey bees are declining throughout the world, with US beekeepers losing 30% of their colonies each winter. Though multiple factors are driving these colony losses, it is increasingly clear that viruses play a major role. However, information about the molecular mechanisms mediating antiviral immunity in honey bees is surprisingly limited. Here, we examined the transcriptional and epigenetic (DNA methylation) responses to viral infection in honey bee workers. One-day old worker honey bees were fed solutions containing Israeli Acute Paralysis Virus (IAPV), a virus which causes muscle paralysis and death and has previously been associated with colony loss. Uninfected control and infected, symptomatic bees were collected within 20-24 hours after infection. Worker fat bodies, the primary tissue involved in metabolism, detoxification and immune responses, were collected for analysis. We performed transcriptome- and bisulfite-sequencing of the worker fat bodies to identify genome-wide gene expression and DNA methylation patterns associated with viral infection. There were 753 differentially expressed genes (FDR<0.05) in infected versus control bees, including several genes involved in epigenetic and antiviral pathways. DNA methylation status of 156 genes (FDR<0.1) changed significantly as a result of the infection, including those involved in antiviral responses in humans. There was no significant overlap between the significantly differentially expressed and significantly differentially methylated genes, and indeed, the genomic characteristics of these sets of genes were quite distinct. Our results indicate that honey bees have two distinct molecular pathways, mediated by transcription and methylation, that modulate protein levels and/or function in response to viral infections.
Alburaki, Mohamed; Chen, Deniz; Skinner, John A; Meikle, William G; Tarpy, David R; Adamczyk, John; Stewart, Scott D
2018-06-13
In order to study the in situ effects of the agricultural landscape and exposure to pesticides on honey bee health, sixteen honey bee colonies were placed in four different agricultural landscapes. Those landscapes were three agricultural areas with varying levels of agricultural intensity (AG areas) and one non-agricultural area (NAG area). Colonies were monitored for different pathogen prevalence and pesticide residues over a period of one year. RT-qPCR was used to study the prevalence of seven different honey bee viruses as well as Nosema sp. in colonies located in different agricultural systems with various intensities of soybean, corn, sorghum, and cotton production. Populations of the parasitic mite Varroa destructor were also extensively monitored. Comprehensive MS-LC pesticide residue analyses were performed on samples of wax, honey, foragers, winter bees, dead bees, and crop flowers for each apiary and location. A significantly higher level of varroa loads were recorded in colonies of the AG areas, but this at least partly correlated with increased colony size and did not necessarily result from exposure to pesticides. Infections of two viruses (deformed wing virus genotype a (DWVa) and acute bee paralysis virus (ABPV)) and Nosema sp. varied among the four studied locations. The urban location significantly elevated colony pathogen loads, while AG locations significantly benefited and increased the colony weight gain. Cotton and sorghum flowers contained high concentrations of insecticide including neonicotinoids, while soybean and corn had less pesticide residues. Several events of pesticide toxicity were recorded in the AG areas, and high concentrations of neonicotinoid insecticides were detected in dead bees.
Lihoreau, Mathieu; Chittka, Lars; Raine, Nigel E
2016-01-01
Pollinators, such as bees, often develop multi-location routes (traplines) to exploit subsets of flower patches within larger plant populations. How individuals establish such foraging areas in the presence of other foragers is poorly explored. Here we investigated the foraging patterns of pairs of bumble bees (Bombus terrestris) released sequentially into an 880m2 outdoor flight cage containing 10 feeding stations (artificial flowers). Using motion-sensitive video cameras mounted on flowers, we mapped the flower visitation networks of both foragers, quantified their interactions and compared their foraging success over an entire day. Overall, bees that were released first (residents) travelled 37% faster and collected 77% more nectar, thereby reaching a net energy intake rate 64% higher than bees released second (newcomers). However, this prior-experience advantage decreased as newcomers became familiar with the spatial configuration of the flower array. When both bees visited the same flower simultaneously, the most frequent outcome was for the resident to evict the newcomer. On the rare occasions when newcomers evicted residents, the two bees increased their frequency of return visits to that flower. These competitive interactions led to a significant (if only partial) spatial overlap between the foraging patterns of pairs of bees. While newcomers may initially use social cues (such as olfactory footprints) to exploit flowers used by residents, either because such cues indicate higher rewards and/or safety from predation, residents may attempt to preserve their monopoly over familiar resources through exploitation and interference. We discuss how these interactions may favour spatial partitioning, thereby maximising the foraging efficiency of individuals and colonies.
A cell line resource derived from honey bee (Apis mellifera) embryonic tissues.
Goblirsch, Michael J; Spivak, Marla S; Kurtti, Timothy J
2013-01-01
A major hindrance to the study of honey bee pathogens or the effects of pesticides and nutritional deficiencies is the lack of controlled in vitro culture systems comprised of honey bee cells. Such systems are important to determine the impact of these stress factors on the developmental and cell biology of honey bees. We have developed a method incorporating established insect cell culture techniques that supports sustained growth of honey bee cells in vitro. We used honey bee eggs mid to late in their embryogenesis to establish primary cultures, as these eggs contain cells that are progressively dividing. Primary cultures were initiated in modified Leibovitz's L15 medium and incubated at 32(°)C. Serial transfer of material from several primary cultures was maintained and has led to the isolation of young cell lines. A cell line (AmE-711) has been established that is composed mainly of fibroblast-type cells that form an adherent monolayer. Most cells in the line are diploid (2n = 32) and have the Apis mellifera karyotype as revealed by Giemsa stain. The partial sequence for the mitochondrial-encoded cytochrome c oxidase subunit I (Cox 1) gene in the cell line is identical to those from honey bee tissues and a consensus sequence for A. mellifera. The population doubling time is approximately 4 days. Importantly, the cell line is continuously subcultured every 10-14 days when split at a 1:3 ratio and is cryopreserved in liquid nitrogen. The cell culture system we have developed has potential application for studies aimed at honey bee development, genetics, pathogenesis, transgenesis, and toxicology.
Hroncova, Zuzana; Havlik, Jaroslav; Killer, Jiri; Doskocil, Ivo; Tyl, Jan; Kamler, Martin; Titera, Dalibor; Hakl, Josef; Mrazek, Jakub; Bunesova, Vera; Rada, Vojtech
2015-01-01
Social honey bees, Apis mellifera, host a set of distinct microbiota, which is similar across the continents and various honey bee species. Some of these bacteria, such as lactobacilli, have been linked to immunity and defence against pathogens. Pathogen defence is crucial, particularly in larval stages, as many pathogens affect the brood. However, information on larval microbiota is conflicting. Seven developmental stages and drones were sampled from 3 colonies at each of the 4 geographic locations of A. mellifera carnica, and the samples were maintained separately for analysis. We analysed the variation and abundance of important bacterial groups and taxa in the collected bees. Major bacterial groups were evaluated over the entire life of honey bee individuals, where digestive tracts of same aged bees were sampled in the course of time. The results showed that the microbial tract of 6-day-old 5th instar larvae were nearly equally rich in total microbial counts per total digestive tract weight as foraging bees, showing a high percentage of various lactobacilli (Firmicutes) and Gilliamella apicola (Gammaproteobacteria 1). However, during pupation, microbial counts were significantly reduced but recovered quickly by 6 days post-emergence. Between emergence and day 6, imago reached the highest counts of Firmicutes and Gammaproteobacteria, which then gradually declined with bee age. Redundancy analysis conducted using denaturing gradient gel electrophoresis identified bacterial species that were characteristic of each developmental stage. The results suggest that 3-day 4th instar larvae contain low microbial counts that increase 2-fold by day 6 and then decrease during pupation. Microbial succession of the imago begins soon after emergence. We found that bacterial counts do not show only yearly cycles within a colony, but vary on the individual level. Sampling and pooling adult bees or 6th day larvae may lead to high errors and variability, as both of these stages may be undergoing dynamic succession. PMID:25768309
Wragg, David; Marti-Marimon, Maria; Basso, Benjamin; Bidanel, Jean-Pierre; Labarthe, Emmanuelle; Bouchez, Olivier; Le Conte, Yves; Vignal, Alain
2016-06-03
Four main evolutionary lineages of A. mellifera have been described including eastern Europe (C) and western and northern Europe (M). Many apiculturists prefer bees from the C lineage due to their docility and high productivity. In France, the routine importation of bees from the C lineage has resulted in the widespread admixture of bees from the M lineage. The haplodiploid nature of the honeybee Apis mellifera, and its small genome size, permits affordable and extensive genomics studies. As a pilot study of a larger project to characterise French honeybee populations, we sequenced 60 drones sampled from two commercial populations managed for the production of honey and royal jelly. Results indicate a C lineage origin, whilst mitochondrial analysis suggests two drones originated from the O lineage. Analysis of heterozygous SNPs identified potential copy number variants near to genes encoding odorant binding proteins and several cytochrome P450 genes. Signatures of selection were detected using the hapFLK haplotype-based method, revealing several regions under putative selection for royal jelly production. The framework developed during this study will be applied to a broader sampling regime, allowing the genetic diversity of French honeybees to be characterised in detail.
Wragg, David; Marti-Marimon, Maria; Basso, Benjamin; Bidanel, Jean-Pierre; Labarthe, Emmanuelle; Bouchez, Olivier; Le Conte, Yves; Vignal, Alain
2016-01-01
Four main evolutionary lineages of A. mellifera have been described including eastern Europe (C) and western and northern Europe (M). Many apiculturists prefer bees from the C lineage due to their docility and high productivity. In France, the routine importation of bees from the C lineage has resulted in the widespread admixture of bees from the M lineage. The haplodiploid nature of the honeybee Apis mellifera, and its small genome size, permits affordable and extensive genomics studies. As a pilot study of a larger project to characterise French honeybee populations, we sequenced 60 drones sampled from two commercial populations managed for the production of honey and royal jelly. Results indicate a C lineage origin, whilst mitochondrial analysis suggests two drones originated from the O lineage. Analysis of heterozygous SNPs identified potential copy number variants near to genes encoding odorant binding proteins and several cytochrome P450 genes. Signatures of selection were detected using the hapFLK haplotype-based method, revealing several regions under putative selection for royal jelly production. The framework developed during this study will be applied to a broader sampling regime, allowing the genetic diversity of French honeybees to be characterised in detail. PMID:27255426
Groom, Scott V C; Stevens, Mark I; Schwarz, Michael P
2014-06-22
The impacts of glacial cycles on the geographical distribution and size of populations have been explored for numerous terrestrial and marine taxa. However, most studies have focused on high latitudes, with only a few focused on the response of biota to the last glacial maximum (LGM) in equatorial regions. Here, we examine how population sizes of key bee fauna in the southwest Pacific archipelagos of Fiji, Vanuatu and Samoa have fluctuated over the Quaternary. We show that all three island faunas suffered massive population declines, roughly corresponding in time to the LGM, followed by rapid expansion post-LGM. Our data therefore suggest that Pleistocene climate change has had major impacts across a very broad tropical region. While other studies indicate widespread Holarctic effects of the LGM, our data suggest a much wider range of latitudes, extending to the tropics, where these climate change repercussions were important. As key pollinators, the inferred changes in these bee faunas may have been critical in the development of the diverse Pacific island flora. The magnitude of these responses indicates future climate change scenarios may have alarming consequences for Pacific island systems involving pollinator-dependent plant communities and agricultural crops.
Morais, M M; Turcatto, A P; Pereira, R A; Francoy, T M; Guidugli-Lazzarini, K R; Gonçalves, L S; de Almeida, J M V; Ellis, J D; De Jong, D
2013-12-19
Pollen substitute diets are a valuable resource for maintaining strong and health honey bee colonies. Specific diets may be useful in one region or country and inadequate or economically unviable in others. We compared two artificial protein diets that had been formulated from locally-available ingredients in Brazil with bee bread and a non-protein sucrose diet. Groups of 100 newly-emerged, adult workers of Africanized honey bees in Brazil and European honey bees in the USA were confined in small cages and fed on one of four diets for seven days. The artificial diets included a high protein diet made of soy milk powder and albumin, and a lower protein level diet consisting of soy milk powder, brewer's yeast and rice bran. The initial protein levels in newly emerged bees were approximately 18-21 µg/µL hemolymph. After feeding on the diets for seven days, the protein levels in the hemolymph were similar among the protein diet groups (~37-49 µg/µL after seven days), although Africanized bees acquired higher protein levels, increasing 145 and 100% on diets D1 and D2, respectively, versus 83 and 60% in the European bees. All the protein diets resulted in significantly higher levels of protein than sucrose solution alone. In the field, the two pollen substitute diets were tested during periods of low pollen availability in the field in two regions of Brazil. Food consumption, population development, colony weight, and honey production were evaluated to determine the impact of the diets on colony strength parameters. The colonies fed artificial diets had a significant improvement in all parameters, while control colonies dwindled during the dearth period. We conclude that these two artificial protein diets have good potential as pollen substitutes during dearth periods and that Africanized bees more efficiently utilize artificial protein diets than do European honey bees.
Bobadoye, Bridget O; Ndegwa, Paul N; Irungu, Lucy; Fombong, Ayuka T
2017-01-01
Habitat degradation has over time formed synergy with other factors to contribute to dwindling populations of both fauna and flora by altering their habitats. The disturbance of natural habitats affects the diversity of both vertebrates and invertebrates by altering both feeding and nesting sites for which organisms are known to depend on for survival. Little is known of the extent to which vulnerable habitats could shape the diversity of most indigent pollinators such as African meliponine bee species in tropical ecosystems. This study was conducted to determine how disturbance could shape the natural occurrence of African meliponine bee species in different ecological habitats of Taita Hills, leading to changes in their diversity. A total of four species depicted by the Renyi diversity profile was recorded in five of the six main habitat types surveyed, and a further extrapolation with Shannon index (EH) also predicted the highest species richness of 4.24 in a deciduous habitat type. These meliponine bee species (Hypotrigona gribodoi, Hypotrigona ruspolii, Meliponula ferruginea (black), and Plebeina hildebrandti) were observed to be unevenly distributed across all habitats, further indicating that mixed deciduous habitat was more diverse than acacia-dominated bush lands, grasslands, and exotic forest patches. Geometric morphometrics categorized all four meliponine bee species into two major clusters—cluster 1 (H gribodoi, H ruspolii, M ferruginea (black)) and cluster 2 (P hildebrandti)—and further discriminated populations against the 4 potential habitats they are likely to persist or survive in. Each habitat appeared to consist of a cluster of subpopulations and may possibly reveal ecotypes within the four meliponine populations. This has revealed that unprecedented conversions of natural habitats to agroecosystems are a key driving factor causing increased habitat isolation and vulnerability in this Afromontane region which may potentially distort local assemblages of native pollinators, such as meliponine bee species. PMID:28579849
Effects of habitat isolation on pollinator communities and seed set.
Steffan-Dewenter, I; Tscharntke, Teja
1999-11-01
Destruction and fragmentation of natural habitats is the major reason for the decreasing biodiversity in the agricultural landscape. Loss of populations may negatively affect biotic interactions and ecosystem stability. Here we tested the hypothesis that habitat fragmentation affects bee populations and thereby disrupts plant-pollinator interactions. We experimentally established small "habitat islands" of two self-incompatible, annual crucifers on eight calcareous grasslands and in the intensively managed agricultural landscape at increasing distances (up to 1000 m) from these species-rich grasslands to measure effects of isolation on both pollinator guilds and seed set, independently from patch size and density, resource availability and genetic erosion of plant populations. Each habitat island consisted of four pots each with one plant of mustard (Sinapis arvensis) and radish (Raphanus sativus). Increasing isolation of the small habitat islands resulted in both decreased abundance and species richness of flower-visiting bees (Hymenoptera: Apoidea). Mean body size of flower-visiting wild bees was larger on isolated than on nonisolated habitat islands emphasizing the positive correlation of body size and foraging distance. Abundance of flower-visiting honeybees depended on the distance from the nearest apiary. Abundance of other flower visitors such as hover flies did not change with increasing isolation. Number of seeds per fruit and per plant decreased significantly with increasing distance from the nearest grassland for both mustard and radish. Mean seed set per plant was halved at a distance of approximately 1000 m for mustard and at 250 m for radish. In accordance with expectations, seed set per plant was positively correlated with the number of flower-visiting bees. We found no evidence for resource limitation in the case of mustard and only marginal effects for radish. We conclude that habitat connectivity is essential to maintain not only abundant and diverse bee communities, but also plant-pollinator interactions in economically important crops and endangered wild plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, John B.; Nassauer, Joan I.; Currie, William S.
Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees. Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations. Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7%, 23.5% and 28.8% of agricultural landmore » converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape. Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale. Moreover, strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.« less
Jacques, Antoine; Laurent, Marion; Ribière-Chabert, Magali; Saussac, Mathilde; Bougeard, Stéphanie; Budge, Giles E.; Hendrikx, Pascal; Chauzat, Marie-Pierre
2017-01-01
Reports of honey bee population decline has spurred many national efforts to understand the extent of the problem and to identify causative or associated factors. However, our collective understanding of the factors has been hampered by a lack of joined up trans-national effort. Moreover, the impacts of beekeeper knowledge and beekeeping management practices have often been overlooked, despite honey bees being a managed pollinator. Here, we established a standardised active monitoring network for 5 798 apiaries over two consecutive years to quantify honey bee colony mortality across 17 European countries. Our data demonstrate that overwinter losses ranged between 2% and 32%, and that high summer losses were likely to follow high winter losses. Multivariate Poisson regression models revealed that hobbyist beekeepers with small apiaries and little experience in beekeeping had double the winter mortality rate when compared to professional beekeepers. Furthermore, honey bees kept by professional beekeepers never showed signs of disease, unlike apiaries from hobbyist beekeepers that had symptoms of bacterial infection and heavy Varroa infestation. Our data highlight beekeeper background and apicultural practices as major drivers of honey bee colony losses. The benefits of conducting trans-national monitoring schemes and improving beekeeper training are discussed. PMID:28278255
Graham, John B.; Nassauer, Joan I.; Currie, William S.; ...
2017-03-25
Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees. Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations. Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7%, 23.5% and 28.8% of agricultural landmore » converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape. Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale. Moreover, strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.« less
A Multiuser Detector Based on Artificial Bee Colony Algorithm for DS-UWB Systems
Liu, Xiaohui
2013-01-01
Artificial Bee Colony (ABC) algorithm is an optimization algorithm based on the intelligent behavior of honey bee swarm. The ABC algorithm was developed to solve optimizing numerical problems and revealed premising results in processing time and solution quality. In ABC, a colony of artificial bees search for rich artificial food sources; the optimizing numerical problems are converted to the problem of finding the best parameter which minimizes an objective function. Then, the artificial bees randomly discover a population of initial solutions and then iteratively improve them by employing the behavior: moving towards better solutions by means of a neighbor search mechanism while abandoning poor solutions. In this paper, an efficient multiuser detector based on a suboptimal code mapping multiuser detector and artificial bee colony algorithm (SCM-ABC-MUD) is proposed and implemented in direct-sequence ultra-wideband (DS-UWB) systems under the additive white Gaussian noise (AWGN) channel. The simulation results demonstrate that the BER and the near-far effect resistance performances of this proposed algorithm are quite close to those of the optimum multiuser detector (OMD) while its computational complexity is much lower than that of OMD. Furthermore, the BER performance of SCM-ABC-MUD is not sensitive to the number of active users and can obtain a large system capacity. PMID:23983638
Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases
De Palma, Adriana; Abrahamczyk, Stefan; Aizen, Marcelo A.; Albrecht, Matthias; Basset, Yves; Bates, Adam; Blake, Robin J.; Boutin, Céline; Bugter, Rob; Connop, Stuart; Cruz-López, Leopoldo; Cunningham, Saul A.; Darvill, Ben; Diekötter, Tim; Dorn, Silvia; Downing, Nicola; Entling, Martin H.; Farwig, Nina; Felicioli, Antonio; Fonte, Steven J.; Fowler, Robert; Franzén, Markus; Goulson, Dave; Grass, Ingo; Hanley, Mick E.; Hendrix, Stephen D.; Herrmann, Farina; Herzog, Felix; Holzschuh, Andrea; Jauker, Birgit; Kessler, Michael; Knight, M. E.; Kruess, Andreas; Lavelle, Patrick; Le Féon, Violette; Lentini, Pia; Malone, Louise A.; Marshall, Jon; Pachón, Eliana Martínez; McFrederick, Quinn S.; Morales, Carolina L.; Mudri-Stojnic, Sonja; Nates-Parra, Guiomar; Nilsson, Sven G.; Öckinger, Erik; Osgathorpe, Lynne; Parra-H, Alejandro; Peres, Carlos A.; Persson, Anna S.; Petanidou, Theodora; Poveda, Katja; Power, Eileen F.; Quaranta, Marino; Quintero, Carolina; Rader, Romina; Richards, Miriam H.; Roulston, T’ai; Rousseau, Laurent; Sadler, Jonathan P.; Samnegård, Ulrika; Schellhorn, Nancy A.; Schüepp, Christof; Schweiger, Oliver; Smith-Pardo, Allan H.; Steffan-Dewenter, Ingolf; Stout, Jane C.; Tonietto, Rebecca K.; Tscharntke, Teja; Tylianakis, Jason M.; Verboven, Hans A. F.; Vergara, Carlos H.; Verhulst, Jort; Westphal, Catrin; Yoon, Hyung Joo; Purvis, Andy
2016-01-01
Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises. PMID:27509831
Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera.
Whitfield, Charles W; Behura, Susanta K; Berlocher, Stewart H; Clark, Andrew G; Johnston, J Spencer; Sheppard, Walter S; Smith, Deborah R; Suarez, Andrew V; Weaver, Daniel; Tsutsui, Neil D
2006-10-27
We characterized Apis mellifera in both native and introduced ranges using 1136 single-nucleotide polymorphisms genotyped in 341 individuals. Our results indicate that A. mellifera originated in Africa and expanded into Eurasia at least twice, resulting in populations in eastern and western Europe that are geographically close but genetically distant. A third expansion in the New World has involved the near-replacement of previously introduced "European" honey bees by descendants of more recently introduced A. m. scutellata ("African" or "killer" bees). Our analyses of spatial transects and temporal series in the New World revealed differential replacement of alleles derived from eastern versus western Europe, with admixture evident in all individuals.
Determinants of stingless bee nest density in lowland dipterocarp forests of Sabah, Malaysia.
Eltz, Thomas; Brühl, Carsten A; van der Kaars, Sander; Linsenmair, Eduard K
2002-03-01
We measured the nest density of stingless bees (Apidae, Meliponini) in undisturbed and logged-over dipterocarp forests in Sabah, northern Borneo, and evaluated hypotheses on proximate factors leading to the observed variation: population control mediated by (1) nest predation, (2) limitation of nest trees, or (3) food limitation. Per-area nest density varied twentyfold across 14 forest sites and was significantly affected by locality, but not by the degree and history of disturbance. Nest density was generally high in sites located in the Sepilok Forest fragment (mean 8.4 nests/ha), bordering mangroves or plantations. In contrast, nest densities in continuous forests were all low (between 0 and 2.1 nests/ha, mean 0.5 nests/ha). Yearly nest mortality was low (13.5-15.0%) over 4 years of observation and did not vary between forest localities, thus limiting the potential of nest predation (1) in creating the observed variation in nest density. The presence of potential nest trees (2), though positively correlated with nest density, explained only a minute fraction of the observed variation. Nest density was best explained by differences in the pollen resources (3) available to the bees (quantified by analysis of pollen in bee garbage). Across five selected sites the amount of nonforest pollen (from mangrove or crop plants) included in diets of Trigona collina was positively correlated with T. collina nest density. External pollen sources are a likely supplement to bee diets at times when little flowering occurs inside the forest, thus increasing overall bee carrying capacity. Pollen limitation was also indicated by direct measurements of pollen import and foraging activity of T. collina in three selected sites: Pollen traps installed at nests in high-density Sepilok captured significantly more corbicular pollen than colonies in low-density Deramakot. At the same time, morning foraging activity was also greater in Sepilok, indicating a regulatory increase in foraging in response to high pollen availability. We conclude that the abundance of stingless bees in forests in Sabah is chiefly dependent on the local availability of food resources. Bee populations strongly benefit from edge effects and increased foraging habitat diversity. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00442-001-0848-6.
Cauich, Orlando; Quezada-Euán, José Javier G; Macias-Macias, José Octavio; Reyes-Oregel, Vicente; Medina-Peralta, Salvador; Parra-Tabla, Victor
2004-04-01
The acclimation, foraging behavior, and pollination efficiency of stingless bees of the species Nannotrigona perilampoides Cresson were evaluated in tomato (Lycopersicon esculentum Mill.) plants cultivated in two greenhouses. The greenhouses were divided into three areas of 16 m2, and one of the following treatments was used for pollination: stingless bees (SB), mechanical vibration (MV), and no pollination (NP). Observations were conducted once a week from 0800 to 1600 hours during 2 mo. The acclimation of the bees to the greenhouses was estimated by the number of bees that did not return to the hive (lost bees) and by comparing the population of the colonies (brood and adults). The foraging activity of the bees across the day was evaluated by comparing the number of foragers per hour. The influence of environmental variables on the foraging activity was also analyzed. The pollination efficiency was compared among treatments through the percentage of fruit set, weight of individual fruit, kilograms of fruit produced per square meter, and the number of seed per fruit. The bees started foraging on the flowers approximately 7 d after the colonies were introduced to the greenhouse. There was a decline in the population of the colonies across the experiment, but colonies did not die out. Correlations of environmental variables with the foraging activity of the bees showed that none of them had a significant influence on pollen foraging. However, water collection was positively correlated with the temperature and negatively correlated with the humidity inside the greenhouse. The estimation of the pollination efficiency per treatment showed that there were significant differences in fruit set in SB (83 +/- 4.2) and MV (78.5 +/- 6.4) compared with NP (52.6 +/- 7.6). However, the average weight of the fruit was similar for the three treatments (65 g). There were significant differences for seed number in SB (200 +/- 15.3) and MV (232 +/- 21.4) compared with NP (120 +/- 16.6). The productivity in kilograms of fruit per square meter was higher in SB (5.72 +/- 0.61) and MV (5.66 +/- 0.58 kg) compared with NP (3.34 +/- 0.72). The number of seed was positively correlated with the weight of the fruit. We conclude that the use of Nannotrigona testaceicornis Rondani, for pollinating greenhouse tomatoes in tropical climates, could be an alternative to the use of highly defensive African-derived Apis mellifera or non-native bumble bees (Bombus spp.). However, more research is needed to evaluate the cost/benefit on large-scale greenhouse pollination using N. perilampoides Cresson against other bee species and pollination methods.
Sampling bees in tropical forests and agroecosystems: A review
Prado, Sara G.; Ngo, Hien T.; Florez, Jaime A.; Collazo, Jaime A.
2017-01-01
Bees are the predominant pollinating taxa, providing a critical ecosystem service upon which many angiosperms rely for successful reproduction. Available data suggests that bee populations worldwide are declining, but scarce data in tropical regions precludes assessing their status and distribution, impact on ecological services, and response to management actions. Herein, we reviewed >150 papers that used six common sampling methods (pan traps, baits, Malaise traps, sweep nets, timed observations and aspirators) to better understand their strengths and weaknesses, and help guide method selection to meet research objectives and development of multi-species monitoring approaches. Several studies evaluated the effectiveness of sweep nets, pan traps, and malaise traps, but only one evaluated timed observations, and none evaluated aspirators. Only five studies compared two or more of the remaining four sampling methods to each other. There was little consensus regarding which method would be most reliable for sampling multiple species. However, we recommend that if the objective of the study is to estimate abundance or species richness, malaise traps, pan traps and sweep nets are the most effective sampling protocols in open tropical systems; conversely, malaise traps, nets and baits may be the most effective in forests. Declining bee populations emphasize the critical need in method standardization and reporting precision. Moreover, we recommend reporting a catchability coefficient, a measure of the interaction between the resource (bee) abundance and catching effort. Melittologists could also consider existing methods, such as occupancy models, to quantify changes in distribution and abundance after modeling heterogeneity in trapping probability, and consider the possibility of developing monitoring frameworks that draw from multiple sources of data.
Genetic diversity affects colony survivorship in commercial honey bee colonies.
Tarpy, David R; Vanengelsdorp, Dennis; Pettis, Jeffrey S
2013-08-01
Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency (m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.
Gisder, Sebastian; Schüler, Vivian; Horchler, Lennart L; Groth, Detlef; Genersch, Elke
2017-01-01
The Western honey bee ( Apis mellifera ) is widely used as commercial pollinator in worldwide agriculture and, therefore, plays an important role in global food security. Among the parasites and pathogens threatening health and survival of honey bees are two species of microsporidia, Nosema apis and Nosema ceranae. Nosema ceranae is considered an emerging pathogen of the Western honey bee. Reports on the spread of N. ceranae suggested that this presumably highly virulent species is replacing its more benign congener N. apis in the global A. mellifera population. We here present a 12 year longitudinal cohort study on the prevalence of N. apis and N. ceranae in Northeast Germany. Between 2005 and 2016, a cohort of about 230 honey bee colonies originating from 23 apiaries was sampled twice a year (spring and autumn) resulting in a total of 5,600 bee samples which were subjected to microscopic and molecular analysis for determining the presence of infections with N. apis or/and N. ceranae . Throughout the entire study period, both N. apis - and N. ceranae -infections could be diagnosed within the cohort. Logistic regression analysis of the prevalence data demonstrated a significant increase of N. ceranae -infections over the last 12 years, both in autumn (reflecting the development during the summer) and in spring (reflecting the development over winter) samples. Cell culture experiments confirmed that N. ceranae has a higher proliferative potential than N. apis at 27° and 33°C potentially explaining the increase in N. ceranae prevalence during summer. In autumn, characterized by generally low infection prevalence, this increase was accompanied by a significant decrease in N. apis -infection prevalence. In contrast, in spring, the season with a higher prevalence of infection, no significant decrease of N. apis infections despite a significant increase in N. ceranae infections could be observed. Therefore, our data do not support a general advantage of N. ceranae over N. apis and an overall replacement of N. apis by N. ceranae in the studied honey bee population.
Gisder, Sebastian; Schüler, Vivian; Horchler, Lennart L.; Groth, Detlef; Genersch, Elke
2017-01-01
The Western honey bee (Apis mellifera) is widely used as commercial pollinator in worldwide agriculture and, therefore, plays an important role in global food security. Among the parasites and pathogens threatening health and survival of honey bees are two species of microsporidia, Nosema apis and Nosema ceranae. Nosema ceranae is considered an emerging pathogen of the Western honey bee. Reports on the spread of N. ceranae suggested that this presumably highly virulent species is replacing its more benign congener N. apis in the global A. mellifera population. We here present a 12 year longitudinal cohort study on the prevalence of N. apis and N. ceranae in Northeast Germany. Between 2005 and 2016, a cohort of about 230 honey bee colonies originating from 23 apiaries was sampled twice a year (spring and autumn) resulting in a total of 5,600 bee samples which were subjected to microscopic and molecular analysis for determining the presence of infections with N. apis or/and N. ceranae. Throughout the entire study period, both N. apis- and N. ceranae-infections could be diagnosed within the cohort. Logistic regression analysis of the prevalence data demonstrated a significant increase of N. ceranae-infections over the last 12 years, both in autumn (reflecting the development during the summer) and in spring (reflecting the development over winter) samples. Cell culture experiments confirmed that N. ceranae has a higher proliferative potential than N. apis at 27° and 33°C potentially explaining the increase in N. ceranae prevalence during summer. In autumn, characterized by generally low infection prevalence, this increase was accompanied by a significant decrease in N. apis-infection prevalence. In contrast, in spring, the season with a higher prevalence of infection, no significant decrease of N. apis infections despite a significant increase in N. ceranae infections could be observed. Therefore, our data do not support a general advantage of N. ceranae over N. apis and an overall replacement of N. apis by N. ceranae in the studied honey bee population. PMID:28730143
Suni, Sevan S; Bronstein, Judith L; Brosi, Berry J
2014-03-01
Habitat destruction threatens biodiversity by reducing the amount of available resources and connectivity among geographic areas. For organisms living in fragmented habitats, population persistence may depend on dispersal, which maintains gene flow among fragments and can prevent inbreeding within them. It is centrally important to understand patterns of dispersal for bees living in fragmented areas given the importance of pollination systems and recently documented declines in bee populations. We used population and landscape genetic techniques to characterize patterns of dispersal over a large fragmented area in southern Costa Rica for the orchid bee species Euglossa championi . First, we estimated levels of genetic differentiation among forest fragments as φ pt , an analog to the traditional summary statistic F st , as well as two statistics that may more adequately represent levels of differentiation, G ' st and D est . Second, we used a Bayesian approach to determine the number and composition of genetic groups in our sample. Third we investigated how genetic differentiation changes with distance. Fourth, we determined the extent to which deforested areas restrict dispersal. Finally, we estimated the extent to which there were temporal differences in allele frequencies within the same forest fragments. Within years we found low levels of differentiation even over 80 km, and no effect of land use type on level of genetic differentiation. However, we found significant genetic differentiation between years. Taken together our results suggest that there are high levels of gene flow over this geographic area, and that individuals show low site fidelity over time.
Total Bee Dependence on One Flower Species Despite Available Congeners of Similar Floral Shape
González-Varo, Juan P.; Ortiz-Sánchez, F. Javier; Vilà, Montserrat
2016-01-01
Extreme specialization is a common phenomenon in antagonistic biotic interactions but it is quite rare in mutualistic ones. Indeed, bee specialization on a single flower species (monolecty) is a questioned fact. Here, we provide multiple lines of evidence on true monolecty in a solitary bee (Flavipanurgus venustus, Andrenidae), which is consistent across space (18 sites in SW Iberian Peninsula) and time (three years) despite the presence of closely related congeneric plant species whose flowers are morphologically similar. The host flower (Cistus crispus, Cistaceae) is in turn a supergeneralist, visited by at least 85 insect species. We uncover ultraviolet light reflectance as a distinctive visual cue of the host flower, which can be a key mechanism because bee specialization has an innate basis to recognize specific signals. Moreover, we hypothesized that a total dependence on an ephemeral resource (i.e. one flower species) must lead to spatiotemporal matching with it. Accordingly, we prove that the bee’s flight phenology is synchronized with the blooming period of the host flower, and that the densities of bee populations mirror the local densities of the host flower. This case supports the ‘predictable plethora’ hypothesis, that is, that host-specialization in bees is fostered by plant species providing predictably abundant floral resources. Our findings, along with available phylogenetic information on the genus Cistus, suggest the importance of historical processes and cognitive constraints as drivers of specialization in bee-plant interactions. PMID:27658205
Consumption of a nectar alkaloid reduces pathogen load in bumble bees.
Manson, Jessamyn S; Otterstatter, Michael C; Thomson, James D
2010-01-01
Diet has a significant effect on pathogen infections in animals and the consumption of secondary metabolites can either enhance or mitigate infection intensity. Secondary metabolites, which are commonly associated with herbivore defense, are also frequently found in floral nectar. One hypothesized function of this so-called toxic nectar is that it has antimicrobial properties, which may benefit insect pollinators by reducing the intensity of pathogen infections. We tested whether gelsemine, a nectar alkaloid of the bee-pollinated plant Gelsemium sempervirens, could reduce pathogen loads in bumble bees infected with the gut protozoan Crithidia bombi. In our first laboratory experiment, artificially infected bees consumed a daily diet of gelsemine post-infection to simulate continuous ingestion of alkaloid-rich nectar. In the second experiment, bees were inoculated with C. bombi cells that were pre-exposed to gelsemine, simulating the direct effects of nectar alkaloids on pathogen cells that are transmitted at flowers. Gelsemine significantly reduced the fecal intensity of C. bombi 7 days after infection when it was consumed continuously by infected bees, whereas direct exposure of the pathogen to gelsemine showed a non-significant trend toward reduced infection. Lighter pathogen loads may relieve bees from the behavioral impairments associated with the infection, thereby improving their foraging efficiency. If the collection of nectar secondary metabolites by pollinators is done as a means of self-medication, pollinators may selectively maintain secondary metabolites in the nectar of plants in natural populations.
Density-dependent effects of ants on selection for bumble bee pollination in Polemonium viscosum.
Galen, Candace; Geib, Jennifer C
2007-05-01
Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly positive over a wide range of ant abundance (20-80% of plants visited by ants daily). Although high cheater abundance reduces the fitness returns of bumble bee pollination, it does not completely eliminate selection for bumble bee attraction in P. viscosum.
Mapping floral resources for honey bees in New Zealand at the catchment scale.
Ausseil, Anne-Gaelle E; Dymond, John R; Newstrom, Linda
2018-03-12
Honey bees require nectar and pollen from flowers: nectar for energy and pollen for growth. The demand for nectar and pollen varies during the year, with more pollen needed in spring for colony population growth and more nectar needed in summer to sustain the maximum colony size and collect surplus nectar stores for winter. Sufficient bee forage is therefore necessary to ensure a healthy bee colony. Land-use changes can reduce the availability of floral resources suitable for bees, thereby increasing the susceptibility of bees to other stressors such as disease and pesticides. In contrast, land-based management decisions to protect or plant bee forage can enhance pollen and nectar supply to bees while meeting other goals such as riparian planting for water-quality improvement. Commercial demand for honey can also put pressure on floral resources through over-crowding of hives. To help understand and manage floral resources for bees, we developed a spatial model for mapping monthly nectar and pollen production from maps of land cover. Based on monthly estimated production data we mapped potential monthly supply of nectar and pollen to a given apiary location in the landscape. This is done by summing the total production within the foraging range of the apiary while subtracting the estimated nectar converted to energy for collection. Ratios of estimated supply over theoretical hive demand may then be used to infer a potential landscape carrying capacity to sustain hives. This model framework is quantitative and spatial, utilizing estimated flight energy costs for nectar foraging. It can contribute to management decisions such as where apiaries could be placed in the landscape depending on floral resources and where nectar limited areas may be located. It can contribute to planning areas for bee protection or planting such as in riparian vegetation. This would aid managed bee health, wild pollinator protection, and honey production. We demonstrate the methods in a case study in New Zealand where there is a growing demand for mānuka (Leptospermum scoparium) honey production. © 2018 by the Ecological Society of America.
Santos, Douglas Elias; Alberici, Luciane Carla; Hartfelder, Klaus
2016-06-01
The relationship between nutrition and phenotype is an especially challenging question in cases of facultative polyphenism, like the castes of social insects. In the honey bee, Apis mellifera, unexpected modifications in conserved signaling pathways revealed the hypoxia response as a possible mechanism underlying the regulation of body size and organ growth. Hence, the current study was designed to investigate possible causes of why the three hypoxia core genes are overexpressed in worker larvae. Parting from the hypothesis that this has an endogenous cause and is not due to differences in external oxygen levels we investigated mitochondrial numbers and distribution, as well as mitochondrial oxygen consumption rates in fat body cells of queen and worker larvae during the caste fate-critical larval stages. By immunofluorescence and electron microscopy we found higher densities of mitochondria in queen larval fat body, a finding further confirmed by a citrate synthase assay quantifying mitochondrial functional units. Oxygen consumption measurements by high-resolution respirometry revealed that queen larvae have higher maximum capacities of ATP production at lower physiological demand. Finally, the expression analysis of mitogenesis-related factors showed that the honey bee TFB1 and TFB2 homologs, and a nutritional regulator, ERR, are overexpressed in queen larvae. These results are strong evidence that the differential nutrition of queen and worker larvae by nurse bees affects mitochondrial dynamics and functionality in the fat body of these larvae, hence explaining their differential hypoxia response. Copyright © 2016 Elsevier Ltd. All rights reserved.
Harpur, Brock A; Chernyshova, Anna; Soltani, Arash; Tsvetkov, Nadejda; Mahjoorighasrodashti, Mohammad; Xu, Zhixing; Zayed, Amro
2014-01-01
Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no study of genetic tradeoffs involving these traits. There is strong evidence that some genes influence both innate immunity and behaviour in social insects--a prerequisite for genetic tradeoffs. Quantifying genetic tradeoffs is critical for understanding the evolution of immunity in social insects and for devising effective strategies for breeding disease-resistant pollinator populations. We conducted two experiments to test the hypothesis of a genetic tradeoff between social and individual immunity in the honey bee, Apis mellifera. First, we estimated the relative contribution of genetics to individual variation in innate immunity of honey bee workers, as only heritable traits can experience genetic tradeoffs. Second, we examined if worker bees with hygienic sisters have reduced individual innate immune response. We genotyped several hundred workers from two colonies and found that patriline genotype does not significantly influence the antimicrobial activity of a worker's hemolymph. Further, we did not find a negative correlation between hygienic behaviour and the average antimicrobial activity of a worker's hemolymph across 30 honey bee colonies. Taken together, our work indicates no genetic tradeoffs between hygienic behaviour and innate immunity in honey bees. Our work suggests that using artificial selection to increase hygienic behaviour of honey bee colonies is not expected to concurrently compromise individual innate immunity of worker bees.
Harpur, Brock A.; Chernyshova, Anna; Soltani, Arash; Tsvetkov, Nadejda; Mahjoorighasrodashti, Mohammad; Xu, Zhixing; Zayed, Amro
2014-01-01
Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no study of genetic tradeoffs involving these traits. There is strong evidence that some genes influence both innate immunity and behaviour in social insects – a prerequisite for genetic tradeoffs. Quantifying genetic tradeoffs is critical for understanding the evolution of immunity in social insects and for devising effective strategies for breeding disease-resistant pollinator populations. We conducted two experiments to test the hypothesis of a genetic tradeoff between social and individual immunity in the honey bee, Apis mellifera. First, we estimated the relative contribution of genetics to individual variation in innate immunity of honey bee workers, as only heritable traits can experience genetic tradeoffs. Second, we examined if worker bees with hygienic sisters have reduced individual innate immune response. We genotyped several hundred workers from two colonies and found that patriline genotype does not significantly influence the antimicrobial activity of a worker’s hemolymph. Further, we did not find a negative correlation between hygienic behaviour and the average antimicrobial activity of a worker’s hemolymph across 30 honey bee colonies. Taken together, our work indicates no genetic tradeoffs between hygienic behaviour and innate immunity in honey bees. Our work suggests that using artificial selection to increase hygienic behaviour of honey bee colonies is not expected to concurrently compromise individual innate immunity of worker bees. PMID:25162411
Lihoreau, Mathieu; Chittka, Lars; Raine, Nigel E.
2016-01-01
Pollinators, such as bees, often develop multi-location routes (traplines) to exploit subsets of flower patches within larger plant populations. How individuals establish such foraging areas in the presence of other foragers is poorly explored. Here we investigated the foraging patterns of pairs of bumble bees (Bombus terrestris) released sequentially into an 880m2 outdoor flight cage containing 10 feeding stations (artificial flowers). Using motion-sensitive video cameras mounted on flowers, we mapped the flower visitation networks of both foragers, quantified their interactions and compared their foraging success over an entire day. Overall, bees that were released first (residents) travelled 37% faster and collected 77% more nectar, thereby reaching a net energy intake rate 64% higher than bees released second (newcomers). However, this prior-experience advantage decreased as newcomers became familiar with the spatial configuration of the flower array. When both bees visited the same flower simultaneously, the most frequent outcome was for the resident to evict the newcomer. On the rare occasions when newcomers evicted residents, the two bees increased their frequency of return visits to that flower. These competitive interactions led to a significant (if only partial) spatial overlap between the foraging patterns of pairs of bees. While newcomers may initially use social cues (such as olfactory footprints) to exploit flowers used by residents, either because such cues indicate higher rewards and/or safety from predation, residents may attempt to preserve their monopoly over familiar resources through exploitation and interference. We discuss how these interactions may favour spatial partitioning, thereby maximising the foraging efficiency of individuals and colonies. PMID:26982030
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okle, Oliver, E-mail: oliver.okle@uni-konstanz.de; Rath, Lisa; Galizia, C. Giovanni
The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using {sup 14}C-BMAA we demonstrated that BMAA is biologically availablemore » to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca{sup 2+} homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca{sup 2+}, learning, memory, odor) in bees. • A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis.« less
Cariveau, Daniel P; Elijah Powell, J; Koch, Hauke; Winfree, Rachael; Moran, Nancy A
2014-01-01
Bacterial gut symbiont communities are critical for the health of many insect species. However, little is known about how microbial communities vary among host species or how they respond to anthropogenic disturbances. Bacterial communities that differ in richness or composition may vary in their ability to provide nutrients or defenses. We used deep sequencing to investigate gut microbiota of three species in the genus Bombus (bumble bees). Bombus are among the most economically and ecologically important non-managed pollinators. Some species have experienced dramatic declines, probably due to pathogens and land-use change. We examined variation within and across bee species and between semi-natural and conventional agricultural habitats. We categorized as ‘core bacteria' any operational taxonomic units (OTUs) with closest hits to sequences previously found exclusively or primarily in the guts of honey bees and bumble bees (genera Apis and Bombus). Microbial community composition differed among bee species. Richness, defined as number of bacterial OTUs, was highest for B. bimaculatus and B. impatiens. For B. bimaculatus, this was due to high richness of non-core bacteria. We found little effect of habitat on microbial communities. Richness of non-core bacteria was negatively associated with bacterial abundance in individual bees, possibly due to deeper sampling of non-core bacteria in bees with low populations of core bacteria. Infection by the gut parasite Crithidia was negatively associated with abundance of the core bacterium Gilliamella and positively associated with richness of non-core bacteria. Our results indicate that Bombus species have distinctive gut communities, and community-level variation is associated with pathogen infection. PMID:24763369
A variant reference data set for the Africanized honeybee, Apis mellifera.
Kadri, Samir M; Harpur, Brock A; Orsi, Ricardo O; Zayed, Amro
2016-11-08
The Africanized honeybee (AHB) is a population of Apis mellifera found in the Americas. AHBs originated in 1956 in Rio Clara, Brazil where imported African A. m. scutellata escaped and hybridized with local populations of European A. mellifera. Africanized populations can now be found from Northern Argentina to the Southern United States. AHBs-often referred to as 'Killer Bees'- are a major concern to the beekeeping industry as well as a model for the evolutionary genetics of colony defence. We performed high coverage pooled-resequencing of 360 diploid workers from 30 Brazilian AHB colonies using Illumina Hi-Seq (150 bp PE). This yielded a high density SNP data set with an average read depth at each site of 20.25 reads. With 3,606,720 SNPs and 155,336 SNPs within 11,365 genes, this data set is the largest genomic resource available for AHBs and will enable high-resolution studies of the population dynamics, evolution, and genetics of this successful biological invader, in addition to facilitating the development of SNP-based tools for identifying AHBs.
Transcriptional responses in Honey Bee larvae infected with chalkbrood fungus
2010-01-01
Background Diseases and other stress factors working synergistically weaken honey bee health and may play a major role in the losses of bee populations in recent years. Among a large number of bee diseases, chalkbrood has been on the rise. We present here the experimental identification of honey bee genes that are differentially expressed in response to infection of honey bee larvae with the chalkbrood fungus, Ascosphaera apis. Results We used cDNA-AFLP ®Technology to profile transcripts in infected and uninfected bee larvae. From 64 primer combinations, over 7,400 transcriptionally-derived fragments were obtained A total of 98 reproducible polymorphic cDNA-AFLP fragments were excised and sequenced, followed by quantitative real-time RT-PCR (qRT-PCR) analysis of these and additional samples. We have identified a number of differentially-regulated transcripts that are implicated in general mechanisms of stress adaptation, including energy metabolism and protein transport. One of the most interesting differentially-regulated transcripts is for a chitinase-like enzyme that may be linked to anti-fungal activities in the honey bee larvae, similarly to gut and fat-body specific chitinases found in mosquitoes and the red flour beetle. Surprisingly, we did not find many components of the well-characterized NF-κB intracellular signaling pathways to be differentially-regulated using the cDNA-AFLP approach. Therefore, utilizing qRT-PCR, we probed some of the immune related genes to determine whether the lack of up-regulation of their transcripts in our analysis can be attributed to lack of immune activation or to limitations of the cDNA-AFLP approach. Conclusions Using a combination of cDNA-AFLP and qRT-PCR analyses, we were able to determine several key transcriptional events that constitute the overall effort in the honey bee larvae to fight natural fungal infection. Honey bee transcripts identified in this study are involved in critical functions related to transcriptional regulation, apoptotic degradation of ubiquitinated proteins, nutritional regulation, and RNA processing. We found that immune regulation of the anti-fungal responses in honey bee involves highly coordinated activation of both NF-κB signaling pathways, leading to production of anti-microbial peptides. Significantly, activation of immune responses in the infected bee larvae was associated with down-regulation of major storage proteins, leading to depletion of nutritional resources. PMID:20565973
Transcriptional responses in honey bee larvae infected with chalkbrood fungus.
Aronstein, Katherine A; Murray, Keith D; Saldivar, Eduardo
2010-06-21
Diseases and other stress factors working synergistically weaken honey bee health and may play a major role in the losses of bee populations in recent years. Among a large number of bee diseases, chalkbrood has been on the rise. We present here the experimental identification of honey bee genes that are differentially expressed in response to infection of honey bee larvae with the chalkbrood fungus, Ascosphaera apis. We used cDNA-AFLP Technology to profile transcripts in infected and uninfected bee larvae. From 64 primer combinations, over 7,400 transcriptionally-derived fragments were obtained A total of 98 reproducible polymorphic cDNA-AFLP fragments were excised and sequenced, followed by quantitative real-time RT-PCR (qRT-PCR) analysis of these and additional samples.We have identified a number of differentially-regulated transcripts that are implicated in general mechanisms of stress adaptation, including energy metabolism and protein transport. One of the most interesting differentially-regulated transcripts is for a chitinase-like enzyme that may be linked to anti-fungal activities in the honey bee larvae, similarly to gut and fat-body specific chitinases found in mosquitoes and the red flour beetle. Surprisingly, we did not find many components of the well-characterized NF-kappaB intracellular signaling pathways to be differentially-regulated using the cDNA-AFLP approach. Therefore, utilizing qRT-PCR, we probed some of the immune related genes to determine whether the lack of up-regulation of their transcripts in our analysis can be attributed to lack of immune activation or to limitations of the cDNA-AFLP approach. Using a combination of cDNA-AFLP and qRT-PCR analyses, we were able to determine several key transcriptional events that constitute the overall effort in the honey bee larvae to fight natural fungal infection. Honey bee transcripts identified in this study are involved in critical functions related to transcriptional regulation, apoptotic degradation of ubiquitinated proteins, nutritional regulation, and RNA processing. We found that immune regulation of the anti-fungal responses in honey bee involves highly coordinated activation of both NF-kappaB signaling pathways, leading to production of anti-microbial peptides. Significantly, activation of immune responses in the infected bee larvae was associated with down-regulation of major storage proteins, leading to depletion of nutritional resources.
Ings, Thomas C.; Chittka, Lars
2009-01-01
Predators of pollinators can influence pollination services and plant fitness via both consumptive (reducing pollinator density) and non-consumptive (altering pollinator behaviour) effects. However, a better knowledge of the mechanisms underlying behaviourally mediated indirect effects of predators is necessary to properly understand their role in community dynamics. We used the tripartite relationship between bumblebees, predatory crab spiders and flowers to ask whether behaviourally mediated effects are localized to flowers harbouring predators, or whether bees extend their avoidance to entire plant species. In a tightly controlled laboratory environment, bumblebees (Bombus terrestris) were exposed to a random mixture of equally rewarding yellow and white artificial flowers, but foraging on yellow flowers was very risky: bees had a 25 per cent chance of receiving a simulated predation attempt by ‘robotic’ crab spiders. As bees learnt to avoid ‘dangerous’ flowers, their foraging preferences changed and they began to visit fewer yellow flowers than expected by chance. Bees avoided spider-free yellow flowers as well as dangerous yellow flowers when spiders were more difficult to detect (the colour of yellow spiders was indistinguishable from that of yellow flowers). Therefore, this interaction between bee learning and predator crypsis could lead flower species harbouring cryptic predators to suffer from reduced reproductive success. PMID:19324797
de Figueiró Santos, Joyce; Coelho, Flávio Codeço; Bliman, Pierre-Alexandre
2016-01-01
Colony Collapse Disorder (CCD) has become a global problem for beekeepers and for the crops that depend on bee pollination. While many factors are known to increase the risk of colony collapse, the ectoparasitic mite Varroa destructor is considered to be the most serious one. Although this mite is unlikely to cause the collapse of hives itself, it is the vector for many viral diseases which are among the likely causes for Colony Collapse Disorder. The effects of V. destructor infestation differ from one part of the world to another, with greater morbidity and higher colony losses in European honey bees (EHB) in Europe, Asia and North America. Although this mite has been present in Brazil for many years, there have been no reports of colony losses amongst Africanized Honey Bees (AHB). Studies carried out in Mexico have highlighted different behavioral responses by the AHB to the presence of the mite, notably as far as grooming and hygienic behavior are concerned. Could these explain why the AHB are less susceptible to Colony Collapse Disorder? In order to answer this question, we have developed a mathematical model of the infestation dynamics to analyze the role of resistance behavior by bees in the overall health of the colony, and as a consequence, its ability to face epidemiological challenges.
Mixed infections reveal virulence differences between host-specific bee pathogens.
Klinger, Ellen G; Vojvodic, Svjetlana; DeGrandi-Hoffman, Gloria; Welker, Dennis L; James, Rosalind R
2015-07-01
Dynamics of host-pathogen interactions are complex, often influencing the ecology, evolution and behavior of both the host and pathogen. In the natural world, infections with multiple pathogens are common, yet due to their complexity, interactions can be difficult to predict and study. Mathematical models help facilitate our understanding of these evolutionary processes, but empirical data are needed to test model assumptions and predictions. We used two common theoretical models regarding mixed infections (superinfection and co-infection) to determine which model assumptions best described a group of fungal pathogens closely associated with bees. We tested three fungal species, Ascosphaera apis, Ascosphaera aggregata and Ascosphaera larvis, in two bee hosts (Apis mellifera and Megachile rotundata). Bee survival was not significantly different in mixed infections vs. solo infections with the most virulent pathogen for either host, but fungal growth within the host was significantly altered by mixed infections. In the host A. mellifera, only the most virulent pathogen was present in the host post-infection (indicating superinfective properties). In M. rotundata, the most virulent pathogen co-existed with the lesser-virulent one (indicating co-infective properties). We demonstrated that the competitive outcomes of mixed infections were host-specific, indicating strong host specificity among these fungal bee pathogens. Published by Elsevier Inc.
Lihoreau, Mathieu; Chittka, Lars; Raine, Nigel E
2010-12-01
Animals collecting resources that replenish over time often visit patches in predictable sequences called traplines. Despite the widespread nature of this strategy, we still know little about how spatial memory develops and guides individuals toward suitable routes. Here, we investigate whether flower visitation sequences by bumblebees Bombus terrestris simply reflect the order in which flowers were discovered or whether they result from more complex navigational strategies enabling bees to optimize their foraging routes. We analyzed bee flight movements in an array of four artificial flowers maximizing interfloral distances. Starting from a single patch, we sequentially added three new patches so that if bees visited them in the order in which they originally encountered flowers, they would follow a long (suboptimal) route. Bees' tendency to visit patches in their discovery order decreased with experience. Instead, they optimized their flight distances by rearranging flower visitation sequences. This resulted in the development of a primary route (trapline) and two or three less frequently used secondary routes. Bees consistently used these routes after overnight breaks while occasionally exploring novel possibilities. We discuss how maintaining some level of route flexibility could allow traplining animals to cope with dynamic routing problems, analogous to the well-known traveling salesman problem.
Rinkevich, F D; Margotta, J W; Pokhrel, V; Walker, T W; Vaeth, R H; Hoffman, W C; Fritz, B K; Danka, R G; Rinderer, T E; Aldridge, R L; Linthicum, K J; Ottea, J A; Healy, K B
2017-12-01
Adulticides applied against mosquitoes can reduce vector populations during times of high arbovirus transmission. However, impacts of these insecticides on pollinators and other non-target organisms are of concern to mosquito control professionals, beekeepers and others. We evaluated mortality of Culex quinquefasciatus and Apis mellifera when caged insects were exposed to low and high label rates of four common adulticides (Aqua-Pursuit™ [permethrin], Duet® [prallethrin + sumithrin], Fyfanon® [malathion] and Scourge® [resmethrin]) at six distances up to 91.4 m from a truck-mounted ultra-low-volume sprayer. Honey bee mortality was both absolutely low (61 m had limited impacts on honey bee mortality while providing effective mosquito control.