Sample records for bee populations forest

  1. Changes in Orchid Bee Communities Across Forest-Agroecosystem Boundaries in Brazilian Atlantic Forest Landscapes.

    PubMed

    De Aguiar, Willian Moura; Sofia, Silvia H; Melo, Gabriel A R; Gaglianone, Maria Cristina

    2015-12-01

    Deforestation has dramatically reduced the extent of Atlantic Forest cover in Brazil. Orchid bees are key pollinators in neotropical forest, and many species are sensitive to anthropogenic interference. In this sense understanding the matrix permeability for these bees is important for maintaining genetic diversity and pollination services. Our main objective was to assess whether the composition, abundance, and diversity of orchid bees in matrices differed from those in Atlantic forest. To do this we sampled orchid bees at 4-mo intervals from 2007 to 2009 in remnants of Atlantic Forest, and in the surrounding pasture and eucalyptus matrices. The abundance, richness, and diversity of orchid bees diminished significantly from the forest fragment toward the matrix points in the eucalyptus and pasture. Some common or intermediate species in the forest areas, such as Eulaema cingulata (F.) and Euglossa fimbriata Moure, respectively, become rare species in the matrices. Our results show that the orchid bee community is affected by the matrices surrounding the forest fragments. They also suggest that connections between forest fragments need to be improved using friendly matrices that can provide more favorable conditions for bees and increase their dispersal between fragments. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Modeling Honey Bee Populations.

    PubMed

    Torres, David J; Ricoy, Ulises M; Roybal, Shanae

    2015-01-01

    Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population.

  3. Modeling Honey Bee Populations

    PubMed Central

    Torres, David J.; Ricoy, Ulises M.; Roybal, Shanae

    2015-01-01

    Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population. PMID:26148010

  4. The neglected bee trees: European beech forests as a home for feral honey bee colonies

    PubMed Central

    2018-01-01

    It is a common belief that feral honey bee colonies (Apis mellifera L.) were eradicated in Europe through the loss of habitats, domestication by man and spread of pathogens and parasites. Interestingly, no scientific data are available, neither about the past nor the present status of naturally nesting honeybee colonies. We expected near-natural beech (Fagus sylvatica L.) forests to provide enough suitable nest sites to be a home for feral honey bee colonies in Europe. Here, we made a first assessment of their occurrence and density in two German woodland areas based on two methods, the tracing of nest sites based on forager flight routes (beelining technique), and the direct inspection of potential cavity trees. Further, we established experimental swarms at forest edges and decoded dances for nest sites performed by scout bees in order to study how far swarms from beekeeper-managed hives would potentially move into a forest. We found that feral honey bee colonies regularly inhabit tree cavities in near-natural beech forests at densities of at least 0.11–0.14 colonies/km2. Colonies were not confined to the forest edges; they were also living deep inside the forests. We estimated a median distance of 2,600 m from the bee trees to the next apiaries, while scout bees in experimental swarms communicated nest sites in close distances (median: 470 m). We extrapolate that there are several thousand feral honey bee colonies in German woodlands. These have to be taken in account when assessing the role of forest areas in providing pollination services to the surrounding land, and their occurrence has implications for the species’ perception among researchers, beekeepers and conservationists. This study provides a starting point for investigating the life-histories and the ecological interactions of honey bees in temperate European forest environments. PMID:29637025

  5. The neglected bee trees: European beech forests as a home for feral honey bee colonies.

    PubMed

    Kohl, Patrick Laurenz; Rutschmann, Benjamin

    2018-01-01

    It is a common belief that feral honey bee colonies ( Apis mellifera L.) were eradicated in Europe through the loss of habitats, domestication by man and spread of pathogens and parasites. Interestingly, no scientific data are available, neither about the past nor the present status of naturally nesting honeybee colonies. We expected near-natural beech ( Fagus sylvatica L.) forests to provide enough suitable nest sites to be a home for feral honey bee colonies in Europe. Here, we made a first assessment of their occurrence and density in two German woodland areas based on two methods, the tracing of nest sites based on forager flight routes (beelining technique), and the direct inspection of potential cavity trees. Further, we established experimental swarms at forest edges and decoded dances for nest sites performed by scout bees in order to study how far swarms from beekeeper-managed hives would potentially move into a forest. We found that feral honey bee colonies regularly inhabit tree cavities in near-natural beech forests at densities of at least 0.11-0.14 colonies/km 2 . Colonies were not confined to the forest edges; they were also living deep inside the forests. We estimated a median distance of 2,600 m from the bee trees to the next apiaries, while scout bees in experimental swarms communicated nest sites in close distances (median: 470 m). We extrapolate that there are several thousand feral honey bee colonies in German woodlands. These have to be taken in account when assessing the role of forest areas in providing pollination services to the surrounding land, and their occurrence has implications for the species' perception among researchers, beekeepers and conservationists. This study provides a starting point for investigating the life-histories and the ecological interactions of honey bees in temperate European forest environments.

  6. Determinants of stingless bee nest density in lowland dipterocarp forests of Sabah, Malaysia.

    PubMed

    Eltz, Thomas; Brühl, Carsten A; van der Kaars, Sander; Linsenmair, Eduard K

    2002-03-01

    We measured the nest density of stingless bees (Apidae, Meliponini) in undisturbed and logged-over dipterocarp forests in Sabah, northern Borneo, and evaluated hypotheses on proximate factors leading to the observed variation: population control mediated by (1) nest predation, (2) limitation of nest trees, or (3) food limitation. Per-area nest density varied twentyfold across 14 forest sites and was significantly affected by locality, but not by the degree and history of disturbance. Nest density was generally high in sites located in the Sepilok Forest fragment (mean 8.4 nests/ha), bordering mangroves or plantations. In contrast, nest densities in continuous forests were all low (between 0 and 2.1 nests/ha, mean 0.5 nests/ha). Yearly nest mortality was low (13.5-15.0%) over 4 years of observation and did not vary between forest localities, thus limiting the potential of nest predation (1) in creating the observed variation in nest density. The presence of potential nest trees (2), though positively correlated with nest density, explained only a minute fraction of the observed variation. Nest density was best explained by differences in the pollen resources (3) available to the bees (quantified by analysis of pollen in bee garbage). Across five selected sites the amount of nonforest pollen (from mangrove or crop plants) included in diets of Trigona collina was positively correlated with T. collina nest density. External pollen sources are a likely supplement to bee diets at times when little flowering occurs inside the forest, thus increasing overall bee carrying capacity. Pollen limitation was also indicated by direct measurements of pollen import and foraging activity of T. collina in three selected sites: Pollen traps installed at nests in high-density Sepilok captured significantly more corbicular pollen than colonies in low-density Deramakot. At the same time, morning foraging activity was also greater in Sepilok, indicating a regulatory increase in foraging

  7. Forested landscapes promote richness and abundance of native bees (Hymenoptera: Apoidea: Anthophila) in Wisconsin apple orchards.

    PubMed

    Watson, J C; Wolf, A T; Ascher, J S

    2011-06-01

    Wild bees provide vital pollination services for many native and agricultural plant species, yet the landscape conditions needed to support wild bee populations are not well understood or appreciated. We assessed the influence of landscape composition on bee abundance and species richness in apple (Malus spp.) orchards of northeastern Wisconsin during the spring flowering period. A diverse community of bee species occurs in these apple orchards, dominated by wild bees in the families Andrenidae and Halictidae and the honey bee, Apis mellifera L. Proportion of forest area in the surrounding landscape was a significant positive predictor of wild bee abundance in orchards, with strongest effects at a GIS (Geographic Information Systems) buffer distance of 1,000 m or greater. Forest area also was positively associated with species richness, showing strongest effects at a buffer distance of 2,000 m. Nonagricultural developed land (homes, lawns, etcetera) was significantly negatively associated with species richness at buffer distances >750 m and wild bee abundance in bowl traps at all distances. Other landscape variables statistically associated with species richness or abundance of wild bees included proportion area of pasture (positive) and proportion area of roads (negative). Forest area was not associated with honey bee abundance at any buffer distance. These results provide clear evidence that the landscape surrounding apple orchards, especially the proportion of forest area, affects richness and abundance of wild bees during the spring flowering period and should be a part of sustainable land management strategies in agro-ecosystems of northeastern Wisconsin and other apple growing regions.

  8. On the vertical distribution of bees in a temperate deciduous forest

    Treesearch

    Michael Ulyshen; Villa Soon; James Hanula

    2010-01-01

    1. Despite a growing interest in forest canopy biology, very few studies have examined the vertical distribution of forest bees. In this study, bees were sampled using 12 pairs of flight-intercept traps suspended in the canopy (‡15 m) and near the ground (0.5 m) in a bottomland hardwood forest in the southeastern United States. 2. In total, 6653 bees from 5 families...

  9. Succession Influences Wild Bees in a Temperate Forest Landscape: The Value of Early Successional Stages in Naturally Regenerated and Planted Forests

    PubMed Central

    Taki, Hisatomo; Okochi, Isamu; Okabe, Kimiko; Inoue, Takenari; Goto, Hideaki; Matsumura, Takeshi; Makino, Shun'ichi

    2013-01-01

    In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional

  10. Succession influences wild bees in a temperate forest landscape: the value of early successional stages in naturally regenerated and planted forests.

    PubMed

    Taki, Hisatomo; Okochi, Isamu; Okabe, Kimiko; Inoue, Takenari; Goto, Hideaki; Matsumura, Takeshi; Makino, Shun'ichi

    2013-01-01

    In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional

  11. Distance from forest edge affects bee pollinators in oilseed rape fields.

    PubMed

    Bailey, Samantha; Requier, Fabrice; Nusillard, Benoît; Roberts, Stuart P M; Potts, Simon G; Bouget, Christophe

    2014-02-01

    Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy-makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.

  12. Distance from forest edge affects bee pollinators in oilseed rape fields

    PubMed Central

    Bailey, Samantha; Requier, Fabrice; Nusillard, Benoît; Roberts, Stuart P M; Potts, Simon G; Bouget, Christophe

    2014-01-01

    Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy-makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services. PMID:24634722

  13. Pleistocene climate changes shaped the population structure of Partamona seridoensis (Apidae, Meliponini), an endemic stingless bee from the Neotropical dry forest.

    PubMed

    Miranda, Elder Assis; Ferreira, Kátia Maria; Carvalho, Airton Torres; Martins, Celso Feitosa; Fernandes, Carlo Rivero; Del Lama, Marco Antonio

    2017-01-01

    Partamona seridoensis is an endemic stingless bee from the Caatinga, a Neotropical dry forest in northeastern Brazil. Like other stingless bees, this species plays an important ecological role as a pollinator. The aim of the present study was to investigate the genetic structure and evolutionary history of P. seridoensis across its current geographic range. Workers from 84 nests from 17 localities were analyzed for COI and Cytb genic regions. The population structure tests (Bayesian phylogenetic inference, AMOVA and haplotype network) consistently characterized two haplogroups (northwestern and eastern), with little gene flow between them, generating a high differentiation between them as well as among the populations within each haplogroup. The Mantel test revealed no isolation by distance. No evidence of a potential geographic barrier in the present that could explain the diversification between the P. seridoensis haplogroups was found. However, Pleistocene climatic changes may explain this differentiation, since the initial time for the P. seridoensis lineages diversification took place during the mid-Pleistocene, specifically the interglacial period, when the biota is presumed to have been more associated with dry conditions and had more restricted, fragmented geographical distribution. This event may have driven diversification by isolating the two haplogroups. Otherwise, the climatic changes in the late Pleistocene must not have drastically affected the population dynamics of P. seridoensis, since the Bayesian Skyline Plot did not reveal any substantial fluctuation in effective population size in either haplogroup. Considering its importance and the fact that it is an endemic bee from a very threatened Neotropical dry forest, the results herein could be useful to the development of conservation strategies for P. seridoensis.

  14. Pleistocene climate changes shaped the population structure of Partamona seridoensis (Apidae, Meliponini), an endemic stingless bee from the Neotropical dry forest

    PubMed Central

    Ferreira, Kátia Maria; Carvalho, Airton Torres; Martins, Celso Feitosa; Fernandes, Carlo Rivero; Del Lama, Marco Antonio

    2017-01-01

    Partamona seridoensis is an endemic stingless bee from the Caatinga, a Neotropical dry forest in northeastern Brazil. Like other stingless bees, this species plays an important ecological role as a pollinator. The aim of the present study was to investigate the genetic structure and evolutionary history of P. seridoensis across its current geographic range. Workers from 84 nests from 17 localities were analyzed for COI and Cytb genic regions. The population structure tests (Bayesian phylogenetic inference, AMOVA and haplotype network) consistently characterized two haplogroups (northwestern and eastern), with little gene flow between them, generating a high differentiation between them as well as among the populations within each haplogroup. The Mantel test revealed no isolation by distance. No evidence of a potential geographic barrier in the present that could explain the diversification between the P. seridoensis haplogroups was found. However, Pleistocene climatic changes may explain this differentiation, since the initial time for the P. seridoensis lineages diversification took place during the mid-Pleistocene, specifically the interglacial period, when the biota is presumed to have been more associated with dry conditions and had more restricted, fragmented geographical distribution. This event may have driven diversification by isolating the two haplogroups. Otherwise, the climatic changes in the late Pleistocene must not have drastically affected the population dynamics of P. seridoensis, since the Bayesian Skyline Plot did not reveal any substantial fluctuation in effective population size in either haplogroup. Considering its importance and the fact that it is an endemic bee from a very threatened Neotropical dry forest, the results herein could be useful to the development of conservation strategies for P. seridoensis. PMID:28410408

  15. Solitary invasive orchid bee outperforms co-occurring native bees to promote fruit set of an invasive Solanum.

    PubMed

    Liu, Hong; Pemberton, Robert W

    2009-03-01

    Our understanding of the effects of introduced invasive pollinators on plants has been exclusively drawn from studies on introduced social bees. One might expect, however, that the impacts of introduced solitary bees, with much lower population densities and fewer foragers, would be small. Yet little is known about the potential effects of naturalized solitary bees on the environment. We took advantage of the recent naturalization of an orchid bee, Euglossa viridissima, in southern Florida to study the effects of this solitary bee on reproduction of Solanum torvum, an invasive shrub. Flowers of S. torvum require specialized buzz pollination. Through timed floral visitor watches and two pollination treatments (control and pollen supplementation) at three forest edge and three open area sites, we found that the fruit set of S. torvum was pollen limited at the open sites where the native bees dominate, but was not pollen limited at the forest sites where the invasive orchid bees dominate. The orchid bee's pollination efficiency was nearly double that of the native halictid bees, and was also slightly higher than that of the native carpenter bee. Experiments using small and large mesh cages (to deny or allow E. viridissima access, respectively) at one forest site indicated that when the orchid bee was excluded, the flowers set one-quarter as many fruit as when the bee was allowed access. The orchid bee was the most important pollinator of the weed at the forest sites, which could pose additional challenges to the management of this weed in the fragmented, endangered tropical hardwood forests in the region. This specialized invasive mutualism may promote populations of both the orchid bee and this noxious weed. Invasive solitary bees, particularly species that are specialized pollinators, appear to have more importance than has previously been recognized.

  16. Bee (Hymenoptera: Apoidea) Diversity and Sampling Methodology in a Midwestern USA Deciduous Forest.

    PubMed

    McCravy, Kenneth W; Ruholl, Jared D

    2017-08-04

    Forests provide potentially important bee habitat, but little research has been done on forest bee diversity and the relative effectiveness of bee sampling methods in this environment. Bee diversity and sampling methodology were studied in an Illinois, USA upland oak-hickory forest using elevated and ground-level pan traps, malaise traps, and vane traps. 854 bees and 55 bee species were collected. Elevated pan traps collected the greatest number of bees (473), but ground-level pan traps collected greater species diversity (based on Simpson's diversity index) than did elevated pan traps. Elevated and ground-level pan traps collected the greatest bee species richness, with 43 and 39 species, respectively. An estimated sample size increase of over 18-fold would be required to approach minimum asymptotic richness using ground-level pan traps. Among pan trap colors/elevations, elevated yellow pan traps collected the greatest number of bees (266) but the lowest diversity. Malaise traps were relatively ineffective, collecting only 17 bees. Vane traps collected relatively low species richness (14 species), and Chao1 and abundance coverage estimators suggested that minimum asymptotic species richness was approached for that method. Bee species composition differed significantly between elevated pan traps, ground-level pan traps, and vane traps. Indicator species were significantly associated with each of these trap types, as well as with particular pan trap colors/elevations. These results indicate that Midwestern deciduous forests provide important bee habitat, and that the performance of common bee sampling methods varies substantially in this environment.

  17. Floral and nesting resources, habitat structure, and fire influence bee distribution across an open-forest gradient

    USGS Publications Warehouse

    Grundel, R.; Jean, R.P.; Frohnapple, K.J.; Glowacki, G.A.; Scott, P.E.; Pavlovic, N.B.

    2010-01-01

    Given bees' central effect on vegetation communities, it is important to understand how and why bee distributions vary across ecological gradients. We examined how plant community composition, plant diversity, nesting suitability, canopy cover, land use, and fire history affected bee distribution across an open-forest gradient in northwest Indiana, USA, a gradient similar to the historic Midwest United States landscape mosaic. When considered with the other predictors, plant community composition was not a significant predictor of bee community composition. Bee abundance was negatively related to canopy cover and positively to recent fire frequency, bee richness was positively related to plant richness and abundance of potential nesting resources, and bee community composition was significantly related to plant richness, soil characteristics potentially related to nesting suitability, and canopy cover. Thus, bee abundance was predicted by a different set of environmental characteristics than was bee species richness, and bee community composition was predicted, in large part, by a combination of the significant predictors of bee abundance and richness. Differences in bee community composition along the woody vegetation gradient were correlated with relative abundance of oligolectic, or diet specialist, bees. Because oligoleges were rarer than diet generalists and were associated with open habitats, their populations may be especially affected by degradation of open habitats. More habitat-specialist bees were documented for open and forest/scrub habitats than for savanna/woodland habitats, consistent with bees responding to habitats of intermediate woody vegetation density, such as savannas, as ecotones rather than as distinct habitat types. Similarity of bee community composition, similarity of bee abundance, and similarity of bee richness between sites were not significantly related to proximity of sites to each other. Nestedness analysis indicated that species

  18. Sampling bees in tropical forests and agroecosystems: A review

    USGS Publications Warehouse

    Prado, Sara G.; Ngo, Hien T.; Florez, Jaime A.; Collazo, Jaime A.

    2017-01-01

    Bees are the predominant pollinating taxa, providing a critical ecosystem service upon which many angiosperms rely for successful reproduction. Available data suggests that bee populations worldwide are declining, but scarce data in tropical regions precludes assessing their status and distribution, impact on ecological services, and response to management actions. Herein, we reviewed >150 papers that used six common sampling methods (pan traps, baits, Malaise traps, sweep nets, timed observations and aspirators) to better understand their strengths and weaknesses, and help guide method selection to meet research objectives and development of multi-species monitoring approaches. Several studies evaluated the effectiveness of sweep nets, pan traps, and malaise traps, but only one evaluated timed observations, and none evaluated aspirators. Only five studies compared two or more of the remaining four sampling methods to each other. There was little consensus regarding which method would be most reliable for sampling multiple species. However, we recommend that if the objective of the study is to estimate abundance or species richness, malaise traps, pan traps and sweep nets are the most effective sampling protocols in open tropical systems; conversely, malaise traps, nets and baits may be the most effective in forests. Declining bee populations emphasize the critical need in method standardization and reporting precision. Moreover, we recommend reporting a catchability coefficient, a measure of the interaction between the resource (bee) abundance and catching effort. Melittologists could also consider existing methods, such as occupancy models, to quantify changes in distribution and abundance after modeling heterogeneity in trapping probability, and consider the possibility of developing monitoring frameworks that draw from multiple sources of data.

  19. Mating frequencies of honey bee queens (Apis mellifera L.) in a population of feral colonies in the Northeastern United States.

    PubMed

    Tarpy, David R; Delaney, Deborah A; Seeley, Thomas D

    2015-01-01

    Across their introduced range in North America, populations of feral honey bee (Apis mellifera L.) colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens-and the increased intracolony genetic diversity it confers-has been attributed, in part, to improved disease resistance and may be a factor in the survival of these populations of feral colonies. We estimated the mating frequencies of queens in feral colonies in the Arnot Forest in New York State to determine if the level of polyandry of these queens is especially high and so might contribute to their survival success. We genotyped the worker offspring from 10 feral colonies in the Arnot Forest of upstate New York, as well as those from 20 managed colonies closest to this forest. We found no significant differences in mean mating frequency between the feral and managed queens, suggesting that queens in the remote, low-density population of colonies in the Arnot Forest are neither mate-limited nor adapted to mate at an especially high frequency. These findings support the hypothesis that the hyperpolyandry of honey bees has been shaped on an evolutionary timescale rather than on an ecological one.

  20. Mating Frequencies of Honey Bee Queens (Apis mellifera L.) in a Population of Feral Colonies in the Northeastern United States

    PubMed Central

    Tarpy, David R.; Delaney, Deborah A.; Seeley, Thomas D.

    2015-01-01

    Across their introduced range in North America, populations of feral honey bee (Apis mellifera L.) colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens—and the increased intracolony genetic diversity it confers—has been attributed, in part, to improved disease resistance and may be a factor in the survival of these populations of feral colonies. We estimated the mating frequencies of queens in feral colonies in the Arnot Forest in New York State to determine if the level of polyandry of these queens is especially high and so might contribute to their survival success. We genotyped the worker offspring from 10 feral colonies in the Arnot Forest of upstate New York, as well as those from 20 managed colonies closest to this forest. We found no significant differences in mean mating frequency between the feral and managed queens, suggesting that queens in the remote, low-density population of colonies in the Arnot Forest are neither mate-limited nor adapted to mate at an especially high frequency. These findings support the hypothesis that the hyperpolyandry of honey bees has been shaped on an evolutionary timescale rather than on an ecological one. PMID:25775410

  1. Foraging traits modulate stingless bee community disassembly under forest loss.

    PubMed

    Lichtenberg, Elinor M; Mendenhall, Chase D; Brosi, Berry

    2017-10-01

    Anthropogenic land use change is an important driver of impacts to biological communities and the ecosystem services they provide. Pollination is one ecosystem service that may be threatened by community disassembly. Relatively little is known about changes in bee community composition in the tropics, where pollination limitation is most severe and land use change is rapid. Understanding how anthropogenic changes alter community composition and functioning has been hampered by high variability in responses of individual species. Trait-based approaches, however, are emerging as a potential method for understanding responses of ecologically similar species to global change. We studied how communities of tropical, eusocial stingless bees (Apidae: Meliponini) disassemble when forest is lost. These bees are vital tropical pollinators that exhibit high trait diversity, but are under considerable threat from human activities. We compared functional traits of stingless bee species found in pastures surrounded by differing amounts of forest in an extensively deforested landscape in southern Costa Rica. Our results suggest that foraging traits modulate competitive interactions that underlie community disassembly patterns. In contrast to both theoretical predictions and temperate bee communities, we found that stingless bee species with the widest diet breadths were less likely to persist in sites with less forest. These wide-diet-breadth species also tend to be solitary foragers, and are competitively subordinate to group-foraging stingless bee species. Thus, displacement by dominant, group-foraging species may make subordinate species more dependent on the larger or more diversified resource pool that natural habitats offer. We also found that traits that may reduce reliance on trees-nesting in the ground or inside nests of other species-correlated with persistence in highly deforested landscapes. The functional trait perspective we employed enabled capturing community

  2. A quantitative model of honey bee colony population dynamics.

    PubMed

    Khoury, David S; Myerscough, Mary R; Barron, Andrew B

    2011-04-18

    Since 2006 the rate of honey bee colony failure has increased significantly. As an aid to testing hypotheses for the causes of colony failure we have developed a compartment model of honey bee colony population dynamics to explore the impact of different death rates of forager bees on colony growth and development. The model predicts a critical threshold forager death rate beneath which colonies regulate a stable population size. If death rates are sustained higher than this threshold rapid population decline is predicted and colony failure is inevitable. The model also predicts that high forager death rates draw hive bees into the foraging population at much younger ages than normal, which acts to accelerate colony failure. The model suggests that colony failure can be understood in terms of observed principles of honey bee population dynamics, and provides a theoretical framework for experimental investigation of the problem.

  3. Responses of Euglossine Bees (Hymenoptera, Apidae, Euglossina) to an Edge-Forest Gradient in a Large Tabuleiro Forest Remnant in Eastern Brazil.

    PubMed

    Coswosk, J A; Ferreira, R A; Soares, E D G; Faria, L R R

    2018-08-01

    Euglossine fauna of a large remnant of Brazilian Atlantic forest in eastern Brazil (Reserva Natural Vale) was assessed along an edge-forest gradient towards the interior of the fragment. To test the hypotheses that the structure of assemblages of orchid bees varies along this gradient, the following predictions were evaluated: (i) species richness is positively related to distance from the forest edge, (ii) species diversity is positively related to distance from the edge, (iii) the relative abundance of species associated with forest edge and/or open areas is inversely related to the distance from edge, and (iv) relative abundance of forest-related species is positively related to distance from the edge. A total of 2264 bees of 25 species was assessed at five distances from the edge: 0 m (the edge itself), 100 m, 500 m, 1000 m and 1500 m. Data suggested the existence of an edge-interior gradient for euglossine bees regarding species diversity and composition (considering the relative abundance of edge and forest-related species as a proxy for species composition) but not species richness.

  4. Communities of Social Bees (Apidae: Meliponini) in Trap-Nests: the Spatial Dynamics of Reproduction in an Area of Atlantic Forest.

    PubMed

    Silva, M D; Ramalho, M; Monteiro, D

    2014-08-01

    As most stingless bee species depend on preexisting cavities, principally tree hollows, nesting site availability may represent an important restriction in the structuring of their forest communities. The present study examined the spatial dynamics of stingless bee communities in an area of Atlantic Forest by evaluating their swarming to trap-nests. The field work was performed in the Michelin Ecological Reserve (MER) on the southeastern coast of the state of Bahia, Brazil. Seven hundred and twenty trap-nests were distributed within two forest habitats in advanced and initial stages of regeneration. The trap-nests were monitored between September 2009 and March 2011. Twenty-five trap-nests were occupied by five bee species, resulting in a capture ratio of 0.035 swarms/trap (approximately 0.14 swarms/ha), corresponding to 10 swarms/year (0.056 swarms/ha/year). According to previous study at MER, the most abundant species in natural nests were also the most common in trap-nests in the two forest habitats examined, with the exception of Melipona scutellaris Latreille. Swarms of higher numbers of species were captured in initial regeneration stage forests than in advanced regeneration stage areas, and differences in species compositions were significant between both habitats (p = 0.03); these apparent differences were not consistent, however, when considering richness (p = 0.14) and total abundance (p = 0.08). The present study suggests the existence of a minimum cavity size threshold of approximately 1 L for most local species of stingless bees and sustains the hypothesis of a mass effect of Tetragonisca angustula Latreille populations from surrounding disturbed habitats on the MER forest community in terms of propagule (swarm) pressure. Examining swarm densities with trap-nests can be a promising technique for comparative analyses of the carrying capacities of forest habitats for stingless bee colonies, as long as size thresholds of cavities for nesting

  5. Modelling food and population dynamics in honey bee colonies.

    PubMed

    Khoury, David S; Barron, Andrew B; Myerscough, Mary R

    2013-01-01

    Honey bees (Apis mellifera) are increasingly in demand as pollinators for various key agricultural food crops, but globally honey bee populations are in decline, and honey bee colony failure rates have increased. This scenario highlights a need to understand the conditions in which colonies flourish and in which colonies fail. To aid this investigation we present a compartment model of bee population dynamics to explore how food availability and bee death rates interact to determine colony growth and development. Our model uses simple differential equations to represent the transitions of eggs laid by the queen to brood, then hive bees and finally forager bees, and the process of social inhibition that regulates the rate at which hive bees begin to forage. We assume that food availability can influence both the number of brood successfully reared to adulthood and the rate at which bees transition from hive duties to foraging. The model predicts complex interactions between food availability and forager death rates in shaping colony fate. Low death rates and high food availability results in stable bee populations at equilibrium (with population size strongly determined by forager death rate) but consistently increasing food reserves. At higher death rates food stores in a colony settle at a finite equilibrium reflecting the balance of food collection and food use. When forager death rates exceed a critical threshold the colony fails but residual food remains. Our model presents a simple mathematical framework for exploring the interactions of food and forager mortality on colony fate, and provides the mathematical basis for more involved simulation models of hive performance.

  6. High Elevation Refugia for Bombus terricola (Hymenoptera: Apidae) Conservation and Wild Bees of the White Mountain National Forest

    PubMed Central

    Tucker, Erika M.

    2017-01-01

    Many wild bee species are in global decline, yet much is still unknown about their diversity and contemporary distributions. National parks and forests offer unique areas of refuge important for the conservation of rare and declining species populations. Here we present the results of the first biodiversity survey of the bee fauna in the White Mountain National Forest (WMNF). More than a thousand specimens were collected from pan and sweep samples representing 137 species. Three species were recorded for the first time in New England and an additional seven species were documented for the first time in the state of New Hampshire. Four introduced species were also observed in the specimens collected. A checklist of the species found in the WMNF, as well as those found previously in Strafford County, NH, is included with new state records and introduced species noted as well as a map of collecting locations. Of particular interest was the relatively high abundance of Bombus terricola Kirby 1837 found in many of the higher elevation collection sites and the single specimen documented of Bombus fervidus (Fabricius 1798). Both of these bumble bee species are known to have declining populations in the northeast and are categorized as vulnerable on the International Union for Conservation of Nature’s Red List. PMID:28130453

  7. Orchid Bee (Apidae: Euglossini) Communities in Atlantic Forest Remnants and Restored Areas in Paraná State, Brazil.

    PubMed

    Ferronato, M C F; Giangarelli, D C; Mazzaro, D; Uemura, N; Sofia, S H

    2018-06-01

    In this study, we compare orchid bee communities surveyed in four forest remnants of the Atlantic Forest and four reforested areas characterized by seasonal semi-deciduous forest vegetation in different successional stages (mature and secondary vegetation), located in southern Brazil. The sizes of forest remnants and reforested areas varied from 32.1 to 583.9 ha and from 11.3 to 33.3 ha, respectively. All reforested areas were located near one forest remnant. During samplings, totaling nine per study area, euglossine males were attracted to eight scent baits and captured with bait trap and entomological nets. Each forest remnant and its respective reforested area were sampled simultaneously by two collectors. We collected 435 males belonging to nine species of orchid bees distributed in four genera. The number of individuals and species did not differ significantly between different areas, except for a reforested area (size 33.3 ha), which was located far from its respective forest remnant. Our findings also revealed an apparent association between an orchid bee species (Euglossa annectans Dressler 1982) and the most preserved area surveyed in our study, suggesting that this bee is a potential indicator of good habitat quality in recuperating or preserved areas. Our results suggest that reforested habitats located near forest remnants have a higher probability of having reinstated their euglossine communities.

  8. High Elevation Refugia for Bombus terricola (Hymenoptera: Apidae) Conservation and Wild Bees of the White Mountain National Forest.

    PubMed

    Tucker, Erika M; Rehan, Sandra M

    2017-01-01

    Many wild bee species are in global decline, yet much is still unknown about their diversity and contemporary distributions. National parks and forests offer unique areas of refuge important for the conservation of rare and declining species populations. Here we present the results of the first biodiversity survey of the bee fauna in the White Mountain National Forest (WMNF). More than a thousand specimens were collected from pan and sweep samples representing 137 species. Three species were recorded for the first time in New England and an additional seven species were documented for the first time in the state of New Hampshire. Four introduced species were also observed in the specimens collected. A checklist of the species found in the WMNF, as well as those found previously in Strafford County, NH, is included with new state records and introduced species noted as well as a map of collecting locations. Of particular interest was the relatively high abundance of Bombus terricola Kirby 1837 found in many of the higher elevation collection sites and the single specimen documented of Bombus fervidus (Fabricius 1798). Both of these bumble bee species are known to have declining populations in the northeast and are categorized as vulnerable on the International Union for Conservation of Nature's Red List. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  9. Long-term ecology of euglossine orchid-bees (Apidae: Euglossini) in Panama.

    PubMed

    Roubik, D W; Ackerman, J D

    1987-09-01

    Abundance patterns during 6-7 years and orchid visitation were determined for 51 species of the 57 local euglossine bees. Male bees were counted at 3 chemical attractants presented in the same manner each month. Sites were separated by 75 km but included wet Atlantic forest at 500 m elevation, moist forest at 180 m near Barro Colorado Island, and cloud forest at 900 m near the Pacific ocean. 1. From 15 to 30 euglossine species of 4 genera were active in each month and site; monthly species number and general bee abundance were positively correlated. Many species had 3 annual abundance peaks (range 1-4) and were active throughout the year, but peak annual abundances rarely occurred during late wet or early dry seasons. In contrast, Eufriesea generally were present as adults only 1-2 months in a year. 2. Euglossine populations were exceptionally stable. Species at each site were more stable than any known insect population, and stability and abundance were positively associated. However, year-to-year population stability and the degree of seasonality were not correlated. Among the three sites, the more diverse (species rich) bee assemblages displayed lower stability; these were the wetter and upland sites. 3. The most abundant bees visited more orchid species. Eg. and El. each visited and average of 4 orchid species (range 0-13); Ex. and Ef. visited 0-3. Stable populations did not visit more or fewer orchid species than did unstable populations. 4. Less than 68% of species at each site visited orchid flowers; less than a few dozen of the 100-800 bees counted in a day carried orchid pollinaria. Over 20% of the euglossine species never were seen with pollinaria at any site and probably seldom visit orchids in central Panama. 5. Most bee species visited 1 or no fragrance orchids in a given habitat. Orchids tended to utilize common pollinators that seldom included more than 1 species, and they utilized stable or unstable, seasonal or aseasonal bees. However, the most

  10. Ecological adaptation of diverse honey bee (Apis mellifera) populations.

    PubMed

    Parker, Robert; Melathopoulos, Andony P; White, Rick; Pernal, Stephen F; Guarna, M Marta; Foster, Leonard J

    2010-06-15

    Honey bees are complex eusocial insects that provide a critical contribution to human agricultural food production. Their natural migration has selected for traits that increase fitness within geographical areas, but in parallel their domestication has selected for traits that enhance productivity and survival under local conditions. Elucidating the biochemical mechanisms of these local adaptive processes is a key goal of evolutionary biology. Proteomics provides tools unique among the major 'omics disciplines for identifying the mechanisms employed by an organism in adapting to environmental challenges. Through proteome profiling of adult honey bee midgut from geographically dispersed, domesticated populations combined with multiple parallel statistical treatments, the data presented here suggest some of the major cellular processes involved in adapting to different climates. These findings provide insight into the molecular underpinnings that may confer an advantage to honey bee populations. Significantly, the major energy-producing pathways of the mitochondria, the organelle most closely involved in heat production, were consistently higher in bees that had adapted to colder climates. In opposition, up-regulation of protein metabolism capacity, from biosynthesis to degradation, had been selected for in bees from warmer climates. Overall, our results present a proteomic interpretation of expression polymorphisms between honey bee ecotypes and provide insight into molecular aspects of local adaptation or selection with consequences for honey bee management and breeding. The implications of our findings extend beyond apiculture as they underscore the need to consider the interdependence of animal populations and their agro-ecological context.

  11. High Bee and Wasp Diversity in a Heterogeneous Tropical Farming System Compared to Protected Forest

    PubMed Central

    Schüepp, Christof; Rittiner, Sarah; Entling, Martin H.

    2012-01-01

    It is a globally important challenge to meet increasing demands for resources and, at the same time, protect biodiversity and ecosystem services. Farming is usually regarded as a major threat to biodiversity due to its expansion into natural areas. We compared biodiversity of bees and wasps between heterogeneous small-scale farming areas and protected forest in northern coastal Belize, Central America. Malaise traps operated for three months during the transition from wet to dry season. Farming areas consisted of a mosaic of mixed crop types, open habitat, secondary forest, and agroforestry. Mean species richness per site (alpha diversity), as well as spatial and temporal community variation (beta diversity) of bees and wasps were equal or higher in farming areas compared to protected forest. The higher species richness and community variation in farmland was due to additional species that did not occur in the forest, whereas most species trapped in forest were also found in farming areas. The overall regional species richness (gamma diversity) increased by 70% with the inclusion of farming areas. Our results suggest that small-scale farming systems adjacent to protected forest may not only conserve, but even favour, biodiversity of some taxonomic groups. We can, however, not exclude possible declines of bee and wasp diversity in more intensified farmland or in landscapes completely covered by heterogeneous farming systems. PMID:23300598

  12. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa.

    PubMed

    Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin

    2013-09-01

    Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted "mountain refugia hypothesis" states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity.

  13. Population genetics of commercial and feral honey bees in Western Australia.

    PubMed

    Chapman, Nadine C; Lim, Julianne; Oldroyd, Benjamin P

    2008-04-01

    Due to the introduction of exotic honey bee (Apis mellifera L.) diseases in the eastern states, the borders of the state of Western Australia were closed to the import of bees for breeding and other purposes > 25 yr ago. To provide genetically improved stock for the industry, a closed population breeding program was established that now provides stock for the majority of Western Australian beekeepers. Given concerns that inbreeding may have resulted from the closed population breeding structure, we assessed the genetic diversity within and between the breeding lines by using microsatellite and mitochondrial markers. We found that the breeding population still maintains considerable genetic diversity, despite 25 yr of selective breeding. We also investigated the genetic distance of the closed population breeding program to that of beekeepers outside of the program, and the feral Western Australian honey bee population. The feral population is genetically distinct from the closed population, but not from the genetic stock maintained by beekeepers outside of the program. The honey bees of Western Australia show three mitotypes, originating from two subspecies: Apis mellifera ligustica (mitotypes C1 and M7b) and Apis mellifera iberica (mitotype M6). Only mitotypes C1 and M6 are present in the commercial populations. The feral population contains all three mitotypes.

  14. High population variability and source-sink dynamics in a solitary bee species.

    PubMed

    Franzén, Markus; Nilsson, Sven G

    2013-06-01

    Although solitary bees are considered to play key roles in ecosystem functions, surprisingly few studies have explored their population dynamics. We investigated the population dynamics of a rare, declining, solitary bee (Andrena humilis) in a landscape of 80 km2 in southern Sweden from 2003 to 2011. Only one population was persistent throughout all years studied; most likely this population supplied the surrounding landscape with 11 smaller, temporary local populations. Despite stable pollen availability, the size of the persistent population fluctuated dramatically in a two-year cycle over the nine years, with 490-1230 nests in odd-numbered years and 21-48 nests in even-numbered years. These fluctuations were not significantly related to climatic variables or pollen availability. Nineteen colonization and 14 extinction events were recorded. Occupancy decreased with distance from the persistent population and increased with increasing resource (pollen) availability. There were significant positive correlations between the size of the persistent population and patch occupancy and colonization. Colonizations were generally more common in patches closer to the persistent population, whereas extinctions were independent of distance from the persistent population. Our results highlight the complex population dynamics that exist for this solitary bee species, which could be due to source-sink dynamics, a prolonged diapause, or can represent a bet-hedging strategy to avoid natural enemies and survive in small habitat patches. If large fluctuations in solitary bee populations prove to be widespread, it will have important implications for interpreting ecological relationships, bee conservation, and pollination.

  15. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa

    PubMed Central

    Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin

    2013-01-01

    Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted “mountain refugia hypothesis” states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity. PMID:24223262

  16. Genetic structure of Mount Huang honey bee (Apis cerana) populations: evidence from microsatellite polymorphism.

    PubMed

    Liu, Fang; Shi, Tengfei; Huang, Sisi; Yu, Linsheng; Bi, Shoudong

    2016-01-01

    The Mount Huang eastern honey bees ( Apis cerana ) are an endemic population, which is well adapted to the local agricultural and ecological environment. In this study, the genetic structure of seven eastern honey bees ( A. cerana ) populations from Mount Huang in China were analyzed by SSR (simple sequence repeat) markers. The results revealed that 16 pairs of primers used amplified a total of 143 alleles. The number of alleles per locus ranged from 6 to 13, with a mean value of 8.94 alleles per locus. Observed and expected heterozygosities showed mean values of 0.446 and 0.831 respectively. UPGMA cluster analysis grouped seven eastern honey bees in three groups. The results obtained show a high genetic diversity in the honey bee populations studied in Mount Huang, and high differentiation among all the populations, suggesting that scarce exchange of honey bee species happened in Mount Huang. Our study demonstrated that the Mount Huang honey bee populations still have a natural genome worth being protected for conservation.

  17. Among-population variation in microbial community structure in the floral nectar of the bee-pollinated forest herb Pulmonaria officinalis L.

    PubMed

    Jacquemyn, Hans; Lenaerts, Marijke; Brys, Rein; Willems, Kris; Honnay, Olivier; Lievens, Bart

    2013-01-01

    Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition. We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0-4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2-13) OTUs0.03 and 7.9 (range 2-16) OTUs0.01 per population were found for bacteria. Both for yeasts and bacteria, OTU richness was not significantly related to plant population size. Similarity in community composition among populations was low (average Jaccard index: 0.14), and did not decline with increasing distance between populations. We found low similarity in microbial community structure among populations, suggesting that the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation in microbial community structure in floral nectar require further study, our results indicate that both local and regional processes may contribute to among-population variation in microbial community structure in nectar.

  18. Oldest Varroa tolerant honey bee population provides insight into the origins of the global decline of honey bees

    PubMed Central

    Brettell, L. E.; Martin, S. J.

    2017-01-01

    The ecto-parasitic mite Varroa destructor has transformed the previously inconsequential Deformed Wing Virus (DWV) into the most important honey bee viral pathogen responsible for the death of millions of colonies worldwide. Naturally, DWV persists as a low level covert infection transmitted between nest-mates. It has long been speculated that Varroa via immunosuppression of the bees, activate a covert infection into an overt one. Here we show that despite Varroa feeding on a population of 20–40 colonies for over 30 years on the remote island of Fernando de Noronha, Brazil no such activation has occurred and DWV loads have remained at borderline levels of detection. This supports the alternative theory that for a new vector borne viral transmission cycle to start, an outbreak of an overt infection must first occur within the host. Therefore, we predict that this honey bee population is a ticking time-bomb, protected by its isolated position and small population size. This unique association between mite and bee persists due to the evolution of low Varroa reproduction rates. So the population is not adapted to tolerate Varroa and DWV, rather the viral quasispecies has simply not yet evolved the necessary mutations to produce a virulent variant. PMID:28393875

  19. Oldest Varroa tolerant honey bee population provides insight into the origins of the global decline of honey bees.

    PubMed

    Brettell, L E; Martin, S J

    2017-04-10

    The ecto-parasitic mite Varroa destructor has transformed the previously inconsequential Deformed Wing Virus (DWV) into the most important honey bee viral pathogen responsible for the death of millions of colonies worldwide. Naturally, DWV persists as a low level covert infection transmitted between nest-mates. It has long been speculated that Varroa via immunosuppression of the bees, activate a covert infection into an overt one. Here we show that despite Varroa feeding on a population of 20-40 colonies for over 30 years on the remote island of Fernando de Noronha, Brazil no such activation has occurred and DWV loads have remained at borderline levels of detection. This supports the alternative theory that for a new vector borne viral transmission cycle to start, an outbreak of an overt infection must first occur within the host. Therefore, we predict that this honey bee population is a ticking time-bomb, protected by its isolated position and small population size. This unique association between mite and bee persists due to the evolution of low Varroa reproduction rates. So the population is not adapted to tolerate Varroa and DWV, rather the viral quasispecies has simply not yet evolved the necessary mutations to produce a virulent variant.

  20. Genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations based on ISSR markers.

    PubMed

    Rahimi, A; Mirmoayedi, A; Kahrizi, D; Zarei, L; Jamali, S

    2016-04-30

    Honey bee is one of the most important insects considering its role in agriculture,ecology and economy as a whole. In this study, the genetic diversity of different Iranian honey bee populations was evaluated using inter simple sequence repeat (ISSR) markers. During May to September 2014, 108 young worker honey bees were collected from six different populations in 30 different geoclimatic locations from Golestan, Mazendaran, Guilan, West Azerbaijan, East Azerbaijan, Ardebil provinces of Iran. DNA was extracted from the worker honey bees. The quality and quantity of extracted DNA were measured. A set of ten primers were screened with the laboratory populations of honey bees. The number of fragments produced in the different honey bee populations varied from 3 to 10, varying within 150 to 1500 bp. The used ten ISSR primers generated 40 polymorphic fragments, and the average heterozygosity for each primer was 0.266. Maximum numbers of bands were recorded for primer A1. A dendrogram based on the Unweighted Pair Group Method with Arithmetic mean (UPGMA) method generated two sub-clusters. Honey bee populations of Golestan, Mazendaran, Guilan provinces were located in the first group. The second group included honey bee populations of Ardebil, West Azerbaijan, East Azerbaijan provinces, but this group showed a close relationship with other populations. The results showed obviously the ability of the ISSR marker technique to detect the genetic diversity among the honey bee populations.

  1. A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations

    PubMed Central

    Shi, Mang; Buchmann, Gabriele; Blacquière, Tjeerd; Beekman, Madeleine; Ashe, Alyson

    2017-01-01

    ABSTRACT Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees (Apis mellifera) has changed dramatically since the emergence of the parasitic mite Varroa destructor, which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa. This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales. Collapsing Varroa-infected colonies are often

  2. A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations.

    PubMed

    Remnant, Emily J; Shi, Mang; Buchmann, Gabriele; Blacquière, Tjeerd; Holmes, Edward C; Beekman, Madeleine; Ashe, Alyson

    2017-08-15

    Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees ( Apis mellifera ) has changed dramatically since the emergence of the parasitic mite Varroa destructor , which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales Collapsing Varroa -infected colonies are often overwhelmed

  3. How Bees Deter Elephants: Beehive Trials with Forest Elephants (Loxodonta africana cyclotis) in Gabon.

    PubMed

    Ngama, Steeve; Korte, Lisa; Bindelle, Jérôme; Vermeulen, Cédric; Poulsen, John R

    2016-01-01

    In Gabon, like elsewhere in Africa, crops are often sources of conflict between humans and wildlife. Wildlife damage to crops can drastically reduce income, amplifying poverty and creating a negative perception of wild animal conservation among rural people. In this context, crop-raiding animals like elephants quickly become "problem animals". To deter elephants from raiding crops beehives have been successfully employed in East Africa; however, this method has not yet been tested in Central Africa. We experimentally examined whether the presence of Apis mellifera adansonii, the African honey bee species present in Central Africa, deters forest elephants (Loxodonta Africana cyclotis) from feeding on fruit trees. We show for the first time that the effectiveness of beehives as deterrents of elephants is related to bee activity. Empty hives and those housing colonies of low bee activity do not deter elephants all the time; but beehives with high bee activity do. Although elephant disturbance of hives does not impede honey production, there is a tradeoff between deterrence and the quantity of honey produced. To best achieve the dual goals of deterring elephants and producing honey colonies must maintain an optimum activity level of 40 to 60 bee movements per minute. Thus, beehives colonized by Apis mellifera adansonii bees can be effective elephant deterrents, but people must actively manage hives to maintain bee colonies at the optimum activity level.

  4. How Bees Deter Elephants: Beehive Trials with Forest Elephants (Loxodonta africana cyclotis) in Gabon

    PubMed Central

    Ngama, Steeve; Korte, Lisa; Bindelle, Jérôme; Vermeulen, Cédric; Poulsen, John R.

    2016-01-01

    In Gabon, like elsewhere in Africa, crops are often sources of conflict between humans and wildlife. Wildlife damage to crops can drastically reduce income, amplifying poverty and creating a negative perception of wild animal conservation among rural people. In this context, crop-raiding animals like elephants quickly become “problem animals”. To deter elephants from raiding crops beehives have been successfully employed in East Africa; however, this method has not yet been tested in Central Africa. We experimentally examined whether the presence of Apis mellifera adansonii, the African honey bee species present in Central Africa, deters forest elephants (Loxodonta Africana cyclotis) from feeding on fruit trees. We show for the first time that the effectiveness of beehives as deterrents of elephants is related to bee activity. Empty hives and those housing colonies of low bee activity do not deter elephants all the time; but beehives with high bee activity do. Although elephant disturbance of hives does not impede honey production, there is a tradeoff between deterrence and the quantity of honey produced. To best achieve the dual goals of deterring elephants and producing honey colonies must maintain an optimum activity level of 40 to 60 bee movements per minute. Thus, beehives colonized by Apis mellifera adansonii bees can be effective elephant deterrents, but people must actively manage hives to maintain bee colonies at the optimum activity level. PMID:27196059

  5. Nesting habits influence population genetic structure of a bee living in anthropogenic disturbance.

    PubMed

    Vickruck, J L; Richards, M H

    2017-05-01

    While most organisms are negatively affected by anthropogenic disturbance, a few species thrive in landscapes altered by humans. Typically, native bees are negatively impacted by anthropogenic environmental change, including habitat alteration and climate change. Here, we investigate the population structure of the eastern carpenter bee Xylocopa virginica, a generalist pollinator with a broad geographic range spanning eastern North America. Eastern carpenter bees now nest almost exclusively in artificial wooden structures, linking their geographic distribution and population structure to human activities and disturbance. To investigate the population structure of these bees, we sampled females from 16 different populations from across their range. Nine species-specific microsatellite loci showed that almost all populations are genetically distinct, but with high levels of genetic diversity and low levels of inbreeding overall. Broadly speaking, populations clustered into three distinct genetic groups: a northern group, a western group and a core group. The northern group had low effective population sizes, decreased genetic variability and the highest levels of inbreeding in the data set, suggesting that carpenter bees may be expanding their range northward. The western group was genetically distinct, but lacked signals of a recent range expansion. Climatic data showed that summer and winter temperatures explained a significant amount of the genetic differentiation seen among populations, while precipitation did not. Our results indicate that X. virginica may be one of the rare 'anthrophilic' species that thrive in the face of anthropogenic disturbance. © 2017 John Wiley & Sons Ltd.

  6. Simulating a base population in honey bee for molecular genetic studies.

    PubMed

    Gupta, Pooja; Conrad, Tim; Spötter, Andreas; Reinsch, Norbert; Bienefeld, Kaspar

    2012-06-27

    Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ(2) statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r(2) values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to constitute a genomic

  7. Among-Population Variation in Microbial Community Structure in the Floral Nectar of the Bee-Pollinated Forest Herb Pulmonaria officinalis L

    PubMed Central

    Jacquemyn, Hans; Lenaerts, Marijke; Brys, Rein; Willems, Kris; Honnay, Olivier; Lievens, Bart

    2013-01-01

    Background Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition. Methodology/Principal Findings We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0–4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2–13) OTUs0.03 and 7.9 (range 2–16) OTUs0.01 per population were found for bacteria. Both for yeasts and bacteria, OTU richness was not significantly related to plant population size. Similarity in community composition among populations was low (average Jaccard index: 0.14), and did not decline with increasing distance between populations. Conclusions/Significance We found low similarity in microbial community structure among populations, suggesting that the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation in microbial community structure in floral nectar require further study, our results indicate that both local and regional processes may contribute to among-population variation in microbial community structure in nectar. PMID

  8. Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis.

    PubMed

    Davis, Emily S; Murray, Tomás E; Fitzpatrick, Una; Brown, Mark J F; Paxton, Robert J

    2010-11-01

    Globally, there is concern over the decline of bees, an ecologically important group of pollinating insects. Genetic studies provide insights into population structure that are crucial for conservation management but that would be impossible to obtain by conventional ecological methods. Yet conservation genetic studies of bees have primarily focussed on social species rather than the more species-rich solitary bees. Here, we investigate the population structure of Colletes floralis, a rare and threatened solitary mining bee, in Ireland and Scotland using nine microsatellite loci. Genetic diversity was surprisingly as high in Scottish (Hebridean island) populations at the extreme northwestern edge of the species range as in mainland Irish populations further south. Extremely high genetic differentiation among populations was detected; multilocus F(ST) was up to 0.53, and and D(est) were even higher (maximum: 0.85 and 1.00, respectively). A pattern of isolation by distance was evident for sites separated by land. Water appears to act as a substantial barrier to gene flow yet sites separated by sea did not exhibit isolation by distance. C. floralis populations are extremely isolated and probably not in regional migration-drift equilibrium. GIS-based landscape genetic analysis reveals urban areas as a potential and substantial barrier to gene flow. Our results highlight the need for urgent site-specific management action to halt the decline of this and potentially other rare solitary bees. © 2010 Blackwell Publishing Ltd.

  9. Genetic variability in captive populations of the stingless bee Tetragonisca angustula.

    PubMed

    Santiago, Leandro R; Francisco, Flávio O; Jaffé, Rodolfo; Arias, Maria C

    2016-08-01

    Low genetic variability has normally been considered a consequence of animal husbandry and a major contributing factor to declining bee populations. Here, we performed a molecular analysis of captive and wild populations of the stingless bee Tetragonisca angustula, one of the most commonly kept species across South America. Microsatellite analyses showed similar genetic variability between wild and captive populations However, captive populations showed lower mitochondrial genetic variability. Male-mediated gene flow, transport and division of nests are suggested as the most probable explanations for the observed patterns of genetic structure. We conclude that increasing the number of colonies kept through nest divisions does not negatively affect nuclear genetic variability, which seems to be maintained by small-scale male dispersal and human-mediated nest transport. However, the transport of nests from distant localities should be practiced with caution given the high genetic differentiation observed between samples from western and eastern areas. The high genetic structure verified is the result of a long-term evolutionary process, and bees from distant localities may represent unique evolutionary lineages.

  10. Intraspecific geographic variation of fragrances acquired by orchid bees in native and introduced populations.

    PubMed

    Ramírez, Santiago R; Eltz, Thomas; Fritzsch, Falko; Pemberton, Robert; Pringle, Elizabeth G; Tsutsui, Neil D

    2010-08-01

    Male orchid bees collect volatiles, from both floral and non-floral sources, that they expose as pheromone analogues (perfumes) during courtship display. The chemical profile of these perfumes, which includes terpenes and aromatic compounds, is both species-specific and divergent among closely related lineages. Thus, fragrance composition is thought to play an important role in prezygotic reproductive isolation in euglossine bees. However, because orchid bees acquire fragrances entirely from exogenous sources, the chemical composition of male perfumes is prone to variation due to environmental heterogeneity across habitats. We used Gas Chromatography/Mass Spectrometry (GC/MS) to characterize the perfumes of 114 individuals of the green orchid bee (Euglossa aff. viridissima) sampled from five native populations in Mesoamerica and two naturalized populations in the southeastern United States. We recorded a total of 292 fragrance compounds from hind-leg extracts, and found that overall perfume composition was different for each population. We detected a pronounced chemical dissimilarity between native (Mesoamerica) and naturalized (U.S.) populations that was driven both by proportional differences of common compounds as well as the presence of a few chemicals unique to each population group. Despite these differences, our data also revealed remarkable qualitative consistency in the presence of several major fragrance compounds across distant populations from dissimilar habitats. In addition, we demonstrate that naturalized bees are attracted to and collect large quantities of triclopyr 2-butoxyethyl ester, the active ingredient of several commercially available herbicides. By comparing incidence values and consistency indices across populations, we identify putative functional compounds that may play an important role in courtship signaling in this species of orchid bee.

  11. Landscape spatial configuration is a key driver of wild bee demographics.

    PubMed

    Neokosmidis, Lazaros; Tscheulin, Thomas; Devalez, Jelle; Petanidou, Theodora

    2018-02-01

    The majority of studies investigating the effects of landscape composition and configuration on bee populations have been conducted in regions of intensive agricultural production, ignoring regions which are dominated by seminatural habitats, such as the islands of the Aegean Archipelago. In addition, research so far has focused on the landscape impacts on bees sampled in cropped fields while the landscape effects on bees inhabiting seminatural habitats are understudied. Here, we investigate the impact of the landscape on wild bee assemblages in 66 phryganic (low scrubland) communities on 8 Aegean islands. We computed landscape metrics (total area and total perimeter-area ratio) in 4 concentric circles (250, 500, 750, and 1000 m) around the center of each bee sampling site including 3 habitat groups (namely phrygana, cultivated land, and natural forests). We further measured the local flower cover in 25 quadrats distributed randomly at the center of each sampling site. We found that the landscape scale is more important than the local scale in shaping abundance and species richness of bees. Furthermore, habitat configuration was more important than the total area of habitats, probably because it affects bees' movement across the landscape. Phrygana and natural forests had a positive effect on bee demographics, while cultivated land had a negative effect. This demonstrates that phryganic specialists drive bee assemblages in these seminatural landscapes. This finding, together with the shown importance of landscape scale, should be considered for the management of wild bees with special emphasis placed on the spatial configuration of seminatural habitats. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  12. Simulating a base population in honey bee for molecular genetic studies

    PubMed Central

    2012-01-01

    Background Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Results Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ2 statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r2 values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. Conclusion We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to

  13. Intraspecific Geographic Variation of Fragrances Acquired by Orchid Bees in Native and Introduced Populations

    PubMed Central

    Eltz, Thomas; Fritzsch, Falko; Pemberton, Robert; Pringle, Elizabeth G.; Tsutsui, Neil D.

    2010-01-01

    Male orchid bees collect volatiles, from both floral and non-floral sources, that they expose as pheromone analogues (perfumes) during courtship display. The chemical profile of these perfumes, which includes terpenes and aromatic compounds, is both species-specific and divergent among closely related lineages. Thus, fragrance composition is thought to play an important role in prezygotic reproductive isolation in euglossine bees. However, because orchid bees acquire fragrances entirely from exogenous sources, the chemical composition of male perfumes is prone to variation due to environmental heterogeneity across habitats. We used Gas Chromatography/Mass Spectrometry (GC/MS) to characterize the perfumes of 114 individuals of the green orchid bee (Euglossa aff. viridissima) sampled from five native populations in Mesoamerica and two naturalized populations in the southeastern United States. We recorded a total of 292 fragrance compounds from hind-leg extracts, and found that overall perfume composition was different for each population. We detected a pronounced chemical dissimilarity between native (Mesoamerica) and naturalized (U.S.) populations that was driven both by proportional differences of common compounds as well as the presence of a few chemicals unique to each population group. Despite these differences, our data also revealed remarkable qualitative consistency in the presence of several major fragrance compounds across distant populations from dissimilar habitats. In addition, we demonstrate that naturalized bees are attracted to and collect large quantities of triclopyr 2-butoxyethyl ester, the active ingredient of several commercially available herbicides. By comparing incidence values and consistency indices across populations, we identify putative functional compounds that may play an important role in courtship signaling in this species of orchid bee. Electronic supplementary material The online version of this article (doi:10.1007/s10886

  14. Genetic structure of the gentle Africanized honey bee population (gAHB) in Puerto Rico.

    PubMed

    Galindo-Cardona, Alberto; Acevedo-Gonzalez, Jenny P; Rivera-Marchand, Bert; Giray, Tugrul

    2013-08-06

    The Africanized honey bee is one of the most spectacular invasions in the Americas. African bees escaped from apiaries in Brazil in 1956, spread over Americas and by 1994 they were reported in Puerto Rico. In contrast to other places, the oceanic island conditions in Puerto Rico may mean a single introduction and different dynamics of the resident European and new-coming Africanized bees.To examine the genetic variation of honey bee feral populations and colonies from different locations in Puerto Rico, we used eight known polymorphic microsatellite loci. In Puerto Rico, gAHB population does not show any genetic structure (Fst = 0.0783), and is best described as one honey bee population, product of hybridization of AHB and EHB. The genetic variability in this Africanized population was similar to that reported in studies from Texas. We observed that European private allele frequencies are high in all but one locus. This contrasts with mainland Africanized populations, where European allele frequencies are diminished. Two loci with European private alleles, one on Linkage Group 7, known to carry two known defensiveness Quantitative Trait Loci (QTLs), and the other on Linkage Group 1, known to carry three functionally studied genes and 11 candidate genes associated with Varroa resistance mechanisms were respectively, significantly greater or lower in European allele frequency than the other loci with European private alleles. Genetic structure of Puerto Rico gAHB differs from mainland AHB populations, probably representing evolutionary processes on the island.

  15. Genetic structure of the gentle Africanized honey bee population (gAHB) in Puerto Rico

    PubMed Central

    2013-01-01

    Background The Africanized honey bee is one of the most spectacular invasions in the Americas. African bees escaped from apiaries in Brazil in 1956, spread over Americas and by 1994 they were reported in Puerto Rico. In contrast to other places, the oceanic island conditions in Puerto Rico may mean a single introduction and different dynamics of the resident European and new-coming Africanized bees. To examine the genetic variation of honey bee feral populations and colonies from different locations in Puerto Rico, we used eight known polymorphic microsatellite loci. Results In Puerto Rico, gAHB population does not show any genetic structure (Fst = 0.0783), and is best described as one honey bee population, product of hybridization of AHB and EHB. The genetic variability in this Africanized population was similar to that reported in studies from Texas. We observed that European private allele frequencies are high in all but one locus. This contrasts with mainland Africanized populations, where European allele frequencies are diminished. Two loci with European private alleles, one on Linkage Group 7, known to carry two known defensiveness Quantitative Trait Loci (QTLs), and the other on Linkage Group 1, known to carry three functionally studied genes and 11 candidate genes associated with Varroa resistance mechanisms were respectively, significantly greater or lower in European allele frequency than the other loci with European private alleles. Conclusions Genetic structure of Puerto Rico gAHB differs from mainland AHB populations, probably representing evolutionary processes on the island. PMID:23915100

  16. Sudden deaths and colony population decline in Greek honey bee colonies.

    PubMed

    Bacandritsos, N; Granato, A; Budge, G; Papanastasiou, I; Roinioti, E; Caldon, M; Falcaro, C; Gallina, A; Mutinelli, F

    2010-11-01

    During June and July of 2009, sudden deaths, tremulous movements and population declines of adult honey bees were reported by the beekeepers in the region of Peloponnesus (Mt. Mainalo), Greece. A preliminary study was carried out to investigate these unexplained phenomena in this region. In total, 37 bee samples, two brood frames containing honey bee brood of various ages, eight sugar samples and four sugar patties were collected from the affected colonies. The samples were tested for a range of pests, pathogens and pesticides. Symptomatic adult honey bees tested positive for Varroa destructor, Nosema ceranae, Chronic bee paralysis virus (CBPV), Acute paralysis virus (ABPV), Deformed wing virus (DWV), Sacbrood virus (SBV) and Black queen cell virus (BQCV), but negative for Acarapis woodi. American Foulbrood was absent from the brood samples. Chemical analysis revealed that amitraz, thiametoxan, clothianidin and acetamiprid were all absent from symptomatic adult bees, sugar and sugar patty samples. However, some bee samples, were contaminated with imidacloprid in concentrations between 14 ng/g and 39 ng/g tissue. We present: the infection of Greek honey bees by multiple viruses; the presence of N. ceranae in Greek honey bees and the first record of imidacloprid (neonicotonoid) residues in Greek honey bee tissues. The presence of multiple pathogens and pesticides made it difficult to associate a single specific cause to the depopulation phenomena observed in Greece, although we believe that viruses and N. ceranae synergistically played the most important role. A follow-up in-depth survey across all Greek regions is required to provide context to these preliminary findings. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Impact of managed honey bee viruses on wild bees.

    PubMed

    Tehel, Anja; Brown, Mark Jf; Paxton, Robert J

    2016-08-01

    Several viruses found in the Western honey bee (Apis mellifera) have recently been detected in other bee species, raising the possibility of spill-over from managed to wild bee species. Alternatively, these viruses may be shared generalists across flower-visiting insects. Here we explore the former hypothesis, pointing out weaknesses in the current evidence, particularly in relation to deformed wing virus (DWV), and highlighting research areas that may help test it. Data so far suggest that DWV spills over from managed to wild bee species and has the potential to cause population decline. That DWV and other viruses of A. mellifera are found in other bee species needs to be considered for the sustainable management of bee populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The population genetics of a solitary oligolectic sweat bee, Lasioglossum (Sphecodogastra) oenotherae (Hymenoptera: Halictidae).

    PubMed

    Zayed, A; Packer, L

    2007-10-01

    Strong evidence exists for global declines in pollinator populations. Data on the population genetics of solitary bees, especially diet specialists, are generally lacking. We studied the population genetics of the oligolectic bee Lasioglossum oenotherae, a specialist on the pollen of evening primrose (Onagraceae), by genotyping 455 females from 15 populations across the bee's North American range at six hyper-variable microsatellite loci. We found significant levels of genetic differentiation between populations, even at small geographic scales, as well as significant patterns of isolation by distance. However, using multilocus genotype assignment tests, we detected 11 first-generation migrants indicating that L. oenotherae's sub-populations are experiencing ongoing gene flow. Southern populations of L. oenotherae were significantly more likely to deviate from Hardy-Weinberg equilibrium and from genotypic equilibrium, suggesting regional differences in gene flow and/or drift and inbreeding. Short-term N(e) estimated using temporal changes in allele frequencies in several populations ranged from approximately 223 to 960. We discuss our findings in terms of the conservation genetics of specialist pollinators, a group of considerable ecological importance.

  19. Field populations of native Indian honey bees from pesticide intensive agricultural landscape show signs of impaired olfaction

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba

    2015-07-01

    Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress.

  20. Field populations of native Indian honey bees from pesticide intensive agricultural landscape show signs of impaired olfaction

    PubMed Central

    Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba

    2015-01-01

    Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress. PMID:26212690

  1. Population demography of Australian feral bees (Apis mellifera).

    PubMed

    Oldroyd, B P; Thexton, E G; Lawler, S H; Crozier, R H

    1997-07-01

    Honey-bees are widespread as feral animals in Australia. Their impact on Australian ecosystems is difficult to assess, but may include competition with native fauna for floral resources or nesting sites, or inadequate or inappropriate pollination of native flora. In this 3-year study we examined the demography of the feral bee population in the riparian woodland of Wyperfeld National Park in north-west Victoria. The population is very large but varied considerably in size (50-150 colonies/km 2 ) during the study period (1992-1995). The expected colony lifespan for an established colony is 6.6 years, that for a founder colony (new swarm), 2.7 years. The population is expected to be stable if each colony produces 0.75 swarms per year, which is less than the number predicted on the basis of other studies (2-3 swarms/colony per year). Therefore, the population has considerable capacity for increase. Most colony deaths occurred in the summer, possibly due to high temperatures and lack of water. Colonies showed considerable spatial aggregation, agreeing with earlier findings. When all colonies were eradicated from two 5-ha sites, the average rate of re-occupation was 15 colonies/km 2 per year. Ten swarms of commercial origin were released and were found to have similar survival rates to founder colonies. However, the feral population is self-sustaining, and does not require immigration from the domestic population.

  2. Population dynamics of Varroa destructor (Acari: Varroidae) in commercial honey bee colonies and implications for control

    USDA-ARS?s Scientific Manuscript database

    Treatment schedules to maintain low levels of Varroa mites in honey bee colonies were tested in hives started from either package bees or splits of larger colonies. The schedules were developed based on predictions of Varroa population growth generated from a mathematical model of honey bee colony ...

  3. Impacts of neonicotinoid use on long-term population changes in wild bees in England.

    PubMed

    Woodcock, Ben A; Isaac, Nicholas J B; Bullock, James M; Roy, David B; Garthwaite, David G; Crowe, Andrew; Pywell, Richard F

    2016-08-16

    Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines.

  4. Impacts of neonicotinoid use on long-term population changes in wild bees in England

    NASA Astrophysics Data System (ADS)

    Woodcock, Ben A.; Isaac, Nicholas J. B.; Bullock, James M.; Roy, David B.; Garthwaite, David G.; Crowe, Andrew; Pywell, Richard F.

    2016-08-01

    Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines.

  5. Impacts of neonicotinoid use on long-term population changes in wild bees in England

    PubMed Central

    Woodcock, Ben A.; Isaac, Nicholas J. B.; Bullock, James M.; Roy, David B.; Garthwaite, David G.; Crowe, Andrew; Pywell, Richard F.

    2016-01-01

    Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines. PMID:27529661

  6. Diversity and Phenology of Wild Bees in a Highly Disturbed Tropical Dry Forest "Desierto de la Tatacoa", Huila-Colombia.

    PubMed

    Poveda-Coronel, C A; Riaño-Jiménez, D; Cure, J R

    2018-01-12

    Colombian tropical dry forest is considered the most endangered tropical biome due to anthropic activities. Desierto de la Tatacoa (DsT) is an example of high disturbed tropical dry forest which still maintains a high biodiversity. The objective of the study was to record the diversity and phenology of wild bees in this place by monthly sampling between December 2014 and December 2016 in a 9-km 2 area. During the study, there was a prolonged El Niño-Southern Oscillation period. Bees were collected by entomological nets, malaise traps, eugenol scent trapping, and nest traps. Shannon index was calculated to estimate diversity and Simpson index to determine dominance of a species. The effect of environmental conditions (wet and dry season) in richness and abundance was analyzed by paired T tests. A total of 3004 bee specimens were collected, belonging to 80 species from Apidae, Megachilidae, Halictidae, and Colletidae. Apidae was the most diverse. Shannon index value was 2.973 (discarding Apis mellifera Linnaeus 1758 data); thus, DsT can be considered as a zone of high wild bee diversity. Dry and rainy season showed differences in diversity (p < 0.05). Rainy season showed larger blooming periods and higher bee diversity than dry season. In both seasons, social species were dominant (e.g., A. mellifera or Trigona fulviventris Guérin 1844). Although DsT is a highly disturbed ecosystem, this study found it has the second highest number of genera and the fourth highest number of species reported in Colombia.

  7. Population structuring of the ubiquitous stingless bee Tetragonisca angustula in southern Brazil as revealed by microsatellite and mitochondrial markers.

    PubMed

    Francisco, Flávio O; Santiago, Leandro R; Mizusawa, Yuri M; Oldroyd, Benjamin P; Arias, Maria C

    2017-10-01

    Tetragonisca angustula is one of the most widespread stingless bees in the Neotropics. This species swarms frequently and is extremely successful in urban environments. In addition, it is one of the most popular stingless bee species for beekeeping in Latin America, so nest transportation and trading is common. Nest transportation can change the genetic structure of the host population, reducing inbreeding and increasing homogenization. Here, we evaluate the genetic structure of 17 geographic populations of T. angustula in southern Brazil to quantify the level of genetic differentiation between populations. Analyses were conducted on partially sequenced mitochondrial genes and 11 microsatellite loci of 1002 workers from 457 sites distributed on the mainland and on 3 islands. Our results show that T. angustula populations are highly differentiated as demonstrated by mitochondrial DNA (mtDNA) and microsatellite markers. Of 73 haplotypes, 67 were population-specific. MtDNA diversity was low in 9 populations but microsatellite diversity was moderate to high in all populations. Microsatellite data suggest 10 genetic clusters and low level of gene flow throughout the studied area. However, physical barriers, such as rivers and mountain ranges, or the presence or absence of forest appear to be unrelated to population clusters. Factors such as low dispersal, different ecological conditions, and isolation by distance are most likely shaping the population structure of this species. Thus far, nest transportation has not influenced the general population structure in the studied area. However, due to the genetic structure we found, we recommend that nest transportation should only occur within and between populations that are genetically similar. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  8. Using Ecological Niche Models and Niche Analyses to Understand Speciation Patterns: The Case of Sister Neotropical Orchid Bees

    PubMed Central

    Silva, Daniel P.; Vilela, Bruno; De Marco, Paulo; Nemésio, André

    2014-01-01

    The role of past connections between the two major South American forested biomes on current species distribution has been recognized a long time ago. Climatic oscillations that further separated these biomes have promoted parapatric speciation, in which many species had their continuous distribution split, giving rise to different but related species (i.e., different potential distributions and realized niche features). The distribution of many sister species of orchid bees follow this pattern. Here, using ecological niche models and niche analyses, we (1) tested the role of ecological niche differentiation on the divergence between sister orchid-bees (genera Eulaema and Eufriesea) from the Amazon and Atlantic forests, and (2) highlighted interesting areas for new surveys. Amazonian species occupied different realized niches than their Atlantic sister species. Conversely, species of sympatric but distantly related Eulaema bees occupied similar realized niches. Amazonian species had a wide potential distribution in South America, whereas Atlantic Forest species were more limited to the eastern coast of the continent. Additionally, we identified several areas in need of future surveys. Our results show that the realized niche of Atlantic-Amazonian sister species of orchid bees, which have been previously treated as allopatric populations of three species, had limited niche overlap and similarity. These findings agree with their current taxonomy, which treats each of those populations as distinct valid species. PMID:25422941

  9. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them.

    PubMed

    Vanengelsdorp, Dennis; Meixner, Marina Doris

    2010-01-01

    Honey bees are a highly valued resource around the world. They are prized for their honey and wax production and depended upon for pollination of many important crops. While globally honey bee populations have been increasing, the rate of increase is not keeping pace with demand. Further, honey bee populations have not been increasing in all parts of the world, and have declined in many nations in Europe and in North America. Managed honey bee populations are influenced by many factors including diseases, parasites, pesticides, the environment, and socio-economic factors. These factors can act alone or in combination with each other. This review highlights the present day value of honey bees, followed by a detailed description of some of the historical and present day factors that influence honey bee populations, with particular emphasis on colony populations in Europe and the United States. Copyright 2009 Elsevier Inc. All rights reserved.

  10. Patterns of orchid bee species diversity and turnover among forested plateaus of central Amazonia

    PubMed Central

    Machado, Carolina de Barros; Galetti, Pedro Manoel; Oliveira, Marcio; Dirzo, Rodolfo; Fernandes, Geraldo Wilson

    2017-01-01

    The knowledge of spatial pattern and geographic beta-diversity is of great importance for biodiversity conservation and interpreting ecological information. Tropical forests, especially the Amazon Rainforest, are well known for their high species richness and low similarity in species composition between sites, both at local and regional scales. We aimed to determine the effect and relative importance of area, isolation and climate on species richness and turnover in orchid bee assemblages among plateaus in central Brazilian Amazonia. Variance partitioning techniques were applied to assess the relative effects of spatial and environmental variables on bee species richness, phylogeny and composition. We hypothesized that greater abundance and richness of orchid bees would be found on larger plateaus, with a set of core species occurring on all of them. We also hypothesized that smaller plateaus would possess lower phylogenetic diversity. We found 55 bee species distributed along the nine sampling sites (plateaus) with 17 of them being singletons. There was a significant decrease in species richness with decreasing size of plateaus, and a significant decrease in the similarity in species composition with greater distance and climatic variation among sampling sites. Phylogenetic diversity varied among the sampling sites but was directly related to species richness. Although not significantly related to plateau area, smaller or larger PDFaith were observed in the smallest and the largest plateaus, respectively. PMID:28410432

  11. Patterns of orchid bee species diversity and turnover among forested plateaus of central Amazonia.

    PubMed

    Antonini, Yasmine; Machado, Carolina de Barros; Galetti, Pedro Manoel; Oliveira, Marcio; Dirzo, Rodolfo; Fernandes, Geraldo Wilson

    2017-01-01

    The knowledge of spatial pattern and geographic beta-diversity is of great importance for biodiversity conservation and interpreting ecological information. Tropical forests, especially the Amazon Rainforest, are well known for their high species richness and low similarity in species composition between sites, both at local and regional scales. We aimed to determine the effect and relative importance of area, isolation and climate on species richness and turnover in orchid bee assemblages among plateaus in central Brazilian Amazonia. Variance partitioning techniques were applied to assess the relative effects of spatial and environmental variables on bee species richness, phylogeny and composition. We hypothesized that greater abundance and richness of orchid bees would be found on larger plateaus, with a set of core species occurring on all of them. We also hypothesized that smaller plateaus would possess lower phylogenetic diversity. We found 55 bee species distributed along the nine sampling sites (plateaus) with 17 of them being singletons. There was a significant decrease in species richness with decreasing size of plateaus, and a significant decrease in the similarity in species composition with greater distance and climatic variation among sampling sites. Phylogenetic diversity varied among the sampling sites but was directly related to species richness. Although not significantly related to plateau area, smaller or larger PDFaith were observed in the smallest and the largest plateaus, respectively.

  12. A survey of cavity-nesting bees and wasps in loblolly pine stands of the Savannah River Site, Aiken County, South Carolina.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, S.; Hanula, J., L.

    2004-03-10

    Horn, Scott, and James L. Hanula. 2004. A survey of cavity-nesting bees and wasps in loblolly pine stands of the Savannah River Site, Aiken County, South Carolina. 39(3): 464-469. Abstract: In recent years concern over widespread losses in biodiversity has grown to include a possible decline of many native pollinators, primarily bees. Factors such as habitat fragmentation, agricultural practices, use of pesticides, the introduction of invasive species, or changes in land use may negatively impact these vital organisims. Most reported studies show that human impacts on pollinators are overwhelmingly negative. Reductions in pollinator populations may profoundly impact plant population dynamicsmore » and ecosystem function. Little baseline data exists on the diversity and relative abundance of bees and wasps in southern forests. The objective of this study was to develop a simple, effective method of surveying cavity-nesting bees and wasps and to determine species diversity in mature forests of loblolly pine, the most widely planted tree species in the southern United States.« less

  13. Nest Suitability, Fine-Scale Population Structure and Male-Mediated Dispersal of a Solitary Ground Nesting Bee in an Urban Landscape

    PubMed Central

    López-Uribe, Margarita M.; Morreale, Stephen J.; Santiago, Christine K.; Danforth, Bryan N.

    2015-01-01

    Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei’s GST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for

  14. Nest suitability, fine-scale population structure and male-mediated dispersal of a solitary ground nesting bee in an urban landscape.

    PubMed

    López-Uribe, Margarita M; Morreale, Stephen J; Santiago, Christine K; Danforth, Bryan N

    2015-01-01

    Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei's GST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for enhancing

  15. Native bees and plant pollination

    USGS Publications Warehouse

    Ginsberg, H.S.

    2004-01-01

    Bees are important pollinators, but evidence suggests that numbers of some species are declining. Decreases have been documented in the honey bee, Apis mellifera (which was introduced to North America), but there are no monitoring programs for the vast majority of native species, so we cannot be sure about the extent of this problem. Recent efforts to develop standardized protocols for bee sampling will help us collect the data needed to assess trends in bee populations. Unfortunately, diversity of bee life cycles and phenologies, and the large number of rare species, make it difficult to assess trends in bee faunas. Changes in bee populations can affect plant reproduction, which can influence plant population density and cover, thus potentially modifying horizontal and vertical structure of a community, microclimate near the ground, patterns of nitrogen deposition, etc. These potential effects of changes in pollination patterns have not been assessed in natural communities. Effects of management actions on bees and other pollinators should be considered in conservation planning.

  16. The endangered Iris atropurpurea (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators.

    PubMed

    Watts, Stella; Sapir, Yuval; Segal, Bosmat; Dafni, Amots

    2013-03-01

    The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented. Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated. The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal-low deposition pollinators, whereas honey-bees were high removal-low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas. Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside reserves, where the bulk of Oncocyclus iris species are

  17. Habitat fragmentation effects on the orchid bee communities in remnant forests of southeastern Brazil.

    PubMed

    Knoll, Fátima do Rosário Naschenveng; Penatti, N C

    2012-10-01

    The effect of habitat fragmentation on the structure of orchid bee communities was analyzed by the investigation of the existence of a spatial structure in the richness and abundance of Euglossini species and by determining the relationship between these data and environmental factors. The surveys were carried out in four different forest fragments and one university campus. Richness, abundance, and diversity of species were analyzed in relation to abiotic (size of the area, extent of the perimeter, perimeter/area ratio, and shape index) and biotic characteristics (vegetation index of the fragment and of the matrix of each of the locations studied). We observed a highly significant positive correlation between the diversity index and the vegetation index of the fragment, landscape and shape index. Our analysis demonstrated that the observed variation could be explained mainly by the vegetation index and the size of the fragment. Variations in relative abundance showed a tendency toward an aggregated spatial distribution between the fragments studied, as well as between the sampling stations within the same habitat, demonstrating the existence of a spatial structure on a small scale in the populations of Euglossini. This distribution will determine the composition of species that coexist in the area after fragmentation. These data help in understanding the differences and similarities in the structure of communities of Euglossini resulting from forest fragmentation.

  18. Evaluation of the Distribution and Impacts of Parasites, Pathogens, and Pesticides on Honey Bee (Apis mellifera) Populations in East Africa

    PubMed Central

    Frazier, James; Torto, Baldwyn; Baumgarten, Tracey; Kilonzo, Joseph; Kimani, James Ng'ang'a; Mumoki, Fiona; Masiga, Daniel; Tumlinson, James; Grozinger, Christina

    2014-01-01

    In East Africa, honey bees (Apis mellifera) provide critical pollination services and income for small-holder farmers and rural families. While honey bee populations in North America and Europe are in decline, little is known about the status of honey bee populations in Africa. We initiated a nationwide survey encompassing 24 locations across Kenya in 2010 to evaluate the numbers and sizes of honey bee colonies, assess the presence of parasites (Varroa mites and Nosema microsporidia) and viruses, identify and quantify pesticide contaminants in hives, and assay for levels of hygienic behavior. Varroa mites were present throughout Kenya, except in the remote north. Levels of Varroa were positively correlated with elevation, suggesting that environmental factors may play a role in honey bee host-parasite interactions. Levels of Varroa were negatively correlated with levels of hygienic behavior: however, while Varroa infestation dramatically reduces honey bee colony survival in the US and Europe, in Kenya Varroa presence alone does not appear to impact colony size. Nosema apis was found at three sites along the coast and one interior site. Only a small number of pesticides at low concentrations were found. Of the seven common US/European honey bee viruses, only three were identified but, like Varroa, were absent from northern Kenya. The number of viruses present was positively correlated with Varroa levels, but was not correlated with colony size or hygienic behavior. Our results suggest that Varroa, the three viruses, and Nosema have been relatively recently introduced into Kenya, but these factors do not yet appear to be impacting Kenyan bee populations. Thus chemical control for Varroa and Nosema are not necessary for Kenyan bees at this time. This study provides baseline data for future analyses of the possible mechanisms underlying resistance to and the long-term impacts of these factors on African bee populations. PMID:24740399

  19. Evaluation of the distribution and impacts of parasites, pathogens, and pesticides on honey bee (Apis mellifera) populations in East Africa.

    PubMed

    Muli, Elliud; Patch, Harland; Frazier, Maryann; Frazier, James; Torto, Baldwyn; Baumgarten, Tracey; Kilonzo, Joseph; Kimani, James Ng'ang'a; Mumoki, Fiona; Masiga, Daniel; Tumlinson, James; Grozinger, Christina

    2014-01-01

    In East Africa, honey bees (Apis mellifera) provide critical pollination services and income for small-holder farmers and rural families. While honey bee populations in North America and Europe are in decline, little is known about the status of honey bee populations in Africa. We initiated a nationwide survey encompassing 24 locations across Kenya in 2010 to evaluate the numbers and sizes of honey bee colonies, assess the presence of parasites (Varroa mites and Nosema microsporidia) and viruses, identify and quantify pesticide contaminants in hives, and assay for levels of hygienic behavior. Varroa mites were present throughout Kenya, except in the remote north. Levels of Varroa were positively correlated with elevation, suggesting that environmental factors may play a role in honey bee host-parasite interactions. Levels of Varroa were negatively correlated with levels of hygienic behavior: however, while Varroa infestation dramatically reduces honey bee colony survival in the US and Europe, in Kenya Varroa presence alone does not appear to impact colony size. Nosema apis was found at three sites along the coast and one interior site. Only a small number of pesticides at low concentrations were found. Of the seven common US/European honey bee viruses, only three were identified but, like Varroa, were absent from northern Kenya. The number of viruses present was positively correlated with Varroa levels, but was not correlated with colony size or hygienic behavior. Our results suggest that Varroa, the three viruses, and Nosema have been relatively recently introduced into Kenya, but these factors do not yet appear to be impacting Kenyan bee populations. Thus chemical control for Varroa and Nosema are not necessary for Kenyan bees at this time. This study provides baseline data for future analyses of the possible mechanisms underlying resistance to and the long-term impacts of these factors on African bee populations.

  20. The endangered Iris atropurpurea (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators

    PubMed Central

    Watts, Stella; Sapir, Yuval; Segal, Bosmat; Dafni, Amots

    2013-01-01

    Background and Aims The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented. Methods Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated. Key Results The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal–low deposition pollinators, whereas honey-bees were high removal–low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas. Conclusions Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside

  1. Wild bees enhance honey bees' pollination of hybrid sunflower.

    PubMed

    Greenleaf, Sarah S; Kremen, Claire

    2006-09-12

    Pollinators are required for producing 15-30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages.

  2. Bidirectional Transfer of RNAi between Honey Bee and Varroa destructor: Varroa Gene Silencing Reduces Varroa Population

    PubMed Central

    Kalev, Haim; Shafir, Sharoni; Sela, Ilan

    2012-01-01

    The mite Varroa destructor is an obligatory ectoparasite of the honey bee (Apis mellifera) and is one of the major threats to apiculture worldwide. We previously reported that honey bees fed on double-stranded RNA (dsRNA) with a sequence homologous to that of the Israeli acute paralysis virus are protected from the viral disease. Here we show that dsRNA ingested by bees is transferred to the Varroa mite and from mite on to a parasitized bee. This cross-species, reciprocal exchange of dsRNA between bee and Varroa engendered targeted gene silencing in the latter, and resulted in an over 60% decrease in the mite population. Thus, transfer of gene-silencing-triggering molecules between this invertebrate host and its ectoparasite could lead to a conceptually novel approach to Varroa control. PMID:23308063

  3. [Relationships of bee population fluctuation and distribution with natural environment in Anhui province].

    PubMed

    Yu, Linsheng; Zou, Yunding; Bi, Shoudong; Wu, Houzhang; Cao, Yifeng

    2006-08-01

    In 2002 to approximately 2004, an investigation was made on the bee population dynamics and its relationships with the ecological environment in four ecological regions of Anhui Province. The results indicated that in the mountainous areas of south and west Anhui, there were 46 and 37 species of nectariferous plants, and the distribution density of Apis cerena cerena population was 2.01 and 1.95 colony x km(-2), respectively. In Jianghuai area and Huaibei plain, there were 17 and 12 species of nectariferous plants, which had concentrated and short flowering period and fitted for Apis mellifera Ligustica oysterring and producing, and the distribution density of Apis cerena cerena population was 0. 06 and 0. 02 colony x km(-2), respectively. Bee population fluctuation and distribution was affected by wasp predation. The breeding proportion of Apis cerena cerena to local apis population was 41.5%, 36.8%, 3.1% and 1.1%, and that of Apis mellifera Ligustica was 58.5%, 63.2%, 96.9% and 98.9% in the mountainous areas of south and west Anhui, Jianghuai area, and Huaibei plain, respectively.

  4. Climate change: impact on honey bee populations and diseases.

    PubMed

    Le Conte, Y; Navajas, M

    2008-08-01

    The European honey bee, Apis mellifera, is the most economically valuable pollinator of agricultural crops worldwide. Bees are also crucial in maintaining biodiversity by pollinating numerous plant species whose fertilisation requires an obligatory pollinator. Apis mellifera is a species that has shown great adaptive potential, as it is found almost everywhere in the world and in highly diverse climates. In a context of climate change, the variability of the honey bee's life-history traits as regards temperature and the environment shows that the species possesses such plasticity and genetic variability that this could give rise to the selection of development cycles suited to new environmental conditions. Although we do not know the precise impact of potential environmental changes on honey bees as a result of climate change, there is a large body of data at our disposal indicating that environmental changes have a direct influence on honey bee development. In this article, the authors examine the potential impact of climate change on honey bee behaviour, physiology and distribution, as well as on the evolution of the honey bee's interaction with diseases. Conservation measures will be needed to prevent the loss of this rich genetic diversity of honey bees and to preserve ecotypes that are so valuable for world biodiversity.

  5. Assessing Wild Bee Biodiversity in Cranberry Agroenvironments: Influence of Natural Habitats.

    PubMed

    Gervais, Amélie; Fournier, Valérie; Sheffield, Cory S; Chagnon, Madeleine

    2017-08-01

    The conservation of bee populations for pollination in agricultural landscapes has attracted a lot of recent research interest, especially for crop industries undergoing expansion to meet increased production demands. In Canada, much growth has been occurring with commercial cranberry production, a field crop which is largely dependent on bee pollination. Wild bee pollinators could be negatively impacted by losses of natural habitat surrounding cranberry fields to accommodate increased production, but growers have little insight on how to manage their lands to maximize the presence of wild bees. Here, we described a 2-yr study where bee diversity and species composition were investigated to better understand the dynamic between natural habitat and cranberry fields. Bees were sampled using pan-traps and hand netting both within cranberry fields and in one of the three adjacent natural habitat types once a week during the crop flowering period. We found that bee community composition among cranberry fields did not differ based on the respective adjacent habitat type, but fields bordered by meadows were marginally less diverse than fields bordered by forest. As one would expect, field and natural habitat communities differed in terms of species composition and species richness. There was no evidence that one type of natural habitat was more favorable for the bees than another. Future agrobiodiversity studies should simultaneously examine bee diversity comprised in both crop fields and adjacent natural environments to better understand the species dynamics essential to the preservation of pollination services. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Two extended haplotype blocks are associated with adaptation to high altitude habitats in East African honey bees

    PubMed Central

    Schöning, Caspar

    2017-01-01

    Understanding the genetic basis of adaption is a central task in biology. Populations of the honey bee Apis mellifera that inhabit the mountain forests of East Africa differ in behavior and morphology from those inhabiting the surrounding lowland savannahs, which likely reflects adaptation to these habitats. We performed whole genome sequencing on 39 samples of highland and lowland bees from two pairs of populations to determine their evolutionary affinities and identify the genetic basis of these putative adaptations. We find that in general, levels of genetic differentiation between highland and lowland populations are very low, consistent with them being a single panmictic population. However, we identify two loci on chromosomes 7 and 9, each several hundred kilobases in length, which exhibit near fixation for different haplotypes between highland and lowland populations. The highland haplotypes at these loci are extremely rare in samples from the rest of the world. Patterns of segregation of genetic variants suggest that recombination between haplotypes at each locus is suppressed, indicating that they comprise independent structural variants. The haplotype on chromosome 7 harbors nearly all octopamine receptor genes in the honey bee genome. These have a role in learning and foraging behavior in honey bees and are strong candidates for adaptation to highland habitats. Molecular analysis of a putative breakpoint indicates that it may disrupt the coding sequence of one of these genes. Divergence between the highland and lowland haplotypes at both loci is extremely high suggesting that they are ancient balanced polymorphisms that greatly predate divergence between the extant honey bee subspecies. PMID:28542163

  7. Honey bee hemocyte profiling by flow cytometry.

    PubMed

    Marringa, William J; Krueger, Michael J; Burritt, Nancy L; Burritt, James B

    2014-01-01

    Multiple stress factors in honey bees are causing loss of bee colonies worldwide. Several infectious agents of bees are believed to contribute to this problem. The mechanisms of honey bee immunity are not completely understood, in part due to limited information about the types and abundances of hemocytes that help bees resist disease. Our study utilized flow cytometry and microscopy to examine populations of hemolymph particulates in honey bees. We found bee hemolymph includes permeabilized cells, plasmatocytes, and acellular objects that resemble microparticles, listed in order of increasing abundance. The permeabilized cells and plasmatocytes showed unexpected differences with respect to properties of the plasma membrane and labeling with annexin V. Both permeabilized cells and plasmatocytes failed to show measurable mitochondrial membrane potential by flow cytometry using the JC-1 probe. Our results suggest hemolymph particulate populations are dynamic, revealing significant differences when comparing individual hive members, and when comparing colonies exposed to diverse conditions. Shifts in hemocyte populations in bees likely represent changing conditions or metabolic differences of colony members. A better understanding of hemocyte profiles may provide insight into physiological responses of honey bees to stress factors, some of which may be related to colony failure.

  8. Honey Bee Hemocyte Profiling by Flow Cytometry

    PubMed Central

    Marringa, William J.; Krueger, Michael J.; Burritt, Nancy L.; Burritt, James B.

    2014-01-01

    Multiple stress factors in honey bees are causing loss of bee colonies worldwide. Several infectious agents of bees are believed to contribute to this problem. The mechanisms of honey bee immunity are not completely understood, in part due to limited information about the types and abundances of hemocytes that help bees resist disease. Our study utilized flow cytometry and microscopy to examine populations of hemolymph particulates in honey bees. We found bee hemolymph includes permeabilized cells, plasmatocytes, and acellular objects that resemble microparticles, listed in order of increasing abundance. The permeabilized cells and plasmatocytes showed unexpected differences with respect to properties of the plasma membrane and labeling with annexin V. Both permeabilized cells and plasmatocytes failed to show measurable mitochondrial membrane potential by flow cytometry using the JC-1 probe. Our results suggest hemolymph particulate populations are dynamic, revealing significant differences when comparing individual hive members, and when comparing colonies exposed to diverse conditions. Shifts in hemocyte populations in bees likely represent changing conditions or metabolic differences of colony members. A better understanding of hemocyte profiles may provide insight into physiological responses of honey bees to stress factors, some of which may be related to colony failure. PMID:25285798

  9. Climate change likely to reduce orchid bee abundance even in climatic suitable sites.

    PubMed

    Faleiro, Frederico Valtuille; Nemésio, André; Loyola, Rafael

    2018-06-01

    Studies have tested whether model predictions based on species' occurrence can predict the spatial pattern of population abundance. The relationship between predicted environmental suitability and population abundance varies in shape, strength and predictive power. However, little attention has been paid to the congruence in predictions of different models fed with occurrence or abundance data, in particular when comparing metrics of climate change impact. Here, we used the ecological niche modeling fit with presence-absence and abundance data of orchid bees to predict the effect of climate change on species and assembly level distribution patterns. In addition, we assessed whether predictions of presence-absence models can be used as a proxy to abundance patterns. We obtained georeferenced abundance data of orchid bees (Hymenoptera: Apidae: Euglossina) in the Brazilian Atlantic Forest. Sampling method consisted in attracting male orchid bees to baits of at least five different aromatic compounds and collecting the individuals with entomological nets or bait traps. We limited abundance data to those obtained by similar standard sampling protocol to avoid bias in abundance estimation. We used boosted regression trees to model ecological niches and project them into six climate models and two Representative Concentration Pathways. We found that models based on species occurrences worked as a proxy for changes in population abundance when the output of the models were continuous; results were very different when outputs were discretized to binary predictions. We found an overall trend of diminishing abundance in the future, but a clear retention of climatically suitable sites too. Furthermore, geographic distance to gained climatic suitable areas can be very short, although it embraces great variation. Changes in species richness and turnover would be concentrated in western and southern Atlantic Forest. Our findings offer support to the ongoing debate of suitability

  10. Direct benefits and indirect costs of warm temperatures for high-elevation populations of a solitary bee.

    PubMed

    Forrest, Jessica R K; Chisholm, Sarah P M

    2017-02-01

    Warm temperatures are required for insect flight. Consequently, warming could benefit many high-latitude and high-altitude insects by increasing opportunities for foraging or oviposition. However, warming can also alter species interactions, including interactions with natural enemies, making the net effect of rising temperatures on population growth rate difficult to predict. We investigated the temperature-dependence of nesting activity and lifetime reproductive output over 3 yr in subalpine populations of a pollen-specialist bee, Osmia iridis. Rates of nest provisioning increased with ambient temperatures and with availability of floral resources, as expected. However, warmer conditions did not increase lifetime reproductive output. Lifetime offspring production was best explained by rates of brood parasitism (by the wasp Sapyga), which increased with temperature. Direct observations of bee and parasite activity suggest that although activity of both species is favored by warmer temperatures, bees can be active at lower ambient temperatures, while wasps are active only at higher temperatures. Thus, direct benefits to the bees of warmer temperatures were nullified by indirect costs associated with increased parasite activity. To date, most studies of climate-change effects on pollinators have focused on changing interactions between pollinators and their floral host-plants (i.e., bottom-up processes). Our results suggest that natural enemies (i.e., top-down forces) can play a key role in pollinator population regulation and should not be overlooked in forecasts of pollinator responses to climate change. © 2016 by the Ecological Society of America.

  11. Removing an invasive shrub (Chinese privet) increases native bee diversity and abundance in riparian forests of the southeastern United States

    Treesearch

    James L. Hanula; Scott Horn

    2011-01-01

    1. Chinese privet (Ligustrum sinense Lour.) was removed from riparian forests in the Piedmont of Georgia in November 2005 by mulching with a track-mounted mulching machine or by chainsaw felling. The remaining privet in the herbaceous layer was killed with herbicide in December 2006. 2. Bee (Hymentoptera: Apoidea) abundance, diversity and community similarity in the...

  12. Spatio-temporal Genetic Structure of a Tropical Bee Species Suggests High Dispersal Over a Fragmented Landscape.

    PubMed

    Suni, Sevan S; Bronstein, Judith L; Brosi, Berry J

    2014-03-01

    Habitat destruction threatens biodiversity by reducing the amount of available resources and connectivity among geographic areas. For organisms living in fragmented habitats, population persistence may depend on dispersal, which maintains gene flow among fragments and can prevent inbreeding within them. It is centrally important to understand patterns of dispersal for bees living in fragmented areas given the importance of pollination systems and recently documented declines in bee populations. We used population and landscape genetic techniques to characterize patterns of dispersal over a large fragmented area in southern Costa Rica for the orchid bee species Euglossa championi . First, we estimated levels of genetic differentiation among forest fragments as φ pt , an analog to the traditional summary statistic F st , as well as two statistics that may more adequately represent levels of differentiation, G ' st and D est . Second, we used a Bayesian approach to determine the number and composition of genetic groups in our sample. Third we investigated how genetic differentiation changes with distance. Fourth, we determined the extent to which deforested areas restrict dispersal. Finally, we estimated the extent to which there were temporal differences in allele frequencies within the same forest fragments. Within years we found low levels of differentiation even over 80 km, and no effect of land use type on level of genetic differentiation. However, we found significant genetic differentiation between years. Taken together our results suggest that there are high levels of gene flow over this geographic area, and that individuals show low site fidelity over time.

  13. Large-Range Movements of Neotropical Orchid Bees Observed via Radio Telemetry

    PubMed Central

    Wikelski, Martin; Moxley, Jerry; Eaton-Mordas, Alexander; López-Uribe, Margarita M.; Holland, Richard; Moskowitz, David; Roubik, David W.; Kays, Roland

    2010-01-01

    Neotropical orchid bees (Euglossini) are often cited as classic examples of trapline-foragers with potentially extensive foraging ranges. If long-distance movements are habitual, rare plants in widely scattered locations may benefit from euglossine pollination services. Here we report the first successful use of micro radio telemetry to track the movement of an insect pollinator in a complex and forested environment. Our results indicate that individual male orchid bees (Exaerete frontalis) habitually use large rainforest areas (at least 42–115 ha) on a daily basis. Aerial telemetry located individuals up to 5 km away from their core areas, and bees were often stationary, for variable periods, between flights to successive localities. These data suggest a higher degree of site fidelity than what may be expected in a free living male bee, and has implications for our understanding of biological activity patterns and the evolution of forest pollinators. PMID:20520813

  14. The conservation and restoration of wild bees.

    PubMed

    Winfree, Rachael

    2010-05-01

    Bees pollinate most of the world's wild plant species and provide economically valuable pollination services to crops; yet knowledge of bee conservation biology lags far behind other taxa such as vertebrates and plants. There are few long-term data on bee populations, which makes their conservation status difficult to assess. The best-studied groups are the genus Bombus (the bumble bees), and bees in the EU generally; both of these are clearly declining. However, it is not known to what extent these groups represent the approximately 20,000 species of bees globally. As is the case for insects in general, bees are underrepresented in conservation planning and protection efforts. For example, only two bee species are on the global IUCN Red List, and no bee is listed under the U.S. Endangered Species Act, even though many bee species are known to be in steep decline or possibly extinct. At present, bee restoration occurs mainly in agricultural contexts, funded by government programs such as agri-environment schemes (EU) and the Farm Bill (USA). This is a promising approach given that many bee species can use human-disturbed habitats, and bees provide valuable pollination services to crops. However, agricultural restorations only benefit species that persist in agricultural landscapes, and they are more expensive than preserving natural habitat elsewhere. Furthermore, such restorations benefit bees in only about half of studied cases. More research is greatly needed in many areas of bee conservation, including basic population biology, bee restoration in nonagricultural contexts, and the identification of disturbance-sensitive bee species.

  15. Genome-wide analysis of signatures of selection in populations of African honey bees (Apis mellifera) using new web-based tools.

    PubMed

    Fuller, Zachary L; Niño, Elina L; Patch, Harland M; Bedoya-Reina, Oscar C; Baumgarten, Tracey; Muli, Elliud; Mumoki, Fiona; Ratan, Aakrosh; McGraw, John; Frazier, Maryann; Masiga, Daniel; Schuster, Stephen; Grozinger, Christina M; Miller, Webb

    2015-07-10

    With the development of inexpensive, high-throughput sequencing technologies, it has become feasible to examine questions related to population genetics and molecular evolution of non-model species in their ecological contexts on a genome-wide scale. Here, we employed a newly developed suite of integrated, web-based programs to examine population dynamics and signatures of selection across the genome using several well-established tests, including F ST, pN/pS, and McDonald-Kreitman. We applied these techniques to study populations of honey bees (Apis mellifera) in East Africa. In Kenya, there are several described A. mellifera subspecies, which are thought to be localized to distinct ecological regions. We performed whole genome sequencing of 11 worker honey bees from apiaries distributed throughout Kenya and identified 3.6 million putative single-nucleotide polymorphisms. The dense coverage allowed us to apply several computational procedures to study population structure and the evolutionary relationships among the populations, and to detect signs of adaptive evolution across the genome. While there is considerable gene flow among the sampled populations, there are clear distinctions between populations from the northern desert region and those from the temperate, savannah region. We identified several genes showing population genetic patterns consistent with positive selection within African bee populations, and between these populations and European A. mellifera or Asian Apis florea. These results lay the groundwork for future studies of adaptive ecological evolution in honey bees, and demonstrate the use of new, freely available web-based tools and workflows ( http://usegalaxy.org/r/kenyanbee ) that can be applied to any model system with genomic information.

  16. Colonies of Bumble Bees (Bombus impatiens) Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure.

    PubMed

    Bernauer, Olivia M; Gaines-Day, Hannah R; Steffan, Shawn A

    2015-06-01

    Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens). Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems.

  17. Decline and conservation of bumble bees.

    PubMed

    Goulson, D; Lye, G C; Darvill, B

    2008-01-01

    Declines in bumble bee species in the past 60 years are well documented in Europe, where they are driven primarily by habitat loss and declines in floral abundance and diversity resulting from agricultural intensification. Impacts of habitat degradation and fragmentation are likely to be compounded by the social nature of bumble bees and their largely monogamous breeding system, which renders their effective population size low. Hence, populations are susceptible to stochastic extinction events and inbreeding. In North America, catastrophic declines of some bumble bee species since the 1990s are probably attributable to the accidental introduction of a nonnative parasite from Europe, a result of global trade in domesticated bumble bee colonies used for pollination of greenhouse crops. Given the importance of bumble bees as pollinators of crops and wildflowers, steps must be taken to prevent further declines. Suggested measures include tight regulation of commercial bumble bee use and targeted use of environmentally comparable schemes to enhance floristic diversity in agricultural landscapes.

  18. Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources.

    PubMed

    Thomson, Diane M

    2016-10-01

    Time series of abundances are critical for understanding how abiotic factors and species interactions affect population dynamics, but are rarely linked with experiments and also scarce for bee pollinators. This gap is important given concerns about declines in some bee species. I monitored honey bee (Apis mellifera) and bumble bee (Bombus spp.) foragers in coastal California from 1999, when feral A. mellifera populations were low due to Varroa destructor, until 2014. Apis mellifera increased substantially, except between 2006 and 2011, coinciding with declines in managed populations. Increases in A. mellifera strongly correlated with declines in Bombus and reduced diet overlap between them, suggesting resource competition consistent with past experimental results. Lower Bombus numbers also correlated with diminished floral resources. Declines in floral abundances were associated with drought and reduced spring rainfall. These results illustrate how competition with an introduced species may interact with climate to drive local decline of native pollinators. © 2016 John Wiley & Sons Ltd/CNRS.

  19. Field Populations of Wild Apis cerana Honey Bees Exhibit Increased Genetic Diversity Under Pesticide Stress Along an Agricultural Intensification Gradient in Eastern India.

    PubMed

    Chakrabarti, Priyadarshini; Sarkar, Sagartirtha; Basu, Parthiba

    2018-05-01

    Pesticides have been reported to be one of the major drivers in the global pollinator losses. The large-scale decline in honey bees, an important pollinator group, has resulted in comprehensive studies on honey bee colonies. Lack of information on native wild pollinators has paved the way for this study, which highlights the underlying evolutionary changes occurring in the wild honey bee populations exposed to pesticides along an agricultural intensification landscape. The study reports an increased genetic diversity in native Apis cerana Fabricius (Hymenoptera: Apidae) populations continually exposed to pesticide stress. An increased heterozygosity, evidenced by a higher electrophoretic banding pattern, was observed in the pesticide-exposed populations for two isozymes involved with xenobiotic metabolism-esterase and glucose-6-phosphate dehydrogenase. Differential banding patterns also revealed a higher percentage of polymorphic loci, number of polymorphic bands, Nei's genetic distance, etc. observed in these populations in the Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) experiments using three random decamer primers. Higher heterozygosity, being indicative of a more resistant population, implies population survival within the threshold pesticide stress. This study reports such changes for the first time in native wild Indian honey bee populations exposed to pesticides and has far-reaching implications on the population adaptability under pesticide stress.

  20. Persistence of subclinical deformed wing virus infections in honeybees following Varroa mite removal and a bee population turnover

    PubMed Central

    Semberg, Emilia; Forsgren, Eva; de Miranda, Joachim R.

    2017-01-01

    Deformed wing virus (DWV) is a lethal virus of honeybees (Apis mellifera) implicated in elevated colony mortality rates worldwide and facilitated through vector transmission by the ectoparasitic mite Varroa destructor. Clinical, symptomatic DWV infections are almost exclusively associated with high virus titres during pupal development, usually acquired through feeding by Varroa mites when reproducing on bee pupae. Control of the mite population, generally through acaricide treatment, is essential for breaking the DWV epidemic and minimizing colony losses. In this study, we evaluated the effectiveness of remedial mite control on clearing DWV from a colony. DWV titres in adult bees and pupae were monitored at 2 week intervals through summer and autumn in acaricide-treated and untreated colonies. The DWV titres in Apistan treated colonies was reduced 1000-fold relative to untreated colonies, which coincided with both the removal of mites and also a turnover of the bee population in the colony. This adult bee population turnover is probably more critical than previously realized for effective clearing of DWV infections. After this initial reduction, subclinical DWV titres persisted and even increased again gradually during autumn, demonstrating that alternative non-Varroa transmission routes can maintain the DWV titres at significant subclinical levels even after mite removal. The implications of these results for practical recommendations to mitigate deleterious subclinical DWV infections and improving honeybee health management are discussed. PMID:28686725

  1. Floral Resource Competition Between Honey Bees and Wild Bees: Is There Clear Evidence and Can We Guide Management and Conservation?

    PubMed

    Wojcik, Victoria A; Morandin, Lora A; Davies Adams, Laurie; Rourke, Kelly E

    2018-06-05

    Supporting managed honey bees by pasturing in natural landscapes has come under review due to concerns that honey bees could negatively impact the survival of wild bees through competition for floral resources. Critique and assessment of the existing body of published literature against our criteria focussing on studies that can support best management resulted in 19 experimental papers. Indirect measures of competition examining foraging patterns and behavior yielded equivocal results. Direct measures of reproduction and growth were investigated in only seven studies, with six indicating negative impacts to wild bees from the presence of managed honey bees. Three of these studies examined fitness impacts to BombusLatreille and all three indicated reduced growth or reduced reproductive output. Because there is a severe lack of literature, yet potential that honey bee presence could negatively impact wild bees, exemplified with bumble bee studies, we advocate for further research into the fitness impacts of competition between managed and wild pollinators. Conservative approaches should be taken with respect to pasturing honey bees on natural lands with sensitive bumble bee populations. Correspondingly, forage opportunities for honey bees in managed, agricultural landscapes, should be increased in an effort to reduce potential pressure and infringement on wild bee populations in natural areas.

  2. Artificial bee colony algorithm with dynamic multi-population

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Ji, Zhicheng; Wang, Yan

    2017-07-01

    To improve the convergence rate and make a balance between the global search and local turning abilities, this paper proposes a decentralized form of artificial bee colony (ABC) algorithm with dynamic multi-populations by means of fuzzy C-means (FCM) clustering. Each subpopulation periodically enlarges with the same size during the search process, and the overlapping individuals among different subareas work for delivering information acting as exploring the search space with diffusion of solutions. Moreover, a Gaussian-based search equation with redefined local attractor is proposed to further accelerate the diffusion of the best solution and guide the search towards potential areas. Experimental results on a set of benchmarks demonstrate the competitive performance of our proposed approach.

  3. A stingless bee can use visual odometry to estimate both height and distance.

    PubMed

    Eckles, M A; Roubik, D W; Nieh, J C

    2012-09-15

    Bees move and forage within three dimensions and rely heavily on vision for navigation. The use of vision-based odometry has been studied extensively in horizontal distance measurement, but not vertical distance measurement. The honey bee Apis mellifera and the stingless bee Melipona seminigra measure distance visually using optic flow-movement of images as they pass across the retina. The honey bees gauge height using image motion in the ventral visual field. The stingless bees forage at different tropical forest canopy levels, ranging up to 40 m at our site. Thus, estimating height would be advantageous. We provide the first evidence that the stingless bee Melipona panamica utilizes optic flow information to gauge not only distance traveled but also height above ground, by processing information primarily from the lateral visual field. After training bees to forage at a set height in a vertical tunnel lined with black and white stripes, we observed foragers that explored a new tunnel with no feeder. In a new tunnel, bees searched at the same height they were trained to. In a narrower tunnel, bees experienced more image motion and significantly lowered their search height. In a wider tunnel, bees experienced less image motion and searched at significantly greater heights. In a tunnel without optic cues, bees were disoriented and searched at random heights. A horizontal tunnel testing these variables similarly affected foraging, but bees exhibited less precision (greater variance in search positions). Accurately gauging flight height above ground may be crucial for this species and others that compete for resources located at heights ranging from ground level to the high tropical forest canopies.

  4. Effects of infection on honey bee population dynamics: a model.

    PubMed

    Betti, Matt I; Wahl, Lindi M; Zamir, Mair

    2014-01-01

    We propose a model that combines the dynamics of the spread of disease within a bee colony with the underlying demographic dynamics of the colony to determine the ultimate fate of the colony under different scenarios. The model suggests that key factors in the survival or collapse of a honey bee colony in the face of an infection are the rate of transmission of the infection and the disease-induced death rate. An increase in the disease-induced death rate, which can be thought of as an increase in the severity of the disease, may actually help the colony overcome the disease and survive through winter. By contrast, an increase in the transmission rate, which means that bees are being infected at an earlier age, has a drastic deleterious effect. Another important finding relates to the timing of infection in relation to the onset of winter, indicating that in a time interval of approximately 20 days before the onset of winter the colony is most affected by the onset of infection. The results suggest further that the age of recruitment of hive bees to foraging duties is a good early marker for the survival or collapse of a honey bee colony in the face of infection, which is consistent with experimental evidence but the model provides insight into the underlying mechanisms. The most important result of the study is a clear distinction between an exposure of the honey bee colony to an environmental hazard such as pesticides or insecticides, or an exposure to an infectious disease. The results indicate unequivocally that in the scenarios that we have examined, and perhaps more generally, an infectious disease is far more hazardous to the survival of a bee colony than an environmental hazard that causes an equal death rate in foraging bees.

  5. Effects of Infection on Honey Bee Population Dynamics: A Model

    PubMed Central

    Betti, Matt I.; Wahl, Lindi M.; Zamir, Mair

    2014-01-01

    We propose a model that combines the dynamics of the spread of disease within a bee colony with the underlying demographic dynamics of the colony to determine the ultimate fate of the colony under different scenarios. The model suggests that key factors in the survival or collapse of a honey bee colony in the face of an infection are the rate of transmission of the infection and the disease-induced death rate. An increase in the disease-induced death rate, which can be thought of as an increase in the severity of the disease, may actually help the colony overcome the disease and survive through winter. By contrast, an increase in the transmission rate, which means that bees are being infected at an earlier age, has a drastic deleterious effect. Another important finding relates to the timing of infection in relation to the onset of winter, indicating that in a time interval of approximately 20 days before the onset of winter the colony is most affected by the onset of infection. The results suggest further that the age of recruitment of hive bees to foraging duties is a good early marker for the survival or collapse of a honey bee colony in the face of infection, which is consistent with experimental evidence but the model provides insight into the underlying mechanisms. The most important result of the study is a clear distinction between an exposure of the honey bee colony to an environmental hazard such as pesticides or insecticides, or an exposure to an infectious disease. The results indicate unequivocally that in the scenarios that we have examined, and perhaps more generally, an infectious disease is far more hazardous to the survival of a bee colony than an environmental hazard that causes an equal death rate in foraging bees. PMID:25329468

  6. Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies

    PubMed Central

    Betti, Matthew; LeClair, Josh; Wahl, Lindi M.; Zamir, Mair

    2017-01-01

    We present a model and associated simulation package (www.beeplusplus.ca) to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites) have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++) and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers. PMID:28287445

  7. Genetic diversity and differentiation among insular honey bee populations in the southwest Indian Ocean likely reflect old geographical isolation and modern introductions.

    PubMed

    Techer, Maéva Angélique; Clémencet, Johanna; Simiand, Christophe; Turpin, Patrick; Garnery, Lionel; Reynaud, Bernard; Delatte, Hélène

    2017-01-01

    With globalization the Western honey bee has become a nearly cosmopolitan species, but it was originally restricted to the Old World. This renowned model of biodiversity has diverged into five evolutionary lineages and several geographic "subspecies." If Apis mellifera unicolor is indubitably an African subspecies endemic to Madagascar, its relationship with honey bees from three archipelagos in the southwest Indian Ocean (SWIO) hotspot of biodiversity is misunderstood. We compared recent mtDNA diversity data to an original characterization of the nuclear diversity from honey bees in the Mascarenes and Comoros archipelagos, using 14 microsatellites, but also additional mtDNA tRNALeu-cox2 analysis. Our sampling offers the most comprehensive dataset for the SWIO populations with a total of 3,270 colonies from 10 islands compared with 855 samples from Madagascar, 113 from Africa, and 138 from Europe. Comprehensive mitochondrial screening confirmed that honey bees from La Réunion, Mauritius, and Comoros archipelagos are mainly of African origin (88.1% out of 2,746 colonies) and that coexistence with European lineages occurs only in the Mascarenes. PCA, Bayesian, and genetic differentiation analysis showed that African colonies are not significantly distinct on each island, but have diversified among islands and archipelagos. FST levels progressively decreased in significance from European and African continental populations, to SWIO insular and continental populations, and finally among islands from the same archipelago. Among African populations, Madagascar shared a nuclear background with and was most closely related to SWIO island populations (except Rodrigues). Only Mauritius Island presented clear cytoplasmic disequilibrium and genetic structure characteristic of an admixed population undergoing hybridization, in this case, between A. m. unicolor and A. m. ligustica, A. m. carnica and A. m. mellifera-like individuals. Finally, global genetic clustering analysis

  8. Genetic diversity and differentiation among insular honey bee populations in the southwest Indian Ocean likely reflect old geographical isolation and modern introductions

    PubMed Central

    Clémencet, Johanna; Simiand, Christophe; Turpin, Patrick; Garnery, Lionel; Reynaud, Bernard; Delatte, Hélène

    2017-01-01

    With globalization the Western honey bee has become a nearly cosmopolitan species, but it was originally restricted to the Old World. This renowned model of biodiversity has diverged into five evolutionary lineages and several geographic “subspecies.” If Apis mellifera unicolor is indubitably an African subspecies endemic to Madagascar, its relationship with honey bees from three archipelagos in the southwest Indian Ocean (SWIO) hotspot of biodiversity is misunderstood. We compared recent mtDNA diversity data to an original characterization of the nuclear diversity from honey bees in the Mascarenes and Comoros archipelagos, using 14 microsatellites, but also additional mtDNA tRNALeu-cox2 analysis. Our sampling offers the most comprehensive dataset for the SWIO populations with a total of 3,270 colonies from 10 islands compared with 855 samples from Madagascar, 113 from Africa, and 138 from Europe. Comprehensive mitochondrial screening confirmed that honey bees from La Réunion, Mauritius, and Comoros archipelagos are mainly of African origin (88.1% out of 2,746 colonies) and that coexistence with European lineages occurs only in the Mascarenes. PCA, Bayesian, and genetic differentiation analysis showed that African colonies are not significantly distinct on each island, but have diversified among islands and archipelagos. FST levels progressively decreased in significance from European and African continental populations, to SWIO insular and continental populations, and finally among islands from the same archipelago. Among African populations, Madagascar shared a nuclear background with and was most closely related to SWIO island populations (except Rodrigues). Only Mauritius Island presented clear cytoplasmic disequilibrium and genetic structure characteristic of an admixed population undergoing hybridization, in this case, between A. m. unicolor and A. m. ligustica, A. m. carnica and A. m. mellifera-like individuals. Finally, global genetic clustering

  9. Influence of landscape context on the abundance and diversity of bees in Mediterranean olive groves.

    PubMed

    Tscheulin, T; Neokosmidis, L; Petanidou, T; Settele, J

    2011-10-01

    The diversity and abundance of wild bees ensures the delivery of pollination services and the maintenance of ecosystem diversity. As previous studies carried out in Central Europe and the US have shown, bee diversity and abundance is influenced by the structure and the composition of the surrounding landscape. Comparable studies have so far not been carried out in the Mediterranean region. The present study examines the influence of Mediterranean landscape context on the diversity and abundance of wild bees. To do this, we sampled bees in 13 sites in olive groves on Lesvos Island, Greece. Bees were assigned to five categories consisting of three body size groups (small, medium and large bees), the single most abundant bee species (Lasioglossum marginatum) and all species combined. The influence of the landscape context on bee abundance and species richness was assessed at five radii (250, 500, 750, 1000 and 1250 m) from the centre of each site. We found that the abundance within bee groups was influenced differently by different landscape parameters and land covers, whereas species richness was unaffected. Generally, smaller bees' abundance was impacted by landscape parameters at smaller scales and larger bees at larger scales. The land cover that influenced bee abundance positively was olive grove, while phrygana, conifer forest, broad-leaved forest, cultivated land, rock, urban areas and sea had mostly negative or no impact. We stress the need for a holistic approach, including all land covers, when assessing the effects of landscape context on bee diversity and abundance in the Mediterranean.

  10. The orchid-bee faunas (Hymenoptera: Apidae) of "Reserva Ecológica Michelin", "RPPN Serra Bonita" and one Atlantic Forest remnant in the state of Bahia, Brazil, with new geographic records.

    PubMed

    Nemésio, A

    2014-02-01

    The orchid bee faunas of two private natural preserves, 'Reserva Particular do Patrimônio Natural da Serra Bonita' (RSB) and 'Reserva Ecológica Michelin' (REM), and a forest fragment inside the campus of the 'Universidade Estadual de Santa Cruz', were surveyed for the first time. All three areas constitute Atlantic Forest remnants in the southern portion of the state of Bahia, Brazil. A total of 1,782 males belonging to 32 species were actively collected with insect nets during 90 hours of field work from November, 2009, to January, 2012. Euglossa cyanochlora Moure, 1996-one of the rarest orchid bee species-was found at RSB and REM, the latter representing the northernmost record for this species. Euglossa cognata, Moure, 1970 was found at RSB, the northernmost record for this species in the Atlantic Forest and the only recent record for this species at the northern border of Jequitinhonha river.

  11. Dietary traces of neonicotinoid pesticides as a cause of population declines in honey bees: an evaluation by Hill's epidemiological criteria.

    PubMed

    Cresswell, James E; Desneux, Nicolas; vanEngelsdorp, Dennis

    2012-06-01

    Honey bees are important pollinators of both crops and wild plants. Pesticide regimes that threaten their sustainability should therefore be assessed. As an example, evidence that the agricultural use of neonicotinoid pesticides is a cause of the recently observed declines in honey bees is examined. The aim is to define exacting demographic conditions for a detrimental factor to precipitate a population decline, and Hill's epidemiological 'causality criteria' are employed as a structured process for making an expert judgement about the proposition that trace dietary neonicotinoids in nectar and pollen cause population declines in honey bees. In spite of the absence of decisive experimental results, the analysis shows that, while the proposition is a substantially justified conjecture in the context of current knowledge, it is also substantially contraindicated by a wide variety of circumstantial epidemiological evidence. It is concluded that dietary neonicotinoids cannot be implicated in honey bee declines, but this position is provisional because important gaps remain in current knowledge. Avenues for further investigations to resolve this longstanding uncertainty are therefore identified. Copyright © 2012 Society of Chemical Industry.

  12. Bee community as a source of energy in the production of food, honey-plants in the ecosystem of Croatian Forests' hunting grounds.

    PubMed

    Tucak, Zvonimir; Beuk, Darko; Jumić, Vlado; Tusek, Tatjana; Vladimir-Knezević, Sanda; Tolusić, Zdravko; Skrivanko, Mario; Konjarović, Anastazija; Aladić, Krunoslav; Cupurdija, Edita

    2009-12-01

    In addition to the process of photosynthesis, the bee community is the main source of energy in food production, honey-plants used by game and people in the hunting grounds ecosystem. It is a well-known fact that thousands of plant species depend on the presence of bee communities (pollination, fertilization). In this paper we studied the presence of the bee community in the hunting grounds of Croatian Forests, and their influence on the number of game (wild pigs), as well as the quality of honey, honey plants in the hunting grounds used by people and game. We established the total number of game (wild boars). The honey quality parameters were determined using the Harmonised methods of the European Honey (Bogdanov et al., 1997) and the pollen analysis by were conducted according to Harmonised methods of melissopalynology (Von der Ohe et al., 2004). Research results indicate that the presence of the bee community influences the number of wild boars from 3-18%, and the quality of honey is in line with the European and world standards. The SAS/STAT package was used for the statistical analysis (SAS Institute Inc., 2000). The significance of the differences among the groups was determined by Duncan test.

  13. The effects of dietary protein levels on the population growth, performance, and physiology of honey bee workers during early spring.

    PubMed

    Zheng, Benle; Wu, Zaifu; Xu, Baohua

    2014-01-01

    This study was conducted to investigate the effects of dietary protein levels on honey bee colonies, specifically the population growth, physiology, and longevity of honey bee workers during early spring. Diets containing four different levels of crude protein (25.0, 29.5, 34.0, or 38.5%) and pure pollen (control) were evaluated. Twenty-five colonies of honey bees with sister queens were used in the study. We compared the effects of the different bee diets by measuring population growth, emergent worker weight, midgut proteolytic enzyme activity, hypopharyngeal gland development, and survival. After 48 d, the cumulative number of workers produced by the colonies ranged from 22,420 to 29,519, providing a significant fit to a quadratic equation that predicts the maximum population growth when the diet contains 31.7% crude protein. Significantly greater emergent worker weight, midgut proteolytic enzyme activity, hypopharyngeal gland acini, and survival were observed in the colonies that were fed diets containing 34.0% crude protein compared with the other crude protein levels. Although higher emergent worker weight and survival were observed in the colonies that were fed the control diet, there were no significant differences between the control colonies and the colonies that were fed 34.0% crude protein. Based on these results, we concluded that a dietary crude protein content of 29.5-34.0% is recommended to maximize the reproduction rate of honey bee colonies in early spring. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  14. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees.

    PubMed

    Woodcock, B A; Bullock, J M; Shore, R F; Heard, M S; Pereira, M G; Redhead, J; Ridding, L; Dean, H; Sleep, D; Henrys, P; Peyton, J; Hulmes, S; Hulmes, L; Sárospataki, M; Saure, C; Edwards, M; Genersch, E; Knäbe, S; Pywell, R F

    2017-06-30

    Neonicotinoid seed dressings have caused concern world-wide. We use large field experiments to assess the effects of neonicotinoid-treated crops on three bee species across three countries (Hungary, Germany, and the United Kingdom). Winter-sown oilseed rape was grown commercially with either seed coatings containing neonicotinoids (clothianidin or thiamethoxam) or no seed treatment (control). For honey bees, we found both negative (Hungary and United Kingdom) and positive (Germany) effects during crop flowering. In Hungary, negative effects on honey bees (associated with clothianidin) persisted over winter and resulted in smaller colonies in the following spring (24% declines). In wild bees ( Bombus terrestris and Osmia bicornis ), reproduction was negatively correlated with neonicotinoid residues. These findings point to neonicotinoids causing a reduced capacity of bee species to establish new populations in the year following exposure. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Do managed bees have negative effects on wild bees?: A systematic review of the literature

    PubMed Central

    Gratton, Claudio

    2017-01-01

    Managed bees are critical for crop pollination worldwide. As the demand for pollinator-dependent crops increases, so does the use of managed bees. Concern has arisen that managed bees may have unintended negative impacts on native wild bees, which are important pollinators in both agricultural and natural ecosystems. The goal of this study was to synthesize the literature documenting the effects of managed honey bees and bumble bees on wild bees in three areas: (1) competition for floral and nesting resources, (2) indirect effects via changes in plant communities, including the spread of exotic plants and decline of native plants, and (3) transmission of pathogens. The majority of reviewed studies reported negative effects of managed bees, but trends differed across topical areas. Of studies examining competition, results were highly variable with 53% reporting negative effects on wild bees, while 28% reported no effects and 19% reported mixed effects (varying with the bee species or variables examined). Equal numbers of studies examining plant communities reported positive (36%) and negative (36%) effects, with the remainder reporting no or mixed effects. Finally, the majority of studies on pathogen transmission (70%) reported potential negative effects of managed bees on wild bees. However, most studies across all topical areas documented the potential for impact (e.g. reporting the occurrence of competition or pathogens), but did not measure direct effects on wild bee fitness, abundance, or diversity. Furthermore, we found that results varied depending on whether managed bees were in their native or non-native range; managed bees within their native range had lesser competitive effects, but potentially greater effects on wild bees via pathogen transmission. We conclude that while this field has expanded considerably in recent decades, additional research measuring direct, long-term, and population-level effects of managed bees is needed to understand their

  16. Do managed bees have negative effects on wild bees?: A systematic review of the literature.

    PubMed

    Mallinger, Rachel E; Gaines-Day, Hannah R; Gratton, Claudio

    2017-01-01

    Managed bees are critical for crop pollination worldwide. As the demand for pollinator-dependent crops increases, so does the use of managed bees. Concern has arisen that managed bees may have unintended negative impacts on native wild bees, which are important pollinators in both agricultural and natural ecosystems. The goal of this study was to synthesize the literature documenting the effects of managed honey bees and bumble bees on wild bees in three areas: (1) competition for floral and nesting resources, (2) indirect effects via changes in plant communities, including the spread of exotic plants and decline of native plants, and (3) transmission of pathogens. The majority of reviewed studies reported negative effects of managed bees, but trends differed across topical areas. Of studies examining competition, results were highly variable with 53% reporting negative effects on wild bees, while 28% reported no effects and 19% reported mixed effects (varying with the bee species or variables examined). Equal numbers of studies examining plant communities reported positive (36%) and negative (36%) effects, with the remainder reporting no or mixed effects. Finally, the majority of studies on pathogen transmission (70%) reported potential negative effects of managed bees on wild bees. However, most studies across all topical areas documented the potential for impact (e.g. reporting the occurrence of competition or pathogens), but did not measure direct effects on wild bee fitness, abundance, or diversity. Furthermore, we found that results varied depending on whether managed bees were in their native or non-native range; managed bees within their native range had lesser competitive effects, but potentially greater effects on wild bees via pathogen transmission. We conclude that while this field has expanded considerably in recent decades, additional research measuring direct, long-term, and population-level effects of managed bees is needed to understand their

  17. Effectiveness of bowl trapping and netting for inventory of a bee community

    USGS Publications Warehouse

    Grundel, R.; Frohnapple, K.J.; Jean, R.P.; Pavlovic, N.B.

    2011-01-01

    Concern over the status of bees has increased the need to inventory bee communities and, consequently, has increased the need to understand effectiveness of different bee sampling methods. We sampled bees using bowl traps and netting at 25 northwest Indiana sites ranging from open grasslands to forests. Assemblages of bees captured in bowl traps and by netting were very similar, but this similarity was driven by similar relative abundances of commonly captured species. Less common species were often not shared between collection methods (bowls, netting) and only about half of the species were shared between methods. About one-quarter of species were more often captured by one of the two collection methods. Rapid accumulation of species was aided by sampling at temporal and habitat extremes. In particular, collecting samples early and late in the adult flight season and in open and forest habitats was effective in capturing the most species with the fewest samples. The number of samples estimated necessary to achieve a complete inventory using bowls and netting together was high. For example, ≈72% of species estimated capturable in bowls were captured among the 3,159 bees collected in bowls in this study, but ≈30,000–35,000 additional bees would need to be collected to achieve a 100% complete inventory. For bowl trapping, increasing the number of sampling dates or sampling sites was more effective than adding more bowls per sampling date in completing the inventory with the fewest specimens collected.

  18. Acute bee paralysis virus occurs in the Asian honey bee Apis cerana and parasitic mite Tropilaelaps mercedesae.

    PubMed

    Chanpanitkitchote, Pichaya; Chen, Yanping; Evans, Jay D; Li, Wenfeng; Li, Jianghong; Hamilton, Michele; Chantawannakul, Panuwan

    2018-01-01

    Viruses, and especially RNA viruses, constantly change and adapt to new host species and vectors, posing a potential threat of new and reemerging infectious diseases. Honey bee Acute bee paralysis virus (ABPV) and Deformed wing virus (DWV) are two of the most common honey bee viruses found in European honey bees Apis mellifera and have been implicated in worldwide Varroa-associated bee colony losses. Previous studies have shown that DWV has jumped hosts several times in history causing infection in multiple host species. In the present study, we show that DWV infection could be detected in the Asian honey bee, A. cerana, and the parasitic mite Tropilaelaps mercedesae, confirming previous findings that DWV is a multi-host pathogen and supporting the notion that the high prevalence of DWV in honey bee host populations could be attributed to the high adaptability of this virus. Furthermore, our study provides the first evidence that ABPV occurs in both A. cerana and T. mercedesae in northern Thailand. The geographical proximity of host species likely played an important role in the initial exposure and the subsequent cross-species transmission of these viruses. Phylogenetic analyses suggest that ABPV might have moved from T. mercedesae to A. mellifera and to A. cerana while DWV might have moved in the opposite direction from A. cerana to A. mellifera and T. mercedesae. This result may reflect the differences in virus life history and virus-host interactions, warranting further investigation of virus transmission, epidemiology, and impacts of virus infections in the new hosts. The results from this study indicate that viral populations will continue to evolve and likely continue to expand host range, increasing the need for effective surveillance and control of virus infections in honey bee populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study.

    PubMed

    de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-03-01

    Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.

  20. 'Bee hotels' as tools for native pollinator conservation: a premature verdict?

    PubMed

    MacIvor, J Scott; Packer, Laurence

    2015-01-01

    Society is increasingly concerned with declining wild bee populations. Although most bees nest in the ground, considerable effort has centered on installing 'bee hotels'--also known as nest boxes or trap nests--which artificially aggregate nest sites of above ground nesting bees. Campaigns to 'save the bees' often promote these devices despite the absence of data indicating they have a positive effect. From a survey of almost 600 bee hotels set up over a period of three years in Toronto, Canada, introduced bees nested at 32.9% of sites and represented 24.6% of more than 27,000 total bees and wasps recorded (47.1% of all bees recorded). Native bees were parasitized more than introduced bees and females of introduced bee species provisioned nests with significantly more female larva each year. Native wasps were significantly more abundant than both native and introduced bees and occupied almost 3/4 of all bee hotels each year; further, introduced wasps were the only group to significantly increase in relative abundance year over year. More research is needed to elucidate the potential pitfalls and benefits of using bee hotels in the conservation and population dynamics of wild native bees.

  1. Population genomics provide insights into the evolution and adaptation of the eastern honey bee (Apis cerana).

    PubMed

    Chen, Chao; Wang, Huihua; Liu, Zhiguang; Chen, Xiao; Tang, Jiao; Meng, Fanming; Shi, Wei

    2018-06-20

    The mechanisms by which organisms adapt to variable environments are a fundamental question in evolutionary biology and are important to protect important species in response to a changing climate. An interesting candidate to study this question is the honey bee Apis cerana, a keystone pollinator with a wide distribution throughout a large variety of climates, that exhibits rapid dispersal. Here, we re-sequenced the genome of 180 A. cerana individuals from eighteen populations throughout China. Using a population genomics approach, we observed considerable genetic variation in A. cerana. Patterns of genetic differentiation indicate high divergence at the subspecies level, and physical barriers rather than distance are the driving force for population divergence. Estimations of divergence time suggested that the main branches diverged between 300 and 500 ka. Analyses of the population history revealed a substantial influence of the Earth's climate on the effective population size of A. cerana, as increased population sizes were observed during warmer periods. Further analyses identified candidate genes under natural selection that are potentially related to honey bee cognition, temperature adaptation, and olfactory. Based on our results, A. cerana may have great potential in response to climate change. Our study provides fundamental knowledge of the evolution and adaptation of A. cerana.

  2. Population growth of Varroa destructor (Acari: Varroidae) in colonies of Russian and unselected honey bee (Hymenoptera: Apidae) stock as related to numbers of foragers with mites

    USDA-ARS?s Scientific Manuscript database

    Varroa mites are an external parasite of honey bees and a leading cause of colony losses worldwide. Varroa populations can be controlled with miticides, but mite resistant stocks such as the Russian honey bee (RHB) also are available. RHB and other mite resistant stock limit Varroa population growth...

  3. Africanization of a feral honey bee (Apis mellifera) population in South Texas: does a decade make a difference?

    PubMed

    Rangel, Juliana; Giresi, Melissa; Pinto, Maria Alice; Baum, Kristen A; Rubink, William L; Coulson, Robert N; Johnston, John Spencer

    2016-04-01

    The arrival to the United States of the Africanized honey bee, a hybrid between European subspecies and the African subspecies Apis mellifera scutellata, is a remarkable model for the study of biological invasions. This immigration has created an opportunity to study the dynamics of secondary contact of honey bee subspecies from African and European lineages in a feral population in South Texas. An 11-year survey of this population (1991-2001) showed that mitochondrial haplotype frequencies changed drastically over time from a resident population of eastern and western European maternal ancestry, to a population dominated by the African haplotype. A subsequent study of the nuclear genome showed that the Africanization process included bidirectional gene flow between European and Africanized honey bees, giving rise to a new panmictic mixture of A. m. scutellata- and European-derived genes. In this study, we examined gene flow patterns in the same population 23 years after the first hybridization event occurred. We found 28 active colonies inhabiting 92 tree cavities surveyed in a 5.14 km(2) area, resulting in a colony density of 5.4 colonies/km(2). Of these 28 colonies, 25 were of A. m. scutellata maternal ancestry, and three were of western European maternal ancestry. No colonies of eastern European maternal ancestry were detected, although they were present in the earlier samples. Nuclear DNA revealed little change in the introgression of A. m. scutellata-derived genes into the population compared to previous surveys. Our results suggest this feral population remains an admixed swarm with continued low levels of European ancestry and a greater presence of African-derived mitochondrial genetic composition.

  4. Very low mitochondrial variability in a stingless bee endemic to cerrado.

    PubMed

    Brito, Rute Magalhães; de Oliveira Francisco, Flávio; Françoso, Elaine; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-03-01

    Partamona mulata is a stingless bee species endemic to cerrado, a severely threatened phytogeographical domain. Clearing for pasture without proper soil treatment in the cerrado facilitates the proliferation of termite ground nests, which are the nesting sites for P. mulata. The genetic consequences of these changes in the cerrado environment for bee populations are still understudied. In this work, we analyzed the genetic diversity of 48 colonies of P. mulata collected throughout the species' distribution range by sequencing two mitochondrial genes, cytochrome oxidase I and cytochrome B. A very low polymorphism rate was observed when compared to another Partamona species from the Atlantic forest. Exclusive haplotypes were observed in two of the five areas sampled. The sharing of two haplotypes between collection sites separated by a distance greater than the flight range of queens indicates an ancient distribution for these haplotypes. The low haplotype and nucleotide diversity observed here suggests that P. mulata is either a young species or one that has been through population bottlenecks. Locally predominant and exclusive haplotypes (H2 and H4) may have been derived from local remnants through cerrado deforestation and the expansion of a few colonies with abundant nesting sites.

  5. Phylogeography of Partamona rustica (Hymenoptera, Apidae), an Endemic Stingless Bee from the Neotropical Dry Forest Diagonal

    PubMed Central

    Batalha-Filho, Henrique; Congrains, Carlos; Carvalho, Antônio Freire; Ferreira, Kátia Maria; Del Lama, Marco Antonio

    2016-01-01

    The South America encompasses the highest levels of biodiversity found anywhere in the world and its rich biota is distributed among many different biogeographical regions. However, many regions of South America are still poorly studied, including its xeric environments, such as the threatened Caatinga and Cerrado phytogeographical domains. In particular, the effects of Quaternary climatic events on the demography of endemic species from xeric habitats are poorly understood. The present study uses an integrative approach to reconstruct the evolutionary history of Partamona rustica, an endemic stingless bee from dry forest diagonal in Brazil, in a spatial-temporal framework. In this sense, we sequenced four mitochondrial genes and genotyped eight microsatellite loci. Our results identified two population groups: one to the west and the other to the east of the São Francisco River Valley (SFRV). These groups split in the late Pleistocene, and the Approximate Bayesian Computation approach and phylogenetic reconstruction indicated that P. rustica originated in the west of the SFRV, subsequently colonising eastern region. Our tests of migration detected reduced gene flow between these groups. Finally, our results also indicated that the inferences both from the genetic data analyses and from the spatial distribution modelling are compatible with historical demographic stability. PMID:27723778

  6. Phylogeography of Partamona rustica (Hymenoptera, Apidae), an Endemic Stingless Bee from the Neotropical Dry Forest Diagonal.

    PubMed

    Miranda, Elder Assis; Batalha-Filho, Henrique; Congrains, Carlos; Carvalho, Antônio Freire; Ferreira, Kátia Maria; Del Lama, Marco Antonio

    2016-01-01

    The South America encompasses the highest levels of biodiversity found anywhere in the world and its rich biota is distributed among many different biogeographical regions. However, many regions of South America are still poorly studied, including its xeric environments, such as the threatened Caatinga and Cerrado phytogeographical domains. In particular, the effects of Quaternary climatic events on the demography of endemic species from xeric habitats are poorly understood. The present study uses an integrative approach to reconstruct the evolutionary history of Partamona rustica, an endemic stingless bee from dry forest diagonal in Brazil, in a spatial-temporal framework. In this sense, we sequenced four mitochondrial genes and genotyped eight microsatellite loci. Our results identified two population groups: one to the west and the other to the east of the São Francisco River Valley (SFRV). These groups split in the late Pleistocene, and the Approximate Bayesian Computation approach and phylogenetic reconstruction indicated that P. rustica originated in the west of the SFRV, subsequently colonising eastern region. Our tests of migration detected reduced gene flow between these groups. Finally, our results also indicated that the inferences both from the genetic data analyses and from the spatial distribution modelling are compatible with historical demographic stability.

  7. Bee Mite ID - an online resource on identification of mites associated with bees of the World

    USDA-ARS?s Scientific Manuscript database

    Parasitic mites are known to be a factor in recent declines in bee pollinator populations. In particular, Varroa destructor, an introduced parasite and disease vector, has decimated colonies of the western honey bee, one of the most important agricultural pollinators in the world. Further, global tr...

  8. Honey bee success predicted by landscape composition in Ohio, USA.

    PubMed

    Sponsler, D B; Johnson, R M

    2015-01-01

    Foraging honey bees (Apis mellifera L.) can routinely travel as far as several kilometers from their hive in the process of collecting nectar and pollen from floral patches within the surrounding landscape. Since the availability of floral resources at the landscape scale is a function of landscape composition, apiculturists have long recognized that landscape composition is a critical determinant of honey bee colony success. Nevertheless, very few studies present quantitative data relating colony success metrics to local landscape composition. We employed a beekeeper survey in conjunction with GIS-based landscape analysis to model colony success as a function of landscape composition in the State of Ohio, USA, a region characterized by intensive cropland, urban development, deciduous forest, and grassland. We found that colony food accumulation and wax production were positively related to cropland and negatively related to forest and grassland, a pattern that may be driven by the abundance of dandelion and clovers in agricultural areas compared to forest or mature grassland. Colony food accumulation was also negatively correlated with urban land cover in sites dominated by urban and agricultural land use, which does not support the popular opinion that the urban environment is more favorable to honey bees than cropland.

  9. Population trends and habitat occurrence of forest birds on southern national forests, 1992-2004

    Treesearch

    Frank A. La Sorte; Frank R., III Thompson; Margaret K. Trani; Timothy J. Mersmann

    2007-01-01

    We determined population trends and habitat occurrences for bird species in 14 national forests located in the Southern Region from 1992-2004. We estimated population trends for 144 species within: 14 national forests, 10 physiographic areas, and in the Southern Region as a whole. Habitat occurrences were estimated for 114 species based on 13 forest types and four...

  10. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study

    PubMed Central

    de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-01-01

    Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings. PMID:23569417

  11. Limited social plasticity in the socially polymorphic sweat bee Lasioglossum calceatum.

    PubMed

    Davison, P J; Field, J

    2018-01-01

    Eusociality is characterised by a reproductive division of labour, where some individuals forgo direct reproduction to instead help raise kin. Socially polymorphic sweat bees are ideal models for addressing the mechanisms underlying the transition from solitary living to eusociality, because different individuals in the same species can express either eusocial or solitary behaviour. A key question is whether alternative social phenotypes represent environmentally induced plasticity or predominantly genetic differentiation between populations. In this paper, we focus on the sweat bee Lasioglossum calceatum , in which northern or high-altitude populations are solitary, whereas more southern or low-altitude populations are typically eusocial. To test whether social phenotype responds to local environmental cues, we transplanted adult females from a solitary, northern population, to a southern site where native bees are typically eusocial. Nearly all native nests were eusocial, with foundresses producing small first brood (B1) females that became workers. In contrast, nine out of ten nests initiated by transplanted bees were solitary, producing female offspring that were the same size as the foundress and entered directly into hibernation. Only one of these ten nests became eusocial. Social phenotype was unlikely to be related to temperature experienced by nest foundresses when provisioning B1 offspring, or by B1 emergence time, both previously implicated in social plasticity seen in two other socially polymorphic sweat bees. Our results suggest that social polymorphism in L. calceatum predominantly reflects genetic differentiation between populations, and that plasticity is in the process of being lost by bees in northern populations. Phenotypic plasticity is thought to play a key role in the early stages of the transition from solitary to eusocial behaviour, but may then be lost if environmental conditions become less variable. Socially polymorphic sweat bees exhibit

  12. Complementary crops and landscape features sustain wild bee communities.

    PubMed

    Martins, Kyle T; Albert, Cécile H; Lechowicz, Martin J; Gonzalez, Andrew

    2018-06-01

    Wild bees, which are important for commercial pollination, depend on floral and nesting resources both at farms and in the surrounding landscape. Mass-flowering crops are only in bloom for a few weeks and unable to support bee populations that persist throughout the year. Farm fields and orchards that flower in succession potentially can extend the availability of floral resources for pollinators. However, it is unclear whether the same bee species or genera will forage from one crop to the next, which bees specialize on particular crops, and to what degree inter-crop visitation patterns will be mediated by landscape context. We therefore studied local- and landscape-level drivers of bee diversity and species turnover in apple orchards, blueberry fields, and raspberry fields that bloom sequentially in southern Quebec, Canada. Despite the presence of high bee species turnover, orchards and small fruit fields complemented each other phenologically by supporting two bee genera essential to their pollination: mining bees (Andrena spp.) and bumble bees (Bombus spp.). A number of bee species specialized on apple, blueberry, or raspberry blossoms, suggesting that all three crops could be used to promote regional bee diversity. Bee diversity (rarefied richness, wild bee abundance) was highest across crops in landscapes containing hedgerows, meadows, and suburban areas that provide ancillary nesting and floral resources throughout the spring and summer. Promoting phenological complementarity in floral resources at the farmstead and landscape scales is essential to sustaining diverse wild bee populations. © 2018 by the Ecological Society of America.

  13. Transcriptional responses in honey bee larvae infected with chalkbrood fungus

    USDA-ARS?s Scientific Manuscript database

    Diseases and other stress factors working synergistically weaken honey bee health and may play a major role in the losses of bee populations in recent years. Among a large number of bee diseases, chalkbrood has been on the rise. We present here the experimental identification of honey bee genes that...

  14. A survey of bees (hymenoptera: Apoidea) of the Indiana dunes and Northwest Indiana, USA

    USGS Publications Warehouse

    Grundel, R.; Jean, R.P.; Frohnapple, K.J.; Gibbs, J.; Glowacki, G.A.; Pavlovic, N.B.

    2011-01-01

    The Indiana Dunes, and nearby natural areas in northwest Indiana, are floristically rich Midwest U.S. locales with many habitat types. We surveyed bees along a habitat gradient ranging from grasslands to forests in these locales, collecting at least 175 bee species along this gradient plus 29 additional species in other nearby habitats. About 25% of all species were from the genus Lasioglossum and 12% of the species were associated with sandy soils. Several bumblebee (Bombus) species of conservation concern that should occur in this region were not collected during our surveys. Similarity of the northwest Indiana bee fauna to other published U.S. faunas decreased about 1.3% per 100 km distance from northwest Indiana. Thirty percent of bees netted from flowers were males. Males and females differed significantly in their frequency of occurrence on different plant species. For bees collected in bowl traps, the percentage captured in fluorescent yellow traps declined and in fluorescent blue traps increased from spring to late summer. Capture rates for different bee genera varied temporally, with about a quarter of the genera being captured most frequently in late spring and a quarter in late summer. Capture rates for most genera were higher in more open than in more closed canopy habitats. The maximum number of plant species on which a single bee species was captured plateaued at 24, on average. Forty-nine percent of bee species known to occur in Indiana were found at these northwest Indiana sites. Having this relatively high proportion of the total Indiana bee fauna is consistent with Indiana Dunes existing at a biogeographic crossroads where grassland and forest biomes meet in a landscape whose climate and soils are affected by proximity to Lake Michigan. The resulting habitat, plant, edaphic, and climatic diversity likely produces the diverse bee community documented.

  15. BeeDoctor, a Versatile MLPA-Based Diagnostic Tool for Screening Bee Viruses

    PubMed Central

    De Smet, Lina; Ravoet, Jorgen; de Miranda, Joachim R.; Wenseleers, Tom; Mueller, Matthias Y.; Moritz, Robin F. A.; de Graaf, Dirk C.

    2012-01-01

    The long-term decline of managed honeybee hives in the world has drawn significant attention to the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial role in this phenomenon, with the bee viruses being key players. Most of the currently characterized honeybee viruses (around twenty) are positive stranded RNA viruses. Techniques based on RNA signatures are widely used to determine the viral load in honeybee colonies. High throughput screening for viral loads necessitates the development of a multiplex polymerase chain reaction approach in which different viruses can be targeted simultaneously. A new multiparameter assay, called “BeeDoctor”, was developed based on multiplex-ligation probe dependent amplification (MLPA) technology. This assay detects 10 honeybee viruses in one reaction. “BeeDoctor” is also able to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in honeybee populations. “BeeDoctor” was used for screening 363 samples from apiaries located throughout Flanders; the northern half of Belgium. Using the “BeeDoctor”, virus infections were detected in almost eighty percent of the colonies, with deformed wing virus by far the most frequently detected virus and multiple virus infections were found in 26 percent of the colonies. PMID:23144717

  16. BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses.

    PubMed

    De Smet, Lina; Ravoet, Jorgen; de Miranda, Joachim R; Wenseleers, Tom; Mueller, Matthias Y; Moritz, Robin F A; de Graaf, Dirk C

    2012-01-01

    The long-term decline of managed honeybee hives in the world has drawn significant attention to the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial role in this phenomenon, with the bee viruses being key players. Most of the currently characterized honeybee viruses (around twenty) are positive stranded RNA viruses. Techniques based on RNA signatures are widely used to determine the viral load in honeybee colonies. High throughput screening for viral loads necessitates the development of a multiplex polymerase chain reaction approach in which different viruses can be targeted simultaneously. A new multiparameter assay, called "BeeDoctor", was developed based on multiplex-ligation probe dependent amplification (MLPA) technology. This assay detects 10 honeybee viruses in one reaction. "BeeDoctor" is also able to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in honeybee populations. "BeeDoctor" was used for screening 363 samples from apiaries located throughout Flanders; the northern half of Belgium. Using the "BeeDoctor", virus infections were detected in almost eighty percent of the colonies, with deformed wing virus by far the most frequently detected virus and multiple virus infections were found in 26 percent of the colonies.

  17. Identifying bacterial predictors of honey bee health.

    PubMed

    Budge, Giles E; Adams, Ian; Thwaites, Richard; Pietravalle, Stéphane; Drew, Georgia C; Hurst, Gregory D D; Tomkies, Victoria; Boonham, Neil; Brown, Mike

    2016-11-01

    Non-targeted approaches are useful tools to identify new or emerging issues in bee health. Here, we utilise next generation sequencing to highlight bacteria associated with healthy and unhealthy honey bee colonies, and then use targeted methods to screen a wider pool of colonies with known health status. Our results provide the first evidence that bacteria from the genus Arsenophonus are associated with poor health in honey bee colonies. We also discovered Lactobacillus and Leuconostoc spp. were associated with healthier honey bee colonies. Our results highlight the importance of understanding how the wider microbial population relates to honey bee colony health. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  18. Sweat bees on hot chillies: provision of pollination services by native bees in traditional slash-and-burn agriculture in the Yucatán Peninsula of tropical Mexico.

    PubMed

    Landaverde-González, Patricia; Quezada-Euán, José Javier G; Theodorou, Panagiotis; Murray, Tomás E; Husemann, Martin; Ayala, Ricardo; Moo-Valle, Humberto; Vandame, Rémy; Paxton, Robert J

    2017-12-01

    Traditional tropical agriculture often entails a form of slash-and-burn land management that may adversely affect ecosystem services such as pollination, which are required for successful crop yields. The Yucatán Peninsula of Mexico has a >4000 year history of traditional slash-and-burn agriculture, termed 'milpa'. Hot 'Habanero' chilli is a major pollinator-dependent crop that nowadays is often grown in monoculture within the milpa system.We studied 37 local farmers' chilli fields (sites) to evaluate the effects of landscape composition on bee communities. At 11 of these sites, we undertook experimental pollination treatments to quantify the pollination of chilli. We further explored the relationships between landscape composition, bee communities and pollination service provision to chilli.Bee species richness, particularly species of the family Apidae, was positively related to the amount of forest cover. Species diversity decreased with increasing proportion of crop land surrounding each sampling site. Sweat bees of the genus Lasioglossum were the most abundant bee taxon in chilli fields and, in contrast to other bee species, increased in abundance with the proportion of fallow land, gardens and pastures which are an integral part of the milpa system.There was an average pollination shortfall of 21% for chilli across all sites; yet the shortfall was unrelated to the proportion of land covered by crops. Rather, chilli pollination was positively related to the abundance of Lasioglossum bees, probably an important pollinator of chilli, as well indirectly to the proportion of fallow land, gardens and pastures that promote Lasioglossum abundance. Synthesis and applications . Current, low-intensity traditional slash-and-burn ( milpa ) agriculture provides Lasioglossum spp. pollinators for successful chilli production; fallow land, gardens and pasture therefore need to be valued as important habitats for these and related ground-nesting bee species. However, the

  19. Bee Hotels’ as Tools for Native Pollinator Conservation: A Premature Verdict?

    PubMed Central

    MacIvor, J. Scott; Packer, Laurence

    2015-01-01

    Society is increasingly concerned with declining wild bee populations. Although most bees nest in the ground, considerable effort has centered on installing ‘bee hotels’—also known as nest boxes or trap nests—which artificially aggregate nest sites of above ground nesting bees. Campaigns to ‘save the bees’ often promote these devices despite the absence of data indicating they have a positive effect. From a survey of almost 600 bee hotels set up over a period of three years in Toronto, Canada, introduced bees nested at 32.9% of sites and represented 24.6% of more than 27,000 total bees and wasps recorded (47.1% of all bees recorded). Native bees were parasitized more than introduced bees and females of introduced bee species provisioned nests with significantly more female larva each year. Native wasps were significantly more abundant than both native and introduced bees and occupied almost 3/4 of all bee hotels each year; further, introduced wasps were the only group to significantly increase in relative abundance year over year. More research is needed to elucidate the potential pitfalls and benefits of using bee hotels in the conservation and population dynamics of wild native bees. PMID:25785609

  20. Parasite pressures on feral honey bees (Apis mellifera sp.).

    PubMed

    Thompson, Catherine E; Biesmeijer, Jacobus C; Allnutt, Theodore R; Pietravalle, Stéphane; Budge, Giles E

    2014-01-01

    Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty in locating and sampling colonies, which often nest in inaccessible locations such as church spires and tree tops. In addition, little is known about the provenance of feral colonies and whether they represent a reservoir of Varroa tolerant material that could be used in apiculture. Samples of forager bees were collected from paired feral and managed honey bee colonies and screened for the presence of ten honey bee pathogens and pests using qPCR. Prevalence and quantity was similar between the two groups for the majority of pathogens, however feral honey bees contained a significantly higher level of deformed wing virus than managed honey bee colonies. An assessment of the honey bee race was completed for each colony using three measures of wing venation. There were no apparent differences in wing morphometry between feral and managed colonies, suggesting feral colonies could simply be escapees from the managed population. Interestingly, managed honey bee colonies not treated for Varroa showed similar, potentially lethal levels of deformed wing virus to that of feral colonies. The potential for such findings to explain the large fall in the feral population and the wider context of the importance of feral colonies as potential pathogen reservoirs is discussed.

  1. Parasite Pressures on Feral Honey Bees (Apis mellifera sp.)

    PubMed Central

    Thompson, Catherine E.; Biesmeijer, Jacobus C.; Allnutt, Theodore R.; Pietravalle, Stéphane; Budge, Giles E.

    2014-01-01

    Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty in locating and sampling colonies, which often nest in inaccessible locations such as church spires and tree tops. In addition, little is known about the provenance of feral colonies and whether they represent a reservoir of Varroa tolerant material that could be used in apiculture. Samples of forager bees were collected from paired feral and managed honey bee colonies and screened for the presence of ten honey bee pathogens and pests using qPCR. Prevalence and quantity was similar between the two groups for the majority of pathogens, however feral honey bees contained a significantly higher level of deformed wing virus than managed honey bee colonies. An assessment of the honey bee race was completed for each colony using three measures of wing venation. There were no apparent differences in wing morphometry between feral and managed colonies, suggesting feral colonies could simply be escapees from the managed population. Interestingly, managed honey bee colonies not treated for Varroa showed similar, potentially lethal levels of deformed wing virus to that of feral colonies. The potential for such findings to explain the large fall in the feral population and the wider context of the importance of feral colonies as potential pathogen reservoirs is discussed. PMID:25126840

  2. Inter-assemblage facilitation: the functional diversity of cavity-producing beetles drives the size diversity of cavity-nesting bees.

    PubMed

    Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine

    2016-01-01

    Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee

  3. Parameterization of the InVEST Crop Pollination Model to spatially predict abundance of wild blueberry (Vaccinium angustifolium Aiton) native bee pollinators in Maine, USA

    USGS Publications Warehouse

    Groff, Shannon C.; Loftin, Cynthia S.; Drummond, Frank; Bushmann, Sara; McGill, Brian J.

    2016-01-01

    Non-native honeybees historically have been managed for crop pollination, however, recent population declines draw attention to pollination services provided by native bees. We applied the InVEST Crop Pollination model, developed to predict native bee abundance from habitat resources, in Maine's wild blueberry crop landscape. We evaluated model performance with parameters informed by four approaches: 1) expert opinion; 2) sensitivity analysis; 3) sensitivity analysis informed model optimization; and, 4) simulated annealing (uninformed) model optimization. Uninformed optimization improved model performance by 29% compared to expert opinion-informed model, while sensitivity-analysis informed optimization improved model performance by 54%. This suggests that expert opinion may not result in the best parameter values for the InVEST model. The proportion of deciduous/mixed forest within 2000 m of a blueberry field also reliably predicted native bee abundance in blueberry fields, however, the InVEST model provides an efficient tool to estimate bee abundance beyond the field perimeter.

  4. Chalkbrood Transmission in the Alfalfa Leafcutting Bee: The Impact of Disinfecting Bee Cocoons in Loose Cell Management Systems

    USDA-ARS?s Scientific Manuscript database

    A good understanding of pathogen transmission in a host population should illuminate methods for disease prevention and control. A case in point for this is the alfalfa leafcutting bee (Megachile rotundata), a solitary bee which is used extensively for pollination of alfalfa grown for seed. Propaga...

  5. Relationships between forest songbird populations and managed forests in Idaho

    Treesearch

    Diane M. Evans; Deborah M. Finch

    1994-01-01

    Many species of songbirds have experienced population declines. In the eastern U.S. in recent years, but conclusive data on population trends and factors affecting populations in the West are lacking. Few studies have evaluated the importance of surrounding land configuration to songbird abundances. In 1992, we initiated a study in mixed conifer forest in west-central...

  6. Colonies of bumble bees (Bombus impatiens) produce fewer workers, less bee biomass, and have smaller mother queens following fungicide exposure

    USDA-ARS?s Scientific Manuscript database

    Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing serious declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possib...

  7. Rapid parallel evolution overcomes global honey bee parasite.

    PubMed

    Oddie, Melissa; Büchler, Ralph; Dahle, Bjørn; Kovacic, Marin; Le Conte, Yves; Locke, Barbara; de Miranda, Joachim R; Mondet, Fanny; Neumann, Peter

    2018-05-16

    In eusocial insect colonies nestmates cooperate to combat parasites, a trait called social immunity. However, social immunity failed for Western honey bees (Apis mellifera) when the ectoparasitic mite Varroa destructor switched hosts from Eastern honey bees (Apis cerana). This mite has since become the most severe threat to A. mellifera world-wide. Despite this, some isolated A. mellifera populations are known to survive infestations by means of natural selection, largely by supressing mite reproduction, but the underlying mechanisms of this are poorly understood. Here, we show that a cost-effective social immunity mechanism has evolved rapidly and independently in four naturally V. destructor-surviving A. mellifera populations. Worker bees of all four 'surviving' populations uncapped/recapped worker brood cells more frequently and targeted mite-infested cells more effectively than workers in local susceptible colonies. Direct experiments confirmed the ability of uncapping/recapping to reduce mite reproductive success without sacrificing nestmates. Our results provide striking evidence that honey bees can overcome exotic parasites with simple qualitative and quantitative adaptive shifts in behaviour. Due to rapid, parallel evolution in four host populations this appears to be a key mechanism explaining survival of mite infested colonies.

  8. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L).

    PubMed

    Berry, Jennifer A; Hood, W Michael; Pietravalle, Stéphane; Delaplane, Keith S

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  9. Field-Level Sublethal Effects of Approved Bee Hive Chemicals on Honey Bees (Apis mellifera L)

    PubMed Central

    Berry, Jennifer A.; Hood, W. Michael; Pietravalle, Stéphane; Delaplane, Keith S.

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals. PMID:24204638

  10. Population growth of Varroa destructor (Acari: Varroidae) in honey bee colonies is affected by the number of foragers with mites

    USDA-ARS?s Scientific Manuscript database

    Varroa mites are a serious pest of honey bees and the leading cause of colony losses. Varroa have relatively low reproductive rates, so populations should not increase rapidly, but often they do. Other factors might contribute to the growth of Varroa populations including mite migration into colonie...

  11. Effects of invasive parasites on bumble bee declines.

    PubMed

    Meeus, Ivan; Brown, Mark J F; De Graaf, Dirk C; Smagghe, Guy

    2011-08-01

    Bumble bees are a group of pollinators that are both ecologically and economically important and declining worldwide. Numerous mechanisms could be behind this decline, and the spread of parasites from commercial colonies into wild populations has been implicated recently in North America. Commercial breeding may lead to declines because commercial colonies may have high parasite loads, which can lead to colonization of native bumble bee populations; commercial rearing may allow higher parasite virulence to evolve; and global movement of commercial colonies may disrupt spatial patterns in local adaptation between hosts and parasites. We assessed parasite virulence, transmission mode, and infectivity. Microparasites and so-called honey bee viruses may pose the greatest threat to native bumble bee populations because certain risk factors are present; for example, the probability of horizontal transmission of the trypanosome parasite Crithidia bombi is high. The microsporidian parasite Nosema bombi may play a role in declines of bumble bees in the United States. Preliminary indications that C. bombi and the neogregarine Apicystis bombi may not be native in parts of South America. We suggest that the development of molecular screening protocols, thorough sanitation efforts, and cooperation among nongovernmental organizations, governments, and commercial breeders might immediately mitigate these threats. © 2011 Society for Conservation Biology.

  12. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees

    PubMed Central

    2011-01-01

    Background Malnutrition is a major factor affecting animal health, resistance to disease and survival. In honey bees (Apis mellifera), pollen, which is the main dietary source of proteins, amino acids and lipids, is essential to adult bee physiological development while reducing their susceptibility to parasites and pathogens. However, the molecular mechanisms underlying pollen's nutritive impact on honey bee health remained to be determined. For that purpose, we investigated the influence of pollen nutrients on the transcriptome of worker bees parasitized by the mite Varroa destructor, known for suppressing immunity and decreasing lifespan. The 4 experimental groups (control bees without a pollen diet, control bees fed with pollen, varroa-parasitized bees without a pollen diet and varroa-parasitized bees fed with pollen) were analyzed by performing a digital gene expression (DGE) analysis on bee abdomens. Results Around 36, 000 unique tags were generated per DGE-tag library, which matched about 8, 000 genes (60% of the genes in the honey bee genome). Comparing the transcriptome of bees fed with pollen and sugar and bees restricted to a sugar diet, we found that pollen activates nutrient-sensing and metabolic pathways. In addition, those nutrients had a positive influence on genes affecting longevity and the production of some antimicrobial peptides. However, varroa parasitism caused the development of viral populations and a decrease in metabolism, specifically by inhibiting protein metabolism essential to bee health. This harmful effect was not reversed by pollen intake. Conclusions The DGE-tag profiling methods used in this study proved to be a powerful means for analyzing transcriptome variation related to nutrient intake in honey bees. Ultimately, with such an approach, applying genomics tools to nutrition research, nutrigenomics promises to offer a better understanding of how nutrition influences body homeostasis and may help reduce the susceptibility of bees

  13. Impacts of Austrian Climate Variability on Honey Bee Mortality

    NASA Astrophysics Data System (ADS)

    Switanek, Matt; Brodschneider, Robert; Crailsheim, Karl; Truhetz, Heimo

    2015-04-01

    Global food production, as it is today, is not possible without pollinators such as the honey bee. It is therefore alarming that honey bee populations across the world have seen increased mortality rates in the last few decades. The challenges facing the honey bee calls into question the future of our food supply. Beside various infectious diseases, Varroa destructor is one of the main culprits leading to increased rates of honey bee mortality. Varroa destructor is a parasitic mite which strongly depends on honey bee brood for reproduction and can wipe out entire colonies. However, climate variability may also importantly influence honey bee breeding cycles and bee mortality rates. Persistent weather events affects vegetation and hence foraging possibilities for honey bees. This study first defines critical statistical relationships between key climate indicators (e.g., precipitation and temperature) and bee mortality rates across Austria, using 6 consecutive years of data. Next, these leading indicators, as they vary in space and time, are used to build a statistical model to predict bee mortality rates and the respective number of colonies affected. Using leave-one-out cross validation, the model reduces the Root Mean Square Error (RMSE) by 21% with respect to predictions made with the mean mortality rate and the number of colonies. Furthermore, a Monte Carlo test is used to establish that the model's predictions are statistically significant at the 99.9% confidence level. These results highlight the influence of climate variables on honey bee populations, although variability in climate, by itself, cannot fully explain colony losses. This study was funded by the Austrian project 'Zukunft Biene'.

  14. Population Growth of Varroa destructor (Acari: Varroidae) in Colonies of Russian and Unselected Honey Bee (Hymenoptera: Apidae) Stocks as Related to Numbers of Foragers With Mites.

    PubMed

    DeGrandi-Hoffman, Gloria; Ahumada, Fabiana; Danka, Robert; Chambers, Mona; DeJong, Emily Watkins; Hidalgo, Geoff

    2017-06-01

    Varroa (Varroa destructor Anderson and Trueman) is an external parasite of honey bees (Apis mellifera L.) and a leading cause of colony losses worldwide. Varroa populations can be controlled with miticides, but mite-resistant stocks such as the Russian honey bee (RHB) also are available. Russian honey bee and other mite-resistant stocks limit Varroa population growth by affecting factors that contribute to mite reproduction. However, mite population growth is not entirely due to reproduction. Numbers of foragers with mites (FWM) entering and leaving hives also affect the growth of mite populations. If FWM significantly contribute to Varroa population growth, mite numbers in RHB colonies might not differ from unselected lines (USL). Foragers with mites were monitored at the entrances of RHB and USL hives from August to November, 2015, at two apiary sites. At site 1, RHB colonies had fewer FWM than USL and smaller phoretic mite populations. Russian honey bee also had fewer infested brood cells and lower percentages with Varroa offspring than USL. At site 2, FWM did not differ between RHB and USL, and phoretic mite populations were not significantly different. At both sites, there were sharp increases in phoretic mite populations from September to November that corresponded with increasing numbers of FWM. Under conditions where FWM populations are similar between RHB and USL, attributes that contribute to mite resistance in RHB may not keep Varroa population levels below that of USL. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  15. Flight of the bumble bee: Buzzes predict pollination services.

    PubMed

    Miller-Struttmann, Nicole E; Heise, David; Schul, Johannes; Geib, Jennifer C; Galen, Candace

    2017-01-01

    Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30-52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to bee

  16. Flight of the bumble bee: Buzzes predict pollination services

    PubMed Central

    Heise, David; Schul, Johannes; Geib, Jennifer C.; Galen, Candace

    2017-01-01

    Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30–52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to

  17. Lower virus infections in Varroa destructor-infested and uninfested brood and adult honey bees (Apis mellifera) of a low mite population growth colony compared to a high mite population growth colony.

    PubMed

    Emsen, Berna; Hamiduzzaman, Mollah Md; Goodwin, Paul H; Guzman-Novoa, Ernesto

    2015-01-01

    A comparison was made of the prevalence and relative quantification of deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), Kashmir bee virus (KBV), acute bee paralysis virus (ABPV) and sac brood virus (SBV) in brood and adult honey bees (Apis mellifera) from colonies selected for high (HMP) and low (LMP) Varroa destructor mite population growth. Two viruses, ABPV and SBV, were never detected. For adults without mite infestation, DWV, IAPV, BQCV and KBV were detected in the HMP colony; however, only BQCV was detected in the LMP colony but at similar levels as in the HMP colony. With mite infestation, the four viruses were detected in adults of the HMP colony but all at higher amounts than in the LMP colony. For brood without mite infestation, DWV and IAPV were detected in the HMP colony, but no viruses were detected in the LMP colony. With mite infestation of brood, the four viruses were detected in the HMP colony, but only DWV and IAPV were detected and at lower amounts in the LMP colony. An epidemiological explanation for these results is that pre-experiment differences in virus presence and levels existed between the HMP and LMP colonies. It is also possible that low V. destructor population growth in the LMP colony resulted in the bees being less exposed to the mite and thus less likely to have virus infections. LMP and HMP bees may have also differed in susceptibility to virus infection.

  18. Two common species dominate the species-rich Euglossine bee fauna of an Atlantic Rainforest remnant in Pernambuco, Brazil.

    PubMed

    Oliveira, R; Pinto, C E; Schlindwein, C

    2015-11-01

    Nowadays, the northern part of the Atlantic Rainforest of Brazil is largely destroyed and forest remnants rarely exceed 100 ha. In a 118 ha forest fragment within a state nature reserve of Pernambuco (Reserva Ecológica Gurjaú), we surveyed the orchid bee fauna (Apidae, Euglossini) using eight different scent baits to attract males. Once a month during one year, the bees were actively collected with entomological nets, from November 2002 to October 2003 by two collectors. We collected 2,908 orchid bee males belonging to 23 species, one of the highest richness values of the Northern Atlantic Rainforest. Bees of only two species, Euglossa carolina (50%) and Eulaema nigrita (25%), which occurred throughout the year, accounted for three quarter of the collected individuals. Both species are typical for open or disturbed areas. Rainforest remnants like those of Gurjaú within the predominant sugar cane monocultures in the coastal plains of the northern Atlantic Rainforest play an important role in orchid bee conservation and maintenance of biodiversity.

  19. Pesticide use within a pollinator-dependent crop has negative effects on the abundance and species richness of sweat bees, Lasioglossum spp., and on bumble bee colony growth.

    USDA-ARS?s Scientific Manuscript database

    Pesticides are implicated in current bee declines. Wild bees that nest or forage within agroecosystems may be exposed to numerous pesticides applied throughout their life cycles, with potential additive or synergistic effects. In pollinator-dependent crops, pesticides may reduce bee populations, cre...

  20. Bee Pollen

    MedlinePlus

    ... confuse bee pollen with bee venom, honey, or royal jelly. People take bee pollen for nutrition; as an ... menstrual cycles. This product contains 6 mg of royal jelly, 36 mg of bee pollen extract, bee pollen, ...

  1. Queens and Workers Contribute Differently to Adaptive Evolution in Bumble Bees and Honey Bees.

    PubMed

    Harpur, Brock A; Dey, Alivia; Albert, Jennifer R; Patel, Sani; Hines, Heather M; Hasselmann, Martin; Packer, Laurence; Zayed, Amro

    2017-09-01

    Eusociality represents a major transition in evolution and is typified by cooperative brood care and reproductive division of labor between generations. In bees, this division of labor allows queens and workers to phenotypically specialize. Worker traits associated with helping are thought to be crucial to the fitness of a eusocial lineage, and recent studies of honey bees (genus Apis) have found that adaptively evolving genes often have worker-biased expression patterns. It is unclear however if worker-biased genes are disproportionately acted on by strong positive selection in all eusocial insects. We undertook a comparative population genomics study of bumble bees (Bombus) and honey bees to quantify natural selection on queen- and worker-biased genes across two levels of social complexity. Despite sharing a common eusocial ancestor, genes, and gene groups with the highest levels of positive selection were often unique within each genus, indicating that life history and the environment, but not sociality per se, drives patterns of adaptive molecular evolution. We uncovered differences in the contribution of queen- and worker-biased genes to adaptive evolution in bumble bees versus honey bees. Unlike honey bees, where worker-biased genes are enriched for signs of adaptive evolution, genes experiencing positive selection in bumble bees were predominately expressed by reproductive foundresses during the initial solitary-founding stage of colonies. Our study suggests that solitary founding is a major selective pressure and that the loss of queen totipotency may cause a change in the architecture of selective pressures upon the social insect genome. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. EXTERIOR VIEW, LOOKING WEST, AT FORMER TCIUS STEEL COMPANY BEE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, LOOKING WEST, AT FORMER TCI-US STEEL COMPANY BEE HIVE OVEN RUINS WITH FORESTED OVERGROWTH. - Pratt Coal & Coke Company, Pratt Mines, Coke Ovens & Railroad, Bounded by First Street, Avenue G, Third Place, Birmingham Southern Railroad, Birmingham, Jefferson County, AL

  3. Population trends of forest birds at Hakalau Forest National Wildlife Refuge, Hawai'i

    USGS Publications Warehouse

    Camp, Richard J.; Pratt, Thane K.; Gorresen, P. Marcos; Jeffrey, John J.; Woodworth, Bethany L.

    2010-01-01

    The Hakalau Forest National Wildlife Refuge was established to protect native Hawaiian forest birds, particularly endangered species. Management for forest restoration on the refuge has consisted mainly of removing feral ungulates, controlling invasive alien plants, and reforesting former pastures. To assess effects of this habitat improvement for forest birds, we estimated density annually by distance sampling and examined population trends for native and alien passerines over the 21 years since the refuge was established. We examined long-term trends and recent short-term trajectories in three study areas: (1) reforested pastureland, (2) heavily grazed open forest that was recovering, and (3) lightly grazed closed forest that was relatively intact. Three species of native birds and two species of alien birds had colonized the reforested pasture and were increasing. In the open forest, densities of all eight native species were either stable or increasing. Long-term trends for alien birds were also generally stable or increasing. Worryingly, however, during the most recent 9 years, in the open forest trajectories of native species were decreasing or inconclusive, but in the reforested pasture they generally increased. The closed forest was surveyed in only the most recent 9 years, and trajectories of native species there were mixed. Overall, long-term population trends in Hakalau are stable or increasing, contrasting with declines in most other areas of Hawai'i over the same period. However, more recent mixed results may indicate emergent problems for this important bird area.

  4. Lower Virus Infections in Varroa destructor-Infested and Uninfested Brood and Adult Honey Bees (Apis mellifera) of a Low Mite Population Growth Colony Compared to a High Mite Population Growth Colony

    PubMed Central

    Emsen, Berna; Hamiduzzaman, Mollah Md.; Goodwin, Paul H.; Guzman-Novoa, Ernesto

    2015-01-01

    A comparison was made of the prevalence and relative quantification of deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), Kashmir bee virus (KBV), acute bee paralysis virus (ABPV) and sac brood virus (SBV) in brood and adult honey bees (Apis mellifera) from colonies selected for high (HMP) and low (LMP) Varroa destructor mite population growth. Two viruses, ABPV and SBV, were never detected. For adults without mite infestation, DWV, IAPV, BQCV and KBV were detected in the HMP colony; however, only BQCV was detected in the LMP colony but at similar levels as in the HMP colony. With mite infestation, the four viruses were detected in adults of the HMP colony but all at higher amounts than in the LMP colony. For brood without mite infestation, DWV and IAPV were detected in the HMP colony, but no viruses were detected in the LMP colony. With mite infestation of brood, the four viruses were detected in the HMP colony, but only DWV and IAPV were detected and at lower amounts in the LMP colony. An epidemiological explanation for these results is that pre-experiment differences in virus presence and levels existed between the HMP and LMP colonies. It is also possible that low V. destructor population growth in the LMP colony resulted in the bees being less exposed to the mite and thus less likely to have virus infections. LMP and HMP bees may have also differed in susceptibility to virus infection. PMID:25723540

  5. Assessing Honey Bee (Hymenoptera: Apidae) Foraging Populations and the Potential Impact of Pesticides on Eight U.S. Crops

    PubMed Central

    Frazier, Maryann T.; Mullin, Chris A.; Frazier, Jim L.; Ashcraft, Sara A.; Leslie, Tim W.; Mussen, Eric C.; Drummond, Frank A.

    2015-01-01

    Beekeepers who use honey bees (Apis mellifera L.) for crop pollination services, or have colonies making honey on or in close proximity to agricultural crops, are concerned about the reductions of colony foragers and ultimate weakening of their colonies. Pesticide exposure is a potential factor in the loss of foragers. During 2009–2010, we assessed changes in the field force populations of 9–10 colonies at one location per crop on each of the eight crops by counting departing foragers leaving colonies at regular intervals during the respective crop blooming periods. The number of frames of adult bees was counted before and after bloom period. For pesticide analysis, we collected dead and dying bees near the hives, returning foragers, crop flowers, trapped pollen, and corn-flowers associated with the cotton crop. The number of departing foragers changed over time in all crops except almonds; general patterns in foraging activity included declines (cotton), noticeable peaks and declines (alfalfa, blueberries, cotton, corn, and pumpkins), and increases (apples and cantaloupes). The number of adult bee frames increased or remained stable in all crops except alfalfa and cotton. A total of 53 different pesticide residues were identified in samples collected across eight crops. Hazard quotients (HQ) were calculated for the combined residues for all crop-associated samples and separately for samples of dead and dying bees. A decrease in the number of departing foragers in cotton was one of the most substantial crop-associated impacts and presented the highest pesticide risk estimated by a summed pesticide residue HQ. PMID:26453703

  6. Sampling bee communities using pan traps: alternative methods increase sample size

    USDA-ARS?s Scientific Manuscript database

    Monitoring of the status of bee populations and inventories of bee faunas require systematic sampling. Efficiency and ease of implementation has encouraged the use of pan traps to sample bees. Efforts to find an optimal standardized sampling method for pan traps have focused on pan trap color. Th...

  7. Widespread occurrence of honey bee pathogens in solitary bees.

    PubMed

    Ravoet, Jorgen; De Smet, Lina; Meeus, Ivan; Smagghe, Guy; Wenseleers, Tom; de Graaf, Dirk C

    2014-10-01

    Solitary bees and honey bees from a neighbouring apiary were screened for a broad set of putative pathogens including protists, fungi, spiroplasmas and viruses. Most sampled bees appeared to be infected with multiple parasites. Interestingly, viruses exclusively known from honey bees such as Apis mellifera Filamentous Virus and Varroa destructor Macula-like Virus were also discovered in solitary bees. A microsporidium found in Andrena vaga showed most resemblance to Nosema thomsoni. Our results suggest that bee hives represent a putative source of pathogens for other pollinators. Similarly, solitary bees may act as a reservoir of honey bee pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Population-genomic variation within RNA viruses of the Western honey bee, Apis mellifera, inferred from deep sequencing

    PubMed Central

    2013-01-01

    Background Deep sequencing of viruses isolated from infected hosts is an efficient way to measure population-genetic variation and can reveal patterns of dispersal and natural selection. In this study, we mined existing Illumina sequence reads to investigate single-nucleotide polymorphisms (SNPs) within two RNA viruses of the Western honey bee (Apis mellifera), deformed wing virus (DWV) and Israel acute paralysis virus (IAPV). All viral RNA was extracted from North American samples of honey bees or, in one case, the ectoparasitic mite Varroa destructor. Results Coverage depth was generally lower for IAPV than DWV, and marked gaps in coverage occurred in several narrow regions (< 50 bp) of IAPV. These coverage gaps occurred across sequencing runs and were virtually unchanged when reads were re-mapped with greater permissiveness (up to 8% divergence), suggesting a recurrent sequencing artifact rather than strain divergence. Consensus sequences of DWV for each sample showed little phylogenetic divergence, low nucleotide diversity, and strongly negative values of Fu and Li’s D statistic, suggesting a recent population bottleneck and/or purifying selection. The Kakugo strain of DWV fell outside of all other DWV sequences at 100% bootstrap support. IAPV consensus sequences supported the existence of multiple clades as had been previously reported, and Fu and Li’s D was closer to neutral expectation overall, although a sliding-window analysis identified a significantly positive D within the protease region, suggesting selection maintains diversity in that region. Within-sample mean diversity was comparable between the two viruses on average, although for both viruses there was substantial variation among samples in mean diversity at third codon positions and in the number of high-diversity sites. FST values were bimodal for DWV, likely reflecting neutral divergence in two low-diversity populations, whereas IAPV had several sites that were strong outliers with very low

  9. Population-genomic variation within RNA viruses of the Western honey bee, Apis mellifera, inferred from deep sequencing.

    PubMed

    Cornman, Robert Scott; Boncristiani, Humberto; Dainat, Benjamin; Chen, Yanping; vanEngelsdorp, Dennis; Weaver, Daniel; Evans, Jay D

    2013-03-07

    Deep sequencing of viruses isolated from infected hosts is an efficient way to measure population-genetic variation and can reveal patterns of dispersal and natural selection. In this study, we mined existing Illumina sequence reads to investigate single-nucleotide polymorphisms (SNPs) within two RNA viruses of the Western honey bee (Apis mellifera), deformed wing virus (DWV) and Israel acute paralysis virus (IAPV). All viral RNA was extracted from North American samples of honey bees or, in one case, the ectoparasitic mite Varroa destructor. Coverage depth was generally lower for IAPV than DWV, and marked gaps in coverage occurred in several narrow regions (< 50 bp) of IAPV. These coverage gaps occurred across sequencing runs and were virtually unchanged when reads were re-mapped with greater permissiveness (up to 8% divergence), suggesting a recurrent sequencing artifact rather than strain divergence. Consensus sequences of DWV for each sample showed little phylogenetic divergence, low nucleotide diversity, and strongly negative values of Fu and Li's D statistic, suggesting a recent population bottleneck and/or purifying selection. The Kakugo strain of DWV fell outside of all other DWV sequences at 100% bootstrap support. IAPV consensus sequences supported the existence of multiple clades as had been previously reported, and Fu and Li's D was closer to neutral expectation overall, although a sliding-window analysis identified a significantly positive D within the protease region, suggesting selection maintains diversity in that region. Within-sample mean diversity was comparable between the two viruses on average, although for both viruses there was substantial variation among samples in mean diversity at third codon positions and in the number of high-diversity sites. FST values were bimodal for DWV, likely reflecting neutral divergence in two low-diversity populations, whereas IAPV had several sites that were strong outliers with very low FST. This initial

  10. Demography of a forest elephant population

    PubMed Central

    Turkalo, Andrea K.; Wrege, Peter H.

    2018-01-01

    African forest elephants face severe threats from illegal killing for ivory and bushmeat and habitat conversion. Due to their cryptic nature and inaccessible range, little information on the biology of this species has been collected despite its iconic status. Compiling individual based monitoring data collected over 20 years from the Dzanga Bai population in Central African Republic, we summarize sex and age specific survivorship and female age specific fecundity for a cohort of 1625 individually identified elephants. Annual mortality (average = 3.5%) and natality (average = 5.3%) were lower and markedly less variable relative to rates reported for savanna elephant populations. New individuals consistently entered the study system, leading to a 2.5% average annual increase in the registered population. Calf sex ratios among known birth did not differ from parity. A weak seasonal signal in births was detected suggesting increased conceptions during the wet season. Inter-calf intervals and age of primiparity were longer relative to savanna elephant populations. Within the population, females between the ages of 25–39 demonstrated the shortest inter-calf intervals and highest fecundity, and previous calf sex had no influence on the interval. Calf survivorship was high (97%) the first two years after birth and did not differ by sex. Male and female survival began to differ by the age of 13 years, and males demonstrated significantly lower survival relative to females by the age of 20. It is suspected these differences are driven by human selection for ivory. Forest elephants were found to have one of the longest generation times recorded for any species at 31 years. These data provide fundamental understanding of forest elephant demography, providing baseline data for projecting population status and trends. PMID:29447207

  11. Wild bees enhance honey bees’ pollination of hybrid sunflower

    PubMed Central

    Greenleaf, Sarah S.; Kremen, Claire

    2006-01-01

    Pollinators are required for producing 15–30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages. PMID:16940358

  12. The African honey bee: factors contributing to a successful biological invasion.

    PubMed

    Scott Schneider, Stanley; DeGrandi-Hoffman, Gloria; Smith, Deborah Roan

    2004-01-01

    The African honey bee subspecies Apis mellifera scutellata has colonized much of the Americas in less than 50 years and has largely replaced European bees throughout its range in the New World. The African bee therefore provides an excellent opportunity to examine the factors that influence invasion success. We provide a synthesis of recent research on the African bee, concentrating on its ability to displace European honey bees. Specifically, we consider (a) the genetic composition of the expanding population and the symmetry of gene flow between African and European bees, (b) the mechanisms that favor the preservation of the African genome, and (c) the possible range and impact of the African bee in the United States.

  13. Correlations between land covers and honey bee colony losses in a country with industrialized and rural regions.

    PubMed

    Clermont, Antoine; Eickermann, Michael; Kraus, François; Hoffmann, Lucien; Beyer, Marco

    2015-11-01

    High levels of honey bee colony losses were recently reported from Canada, China, Europe, Israel, Turkey and the United States, raising concerns of a global pollinator decline and questioning current land use practices, in particular intense agricultural cropping systems. Sixty-seven crops (data from the years 2010-2012) and 66 mid-term stable land cover classes (data from 2007) were analysed for statistical relationships with the honey bee colony losses experienced over the winters 2010/11-2012/13 in Luxembourg (Western Europe). The area covered by each land cover class, the shortest distance between each land cover class and the respective apiary, the number of plots covered by each land use class and the size of the biggest plot of each land cover class within radii of 2 km and 5 km around 166 apiaries (2010), 184 apiaries (2011) and 188 apiaries (2012) were tested for correlations with honey bee colony losses (% per apiary) experienced in the winter following the season when the crops were grown. Artificial water bodies, open urban areas, large industrial facilities including heavy industry, railways and associated installations, buildings and installations with socio-cultural purpose, camping-, sports-, playgrounds, golf courts, oilseed crops other than oilseed rape like sunflower or linseed, some spring cereals and former forest clearcuts or windthrows were the land cover classes most frequently associated with high honey bee colony losses. Grain maize, mixed forest and mixed coniferous forest were the land cover classes most frequently associated with low honey bee colony losses. The present data suggest that land covers related to transport, industry and leisure may have made a more substantial contribution to winter honey bee colony losses in developed countries than anticipated so far. Recommendations for the positioning of apiaries are discussed. Copyright © 2015. Published by Elsevier B.V.

  14. Status of breeding and use of Russian and VSH bees world-wide

    USDA-ARS?s Scientific Manuscript database

    Research at the USDA Honey Bee Breeding, Genetics and Physiology Laboratory produced two types of honey bees (Apis mellifera) with resistance to Varroa destructor. Colonies of these bees host mite populations that remain small enough to allow beekeepers to eliminate or reduce miticide treatments. S...

  15. Proceedings: population dynamics, impacts, and integrated management of forest defoliating insects

    Treesearch

    M.L. McManus; A.M., eds. Liebhold

    1998-01-01

    This publication contains 52 research papers about the population ecology and management of forest insect defoliators. These papers were presented at a joint meeting of working parties S7.03.06, "Integrated Management of Forest Defoliating Insects", and S7.03.07, "Population dynamics of forest insects", of the International Union of Forestry...

  16. Evaluation of the neotropical stingless bee Melipona quadrifasciata (Hymenoptera: Apidae) as pollinator of greenhouse tomatoes.

    PubMed

    Del Sarto, M C L; Peruquetti, R C; Campos, L A O

    2005-04-01

    The Neotropical stingless bee Melipona quadrifasciata Lepeletier was evaluated for pollinating tomatoes (variety Rodas; long-life hybrid) in greenhouses under plastic and with a hydroponic system and "organic concepts" in Minas Gerais State, Brazil. Flowers not pollinated did not set any fruit. Pollination by bees plus manual pollination did not differ from either bee or manual pollination. Maximum fruit diameter, fruit height, and roundness (quotient between maximum fruit diameter and fruit height) were not significantly different between treatments, but fruit visited by M. quadrifasciata had 10.8% less seeds (dry mass) than manual pollination. This apparently low efficiency of M. quadrifasciata pollination was attributed to the overlap of only 30 min between highest bee foraging activity and highest flower stigma receptivity. Thus, it was concluded that M. quadrifasciata is a feasible pollinator of greenhouse tomatoes because of 1) the observed increase in fruit quality with lower mechanical injury than traditional manual pollination, 2) no significant decrease in fruit size, and 3) high price of such product in the market. Some considerations for sustainable use of M. quadrifasciata as greenhouse pollinator are presented. Although techniques for keeping captive colonies of M. quadrifasciata are currently available, the sole current method for acquiring new colonies is removing them from the forest, and if demand was created for large numbers of colonies for commercial use, techniques for captive rearing must be developed to prevent serious declines in wild populations.

  17. Non-bee insects are important contributors to global crop pollination.

    PubMed

    Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A; Garratt, Michael P D; Howlett, Brad G; Winfree, Rachael; Cunningham, Saul A; Mayfield, Margaret M; Arthur, Anthony D; Andersson, Georg K S; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G; Chacoff, Natacha P; Entling, Martin H; Foully, Benjamin; Freitas, Breno M; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R; Gross, Caroline L; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q; Lindström, Sandra A M; Mandelik, Yael; Monteiro, Victor M; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E; Pereira, Natália de O; Pisanty, Gideon; Potts, Simon G; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G; Stanley, Dara A; Stout, Jane C; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H; Viana, Blandina F; Woyciechowski, Michal

    2016-01-05

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.

  18. Non-bee insects are important contributors to global crop pollination

    PubMed Central

    Bartomeus, Ignasi; Garibaldi, Lucas A.; Garratt, Michael P. D.; Howlett, Brad G.; Winfree, Rachael; Cunningham, Saul A.; Mayfield, Margaret M.; Arthur, Anthony D.; Andersson, Georg K. S.; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G.; Chacoff, Natacha P.; Entling, Martin H.; Foully, Benjamin; Freitas, Breno M.; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R.; Gross, Caroline L.; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q.; Lindström, Sandra A. M.; Mandelik, Yael; Monteiro, Victor M.; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E.; de O. Pereira, Natália; Pisanty, Gideon; Potts, Simon G.; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S.; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G.; Stanley, Dara A.; Stout, Jane C.; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H.; Viana, Blandina F.; Woyciechowski, Michal

    2016-01-01

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25–50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines. PMID:26621730

  19. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands.

    PubMed

    Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A; van der Linden, Giel T J; Schaminée, Joop H J; Siepel, Henk; Kleijn, David

    2014-12-09

    Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species.

  20. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands

    PubMed Central

    Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A.; van der Linden, Giel T. J.; Schaminée, Joop H. J.; Siepel, Henk; Kleijn, David

    2014-01-01

    Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species. PMID:25422416

  1. Microbiome structure influences infection by the parasite Crithidia bombi in bumble bees.

    PubMed

    Mockler, Blair K; Kwong, Waldan K; Moran, Nancy A; Koch, Hauke

    2018-01-26

    Recent declines in bumble bee populations are of great concern, and have prompted critical evaluations of the role of pathogen introductions and host resistance in bee health. One factor that may influence host resilience when facing infection is the gut microbiota. Previous experiments with Bombus terrestris , a European bumble bee, showed that the gut microbiota can protect against Crithidia bombi , a widespread trypanosomatid parasite of bumble bees. However, the particular characteristics of the microbiome responsible for this protective effect have thus far eluded identification. Using wild and commercially-sourced Bombus impatiens , an important North American pollinator, we conducted cross-wise microbiota transplants to naïve hosts of both backgrounds, and challenged them with Crithidia As with B. terrestris , we find that microbiota-dependent protection against Crithidia operates in B. impatiens Lower Crithidia infection loads were experimentally associated with high microbiome diversity, large gut bacterial populations, and the presence of Apibacter , Lactobacillus Firm-5, and Gilliamella in the gut community. These results indicate that even subtle differences between gut community structures can have a significant impact on the microbiome's ability to defend against parasite infections. Importance Many wild bumble bee populations are under threat by human activity, including through introductions of pathogens via commercially-raised bees. Recently, it was found that the bumble bee gut microbiota can help defend against a common parasite, Crithidia bombi , but the particular factors contributing to this protection are unknown. Using both wild and commercially-raised bees, we conduct microbiota transplants to show that microbiome diversity, total gut bacterial load, and the presence of certain core members of the microbiota may all impact bee susceptibility to Crithidia infection. Bee origin (genetic background) was also a factor. Finally, by examining

  2. Forest management under uncertainty for multiple bird population objectives

    USGS Publications Warehouse

    Moore, C.T.; Plummer, W.T.; Conroy, M.J.; Ralph, C. John; Rich, Terrell D.

    2005-01-01

    We advocate adaptive programs of decision making and monitoring for the management of forest birds when responses by populations to management, and particularly management trade-offs among populations, are uncertain. Models are necessary components of adaptive management. Under this approach, uncertainty about the behavior of a managed system is explicitly captured in a set of alternative models. The models generate testable predictions about the response of populations to management, and monitoring data provide the basis for assessing these predictions and informing future management decisions. To illustrate these principles, we examine forest management at the Piedmont National Wildlife Refuge, where management attention is focused on the recovery of the Red-cockaded Woodpecker (Picoides borealis) population. However, managers are also sensitive to the habitat needs of many non-target organisms, including Wood Thrushes (Hylocichla mustelina) and other forest interior Neotropical migratory birds. By simulating several management policies on a set of-alternative forest and bird models, we found a decision policy that maximized a composite response by woodpeckers and Wood Thrushes despite our complete uncertainty regarding system behavior. Furthermore, we used monitoring data to update our measure of belief in each alternative model following one cycle of forest management. This reduction of uncertainty translates into a reallocation of model influence on the choice of optimal decision action at the next decision opportunity.

  3. Vanishing honey bees: Is the dying of adult worker bees a consequence of short telomeres and premature aging?

    PubMed

    Stindl, Reinhard; Stindl, Wolfgang

    2010-10-01

    Einstein is often quoted to have said that without the bee, mankind would have but 4years to live. It is highly unlikely that he made this comment, which was even mentioned in a Lancet article on honey bees. However, the current vanishing of the bees can have serious consequences for human health, because 35% of the human diet is thought to benefit from pollination. Colony collapse disorder (CCD) in honey bees is characterized by the rapid decline of the adult bee population, leaving the brood and the queen poorly or completely unattended, with no dead bodies in or around the hive. A large study found no evidence that the presence or amount of any individual pesticide or infectious agent occurred more frequently or abundantly in CCD-affected colonies. The growing consensus is that honey bees are suffering from comprised immune systems, which allow various infectious pathogens to invade. The question remains, what causes immunosuppression in many colonies of Apis mellifera in North America and Europe? Telomeres are protective DNA structures located at eukaryotic chromosome tips that shorten in the somatic tissues of animals with age. Lifelong tissue regeneration takes place in Apis mellifera, and worker bees have been shown to senesce. In humans, a vast amount of literature has accumulated on exhausted telomere reserves causing impaired tissue regeneration and age-associated diseases, specifically cancer and immunosuppression. Therefore, we propose a new causative mechanism for the vanishing of the bees: critically short telomeres in long-lived winter bees. We term this the telomere premature aging syndrome. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Gentle Africanized bees on an oceanic island

    PubMed Central

    Rivera-Marchand, Bert; Oskay, Devrim; Giray, Tugrul

    2012-01-01

    Oceanic islands have reduced resources and natural enemies and potentially affect life history traits of arriving organisms. Among the most spectacular invasions in the Western hemisphere is that of the Africanized honeybee. We hypothesized that in the oceanic island Puerto Rico, Africanized bees will exhibit differences from the mainland population such as for defensiveness and other linked traits. We evaluated the extent of Africanization through three typical Africanized traits: wing size, defensive behavior, and resistance to Varroa destructor mites. All sampled colonies were Africanized by maternal descent, with over 65% presence of European alleles at the S-3 nuclear locus. In two assays evaluating defense, Puerto Rican bees showed low defensiveness similar to European bees. In morphology and resistance to mites, Africanized bees from Puerto Rico are similar to other Africanized bees. In behavioral assays on mechanisms of resistance to Varroa, we directly observed that Puerto Rican Africanized bees groomed-off and bit the mites as been observed in other studies. In no other location, Africanized bees have reduced defensiveness while retaining typical traits such as wing size and mite resistance. This mosaic of traits that has resulted during the invasion of an oceanic island has implications for behavior, evolution, and agriculture. PMID:23144660

  5. Comparisons of pollen substitute diets for honey bees: consumption rates by colonies and effects on brood and adult populations.

    USDA-ARS?s Scientific Manuscript database

    Commercially available pollen substitute diets for honey bees (Apis mellifera L.) were evaluated for consumption and colony growth (brood and adult populations) and compared with pollen cake and high fructose corn syrup (HFCS). Two trials were conducted; the first for 3 months during the fall and w...

  6. Local Plant Diversity Across Multiple Habitats Supports a Diverse Wild Bee Community in Pennsylvania Apple Orchards.

    PubMed

    Kammerer, Melanie A; Biddinger, David J; Rajotte, Edwin G; Mortensen, David A

    2016-02-01

    Wild pollinators supply essential, historically undervalued pollination services to crops and other flowering plant communities with great potential to ensure agricultural production against the loss of heavily relied upon managed pollinators. Local plant communities provision wild bees with crucial floral and nesting resources, but the distribution of floristic diversity among habitat types in North American agricultural landscapes and its effect on pollinators are diverse and poorly understood, especially in orchard systems. We documented floristic diversity in typical mid-Atlantic commercial apple (Malus domestica Borkh.) orchards including the forest and orchard-forest edge ("edge") habitats surrounding orchards in a heterogeneous landscape in south-central Pennsylvania, USA. We also assessed the correlation between plant richness and orchard pollinator communities. In this apple production region, edge habitats are the most species rich, supporting 146 out of 202 plant species recorded in our survey. Plant species richness in the orchard and edge habitats were significant predictors of bee species richness and abundance in the orchard, as well as landscape area of the forest and edge habitats. Both the quantity and quality of forest and edges close to orchards play a significant role in provisioning a diverse wild bee community in this agroecosystem. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. An Investigation of the Migration of Africanized Honey Bees into the Southern United States

    NASA Technical Reports Server (NTRS)

    Navarro, Hector

    1997-01-01

    It is estimated that Apis mellifera scutellata, a honey bee subspecies from Africa, now extends over a 20 million square kilometer range that includes much of South America and practically all of Central America, and recently has been introduced to the southern United States. African honeybees were introduced into Brazil in 1956 by a Brazilian geneticist, Mr. Warwick Kerr. At the insistence of the Brazilian Ministry of Agriculture, in 1957, 26 colonies were accidentally released in a eucalyptus forest outside S5o Paulo. The swelling front of the bees was recorded as traveling between 80 and 500 kilometers a year. David Roubik, one of the original killer bee team members estimated that there were one trillion individual Africanized/African honey bees in Latin America. An estimate that is thought to be conservative.

  8. The plight of the bees

    USGS Publications Warehouse

    Spivak, Marla; Mader, Eric; Vaughan, Mace; Euliss, Ned H.

    2011-01-01

    The loss of biodiversity is a trend that is garnering much concern. As organisms have evolved mutualistic and synergistic relationships, the loss of one or a few species can have a much wider environmental impact. Since much pollination is facilitated by bees, the reported colony collapse disorder has many worried of widespread agricultural fallout and thus deleterious impact on human foodstocks. In this Feature, Spivak et al. review what is known of the present state of bee populations and provide information on how to mitigate and reverse the trend.

  9. Rapid behavioral maturation accelerates failure of stressed honey bee colonies

    PubMed Central

    Perry, Clint J.; Myerscough, Mary R.; Barron, Andrew B.

    2015-01-01

    Many complex factors have been linked to the recent marked increase in honey bee colony failure, including pests and pathogens, agrochemicals, and nutritional stressors. It remains unclear, however, why colonies frequently react to stressors by losing almost their entire adult bee population in a short time, resulting in a colony population collapse. Here we examine the social dynamics underlying such dramatic colony failure. Bees respond to many stressors by foraging earlier in life. We manipulated the demography of experimental colonies to induce precocious foraging in bees and used radio tag tracking to examine the consequences of precocious foraging for their performance. Precocious foragers completed far fewer foraging trips in their life, and had a higher risk of death in their first flights. We constructed a demographic model to explore how this individual reaction of bees to stress might impact colony performance. In the model, when forager death rates were chronically elevated, an increasingly younger forager force caused a positive feedback that dramatically accelerated terminal population decline in the colony. This resulted in a breakdown in division of labor and loss of the adult population, leaving only brood, food, and few adults in the hive. This study explains the social processes that drive rapid depopulation of a colony, and we explore possible strategies to prevent colony failure. Understanding the process of colony failure helps identify the most effective strategies to improve colony resilience. PMID:25675508

  10. Rapid behavioral maturation accelerates failure of stressed honey bee colonies.

    PubMed

    Perry, Clint J; Søvik, Eirik; Myerscough, Mary R; Barron, Andrew B

    2015-03-17

    Many complex factors have been linked to the recent marked increase in honey bee colony failure, including pests and pathogens, agrochemicals, and nutritional stressors. It remains unclear, however, why colonies frequently react to stressors by losing almost their entire adult bee population in a short time, resulting in a colony population collapse. Here we examine the social dynamics underlying such dramatic colony failure. Bees respond to many stressors by foraging earlier in life. We manipulated the demography of experimental colonies to induce precocious foraging in bees and used radio tag tracking to examine the consequences of precocious foraging for their performance. Precocious foragers completed far fewer foraging trips in their life, and had a higher risk of death in their first flights. We constructed a demographic model to explore how this individual reaction of bees to stress might impact colony performance. In the model, when forager death rates were chronically elevated, an increasingly younger forager force caused a positive feedback that dramatically accelerated terminal population decline in the colony. This resulted in a breakdown in division of labor and loss of the adult population, leaving only brood, food, and few adults in the hive. This study explains the social processes that drive rapid depopulation of a colony, and we explore possible strategies to prevent colony failure. Understanding the process of colony failure helps identify the most effective strategies to improve colony resilience.

  11. Resource diversity and landscape-level homogeneity drive native bee foraging.

    PubMed

    Jha, Shalene; Kremen, Claire

    2013-01-08

    Given widespread declines in pollinator communities and increasing global reliance on pollinator-dependent crops, there is an acute need to develop a mechanistic understanding of native pollinator population and foraging biology. Using a population genetics approach, we determine the impact of habitat and floral resource distributions on nesting and foraging patterns of a critical native pollinator, Bombus vosnesenskii. Our findings demonstrate that native bee foraging is far more plastic and extensive than previously believed and does not follow a simple optimal foraging strategy. Rather, bumble bees forage further in pursuit of species-rich floral patches and in landscapes where patch-to-patch variation in floral resources is less, regardless of habitat composition. Thus, our results reveal extreme foraging plasticity and demonstrate that floral diversity, not density, drives bee foraging distance. Furthermore, we find a negative impact of paved habitat and a positive impact of natural woodland on bumble bee nesting densities. Overall, this study reveals that natural and human-altered landscapes can be managed for increased native bee nesting and extended foraging, dually enhancing biodiversity and the spatial extent of pollination services.

  12. The importance of odor in nest site selection by a lodger bee, Centris Bicornuta Mocsáry (Hymenoptera: Apidae) in the dry forest of Costa Rica.

    PubMed

    Vinson, S B; Frankie, G W; Rao, A

    2011-01-01

    The more common lodger bee occurring in the dry forest of Costa Rica, Centris bicornuta Muscáry), has been observed nesting in new nest cavities drilled into wooden blocks placed next to cavities used by another female within 2-3 days. In contrast, new nest cavities placed in similar areas with no nesting Centris nearby were not used for weeks. These observations suggest that the presence of nesting bees may play a role in nest site selection. To confirm our observations, new nest cavities were placed in areas with or without nesting. We found nest initiation in newly placed nest cavities only in areas where bees were actively nesting. To examine the possibility that nesting locations are not unique, we placed new nest cavities in new locations either with (a) a number of completed nest cavities or (b) placed alone. Within three days we only found bees nesting in the newly placed nest cavities in situation "a". The results suggested that odor might be involved. We next compared nesting in new cavities placed alone with cavities contaminated with either (a) nest entrance plug material, (b) nest nectar, (c) nest pollen or (d) a combination of pollen and nectar. Nesting was significantly low in cavities placed next to cavities with nest entrance plug material (a), and high in cavities placed next to cavities "b, c, or d". The results suggest that pollen and /or nectar odor play a role in the location of potential nest sites.

  13. Conserving pollinators in North American forests: A review

    Treesearch

    James L. Hanula; Michael D. Ulyshen; Scott Horn

    2016-01-01

    Bees and butterflies generally favor open forest habitats regardless of forest type, geographic region, or methods used to create these habitats. Dense shrub layers of native or nonnative species beneath forest canopies negatively impact herbaceous plant cover and diversity, and pollinators. The presence of nonnative flowers as a source of nectar, pollen, or larval...

  14. Fragmentation and Management of Ethiopian Moist Evergreen Forest Drive Compositional Shifts of Insect Communities Visiting Wild Arabica Coffee Flowers

    NASA Astrophysics Data System (ADS)

    Berecha, Gezahegn; Aerts, Raf; Muys, Bart; Honnay, Olivier

    2015-02-01

    Coffea arabica is an indigenous understorey shrub of the moist evergreen Afromontane forest of SW Ethiopia. Coffee cultivation here occurs under different forest management intensities, ranging from almost no intervention in the `forest coffee' system to far-reaching interventions that include the removal of competing shrubs and selective thinning of the upper canopy in the `semi-forest coffee' system. We investigated whether increasing forest management intensity and fragmentation result in impacts upon potential coffee pollination services through examining shifts in insect communities that visit coffee flowers. Overall, we netted 2,976 insect individuals on C. arabica flowers, belonging to sixteen taxonomic groups, comprising 10 insect orders. Taxonomic richness of the flower-visiting insects significantly decreased and pollinator community changed with increasing forest management intensity and fragmentation. The relative abundance of honey bees significantly increased with increasing forest management intensity and fragmentation, likely resulting from the introduction of bee hives in the most intensively managed forests. The impoverishment of the insect communities through increased forest management intensity and fragmentation potentially decreases the resilience of the coffee production system as pollination increasingly relies on honey bees alone. This may negatively affect coffee productivity in the long term as global pollination services by managed honey bees are expected to decline under current climate change scenarios. Coffee agroforestry management practices should urgently integrate pollinator conservation measures.

  15. Do managed bees drive parasite spread and emergence in wild bees?

    PubMed

    Graystock, Peter; Blane, Edward J; McFrederick, Quinn S; Goulson, Dave; Hughes, William O H

    2016-04-01

    Bees have been managed and utilised for honey production for centuries and, more recently, pollination services. Since the mid 20th Century, the use and production of managed bees has intensified with hundreds of thousands of hives being moved across countries and around the globe on an annual basis. However, the introduction of unnaturally high densities of bees to areas could have adverse effects. Importation and deployment of managed honey bee and bumblebees may be responsible for parasite introductions or a change in the dynamics of native parasites that ultimately increases disease prevalence in wild bees. Here we review the domestication and deployment of managed bees and explain the evidence for the role of managed bees in causing adverse effects on the health of wild bees. Correlations with the use of managed bees and decreases in wild bee health from territories across the globe are discussed along with suggestions to mitigate further health reductions in wild bees.

  16. Floral preferences of a neotropical stingless bee, Melipona quadrifasciata Lepeletier (Apidae: Meliponina) in an urban forest fragment.

    PubMed

    Antonini, Y; Costa, R G; Martins, R P

    2006-05-01

    Species of plants used by Melipona quadrifasciata Lepeletier for pollen and nectar gathering in an urban forest fragment were recorded in Belo Horizonte, Minas Gerais, Brazil. Melipona quadrifasciata visited 22 out of 103 flowering plant species. The plant species belonged mainly to Myrtaceae, Asteraceae, and Convolvulaceae (64% of the visits). Melipona quadrifasciata tended to collect pollen or nectar each time, except for Myrtaceae species, from which both pollen and nectar were collected. Bee abundance at flowers did not significantly correlate to food availability (expressed by flowering plant richness). We found a relatively high similarity (50%) between plant species used by M. quadrifasciata, which was also found in studies carried out in São Paulo State. However, low similarity (17%) was found between the results of this study and those of another done in Bahia State, Brazil.

  17. Hygienic behaviour in Brazilian stingless bees.

    PubMed

    Al Toufailia, Hasan; Alves, Denise A; Bento, José M S; Marchini, Luis C; Ratnieks, Francis L W

    2016-11-15

    Social insects have many defence mechanisms against pests and pathogens. One of these is hygienic behaviour, which has been studied in detail in the honey bee, Apis mellifera Hygienic honey bee workers remove dead and diseased larvae and pupae from sealed brood cells, thereby reducing disease transfer within the colony. Stingless bees, Meliponini, also rear broods in sealed cells. We investigated hygienic behaviour in three species of Brazilian stingless bees (Melipona scutellaris, Scaptotrigona depilis, Tetragonisca angustula) in response to freeze-killed brood. All three species had high mean levels of freeze-killed brood removal after 48 h ∼99% in M. scutellaris, 80% in S. depilis and 62% in T. angustula (N=8 colonies per species; three trials per colony). These levels are greater than in unselected honey bee populations, ∼46%. In S. depilis there was also considerable intercolony variation, ranging from 27% to 100% removal after 2 days. Interestingly, in the S. depilis colony with the slowest removal of freeze-killed brood, 15% of the adult bees emerging from their cells had shrivelled wings indicating a disease or disorder, which is as yet unidentified. Although the gross symptoms resembled the effects of deformed wing virus in the honey bee, this virus was not detected in the samples. When brood comb from the diseased colony was introduced to the other S. depilis colonies, there was a significant negative correlation between freeze-killed brood removal and the emergence of deformed worker bees (P=0.001), and a positive correlation with the cleaning out of brood cells (P=0.0008). This shows that the more hygienic colonies were detecting and removing unhealthy brood prior to adult emergence. Our results indicate that hygienic behaviour may play an important role in colony health in stingless bees. The low levels of disease normally seen in stingless bees may be because they have effective mechanisms of disease management, not because they lack diseases

  18. Hygienic behaviour in Brazilian stingless bees

    PubMed Central

    Alves, Denise A.; Bento, José M. S.; Marchini, Luis C.; Ratnieks, Francis L. W.

    2016-01-01

    ABSTRACT Social insects have many defence mechanisms against pests and pathogens. One of these is hygienic behaviour, which has been studied in detail in the honey bee, Apis mellifera. Hygienic honey bee workers remove dead and diseased larvae and pupae from sealed brood cells, thereby reducing disease transfer within the colony. Stingless bees, Meliponini, also rear broods in sealed cells. We investigated hygienic behaviour in three species of Brazilian stingless bees (Melipona scutellaris, Scaptotrigona depilis, Tetragonisca angustula) in response to freeze-killed brood. All three species had high mean levels of freeze-killed brood removal after 48 h ∼99% in M. scutellaris, 80% in S. depilis and 62% in T. angustula (N=8 colonies per species; three trials per colony). These levels are greater than in unselected honey bee populations, ∼46%. In S. depilis there was also considerable intercolony variation, ranging from 27% to 100% removal after 2 days. Interestingly, in the S. depilis colony with the slowest removal of freeze-killed brood, 15% of the adult bees emerging from their cells had shrivelled wings indicating a disease or disorder, which is as yet unidentified. Although the gross symptoms resembled the effects of deformed wing virus in the honey bee, this virus was not detected in the samples. When brood comb from the diseased colony was introduced to the other S. depilis colonies, there was a significant negative correlation between freeze-killed brood removal and the emergence of deformed worker bees (P=0.001), and a positive correlation with the cleaning out of brood cells (P=0.0008). This shows that the more hygienic colonies were detecting and removing unhealthy brood prior to adult emergence. Our results indicate that hygienic behaviour may play an important role in colony health in stingless bees. The low levels of disease normally seen in stingless bees may be because they have effective mechanisms of disease management, not because they lack

  19. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation

    PubMed Central

    Dolezal, Adam G.; Hendrix, Stephen D.; Scavo, Nicole A.; Carrillo-Tripp, Jimena; Harris, Mary A.; Wheelock, M. Joseph; O’Neal, Matthew E.; Toth, Amy L.

    2016-01-01

    Evidence of inter-species pathogen transmission from managed to wild bees has sparked concern that emerging diseases could be causing or exacerbating wild bee declines. While some pathogens, like RNA viruses, have been found in pollen and wild bees, the threat these viruses pose to wild bees is largely unknown. Here, we tested 169 bees, representing 4 families and 8 genera, for five common honey bee (Apis mellifera) viruses, finding that more than 80% of wild bees harbored at least one virus. We also quantified virus titers in these bees, providing, for the first time, an assessment of viral load in a broad spectrum of wild bees. Although virus detection was very common, virus levels in the wild bees were minimal—similar to or lower than foraging honey bees and substantially lower than honey bees collected from hives. Furthermore, when we experimentally inoculated adults of two different bee species (Megachile rotundata and Colletes inaequalis) with a mixture of common viruses that is lethal to honey bees, we saw no effect on short term survival. Overall, we found that honey bee RNA viruses can be commonly detected at low levels in many wild bee species, but we found no evidence that these pathogens cause elevated short-term mortality effects. However, more work on these viruses is greatly needed to assess effects on additional bee species and life stages. PMID:27832169

  20. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation.

    PubMed

    Dolezal, Adam G; Hendrix, Stephen D; Scavo, Nicole A; Carrillo-Tripp, Jimena; Harris, Mary A; Wheelock, M Joseph; O'Neal, Matthew E; Toth, Amy L

    2016-01-01

    Evidence of inter-species pathogen transmission from managed to wild bees has sparked concern that emerging diseases could be causing or exacerbating wild bee declines. While some pathogens, like RNA viruses, have been found in pollen and wild bees, the threat these viruses pose to wild bees is largely unknown. Here, we tested 169 bees, representing 4 families and 8 genera, for five common honey bee (Apis mellifera) viruses, finding that more than 80% of wild bees harbored at least one virus. We also quantified virus titers in these bees, providing, for the first time, an assessment of viral load in a broad spectrum of wild bees. Although virus detection was very common, virus levels in the wild bees were minimal-similar to or lower than foraging honey bees and substantially lower than honey bees collected from hives. Furthermore, when we experimentally inoculated adults of two different bee species (Megachile rotundata and Colletes inaequalis) with a mixture of common viruses that is lethal to honey bees, we saw no effect on short term survival. Overall, we found that honey bee RNA viruses can be commonly detected at low levels in many wild bee species, but we found no evidence that these pathogens cause elevated short-term mortality effects. However, more work on these viruses is greatly needed to assess effects on additional bee species and life stages.

  1. Neonicotinoid pesticide reduces bumble bee colony growth and queen production.

    PubMed

    Whitehorn, Penelope R; O'Connor, Stephanie; Wackers, Felix L; Goulson, Dave

    2012-04-20

    Growing evidence for declines in bee populations has caused great concern because of the valuable ecosystem services they provide. Neonicotinoid insecticides have been implicated in these declines because they occur at trace levels in the nectar and pollen of crop plants. We exposed colonies of the bumble bee Bombus terrestris in the laboratory to field-realistic levels of the neonicotinoid imidacloprid, then allowed them to develop naturally under field conditions. Treated colonies had a significantly reduced growth rate and suffered an 85% reduction in production of new queens compared with control colonies. Given the scale of use of neonicotinoids, we suggest that they may be having a considerable negative impact on wild bumble bee populations across the developed world.

  2. The power and promise of applying genomics to honey bee health.

    PubMed

    Grozinger, Christina M; Robinson, Gene E

    2015-08-01

    New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species.

  3. The power and promise of applying genomics to honey bee health

    PubMed Central

    Robinson, Gene E.

    2015-01-01

    New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species. PMID:26273565

  4. Functional roles and metabolic niches in the honey bee gut microbiota.

    PubMed

    Bonilla-Rosso, Germán; Engel, Philipp

    2018-06-01

    Gut microbiota studies on diverse animals facilitate our understanding of the general principles governing microbiota-host interactions. The honey bee adds a relevant study system due to the simplicity and experimental tractability of its gut microbiota, but also because bees are important pollinators that suffer from population declines worldwide. The use of gnotobiotic bees combined with genetic tools, 'omics' analysis, and experimental microbiology has recently provided important insights about the impact of the microbiota on bee health and the general functioning of gut ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Summer Flowering Cover Crops Support Wild Bees in Vineyards.

    PubMed

    Wilson, Houston; Wong, Jessica S; Thorp, Robbin W; Miles, Albie F; Daane, Kent M; Altieri, Miguel A

    2018-02-08

    Agricultural expansion and intensification negatively affect pollinator populations and has led to reductions in pollination services across multiple cropping systems. As a result, growers and researchers have utilized the restoration of local and landscape habitat diversity to support pollinators, and wild bees in particular. Although a majority of studies to date have focussed on effects in pollinator-dependent crops such as almond, tomato, sunflower, and watermelon, supporting wild bees in self-pollinated crops, such as grapes, can contribute to broader conservation goals as well as provide other indirect benefits to growers. This study evaluates the influence of summer flowering cover crops and landscape diversity on the abundance and diversity of vineyard bee populations. We showed that diversity and abundance of wild bees were increased on the flowering cover crop, but were unaffected by changes in landscape diversity. These findings indicate that summer flowering cover crops can be used to support wild bees and this could be a useful strategy for grape growers interested in pollinator conservation as part of a broader farmscape sustainability agenda. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Crop-emptying rate and the design of pesticide risk assessment schemes in the honey bee and wild bees (Hymenoptera: Apidae).

    PubMed

    Fournier, Alice; Rollin, Orianne; Le Féon, Violette; Decourtye, Axel; Henry, Mickaël

    2014-02-01

    Recent scientific literature and reports from official sanitary agencies have pointed out the deficiency of current pesticide risk assessment processes regarding sublethal effects on pollinators. Sublethal effects include troubles in learning performance, orientation skills, or mobility, with possible contribution to substantial dysfunction at population scale. However, the study of sublethal effects is currently limited by considerable knowledge gaps, particularly for the numerous pollinators other than the honey bee Apis mellifera L.--the traditional model for pesticide risk assessment in pollinators. Here, we propose to use the crop-emptying time as a rule of thumb to guide the design of oral exposure experiments in the honey bee and wild bees. The administration of contaminated sucrose solutions is typically followed by a fasting time lapse to allow complete assimilation before the behavioral tests. The fasting duration should at least encompass the crop-emptying time, because no absorption takes place in the crop. We assessed crop-emptying rate in fasted bees and how it relates 1) with sucrose solution concentration in the honey bee and 2) with body mass in wild bees. Fasting duration required for complete crop emptying in honey bees fed 20 microl of a 50% sucrose solution was nearly 2 h. Actual fasting durations are usually shorter in toxicological studies, suggesting incomplete crop emptying, and therefore partial assimilation of experimental solutions that could imply underestimation of sublethal effects. We also found faster crop-emptying rates in large wild bees compared with smaller wild bees, and suggest operative rules to adapt sublethal assessment schemes accordingly.

  7. Population dynamics of the epiphytic bromeliad Tillandsia butzii in cloud forest

    NASA Astrophysics Data System (ADS)

    Toledo-Aceves, Tarin; Hernández-Apolinar, Mariana

    2016-02-01

    Epiphytes are a major component of tropical montane cloud forests. Over-exploitation and forest loss and degradation affect remnant populations. In this study, we analysed the population dynamics of the epiphytic bromeliad Tillandsia butzii over a 2-y period in a tropical montane cloud forest fragment in southern Mexico. Matrix analysis revealed that the T. butzii population is likely to be stable at the study site. On average the λ value did not differ significantly from unity: λ (95% confidence interval) = 0.978 (0.936-1.001). λ was highly influenced by stasis, to a lesser extent by growth and only slightly by fecundity. Overall, adult plant stasis and phalanx growth habit played a fundamental role in population maintenance. T. butzii tolerance to xeric conditions may contribute to population stability in the studied region.

  8. Absence of Leishmaniinae and Nosematidae in stingless bees

    PubMed Central

    Nunes-Silva, Patrícia; Piot, Niels; Meeus, Ivan; Blochtein, Betina; Smagghe, Guy

    2016-01-01

    Bee pollination is an indispensable component of global food production and plays a crucial role in sustainable agriculture. The worldwide decline of bee populations, including wild pollinators, poses a threat to this system. However, most studies to date are situated in temperate regions where Apini and Bombini are very abundant pollinators. Tropical and subtropical regions where stingless bees (Apidae: Meliponini) are generally very common, are often overlooked. These bees also face pressure due to deforestation and agricultural intensification as well as the growing use and spread of exotic pollinators as Apis mellifera and Bombus species. The loss or decline of this important bee tribe would have a large impact on their provided ecosystem services, in both wild and agricultural landscapes. The importance of pollinator diseases, which can contribute to decline, has not been investigated so far in this bee tribe. Here we report on the first large pathogen screening of Meliponini species in southern Brazil. Remarkably we observed that there was an absence of Leishmaniinae and Nosematidae, and a very low occurrence of Apicystis bombi. Our data on disease prevalence in both understudied areas and species, can greatly improve our knowledge on the distribution of pathogens among bee species. PMID:27586080

  9. Annual dynamics of wild bee densities: attractiveness and productivity effects of oilseed rape.

    PubMed

    Riedinger, Verena; Mitesser, Oliver; Hovestadt, Thomas; Steffan-Dewenter, Ingolf; Holzschuh, Andrea

    2015-05-01

    Mass-flowering crops may affect long-term population dynamics, but effects on pollinators have never been studied across several years. We monitored wild bees in oilseed rape fields in 16 landscapes in Germany in two consecutive years. Effects on bee densities of landscape oilseed rape cover in the years of monitoring and in the previous years were evaluated with landscape data from three consecutive years. We fit empirical data to a mechanistic model to provide estimates for oilseed rape attractiveness and its effect on bee productivity in comparison to the rest of the landscape, and we evaluated consequences for pollinator densities in consecutive years. Our results show that high oilseed rape cover in the previous year enhances current densities of wild bees (except for bumble bees). Moreover, we show a strong attractiveness of and dilution on (i.e., decreasing bee densities with increasing landscape oilseed rape cover) oilseed rape for bees during flowering in the current year, modifying the effect of the previous year's oilseed rape cover in the case of wild bees (excluding Bombus). As long as other factors such as nesting sites or natural enemies do not limit bee reproduction, our findings suggest long-term positive effects of mass-flowering crops on bee populations, at least for non-Bombus generalists, which possibly help to maintain crop pollination services even when crop area increases. Similar effects are conceivable for other organisms providing ecosystem services in annual crops and should be considered in future studies.

  10. Investigating the viral ecology of global bee communities with high-throughput metagenomics.

    PubMed

    Galbraith, David A; Fuller, Zachary L; Ray, Allyson M; Brockmann, Axel; Frazier, Maryann; Gikungu, Mary W; Martinez, J Francisco Iturralde; Kapheim, Karen M; Kerby, Jeffrey T; Kocher, Sarah D; Losyev, Oleksiy; Muli, Elliud; Patch, Harland M; Rosa, Cristina; Sakamoto, Joyce M; Stanley, Scott; Vaudo, Anthony D; Grozinger, Christina M

    2018-06-11

    Bee viral ecology is a fascinating emerging area of research: viruses exert a range of effects on their hosts, exacerbate impacts of other environmental stressors, and, importantly, are readily shared across multiple bee species in a community. However, our understanding of bee viral communities is limited, as it is primarily derived from studies of North American and European Apis mellifera populations. Here, we examined viruses in populations of A. mellifera and 11 other bee species from 9 countries, across 4 continents and Oceania. We developed a novel pipeline to rapidly and inexpensively screen for bee viruses. This pipeline includes purification of encapsulated RNA/DNA viruses, sequence-independent amplification, high throughput sequencing, integrated assembly of contigs, and filtering to identify contigs specifically corresponding to viral sequences. We identified sequences for (+)ssRNA, (-)ssRNA, dsRNA, and ssDNA viruses. Overall, we found 127 contigs corresponding to novel viruses (i.e. previously not observed in bees), with 27 represented by >0.1% of the reads in a given sample, and 7 contained an RdRp or replicase sequence which could be used for robust phylogenetic analysis. This study provides a sequence-independent pipeline for viral metagenomics analysis, and greatly expands our understanding of the diversity of viruses found in bee communities.

  11. Diversity and human perceptions of bees (Hymenoptera: Apoidea) in Southeast Asian megacities.

    PubMed

    Sing, Kong-Wah; Wang, Wen-Zhi; Wan, Tao; Lee, Ping-Shin; Li, Zong-Xu; Chen, Xing; Wang, Yun-Yu; Wilson, John-James

    2016-10-01

    Urbanization requires the conversion of natural land cover to cover with human-constructed elements and is considered a major threat to biodiversity. Bee populations, globally, are under threat; however, the effect of rapid urban expansion in Southeast Asia on bee diversity has not been investigated. Given the pressing issues of bee conservation and urbanization in Southeast Asia, coupled with complex factors surrounding human-bee coexistence, we investigated bee diversity and human perceptions of bees in four megacities. We sampled bees and conducted questionnaires at three different site types in each megacity: a botanical garden, central business district, and peripheral suburban areas. Overall, the mean species richness and abundance of bees were significantly higher in peripheral suburban areas than central business districts; however, there were no significant differences in the mean species richness and abundance between botanical gardens and peripheral suburban areas or botanical gardens and central business districts. Urban residents were unlikely to have seen bees but agreed that bees have a right to exist in their natural environment. Residents who did notice and interact with bees, even though being stung, were more likely to have positive opinions towards the presence of bees in cities.

  12. Domestication of honey bees was associated with expansion of genetic diversity.

    PubMed

    Oldroyd, Benjamin P

    2012-09-01

    Humans have been keeping honey bees, Apis mellifera, in artificial hives for over 7000 years. Long enough, one might imagine, for some genetic changes to have occurred in domestic bees that would distinguish them from their wild ancestors. Indeed, some have argued that the recent mysterious and widespread losses of commercial bee colonies, are due in part to inbreeding. In this issue of Molecular Ecology, Harpur et al. (2012) show that the domestication of honey bees, rather than reducing genetic variance in the population, has increased it. It seems that the commercial honey bees of Canada are a mongrel lot, with far more variability than their ancestors in Europe. © 2012 Blackwell Publishing Ltd.

  13. Overwintering temperature and body condition shift emergence dates of spring-emerging solitary bees.

    PubMed

    Schenk, Mariela; Mitesser, Oliver; Hovestadt, Thomas; Holzschuh, Andrea

    2018-01-01

    Solitary bees in seasonal environments must align their life-cycles with favorable environmental conditions and resources; the timing of their emergence is highly fitness relevant. In several bee species, overwintering temperature influences both emergence date and body weight at emergence. High variability in emergence dates among specimens overwintering at the same temperatures suggests that the timing of emergence also depends on individual body conditions. However, possible causes for this variability, such as individual differences in body size or weight, have been rarely studied. In a climate chamber experiment using two spring-emerging mason bees ( Osmia cornuta and O. bicornis ), we investigated the relationship between temperature, emergence date, body weight, and body size, the last of which is not affected by overwintering temperature. Our study showed that body weight declined during hibernation more strongly in warm than in cold overwintering temperatures. Although bees emerged earlier in warm than in cold overwintering temperatures, at the time of emergence, bees in warm overwintering temperatures had lower body weights than bees in cold overwintering temperatures (exception of male O. cornuta ). Among specimens that experienced the same overwintering temperatures, small and light bees emerged later than their larger and heavier conspecifics. Using a simple mechanistic model we demonstrated that spring-emerging solitary bees use a strategic approach and emerge at a date that is most promising for their individual fitness expectations. Our results suggest that warmer overwintering temperatures reduce bee fitness by causing a decrease in body weight at emergence. We showed furthermore that in order to adjust their emergence dates, bees use not only temperature but also their individual body condition as triggers. This may explain differing responses to climate warming within and among bee populations and may have consequences for bee-plant interactions

  14. Inbreeding in Mimulus guttatus Reduces Visitation by Bumble Bee Pollinators

    PubMed Central

    Carr, David E.; Roulston, T’ai H.; Hart, Haley

    2014-01-01

    Inbreeding in plants typically reduces individual fitness but may also alter ecological interactions. This study examined the effect of inbreeding in the mixed-mating annual Mimulus guttatus on visitation by pollinators (Bombus impatiens) in greenhouse experiments. Previous studies of M. guttatus have shown that inbreeding reduced corolla size, flower number, and pollen quantity and quality. Using controlled crosses, we produced inbred and outbred families from three different M. guttatus populations. We recorded the plant genotypes that bees visited and the number of flowers probed per visit. In our first experiment, bees were 31% more likely to visit outbred plants than those selfed for one generation and 43% more likely to visit outbred plants than those selfed for two generations. Inbreeding had only a small effect on the number of flowers probed once bees arrived at a genotype. These differences were explained partially by differences in mean floral display and mean flower size, but even when these variables were controlled statistically, the effect of inbreeding remained large and significant. In a second experiment we quantified pollen viability from inbred and self plants. Bees were 37–54% more likely to visit outbred plants, depending on the population, even when controlling for floral display size. Pollen viability proved to be as important as floral display in predicting pollinator visitation in one population, but the overall explanatory power of a multiple regression model was weak. Our data suggested that bees use cues in addition to display size, flower size, and pollen reward quality in their discrimination of inbred plants. Discrimination against inbred plants could have effects on plant fitness and thereby reinforce selection for outcrossing. Inbreeding in plant populations could also reduce resource quality for pollinators, potentially resulting in negative effects on pollinator populations. PMID:25036035

  15. Complementary habitat use by wild bees in agro-natural landscapes.

    PubMed

    Mandelik, Yael; Winfree, Rachael; Neeson, Thomas; Kremen, Claire

    2012-07-01

    Human activity causes abrupt changes in resource availability across the landscape. In order to persist in human-altered landscapes organisms need to shift their habitat use accordingly. Little is known about the mechanisms by which whole communities persist in human-altered landscapes, including the role of complementary habitat use. We define complementary habitat use as the use of different habitats at different times by the same group of species during the course of their activity period. We hypothesize that complementary habitat use is a mechanism through which native bee species persist in human-altered landscapes. To test this idea, we studied wild bee communities in agro-natural landscapes and explored their community-level patterns of habitat and resource use over space and time. The study was conducted in six agro-natural landscapes in the eastern United States, each containing three main bee habitat types (natural habitat, agricultural fields, and old fields). Each of the three habitats exhibited a unique seasonal pattern in amount, diversity, and composition of floral resources, and together they created phenological complementarity in foraging resources for bees. Individual bee species as well as the bee community responded to these spatiotemporal patterns in floral availability and exhibited a parallel pattern of complementary habitat use. The majority of wild bee species, including all the main crop visitors, used fallow areas within crops early in the season, shifted to crops in mid-season, and used old-field habitats later in the season. The natural-forest habitat supported very limited number of bees, mostly visitors of non-crop plants. Old fields are thus an important feature in these arable landscapes for maintaining crop pollination services. Our study provides a detailed examination of how shifts in habitat and resource use may enable bees to persist in highly dynamic agro-natural landscapes, and points to the need for a broad cross

  16. Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut.

    PubMed

    Audisio, M C; Sabaté, D C; Benítez-Ahrendts, M R

    2015-01-01

    Lactobacillus johnsonii CRL1647, isolated from the intestinal tract of a worker-bee in Salta, Argentina, was delivered to Apis mellifera L. honey bee colonies according to two different administration schedules: 1×10(5) cfu/ml every 15 days (2011) or monthly (2012). The effect of each treatment on the bee-colony performance was monitored by measuring honey production, and the prevalence of varroasis and nosemosis. Worker bees from each assay were randomly captured 3 days after administration and assayed for the following intestinal culturable and defined bacterial populations: total aerobic microorganisms, Bacillus spp. spores, Lactobacillus spp., Enterococcus spp. and enterobacteria. Interestingly, both treatments generated a similar increase in honey production in treated colonies compared to controls: 36.8% (every 15 days) and 36.3% (monthly). Nosema index always exhibited a reduction when lactobacilli were administered; in turn, Varroa incidence was lower when the lactobacilli were administered once a month. Moreover, the administration of L. johnsonii CRL1647 every 15 days produced an increase in the total number of aerobic microorganisms and in bacteria belonging to the genera Lactobacillus and Enterococcus; at the same time, a decrease was observed in the number of total spores at the end of the treatment. The number of enterobacteria was constant and remained below that of control hives at the end of the assay. On the other hand, the delivery of lactobacilli once a month only showed an increase in the number of bacteria belonging to the genus Lactobacillus; meanwhile, viable counts of the remaining microorganisms assayed were reduced. Even though it seems that both treatments were similar, those bee colonies that received L. johnsonii CRL1647 every 15 days became so strong that they swarmed.

  17. Trap-Nesting Hymenoptera and Their Network with Parasites in Recovered Riparian Forests Brazil.

    PubMed

    Araujo, G J; Fagundes, R; Antonini, Y

    2018-02-01

    Different aspects of human activities can cause environmental change that endanger species persistence, alter species distributions, and lead to changes in antagonistic and mutualistic interactions, whereas deforestation and flooding of riparian forest results in landscapes consisting of patchily distributed riparian forest fragments in a matrix of pastures, plantations, and urban areas. Therefore, we assessed the richness, abundance, and trophic interactions of trap-nesting Hymenoptera and their parasites at four patches of restored riparian forest and at one reference natural fragment, of different sizes and ages, located at the Volta Grande Reservoir, in Minas Gerais and São Paulo states to answer the following questions: (1) Does the richness and abundance of cavity-nesting bees and wasps differ in riparian forest fragments according to the seasonal periods? (2) Does the composition of cavity-nesting bees and wasps vary among restoration and reference sites and between climate seasons (wet and dry)? (3) How do the degrees of specialization of the parasites vary among the patches of forest? We recorded 12 species of wasps, eight of bees, and nine species of parasites. Areas with longer time since restoration (reference site) showed higher species richness. However, the abundance was higher in most recent areas. The composition of bee and wasp assembly has not significantly changed between the climate seasons, although it is different between sampling areas. The richness and abundance were higher in warmer and rainy periods. The rate of bee and wasp mortality was high. The degree of specialization of parasites varies among sampling units, and the network of host-parasite interaction has a modular configuration with generalists and specialists. We concluded that the restored areas with more complex habitat could provide better conditions for the reestablishment of ecological interactions among these insects, the local flora, and other invertebrates, which

  18. Agrochemical-induced stress in stingless bees: peculiarities, underlying basis, and challenges.

    PubMed

    Lima, M A P; Martins, G F; Oliveira, E E; Guedes, R N C

    2016-10-01

    The toxicological stress induced by pesticides, particularly neonicotinoid insecticides, and its consequences in bees has been the focus of much recent attention, particularly for honey bees. However, the emphasis on honey bees and neonicotinoids has led to neglect of the relevance of stingless bees, the prevailing pollinators of natural and agricultural tropical ecosystems, and of other agrochemicals, including other pesticides and even leaf fertilizers. Consequently, studies focusing on agrochemical effects on stingless bees are sparse, usually limited to histopathological studies, and lack a holistic assessment of the effects of these compounds on physiology and behavior. Such effects have consequences for individual and colony fitness and are likely to affect both the stingless bee populations and the associated community, thereby producing a hierarchy of consequences thus far overlooked. Herein, we review the current literature on stingless bee-agrochemical interactions and discuss the underlying mechanisms involved in reported stress symptoms, as well as the potential consequences based on the peculiarities of these pollinators.

  19. Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana.

    PubMed

    Eggert, L S; Eggert, J A; Woodruff, D S

    2003-06-01

    African forest elephants are difficult to observe in the dense vegetation, and previous studies have relied upon indirect methods to estimate population sizes. Using multilocus genotyping of noninvasively collected samples, we performed a genetic survey of the forest elephant population at Kakum National Park, Ghana. We estimated population size, sex ratio and genetic variability from our data, then combined this information with field observations to divide the population into age groups. Our population size estimate was very close to that obtained using dung counts, the most commonly used indirect method of estimating the population sizes of forest elephant populations. As their habitat is fragmented by expanding human populations, management will be increasingly important to the persistence of forest elephant populations. The data that can be obtained from noninvasively collected samples will help managers plan for the conservation of this keystone species.

  20. Floral abundance, richness, and spatial distribution drive urban garden bee communities.

    PubMed

    Plascencia, M; Philpott, S M

    2017-10-01

    In urban landscapes, gardens provide refuges for bee diversity, but conservation potential may depend on local and landscape features. Foraging and population persistence of bee species, as well as overall pollinator community structure, may be supported by the abundance, richness, and spatial distribution of floral resources. Floral resources strongly differ in urban gardens. Using hand netting and pan traps to survey bees, we examined whether abundance, richness, and spatial distribution of floral resources, as well as ground cover and garden landscape surroundings influence bee abundance, species richness, and diversity on the central coast of California. Differences in floral abundance and spatial distribution, as well as urban cover in the landscape, predicted different bee community variables. Abundance of all bees and of honeybees (Apis mellifera) was lower in sites with more urban land cover surrounding the gardens. Honeybee abundance was higher in sites with patchy floral resources, whereas bee species richness and bee diversity was higher in sites with more clustered floral resources. Surprisingly, bee species richness and bee diversity was lower in sites with very high floral abundance, possibly due to interactions with honeybees. Other studies have documented the importance of floral abundance and landscape surroundings for bees in urban gardens, but this study is the first to document that the spatial arrangement of flowers strongly predicts bee abundance and richness. Based on these findings, it is likely that garden managers may promote bee conservation by managing for floral connectivity and abundance within these ubiquitous urban habitats.

  1. Life history strategy of the honey bee, Apis mellifera.

    PubMed

    Seeley, Thomas D

    1978-01-01

    The feral honey bee queens (colonies) of central New York State (USA) show a K-type life history strategy. Their demographic characteristics include low early life mortality, low reproductive rate, long lifespan, high population stability and repeated reproductions. Identifying the life history strategy of these bees reveals the general pattern of selection for competitive ability, rather than productivity, which has shaped their societies. Selection for competitive power explains the adaptiveness (compared with alternatives found in many other insect societies) of the large perennial colonies, infrequent but expensive offspring, and efficient foraging which characterize the social organization of these bees.

  2. National protocol framework for the inventory and monitoring of bees

    USGS Publications Warehouse

    Droege, Sam; Engler, Joseph D.; Sellers, Elizabeth A.; Lee O'Brien,

    2016-01-01

    This national protocol framework is a standardized tool for the inventory and monitoring of the approximately 4,200 species of native and non-native bee species that may be found within the National Wildlife Refuge System (NWRS) administered by the U.S. Fish and Wildlife Service (USFWS). However, this protocol framework may also be used by other organizations and individuals to monitor bees in any given habitat or location. Our goal is to provide USFWS stations within the NWRS (NWRS stations are land units managed by the USFWS such as national wildlife refuges, national fish hatcheries, wetland management districts, conservation areas, leased lands, etc.) with techniques for developing an initial baseline inventory of what bee species are present on their lands and to provide an inexpensive, simple technique for monitoring bees continuously and for monitoring and evaluating long-term population trends and management impacts. The latter long-term monitoring technique requires a minimal time burden for the individual station, yet can provide a good statistical sample of changing populations that can be investigated at the station, regional, and national levels within the USFWS’ jurisdiction, and compared to other sites within the United States and Canada. This protocol framework was developed in cooperation with the United States Geological Survey (USGS), the USFWS, and a worldwide network of bee researchers who have investigated the techniques and methods for capturing bees and tracking population changes. The protocol framework evolved from field and lab-based investigations at the USGS Bee Inventory and Monitoring Laboratory at the Patuxent Wildlife Research Center in Beltsville, Maryland starting in 2002 and was refined by a large number of USFWS, academic, and state groups. It includes a Protocol Introduction and a set of 8 Standard Operating Procedures or SOPs and adheres to national standards of protocol content and organization. The Protocol Narrative

  3. Is Nocturnal Foraging in a Tropical Bee an Escape From Interference Competition?

    PubMed

    Smith, Adam R; Kitchen, Shannon M; Toney, Ryan M; Ziegler, Christian

    2017-01-01

    Temporal niche partitioning may result from interference competition if animals shift their activity patterns to avoid aggressive competitors. If doing so also shifts food sources, it is difficult to distinguish the effects of interference and consumptive competition in selecting for temporal niche shift. Bees compete for pollen and nectar from flowers through both interference and consumptive competition, and some species of bees have evolved nocturnality. Here, we use tropical forest canopy towers to observe bees (the night-flying sweat bees Megalopta genalis and M. centralis [Halictidae], honey bees, and stingless bees [Apidae]) visiting flowers of the balsa tree (Ochroma pyramalidae, Malvaceae). Because Ochroma flowers are open in the late afternoon through the night we can test the relative influence of each competition type on temporal nice. Niche shift due to consumptive competition predicts that Megalopta forage when resources are available: from afternoon into the night. Niche shift due to interference competition predicts that Megalopta forage only in the absence of diurnal bees. We found no overlap between diurnal bees and Megalopta in the evening, and only one instance of overlap in the morning, despite the abundance of pollen and nectar in the late afternoon and evening. This supports the hypothesis that Megalopta are avoiding interference competition, but not the hypothesis that they are limited by consumptive competition. We propose that the release from interference competition enables Megalopta to provision cells quickly, and spend most of their time investing in nest defense. Thus, increases in foraging efficiency directly resulting from temporal shifts to escape interference competition may indirectly lead to reduced predation and parasitism. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  4. Is Nocturnal Foraging in a Tropical Bee an Escape From Interference Competition?

    PubMed Central

    Kitchen, Shannon M.; Toney, Ryan M.; Ziegler, Christian

    2017-01-01

    Temporal niche partitioning may result from interference competition if animals shift their activity patterns to avoid aggressive competitors. If doing so also shifts food sources, it is difficult to distinguish the effects of interference and consumptive competition in selecting for temporal niche shift. Bees compete for pollen and nectar from flowers through both interference and consumptive competition, and some species of bees have evolved nocturnality. Here, we use tropical forest canopy towers to observe bees (the night-flying sweat bees Megalopta genalis and M. centralis [Halictidae], honey bees, and stingless bees [Apidae]) visiting flowers of the balsa tree (Ochroma pyramalidae, Malvaceae). Because Ochroma flowers are open in the late afternoon through the night we can test the relative influence of each competition type on temporal nice. Niche shift due to consumptive competition predicts that Megalopta forage when resources are available: from afternoon into the night. Niche shift due to interference competition predicts that Megalopta forage only in the absence of diurnal bees. We found no overlap between diurnal bees and Megalopta in the evening, and only one instance of overlap in the morning, despite the abundance of pollen and nectar in the late afternoon and evening. This supports the hypothesis that Megalopta are avoiding interference competition, but not the hypothesis that they are limited by consumptive competition. We propose that the release from interference competition enables Megalopta to provision cells quickly, and spend most of their time investing in nest defense. Thus, increases in foraging efficiency directly resulting from temporal shifts to escape interference competition may indirectly lead to reduced predation and parasitism. PMID:28931157

  5. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology

    PubMed Central

    Traynor, Kirsten S.; Andree, Michael; Lichtenberg, Elinor M.; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L.

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors

  6. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology.

    PubMed

    vanEngelsdorp, Dennis; Traynor, Kirsten S; Andree, Michael; Lichtenberg, Elinor M; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors

  7. Bee-Wild about Pollinators!

    ERIC Educational Resources Information Center

    Johnson, Bonnie; Kil, Jenny; Evans, Elaine; Koomen, Michele Hollingsworth

    2014-01-01

    With their sunny stripes and fuzzy bodies, bees are beloved--but unfortunately, they are in trouble. Bee decline, of both wild bees as well as managed bees like honey bees, has been in the news for the last several years. Habitat loss, diseases, pests, and pesticides have made it difficult for bees to survive in many parts of our world (Walsh…

  8. Assisted migration of forest populations for adapting trees to climate change

    Treesearch

    Cuauhtémoc Sáenz-Romero; Roberto A. Lindig-Cisneros; Dennis G. Joyce; Jean Beaulieu; J. Bradley St. Clair; Barry C. Jaquish

    2016-01-01

    We present evidence that climatic change is an ongoing process and that forest tree populations are genetically differentiated for quantitative traits because of adaptation to specific habitats. We discuss in detail indications that the shift of suitable climatic habitat for forest tree species and populations, as a result of rapid climatic change, is likely to cause...

  9. Classical conditioning of proboscis extension in harnessed Africanized honey bee queens (Apis mellifera L.).

    PubMed

    Aquino, Italo S; Abramson, Charles I; Soares, Ademilson E E; Fernandes, Andrea Cardoso; Benbassat, Danny

    2004-06-01

    Experiments are reported on learning in virgin Africanized honey bee queens (Apis mellifera L.). Queens restrained in a "Pavlovian harness" received a pairing of hexanal odor with a 1.8-M feeding of sucrose solution. Compared to explicitly unpaired controls, acquisition was rapid in reaching about 90%. Acquisition was also rapid in queens receiving an unconditioned stimulus of "bee candy" or an unconditioned stimulus administered by worker bees. During extinction the conditioned response declines. The steepest decline was observed in queens receiving an unconditioned stimulus of bee candy. These findings extend previous work on learning of Afrianized honey bee workers to a population of queen bees.

  10. Resource overlap and possible competition between honey bees and wild bees in central Europe.

    PubMed

    Steffan-Dewenter, I; Tscharntke, T

    2000-02-01

    Evidence for interspecific competition between honey bees and wild bees was studied on 15 calcareous grasslands with respect to: (1) foraging radius of honey bees, (2) overlap in resource use, and (3) possible honey bee effects on species richness and abundance of flower-visiting, ground-nesting and trap-nesting wild bees. The grasslands greatly differed in the number of honey bee colonies within a radius of 2 km and were surrounded by agricultural habitats. The number of flower-visiting honey bees on both potted mustard plants and small grassland patches declined with increasing distance from the nearest apiary and was almost zero at a distance of 1.5-2.0 km. Wild bees were observed visiting 57 plant species, whereas honey bees visited only 24 plant species. Percentage resource overlap between honey bees and wild bees was 45.5%, and Hurlbert's index of niche overlap was 3.1. In total, 1849 wild bees from 98 species were recorded on the calcareous grasslands. Neither species richness nor abundance of wild bees were negatively correlated with the density of honey bee colonies (within a radius of 2 km) or the density of flower-visiting honey bees per site. Abundance of flower- visiting wild bees was correlated only with the percentage cover of flowering plants. In 240 trap nests, 1292 bee nests with 6066 brood cells were found. Neither the number of bee species nor the number of brood cells per grassland was significantly correlated with the density of honey bees. Significant correlations were found only between the number of brood cells and the percentage cover of shrubs. The number of nest entrances of ground-nesting bees per square metre was not correlated with the density of honey bees but was negatively correlated with the cover of vegetation. Interspecific competition by honey bees for food resources was not shown to be a significant factor determining abundance and species richness of wild bees.

  11. Pollution monitoring using bees: a new service provided by honey bees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromenshenk, J.J.; Thomas, J.M.; Simpson, J.C.

    1983-10-01

    The objectives are to provide a tool for assessing pollutant distributions and the effects of pollutants on living systems. The potential of bees as pollution monitors was studied by examining bees exposed to toxic metals near a smelter in Montana and bees in the area surrounding a hazardous waste disposal site near Puget Sound, Washington. Levels of toxic metals in the bees and brood survival were examined. It was concluded bees were, indeed, suitable indicators of pollution levels. (ACR)

  12. A Mathematical Model for the Bee Hive of Apis Mellifera

    NASA Astrophysics Data System (ADS)

    Antonioni, Alberto; Bellom, Fabio Enrici; Montabone, Andrea; Venturino, Ezio

    2010-09-01

    In this work we introduce and discuss a model for the bee hive, in which only adult bees and drones are modeled. The role that the latter have in the system is interesting, their population can retrieve even if they are totally absent from the bee hive. The feasibility and stability of the equilibria is studied numerically. A simplified version of the model shows the importance of the drones' role, in spite of the fact that it allows only a trivial equilibrium. For this simplified system, no Hopf bifurcations are shown to arise.

  13. Development of a species-diagnostic marker and its application for population genetics studies of the stingless bee Trigona collina in Thailand.

    PubMed

    Theeraapisakkun, M; Klinbunga, S; Sittipraneed, S

    2010-05-18

    A molecular maker for authenticating species origin of the stingless bee (Trigona collina) was developed. Initially, amplified fragment length polymorphism analysis was made of 11 stingless bee species using 64 primer combinations. A 316-bp band found only in T. collina was cloned and sequenced. A primer pair (CUTc1-F/R) was designed and tested for species-specificity in 15 stingless bee species (239 nests). The expected 259-bp fragment was consistently amplified in all T. collina individuals (134/134 nests, 100%). Cross-species amplification was observed in T. pagdeni (43/51 nests; 84.3%), but not in other species. SSCP analysis of CUTc1 unambiguously differentiated T. collina from T. pagdeni. CUTc1 generated three genotypes in Thai T. collina (134 nests). An AA (259/259 bp) genotype was found in all stingless bees from the north (21 nests) and northeast (32 nests), and 23/28 nests from the Central region, whereas a BB (253/253 bp) genotype was observed in most samples from peninsular Thailand (42/53 nests). Heterozygotes exhibiting the AB (253/259 bp) genotype were observed in 5 of 28 nests from Prachuap Khiri Khan located slightly above the Kra ecotone and 11 of 53 nests originated further south of the Kra ecotone. Genotype distribution patterns of CUTc1 clearly indicated intraspecific population differentiation of Thai T. collina.

  14. Red mason bees cannot compete with honey bees for floral resources in a cage experiment.

    PubMed

    Hudewenz, Anika; Klein, Alexandra-Maria

    2015-11-01

    Intensive beekeeping to mitigate crop pollination deficits and habitat loss may cause interspecific competition between bees. Studies show negative correlations between flower visitation of honey bees (Apis mellifera) and wild bees, but effects on the reproduction of wild bees were not proven. Likely reasons are that honey bees can hardly be excluded from controls and wild bee nests are generally difficult to detect in field experiments. The goal of this study was to investigate whether red mason bees (Osmia bicornis) compete with honey bees in cages in order to compare the reproduction of red mason bees under different honey bee densities. Three treatments were applied, each replicated in four cages of 18 m³ with 38 red mason bees in all treatments and 0, 100, and 300 honey bees per treatment with 10-20% being foragers. Within the cages, the flower visitation and interspecific displacements from flowers were observed. Niche breadths and resource overlaps of both bee species were calculated, and the reproduction of red mason bees was measured. Red mason bees visited fewer flowers when honey bees were present. Niche breadth of red mason bees decreased with increasing honey bee density while resource overlaps remained constant. The reproduction of red mason bees decreased in cages with honey bees. In conclusion, our experimental results show that in small and isolated flower patches, wild bees can temporarily suffer from competition with honey bees. Further research should aim to test for competition on small and isolated flower patches in real landscapes.

  15. [Analysis of the population structure of the Black Forest Draught Horse].

    PubMed

    Aberle, Kerstin; Wrede, Jörn; Distl, Ottmar

    2003-01-01

    Gene contributions of foreign populations as well as coefficients of inbreeding and relationship were evaluated in 699 Black Forest Draught horses of Baden-Württemberg actually registered in the year 2002. Based on nearly complete 5-generation-pedigrees and after taking into account the remaining incompleteness, the mean coefficient of inbreeding for the total population was 6.5%. The recently by incrossing with different breeds newly established lines of stallions showed significantly lower mean coefficients of inbreeding. High rates of inbreeding of about 1.6% in the last five generations could also be faced by incrossing stallions of foreign coldblooded populations what resulted in a decrease of inbreeding in the last generation. In the total population the mean degree of relationship was 16%. The mean degree of relationships within lines of stallions was between 18.3 and 26.8%. The coefficients of relationships between lines of stallions varied between 5.1 and 16.6%. Especially, the newly established lines of stallions showed a lower mean degree of relationships to the other different lines of stallions. The proportion of purebred Black Forest Draught horses in the total population was nearly 70%. Assuming that most animals of unknown origin were purebred, the proportion of purebred Black Forest Draught horses reached about 90%. Austrian Noric, Swiss Freiberg and South German Coldblood stallions were the most important contributors to the Black Forest Draught horse population.

  16. Bee Stings & Their Consequences.

    ERIC Educational Resources Information Center

    Rupp, Robert M.

    1991-01-01

    Relevant information concerning bee stings is provided. Possible reactions to a bee sting and their symptoms, components of bee venom, diagnosis of hypersensitivity, and bee sting prevention and treatment are topics of discussion. The possibility of bee stings occurring during field trips and the required precautions are discussed. (KR)

  17. Non-Specific dsRNA-Mediated Antiviral Response in the Honey Bee

    PubMed Central

    Flenniken, Michelle L.; Andino, Raul

    2013-01-01

    Honey bees are essential pollinators of numerous agricultural crops. Since 2006, honey bee populations have suffered considerable annual losses that are partially attributed to Colony Collapse Disorder (CCD). CCD is an unexplained phenomenon that correlates with elevated incidence of pathogens, including RNA viruses. Honey bees are eusocial insects that live in colonies of genetically related individuals that work in concert to gather and store nutrients. Their social organization provides numerous benefits, but also facilitates pathogen transmission between individuals. To investigate honey bee antiviral defense mechanisms, we developed an RNA virus infection model and discovered that administration of dsRNA, regardless of sequence, reduced virus infection. Our results suggest that dsRNA, a viral pathogen associated molecular pattern (PAMP), triggers an antiviral response that controls virus infection in honey bees. PMID:24130869

  18. Honey bee pathology: current threats to honey bees and beekeeping.

    PubMed

    Genersch, Elke

    2010-06-01

    Managed honey bees are the most important commercial pollinators of those crops which depend on animal pollination for reproduction and which account for 35% of the global food production. Hence, they are vital for an economic, sustainable agriculture and for food security. In addition, honey bees also pollinate a variety of wild flowers and, therefore, contribute to the biodiversity of many ecosystems. Honey and other hive products are, at least economically and ecologically rather, by-products of beekeeping. Due to this outstanding role of honey bees, severe and inexplicable honey bee colony losses, which have been reported recently to be steadily increasing, have attracted much attention and stimulated many research activities. Although the phenomenon "decline of honey bees" is far from being finally solved, consensus exists that pests and pathogens are the single most important cause of otherwise inexplicable colony losses. This review will focus on selected bee pathogens and parasites which have been demonstrated to be involved in colony losses in different regions of the world and which, therefore, are considered current threats to honey bees and beekeeping.

  19. Bees brought to their knees: microbes affecting honey bee health.

    PubMed

    Evans, Jay D; Schwarz, Ryan S

    2011-12-01

    The biology and health of the honey bee Apis mellifera has been of interest to human societies for centuries. Research on honey bee health is surging, in part due to new tools and the arrival of colony-collapse disorder (CCD), an unsolved decline in bees from parts of the United States, Europe, and Asia. Although a clear understanding of what causes CCD has yet to emerge, these efforts have led to new microbial discoveries and avenues to improve our understanding of bees and the challenges they face. Here we review the known honey bee microbes and highlight areas of both active and lagging research. Detailed studies of honey bee-pathogen dynamics will help efforts to keep this important pollinator healthy and will give general insights into both beneficial and harmful microbes confronting insect colonies. Copyright © 2011. Published by Elsevier Ltd.

  20. Managing honey bees (Hymenoptera: Apidae) for greenhouse tomato pollination.

    PubMed

    Sabara, Holly A; Winston, Mark L

    2003-06-01

    Although commercially reared colonies of bumble bees (Bombus sp.) are the primary pollinator world-wide for greenhouse tomatoes (Lycopersicon esculentum Mill.) previous research indicates that honey bees (Apis mellifera L.) might be a feasible alternative or supplement to bumble bee pollination. However, management methods for honey bee greenhouse tomato pollination scarcely have been explored. We 1) tested the effect of initial amounts of brood on colony population size and flight activity in screened greenhouses during the winter, and 2) compared foraging from colonies with brood used within screened and unscreened greenhouses during the summer. Brood rearing was maintained at low levels in both brood and no-brood colonies after 21 d during the winter, and emerging honey bees from both treatments had significantly lower weights than bees from outdoor colonies. Honey bee flight activity throughout the day and over the 21 d in the greenhouse was not influenced by initial brood level. In our summer experiment, brood production in screened greenhouses neared zero after 21 d but higher levels of brood were reared in unscreened greenhouses with access to outside forage. Flower visitation measured throughout the day and over the 21 d the colonies were in the greenhouse was not influenced by screening treatment. An economic analysis indicated that managing honey bees for greenhouse tomato pollination would be financially viable for both beekeepers and growers. We conclude that honey bees can be successfully managed for greenhouse tomato pollination in both screened and unscreened greenhouses if the foraging force is maintained by replacing colonies every 3 wk.

  1. Breeding bird populations in Missouri Ozark forests with and without clearcutting

    Treesearch

    Frank R., III Thompson; William D. Dijak; Thomas G. Kulowiec; David A. Hamilton

    1992-01-01

    Concern has arisen that forest management practices that create edge (such as clearcutting) are contributing to regional declines in neotropical migrant birds that inhabit forest interiors. Consequently, we studied breeding bird populations in an extensively forested region of southern Missouri to determine if the numbers of breeding birds differed between areas (n = 9...

  2. Immunological studies on bee-keepers: specific IgG and subclass typing IgG against bee venom and bee venom components.

    PubMed

    Urbanek, R; Forster, J; Ziupa, J; Karitzky, D

    1980-11-17

    Specific IgE antibodies against bee venom and its components were studied in 23 bee-keepers. The highest IgG serum levels were observed for whole bee venom followed by phospholipase A. The serum levels of specific IgG antibodies against melittin and MCD-peptide were lower, the lowest serum levels being observed for apamin. After a 5 month absence from bee-keeping a fall in the serum levels of IgG antibodies was observed in all the bee-keepers studied. The investigation of the IgG subclass antibodies 1-4 against bee venom and phospholipase A demonstrated the highest serum levels for IgG 4 and IgG 2, the lowest levels were observed for IgG 1. The lowest IgG serum levels were associated with the least effective protection to bee stings. These findings support the concept that specific IgG antibodies prevent the development of allergic symptoms after bee sting.

  3. Phenotypic Variation in Fitness Traits of a Managed Solitary Bee, Osmia ribifloris (Hymenoptera: Megachilidae).

    PubMed

    Sampson, B J; Rinehart, T A; Kirker, G T; Stringer, S J; Werle, C T

    2015-12-01

    We investigated fitness in natural populations of a managed solitary bee Osmia ribifloris Cockerell (Hymenoptera: Megachilidae) from sites separated from 400 to 2,700 km. Parental wild bees originated in central Texas (TX), central-northern Utah (UT), and central California (CA). They were then intercrossed and raised inside a mesh enclosure in southern Mississippi (MS). Females from all possible mated pairs of O. ribifloris produced F1 broods with 30-40% female cocoons and outcrossed progeny were 30% heavier. Mitochondrial (COI) genomes of the four populations revealed three distinct clades, a TX-CA clade, a UT clade, and an MS clade, the latter (MS) representing captive progeny of CA and UT bees. Although classified as separate subspecies, TX and CA populations from 30° N to 38° N latitude shared 98% similarity in COI genomes and the greatest brood biomass per nest straw (600- to 700-mg brood). Thus, TX and CA bees show greater adaptation for southern U.S. sites. In contrast, UT-sourced bees were more distantly related to TX and CA bees and also produced ∼50% fewer brood. These results, taken together, confirm that adult O. ribifloris from all trap-nest sites are genetically compatible, but some phenotypic variation exists that could affect this species performance as a commercial blueberry pollinator. Males, their sperm, or perhaps a substance in their sperm helped stabilize our captive bee population by promoting legitimate nesting over nest usurpation. Otherwise, without insemination, 50% fewer females nested (they nested 14 d late) and 20% usurped nests, killing 33-67% of brood in affected nests. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  4. Seasonal cycles, phylogenetic assembly, and functional diversity of orchid bee communities.

    PubMed

    Ramírez, Santiago R; Hernández, Carlos; Link, Andres; López-Uribe, Margarita M

    2015-05-01

    Neotropical rainforests sustain some of the most diverse terrestrial communities on Earth. Euglossine (or orchid) bees are a diverse lineage of insect pollinators distributed throughout the American tropics, where they provide pollination services to a staggering diversity of flowering plant taxa. Elucidating the seasonal patterns of phylogenetic assembly and functional trait diversity of bee communities can shed new light into the mechanisms that govern the assembly of bee pollinator communities and the potential effects of declining bee populations. Male euglossine bees collect, store, and accumulate odoriferous compounds (perfumes) to subsequently use during courtship display. Thus, synthetic chemical baits can be used to attract and monitor euglossine bee populations. We conducted monthly censuses of orchid bees in three sites in the Magdalena valley of Colombia - a region where Central and South American biotas converge - to investigate the structure, diversity, and assembly of euglossine bee communities through time in relation to seasonal climatic cycles. In particular, we tested the hypothesis that phylogenetic community structure and functional trait diversity changed in response to seasonal rainfall fluctuations. All communities exhibited strong to moderate phylogenetic clustering throughout the year, with few pronounced bursts of phylogenetic overdispersion that coincided with the transition from wet-to-dry seasons. Despite the heterogeneous distribution of functional traits (e.g., body size, body mass, and proboscis length) and the observed seasonal fluctuations in phylogenetic diversity, we found that functional trait diversity, evenness, and divergence remained constant during all seasons in all communities. However, similar to the pattern observed with phylogenetic diversity, functional trait richness fluctuated markedly with rainfall in all sites. These results emphasize the importance of considering seasonal fluctuations in community assembly and

  5. Both population size and patch quality affect local extinctions and colonizations.

    PubMed

    Franzén, Markus; Nilsson, Sven G

    2010-01-07

    Currently, the habitat of many species is fragmented, resulting in small local populations with individuals occasionally dispersing between the remaining habitat patches. In a solitary bee metapopulation, extinction probability was related to both local bee population sizes and pollen resources measured as host plant population size. Patch size, on the other hand, had no additional predictive power. The turnover rate of local bee populations in 63 habitat patches over 4 years was high, with 72 extinction events and 31 colonization events, but the pollen plant population was stable with no extinctions or colonizations. Both pollen resources and bee populations had strong and independent effects on extinction probability, but connectivity was not of importance. Colonizations occurred more frequently within larger host plant populations. For metapopulation survival of the bee, large pollen plant populations are essential, independent of current bee population size.

  6. Have changing forests conditions contributed to pollinator decline in the southeastern United States?

    Treesearch

    James L. Hanula; Scott Horn; Joseph J. O' Brien

    2015-01-01

    Two conservation goals of the early 20th century, extensive reforestation and reduced wildfire through fire exclusion, may have contributed to declining pollinator abundance as forests became denser and shrub covered. To examine how forest structure affects bees we selected 5 stands in each of 7 forest types including: cleared forest; dense young pines; thinned young...

  7. APIS—a novel approach for conditioning honey bees

    PubMed Central

    Kirkerud, Nicholas H.; Wehmann, Henja-Niniane; Galizia, C. Giovanni; Gustav, David

    2013-01-01

    Honey bees perform robustly in different conditioning paradigms. This makes them excellent candidates for studying mechanisms of learning and memory at both an individual and a population level. Here we introduce a novel method of honey bee conditioning: APIS, the Automatic Performance Index System. In an enclosed walking arena where the interior is covered with an electric grid, presentation of odors from either end can be combined with weak electric shocks to form aversive associations. To quantify behavioral responses, we continuously monitor the movement of the bee by an automatic tracking system. We found that escapes from one side to the other, changes in velocity as well as distance and time spent away from the punished odor are suitable parameters to describe the bee's learning capabilities. Our data show that in a short-term memory test the response rate for the conditioned stimulus (CS) in APIS correlates well with response rate obtained from conventional Proboscis Extension Response (PER)-conditioning. Additionally, we discovered that bees modulate their behavior to aversively learned odors by reducing their rate, speed and magnitude of escapes and that both generalization and extinction seem to be different between appetitive and aversive stimuli. The advantages of this automatic system make it ideal for assessing learning rates in a standardized and convenient way, and its flexibility adds to the toolbox for studying honey bee behavior. PMID:23616753

  8. APIS-a novel approach for conditioning honey bees.

    PubMed

    Kirkerud, Nicholas H; Wehmann, Henja-Niniane; Galizia, C Giovanni; Gustav, David

    2013-01-01

    Honey bees perform robustly in different conditioning paradigms. This makes them excellent candidates for studying mechanisms of learning and memory at both an individual and a population level. Here we introduce a novel method of honey bee conditioning: APIS, the Automatic Performance Index System. In an enclosed walking arena where the interior is covered with an electric grid, presentation of odors from either end can be combined with weak electric shocks to form aversive associations. To quantify behavioral responses, we continuously monitor the movement of the bee by an automatic tracking system. We found that escapes from one side to the other, changes in velocity as well as distance and time spent away from the punished odor are suitable parameters to describe the bee's learning capabilities. Our data show that in a short-term memory test the response rate for the conditioned stimulus (CS) in APIS correlates well with response rate obtained from conventional Proboscis Extension Response (PER)-conditioning. Additionally, we discovered that bees modulate their behavior to aversively learned odors by reducing their rate, speed and magnitude of escapes and that both generalization and extinction seem to be different between appetitive and aversive stimuli. The advantages of this automatic system make it ideal for assessing learning rates in a standardized and convenient way, and its flexibility adds to the toolbox for studying honey bee behavior.

  9. Ocelot Population Status in Protected Brazilian Atlantic Forest.

    PubMed

    Massara, Rodrigo Lima; Paschoal, Ana Maria de Oliveira; Doherty, Paul Francis; Hirsch, André; Chiarello, Adriano Garcia

    2015-01-01

    Forest fragmentation and habitat loss are detrimental to top carnivores, such as jaguars (Panthera onca) and pumas (Puma concolor), but effects on mesocarnivores, such as ocelots (Leopardus pardalis), are less clear. Ocelots need native forests, but also might benefit from the local extirpation of larger cats such as pumas and jaguars through mesopredator release. We used a standardized camera trap protocol to assess ocelot populations in six protected areas of the Atlantic forest in southeastern Brazil where over 80% of forest remnants are < 50 ha. We tested whether variation in ocelot abundance could be explained by reserve size, forest cover, number of free-ranging domestic dogs and presence of top predators. Ocelot abundance was positively correlated with reserve size and the presence of top predators (jaguar and pumas) and negatively correlated with the number of dogs. We also found higher detection probabilities in less forested areas as compared to larger, intact forests. We suspect that smaller home ranges and higher movement rates in smaller, more degraded areas increased detection. Our data do not support the hypothesis of mesopredator release. Rather, our findings indicate that ocelots respond negatively to habitat loss, and thrive in large protected areas inhabited by top predators.

  10. Ocelot Population Status in Protected Brazilian Atlantic Forest

    PubMed Central

    Massara, Rodrigo Lima; Paschoal, Ana Maria de Oliveira; Doherty, Paul Francis; Hirsch, André; Chiarello, Adriano Garcia

    2015-01-01

    Forest fragmentation and habitat loss are detrimental to top carnivores, such as jaguars (Panthera onca) and pumas (Puma concolor), but effects on mesocarnivores, such as ocelots (Leopardus pardalis), are less clear. Ocelots need native forests, but also might benefit from the local extirpation of larger cats such as pumas and jaguars through mesopredator release. We used a standardized camera trap protocol to assess ocelot populations in six protected areas of the Atlantic forest in southeastern Brazil where over 80% of forest remnants are < 50 ha. We tested whether variation in ocelot abundance could be explained by reserve size, forest cover, number of free-ranging domestic dogs and presence of top predators. Ocelot abundance was positively correlated with reserve size and the presence of top predators (jaguar and pumas) and negatively correlated with the number of dogs. We also found higher detection probabilities in less forested areas as compared to larger, intact forests. We suspect that smaller home ranges and higher movement rates in smaller, more degraded areas increased detection. Our data do not support the hypothesis of mesopredator release. Rather, our findings indicate that ocelots respond negatively to habitat loss, and thrive in large protected areas inhabited by top predators. PMID:26560347

  11. [Visitation of orchid by Melipona capixaba Moure & Camargo (Hymenoptera: Apidae), bee threatened with extinction].

    PubMed

    Resende, Helder C; Barros, Fábio de; Campos, Lúcio A O; Fernandes-Salomão, Tânia M

    2008-01-01

    The stingless bee Melipona capixaba Moure & Camargo is a species restricted to the Atlantic forest in the Domingos Martins, Conceição do Castelo, Venda Nova do Imigrante and Afonso Cláudio County, in the Espírito Santo State, Brazil. Despite its cological importance as pollinator few studies have examined the ecology and biology of this bee. This note relates a case of the M. capixaba workers carrying pollinarium attached to the scuttellum. The pollinaria were identified as belonging to the orchid subtribe Maxillariinae species possibly of the genus Maxillaria sensu lato or Xylobium.

  12. The proportion of impervious surfaces at the landscape scale structures wild bee assemblages in a densely populated region.

    PubMed

    Geslin, Benoît; Le Féon, Violette; Folschweiller, Morgane; Flacher, Floriane; Carmignac, David; Motard, Eric; Perret, Samuel; Dajoz, Isabelle

    2016-09-01

    Given the predicted expansion of cities throughout the world, understanding the effect of urbanization on bee fauna is a major issue for the conservation of bees. The aim of this study was to understand how urbanization affects wild bee assemblages along a gradient of impervious surfaces and to determine the influence of landscape composition and floral resource availability on these assemblages. We chose 12 sites with a proportion of impervious surfaces (soil covered by parking, roads, and buildings) ranging from 0.06% to 64.31% within a 500 m radius. We collected using pan trapping and estimated the landscape composition of the sites within a 500 m radius and the species richness of plant assemblages within a 200 m radius. We collected 1104 bees from 74 species. The proportion of impervious surfaces at the landscape scale had a negative effect on wild bee abundance and species richness, whereas local flower composition had no effect. Ground-nesting bees were particularly sensitive to the urbanization gradient. This study provides new evidences of the impact of urbanization on bee assemblages and the proportion of impervious surfaces at the landscape scale emerged as a key factor that drives those assemblages.

  13. The potential conservation value of unmowed powerline strips for native bees

    USGS Publications Warehouse

    Russell, K.N.; Ikerd, H.; Droege, S.

    2005-01-01

    The land area covered by powerline easements in the United States exceeds the area of almost all national parks, including Yellowstone. In parts of Europe and the US, electric companies have altered their land management practices from periodic mowing to extraction of tall vegetation combined with the use of selective herbicides. To investigate whether this alternate management practice might produce higher quality habitat for native bees, we compared the bee fauna collected in unmowed powerline corridors and in nearby mowed grassy fields at the Patuxent Wildlife Research Center (MD). Powerline sites had more spatially and numerically rare species and a richer bee community than the grassy fields, although the difference was less pronounced than we expected. Powerline sites also had more parasitic species and more cavitynesting bees. Bee communities changed progressively through the season, but differences between the site types were persistent. The surrounding, nongrassland landscape likely has a strong influence on the bee species collected at the grassland sites, as some bees may be foraging in the grasslands but nesting elsewhere. Improving habitat for native bees will help ameliorate the loss of pollination services caused by the collapse of wild and managed honeybee populations. This study suggests that powerline strips have the potential to provide five million acres of bee-friendly habitat in the US if utilities more generally adopt appropriate management practices.

  14. Routes of pesticide exposure in solitary, cavity-nesting bees

    USDA-ARS?s Scientific Manuscript database

    The declines of pollinator health and populations are a current commercial and ecological concern. In particular, challenges related to maintaining healthy commercial honey bee (Apis mellifera L.) populations continue. Agricultural practices, such as the use of agrochemicals, are among factors that ...

  15. Context affects nestmate recognition errors in honey bees and stingless bees.

    PubMed

    Couvillon, Margaret J; Segers, Francisca H I D; Cooper-Bowman, Roseanne; Truslove, Gemma; Nascimento, Daniela L; Nascimento, Fabio S; Ratnieks, Francis L W

    2013-08-15

    Nestmate recognition studies, where a discriminator first recognises and then behaviourally discriminates (accepts/rejects) another individual, have used a variety of methodologies and contexts. This is potentially problematic because recognition errors in discrimination behaviour are predicted to be context-dependent. Here we compare the recognition decisions (accept/reject) of discriminators in two eusocial bees, Apis mellifera and Tetragonisca angustula, under different contexts. These contexts include natural guards at the hive entrance (control); natural guards held in plastic test arenas away from the hive entrance that vary either in the presence or absence of colony odour or the presence or absence of an additional nestmate discriminator; and, for the honey bee, the inside of the nest. For both honey bee and stingless bee guards, total recognition errors of behavioural discrimination made by guards (% nestmates rejected + % non-nestmates accepted) are much lower at the colony entrance (honey bee: 30.9%; stingless bee: 33.3%) than in the test arenas (honey bee: 60-86%; stingless bee: 61-81%; P<0.001 for both). Within the test arenas, the presence of colony odour specifically reduced the total recognition errors in honey bees, although this reduction still fell short of bringing error levels down to what was found at the colony entrance. Lastly, in honey bees, the data show that the in-nest collective behavioural discrimination by ca. 30 workers that contact an intruder is insufficient to achieve error-free recognition and is not as effective as the discrimination by guards at the entrance. Overall, these data demonstrate that context is a significant factor in a discriminators' ability to make appropriate recognition decisions, and should be considered when designing recognition study methodologies.

  16. Patch dynamics of a foraging assemblage of bees.

    PubMed

    Wright, David Hamilton

    1985-03-01

    The composition and dynamics of foraging assemblages of bees were examined from the standpoint of species-level arrival and departure processes in patches of flowers. Experiments with bees visiting 4 different species of flowers in subalpine meadows in Colorado gave the following results: 1) In enriched patches the rates of departure of bees were reduced, resulting in increases in both the number of bees per species and the average number of species present. 2) The reduction in bee departure rates from enriched patches was due to mechanical factors-increased flower handling time, and to behavioral factors-an increase in the number of flowers visited per inflorescence and in the number of inflorescences visited per patch. Bees foraging in enriched patches could collect nectar 30-45% faster than those foraging in control patches. 3) The quantitative changes in foraging assemblages due to enrichment, in terms of means and variances of species population sizes, fraction of time a species was present in a patch, and in mean and variance of the number of species present, were in reasonable agreement with predictions drawn from queuing theory and studies in island biogeography. 4) Experiments performed with 2 species of flowers with different corolla tube lengths demonstrated that manipulation of resources of differing availability had unequal effects on particular subsets of the larger foraging community. The arrival-departure process of bees on flowers and the immigration-extinction process of species on islands are contrasted, and the value of the stochastic, species-level approach to community composition is briefly discussed.

  17. Forest fragmentation and Red-cockaded Woodpecker population: an analysis at intermediate scale

    Treesearch

    D. Craig Rudolph; Richard N. Conner

    1994-01-01

    The Red-cockaded Woodpecker population on the Sam Houston National Forest in Texas was surveyed during 1988. The 128 active clusters present make this population one of the largest in existence. Pine stand ages varied considerably across the forest. Correlation analysis indicated that stand area in excess of 60 yr of age is positively correlated with measures of...

  18. Linking evolutionary lineage with parasite and pathogen prevalence in the Iberian honey bee.

    PubMed

    Jara, Laura; Cepero, Almudena; Garrido-Bailón, Encarna; Martín-Hernández, Raquel; Higes, Mariano; De la Rúa, Pilar

    2012-05-01

    The recent decline in honey bee colonies observed in both European countries and worldwide is of great interest and concern, although the underlying causes remain poorly understood. In recent years, growing evidence has implicated parasites and pathogens in this decline of both the vitality and number of honey bee colonies. The Iberian Peninsula provides an interesting environment in which to study the occurrence of pathogens and parasites in the host honey bee populations due to the presence of two evolutionary lineages in A. m. iberiensis (Western European [M] or African [A]). Here, we provide the first evidence linking the population structure of the Iberian honey bee with the prevalence of some of its most important parasites and pathogens: the Varroa destructor mite and the microsporidia Nosema apis and Nosema ceranae. Using data collected in two surveys conducted in 2006 and 2010 in 41 Spanish provinces, the evolutionary lineage and the presence of the three parasitic organisms cited above were analyzed in a total of 228 colonies. In 2006 N. apis was found in a significantly higher proportion of M lineage honey bees than in the A lineage. However, in 2010 this situation had changed significantly due to a higher prevalence of N. ceranae. We observed no significant relationships in either year between the distributions of V. destructor or N. ceranae and the evolutionary lineage present in A. m. iberiensis colonies, but the effects of these organisms on the genetic diversity of the honey bee populations need further research. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Synergistic effects of non-Apis bees and honey bees for pollination services

    PubMed Central

    Brittain, Claire; Williams, Neal; Kremen, Claire; Klein, Alexandra-Maria

    2013-01-01

    In diverse pollinator communities, interspecific interactions may modify the behaviour and increase the pollination effectiveness of individual species. Because agricultural production reliant on pollination is growing, improving pollination effectiveness could increase crop yield without any increase in agricultural intensity or area. In California almond, a crop highly dependent on honey bee pollination, we explored the foraging behaviour and pollination effectiveness of honey bees in orchards with simple (honey bee only) and diverse (non-Apis bees present) bee communities. In orchards with non-Apis bees, the foraging behaviour of honey bees changed and the pollination effectiveness of a single honey bee visit was greater than in orchards where non-Apis bees were absent. This change translated to a greater proportion of fruit set in these orchards. Our field experiments show that increased pollinator diversity can synergistically increase pollination service, through species interactions that alter the behaviour and resulting functional quality of a dominant pollinator species. These results of functional synergy between species were supported by an additional controlled cage experiment with Osmia lignaria and Apis mellifera. Our findings highlight a largely unexplored facilitative component of the benefit of biodiversity to ecosystem services, and represent a way to improve pollinator-dependent crop yields in a sustainable manner. PMID:23303545

  20. Intergenerational reproductive parasitism in a stingless bee.

    PubMed

    Oldroyd, Benjamin P; Beekman, Madeleine

    2009-10-01

    Insect colonies have been traditionally regarded as closed societies comprised of completely sterile workers ruled over by a single once-mated queen. However, over the past 15 years, microsatellite studies of parentage have revealed that this perception is far from the truth (Beekman & Oldroyd 2008). First, we learned that honey bee queens are far more promiscuous than we had previously imagined (Estoup et al. 1994), with one Apis dorsata queen clocked at over 100 mates (Wattanachaiyingcharoen et al. 2003). Then Oldroyd et al. (1994) reported a honey bee colony from Queensland, where virtually all the males were sons of a single patriline of workers - a clear case of a cheater mutant that promoted intra-colonial reproductive parasitism. Then we learned that both bumble bee colonies (Lopez-Vaamonde et al. 2004) and queenless honey bee colonies (Nanork et al. 2005, 2007) are routinely parasitized by workers from other nests that fly in and lay male-producing eggs that are then reared by the victim colony. There is even evidence that in a thelytokous honey bee population, workers lay female-destined eggs directly into queen cells, thus reincarnating themselves as a queen (Jordan et al. 2008). And let us not forget ants, where microsatellite studies have revealed equally bizarre and totally unexpected phenomena (e.g. Cahan & Keller 2003; Pearcy et al. 2004; Fournier et al. 2005). Now, in this issue, Alves et al. (2009) use microsatellites to provide yet another shocking and completely unexpected revelation about the nefarious goings-on in insect colonies: intergenerational reproductive parasitism by stingless bee workers.

  1. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection.

    PubMed

    Oddie, Melissa A Y; Dahle, Bjørn; Neumann, Peter

    2017-01-01

    Managed, feral and wild populations of European honey bee subspecies, Apis mellifera , are currently facing severe colony losses globally. There is consensus that the ectoparasitic mite Varroa destructor , that switched hosts from the Eastern honey bee Apis cerana to the Western honey bee A. mellifera , is a key factor driving these losses. For >20 years, breeding efforts have not produced European honey bee colonies that can survive infestations without the need for mite control. However, at least three populations of European honey bees have developed this ability by means of natural selection and have been surviving for >10 years without mite treatments. Reduced mite reproductive success has been suggested as a key factor explaining this natural survival. Here, we report a managed A. mellifera population in Norway, that has been naturally surviving consistent V. destructor infestations for >17 years. Surviving colonies and local susceptible controls were evaluated for mite infestation levels, mite reproductive success and two potential mechanisms explaining colony survival: grooming of adult worker bees and Varroa Sensitive Hygiene (VSH): adult workers specifically detecting and removing mite-infested brood. Mite infestation levels were significantly lower in surviving colonies and mite reproductive success was reduced by 30% when compared to the controls. No significant differences were found between surviving and control colonies for either grooming or VSH. Our data confirm that reduced mite reproductive success seems to be a key factor for natural survival of infested A. mellifera colonies. However, neither grooming nor VSH seem to explain colony survival. Instead, other behaviors of the adult bees seem to be sufficient to hinder mite reproductive success, because brood for this experiment was taken from susceptible donor colonies only. To mitigate the global impact of V. destructor , we suggest learning more from nature, i.e., identifying the obviously

  2. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection

    PubMed Central

    Dahle, Bjørn; Neumann, Peter

    2017-01-01

    Background Managed, feral and wild populations of European honey bee subspecies, Apis mellifera, are currently facing severe colony losses globally. There is consensus that the ectoparasitic mite Varroa destructor, that switched hosts from the Eastern honey bee Apis cerana to the Western honey bee A. mellifera, is a key factor driving these losses. For >20 years, breeding efforts have not produced European honey bee colonies that can survive infestations without the need for mite control. However, at least three populations of European honey bees have developed this ability by means of natural selection and have been surviving for >10 years without mite treatments. Reduced mite reproductive success has been suggested as a key factor explaining this natural survival. Here, we report a managed A. mellifera population in Norway, that has been naturally surviving consistent V. destructor infestations for >17 years. Methods Surviving colonies and local susceptible controls were evaluated for mite infestation levels, mite reproductive success and two potential mechanisms explaining colony survival: grooming of adult worker bees and Varroa Sensitive Hygiene (VSH): adult workers specifically detecting and removing mite-infested brood. Results Mite infestation levels were significantly lower in surviving colonies and mite reproductive success was reduced by 30% when compared to the controls. No significant differences were found between surviving and control colonies for either grooming or VSH. Discussion Our data confirm that reduced mite reproductive success seems to be a key factor for natural survival of infested A. mellifera colonies. However, neither grooming nor VSH seem to explain colony survival. Instead, other behaviors of the adult bees seem to be sufficient to hinder mite reproductive success, because brood for this experiment was taken from susceptible donor colonies only. To mitigate the global impact of V. destructor, we suggest learning more from nature, i

  3. Subalpine bumble bee foraging distances and densities in relation to flower availability.

    PubMed

    Elliott, Susan E

    2009-06-01

    Bees feed almost exclusively on nectar and pollen from flowers. However, little is known about how food availability limits bee populations, especially in high elevation areas. Foraging distances and relationships between forager densities and resource availability can provide insights into the potential for food limitation in mobile consumer populations. For example, if floral resources are limited, bee consumers should fly farther to forage, and they should be more abundant in areas with more flowers. I estimated subalpine bumble bee foraging distances by calculating forager recapture probabilities at increasing distances from eight marking locations. I measured forager and flower densities over the flowering season in six half-hectare plots. Because subalpine bumble bees have little time to build their colonies, they may forage over short distances and forager density may not be constrained by flower density. However, late in the season, when floral resources dwindle, foraging distances may increase, and there may be stronger relationships between forager and flower densities. Throughout the flowering season, marked bees were primarily found within 100 m (and never >1,000 m) from their original marking location, suggesting that they typically did not fly far to forage. Although the density of early season foraging queens increased with early-season flower density, the density of mid- and late-season workers and males did not vary with flower density. Short foraging distances and no relationships between mid- and late-season forager and flower densities suggest that high elevation bumble bees may have ample floral resources for colony growth reproduction.

  4. Forest habitat conservation in Africa using commercially important insects.

    PubMed

    Raina, Suresh Kumar; Kioko, Esther; Zethner, Ole; Wren, Susie

    2011-01-01

    African forests, which host some of the world's richest biodiversity, are rapidly diminishing. The loss of flora and fauna includes economically and socially important insects. Honey bees and silk moths, grouped under commercial insects, are the source for insect-based enterprises that provide income to forest-edge communities to manage the ecosystem. However, to date, research output does not adequately quantify the impact of such enterprises on buffering forest ecosystems and communities from climate change effects. Although diseases/pests of honey bees and silk moths in Africa have risen to epidemic levels, there is a dearth of practical research that can be utilized in developing effective control mechanisms that support the proliferation of these commercial insects as pollinators of agricultural and forest ecosystems. This review highlights the critical role of commercial insects within the environmental complexity of African forest ecosystems, in modern agroindustry, and with respect to its potential contribution to poverty alleviation and pollination services. It identifies significant research gaps that exist in understanding how insects can be utilized as ecosystem health indicators and nurtured as integral tools for important socioeconomic and industrial gains.

  5. The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee Euglossa dilemma

    PubMed Central

    Brand, Philipp; Saleh, Nicholas; Pan, Hailin; Li, Cai; Kapheim, Karen M.; Ramírez, Santiago R.

    2017-01-01

    Bees provide indispensable pollination services to both agricultural crops and wild plant populations, and several species of bees have become important models for the study of learning and memory, plant–insect interactions, and social behavior. Orchid bees (Apidae: Euglossini) are especially important to the fields of pollination ecology, evolution, and species conservation. Here we report the nuclear and mitochondrial genome sequences of the orchid bee Euglossa dilemma Bembé & Eltz. E. dilemma was selected because it is widely distributed, highly abundant, and it was recently naturalized in the southeastern United States. We provide a high-quality assembly of the 3.3 Gb genome, and an official gene set of 15,904 gene annotations. We find high conservation of gene synteny with the honey bee throughout 80 MY of divergence time. This genomic resource represents the first draft genome of the orchid bee genus Euglossa, and the first draft orchid bee mitochondrial genome, thus representing a valuable resource to the research community. PMID:28701376

  6. The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee Euglossa dilemma.

    PubMed

    Brand, Philipp; Saleh, Nicholas; Pan, Hailin; Li, Cai; Kapheim, Karen M; Ramírez, Santiago R

    2017-09-07

    Bees provide indispensable pollination services to both agricultural crops and wild plant populations, and several species of bees have become important models for the study of learning and memory, plant-insect interactions, and social behavior. Orchid bees (Apidae: Euglossini) are especially important to the fields of pollination ecology, evolution, and species conservation. Here we report the nuclear and mitochondrial genome sequences of the orchid bee Euglossa dilemma Bembé & Eltz. E. dilemma was selected because it is widely distributed, highly abundant, and it was recently naturalized in the southeastern United States. We provide a high-quality assembly of the 3.3 Gb genome, and an official gene set of 15,904 gene annotations. We find high conservation of gene synteny with the honey bee throughout 80 MY of divergence time. This genomic resource represents the first draft genome of the orchid bee genus Euglossa , and the first draft orchid bee mitochondrial genome, thus representing a valuable resource to the research community. Copyright © 2017 Brand et al.

  7. Genetic diversity of Casearia sylvestris populations in remnants of the Atlantic Forest.

    PubMed

    Araujo, F L; Siqueira, M V B M; Grando, C; Viana, J P G; Pinheiro, J B; Alves-Pereira, A; Campos, J B; Brancalion, P H S; Zucchi, M I

    2017-01-23

    Guaçatonga (Casearia sylvestris) is a native plant of the Atlantic Forest, with high medicinal potential and relevance for reforestation programs. The aim of this study was to characterize, with microsatellite markers, two populations of C. sylvestris from remaining areas of the Atlantic Forest in the State of São Paulo. High allelic variation was found in both populations (N A = 101 and 117; A R = 12.5 and 14.4), although with high endogamy coefficients (f = 0.640 and 0.363). Estimates of genetic structure suggested the presence of considerable genetic divergence between the populations (F ST = 0.103); however, there was no spatial genetic structure within the populations. Genetic divergence may have occurred due to decreased gene flow between the fragmented populations as the result of deforestation. The results of this study demonstrate the importance of genetic diversity and its characterization in native plants within remaining forest areas for the management and restoration of such areas.

  8. Plant-pollinator interactions in tropical monsoon forests in Southeast Asia.

    PubMed

    Kato, Makoto; Kosaka, Yasuyuki; Kawakita, Atsushi; Okuyama, Yudai; Kobayashi, Chisato; Phimminith, Thavy; Thongphan, Daovorn

    2008-11-01

    Forests with different flora and vegetation types harbor different assemblages of flower visitors, and plant-pollinator interactions vary among forests. In monsoon-dominated East and Southeast Asia, there is a characteristic gradient in climate along latitude, creating a broad spectrum of forest types with potentially diverse pollinator communities. To detect a geographical pattern of plant-pollinator interactions, we investigated flowering phenology and pollinator assemblages in the least-studied forest type, i.e., tropical monsoon forest, in the Vientiane plain in Laos. Throughout the 5-year study, we observed 171 plant species blooming and detected flower visitors on 145 species. Flowering occurred throughout the year, although the number of flowering plant species peaked at the end of dry season. The dominant canopy trees, including Dipterocarpaceae, bloomed annually, in contrast to the supra-annual general flowering that occurs in Southeast Asian tropical rain forests. Among the 134 native plant species, 68 were pollinated by hymenopterans and others by lepidopterans, beetles, flies, or diverse insects. Among the observed bees, Xylocopa, megachilids, and honeybees mainly contributed to the pollination of canopy trees, whereas long-tongued Amegilla bees pollinated diverse perennials with long corolla tubes. This is the first community-level study of plant-pollinator interactions in an Asian tropical monsoon forest ecosystem.

  9. Viral prevalence increases with regional colony abundance in honey bee drones (Apis mellifera L).

    PubMed

    Forfert, Nadège; Natsopoulou, Myrsini E; Paxton, Robert J; Moritz, Robin F A

    2016-10-01

    Transmission among colonies is a central feature for the epidemiology of honey bee pathogens. High colony abundance may promote transmission among colonies independently of apiary layout, making colony abundance a potentially important parameter determining pathogen prevalence in populations of honey bees. To test this idea, we sampled male honey bees (drones) from seven distinct drone congregation areas (DCA), and used their genotypes to estimate colony abundance at each site. A multiplex ligation dependent probe amplification assay (MLPA) was used to assess the prevalence of ten viruses, using five common viral targets, in individual drones. There was a significant positive association between colony abundance and number of viral infections. This result highlights the potential importance of high colony abundance for pathogen prevalence, possibly because high population density facilitates pathogen transmission. Pathogen prevalence in drones collected from DCAs may be a useful means of estimating the disease status of a population of honey bees during the mating season, especially for localities with a large number of wild or feral colonies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite.

    PubMed

    Mikheyev, Alexander S; Tin, Mandy M Y; Arora, Jatin; Seeley, Thomas D

    2015-08-06

    Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation.

  11. AERIAL OVERVIEW, LOOKING WEST, WITH BEE HIVE COKE OVENS IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL OVERVIEW, LOOKING WEST, WITH BEE HIVE COKE OVENS IN FORESTED OVERGROWTH (BOTTOM LEFT), COKE TAILINGS PILE (BOTTOM RIGHT THROUGH CENTER TOP LEFT), FORMER BIRMINGHAM SOUTHERN RAILWAY SHOPS BUILDING (TOP RIGHT). CONVICT CEMETERY IS JUST WEST OF THE TAILINGS PILE (TOP LEFT IN THIS PHOTOGRAPH). - Pratt Coal & Coke Company, Pratt Mines, Convict Cemetery, Bounded by First Street, Avenue G, Third Place & Birmingham Southern Railroad, Birmingham, Jefferson County, AL

  12. Chronic sublethal stress causes bee colony failure

    PubMed Central

    Bryden, John; Gill, Richard J; Mitton, Robert A A; Raine, Nigel E; Jansen, Vincent A A; Hodgson, David

    2013-01-01

    Current bee population declines and colony failures are well documented yet poorly understood and no single factor has been identified as a leading cause. The evidence is equivocal and puzzling: for instance, many pathogens and parasites can be found in both failing and surviving colonies and field pesticide exposure is typically sublethal. Here, we investigate how these results can be due to sublethal stress impairing colony function. We mathematically modelled stress on individual bees which impairs colony function and found how positive density dependence can cause multiple dynamic outcomes: some colonies fail while others thrive. We then exposed bumblebee colonies to sublethal levels of a neonicotinoid pesticide. The dynamics of colony failure, which we observed, were most accurately described by our model. We argue that our model can explain the enigmatic aspects of bee colony failures, highlighting an important role for sublethal stress in colony declines. PMID:24112478

  13. Interactions of tropilaelaps mercedesae, honey bee viruses, and immune response in Apis mellifera

    USDA-ARS?s Scientific Manuscript database

    Tropilaelaps mites are the major health threat to Apis mellifera colonies in Asia because of their widespread occurrence, rapid population growth and potential ability to transfer bee viruses. Honey bee immune responses in the presence of feeding mites may occur in response to mite feeding, to the ...

  14. Responses to Varroa by honey bees with different levels of Varroa Sensitive Hygiene

    USDA-ARS?s Scientific Manuscript database

    The mite-resistance trait called suppression of mite reproduction (SMR) is a form of hygienic behavior that we have named varroa sensitive hygiene (VSH). With VSH, adult worker bees (Apis mellifera) disrupt the population growth of parasitic mites (Varroa destructor) by removing mite-infested bee p...

  15. Dynamics of buckbrush populations under simulated forest restoration alternatives

    Treesearch

    David W. Huffman; Margaret M. Moore

    2008-01-01

    Plant population models are valuable tools for assessing ecological tradeoffs between forest management approaches. In addition, these models can provide insight on plant life history patterns and processes important for persistence and recovery of populations in changing environments. In this study, we evaluated a set of ecological restoration alternatives for their...

  16. Interspecific geographic distribution and variation of the pathogens Nosema bombi and Crithidia species in United States bumble bee populations.

    PubMed

    Cordes, Nils; Huang, Wei-Fone; Strange, James P; Cameron, Sydney A; Griswold, Terry L; Lozier, Jeffrey D; Solter, Leellen F

    2012-02-01

    Several bumble bee (Bombus) species in North America have undergone range reductions and rapid declines in relative abundance. Pathogens have been suggested as causal factors, however, baseline data on pathogen distributions in a large number of bumble bee species have not been available to test this hypothesis. In a nationwide survey of the US, nearly 10,000 specimens of 36 bumble bee species collected at 284 sites were evaluated for the presence and prevalence of two known Bombus pathogens, the microsporidium Nosema bombi and trypanosomes in the genus Crithidia. Prevalence of Crithidia was ≤10% for all host species examined but was recorded from 21% of surveyed sites. Crithidia was isolated from 15 of the 36 Bombus species screened, and were most commonly recovered from Bombus bifarius, Bombus bimaculatus, Bombus impatiens and Bombus mixtus. Nosema bombi was isolated from 22 of the 36 US Bombus species collected. Only one species with more than 50 sampled bees, Bombus appositus, was free of the pathogen; whereas, prevalence was highest in Bombus occidentalis and Bombus pensylvanicus, two species that are reportedly undergoing population declines in North America. A variant of a tetranucleotide repeat in the internal transcribed spacer (ITS) of the N. bombi rRNA gene, thus far not reported from European isolates, was isolated from ten US Bombus hosts, appearing in varying ratios in different host species. Given the genetic similarity of the rRNA gene of N. bombi sampled in Europe and North America to date, the presence of a unique isolate in US bumble could reveal one or more native North American strains and indicate that N. bombi is enzootic across the Holarctic Region, exhibiting some genetic isolation. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Reproduction of Amorpha canescens (Fabaceae) and diversity of its bee community in a fragmented landscape.

    PubMed

    Slagle, Malinda W; Hendrix, Stephen D

    2009-10-01

    Loss of insect pollinators due to habitat fragmentation often results in negative effects on plant reproduction, but few studies have simultaneously examined variation in the bee community, site characteristics and plant community characteristics to evaluate their relative effects on plant reproduction in a fragmented habitat. We examined the reproduction of a common tallgrass prairie forb, Amorpha canescens (Fabaceae), in large (>40 ha) and small (<2 ha) prairie remnants in Iowa and Minnesota in relation to the diversity and abundance of its bee visitors, plant population size, and species density of the forb flowering community. We found significant positive effects of the diversity of bees visiting A. canescens on percent fruit set at a site in both years of the study and in 2002 an additional significant positive effect of plant species density. Abundance of bees visiting A. canescens had a significant positive effect on percent fruit set in 2002, but was only marginally significant in 2003. In 2003 but not 2002, the plant species density at the sites had a significant negative effect on the diversity and abundance of bees visiting A. canescens, indicating community-level characteristics can influence the bee community visiting any one species. Site size, a common predictor of plant reproduction in fragmented habitats did not contribute to any models of fruit set and was only marginally related to bee diversity one year. Andrena quintilis, one of the three oligolectic bee species associated with A. canescens, was abundant at all sites, suggesting it has not been significantly affected by fragmentation. Our results show that the diversity of bees visiting A. canescens is important for maintaining fruit set and that bee visitation is still sufficient for at least some fruit set in all populations, suggesting these small remnants act as floral resource oases for bees in landscapes often dominated by agriculture.

  18. Forest bird and fruit bat populations on Sarigan, Mariana Islands

    USGS Publications Warehouse

    Fancy, Steven G.; Craig, Robert J.; Kessler, Curt T.

    1999-01-01

    We conducted the first quantitative surveys of forest bird and bat populations on the uninhabited island of Sarigan, Commonwealth of the Northern Mariana Islands. Severe habitat degradation has occurred on Sarigan because of overgrazing by introduced goats and pigs. Planting of coconut palms (Cocos nucifera) for copra production has also eliminated much of the island’s native forest. We recorded five species of forest birds on Sarigan: Micronesian Honeyeater (Myzomela rubratra), Micronesian Megapode (Megapodius laperouse laperouse), Micronesian Starling (Aplonis opaca), Collared Kingfisher (Halcyon chloris), and White-throated Ground Dove (Gallicolumba xanthonura). Estimated population sizes (95% confidence interval) in 1997 were 1,821 (1,617–2,026) for Micronesian Honeyeater, 677 (545–810) for Micronesian Megapode, 497 (319–675) for Micronesian Starling, 107 (82–131) for Collared Kingfisher, and 170 (101–238) for Mariana Fruit Bat (Pteropus mariannus).

  19. Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees.

    PubMed

    Wood, Sarah C; Kozii, Ivanna V; Koziy, Roman V; Epp, Tasha; Simko, Elemir

    2018-01-01

    Thiamethoxam, clothianidin, and imidacloprid are the most commonly used neonicotinoid insecticides on the Canadian prairies. There is widespread contamination of nectar and pollen with neonicotinoids, at concentrations which are sublethal for honey bees (Apis mellifera Linnaeus). We compared the effects of chronic, sublethal exposure to the three most commonly used neonicotinoids on honey bee colonies established from New Zealand packaged bees using colony weight gain, brood area, and population size as measures of colony performance. From May 7 to July 29, 2016 (12 weeks), sixty-eight colonies received weekly feedings of sugar syrup and pollen patties containing 0 nM, 20 nM (median environmental dose), or 80 nM (high environmental dose) of one of three neonicotinoids (thiamethoxam, clothianidin, and imidacloprid). Colonies were weighed at three-week intervals. Brood area and population size were determined from digital images of colonies at week 12. Statistical analyses were performed by ANOVA and mixed models. There was a significant negative effect (-30%, p<0.01) on colony weight gain (honey production) after 9 and 12 weeks of exposure to 80 nM of thiamethoxam, clothianidin, or imidacloprid and on bee cluster size (-21%, p<0.05) after 12 weeks. Analysis of brood area and number of adult bees lacked adequate (>80%) statistical power to detect an effect. Chronic exposure of honey bees to high environmental doses of neonicotinoids has negative effects on honey production. Brood area appears to be less sensitive to detect sublethal effects of neonicotinoids.

  20. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine.

    PubMed

    du Rand, Esther E; Smit, Salome; Beukes, Mervyn; Apostolides, Zeno; Pirk, Christian W W; Nicolson, Susan W

    2015-07-02

    Insecticides are thought to be among the major factors contributing to current declines in bee populations. However, detoxification mechanisms in healthy, unstressed honey bees are poorly characterised. Alkaloids are naturally encountered in pollen and nectar, and we used nicotine as a model compound to identify the mechanisms involved in detoxification processes in honey bees. Nicotine and neonicotinoids have similar modes of action in insects. Our metabolomic and proteomic analyses show active detoxification of nicotine in bees, associated with increased energetic investment and also antioxidant and heat shock responses. The increased energetic investment is significant in view of the interactions of pesticides with diseases such as Nosema spp which cause energetic stress and possible malnutrition. Understanding how healthy honey bees process dietary toxins under unstressed conditions will help clarify how pesticides, alone or in synergy with other stress factors, lead to declines in bee vitality.

  1. Landscape and Local Correlates of Bee Abundance and Species Richness in Urban Gardens.

    PubMed

    Quistberg, Robyn D; Bichier, Peter; Philpott, Stacy M

    2016-03-31

    Urban gardens may preserve biodiversity as urban population densities increase, but this strongly depends on the characteristics of the gardens and the landscapes in which they are embedded. We investigated whether local and landscape characteristics are important correlates of bee (Hymenoptera: Apiformes) abundance and species richness in urban community gardens. We worked in 19 gardens in the California central coast and sampled bees with aerial nets and pan traps. We measured local characteristics (i.e., vegetation and ground cover) and used the USGS National Land Cover Database to classify the landscape surrounding our garden study sites at 2 km scales. We classified bees according to nesting type (i.e., cavity, ground) and body size and determined which local and landscape characteristics correlate with bee community characteristics. We found 55 bee species. One landscape and several local factors correlated with differences in bee abundance and richness for all bees, cavity-nesting bees, ground-nesting bees, and different sized bees. Generally, bees were more abundant and species rich in bigger gardens, in gardens with higher floral abundance, less mulch cover, more bare ground, and with more grass. Medium bees were less abundant in sites surrounded by more medium intensity developed land within 2 km. The fact that local factors were generally more important drivers of bee abundance and richness indicates a potential for gardeners to promote bee conservation by altering local management practices. In particular, increasing floral abundance, decreasing use of mulch, and providing bare ground may promote bees in urban gardens. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The population dynamics of goldenseal by habitat type on the Hoosier National Forest

    Treesearch

    S. P. Meyer; G. R. Parker

    2003-01-01

    Goldenseal (Hydrastis canadensis L.) is an herbaceous species found throughout the central hardwood forest ecosystem that is harvested from the wild for the medicinal herb trade. A total of 147 goldenseal populations were classified according to the Ecological Classification Guide developed for the Hoosier National Forest, and change in population...

  3. Forest Management Under Uncertainty for Multiple Bird Population Objectives

    Treesearch

    Clinton T. Moore; W. Todd Plummer; Michael J. Conroy

    2005-01-01

    We advocate adaptive programs of decision making and monitoring for the management of forest birds when responses by populations to management, and particularly management trade-offs among populations, are uncertain. Models are necessary components of adaptive management. Under this approach, uncertainty about the behavior of a managed system is explicitly captured in...

  4. Bee diversity assemblage on pigeon pea, Cajanus cajan along habitat gradient.

    PubMed

    Makkar, Gurpreet Singh; Chhuneja, Pardeep K

    2016-11-01

    The regional bee diversity was investigated on pigeon pea in three agroclimatic zones of Punjab state in northern India. Of the total nine species recorded, population of Megachilids, in particular, was significantly higher in all the three zones. Appraisal of diversity metrics revealed highest bee community diversity in Sub-mountain Undulating zone, followed by Central Plain zone, while least diversity was noted in Western zone, which highlighted the effect of habitat on species richness and abundance. Diurnal variations were evident with the most diverse bee communities recorded at 11:00 hr, followed by at 14:00 and 08:00 hr, with the lowest community diversity at 17:00 hr. The relative abundance of bee species was highly in favour of non-Apis species than Apis species. The results obtained can be used in the application of risk management through planned plant protection measures, study of plant-pollinator interactions along with conservation and augmentation of bee species.

  5. Bee poison

    MedlinePlus

    ... are also much more likely to sting than European bees. Where Found Bee, wasp, hornet, and yellow ... Philadelphia, PA: Elsevier; 2016:chap 72. Review Date 7/10/2017 Updated by: Jacob L. Heller, MD, ...

  6. Effects of Imidacloprid and Varroa destructor on survival and health of European honey bees, Apis mellifera.

    PubMed

    Abbo, Pendo M; Kawasaki, Joshua K; Hamilton, Michele; Cook, Steven C; DeGrandi-Hoffman, Gloria; Li, Wen Feng; Liu, Jie; Chen, Yan Ping

    2017-06-01

    There has been growing concern over declines in populations of honey bees and other pollinators which are a vital part to our food security. It is imperative to identify factors responsible for accelerated declines in bee populations and develop solutions for reversing bee losses. While exact causes of colony losses remain elusive, risk factors thought to play key roles are ectoparasitic mites Varroa destructor and neonicotinoid pesticides. The present study aims to investigate effects of a neonicotinoid pesticide Imidacloprid and Varroa mites individually on survivorship, growth, physiology, virus dynamics and immunity of honey bee workers. Our study provides clear evidence that the exposure to sublethal doses of Imidacloprid could exert a significantly negative effect on health and survival of honey bees. We observed a significant reduction in the titer of vitellogenin (Vg), an egg yolk precursor that regulates the honey bees development and behavior and often are linked to energy homeostasis, in bees exposed to Imidacloprid. This result indicates that sublethal exposure to neonicotinoid could lead to increased energy usage in honey bees as detoxification is a energy-consuming metabolic process and suggests that Vg could be a useful biomarker for measuring levels of energy stress and sublethal effects of pesticides on honey bees. Measurement of the quantitative effects of different levels of Varroa mite infestation on the replication dynamic of Deformed wing virus (DWV), an RNA virus associated with Varroa infestation, and expression level of immune genes yields unique insights into how honey bees respond to stressors under laboratory conditions. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  7. Sequential generations of honey bee (Apis mellifera) queens produced using cryopreserved semen.

    PubMed

    Hopkins, Brandon K; Herr, Charles; Sheppard, Walter S

    2012-01-01

    Much of the world's food production is dependent on honey bees for pollination, and expanding food production will further increase the demand for managed pollination services. Apiculturists outside the native range of the honey bee, in the Americas, Australia and eastern Asia, have used only a few of the 27 described subspecies of honey bees (Apis mellifera) for beekeeping purposes. Within the endemic ranges of a particular subspecies, hybridisation can threaten native subspecies when local beekeepers import and propagate non-native honey bees. For many threatened species, cryopreserved germplasm can provide a resource for the preservation of diversity and recovery of endangered populations. However, although instrumental insemination of queen honey bees is well established, the absence of an effective means to cryopreserve honey bee semen has limited the success of efforts to preserve genetic diversity within the species or to develop repositories of honey bee germplasm for breeding purposes. Herein we report that some queens inseminated with cryopreserved semen were capable of producing a substantial number of fertilised offspring. These diploid female larvae were used to produce two additional sequential generations of new queens, which were then back-crossed to the same stock of frozen semen. Our results demonstrate the ability to produce queens using cryopreserved honey bee spermatozoa and the potential for the establishment of a honey bee genetic repository.

  8. Honey Bees Inspired Optimization Method: The Bees Algorithm.

    PubMed

    Yuce, Baris; Packianather, Michael S; Mastrocinque, Ernesto; Pham, Duc Truong; Lambiase, Alfredo

    2013-11-06

    Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem.

  9. Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite

    PubMed Central

    Mikheyev, Alexander S.; Tin, Mandy M. Y.; Arora, Jatin; Seeley, Thomas D.

    2015-01-01

    Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation. PMID:26246313

  10. Community Ecology of Euglossine Bees in the Coastal Atlantic Forest of São Paulo State, Brazil

    PubMed Central

    da Rocha-Filho, Léo Correia; Garofalo, Carlos Alberto

    2013-01-01

    The Atlantic Forest stretches along Brazil's Atlantic coast, from Rio Grande do Norte State in the north to Rio Grande do Sul State in the south, and inland as far as Paraguay and the Misiones Province of Argentina. This biome is one of the eight biodiversity hotspots in the world and is characterized by high species diversity. Euglossini bees are known as important pollinators in this biome, where their diversity is high. Due to the high impact of human activities in the Atlantic Forest, in the present study the community structure of Euglossini was assessed in a coastal lowland area, Parque Estadual da Serra do Mar - Núcleo Picinguaba (PESM), and in an island, Parque Estadual da Ilha Anchieta (PEIA), Ubatuba, São Paulo State, Brazil. Sampling was carried out monthly, from August 2007 to July 2009, using artificial baits with 14 aromatic compounds to attract males. Twenty-three species were recorded. On PEIA, Euglossa cordata (L.) (Hymenoptera: Apidae) represented almost two thirds of the total species collected (63.2%). Euglossa iopoecila (23.0%) was the most abundant species in PESM but was not recorded on the island, and Euglossa sapphirina (21.0%) was the second most frequent species in PESM but was represented by only nine individuals on PEIA. The results suggest that these two species may act as bioindicators of preserved environments, as suggested for other Euglossini species. Some authors showed that Eg. cordata is favored by disturbed environments, which could explain its high abundance on Anchieta Island. Similarly, as emphasized by other authors, the dominance of Eg. cordata on the island would be another factor indicative of environmental disturbance. PMID:23901873

  11. The canary in the coalmine; bee declines as an indicator of environmental health.

    PubMed

    Goulson, Dave; Nicholls, Elizabeth

    2016-09-01

    Bee declines have received much attention of late, but there is considerable debate and confusion as to the extent, significance and causes of declines. In part, this reflects conflation of data for domestic honeybees, numbers of which are largely driven by economic factors, with those for wild bees, many of which have undergone marked range contractions but for the majority of which we have no good data on population size. There is no doubt that bees are subject to numerous pressures in the modern world. The abundance and diversity of flowers has declined along with availability of suitable nest sites, bees are chronically exposed to cocktails of agrochemicals, and they are simultaneously exposed to novel parasites and pathogens accidentally spread by humans. Climate change is likely to exacerbate these problems in the future, particularly for cool- climate specialists such as bumblebees. Stressors do not act in isolation; for example pesticide exposure can impair both detoxification mechanisms and immune responses, rendering bees more susceptible to parasites. It seems certain that chronic exposure to multiple, interacting stressors is driving honeybee colony losses and declines of wild pollinators. Bees have a high profile and so their travails attract attention, but these same stressors undoubtedly bear upon other wild organisms, many of which are not monitored and have few champions. Those wild insects for which we do have population data (notably butterflies and moths) are overwhelmingly also in decline. We argue that bee declines are indicators of pervasive and ongoing environmental damage that is likely to impact broadly on biodiversity and the ecosystem services it provides.

  12. Sensitivity analyses for simulating pesticide impacts on honey bee colonies

    EPA Science Inventory

    We employ Monte Carlo simulation and sensitivity analysis techniques to describe the population dynamics of pesticide exposure to a honey bee colony using the VarroaPop + Pesticide model. Simulations are performed of hive population trajectories with and without pesti...

  13. Community and species-specific responses of wild bees to insect pest control programs applied to a pollinator-dependent crop.

    PubMed

    Tuell, Julianna K; Isaacs, Rufus

    2010-06-01

    Wild bee conservation is regarded as essential for sustainable production of pollinator-dependent crops, yet little is known about the effects on wild bee communities of typical insect pest management programs used postbloom. We developed an insecticide program risk (IPR) index to quantify the relative risk to wild bees of insecticide programs applied to blueberry fields. This was used to determine the relationship between IPR and the abundance, diversity, and richness of wild bee communities sampled during three successive flowering seasons. In 2 of 3 yr, bee abundance and species richness declined with increasing IPR. Bee diversity declined with IPR in one of 3 yr. These results indicate that wild bee communities are negatively affected by increasingly intensive chemical pest management activities in crop fields and that interyear variability in bee populations has the potential to mask such effects in short-term studies. When several wild bee species were analyzed separately, two of three solitary and one of three social blueberry-foraging species declined with increasing IPR values, suggesting that different life histories and nesting habits may help some bee populations escape the negative effects of insecticides applied after bloom. Pollinator conservation programs aimed strictly at reducing insecticide use may have varying success, depending on the biology of the target bee species. The IPR index provides a standard method to compare pest management programs for their potential effect on wild bee communities, with broad application for use in other agricultural systems.

  14. Chronic sublethal stress causes bee colony failure.

    PubMed

    Bryden, John; Gill, Richard J; Mitton, Robert A A; Raine, Nigel E; Jansen, Vincent A A

    2013-12-01

    Current bee population declines and colony failures are well documented yet poorly understood and no single factor has been identified as a leading cause. The evidence is equivocal and puzzling: for instance, many pathogens and parasites can be found in both failing and surviving colonies and field pesticide exposure is typically sublethal. Here, we investigate how these results can be due to sublethal stress impairing colony function. We mathematically modelled stress on individual bees which impairs colony function and found how positive density dependence can cause multiple dynamic outcomes: some colonies fail while others thrive. We then exposed bumblebee colonies to sublethal levels of a neonicotinoid pesticide. The dynamics of colony failure, which we observed, were most accurately described by our model. We argue that our model can explain the enigmatic aspects of bee colony failures, highlighting an important role for sublethal stress in colony declines. © 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  15. Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees.

    PubMed

    Schenk, Mariela; Krauss, Jochen; Holzschuh, Andrea

    2018-01-01

    Global warming can disrupt mutualistic interactions between solitary bees and plants when increasing temperature differentially changes the timing of interacting partners. One possible scenario is for insect phenology to advance more rapidly than plant phenology. However, empirical evidence for fitness consequences due to temporal mismatches is lacking for pollinators and it remains unknown if bees have developed strategies to mitigate fitness losses following temporal mismatches. We tested the effect of temporal mismatches on the fitness of three spring-emerging solitary bee species, including one pollen specialist. Using flight cages, we simulated (i) a perfect synchronization (from a bee perspective): bees and flowers occur simultaneously, (ii) a mismatch of 3 days and (iii) a mismatch of 6 days, with bees occurring earlier than flowers in the latter two cases. A mismatch of 6 days caused severe fitness losses in all three bee species, as few bees survived without flowers. Females showed strongly reduced activity and reproductive output compared to synchronized bees. Fitness consequences of a 3-day mismatch were species-specific. Both the early-spring species Osmia cornuta and the mid-spring species Osmia bicornis produced the same number of brood cells after a mismatch of 3 days as under perfect synchronization. However, O. cornuta decreased the number of female offspring, whereas O. bicornis spread the brood cells over fewer nests, which may increase offspring mortality, e.g. due to parasitoids. The late-spring specialist Osmia brevicornis produced fewer brood cells even after a mismatch of 3 days. Additionally, our results suggest that fitness losses after temporal mismatches are higher during warm than cold springs, as the naturally occurring temperature variability revealed that warm temperatures during starvation decreased the survival rate of O. bicornis. We conclude that short temporal mismatches can cause clear fitness losses in solitary bees

  16. Bees without Flowers: Before Peak Bloom, Diverse Native Bees Find Insect-Produced Honeydew Sugars.

    PubMed

    Meiners, Joan M; Griswold, Terry L; Harris, David J; Ernest, S K Morgan

    2017-08-01

    Bee foragers respond to complex visual, olfactory, and extrasensory cues to optimize searches for floral rewards. Their abilities to detect and distinguish floral colors, shapes, volatiles, and ultraviolet signals and even gauge nectar availability from changes in floral humidity or electric fields are well studied. Bee foraging behaviors in the absence of floral cues, however, are rarely considered. We observed 42 species of wild bees visiting inconspicuous, nonflowering shrubs during early spring in a protected Mediterranean habitat. We determined experimentally that these bees were accessing sugary honeydew secretions from scale insects without the aid of standard cues. While honeydew use is known among some social Hymenoptera, its use across a diverse community of solitary bees is a novel observation. The widespread ability of native bees to locate and use unadvertised, nonfloral sugars suggests unappreciated sensory mechanisms and/or the existence of an interspecific foraging network among solitary bees that may influence how native bees cope with scarcity of floral resources and increasing environmental change.

  17. Effects of honey bee (Hymenoptera: Apidae) and bumble bee (Hymenoptera: Apidae) presence on cranberry (Ericales: Ericaceae) pollination.

    PubMed

    Evans, E C; Spivak, M

    2006-06-01

    Honey bees, Apis mellifera L., are frequently used to pollinate commercial cranberries, Vaccinium macrocarpon Ait., but information is lacking on the relative contribution of honey bees and native bees, the effects of surrounding vegetation on bee visitation, and on optimal timing for honey bee introduction. We begin with a descriptive study of numbers of honey bees, bumble bees, and other bees visiting cranberry blossoms, and their subsequent effect on cranberry yield, on three cranberry properties in 1999. The property surrounded by agricultural land, as opposed to wetlands and woodlands, had fewer numbers of all bee types. In 2000, one property did not introduce honey bee colonies, providing an opportunity to document the effect of lack of honey bees on yield. With no honey bees, plants along the edge of the bed had significantly higher berry weights compared with nonedge plants, suggesting that wild pollinators were only effective along the edge. Comparing the same bed between 1999, with three honey bee colonies per acre, and 2000, with no honey bees, we found a significant reduction in average berry size. In 2000, we compared stigma loading on properties with and without honey bees. Significantly more stigmas received the minimum number of tetrads required for fruit set on the property with honey bees. Significantly more tetrads were deposited during mid-bloom compared with early bloom, indicating that mid-bloom was the best time to have honey bees present. This study emphasizes the importance and effectiveness of honey bees as pollinators of commercial size cranberry plantings.

  18. The melliferous potential of forest and meadow plant communities on Mount Tara (Serbia).

    PubMed

    Jarić, Snežana; Mačukanović-Jocić, Marina; Mitrović, Miroslava; Pavlović, Pavle

    2013-08-01

    The apiflora of 34 forest and meadow plant communities in Tara National Park was studied with the aim of assessing their melliferous potential and their contribution to bee pasture during the vegetation period. The melliferous plants were analyzed individually from the aspect of their flowering phenology, abundance, and the intensity of nectar and pollen production, as well as the production of honeydew. The melliferous potential of each investigated plant community was theoretically assessed on the basis of the coenotic coefficient of melliferousness incorporating a phytocoenotic analysis, the coenotic coefficients of nectar and pollen production, and the percentage of melliferous species in relation to the total number of species that characterize the association. The highest percentage of the melliferous species was noted in the meadow association Petasitetum hybridi (70%) and the forest association Piceetum-Abietis serpentinicum (63.6%). The highest values of the coenotic coefficient of melliferousness were established for the forest association Querco-Carpinetum iliricum, and the meadow association Rhinantho-Cynosuretum cristati. Trees notable for their honeydew production in good quantities were Pinus nigra Arnold, Picea sp. Fagus sylvatica Linnaeus, Populus tremula Linnaeus, and Quercus cerris Linnaeus. Because, the vegetation in the study area is forest dominated, forest bee pasture including early flowering herbaceous and woody plants, is of the greatest significance for the honey bee, both in the early spring because of pollen and nectar production, and in the autumn as a source of honeydew.

  19. Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology.

    PubMed

    Ogilvie, Jane E; Griffin, Sean R; Gezon, Zachariah J; Inouye, Brian D; Underwood, Nora; Inouye, David W; Irwin, Rebecca E

    2017-12-01

    Climate change can influence consumer populations both directly, by affecting survival and reproduction, and indirectly, by altering resources. However, little is known about the relative importance of direct and indirect effects, particularly for species important to ecosystem functioning, like pollinators. We used structural equation modelling to test the importance of direct and indirect (via floral resources) climate effects on the interannual abundance of three subalpine bumble bee species. In addition, we used long-term data to examine how climate and floral resources have changed over time. Over 8 years, bee abundances were driven primarily by the indirect effects of climate on the temporal distribution of floral resources. Over 43 years, aspects of floral phenology changed in ways that indicate species-specific effects on bees. Our study suggests that climate-driven alterations in floral resource phenology can play a critical role in governing bee population responses to global change. © 2017 John Wiley & Sons Ltd/CNRS.

  20. Honey bee cognition.

    PubMed

    Gould, J L

    1990-11-01

    The visual memory of honey bees is stored pictorially. Bees will accept a mirror-image reversal of a familiar pattern in the absence of the original, but prefer the original over the reversal; the matching system of bees, therefore, does not incorporate a mirror-image ambiguity. Bees will not accept a rotation of a familiar vertical pattern, but readily recognize any rotation of a horizontal pattern; the context-specific ability to make a mental transformation seems justified by natural contingencies. Bees are able to construct and use cognitive maps of their home area, though it is possible to create conditions under which they lack useful cues. Other experiments suggest that recruits, having attended a dance in the hive specifying the distance and direction of a food source, can evaluate the "plausibility" of the location without leaving the hive; this suggests a kind of imagination.

  1. Sex determination: balancing selection in the honey bee.

    PubMed

    Charlesworth, Deborah

    2004-07-27

    Sequences of alleles of the honey bee's primary sex-determining gene have extremely high diversity, with many amino acid variants, suggesting that different alleles of this gene have been maintained in populations for very long evolutionary times.

  2. Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees

    PubMed Central

    Kozii, Ivanna V.; Koziy, Roman V.; Epp, Tasha; Simko, Elemir

    2018-01-01

    Background Thiamethoxam, clothianidin, and imidacloprid are the most commonly used neonicotinoid insecticides on the Canadian prairies. There is widespread contamination of nectar and pollen with neonicotinoids, at concentrations which are sublethal for honey bees (Apis mellifera Linnaeus). Objective We compared the effects of chronic, sublethal exposure to the three most commonly used neonicotinoids on honey bee colonies established from New Zealand packaged bees using colony weight gain, brood area, and population size as measures of colony performance. Methods From May 7 to July 29, 2016 (12 weeks), sixty-eight colonies received weekly feedings of sugar syrup and pollen patties containing 0 nM, 20 nM (median environmental dose), or 80 nM (high environmental dose) of one of three neonicotinoids (thiamethoxam, clothianidin, and imidacloprid). Colonies were weighed at three-week intervals. Brood area and population size were determined from digital images of colonies at week 12. Statistical analyses were performed by ANOVA and mixed models. Results There was a significant negative effect (-30%, p<0.01) on colony weight gain (honey production) after 9 and 12 weeks of exposure to 80 nM of thiamethoxam, clothianidin, or imidacloprid and on bee cluster size (-21%, p<0.05) after 12 weeks. Analysis of brood area and number of adult bees lacked adequate (>80%) statistical power to detect an effect. Conclusions Chronic exposure of honey bees to high environmental doses of neonicotinoids has negative effects on honey production. Brood area appears to be less sensitive to detect sublethal effects of neonicotinoids. PMID:29293609

  3. Indicator 1.08. Population levels of selected representative forest-associated species to describe genetic diversity

    Treesearch

    C. H. Sieg; S. M. Owen; C. H. Flather

    2011-01-01

    This indicator uses population trends of selected bird and tree species as a surrogate measure of genetic diversity. Population decreases, especially associated with small populations, can lead to decreases in genetic diversity, and contribute to increased risk of extinction. Many forest-associated species rely on some particular forest structure, vegetation...

  4. Linking pollinator efficiency to patterns of pollen limitation: small bees exploit the plant-pollinator mutualism.

    PubMed

    Koski, Matthew H; Ison, Jennifer L; Padilla, Ashley; Pham, Angela Q; Galloway, Laura F

    2018-06-13

    Seemingly mutualistic relationships can be exploited, in some cases reducing fitness of the exploited species. In plants, the insufficient receipt of pollen limits reproduction. While infrequent pollination commonly underlies pollen limitation (PL), frequent interactions with low-efficiency, exploitative pollinators may also cause PL. In the widespread protandrous herb Campanula americana , visitation by three pollinators explained 63% of the variation in PL among populations spanning the range. Bumblebees and the medium-sized Megachile campanulae enhanced reproductive success, but small solitary bees exacerbated PL. To dissect mechanisms behind these relationships, we scored sex-specific floral visitation, and the contributions of each pollinator to plant fitness using single flower visits. Small bees and M. campanulae overvisited male-phase flowers, but bumblebees frequently visited female-phase flowers. Fewer bumblebee visits were required to saturate seed set compared to other bees. Scaling pollinator efficiency metrics to populations, small bees deplete large amounts of pollen due to highly male-biased flower visitation and infrequent pollen deposition. Thus, small bees reduce plant reproduction by limiting pollen available for transfer by efficient pollinators, and appear to exploit the plant-pollinator mutualism, acting as functional parasites to C. americana It is therefore unlikely that small bees will compensate for reproductive failure in C. americana when bumblebees are scarce. © 2018 The Author(s).

  5. Bumble bees regulate their intake of essential protein and lipid pollen macronutrients.

    PubMed

    Vaudo, A D; Stabler, D; Patch, H M; Tooker, J F; Grozinger, C M; Wright, G A

    2016-12-15

    Bee population declines are linked to the reduction of nutritional resources due to land-use intensification, yet we know little about the specific nutritional needs of many bee species. Pollen provides bees with their primary source of protein and lipids, but nutritional quality varies widely among host-plant species. Therefore, bees might have adapted to assess resource quality and adjust their foraging behavior to balance nutrition from multiple food sources. We tested the ability of two bumble bee species, Bombus terrestris and Bombus impatiens, to regulate protein and lipid intake. We restricted B. terrestris adults to single synthetic diets varying in protein:lipid ratios (P:L). The bees over-ate protein on low-fat diets and over-ate lipid on high-fat diets to reach their targets of lipid and protein, respectively. The bees survived best on a 10:1 P:L diet; the risk of dying increased as a function of dietary lipid when bees ate diets with lipid contents greater than 5:1 P:L. Hypothesizing that the P:L intake target of adult worker bumble bees was between 25:1 and 5:1, we presented workers from both species with unbalanced but complementary paired diets to determine whether they self-select their diet to reach a specific intake target. Bees consumed similar amounts of proteins and lipids in each treatment and averaged a 14:1 P:L for B. terrestris and 12:1 P:L for B. impatiens These results demonstrate that adult worker bumble bees likely select foods that provide them with a specific ratio of P:L. These P:L intake targets could affect pollen foraging in the field and help explain patterns of host-plant species choice by bumble bees. © 2016. Published by The Company of Biologists Ltd.

  6. Bumble Bee Fauna of Palouse Prairie: Survey of Native Bee Pollinators in a Fragmented Ecosystem

    PubMed Central

    Hatten, T. D.; Looney, C.; Strange, J. P.; Bosque-Pérez, N. A.

    2013-01-01

    Bumble bees, Bombus Latreille (Hymenoptera: Apidae:), are dominant pollinators in the northern hemisphere, providing important pollination services for commercial crops and innumerable wild plants. Nationwide declines in several bumble bee species and habitat losses in multiple ecosystems have raised concerns about conservation of this important group. In many regions, such as the Palouse Prairie, relatively little is known about bumble bee communities, despite their critical ecosystem functions. Pitfall trap surveys for ground beetles in Palouse prairie remnants conducted in 2002–2003 contained considerable by-catch of bumble bees. The effects of landscape context, remnant features, year, and season on bumble bee community composition were examined. Additionally, bees captured in 2002–2003 were compared with historic records for the region to assess changes in the presence of individual species. Ten species of bumble bee were captured, representing the majority of the species historically known from the region. Few detectable differences in bumble bee abundances were found among remnants. Community composition differed appreciably, however, based on season, landscape context, and elevation, resulting in different bee assemblages between western, low-lying remnants and eastern, higherelevation remnants. The results suggest that conservation of the still species-rich bumble bee fauna should take into account variability among prairie remnants, and further work is required to adequately explain bumble bee habitat associations on the Palouse. PMID:23902138

  7. Vertebrate animal populations of the McCormick Forest.

    Treesearch

    USDA FS

    1975-01-01

    Describes the means of surveying and estimating the populations of birds, mammals, amphibians, and reptiles in 1972 and 1973 on this 17,000-acre forest in the Upper Peninsula of Michigan. Gives an annotated list of birds and mammals and estimates biomass of amphibians in four habitats.

  8. Microsatellite loci for the stingless bee Melipona rufiventris (Hymenoptera: Apidae).

    PubMed

    Lopes, Denilce Meneses; D Silva, Filipe Oliveira; Fernandes Salomão, Tânia Maria; Campos, Lúcio Antônio D Oliveira; Tavares, Mara Garcia

    2009-05-01

    Eight microsatellite primers were developed from ISSR (intersimple sequence repeats) markers for the stingless bee Melipona rufiventris. These primers were tested in 20 M. rufiventris workers, representing a single population from Minas Gerais state. The number of alleles per locus ranged from 2 to 5 (mean = 2.63) and the observed and expected heterozygosity values ranged from 0.00 to 0.44 (mean = 0.20) and from 0.05 to 0.68 (mean = 0.31), respectively. Several loci were also polymorphic in M. quadrifasciata, M. bicolor, M. mandacaia and Partamona helleri and should prove useful in population studies of other stingless bees. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.

  9. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees

    PubMed Central

    Smith, Michael L.; Seeley, Thomas D.

    2016-01-01

    Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation. PMID:27942015

  10. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees.

    PubMed

    Peck, David T; Smith, Michael L; Seeley, Thomas D

    2016-01-01

    Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation.

  11. Sensitivity analyses for simulating pesticide impacts on honey bee colonies

    USDA-ARS?s Scientific Manuscript database

    We employ Monte Carlo simulation and sensitivity analysis techniques to describe the population dynamics of pesticide exposure to a honey bee colony using the VarroaPop+Pesticide model. Simulations are performed of hive population trajectories with and without pesticide exposure to determine the eff...

  12. Influences of acephate and mixtures with other commonly used pesticides on honey bee (Apis mellifera) survival and detoxification enzyme activities.

    PubMed

    Yao, Jianxiu; Zhu, Yu Cheng; Adamczyk, John; Luttrell, Randall

    2018-07-01

    Acephate (organophosphate) is frequently used to control piercing/sucking insects in field crops in southern United States, which may pose a risk to honey bees. In this study, toxicity of acephate (formulation Bracket ® 97) was examined in honey bees through feeding treatments with sublethal (pollen residue level: 0.168 mg/L) and median-lethal (LC 50 : 6.97 mg/L) concentrations. Results indicated that adult bees treated with acephate at residue concentration did not show significant increase in mortality, but esterase activity was significantly suppressed. Similarly, bees treated with binary mixtures of acephate with six formulated pesticides (all at residue dose) consistently showed lower esterase activity and body weight. Clothianidin, λ-cyhalothrin, oxamyl, tetraconazole, and chlorpyrifos may interact with acephate significantly to reduce body weight in treated bees. The dose response data (LC50: 6.97 mg/L) revealed a relatively higher tolerance to acephate in Stoneville bee population (USA) than populations elsewhere, although in general the population is still very sensitive to the organophosphate. In addition to killing 50% of the treated bees acephate (6.97 mg/L) inhibited 79.9%, 20.4%, and 29.4% of esterase, Glutathione S-transferase (GST), and acetylcholinesterase (AChE) activities, respectively, in survivors after feeding treatment for 48 h. However, P450 activity was elevated 20% in bees exposed to acephate for 48 h. Even though feeding on sublethal acephate did not kill honey bees directly, chronic toxicity to honey bee was noticeable in body weight loss and esterase suppression, and its potential risk of synergistic interactions with other formulated pesticides should not be ignored. Published by Elsevier Inc.

  13. The Bee Fire: a case study validation of BEHAVE in chaparral fuels

    Treesearch

    David Weise; A. Gelobter; J. Regelbrugge; J. Millar

    2002-01-01

    The Bee Fire burned 9,620 acres of grass and chaparral in the San Bernardino National Forest in southern California from June 29 to July 2, 1996. Rate of spread data were determined from successive fire perimeters and compared with rate of spread predicted by the Rothermel rate of spread model using fuel model 4 (heavy brush) and a custom fuel model for chamise...

  14. Interactions between pesticides and pathogen susceptibility in honey bees.

    PubMed

    O'Neal, Scott T; Anderson, Troy D; Wu-Smart, Judy Y

    2018-04-01

    There exist a variety of factors that negatively impact the health and survival of managed honey bee colonies, including the spread of parasites and pathogens, loss of habitat, reduced availability or quality of food resources, climate change, poor queen quality, changing cultural and commercial beekeeping practices, as well as exposure to agricultural and apicultural pesticides both in the field and in the hive. These factors are often closely intertwined, and it is unlikely that a single stressor is driving colony losses. There is a growing consensus, however, that increasing prevalence of parasites and pathogens are among the most significant threats to managed bee colonies. Unfortunately, improper management of hives by beekeepers may exacerbate parasite populations and disease transmission. Furthermore, research continues to accumulate that describes the complex and largely harmful interactions that exist between pesticide exposure and bee immunity. This brief review summarizes our progress in understanding the impact of pesticide exposure on bees at the individual, colony, and community level. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Exposure of native bees foraging in an agricultural landscape to current-use pesticides.

    PubMed

    Hladik, Michelle L; Vandever, Mark; Smalling, Kelly L

    2016-01-15

    The awareness of insects as pollinators and indicators of environmental quality has grown in recent years, partially in response to declines in honey bee (Apis mellifera) populations. While most pesticide research has focused on honey bees, there has been less work on native bee populations. To determine the exposure of native bees to pesticides, bees were collected from an existing research area in northeastern Colorado in both grasslands (2013-2014) and wheat fields (2014). Traps were deployed bi-monthly during the summer at each land cover type and all bees, regardless of species, were composited as whole samples and analyzed for 136 current-use pesticides and degradates. This reconnaissance approach provides a sampling of all species and represents overall pesticide exposure (internal and external). Nineteen pesticides and degradates were detected in 54 composite samples collected. Compounds detected in >2% of the samples included: insecticides thiamethoxam (46%), bifenthrin (28%), clothianidin (24%), chlorpyrifos (17%), imidacloprid (13%), fipronil desulfinyl (7%; degradate); fungicides azoxystrobin (17%), pyraclostrobin (11%), fluxapyroxad (9%), and propiconazole (9%); herbicides atrazine (19%) and metolachlor (9%). Concentrations ranged from 1 to 310 ng/g for individual pesticides. Pesticides were detected in samples collected from both grasslands and wheat fields; the location of the sample and the surrounding land cover at the 1000 m radius influenced the pesticides detected but because of a small number of temporally comparable samples, correlations between pesticide concentration and land cover were not significant. The results show native bees collected in an agricultural landscape are exposed to multiple pesticides, these results can direct future research on routes/timing of pesticide exposure and the design of future conservation efforts for pollinators. Published by Elsevier B.V.

  16. Exposure of native bees foraging in an agricultural landscape to current-use pesticides

    USGS Publications Warehouse

    Hladik, Michelle; Vandever, Mark W.; Smalling, Kelly L.

    2016-01-01

    The awareness of insects as pollinators and indicators of environmental quality has grown in recent years, partially in response to declines in honey bee (Apis mellifera) populations. While most pesticide research has focused on honey bees, there has been less work on native bee populations. To determine the exposure of native bees to pesticides, bees were collected from an existing research area in northeastern Colorado from two land cover types: grasslands (2013-2014) and wheat fields (2014). Traps were deployed bi-monthly during the summer at each land cover type and all bees, regardless of species, were composited as whole samples and analyzed for 136 current-use pesticides and degradates. This reconnaissance approach provides a sampling of all species and represents overall pesticide exposure (internal and external). Nineteen pesticides and degradates were detected in 54 composite samples collected. Compounds detected in >10% of the samples included the insecticides thiamethoxam (46%), bifenthrin (28%), clothianidin (24%), chlorpyrifos (17%), and imidacloprid (13%), the fungicides azoxystrobin (17%), and pyraclostrobin (11%), and the herbicide atrazine (19%). Concentrations ranged from 1.1 to 312 ng/g for individual pesticides. Pesticides were detected in samples collected from both grasslands and wheat fields; the location of the sample and the surrounding land cover at the 1000 m buffer influenced the pesticides detected but because of a small number of temporally comparable samples, correlations between pesticide concentration and land cover were not significant. The results show native bees collected in both grasslands and wheat fields are exposed to multiple pesticides, these results can direct future research on routes/timing of pesticide exposure and the design of future conservation efforts for pollinators.

  17. The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis Mellifera

    PubMed Central

    Tsutsui, Neil D.; Ramírez, Santiago R.

    2017-01-01

    The western honey bee, Apis mellifera, provides critical pollination services to agricultural crops worldwide. However, despite substantial interest and prior investigation, the early evolution and subsequent diversification of this important pollinator remain uncertain. The primary hypotheses place the origin of A. mellifera in either Asia or Africa, with subsequent radiations proceeding from one of these regions. Here, we use two publicly available whole-genome data sets plus newly sequenced genomes and apply multiple population genetic analysis methods to investigate the patterns of ancestry and admixture in native honey bee populations from Europe, Africa, and the Middle East. The combination of these data sets is critical to the analyses, as each contributes samples from geographic locations lacking in the other, thereby producing the most complete set of honey bee populations available to date. We find evidence supporting an origin of A. mellifera in the Middle East or North Eastern Africa, with the A and Y lineages representing the earliest branching lineages. This finding has similarities with multiple contradictory hypotheses and represents a disentangling of genetic relationships, geographic proximity, and secondary contact to produce a more accurate picture of the origins of A. mellifera. We also investigate how previous studies came to their various conclusions based on incomplete sampling of populations, and illustrate the importance of complete sampling in understanding evolutionary processes. These results provide fundamental knowledge about genetic diversity within Old World honey bee populations and offer insight into the complex history of an important pollinator. PMID:28164223

  18. Honey bee surveillance: a tool for understanding and improving honey bee health.

    PubMed

    Lee, Kathleen; Steinhauer, Nathalie; Travis, Dominic A; Meixner, Marina D; Deen, John; vanEngelsdorp, Dennis

    2015-08-01

    Honey bee surveillance systems are increasingly used to characterize honey bee health and disease burdens of bees in different regions and/or over time. In addition to quantifying disease prevalence, surveillance systems can identify risk factors associated with colony morbidity and mortality. Surveillance systems are often observational, and prove particularly useful when searching for risk factors in real world complex systems. We review recent examples of surveillance systems with particular emphasis on how these efforts have helped increase our understanding of honey bee health. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    Populations of pollinators are in decline worldwide. These declines are best documented in honey bees and are due to a combination of stressors. In particular, pesticides have been linked to decreased longevity and performance in honey bees; however, the molecular and physiological pathways mediatin...

  20. Quantifying the Detrimental Impacts of Land-Use and Management Change on European Forest Bird Populations

    PubMed Central

    Wade, Amy S. I.; Barov, Boris; Burfield, Ian J.; Gregory, Richard D.; Norris, Ken; Butler, Simon J.

    2013-01-01

    The ecological impacts of changing forest management practices in Europe are poorly understood despite European forests being highly managed. Furthermore, the effects of potential drivers of forest biodiversity decline are rarely considered in concert, thus limiting effective conservation or sustainable forest management. We present a trait-based framework that we use to assess the detrimental impact of multiple land-use and management changes in forests on bird populations across Europe. Major changes to forest habitats occurring in recent decades, and their impact on resource availability for birds were identified. Risk associated with these changes for 52 species of forest birds, defined as the proportion of each species' key resources detrimentally affected through changes in abundance and/or availability, was quantified and compared to their pan-European population growth rates between 1980 and 2009. Relationships between risk and population growth were found to be significantly negative, indicating that resource loss in European forests is an important driver of decline for both resident and migrant birds. Our results demonstrate that coarse quantification of resource use and ecological change can be valuable in understanding causes of biodiversity decline, and thus in informing conservation strategy and policy. Such an approach has good potential to be extended for predictive use in assessing the impact of possible future changes to forest management and to develop more precise indicators of forest health. PMID:23704997

  1. Reproduction and survival of a solitary bee along native and exotic floral resource gradients.

    PubMed

    Palladini, Jennifer D; Maron, John L

    2014-11-01

    Native bee abundance has long been assumed to be limited by floral resources. This paradigm has been established in large measure because more bees are often found in areas supporting greater floral abundance. This could result from attraction to resource-rich sites as well as greater local demographic performance in sites supporting high floral abundance; however, demographic performance is usually unknown. Factors other than floral resources such as availability of nest sites, pressure from natural enemies, or whether floral resources are from a mixed native or mostly monodominant exotic assemblage might influence survival or fecundity and hence abundance. We examined how the survival and fecundity of the native solitary bee Osmia lignaria varied along a gradient in floral resource abundance. We released bees alongside a nest block at 27 grassland sites in Montana (USA) that varied in floral abundance and the extent of invasion by exotic forbs. We monitored nest construction and the fate of offspring within each nest. The number of nests established was positively related to native forb abundance and was negatively related to exotic forb species richness. Fecundity was positively related to native forb species richness; however, offspring mortality caused by the brood parasite Tricrania stansburyi was significantly greater in native-dominated sites. These results suggest that native floral resources can positively influence bee populations, but that the relationship between native floral resources and bee population performance is not straightforward. Rather, bees may face a trade-off between high offspring production and low offspring survival in native-dominated sites.

  2. Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation

    PubMed Central

    van Dooremalen, Coby; Gerritsen, Lonne; Cornelissen, Bram; van der Steen, Jozef J. M.; van Langevelde, Frank; Blacquière, Tjeerd

    2012-01-01

    Background Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter. Methodology/Principal Findings Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated). We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts) increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years. Conclusions/Significance This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter. PMID:22558421

  3. Reproductive biology of Varroa destructor in Africanized honey bees (Apis mellifera).

    PubMed

    Calderón, R A; van Veen, J W; Sommeijer, M J; Sanchez, L A

    2010-04-01

    Since its first contact with Apis mellifera, the population dynamics of the parasitic mite Varroa destructor varies from one region to another. In many regions of the world, apiculture has come to depend on the use of acaricides, because of the extensive damage caused by varroa to bee colonies. At present, the mite is considered to contribute to the recent decline of honey bee colonies in North America and Europe. Because in tropical climates worker brood rearing and varroa reproduction occurs all year round, it could be expected that here the impact of the parasite will be even more devastating. Yet, this has not been the case in tropical areas of South America. In Brazil, varroa was introduced more than 30 years ago and got established at low levels of infestation, without causing apparent damage to apiculture with Africanized honey bees (AHB). The tolerance of AHB to varroa is apparently attributable, at least in part, to resistance in the bees. The low fertility of this parasite in Africanized worker brood and the grooming and hygienic behavior of the bees are referred as important factors in keeping mite infestation low in the colonies. It has also been suggested that the type of mite influences the level of tolerance in a honey bee population. The Korea haplotype is predominant in unbalanced host-parasite systems, as exist in Europe, whereas in stable systems, as in Brazil, the Japan haplotype used to predominate. However, the patterns of varroa genetic variation have changed in Brazil. All recently sampled mites were of the Korea haplotype, regardless whether the mites had reproduced or not. The fertile mites on AHB in Brazil significantly increased from 56% in the 1980s to 86% in recent years. Nevertheless, despite the increased fertility, no increase in mite infestation rates in the colonies has been detected so far. A comprehensive literature review of varroa reproduction data, focusing on fertility and production of viable female mites, was conducted to

  4. Climate-associated phenological advances in bee pollinators and bee-pollinated plants.

    PubMed

    Bartomeus, Ignasi; Ascher, John S; Wagner, David; Danforth, Bryan N; Colla, Sheila; Kornbluth, Sarah; Winfree, Rachael

    2011-12-20

    The phenology of many ecological processes is modulated by temperature, making them potentially sensitive to climate change. Mutualistic interactions may be especially vulnerable because of the potential for phenological mismatching if the species involved do not respond similarly to changes in temperature. Here we present an analysis of climate-associated shifts in the phenology of wild bees, the most important pollinators worldwide, and compare these shifts to published studies of bee-pollinated plants over the same time period. We report that over the past 130 y, the phenology of 10 bee species from northeastern North America has advanced by a mean of 10.4 ± 1.3 d. Most of this advance has taken place since 1970, paralleling global temperature increases. When the best available data are used to estimate analogous rates of advance for plants, these rates are not distinguishable from those of bees, suggesting that bee emergence is keeping pace with shifts in host-plant flowering, at least among the generalist species that we investigated.

  5. Why do leafcutter bees cut leaves? New insights into the early evolution of bees.

    PubMed

    Litman, Jessica R; Danforth, Bryan N; Eardley, Connal D; Praz, Christophe J

    2011-12-07

    Stark contrasts in clade species diversity are reported across the tree of life and are especially conspicuous when observed in closely related lineages. The explanation for such disparity has often been attributed to the evolution of key innovations that facilitate colonization of new ecological niches. The factors underlying diversification in bees remain poorly explored. Bees are thought to have originated from apoid wasps during the Mid-Cretaceous, a period that coincides with the appearance of angiosperm eudicot pollen grains in the fossil record. The reliance of bees on angiosperm pollen and their fundamental role as angiosperm pollinators have contributed to the idea that both groups may have undergone simultaneous radiations. We demonstrate that one key innovation--the inclusion of foreign material in nest construction--underlies both a massive range expansion and a significant increase in the rate of diversification within the second largest bee family, Megachilidae. Basal clades within the family are restricted to deserts and exhibit plesiomorphic features rarely observed among modern bees, but prevalent among apoid wasps. Our results suggest that early bees inherited a suite of behavioural traits that acted as powerful evolutionary constraints. While the transition to pollen as a larval food source opened an enormous ecological niche for the early bees, the exploitation of this niche and the subsequent diversification of bees only became possible after bees had evolved adaptations to overcome these constraints.

  6. Bee sting allergy in beekeepers.

    PubMed

    Eich-Wanger, C; Müller, U R

    1998-10-01

    Beekeepers are strongly exposed to honey bee stings and therefore at an increased risk to develop IgE-mediated allergy to bee venom. We wondered whether bee venom-allergic beekeepers were different from normally exposed bee venom-allergic patients with regard to clinical and immunological parameters as well as their response to venom immunotherapy. Among the 459 bee venom-allergic patients seen over the 5 year period 1987-91, 62 (14%) were beekeepers and 44 (10%) family members of beekeepers. These two groups were compared with 101 normally exposed bee venom-allergic patients matched with the allergic beekeepers for age and sex, regarding clinical parameters, skin sensitivity, specific IgE and IgG antibodies to bee venom as well as safety and efficacy of venom immunotherapy. As expected, allergic beekeepers had been stung most frequently before the first allergic reaction. The three groups showed a similar severity of allergic symptoms following bee stings and had an equal incidence of atopic diseases. Allergic beekeepers showed higher levels of bee venom-specific serum IgG, lower skin sensitivity and lower levels of bee venom specific serum IgE than bee venom-allergic control patients. A negative correlation between number of stings and skin sensitivity as well as specific IgE was found in allergic beekeepers and their family members, while the number of stings was positively correlated with specific IgG in these two groups. Venom immunotherapy was equally effective in the three groups, but better tolerated by allergic beekeepers than the two other groups. The majority of allergic beekeepers continued bee-keeping successfully under the protection of venom immunotherapy. The lower level of sensitivity in diagnostic tests and the better tolerance of immunotherapy in allergic beekeepers is most likely related to the high level of specific IgG in this group.

  7. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers.

    PubMed

    Goulson, Dave; Nicholls, Elizabeth; Botías, Cristina; Rotheray, Ellen L

    2015-03-27

    Bees are subject to numerous pressures in the modern world. The abundance and diversity of flowers has declined; bees are chronically exposed to cocktails of agrochemicals, and they are simultaneously exposed to novel parasites accidentally spread by humans. Climate change is likely to exacerbate these problems in the future. Stressors do not act in isolation; for example, pesticide exposure can impair both detoxification mechanisms and immune responses, rendering bees more susceptible to parasites. It seems certain that chronic exposure to multiple interacting stressors is driving honey bee colony losses and declines of wild pollinators, but such interactions are not addressed by current regulatory procedures, and studying these interactions experimentally poses a major challenge. In the meantime, taking steps to reduce stress on bees would seem prudent; incorporating flower-rich habitat into farmland, reducing pesticide use through adopting more sustainable farming methods, and enforcing effective quarantine measures on bee movements are all practical measures that should be adopted. Effective monitoring of wild pollinator populations is urgently needed to inform management strategies into the future. Copyright © 2015, American Association for the Advancement of Science.

  8. Propolis counteracts some threats to honey bee health

    USDA-ARS?s Scientific Manuscript database

    Honey bee (Apis mellifera) populations in North America and Europe are currently experiencing high and unsustainable annual losses. It is critically important to understand the impact of individual stressors and the interactions among stressors in order to develop solutions to increase colony health...

  9. Nocturnal vision and landmark orientation in a tropical halictid bee.

    PubMed

    Warrant, Eric J; Kelber, Almut; Gislén, Anna; Greiner, Birgit; Ribi, Willi; Wcislo, William T

    2004-08-10

    Some bees and wasps have evolved nocturnal behavior, presumably to exploit night-flowering plants or avoid predators. Like their day-active relatives, they have apposition compound eyes, a design usually found in diurnal insects. The insensitive optics of apposition eyes are not well suited for nocturnal vision. How well then do nocturnal bees and wasps see? What optical and neural adaptations have they evolved for nocturnal vision? We studied female tropical nocturnal sweat bees (Megalopta genalis) and discovered that they are able to learn landmarks around their nest entrance prior to nocturnal foraging trips and to use them to locate the nest upon return. The morphology and optics of the eye, and the physiological properties of the photoreceptors, have evolved to give Megalopta's eyes almost 30 times greater sensitivity to light than the eyes of diurnal worker honeybees, but this alone does not explain their nocturnal visual behavior. This implies that sensitivity is improved by a strategy of photon summation in time and in space, the latter of which requires the presence of specialized cells that laterally connect ommatidia into groups. First-order interneurons, with significantly wider lateral branching than those found in diurnal bees, have been identified in the first optic ganglion (the lamina ganglionaris) of Megalopta's optic lobe. We believe that these cells have the potential to mediate spatial summation. Despite the scarcity of photons, Megalopta is able to visually orient to landmarks at night in a dark forest understory, an ability permitted by unusually sensitive apposition eyes and neural photon summation.

  10. Investigating the effects of forest structure on the small mammal community in frequent-fire coniferous forests using capture-recapture models for stratified populations

    Treesearch

    Rahel Sollmann; Angela M. White; Beth Gardner; Patricia N. Manley

    2015-01-01

    Small mammals comprise an important component of forest vertebrate communities. Our understanding of how small mammals use forested habitat has relied heavily on studies in forest systems not naturally prone to frequent disturbances. Small mammal populations that evolved in frequent-fire forests, however, may be less restricted to specific habitat conditions due to the...

  11. Population viability as a measure of forest sustainability

    Treesearch

    Eric T. Linder; Nathan A. Klaus; David A. Buehler

    2004-01-01

    Many forest managers work to balance timber production with protection of ecological processes and other nontimber values. The preservation of biodiversity is an important nontimber value. When a suite of management options is being developed, it is difficult to estimate quantitatively the impact of the various scenarios on biodiversity. We suggest population viability...

  12. Live bee acupuncture (Bong-Chim) dermatitis: dermatitis due to live bee acupuncture therapy in Korea.

    PubMed

    Park, Joon Soo; Lee, Min Jung; Chung, Ki Hun; Ko, Dong Kyun; Chung, Hyun

    2013-12-01

    Live bee acupuncture (Bong-Chim) dermatitis is an iatrogenic disease induced by so-called live bee acupuncture therapy, which applies the honeybee (Apis cerana) stinger directly into the lesion to treat various diseases in Korea. We present two cases of live bee acupuncture dermatitis and review previously published articles about this disease. We classify this entity into three stages: acute, subacute, and chronic. The acute stage is an inflammatory reaction, such as anaphylaxis or urticaria. In the chronic stage, a foreign body granuloma may develop from the remaining stingers, similar to that of a bee sting reaction. However, in the subacute stage, unlike bee stings, we see the characteristic histological "flame" figures resulting from eosinophilic stimulation induced by excessive bee venom exposure. We consider this stage to be different from the adverse skin reaction of accidental bee sting. © 2013 The International Society of Dermatology.

  13. Evaluating the Effect of Environmental Chemicals on Honey Bee Development from the Individual to Colony Level.

    PubMed

    Ko, Chong-Yu; Chen, Yue-Wen; Nai, Yu-Shin

    2017-04-01

    The presence of pesticides in the beekeeping environment is one of the most serious problems that impacts the life of a honey bee. Pesticides can be brought back to the beehive after the bees have foraged on flowers that have been sprayed with pesticides. Pesticide contaminated food can be exchanged between workers which then feed larvae and therefore can potentially affect the development of honey bees. Thus, residual pesticides in the environment can become a chronic damaging factor to honey bee populations and gradually lead to colony collapse. In the presented protocol, honey bee feeding methods are described and applied to either an individual honey bee or to a colony. Here, the insect growth regulator (IGR) pyriproxyfen (PPN), which is widely used to control pest insects and is harmful to the development of honey bee larvae and pupae, is used as the pesticide. The presenting procedure can be applied to other potentially harmful chemicals or honeybee pathogens for further studies.

  14. A Meta-Analysis of Effects of Bt Crops on Honey Bees (Hymenoptera: Apidae)

    PubMed Central

    Duan, Jian J.; Marvier, Michelle; Huesing, Joseph; Dively, Galen; Huang, Zachary Y.

    2008-01-01

    Background Honey bees (Apis mellifera L.) are the most important pollinators of many agricultural crops worldwide and are a key test species used in the tiered safety assessment of genetically engineered insect-resistant crops. There is concern that widespread planting of these transgenic crops could harm honey bee populations. Methodology/Principal Findings We conducted a meta-analysis of 25 studies that independently assessed potential effects of Bt Cry proteins on honey bee survival (or mortality). Our results show that Bt Cry proteins used in genetically modified crops commercialized for control of lepidopteran and coleopteran pests do not negatively affect the survival of either honey bee larvae or adults in laboratory settings. Conclusions/Significance Although the additional stresses that honey bees face in the field could, in principle, modify their susceptibility to Cry proteins or lead to indirect effects, our findings support safety assessments that have not detected any direct negative effects of Bt crops for this vital insect pollinator. PMID:18183296

  15. Climate-associated phenological advances in bee pollinators and bee-pollinated plants

    PubMed Central

    Bartomeus, Ignasi; Ascher, John S.; Wagner, David; Danforth, Bryan N.; Colla, Sheila; Kornbluth, Sarah; Winfree, Rachael

    2011-01-01

    The phenology of many ecological processes is modulated by temperature, making them potentially sensitive to climate change. Mutualistic interactions may be especially vulnerable because of the potential for phenological mismatching if the species involved do not respond similarly to changes in temperature. Here we present an analysis of climate-associated shifts in the phenology of wild bees, the most important pollinators worldwide, and compare these shifts to published studies of bee-pollinated plants over the same time period. We report that over the past 130 y, the phenology of 10 bee species from northeastern North America has advanced by a mean of 10.4 ± 1.3 d. Most of this advance has taken place since 1970, paralleling global temperature increases. When the best available data are used to estimate analogous rates of advance for plants, these rates are not distinguishable from those of bees, suggesting that bee emergence is keeping pace with shifts in host-plant flowering, at least among the generalist species that we investigated. PMID:22143794

  16. Toward Robust Estimation of the Components of Forest Population Change

    Treesearch

    Francis A. Roesch

    2014-01-01

    Multiple levels of simulation are used to test the robustness of estimators of the components of change. I first created a variety of spatial-temporal populations based on, but more variable than, an actual forest monitoring data set and then sampled those populations under a variety of sampling error structures. The performance of each of four estimation approaches is...

  17. Population genomics reveals a candidate gene involved in bumble bee pigmentation.

    PubMed

    Pimsler, Meaghan L; Jackson, Jason M; Lozier, Jeffrey D

    2017-05-01

    Variation in bumble bee color patterns is well-documented within and between species. Identifying the genetic mechanisms underlying such variation may be useful in revealing evolutionary forces shaping rapid phenotypic diversification. The widespread North American species Bombus bifarius exhibits regional variation in abdominal color forms, ranging from red-banded to black-banded phenotypes and including geographically and phenotypically intermediate forms. Identifying genomic regions linked to this variation has been complicated by strong, near species level, genome-wide differentiation between red- and black-banded forms. Here, we instead focus on the closely related black-banded and intermediate forms that both belong to the subspecies B. bifarius nearcticus . We analyze an RNA sequencing (RNAseq) data set and identify a cluster of single nucleotide polymorphisms (SNPs) within one gene, Xanthine dehydrogenase/oxidase -like, that exhibit highly unusual differentiation compared to the rest of the sequenced genome. Homologs of this gene contribute to pigmentation in other insects, and results thus represent a strong candidate for investigating the genetic basis of pigment variation in B. bifarius and other bumble bee mimicry complexes.

  18. Hybrid origins of Australian honey bees (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    With increased globalisation and homogenisation the maintenance of genetic integrity of local populations of agriculturally important species is of increasing concern. The honey bee provides an interesting perspective as it is both domesticated and wild, with a large native range and much larger int...

  19. Applications of random forest feature selection for fine-scale genetic population assignment.

    PubMed

    Sylvester, Emma V A; Bentzen, Paul; Bradbury, Ian R; Clément, Marie; Pearce, Jon; Horne, John; Beiko, Robert G

    2018-02-01

    Genetic population assignment used to inform wildlife management and conservation efforts requires panels of highly informative genetic markers and sensitive assignment tests. We explored the utility of machine-learning algorithms (random forest, regularized random forest and guided regularized random forest) compared with F ST ranking for selection of single nucleotide polymorphisms (SNP) for fine-scale population assignment. We applied these methods to an unpublished SNP data set for Atlantic salmon ( Salmo salar ) and a published SNP data set for Alaskan Chinook salmon ( Oncorhynchus tshawytscha ). In each species, we identified the minimum panel size required to obtain a self-assignment accuracy of at least 90% using each method to create panels of 50-700 markers Panels of SNPs identified using random forest-based methods performed up to 7.8 and 11.2 percentage points better than F ST -selected panels of similar size for the Atlantic salmon and Chinook salmon data, respectively. Self-assignment accuracy ≥90% was obtained with panels of 670 and 384 SNPs for each data set, respectively, a level of accuracy never reached for these species using F ST -selected panels. Our results demonstrate a role for machine-learning approaches in marker selection across large genomic data sets to improve assignment for management and conservation of exploited populations.

  20. Nosema ceranae in South American Native Stingless Bees and Social Wasp.

    PubMed

    Porrini, Martín Pablo; Porrini, Leonardo Pablo; Garrido, Paula Melisa; de Melo E Silva Neto, Carlos; Porrini, Darío Pablo; Muller, Fernando; Nuñez, Laura Alejandra; Alvarez, Leopoldo; Iriarte, Pedro Fernandez; Eguaras, Martín Javier

    2017-11-01

    Besides the incipient research effort, the role of parasites as drivers of the reduction affecting pollinator populations is mostly unknown. Given the worldwide extension of the beekeeping practice and the diversity of pathogens affecting Apis mellifera populations, honey bee colonies are a certain source of parasite dispersion to other species. Here, we communicate the detection of the microsporidium Nosema ceranae, a relatively new parasite of honey bees, in stingless bees (Meliponini) and the social wasp Polybia scutellaris (Vespidae) samples from Argentina and Brazil by means of duplex PCR. Beyond the geographic location of the nests, N. ceranae was detected in seven from the eight Meliponini species analyzed, while Nosema apis, another common parasite of A. mellifera, was absent in all samples tested. Further research is necessary to determine if the presence of the parasite is also associated with established infection in host tissues. The obtained information enriches the current knowledge about pathologies that can infect or, at least, be vectored by native wild pollinators from South America.

  1. Clinical and immunological surveys in bee keepers.

    PubMed

    Bousquet, J; Coulomb, Y; Robinet-Levy, M; Michel, F B

    1982-07-01

    Two hundred and fifty bee keepers in the South of France, working seasonally, were clinically investigated by means of a questionnaire. Forty-three per cent had presented anaphylactic symptoms and 7.0% toxic reactions when stung by bees. The personal atopic history was found to be significantly (P less than 0.01) elevated in bee keepers who experienced anaphylaxis. Total serum IgE and been venom-specific IgE were titrated in 100 subjects. Total serum IgE was significantly elevated in allergic bee keepers (P = 0.02). Although bee venom-specific IgE were significantly (P less than 0.01) higher in allergic bee keepers this parameter cannot discriminate between allergic and non-allergic bee keepers owing to a considerable overlap. Bee venom-specific IgG was assayed in seventy subjects. Their level was significantly (P less than 0.001) higher in allergic and non-allergic bee keepers as compared with non-allergic blood donors and non-bee-keeping allergic patients. In both bee keeper groups there was no difference in bee venom-specific IgG titres.

  2. Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps.

    PubMed

    Warrant, Eric J

    2008-06-01

    In response to the pressures of predation, parasitism and competition for limited resources, several groups of (mainly) tropical bees and wasps have independently evolved a nocturnal lifestyle. Like their day-active (diurnal) relatives, these insects possess apposition compound eyes, a relatively light-insensitive eye design that is best suited to vision in bright light. Despite this, nocturnal bees and wasps are able to forage at night, with many species capable of flying through a dark and complex forest between the nest and a foraging site, a behaviour that relies heavily on vision and is limited by light intensity. In the two best-studied species - the Central American sweat bee Megalopta genalis (Halictidae) and the Indian carpenter bee Xylocopa tranquebarica (Apidae) - learned visual landmarks are used to guide foraging and homing. Their apposition eyes, however, have only around 30 times greater optical sensitivity than the eyes of their closest diurnal relatives, a fact that is apparently inconsistent with their remarkable nocturnal visual abilities. Moreover, signals generated in the photoreceptors, even though amplified by a high transduction gain, are too noisy and slow to transmit significant amounts of information in dim light. How have nocturnal bees and wasps resolved these paradoxes? Even though this question remains to be answered conclusively, a mounting body of theoretical and experimental evidence suggests that the slow and noisy visual signals generated by the photoreceptors are spatially summed by second-order monopolar cells in the lamina, a process that could dramatically improve visual reliability for the coarser and slower features of the visual world at night.

  3. Recipe for a Busy Bee: MicroRNAs in Honey Bee Caste Determination

    PubMed Central

    Skogerboe, Geir; Dai, Shuanjin; Li, Wenfeng; Li, Zhiguo; Liu, Fang; Ni, Ruifeng; Guo, Yu; Chen, Shenglu; Zhang, Shaowu; Chen, Runsheng

    2013-01-01

    Social caste determination in the honey bee is assumed to be determined by the dietary status of the young larvae and translated into physiological and epigenetic changes through nutrient-sensing pathways. We have employed Illumina/Solexa sequencing to examine the small RNA content in the bee larval food, and show that worker jelly is enriched in miRNA complexity and abundance relative to royal jelly. The miRNA levels in worker jelly were 7–215 fold higher than in royal jelly, and both jellies showed dynamic changes in miRNA content during the 4th to 6th day of larval development. Adding specific miRNAs to royal jelly elicited significant changes in queen larval mRNA expression and morphological characters of the emerging adult queen bee. We propose that miRNAs in the nurse bee secretions constitute an additional element in the regulatory control of caste determination in the honey bee. PMID:24349106

  4. Population density of red langurs in Sabangau tropical peat-swamp forest, Central Kalimantan, Indonesia.

    PubMed

    Ehlers Smith, David A; Ehlers Smith, Yvette C

    2013-08-01

    Because of the large-scale destruction of Borneo's rainforests on mineral soils, tropical peat-swamp forests (TPSFs) are increasingly essential for conserving remnant biodiversity, particularly in the lowlands where the majority of habitat conversion has occurred. Consequently, effective strategies for biodiversity conservation are required, which rely on accurate population density and distribution estimates as a baseline. We sought to establish the first population density estimates of the endemic red langur (Presbytis rubicunda) in Sabangau TPSF, the largest remaining contiguous lowland forest-block on Borneo. Using Distance sampling principles, we conducted line transect surveys in two of Sabangau's three principle habitat sub-classes and calculated group density at 2.52 groups km⁻² (95% CI 1.56-4.08) in the mixed-swamp forest sub-class. Based on an average recorded group size of 6.95 individuals, population density was 17.51 ind km⁻², the second highest density recorded in this species. The accessible area of the tall-interior forest, however, was too disturbed to yield density estimates representative of the entire sub-class, and P. rubicunda was absent from the low-pole forest, likely as a result of the low availability of the species' preferred foods. This absence in 30% of Sabangau's total area indicates the importance of in situ population surveys at the habitat-specific level for accurately informing conservation strategies. We highlight the conservation value of TPSFs for P. rubicunda given the high population density and large areas remaining, and recommend 1) quantifying the response of P. rubicunda to the logging and burning of its habitats; 2) surveying degraded TPSFs for viable populations, and 3) effectively delineating TPSF sub-class boundaries from remote imagery to facilitate population estimates across the wider peat landscape, given the stark contrast in densities found across the habitat sub-classes of Sabangau. © 2013 Wiley

  5. Infra-Population and -Community Dynamics of the Parasites Nosema apis and Nosema ceranae, and Consequences for Honey Bee (Apis mellifera) Hosts

    PubMed Central

    Williams, Geoffrey R.; Shutler, Dave; Burgher-MacLellan, Karen L.; Rogers, Richard E. L.

    2014-01-01

    Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species. PMID:24987989

  6. Infra-population and -community dynamics of the parasites Nosema apis and Nosema ceranae, and consequences for honey bee (Apis mellifera) hosts.

    PubMed

    Williams, Geoffrey R; Shutler, Dave; Burgher-MacLellan, Karen L; Rogers, Richard E L

    2014-01-01

    Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species.

  7. Using Nonmetric Multidimensional Scaling to Analyze Bee Visitation in East Tennessee Crops as an Indicator of Pollination Services Provided by Honey Bees (Apis mellifera L.) and Native Bees.

    PubMed

    Wilson, Michael E; Skinner, John A; Wszelaki, Annette L; Drummond, Frank

    2016-04-01

    This study investigated bee visitation on 10 agricultural crops grown on diverse small farms in Tennessee to determine the abundance of native bees and honey bees and the partitioning of visitation among crops. Summaries for each crop are used to generate mean proportions of bee visitation by categories of bees. This shows that native bee visits often occur as frequently, or in greater proportions than non-native honey bee visits. Visitation across multiple crops is then analyzed together with nonmetric multidimensional scaling to show how communities of bees that provide crop pollination change depending on the crop. Within squash and pumpkin plantings, continuous and discrete factors, such as "time of day" and "organic practices," further explain shifts in the community composition of flower visitors. Results from this study show that native bees frequently visit flowers on various crops, indicating that they are likely contributing to pollination services in addition to honey bees. Furthermore, the community of bees visiting flowers changes based on crop type, phenology, and spatial-temporal factors. Results suggest that developing pollinator conservation for farms that grow a wide variety of crops will likely require multiple conservation strategies. Farms that concentrate on a single crop may be able to tailor conservation practices toward the most important bees in their system and geographic locale. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Responses of Honey Bees to Lethal and Sublethal Doses of Formulated Clothianidin Alone and Mixtures.

    PubMed

    Yao, Jianxiu; Zhu, Yu Cheng; Adamczyk, John

    2018-06-08

    The widespread use of neonicotinoid insecticides has sparked concern over the toxicity risk to honey bees (Apis mellifera L. (Hymenoptera: Apidae)). In this study, feeding treatments with the clothianidin formulation at 2.6 ppb (residue concentration) or its binary mixtures with five representative pesticides (classes) did not influence on adult survivorship, but all treatments caused significantly lower body weight than controls. Most binary mixtures at residue levels showed minor or no interaction on body weight loss, and synergistic interaction was detected only from the mixture of clothianidin + λ-cyhalothrin. Chlorpyrifos alone and the mixture of clothianidin + chlorpyrifos significantly suppressed esterase (EST) activity, while most treatments of individual pesticides and mixtures had no effect on EST and glutathione S-transferase (GST) activities. However, ingestion of clothianidin at 2.6 ppb significantly enhanced P450 oxidase activity by 19%. The LC50 of formulated clothianidin was estimated at 0.53 ppm active ingredient, which is equivalent to 25.4 ng clothianidin per bee (LD50) based on the average sugar consumption of 24 µl per bee per day. In addition to mortality, ingestion of clothianidin at LC50 significantly reduced bee body weight by 12%. P450 activities were also significantly induced at 24 and 48 h in clothianidin-treated bees, while no significant difference was found in GST and EST activities. Further examinations revealed that the expression of an important CYP9q1 detoxification gene was significantly induced by clothianidin. Thus, data consistently indicated that P450s were involved in clothianidin detoxification in honey bees. Although the honey bee population in Stoneville (MS, United States) had sixfold lower susceptibility than other reported populations, clothianidin had very high oral toxicity to bees.

  9. Chapter 10: Environmental justice, low-income and minority populations, and forest management in the northwest forest plan area

    Treesearch

    Susan Charnley; Delilah Jaworski; Heidi Huber-Stearns; Eric M. White; Elisabeth Grinspoon; Rebecca J. McLain; Lee Cerveny

    2018-01-01

    This chapter synthesizes literature about the relation between federal forest management and low-income and minority populations, as defined by Executive Order (E.O.) 12898 (February 16, 1994)—“Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations” (Clinton 1994). The order requires federal land managers to identify and...

  10. Effects of Wintering Environment and Parasite–Pathogen Interactions on Honey Bee Colony Loss in North Temperate Regions

    PubMed Central

    Currie, Robert W.

    2016-01-01

    Extreme winter losses of honey bee colonies are a major threat to beekeeping but the combinations of factors underlying colony loss remain debatable. We monitored colonies in two environments (colonies wintered indoors or outdoors) and characterized the effects of two parasitic mites, seven viruses, and Nosema on honey bee colony mortality and population loss over winter. Samples were collected from two locations within hives in fall, mid-winter and spring of 2009/2010. Although fall parasite and pathogen loads were similar in outdoor and indoor-wintered colonies, the outdoor-wintered colonies had greater relative reductions in bee population score over winter. Seasonal patterns in deformed wing virus (DWV), black queen cell virus (BQCV), and Nosema level also differed with the wintering environment. DWV and Nosema levels decreased over winter for indoor-wintered colonies but BQCV did not. Both BQCV and Nosema concentration increased over winter in outdoor-wintered colonies. The mean abundance of Varroa decreased and concentration of Sacbrood virus (SBV), Kashmir bee virus (KBV), and Chronic bee paralysis virus (CBPV) increased over winter but seasonal patterns were not affected by wintering method. For most viruses, either entrance or brood area samples were reasonable predictors of colony virus load but there were significant season*sample location interactions for Nosema and BQCV, indicating that care must be taken when selecting samples from a single location. For Nosema spp., the fall entrance samples were better predictors of future infestation levels than were fall brood area samples. For indoor-wintered colonies, Israeli acute paralysis virus IAPV concentration was negatively correlated with spring population size. For outdoor-wintered hives, spring Varroa abundance and DWV concentration were positively correlated with bee loss and negatively correlated with spring population size. Multivariate analyses for fall collected samples indicated higher DWV was

  11. Big city Bombus: using natural history and land-use history to find significant environmental drivers in bumble-bee declines in urban development.

    PubMed

    Glaum, Paul; Simao, Maria-Carolina; Vaidya, Chatura; Fitch, Gordon; Iulinao, Benjamin

    2017-05-01

    Native bee populations are critical sources of pollination. Unfortunately, native bees are declining in abundance and diversity. Much of this decline comes from human land-use change. While the effects of large-scale agriculture on native bees are relatively well understood, the effects of urban development are less clear. Understanding urbanity's effect on native bees requires consideration of specific characteristics of both particular bee species and their urban landscape. We surveyed bumble-bee ( Bombus spp.) abundance and diversity in gardens across multiple urban centres in southeastern Michigan. There are significant declines in Bombus abundance and diversity associated with urban development when measured on scales in-line with Bombus flight ability. These declines are entirely driven by declines in females; males showed no response to urbanization. We hypothesize that this is owing to differing foraging strategies between the sexes, and it suggests reduced Bombus colony density in more urban areas. While urbanity reduced Bombus prevalence, results in Detroit imply that 'shrinking cities' potentially offer unique urban paradigms that must be considered when studying wild bee ecology. Results show previously unidentified differences in the effects of urbanity on female and male bumble-bee populations and suggest that urban landscapes can be managed to support native bee conservation.

  12. Big city Bombus: using natural history and land-use history to find significant environmental drivers in bumble-bee declines in urban development

    PubMed Central

    Simao, Maria-Carolina; Vaidya, Chatura; Fitch, Gordon; Iulinao, Benjamin

    2017-01-01

    Native bee populations are critical sources of pollination. Unfortunately, native bees are declining in abundance and diversity. Much of this decline comes from human land-use change. While the effects of large-scale agriculture on native bees are relatively well understood, the effects of urban development are less clear. Understanding urbanity's effect on native bees requires consideration of specific characteristics of both particular bee species and their urban landscape. We surveyed bumble-bee (Bombus spp.) abundance and diversity in gardens across multiple urban centres in southeastern Michigan. There are significant declines in Bombus abundance and diversity associated with urban development when measured on scales in-line with Bombus flight ability. These declines are entirely driven by declines in females; males showed no response to urbanization. We hypothesize that this is owing to differing foraging strategies between the sexes, and it suggests reduced Bombus colony density in more urban areas. While urbanity reduced Bombus prevalence, results in Detroit imply that ‘shrinking cities’ potentially offer unique urban paradigms that must be considered when studying wild bee ecology. Results show previously unidentified differences in the effects of urbanity on female and male bumble-bee populations and suggest that urban landscapes can be managed to support native bee conservation. PMID:28573023

  13. Sound: An Element Common to Communication of Stingless Bees and to Dances of the Honey Bee.

    PubMed

    Esch, H; Esch, I; Kerr, W E

    1965-07-16

    Sounds are an important part of the communication behavior, the so-called dances, of the honey bee. Stingless bees, which do not use dances for communication, use sound signals to indicate the existence and, in some cases, the distance of a feeding place. The social organization of communities of stingless bees is more primitive than that of honey bees, yet certain commonfeatures of communication behavior in these two groups lead to a new hypothesis of the evolution of dancing behavior of the honey bee.

  14. Red-cockaded woodpecker population trends and management on Texas national forests

    Treesearch

    Richard N. Conner; D. Craig Rudolph

    1994-01-01

    Red-cockaded Woodpecker (Picoides borealis) population trends and concurrent management on four national forests in eastern Texas were evaluated from 1983 through 1993. Following years of decline, populations stabilized and began to increase after intensive management efforts were initiated. Management activities included control of hardwood midstory and understory,...

  15. Chronic Bee Paralysis Virus and Nosema ceranae Experimental Co-Infection of Winter Honey Bee Workers (Apis mellifera L.)

    PubMed Central

    Toplak, Ivan; Jamnikar Ciglenečki, Urška; Aronstein, Katherine; Gregorc, Aleš

    2013-01-01

    Chronic bee paralysis virus (CBPV) is an important viral disease of adult bees which induces significant losses in honey bee colonies. Despite comprehensive research, only limited data is available from experimental infection for this virus. In the present study winter worker bees were experimentally infected in three different experiments. Bees were first inoculated per os (p/o) or per cuticle (p/c) with CBPV field strain M92/2010 in order to evaluate the virus replication in individual bees. In addition, potential synergistic effects of co-infection with CBPV and Nosema ceranae (N. ceranae) on bees were investigated. In total 558 individual bees were inoculated in small cages and data were analyzed using quantitative real time RT-PCR (RT-qPCR). Our results revealed successful replication of CBPV after p/o inoculation, while it was less effective when bees were inoculated p/c. Dead bees harbored about 1,000 times higher copy numbers of the virus than live bees. Co-infection of workers with CBPV and N. ceranae using either method of virus inoculation (p/c or p/o) showed increased replication ability for CBPV. In the third experiment the effect of inoculation on bee mortality was evaluated. The highest level of bee mortality was observed in a group of bees inoculated with CBPV p/o, followed by a group of workers simultaneously inoculated with CBPV and N. ceranae p/o, followed by the group inoculated with CBPV p/c and the group with only N. ceranae p/o. The experimental infection with CBPV showed important differences after p/o or p/c inoculation in winter bees, while simultaneous infection with CBPV and N. ceranae suggesting a synergistic effect after inoculation. PMID:24056674

  16. Bees brought to their knees: Microbes affecting honey bee health

    USDA-ARS?s Scientific Manuscript database

    The biology and health of the honey bee, Apis mellifera, has been of interest to human societies since the advent of beekeeping. Descriptive scientific research on pathogens affecting honey bees have been published for nearly a century, but it wasn’t until the recent outbreak of heavy colony losses...

  17. Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan.

    PubMed

    Radzevičiūtė, Rita; Theodorou, Panagiotis; Husemann, Martin; Japoshvili, George; Kirkitadze, Giorgi; Zhusupbaeva, Aigul; Paxton, Robert J

    2017-06-01

    The essential ecosystem service of pollination is provided largely by insects, which are considered threatened by diverse biotic and abiotic global change pressures. RNA viruses are one such pressure, and have risen in prominence as a major threat for honey bees (Apis mellifera) and global apiculture, as well as a risk factor for other bee species through pathogen spill-over between managed honey bees and sympatric wild pollinator communities. Yet despite their potential role in global bee decline, the prevalence of honey bee-associated RNA viruses in wild bees is poorly known from both geographic and taxonomic perspectives. We screened members of pollinator communities (honey bees, bumble bees and other wild bees belonging to four families) collected from apple orchards in Georgia, Germany and Kyrgyzstan for six common honey bee-associated RNA virus complexes encompassing nine virus targets. The Deformed wing virus complex (DWV genotypes A and B) had the highest prevalence across all localities and host species and was the only virus complex found in wild bee species belonging to all four studied families. Based on amplification of negative-strand viral RNA, we found evidence for viral replication in wild bee species of DWV-A/DWV-B (hosts: Andrena haemorrhoa and several Bombus spp.) and Black queen cell virus (hosts: Anthophora plumipes, several Bombus spp., Osmia bicornis and Xylocopa spp.). Viral amplicon sequences revealed that DWV-A and DWV-B are regionally distinct but identical in two or more bee species at any one site, suggesting virus is shared amongst sympatric bee taxa. This study demonstrates that honey bee associated RNA viruses are geographically and taxonomically widespread, likely infective in wild bee species, and shared across bee taxa. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Pollination of tomatoes by the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera (Hymenoptera, Apidae).

    PubMed

    dos Santos, S A Bispo; Roselino, A C; Hrncir, M; Bego, L R

    2009-06-30

    The pollination effectiveness of the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera was tested in tomato plots. The experiment was conducted in four greenhouses as well as in an external open plot in Ribeirão Preto, SP, Brazil. The tomato plants were exposed to visits by M. quadrifasciata in one greenhouse and to A. mellifera in another; two greenhouses were maintained without bees (controls) and an open field plot was exposed to pollinators in an area where both honey bee and stingless bee colonies are abundant. We counted the number of tomatoes produced in each plot. Two hundred tomatoes from each plot were weighed, their vertical and transversal circumferences were measured, and the seeds were counted. We collected 253 Chrysomelidae, 17 Halictidae, one Paratrigona sp, and one honey bee from the flowers of the tomato plants in the open area. The largest number of fruits (1414 tomatoes), the heaviest and largest tomatoes, and the ones with the most seed were collected from the greenhouse with stingless bees. Fruits cultivated in the greenhouse with honey bees had the same weight and size as those produced in one of the control greenhouses. The stingless bee, M. quadrifasciata, was significantly more efficient than honey bees in pollinating greenhouse tomatoes.

  19. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae

    USDA-ARS?s Scientific Manuscript database

    Recent declines in honey bee populations and increasing demand for insect-pollinated crops raise concerns about pollinator shortages. Pesticide exposure and pathogens may interact to have strong negative effects on managed honey bee colonies. Such findings are of great concern given the large number...

  20. Planting of neonicotinoid-coated corn raises honey bee mortality and sets back colony development.

    PubMed

    Samson-Robert, Olivier; Labrie, Geneviève; Chagnon, Madeleine; Fournier, Valérie

    2017-01-01

    Worldwide occurrences of honey bee colony losses have raised concerns about bee health and the sustainability of pollination-dependent crops. While multiple causal factors have been identified, seed coating with insecticides of the neonicotinoid family has been the focus of much discussion and research. Nonetheless, few studies have investigated the impacts of these insecticides under field conditions or in commercial beekeeping operations. Given that corn-seed coating constitutes the largest single use of neonicotinoid, our study compared honey bee mortality from commercial apiaries located in two different agricultural settings, i.e. corn-dominated areas and corn-free environments, during the corn planting season. Data was collected in 2012 and 2013 from 26 bee yards. Dead honey bees from five hives in each apiary were counted and collected, and samples were analyzed using a multi-residue LC-MS/MS method. Long-term effects on colony development were simulated based on a honey bee population dynamic model. Mortality survey showed that colonies located in a corn-dominated area had daily mortality counts 3.51 times those of colonies from corn crop-free sites. Chemical analyses revealed that honey bees were exposed to various agricultural pesticides during the corn planting season, but were primarily subjected to neonicotinoid compounds (54% of analysed samples contained clothianidin, and 31% contained both clothianidin and thiamethoxam). Performance development simulations performed on hive populations' show that increased mortality during the corn planting season sets back colony development and bears contributions to collapse risk but, most of all, reduces the effectiveness and value of colonies for pollination services. Our results also have implications for the numerous large-scale and worldwide-cultivated crops that currently rely on pre-emptive use of neonicotinoid seed treatments.

  1. Transcriptional responses in Honey Bee larvae infected with chalkbrood fungus

    PubMed Central

    2010-01-01

    Background Diseases and other stress factors working synergistically weaken honey bee health and may play a major role in the losses of bee populations in recent years. Among a large number of bee diseases, chalkbrood has been on the rise. We present here the experimental identification of honey bee genes that are differentially expressed in response to infection of honey bee larvae with the chalkbrood fungus, Ascosphaera apis. Results We used cDNA-AFLP ®Technology to profile transcripts in infected and uninfected bee larvae. From 64 primer combinations, over 7,400 transcriptionally-derived fragments were obtained A total of 98 reproducible polymorphic cDNA-AFLP fragments were excised and sequenced, followed by quantitative real-time RT-PCR (qRT-PCR) analysis of these and additional samples. We have identified a number of differentially-regulated transcripts that are implicated in general mechanisms of stress adaptation, including energy metabolism and protein transport. One of the most interesting differentially-regulated transcripts is for a chitinase-like enzyme that may be linked to anti-fungal activities in the honey bee larvae, similarly to gut and fat-body specific chitinases found in mosquitoes and the red flour beetle. Surprisingly, we did not find many components of the well-characterized NF-κB intracellular signaling pathways to be differentially-regulated using the cDNA-AFLP approach. Therefore, utilizing qRT-PCR, we probed some of the immune related genes to determine whether the lack of up-regulation of their transcripts in our analysis can be attributed to lack of immune activation or to limitations of the cDNA-AFLP approach. Conclusions Using a combination of cDNA-AFLP and qRT-PCR analyses, we were able to determine several key transcriptional events that constitute the overall effort in the honey bee larvae to fight natural fungal infection. Honey bee transcripts identified in this study are involved in critical functions related to

  2. Transcriptional responses in honey bee larvae infected with chalkbrood fungus.

    PubMed

    Aronstein, Katherine A; Murray, Keith D; Saldivar, Eduardo

    2010-06-21

    Diseases and other stress factors working synergistically weaken honey bee health and may play a major role in the losses of bee populations in recent years. Among a large number of bee diseases, chalkbrood has been on the rise. We present here the experimental identification of honey bee genes that are differentially expressed in response to infection of honey bee larvae with the chalkbrood fungus, Ascosphaera apis. We used cDNA-AFLP Technology to profile transcripts in infected and uninfected bee larvae. From 64 primer combinations, over 7,400 transcriptionally-derived fragments were obtained A total of 98 reproducible polymorphic cDNA-AFLP fragments were excised and sequenced, followed by quantitative real-time RT-PCR (qRT-PCR) analysis of these and additional samples.We have identified a number of differentially-regulated transcripts that are implicated in general mechanisms of stress adaptation, including energy metabolism and protein transport. One of the most interesting differentially-regulated transcripts is for a chitinase-like enzyme that may be linked to anti-fungal activities in the honey bee larvae, similarly to gut and fat-body specific chitinases found in mosquitoes and the red flour beetle. Surprisingly, we did not find many components of the well-characterized NF-kappaB intracellular signaling pathways to be differentially-regulated using the cDNA-AFLP approach. Therefore, utilizing qRT-PCR, we probed some of the immune related genes to determine whether the lack of up-regulation of their transcripts in our analysis can be attributed to lack of immune activation or to limitations of the cDNA-AFLP approach. Using a combination of cDNA-AFLP and qRT-PCR analyses, we were able to determine several key transcriptional events that constitute the overall effort in the honey bee larvae to fight natural fungal infection. Honey bee transcripts identified in this study are involved in critical functions related to transcriptional regulation, apoptotic

  3. Characterization of viral siRNA populations in honey bee colony collapse disorder.

    PubMed

    Chejanovsky, Nor; Ophir, Ron; Schwager, Michal Sharabi; Slabezki, Yossi; Grossman, Smadar; Cox-Foster, Diana

    2014-04-01

    Colony Collapse Disorder (CCD), a special case of collapse of honey bee colonies, has resulted in significant losses for beekeepers. CCD-colonies show abundance of pathogens which suggests that they have a weakened immune system. Since honey bee viruses are major players in colony collapse and given the important role of viral RNA interference (RNAi) in combating viral infections we investigated if CCD-colonies elicit an RNAi response. Deep-sequencing analysis of samples from CCD-colonies from US and Israel revealed abundant small interfering RNAs (siRNA) of 21-22 nucleotides perfectly matching the Israeli acute paralysis virus (IAPV), Kashmir virus and Deformed wing virus genomes. Israeli colonies showed high titers of IAPV and a conserved RNAi-pattern of matching the viral genome. That was also observed in sample analysis from colonies experimentally infected with IAPV. Our results suggest that CCD-colonies set out a siRNA response that is specific against predominant viruses associated with colony losses. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A new bee species that excavates sandstone nests.

    PubMed

    Orr, Michael C; Griswold, Terry; Pitts, James P; Parker, Frank D

    2016-09-12

    Humanity has long been fascinated by animals with apparently unfavorable lifestyles [1]. Nesting habits are especially important because they can limit where organisms live, thereby driving population, community, and even ecosystem dynamics [2]. The question arises, then, why bees nest in active termite mounds [3] or on the rim of degassing volcanoes, seemingly preferring such hardship [4]. Here, we present a new bee species that excavates sandstone nests, Anthophora (Anthophoroides) pueblo Orr (described in Supplemental Information, published with this article online), despite the challenges already inherent to desert life. Ultimately, the benefits of nesting in sandstone appear to outweigh the associated costs in this system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis Mellifera.

    PubMed

    Cridland, Julie M; Tsutsui, Neil D; Ramírez, Santiago R

    2017-02-01

    The western honey bee, Apis mellifera, provides critical pollination services to agricultural crops worldwide. However, despite substantial interest and prior investigation, the early evolution and subsequent diversification of this important pollinator remain uncertain. The primary hypotheses place the origin of A. mellifera in either Asia or Africa, with subsequent radiations proceeding from one of these regions. Here, we use two publicly available whole-genome data sets plus newly sequenced genomes and apply multiple population genetic analysis methods to investigate the patterns of ancestry and admixture in native honey bee populations from Europe, Africa, and the Middle East. The combination of these data sets is critical to the analyses, as each contributes samples from geographic locations lacking in the other, thereby producing the most complete set of honey bee populations available to date. We find evidence supporting an origin of A. mellifera in the Middle East or North Eastern Africa, with the A and Y lineages representing the earliest branching lineages. This finding has similarities with multiple contradictory hypotheses and represents a disentangling of genetic relationships, geographic proximity, and secondary contact to produce a more accurate picture of the origins of A. mellifera. We also investigate how previous studies came to their various conclusions based on incomplete sampling of populations, and illustrate the importance of complete sampling in understanding evolutionary processes. These results provide fundamental knowledge about genetic diversity within Old World honey bee populations and offer insight into the complex history of an important pollinator. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. 7 CFR 322.29 - Dead bees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...

  7. 7 CFR 322.29 - Dead bees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...

  8. 7 CFR 322.29 - Dead bees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...

  9. 7 CFR 322.29 - Dead bees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...

  10. 7 CFR 322.29 - Dead bees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...

  11. Dynamics of buckbrush populations under simulated forest restoration alternatives (P-53)

    Treesearch

    David W. Huffman; Margaret M. Moore

    2008-01-01

    Plant population models are valuable tools for assessing ecological tradeoffs between forest management approaches. In addition, these models can provide insight on plant life history patterns and processes important for persistence and recovery of populations in changing environments. In this study, we evaluated a set of ecological restoration alternatives for their...

  12. Hemichorea after multiple bee stings.

    PubMed

    An, Jin Young; Kim, Ji Seon; Min, Jin Hong; Han, Kyu Hong; Kang, Jun Ho; Lee, Suk Woo; Kim, Hoon; Park, Jung Soo

    2014-02-01

    Bee sting is one of the most commonly encountered insect bites in the world. Despite the common occurrence of local and systemic allergic reactions, there are few reports of ischemic stroke after bee stings. To the best our knowledge, there have been no reports on involuntary hyperkinetic movement disorders after multiple bee stings. We report the case of a 50-year-old man who developed involuntary movements of the left leg 24 hours after multiple bee stings, and the cause was confirmed to be a right temporal infarction on a diffusion magnetic resonance imaging scan. Thus, we concluded that the involuntary movement disorder was caused by right temporal infarction that occurred after multiple bee stings.

  13. Africanized bees extend their distribution in California.

    PubMed

    Lin, Wei; McBroome, Jakob; Rehman, Mahwish; Johnson, Brian R

    2018-01-01

    Africanized honey bees (Apis mellifera) arrived in the western hemisphere in the 1950s and quickly spread north reaching California in the 1990s. These bees are highly defensive and somewhat more difficult to manage for commercial purposes than the European honey bees traditionally kept. The arrival of these bees and their potentially replacing European bees over much of the state is thus of great concern. After a 25 year period of little systematic sampling, a recent small scale study found Africanized honey bees in the Bay Area of California, far north of their last recorded distribution. The purpose of the present study was to expand this study by conducting more intensive sampling of bees from across northern California. We found Africanized honey bees as far north as Napa and Sacramento. We also found Africanized bees in all counties south of these counties. Africanized honey bees were particularly abundant in parts of the central valley and Monterey. This work suggests the northern spread of Africanized honey bees may not have stopped. They may still be moving north at a slow rate, although due to the long gaps in sampling it is currently impossible to tell for certain. Future work should routinely monitor the distribution of these bees to distinguish between these two possibilities.

  14. Toward robust estimation of the components of forest population change: simulation results

    Treesearch

    Francis A. Roesch

    2014-01-01

    This report presents the full simulation results of the work described in Roesch (2014), in which multiple levels of simulation were used to test the robustness of estimators for the components of forest change. In that study, a variety of spatial-temporal populations were created based on, but more variable than, an actual forest monitoring dataset, and then those...

  15. Do linden trees kill bees? Reviewing the causes of bee deaths on silver linden (Tilia tomentosa).

    PubMed

    Koch, Hauke; Stevenson, Philip C

    2017-09-01

    For decades, linden trees (basswoods or lime trees), and particularly silver linden ( Tilia tomentosa ), have been linked to mass bee deaths. This phenomenon is often attributed to the purported occurrence of the carbohydrate mannose, which is toxic to bees, in Tilia nectar. In this review, however, we conclude that from existing literature there is no experimental evidence for toxicity to bees in linden nectar. Bee deaths on Tilia probably result from starvation, owing to insufficient nectar resources late in the tree's flowering period. We recommend ensuring sufficient alternative food sources in cities during late summer to reduce bee deaths on silver linden. Silver linden metabolites such as floral volatiles, pollen chemistry and nectar secondary compounds remain underexplored, particularly their toxic or behavioural effects on bees. Some evidence for the presence of caffeine in linden nectar may mean that linden trees can chemically deceive foraging bees to make sub-optimal foraging decisions, in some cases leading to their starvation. © 2017 The Author(s).

  16. Migrations of European honey bee lineages into Africa, Asia, and North America during the Oligocene and Miocene

    NASA Astrophysics Data System (ADS)

    Kotthoff, Ulrich; Wappler, Torsten; Engel, Michael

    2013-04-01

    Today honey bees, principally the western honey bee, Apis mellifera, represent a multi-billion dollar agricultural industry. Through the efforts of humans they have become established well outside of their modern native ranges, having been introduced multiple times into the Americas, Australia, New Zealand, New Caledonia, and many areas of Oceania. The native, i.e., non-human influenced, distribution and migration of honey bee species and populations has been a matter of serious and continued debate. Apicultural dogma informs us that the center of origin of honey bees (genus Apis) resides in Asia, with subsequent migration and diversification into Europe and Asia. Recent population genetic studies of the western honey bee, Apis mellifera, slightly modified this received wisdom by suggesting that this species originated in Africa and subsequently reinvaded Eurasia. Research into the historical biogeography of honey bees has ignored entirely the abundant fossil evidence distributed through a variety of Late Paleogene (Oligocene) and Early Neogene (Miocene) deposits, a diversity which is predominantly European in origin, particularly among the most basal species of the genus. We have examined the morphological disparity and affinities of the full living and fossil diversity of honey bees ranging from their earliest origins to the present day. This analysis indicates that honey bees exhibited a greater morphological disparity during the Oligocene and Miocene epochs, a time when the principal lineages were established, and that Apis apparently originated in Europe, spreading from there into Asia, Africa, and North America, with subsequent diversification in the former two regions and extinction in the latter. During the human migrations and colonization honey bees were once again introduced multiple times into the Americas, as well as into Australia and Asia.

  17. Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China.

    PubMed

    Yang, Bu; Peng, Guangda; Li, Tianbang; Kadowaki, Tatsuhiko

    2013-02-01

    China has the largest number of managed honey bee colonies, which produce the highest quantity of honey and royal jelly in the world; however, the presence of honey bee pathogens and parasites has never been rigorously identified in Chinese apiaries. We thus conducted a molecular survey of honey bee RNA viruses, Nosema microsporidia, protozoan parasites, and tracheal mites associated with nonnative Apis mellifera ligustica and native Apis cerana cerana colonies in China. We found the presence of black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), and sacbrood virus (SBV), but not that of acute bee paralysis virus (ABPV) or Kashmir bee virus (KBV). DWV was the most prevalent in the tested samples. Phylogenies of Chinese viral isolates demonstrated that genetically heterogeneous populations of BQCV, CBPV, DWV, and A. cerana-infecting SBV, and relatively homogenous populations of IAPV and A. meliifera-infecting new strain of SBV with single origins, are spread in Chinese apiaries. Similar to previous observations in many countries, Nosema ceranae, but not Nosema apis, was prevalent in the tested samples. Crithidia mellificae, but not Apicystis bombi was found in five samples, including one A. c. cerana colony, demonstrating that C. mellificae is capable of infecting multiple honey bee species. Based on kinetoplast-encoded cytochrome b sequences, the C. mellificae isolate from A. c. cerana represents a novel haplotype with 19 nucleotide differences from the Chinese and Japanese isolates from A. m. ligustica. This suggests that A. c. cerana is the native host for this specific haplotype. The tracheal mite, Acarapis woodi, was detected in one A. m. ligustica colony. Our results demonstrate that honey bee RNA viruses, N. ceranae, C. mellificae, and tracheal mites are present in Chinese apiaries, and some might be originated from native Asian honey bees.

  18. Influence of Honey Bee Genotype and Wintering Method on Wintering Performance of Varroa destructor (Parasitiformes: Varroidae)-Infected Honey Bee (Hymenoptera: Apidae) Colonies in a Northern Climate.

    PubMed

    Bahreini, Rassol; Currie, Robert W

    2015-08-01

    The objective of this study was to assess the effectiveness of a cooperative breeding program designed to enhance winter survival of honey bees (Apis mellifera L.) when exposed to high levels of varroa (Varroa destructor Anderson and Trueman) in outdoor-wintered and indoor-wintered colonies. Half of the colonies from selected and unselected stocks were randomly assigned to be treated with late autumn oxalic acid treatment or to be left untreated. Colonies were then randomly assigned to be wintered either indoors (n = 37) or outdoors (n = 40). Late autumn treatment with oxalic acid did not improve wintering performance. However, genotype of bees affected colony survival and the proportion of commercially viable colonies in spring, as indicated by greater rates of colony survival and commercially viable colonies for selected stock (43% survived and 33% were viable) in comparison to unselected stock (19% survived and 9% were viable) across all treatment groups. Indoor wintering improved spring bee population score, proportion of colonies surviving, and proportion of commercially viable colonies relative to outdoor wintering (73% of selected stock and 41% of unselected stock survived during indoor wintering). Selected stock showed better "tolerance" to varroa as the selected stock also maintained higher bee populations relative to unselected stock. However, there was no evidence of "resistance" in selected colonies (reduced mite densities). Collectively, this experiment showed that breeding can improve tolerance to varroa and this can help minimize colony loss through winter and improve colony wintering performance. Overall, colony wintering success of both genotypes of bees was better when colonies were wintered indoors than when colonies were wintered outdoors. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Insulin-like peptide response to nutritional input in honey bee workers.

    PubMed

    Ihle, Kate E; Baker, Nicholas A; Amdam, Gro V

    2014-10-01

    The rise in metabolic disorders in the past decades has heightened focus on achieving a healthy dietary balance in humans. This is also an increasingly important issue in the management of honey bees (Apis mellifera) where poor nutrition has negative effects on health and productivity in agriculture, and nutrition is suggested as a contributing factor in the recent global declines in honey bee populations. As in other organisms, the insulin/insulin-like signaling (IIS) pathway is likely involved in maintaining nutrient homeostasis in honey bees. Honey bees have two insulin-like peptides (Ilps) with differing spatial expression patterns in the fat body suggesting that AmIlp1 potentially functions in lipid metabolism while AmIlp2 is a more general indicator of nutritional status. We fed caged worker bees artificial diets high in carbohydrates, proteins or lipids and measured expression of AmIlp1, AmIlp2, and the insulin receptor substrate (IRS) to test their responses to dietary macronutrients. We also measured lifespan, worker weight and gustatory sensitivity to sugar as measures of individual physical condition. We found that expression of AmIlp1 was affected by diet composition and was highest on a diet high in protein. Expression of AmIlp2 and AmIRS were not affected by diet. Workers lived longest on a diet high in carbohydrates and low in protein and lipids. However, bees fed this diet weighed less than those that received a diet high in protein and low in carbohydrates and lipids. Bees fed the high carbohydrates diet were also more responsive to sugar, potentially indicating greater levels of hunger. These results support a role for AmIlp1 in nutritional homeostasis and provide new insight into how unbalanced diets impact individual honey bee health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Native and Non-Native Supergeneralist Bee Species Have Different Effects on Plant-Bee Networks

    PubMed Central

    Giannini, Tereza C.; Garibaldi, Lucas A.; Acosta, Andre L.; Silva, Juliana S.; Maia, Kate P.; Saraiva, Antonio M.; Guimarães, Paulo R.; Kleinert, Astrid M. P.

    2015-01-01

    Supergeneralists, defined as species that interact with multiple groups of species in ecological networks, can act as important connectors of otherwise disconnected species subsets. In Brazil, there are two supergeneralist bees: the honeybee Apis mellifera, a non-native species, and Trigona spinipes, a native stingless bee. We compared the role of both species and the effect of geographic and local factors on networks by addressing three questions: 1) Do both species have similar abundance and interaction patterns (degree and strength) in plant-bee networks? 2) Are both species equally influential to the network structure (nestedness, connectance, and plant and bee niche overlap)? 3) How are these species affected by geographic (altitude, temperature, precipitation) and local (natural vs. disturbed habitat) factors? We analyzed 21 plant-bee weighted interaction networks, encompassing most of the main biomes in Brazil. We found no significant difference between both species in abundance, in the number of plant species with which each bee species interacts (degree), and in the sum of their dependencies (strength). Structural equation models revealed the effect of A. mellifera and T. spinipes, respectively, on the interaction network pattern (nestedness) and in the similarity in bee’s interactive partners (bee niche overlap). It is most likely that the recent invasion of A. mellifera resulted in its rapid settlement inside the core of species that retain the largest number of interactions, resulting in a strong influence on nestedness. However, the long-term interaction between native T. spinipes and other bees most likely has a more direct effect on their interactive behavior. Moreover, temperature negatively affected A. mellifera bees, whereas disturbed habitats positively affected T. spinipes. Conversely, precipitation showed no effect. Being positively (T. spinipes) or indifferently (A. mellifera) affected by disturbed habitats makes these species prone to

  1. Chalkbrood disease in honey bees

    USDA-ARS?s Scientific Manuscript database

    Chalkbrood is an invasive mycosis in honey bees (Apis mellifera L.) produced by Ascosphaera apis (Maassen ex Claussen) Olive and Spiltoir (Spiltoir, 1955) that exclusively affects bee brood. Although fatal to individual larvae, the disease does not usually destroy an entire bee colony. However, it c...

  2. Special Issue: Honey Bee Viruses

    PubMed Central

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field. PMID:26702462

  3. Special Issue: Honey Bee Viruses.

    PubMed

    Gisder, Sebastian; Genersch, Elke

    2015-10-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field.

  4. Analysis of lead concentration in forager stingless bees Trigona sp. (hymenoptera: Apidae) and propolis at Cilutung and Maribaya, West Java

    NASA Astrophysics Data System (ADS)

    Safira, Nabila; Anggraeni, Tjandra

    2015-09-01

    Several studies had shown that lead (Pb) in the environment could accumulate in bees, which in turn could affect the quality of the resulting product. In this study, forager stingless bees (Trigona sp.) and its product (propolis) collected from a stingless bees apiculture. This apiculture had two apiary sites which were distinguished by its environmental setting. Apiary site in Cilutung had a forest region environmental setting, while apiary site in Maribaya was located beside the main road. The objective of this study was to determine the extent of lead concentration in propolis originated from both apiary sites and establish the correlation between lead concentration in propolis and lead level in forager stingless bees. Forager bees and propolis samples were originated from 50 bees colonies (Cilutung) and 44 bees colonies (Maribaya). They were analyzed using AAS-GF (Atomic Absorption Spectrometre-Graphite Furnace) to determine the level of lead concentration. The results showed that the average level of lead in propolis originated from Cilutung (298.08±73.71 ppb) was lower than the average level of lead in forager bees which originated from Maribaya (330.64±156.34 ppb). However, these values did not show significant difference (p>0.05). There was no significant difference (p>0.05) between the average level of lead in forager bees which originated from Cilutung (118.08±30.46 ppb) and Maribaya (128.82±39.66 ppb). However, these values did not show significant difference (p>0.05). In conclusion, the average level of lead concentration in propolis in both sites had passed the maximum permission standard of lead for food in Indonesia. There was no correlation between lead concentration in propolis and forager stingless bees.

  5. Genetic diversity affects colony survivorship in commercial honey bee colonies

    NASA Astrophysics Data System (ADS)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  6. Genetic diversity affects colony survivorship in commercial honey bee colonies.

    PubMed

    Tarpy, David R; Vanengelsdorp, Dennis; Pettis, Jeffrey S

    2013-08-01

    Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency (m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e  ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e  > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  7. Size and Sex-Dependent Shrinkage of Dutch Bees during One-and-a-Half Centuries of Land-Use Change.

    PubMed

    Oliveira, Mikail O; Freitas, Breno M; Scheper, Jeroen; Kleijn, David

    2016-01-01

    Land-use change and global warming are important factors driving bee decline, but it is largely unknown whether these drivers have resulted in changes in the life-history traits of bees. Recent studies have shown a stronger population decline of large- than small-bodied bee species, suggesting there may have been selective pressure on large, but not on small species to become smaller. Here we test this hypothesis by analyzing trends in bee body size of 18 Dutch species over a 147-year period using specimens from entomological collections. Large-bodied female bees shrank significantly faster than small-bodied female bees (6.5% and 0.5% respectively between 1900 and 2010). Changes in temperature during the flight period of bees did not influence the size-dependent shrinkage of female bees. Male bees did not shrink significantly over the same time period. Our results could imply that under conditions of declining habitat quantity and quality it is advantageous for individuals to be smaller. The size and sex-dependent responses of bees point towards an evolutionary response but genetic studies are required to confirm this. The declining body size of the large bee species that currently dominate flower visitation of both wild plants and insect-pollinated crops may have negative consequences for pollination service delivery.

  8. Effects of reduced-impact logging and forest physiognomy on bat populations of lowland Amazonian forest.

    Treesearch

    Steven J. Presley; Michael R. Willig; Wunderle Jr. Joseph M.; Luis Nélio Saldanha

    2008-01-01

    1.As human population size increases, demand for natural resources will increase. Logging pressure related to increasing demands continues to threaten remote areas of Amazonian forest. A harvest protocol is required to provide renewable timber resources that meet consumer needs while minimizing negative effects on biodiversity and ecosystem services. Reduced-impact...

  9. Consumption of a nectar alkaloid reduces pathogen load in bumble bees.

    PubMed

    Manson, Jessamyn S; Otterstatter, Michael C; Thomson, James D

    2010-01-01

    Diet has a significant effect on pathogen infections in animals and the consumption of secondary metabolites can either enhance or mitigate infection intensity. Secondary metabolites, which are commonly associated with herbivore defense, are also frequently found in floral nectar. One hypothesized function of this so-called toxic nectar is that it has antimicrobial properties, which may benefit insect pollinators by reducing the intensity of pathogen infections. We tested whether gelsemine, a nectar alkaloid of the bee-pollinated plant Gelsemium sempervirens, could reduce pathogen loads in bumble bees infected with the gut protozoan Crithidia bombi. In our first laboratory experiment, artificially infected bees consumed a daily diet of gelsemine post-infection to simulate continuous ingestion of alkaloid-rich nectar. In the second experiment, bees were inoculated with C. bombi cells that were pre-exposed to gelsemine, simulating the direct effects of nectar alkaloids on pathogen cells that are transmitted at flowers. Gelsemine significantly reduced the fecal intensity of C. bombi 7 days after infection when it was consumed continuously by infected bees, whereas direct exposure of the pathogen to gelsemine showed a non-significant trend toward reduced infection. Lighter pathogen loads may relieve bees from the behavioral impairments associated with the infection, thereby improving their foraging efficiency. If the collection of nectar secondary metabolites by pollinators is done as a means of self-medication, pollinators may selectively maintain secondary metabolites in the nectar of plants in natural populations.

  10. No apparent correlation between honey bee forager gut microbiota and honey production.

    PubMed

    Horton, Melissa A; Oliver, Randy; Newton, Irene L

    2015-01-01

    One of the best indicators of colony health for the European honey bee (Apis mellifera) is its performance in the production of honey. Recent research into the microbial communities naturally populating the bee gut raise the question as to whether there is a correlation between microbial community structure and colony productivity. In this work, we used 16S rRNA amplicon sequencing to explore the microbial composition associated with forager bees from honey bee colonies producing large amounts of surplus honey (productive) and compared them to colonies producing less (unproductive). As supported by previous work, the honey bee microbiome was found to be dominated by three major phyla: the Proteobacteria, Bacilli and Actinobacteria, within which we found a total of 23 different bacterial genera, including known "core" honey bee microbiome members. Using discriminant function analysis and correlation-based network analysis, we identified highly abundant members (such as Frischella and Gilliamella) as important in shaping the bacterial community; libraries from colonies with high quantities of these Orbaceae members were also likely to contain fewer Bifidobacteria and Lactobacillus species (such as Firm-4). However, co-culture assays, using isolates from these major clades, were unable to confirm any antagonistic interaction between Gilliamella and honey bee gut bacteria. Our results suggest that honey bee colony productivity is associated with increased bacterial diversity, although this mechanism behind this correlation has yet to be determined. Our results also suggest researchers should not base inferences of bacterial interactions solely on correlations found using sequencing. Instead, we suggest that depth of sequencing and library size can dramatically influence statistically significant results from sequence analysis of amplicons and should be cautiously interpreted.

  11. Landscape Simplification Constrains Adult Size in a Native Ground-Nesting Bee.

    PubMed

    Renauld, Miles; Hutchinson, Alena; Loeb, Gregory; Poveda, Katja; Connelly, Heather

    2016-01-01

    Bees provide critical pollination services to 87% of angiosperm plants; however, the reliability of these services may become threatened as bee populations decline. Agricultural intensification, resulting in the simplification of environments at the landscape scale, greatly changes the quality and quantity of resources available for female bees to provision their offspring. These changes may alter or constrain the tradeoffs in maternal investment allocation between offspring size, number and sex required to maximize fitness. Here we investigate the relationship between landscape scale agricultural intensification and the size and number of individuals within a wild ground nesting bee species, Andrena nasonii. We show that agricultural intensification at the landscape scale was associated with a reduction in the average size of field collected A. nasonii adults in highly agricultural landscapes but not with the number of individuals collected. Small females carried significantly smaller (40%) pollen loads than large females, which is likely to have consequences for subsequent offspring production and fitness. Thus, landscape simplification is likely to constrain allocation of resources to offspring through a reduction in the overall quantity, quality and distribution of resources.

  12. Transcriptomic and functional resources for the Small Hive Beetle Aethina tumida, a worldwide parasite of honey bees

    USDA-ARS?s Scientific Manuscript database

    The small hive beetle (SHB), Aethina tumida, is a major pest of managed honey bee (Apis mellifera) colonies in the United States and Australia, and an emergent threat in Europe. While strong honey bee colonies generally keep SHB populations in check, weak or stressed colonies can succumb to infestat...

  13. Season and landscape composition affect pollen foraging distances and habitat use of honey bees.

    PubMed

    Danner, Nadja; Molitor, Anna Maria; Schiele, Susanne; Härtel, Stephan; Steffan-Dewenter, Ingolf

    2016-09-01

    Honey bees (Apis mellifera L.) show a large variation in foraging distances and use a broad range of plant species as pollen resources, even in regions with intensive agriculture. However, it is unknown how increasing areas of mass-flowering crops like oilseed rape (Brassica napus; OSR) or a decrease of seminatural habitats (SNH) change the temporal and spatial availability of pollen resources for honey bee colonies, and thus foraging distances and frequency in different habitat types. We studied pollen foraging of honey bee colonies in 16 agricultural landscapes with independent gradients of OSR and SNH area within 2 km and used waggle dances and digital geographic maps with major land cover types to reveal the distance and visited habitat type on a landscape level. Mean pollen foraging distance of 1347 decoded bee dances was 1015 m (± 26 m; SEM). In spring, increasing area of flowering OSR within 2 km reduced mean pollen foraging distances from 1324 m to only 435 m. In summer, increasing cover of SNH areas close to the colonies (within 200 m radius) reduced mean pollen foraging distances from 846 to 469 m. Frequency of pollen foragers per habitat type, measured as the number of dances per hour and hectare, was equally high for SNH, grassland, and OSR fields, but lower for other crops and forests. In landscapes with a small proportion of SNH a significantly higher density of pollen foragers on SNH was observed, indicating that pollen resources in such simple agricultural landscapes are more limited. Overall, we conclude that SNH and mass-flowering crops can reduce foraging distances of honey bee colonies at different scales and seasons with possible benefits for the performance of honey bee colonies. Further, mixed agricultural landscapes with a high proportion of SNH reduce foraging densities of honey bees in SNH and thus possible competition for pollen resources. © 2016 by the Ecological Society of America.

  14. Mitochondrial DNA diversity of orchid bee Euglossa fimbriata (Hymenoptera: Apidae) populations assessed by PCR-RFLP.

    PubMed

    Suzuki, Karen M; Arias, Maria C; Giangarelli, Douglas C; Freiria, Gabriele A; Sofia, Silvia H

    2010-04-01

    Euglossa fimbriata is a euglossine species widely distributed in Brazil and occurring primarily in Atlantic Forest remnants. In this study, the genetic mitochondrial structure of E. fimbriata from six Atlantic Forest fragments was studied by RFLP analysis of three PCR-amplified mtDNA gene segments (16S, COI-COII, and cyt b). Ten composite haplotypes were identified, six of which were exclusive and represented singleton mitotypes. Low haplotype diversity (0.085-0.289) and nucleotide diversity (0.000-0.002) were detected within samples. AMOVA partitioned 91.13% of the overall genetic variation within samples and 8.87% (phi(st) = 0.089; P < 0.05) among samples. Pairwise comparisons indicated high levels of differentiation among some pairs of samples (phi(st) = 0.161-0.218; P < 0.05). These high levels indicate that these populations of E. fimbriata, despite their highly fragmented landscape, apparently have not suffered loss of genetic variation, suggesting that this particular population is not currently endangered.

  15. Foraging behavior of bee pollinators on the tropical weed Triumfetta semitriloba: flight distance and directionality.

    PubMed

    Collevatti, R G; Schoereder, J H; Campos, L A

    2000-02-01

    We studied flight distance and directionality of bee pollinators on the tropical shrub weed Triumfetta semitriloba Jacq. (Tiliaceae), addressing (1) within- and between-plant movement pattern; (2) distances flown between plants; (3) flight directionality. Flowering plants were distributed in well-delimited clumps, in each of two pasture areas (A1 and A2) and one area of forest gap (A3), in Viçosa, southeastern Brazil. Five solitary bee species, Augochlorella michaelis, Augochloropsis cupreola, Pseudocentron paulistana, Ceratinula sp., Melissodes sexcincta, and two social bee, Plebeia droryana, P. cf. nigriceps were observed. All species moved mainly to the nearest flower on the same individual plant and, in between-plant movements, to the first or second nearest neighbor. All species moved non-randomly, presenting a flight directionality in departures (maintenance of flight direction), but with a high frequency of turn angles. It is suggested that this foraging behavior pattern occurred because of the resource quantity and quality (pollen or nectar), and environmental characteristics such as flower density and resource distribution.

  16. [Variation of the orchid bees community (Hymenoptera: Apidae) in three altered habitats of the Colombian "llano" piedmont].

    PubMed

    Parra-H, Alejandro; Nates-Parra, Guiomar

    2007-01-01

    Orchid bees subsist in vast tropical forest areas because they maintain close relationships with particular plant species in diverse micro-habitats. Based on the relationships among the environment and biological features (food preference, morphologic and ethologic diversity), it is possible to determine habitat quality using the euglossine array. This work proposes the use of this ecological information, in addition to diversity indices, for the evaluation of environmental quality. Fifteen localities in three landscape types (urban, rural and conserved) were sampled in the eastern llanos foothill (Meta, Colombia), between March and December of 2003 using entomological nets, and Cineol and Metil Salicylate as baits. Of the 26 species known to occur in the area, 17 were registered. Eulaema nigrita was the most frequent, while E. speciosa E. bombiformis, Euglossa magnipes, E. cybelia, E. heterosticta, E. singularis and Exaerete frontalis were mostly found in habitats rated "good to acceptable". The vegetation composition and proximity of forest fragments seem to favor some species in disturbed habitats. Relative diversity of bee body shapes and sizes is proportional to habitat quality.

  17. Crop domestication facilitated rapid geographical expansion of a specialist pollinator, the squash bee Peponapis pruinosa

    PubMed Central

    Cane, James H.; Minckley, Robert L.; Danforth, Bryan N.

    2016-01-01

    Squash was first domesticated in Mexico and is now found throughout North America (NA) along with Peponapis pruinosa, a pollen specialist bee species of the squash genus Cucurbita. The origin and spread of squash cultivation is well-studied archaeologically and phylogenetically; however, no study has documented how cultivation of this or any other crop has influenced species in mutualistic interactions. We used molecular markers to reconstruct the demographic range expansion and colonization routes of P. pruinosa from its native range into temperate NA. Populations east of the Rocky Mountains expanded from the wild host plant's range in Mexico and were established by a series of founder events. Eastern North America was most likely colonized from squash bee populations in the present-day continental Midwest USA and not from routes that followed the Gulf and Atlantic coasts from Mexico. Populations of P. pruinosa west of the Rockies spread north from the warm deserts much more recently, showing two genetically differentiated populations with no admixture: one in California and the other one in eastern Great Basin. These bees have repeatedly endured severe bottlenecks as they colonized NA, following human spread of their Cucurbita pollen hosts during the Holocene. PMID:27335417

  18. Within-Colony Variation in the Immunocompetency of Managed and Feral Honey Bees (Apis mellifera L.) in Different Urban Landscapes.

    PubMed

    Appler, R Holden; Frank, Steven D; Tarpy, David R

    2015-10-29

    Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living) and managed (beekeeper-owned) honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and around Raleigh, NC, USA. We then analyzed adult workers using two standard bioassays for insect immune function (encapsulation response and phenoloxidase activity). We found that there was far more variation within colonies for encapsulation response or phenoloxidase activity than among rural to urban landscapes, and we did not observe any significant difference in immune response between feral and managed bees. These findings suggest that social pollinators, like honey bees, may be sufficiently robust or variable in their immune responses to obscure any subtle effects of urbanization. Additional studies of immune physiology and disease ecology of social and solitary bees in urban, suburban, and natural ecosystems will provide insights into the relative effects of changing urban environments on several important factors that influence pollinator productivity and health.

  19. The bee tree of life: a supermatrix approach to apoid phylogeny and biogeography.

    PubMed

    Hedtke, Shannon M; Patiny, Sébastien; Danforth, Bryan N

    2013-07-03

    Bees are the primary pollinators of angiosperms throughout the world. There are more than 16,000 described species, with broad variation in life history traits such as nesting habitat, diet, and social behavior. Despite their importance as pollinators, the evolution of bee biodiversity is understudied: relationships among the seven families of bees remain controversial, and no empirical global-level reconstruction of historical biogeography has been attempted. Morphological studies have generally suggested that the phylogeny of bees is rooted near the family Colletidae, whereas many molecular studies have suggested a root node near (or within) Melittidae. Previous molecular studies have focused on a relatively small sample of taxa (~150 species) and genes (seven at most). Public databases contain an enormous amount of DNA sequence data that has not been comprehensively analysed in the context of bee evolution. We downloaded, aligned, concatenated, and analysed all available protein-coding nuclear gene DNA sequence data in GenBank as of October, 2011. Our matrix consists of 20 genes, with over 17,000 aligned nucleotide sites, for over 1,300 bee and apoid wasp species, representing over two-thirds of bee genera. Whereas the matrix is large in terms of number of genes and taxa, there is a significant amount of missing data: only ~15% of the matrix is populated with data. The placement of the root as well as relationships between Andrenidae and other bee families remain ambiguous, as several alternative maximum-likelihood estimates fall within the statistically credible set. However, we recover strong bootstrap support for relationships among many families and for their monophyly. Ancestral geographic range reconstruction suggests a likely origin of bees in the southern hemisphere, with Melittidae ancestrally located within Africa, and Halictidae, Colletidae, and Apidae within the New World. Our study affirms the monophyly of each bee family, sister-taxa relationships

  20. Flowers and Wild Megachilid Bees Share Microbes.

    PubMed

    McFrederick, Quinn S; Thomas, Jason M; Neff, John L; Vuong, Hoang Q; Russell, Kaleigh A; Hale, Amanda R; Mueller, Ulrich G

    2017-01-01

    Transmission pathways have fundamental influence on microbial symbiont persistence and evolution. For example, the core gut microbiome of honey bees is transmitted socially and via hive surfaces, but some non-core bacteria associated with honey bees are also found on flowers, and these bacteria may therefore be transmitted indirectly between bees via flowers. Here, we test whether multiple flower and wild megachilid bee species share microbes, which would suggest that flowers may act as hubs of microbial transmission. We sampled the microbiomes of flowers (either bagged to exclude bees or open to allow bee visitation), adults, and larvae of seven megachilid bee species and their pollen provisions. We found a Lactobacillus operational taxonomic unit (OTU) in all samples but in the highest relative and absolute abundances in adult and larval bee guts and pollen provisions. The presence of the same bacterial types in open and bagged flowers, pollen provisions, and bees supports the hypothesis that flowers act as hubs of transmission of these bacteria between bees. The presence of bee-associated bacteria in flowers that have not been visited by bees suggests that these bacteria may also be transmitted to flowers via plant surfaces, the air, or minute insect vectors such as thrips. Phylogenetic analyses of nearly full-length 16S rRNA gene sequences indicated that the Lactobacillus OTU dominating in flower- and megachilid-associated microbiomes is monophyletic, and we propose the name Lactobacillus micheneri sp. nov. for this bacterium.

  1. Diverse Microbiota Identified in Whole Intact Nest Chambers of the Red Mason Bee Osmia bicornis (Linnaeus 1758)

    PubMed Central

    Keller, Alexander; Grimmer, Gudrun; Steffan-Dewenter, Ingolf

    2013-01-01

    Microbial activity is known to have profound impact on bee ecology and physiology, both by beneficial and pathogenic effects. Most information about such associations is available for colony-building organisms, and especially the honey bee. There, active manipulations through worker bees result in a restricted diversity of microbes present within the colony environment. Microbial diversity in solitary bee nests remains unstudied, although their larvae face a very different situation compared with social bees by growing up in isolated compartments. Here, we assessed the microbiota present in nests and pre-adults of Osmia bicornis, the red mason bee, by culture-independent pyrosequencing. We found high bacterial diversity not comparable with honey bee colonies. We identified a variety of bacteria potentially with positive or negative interactions for bee larvae. However, most of the other diverse bacteria present in the nests seem to originate from environmental sources through incorporated nest building material and stored pollen. This diversity of microorganisms may cause severe larval mortality and require specific physiological or symbiotic adaptations against microbial threats. They may however also profit from such a diverse environment through gain of mutualistic partners. We conclude that further studies of microbiota interaction in solitary bees will improve the understanding of fitness components and populations dynamics. PMID:24205188

  2. Diverse microbiota identified in whole intact nest chambers of the red mason bee Osmia bicornis (Linnaeus 1758).

    PubMed

    Keller, Alexander; Grimmer, Gudrun; Steffan-Dewenter, Ingolf

    2013-01-01

    Microbial activity is known to have profound impact on bee ecology and physiology, both by beneficial and pathogenic effects. Most information about such associations is available for colony-building organisms, and especially the honey bee. There, active manipulations through worker bees result in a restricted diversity of microbes present within the colony environment. Microbial diversity in solitary bee nests remains unstudied, although their larvae face a very different situation compared with social bees by growing up in isolated compartments. Here, we assessed the microbiota present in nests and pre-adults of Osmia bicornis, the red mason bee, by culture-independent pyrosequencing. We found high bacterial diversity not comparable with honey bee colonies. We identified a variety of bacteria potentially with positive or negative interactions for bee larvae. However, most of the other diverse bacteria present in the nests seem to originate from environmental sources through incorporated nest building material and stored pollen. This diversity of microorganisms may cause severe larval mortality and require specific physiological or symbiotic adaptations against microbial threats. They may however also profit from such a diverse environment through gain of mutualistic partners. We conclude that further studies of microbiota interaction in solitary bees will improve the understanding of fitness components and populations dynamics.

  3. Response of wild bees (Hymenoptera: Apoidea: Anthophila) to surrounding land cover in Wisconsin pickling cucumber.

    PubMed

    Lowenstein, D M; Huseth, A S; Groves, R L

    2012-06-01

    Cucumber (Cucumis sativus L.) is among the plants highly dependent on insect-mediated pollination, but little is known about its unmanaged pollinators. Both domestic and wild bee populations in central Wisconsin pickling cucumber fields were assessed using a combination of pan trapping and floral observations before and during bloom. Together with land cover analyses extending 2,000 m from field centers, the relationship of land cover components and bee abundance and diversity were examined. Over a 2-yr sample interval distributed among 18 experimental sites, 3,185 wild bees were collected representing >60 species. A positive association was found between both noncrop and herbaceous areas with bee abundance and diversity only during bloom. Response of bee abundance and diversity to land cover was strongest at larger buffers presumably because of the heterogeneous nature of the landscape and connectivity between crop and noncrop areas. These results are consistent with previous research that has found a weak response of wild bees to surrounding vegetation in moderately fragmented areas. A diverse community of wild bees is present within the fields of a commercial cucumber system, and there is evidence of floral visitation by unmanaged bees. This evidence emphasizes the importance of wild pollinators in fragmented landscapes and the need for additional research to investigate the effectiveness of individual species in pollen deposition.

  4. The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions

    PubMed Central

    Kwong, Waldan K.; McFrederick, Quinn; Anderson, Kirk E.; Barribeau, Seth Michael; Chandler, James Angus; Cornman, R. Scott; Dainat, Jacques; Doublet, Vincent; Emery, Olivier; Evans, Jay D.; Farinelli, Laurent; Flenniken, Michelle L.; Granberg, Fredrik; Grasis, Juris A.; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G.; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J.; Powell, Eli; Sadd, Ben M.; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Schwarz, Ryan S.; vanEngelsdorp, Dennis

    2016-01-01

    ABSTRACT As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health. PMID:27118586

  5. The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions

    USGS Publications Warehouse

    Engel, Philipp; Kwong, Waldan K.; McFrederick, Quinn; Anderson, Kirk E.; Barribeau, Seth Michael; Chandler, James Angus; Cornman, Robert S.; Dainat, Jacques; de Miranda, Joachim R.; Doublet, Vincent; Emery, Olivier; Evans, Jay D.; Farinelli, Laurent; Flenniken, Michelle L.; Granberg, Fredrik; Grasis, Juris A.; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G.; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J.; Powell, Eli; Sadd, Ben M.; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Song, Se Jin; Schwarz, Ryan S.; vanEngelsdorp, Dennis; Dainat, Benjamin

    2016-01-01

    As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.

  6. The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions.

    PubMed

    Engel, Philipp; Kwong, Waldan K; McFrederick, Quinn; Anderson, Kirk E; Barribeau, Seth Michael; Chandler, James Angus; Cornman, R Scott; Dainat, Jacques; de Miranda, Joachim R; Doublet, Vincent; Emery, Olivier; Evans, Jay D; Farinelli, Laurent; Flenniken, Michelle L; Granberg, Fredrik; Grasis, Juris A; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J; Powell, Eli; Sadd, Ben M; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Song, Se Jin; Schwarz, Ryan S; vanEngelsdorp, Dennis; Dainat, Benjamin

    2016-04-26

    As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health. Copyright © 2016 Engel et al.

  7. Way-finding in displaced clock-shifted bees proves bees use a cognitive map.

    PubMed

    Cheeseman, James F; Millar, Craig D; Greggers, Uwe; Lehmann, Konstantin; Pawley, Matthew D M; Gallistel, Charles R; Warman, Guy R; Menzel, Randolf

    2014-06-17

    Mammals navigate by means of a metric cognitive map. Insects, most notably bees and ants, are also impressive navigators. The question whether they, too, have a metric cognitive map is important to cognitive science and neuroscience. Experimentally captured and displaced bees often depart from the release site in the compass direction they were bent on before their capture, even though this no longer heads them toward their goal. When they discover their error, however, the bees set off more or less directly toward their goal. This ability to orient toward a goal from an arbitrary point in the familiar environment is evidence that they have an integrated metric map of the experienced environment. We report a test of an alternative hypothesis, which is that all the bees have in memory is a collection of snapshots that enable them to recognize different landmarks and, associated with each such snapshot, a sun-compass-referenced home vector derived from dead reckoning done before and after previous visits to the landmark. We show that a large shift in the sun-compass rapidly induced by general anesthesia does not alter the accuracy or speed of the homeward-oriented flight made after the bees discover the error in their initial postrelease flight. This result rules out the sun-referenced home-vector hypothesis, further strengthening the now extensive evidence for a metric cognitive map in bees.

  8. Way-finding in displaced clock-shifted bees proves bees use a cognitive map

    PubMed Central

    Cheeseman, James F.; Millar, Craig D.; Greggers, Uwe; Lehmann, Konstantin; Pawley, Matthew D. M.; Gallistel, Charles R.; Warman, Guy R.; Menzel, Randolf

    2014-01-01

    Mammals navigate by means of a metric cognitive map. Insects, most notably bees and ants, are also impressive navigators. The question whether they, too, have a metric cognitive map is important to cognitive science and neuroscience. Experimentally captured and displaced bees often depart from the release site in the compass direction they were bent on before their capture, even though this no longer heads them toward their goal. When they discover their error, however, the bees set off more or less directly toward their goal. This ability to orient toward a goal from an arbitrary point in the familiar environment is evidence that they have an integrated metric map of the experienced environment. We report a test of an alternative hypothesis, which is that all the bees have in memory is a collection of snapshots that enable them to recognize different landmarks and, associated with each such snapshot, a sun-compass–referenced home vector derived from dead reckoning done before and after previous visits to the landmark. We show that a large shift in the sun-compass rapidly induced by general anesthesia does not alter the accuracy or speed of the homeward-oriented flight made after the bees discover the error in their initial postrelease flight. This result rules out the sun-referenced home-vector hypothesis, further strengthening the now extensive evidence for a metric cognitive map in bees. PMID:24889633

  9. Polychlorinated biphenyls in honey bees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morse, R.A.; Culliney, T.W.; Gutenmann, W.H.

    Honey bees (Apis mellifera L.) may traverse a radius of several miles from their hives and contact innumerable surfaces during their collection of nectar, pollen, propolis and water. In the process, they may become contaminated with surface constituents which are indicative of the type of environmental pollution in their particular foraging area. Honey has also been analyzed as a possible indicator of heavy metal pollution. Insecticides used in the vicinity of bee hives have been found in bees and honey. It has been recently reported that appreciable concentrations of polychlorinated biphenyls (PCBs) have been found in honey bees sampled throughoutmore » Connecticut. In the work reported here, an analytical survey was conducted on PCBs in honey bees, honey, propolis and related samples in several states to learn the extent of contamination and possible sources.« less

  10. Assessing Insecticide Hazard to Bumble Bees Foraging on Flowering Weeds in Treated Lawns

    PubMed Central

    Larson, Jonathan L.; Redmond, Carl T.; Potter, Daniel A.

    2013-01-01

    Maintaining bee-friendly habitats in cities and suburbs can help conserve the vital pollination services of declining bee populations. Despite label precautions not to apply them to blooming plants, neonicotinoids and other residual systemic insecticides may be applied for preventive control of lawn insect pests when spring-flowering weeds are present. Dietary exposure to neonicotinoids adversely affects bees, but the extent of hazard from field usage is controversial. We exposed colonies of the bumble bee Bombus impatiens to turf with blooming white clover that had been treated with clothianidin, a neonicotinoid, or with chlorantraniliprole, the first anthranilic diamide labeled for use on lawns. The sprays were applied at label rate and lightly irrigated. After residues had dried, colonies were confined to forage for six days, and then moved to a non-treated rural site to openly forage and develop. Colonies exposed to clothianidin-treated weedy turf had delayed weight gain and produced no new queens whereas those exposed to chlorantraniliprole-treated plots developed normally compared with controls. Neither bumble bees nor honey bees avoided foraging on treated white clover in open plots. Nectar from clover blooms directly contaminated by spray residues contained 171±44 ppb clothianidin. Notably, neither insecticide adversely impacted bee colonies confined on the treated turf after it had been mown to remove clover blooms present at the time of treatment, and new blooms had formed. Our results validate EPA label precautionary statements not to apply neonicotinoids to blooming nectar-producing plants if bees may visit the treatment area. Whatever systemic hazard through lawn weeds they may pose appears transitory, however, and direct hazard can be mitigated by adhering to label precautions, or if blooms inadvertently are contaminated, by mowing to remove them. Chlorantraniliprole usage on lawns appears non-hazardous to bumble bees. PMID:23776667

  11. Assessing insecticide hazard to bumble bees foraging on flowering weeds in treated lawns.

    PubMed

    Larson, Jonathan L; Redmond, Carl T; Potter, Daniel A

    2013-01-01

    Maintaining bee-friendly habitats in cities and suburbs can help conserve the vital pollination services of declining bee populations. Despite label precautions not to apply them to blooming plants, neonicotinoids and other residual systemic insecticides may be applied for preventive control of lawn insect pests when spring-flowering weeds are present. Dietary exposure to neonicotinoids adversely affects bees, but the extent of hazard from field usage is controversial. We exposed colonies of the bumble bee Bombus impatiens to turf with blooming white clover that had been treated with clothianidin, a neonicotinoid, or with chlorantraniliprole, the first anthranilic diamide labeled for use on lawns. The sprays were applied at label rate and lightly irrigated. After residues had dried, colonies were confined to forage for six days, and then moved to a non-treated rural site to openly forage and develop. Colonies exposed to clothianidin-treated weedy turf had delayed weight gain and produced no new queens whereas those exposed to chlorantraniliprole-treated plots developed normally compared with controls. Neither bumble bees nor honey bees avoided foraging on treated white clover in open plots. Nectar from clover blooms directly contaminated by spray residues contained 171±44 ppb clothianidin. Notably, neither insecticide adversely impacted bee colonies confined on the treated turf after it had been mown to remove clover blooms present at the time of treatment, and new blooms had formed. Our results validate EPA label precautionary statements not to apply neonicotinoids to blooming nectar-producing plants if bees may visit the treatment area. Whatever systemic hazard through lawn weeds they may pose appears transitory, however, and direct hazard can be mitigated by adhering to label precautions, or if blooms inadvertently are contaminated, by mowing to remove them. Chlorantraniliprole usage on lawns appears non-hazardous to bumble bees.

  12. Population trends of native Hawaiian forest birds, 1976–2008: the data and statistical analyses

    USGS Publications Warehouse

    Camp, Richard J.; Gorresen, P. Marcos; Pratt, Thane K.; Woodworth, Bethany L.

    2009-01-01

    The Hawaii Forest Bird Interagency Database Project has produced a centralized database of forest bird survey data collected in Hawai`i since the mid-1970s. The database contains over 1.1 million bird observation records of 90 species from almost 600 surveys on the main Hawaiian  Islands—a dataset including nearly all surveys from that period. The primary objective has been to determine the status and trends of native Hawaiian forest birds derived from this comprehensive dataset. We generated species-specific density estimates from each survey and tested for changes in population densities over the longest possible temporal period. Although this cumulative data set seems enormous and represents the best available information on status of Hawaiian forest birds, detecting meaningful population distribution, density, and trends for forest birds in Hawai`i has been difficult. These population parameters are best derived from long-term, large-scale, standardized monitoring programs. The basis for long-term population monitoring in Hawai`i was established by the Hawaii Forest Bird Survey of 1976-1983 (Scott et al. 1986). Since then, however, only key areas have been resurveyed, primarily to monitor rare species. The majority of surveys since the early 1980s have been conducted by numerous, independent programs, resulting in some inconsistencies in methodology and sampling that in some cases has been intermittent and usually at limited scale (temporally or spatially). Thus, despite the consolidation of data into a centralized database, our understanding of population patterns is rather limited, especially at the regional and landscape scales. To rectify their deficiency, we present a framework to improve the understanding of forest bird trends in Hawai`i through an overarching monitoring design that allocates sampling at appropriate regional and temporal scales. Despite the limitations of the current monitoring effort, important generalities stand out vividly from

  13. From silkworms to bees: Diseases of beneficial insects

    USDA-ARS?s Scientific Manuscript database

    The diseases of the silkworm (Bombyx mori) and managed bees, including the honey bee (Apis mellifera), bumbles bees (Bombus spp.), the alfalfa leafcutting bee (Megachile rotundata), and mason bees (Osmia spp.) are reviewed, with diagnostic descriptions and a summary of control methods for production...

  14. Metatranscriptomic analyses of honey bee colonies.

    PubMed

    Tozkar, Cansu Ö; Kence, Meral; Kence, Aykut; Huang, Qiang; Evans, Jay D

    2015-01-01

    Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World's most important centers of apiculture, harboring five subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9-10 million reads per library) remained. These were then mapped to a curated set of public sequences containing ca. Sixty megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp.), neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae), Varroa destructor-1 virus, Sacbrood virus, and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus), Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly). We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees.

  15. Resource Effects on Solitary Bee Reproduction in a Managed Crop Pollination System.

    PubMed

    Pitts-Singer, Theresa L

    2015-08-01

    Population density may affect solitary bee maternal resource allocation. The number of Megachile rotundata (F.), alfalfa leafcutting bee, females released for seed production of Medicago sativa L., alfalfa, may limit flower availability for nest provisioning. In turn, pollinator abundance also may affect crop yield. The M. sativa pollination system presents an opportunity to test for effects of density dependence and maternal manipulation on M. rotundata reproduction. A multiyear study was performed on M. sativa fields upon which M. rotundata densities were altered to induce low, medium, and high density situations. Numbers of adult bees and open flowers were recorded weekly; bee reproduction variables were collected once. Fields varied in plant performance for each site and year, and the intended bee densities were not realized. Therefore, the variable density index (DI) was derived to describe the number of female bees per area of flowers over the study period. As DI increased, percentages of pollinated flowers, established females, and healthy brood significantly increased, and the number of pollinated flowers per female and of dead or diseased brood significantly decreased. Sex ratio was significantly more female biased as DI increased. Overwintered offspring weights were similar regardless of DI, but significantly differed by year for both sexes, and for males also by field and year × field interaction. Overall, resource limitation was not found in this field study. Other density-dependent factors may have induced a bee dispersal response soon after bees were released in the fields that circumvented the need for, or impact of, maternal manipulation. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by a US Government employee and is in the public domain in the US.

  16. Survey of bumble bee (Bombus) pathogens and parasites in Illinois and selected areas of northern California and southern Oregon.

    PubMed

    Kissinger, Christina N; Cameron, Sydney A; Thorp, Robbin W; White, Brendan; Solter, Leellen F

    2011-07-01

    Pathogens have been implicated as potential factors in the recent decline of some North American bumble bee (Bombus) species, but little information has been reported about the natural enemy complex of bumble bees in the United States. We targeted bumble bee populations in a state-wide survey in Illinois and several sites in California and Oregon where declines have been reported to determine presence and prevalence of natural enemies. Based on our observations, most parasites and pathogens appear to be widespread generalists among bumble bee species, but susceptibility to some natural enemies appeared to vary. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. [Effect of landscape change on the structure of the sting-less bee community (Hymenoptera: Apidae) in Meta, Colombia].

    PubMed

    Nates-Parra, Guiomar; Palacios, Eliana; Parra-H, Alejandro

    2008-09-01

    Stingless bees represent one of the most diversified components of the natural Apoidea fauna of pollinators in the tropics. They use diverse kinds of substrates and inhabit varied habitats. Some species are typical for some natural either artificial place. The landscape alteration were this group of bees nests, has and important impact on the natural composition of its community structure, fact which is reflected in the nest density. We analyzed the structure composition of the stingless bees' community in three environments in the Colombian Ilanos piedmont, an important region that represents the transition between Andean ecosystems and a savannah that is seriously threatened by cattle practices. We made systematic samples in secondary forest, agro-ecosystems and urban areas, recording the presence of 204 nests from 11 genera (24 species). The nest density per landscape was heterogeneous and never higher than 16 nests/Ha. We observed two nesting patterns and an effect of sampling criterion on the measured biodiversity.

  18. Population Dynamics of Southern Pine Beetle in Forest Landscapes

    Treesearch

    Andrew Birt

    2011-01-01

    Southern pine beetle (SPB) is an important pest of Southeastern United States pine forests. Periodic regional outbreaks are characterized by localized areas of tree mortality (infestations) surrounded by areas with little or no damage. Ultimately, this spatiotemporal pattern of tree mortality is driven by the dynamics of SPB populations—more specifically, by rates of...

  19. Changes in snag populations on National Forest System lands in Arizona, 1990s to 2000s

    Treesearch

    Joseph L. Ganey; Christopher Witt

    2017-01-01

    Snags receive special management attention as important components of forest systems. We used data from the US Department of Agriculture (USDA) Forest Service Forest Inventory and Analysis Program, collected during two recent time periods (1995 to 1999 and 2001 to 2010), to evaluate trends in snag populations in two forest types in Arizona. Densities of snags ≥4 in....

  20. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.).

    PubMed

    Fleming, James C; Schmehl, Daniel R; Ellis, James D

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts.

  1. Chemical Ecology of Stingless Bees.

    PubMed

    Leonhardt, Sara Diana

    2017-04-01

    Stingless bees (Hymenoptera, Apidae: Meliponini) represent a highly diverse group of social bees confined to the world's tropics and subtropics. They show a striking diversity of structural and behavioral adaptations and are important pollinators of tropical plants. Despite their diversity and functional importance, their ecology, and especially chemical ecology, has received relatively little attention, particularly compared to their relative the honeybee, Apis mellifera. Here, I review various aspects of the chemical ecology of stingless bees, from communication over resource allocation to defense. I list examples in which functions of specific compounds (or compound groups) have been demonstrated by behavioral experiments, and show that many aspects (e.g., queen-worker interactions, host-parasite interactions, neuronal processing etc.) remain little studied. This review further reveals that the vast majority of studies on the chemical ecology of stingless bees have been conducted in the New World, whereas studies on Old World stingless bees are still comparatively rare. Given the diversity of species, behaviors and, apparently, chemical compounds used, I suggest that stingless bees provide an ideal subject for studying how functional context and the need for species specificity may interact to shape pheromone diversification in social insects.

  2. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems

    PubMed Central

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity. PMID:26765140

  3. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems.

    PubMed

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.

  4. Mitochondrial DNA diversity of honey bees (Apis mellifera) from unmanaged colonies and swarms in the United States.

    PubMed

    Magnus, Roxane M; Tripodi, Amber D; Szalanski, Allen L

    2014-06-01

    To study the genetic diversity of honey bees (Apis mellifera L.) from unmanaged colonies in the United States, we sequenced a portion of the mitochondrial DNA COI-COII region. From the 530 to 1,230 bp amplicon, we observed 23 haplotypes from 247 samples collected from 12 states, representing three of the four A. mellifera lineages known to have been imported into the United States (C, M, and O). Six of the 13 C lineage haplotypes were not found in previous queen breeder studies in the United States. The O lineage accounted for 9% of unmanaged colonies which have not yet been reported in queen breeder studies. The M lineage accounted for a larger portion of unmanaged samples (7%) than queen breeder samples (3%). Based on our mitochondrial DNA data, the genetic diversity of unmanaged honey bees in the United States differs significantly from that of queen breeder populations (p < 0.00001). The detection of genetically distinct maternal lineages of unmanaged honey bees suggests that these haplotypes may have existed outside the managed honey bee population for a long period.

  5. Phenological Variation Within and Among Populations of Plathymenia reticulata in Brazilian Cerrado, the Atlantic Forest and Transitional Sites

    PubMed Central

    GOULART, MAÍRA FIGUEIREDO; LEMOS FILHO, JOSÉ PIRES; LOVATO, MARIA BERNADETE

    2005-01-01

    • Background and Aims Plathymenia reticulata (Leguminosae) is a Brazilian tree that occurs in two biomes: Cerrado, a woody savanna vegetation, and the Atlantic Forest, a tropical forest. In this study, phenological patterns and their variability within and among populations located in these biomes and in transitional zones between them were assessed. • Methods During a 15-month period, individuals from two populations in Cerrado, two in the Atlantic Forest, and six in transitional zones (three in a cerrado-like environment and three in forest fragments) were evaluated in Minas Gerais State, Brazil. The individuals were evaluated monthly according to the proportion of the canopy in each vegetative phenophase (leaf fall, leaf flush and mature leaves) and each reproductive phenophase (floral buds, flowers, immature fruits and mature fruit/seed dispersal). In order to assess the phenological variability within and among populations, habitats and biomes, the Shannon–Wiener diversity index, the Morisita–Horn similarity index and genetic population approach of partitioning diversity were used. • Key Results Populations of P. reticulata, in general, showed similar phenology; the main differences were related to leaf fall, a process that starts months earlier in the Cerrado than in transitional sites, and even later in forest areas. Considerable synchrony was observed for reproductive phenology among populations and between biomes. Most phenological diversity was due to differences among individuals within populations. • Conclusion In spite of environmental differences, P. reticulata from the Atlantic Forest and Cerrado showed similar phenological behavior with only about 10 % of the total diversity being attributed to differences between biomes. PMID:15972799

  6. Clearance of ingested neonicotinoid pesticide (imidacloprid) in honey bees (Apis mellifera) and bumblebees (Bombus terrestris).

    PubMed

    Cresswell, James E; Robert, François-Xavier L; Florance, Hannah; Smirnoff, Nicholas

    2014-02-01

    Bees in agricultural landscapes are exposed to dietary pesticides such as imidacloprid when they feed from treated mass-flowering crops. Concern about the consequent impact on bees makes it important to understand their resilience. In the laboratory, the authors therefore fed adult worker bees on dosed syrup (125 μg L(-1) of imidacloprid, or 98 μg kg(-1)) either continuously or as a pulsed exposure and measured their behaviour (feeding and locomotory activity) and whole-body residues. On dosed syrup, honey bees maintained much lower bodily levels of imidacloprid than bumblebees (<0.2 ng versus 2.4 ng of imidacloprid per bee). Dietary imidacloprid did not affect the behaviour of honey bees, but it reduced feeding and locomotory activity in bumblebees. After the pulsed exposure, bumblebees cleared bodily imidacloprid after 48 h and recovered behaviourally. The differential behavioural resilience of the two species can be attributed to the observed differential in bodily residues. The ability of bumblebees to recover may be environmentally relevant in wild populations that face transitory exposures from the pulsed blooming of mass-flowering crops. © 2013 Society of Chemical Industry.

  7. Varroa destructor parasitism reduces hemocyte concentrations and prophenol oxidase gene expression in bees from two populations.

    PubMed

    Koleoglu, Gun; Goodwin, Paul H; Reyes-Quintana, Mariana; Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto

    2018-04-01

    Circulating hemocytes are responsible for defensive and healing mechanisms in the honey bee, Apis mellifera. Parasitism by the mite Varroa destructor and injection of V. destructor homogenate in buffer, but not buffer injection, showed similar reductions in total hemocyte concentrations in both Africanized and European adult honey bees. This indicated that compounds in V. destructor homogenate can have similar effects as V. destructor parasitism and that the response is not solely due to wounding. Samples from honey bees with different hemocyte concentrations were compared for the expression patterns of hemolectin (AmHml), prophenol oxidase (AmPpo), and class C scavenger receptor (AmSRC-C). Of the genes tested, only the expression of AmPpo correlated well with hemocyte counts for all the treatments, indicating that melanization is associated with those responses. Thus, the expression of AmPpo might be a suitable biomarker for hemocyte counts as part of cellular defenses against injection of buffer or mite compounds and V. destructor parasitism and perhaps other conditions involving healing and immunity.

  8. Dynamic microbiome evolution in social bees

    PubMed Central

    Kwong, Waldan K.; Medina, Luis A.; Koch, Hauke; Sing, Kong-Wah; Soh, Eunice Jia Yu; Ascher, John S.; Jaffé, Rodolfo; Moran, Nancy A.

    2017-01-01

    The highly social (eusocial) corbiculate bees, comprising the honey bees, bumble bees, and stingless bees, are ubiquitous insect pollinators that fulfill critical roles in ecosystem services and human agriculture. Here, we conduct wide sampling across the phylogeny of these corbiculate bees and reveal a dynamic evolutionary history behind their microbiota, marked by multiple gains and losses of gut associates, the presence of generalist as well as host-specific strains, and patterns of diversification driven, in part, by host ecology (for example, colony size). Across four continents, we found that different host species have distinct gut communities, largely independent of geography or sympatry. Nonetheless, their microbiota has a shared heritage: The emergence of the eusocial corbiculate bees from solitary ancestors appears to coincide with the acquisition of five core gut bacterial lineages, supporting the hypothesis that host sociality facilitates the development and maintenance of specialized microbiomes. PMID:28435856

  9. Effects of the neonicotinoid pesticide thiamethoxam at field-realistic levels on microcolonies of Bombus terrestris worker bumble bees.

    PubMed

    Laycock, Ian; Cotterell, Katie C; O'Shea-Wheller, Thomas A; Cresswell, James E

    2014-02-01

    Neonicotinoid pesticides are currently implicated in the decline of wild bee populations. Bumble bees, Bombus spp., are important wild pollinators that are detrimentally affected by ingestion of neonicotinoid residues. To date, imidacloprid has been the major focus of study into the effects of neonicotinoids on bumble bee health, but wild populations are increasingly exposed to alternative neonicotinoids such as thiamethoxam. To investigate whether environmentally realistic levels of thiamethoxam affect bumble bee performance over a realistic exposure period, we exposed queenless microcolonies of Bombus terrestris L. workers to a wide range of dosages up to 98 μgkg(-1) in dietary syrup for 17 days. Results showed that bumble bee workers survived fewer days when presented with syrup dosed at 98 μg thiamethoxamkg(-1), while production of brood (eggs and larvae) and consumption of syrup and pollen in microcolonies were significantly reduced by thiamethoxam only at the two highest concentrations (39, 98 μgkg(-1)). In contrast, we found no detectable effect of thiamethoxam at levels typically found in the nectars of treated crops (between 1 and 11 μgkg(-1)). By comparison with published data, we demonstrate that during an exposure to field-realistic concentrations lasting approximately two weeks, brood production in worker bumble bees is more sensitive to imidacloprid than thiamethoxam. We speculate that differential sensitivity arises because imidacloprid produces a stronger repression of feeding in bumble bees than thiamethoxam, which imposes a greater nutrient limitation on production of brood. © 2013 Published by Elsevier Inc.

  10. Metatranscriptomic analyses of honey bee colonies

    PubMed Central

    Tozkar, Cansu Ö.; Kence, Meral; Kence, Aykut; Huang, Qiang; Evans, Jay D.

    2015-01-01

    Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World's most important centers of apiculture, harboring five subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9–10 million reads per library) remained. These were then mapped to a curated set of public sequences containing ca. Sixty megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp.), neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae), Varroa destructor-1 virus, Sacbrood virus, and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus), Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly). We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees. PMID:25852743

  11. Assessing forest-pathogen interactions at the population level [Chapter 3

    Treesearch

    Bryce Richardson; Ned B. Klopfenstein; Tobin L. Peever

    2005-01-01

    During most of the past century, forest pathologists were limited to the study of pathogen phenotypes, vegetative compatibility, and mating reactions. These studies provided important insights in fungal taxonomy and phylogenetics, reproductive biology, and population genetics. However, these aspects are insufficiently variable or technically unfeasible for making...

  12. Mapping floral resources for honey bees in New Zealand at the catchment scale.

    PubMed

    Ausseil, Anne-Gaelle E; Dymond, John R; Newstrom, Linda

    2018-03-12

    Honey bees require nectar and pollen from flowers: nectar for energy and pollen for growth. The demand for nectar and pollen varies during the year, with more pollen needed in spring for colony population growth and more nectar needed in summer to sustain the maximum colony size and collect surplus nectar stores for winter. Sufficient bee forage is therefore necessary to ensure a healthy bee colony. Land-use changes can reduce the availability of floral resources suitable for bees, thereby increasing the susceptibility of bees to other stressors such as disease and pesticides. In contrast, land-based management decisions to protect or plant bee forage can enhance pollen and nectar supply to bees while meeting other goals such as riparian planting for water-quality improvement. Commercial demand for honey can also put pressure on floral resources through over-crowding of hives. To help understand and manage floral resources for bees, we developed a spatial model for mapping monthly nectar and pollen production from maps of land cover. Based on monthly estimated production data we mapped potential monthly supply of nectar and pollen to a given apiary location in the landscape. This is done by summing the total production within the foraging range of the apiary while subtracting the estimated nectar converted to energy for collection. Ratios of estimated supply over theoretical hive demand may then be used to infer a potential landscape carrying capacity to sustain hives. This model framework is quantitative and spatial, utilizing estimated flight energy costs for nectar foraging. It can contribute to management decisions such as where apiaries could be placed in the landscape depending on floral resources and where nectar limited areas may be located. It can contribute to planning areas for bee protection or planting such as in riparian vegetation. This would aid managed bee health, wild pollinator protection, and honey production. We demonstrate the methods in a

  13. Long foraging distances impose high costs on offspring production in solitary bees.

    PubMed

    Zurbuchen, Antonia; Cheesman, Stephanie; Klaiber, Jeannine; Müller, Andreas; Hein, Silke; Dorn, Silvia

    2010-05-01

    1. Solitary bees are central place foragers returning to their nests several times a day with pollen and nectar to provision their brood cells. They are especially susceptible to landscape changes that lead to an increased spatial separation of suitable nesting sites and flower rich host plant stands. While knowledge of bee foraging ranges is currently growing, quantitative data on the costs of foraging flights are very scarce, although such data are crucial to understand bee population dynamics. 2. In this study, the impact of increased foraging distance on the duration of foraging bouts and on the number of brood cells provisioned per time unit was experimentally quantified in the two pollen specialist solitary bee species Hoplitis adunca and Chelostoma rapunculi. Females nesting at different sites foraged under the same environmental conditions on a single large and movable flowering host plant patch in an otherwise host plant free landscape. 3. The number of brood cells provisioned per time unit by H. adunca was found to decrease by 23%, 31% and 26% with an increase in the foraging distance by 150, 200 and 300 m, respectively. The number of brood cells provisioned by C. rapunculi decreased by 46% and 36% with an increase in the foraging distance by 500 and 600 m, respectively. 4. Contrary to expectation, a widely scattered arrangement of host plants did not result in longer mean duration of a foraging bout in H. adunca compared to a highly aggregated arrangement, which might be due to a reduced flight directionality combined with a high rate of revisitation of already depleted flowers in the aggregated plant arrangement or by a stronger competition and disturbance by other flower visitors. 5. The results of this study clearly indicate that a close neighbourhood of suitable nesting and foraging habitats is crucial for population persistence and thus conservation of endangered solitary bee species.

  14. Antiviral Defense Mechanisms in Honey Bees

    PubMed Central

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  15. Possible complication of bee stings and a review of the cardiac effects of bee stings.

    PubMed

    Gupta, Prabha Nini; Kumar, B Krishna; Velappan, Praveen; Sudheer, M D

    2016-11-01

    We report the case of a patient who, ∼3 weeks after multiple bee stings, developed a prolonged heart block, syncope and cardiac arrest. This required a temporary pacemaker to be implanted, which was later replaced with a permanent pacemaker. An ECG taken following surgery for a fractured humerus 6 years earlier was reportedly normal. The patient had been a rubber tapper who walked ∼1.5 km/day, but after the bee attack he was no longer able to walk or get up from the bed without experiencing syncope. We presume that the bee venom caused these signs, as well as the resulting heart block, which persisted long after the bee sting had subsided. Since his coronary angiogram was normal we believe he had a Kounis type involvement of the cardiovascular system, namely profound coronary spasm that caused complete heart block that did not recover. Another probable reason for the complete heart block could have been that the bees had consumed the pollen of a rhododendron flower, causing 'grayanotoxin' poisoning and severe heart block. The other effects of bee sting are discussed briefly. 2016 BMJ Publishing Group Ltd.

  16. Beekeeping practices and geographic distance, not land use, drive gene flow across tropical bees.

    PubMed

    Jaffé, Rodolfo; Pope, Nathaniel; Acosta, André L; Alves, Denise A; Arias, Maria C; De la Rúa, Pilar; Francisco, Flávio O; Giannini, Tereza C; González-Chaves, Adrian; Imperatriz-Fonseca, Vera L; Tavares, Mara G; Jha, Shalene; Carvalheiro, Luísa G

    2016-11-01

    Across the globe, wild bees are threatened by ongoing natural habitat loss, risking the maintenance of plant biodiversity and agricultural production. Despite the ecological and economic importance of wild bees and the fact that several species are now managed for pollination services worldwide, little is known about how land use and beekeeping practices jointly influence gene flow. Using stingless bees as a model system, containing wild and managed species that are presumed to be particularly susceptible to habitat degradation, here we examine the main drivers of tropical bee gene flow. We employ a novel landscape genetic approach to analyse data from 135 populations of 17 stingless bee species distributed across diverse tropical biomes within the Americas. Our work has important methodological implications, as we illustrate how a maximum-likelihood approach can be applied in a meta-analysis framework to account for multiple factors, and weight estimates by sample size. In contrast to previously held beliefs, gene flow was not related to body size or deforestation, and isolation by geographic distance (IBD) was significantly affected by management, with managed species exhibiting a weaker IBD than wild ones. Our study thus reveals the critical importance of beekeeping practices in shaping the patterns of genetic differentiation across bee species. Additionally, our results show that many stingless bee species maintain high gene flow across heterogeneous landscapes. We suggest that future efforts to preserve wild tropical bees should focus on regulating beekeeping practices to maintain natural gene flow and enhancing pollinator-friendly habitats, prioritizing species showing a limited dispersal ability. © 2016 John Wiley & Sons Ltd.

  17. Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee.

    PubMed

    Bourgeois, A Lelania; Rinderer, Thomas E; Beaman, Lorraine D; Danka, Robert G

    2010-01-01

    The incidence of nosemosis has increased in recent years due to an emerging infestation of Nosema ceranae in managed honey bee populations in much of the world. A real-time PCR assay was developed to facilitate detection and quantification of both Nosema apis and N. ceranae in both single bee and pooled samples. The assay is a multiplexed reaction in which both species are detected and quantified in a single reaction. The assay is highly sensitive and can detect single copies of the target sequence. Real-time PCR results were calibrated to spore counts generated by standard microscopy procedures. The assay was used to assess bees from commercial apiaries sampled in November 2008 and March 2009. Bees from each colony were pooled. A large amount of variation among colonies was evident, signifying the need to examine large numbers of colonies. Due to sampling constraints, a subset of colonies (from five apiaries) was sampled in both seasons. In November, N. apis levels were 1212+/-148 spores/bee and N. ceranae levels were 51,073+/-31,155 spores/bee. In March, no N. apis was detected, N. ceranae levels were 11,824+/-6304 spores/bee. Changes in N. ceranae levels were evident among apiaries, some increasing and other decreasing. This demonstrates the need for thorough sampling of apiaries and the need for a rapid test for both detection and quantification of both Nosema spp. This assay provides the opportunity for detailed study of disease resistance, infection kinetics, and improvement of disease management practices for honey bees.

  18. THE BEE AND RADIOACTIVITY (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordau, C.-G.

    A brief resume is given of research done on the bee using radioisotopes. The labeling of the bee with radioactive gold, the radioresistance of the bee, the structure of the hive, and the food exchanges within the hive are the topics discussed. (J.S.R.)

  19. Bees prefer foods containing neonicotinoid pesticides

    NASA Astrophysics Data System (ADS)

    Kessler, Sébastien C.; Tiedeken, Erin Jo; Simcock, Kerry L.; Derveau, Sophie; Mitchell, Jessica; Softley, Samantha; Stout, Jane C.; Wright, Geraldine A.

    2015-05-01

    The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.

  20. Bees prefer foods containing neonicotinoid pesticides.

    PubMed

    Kessler, Sébastien; Tiedeken, Erin Jo; Simcock, Kerry L; Derveau, Sophie; Mitchell, Jessica; Softley, Samantha; Stout, Jane C; Wright, Geraldine A

    2015-05-07

    The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.

  1. [Specific features of nesting bird populations in forest-meadow-field landscapes of Meshchovsk Opolye reflect the diversity of their biotope connections].

    PubMed

    Kut'in, S D; Konstantinov, V M

    2008-01-01

    Studies on specific features of nesting bird populations in patchy landscapes were performed in Meshchovsk Opolye, Kaluga Region, from 1981 to 1990. Indices of similarity between the avifaunas of agricultural fields, lowland bogs, and small-leaved forests markedly differed from parameters of their population density in rank and value. In the series of biotopes differing in the relative amount of woodland, from central areas of small-leaved forests to forest margins and then to forest islands gradually decreasing in size, the birds segregated into two distinct groups, one characteristic of forest margins and large forest islands and the other characteristic of small and very small forest islands. Specific features of bird density distribution in forest-meadow-field landscapes of Meshchovsk Opolye reflected heterogeneity of their populations manifested in diverse connections with nesting biotopes.

  2. Landscape Simplification Constrains Adult Size in a Native Ground-Nesting Bee

    PubMed Central

    Renauld, Miles; Hutchinson, Alena; Loeb, Gregory; Poveda, Katja; Connelly, Heather

    2016-01-01

    Bees provide critical pollination services to 87% of angiosperm plants; however, the reliability of these services may become threatened as bee populations decline. Agricultural intensification, resulting in the simplification of environments at the landscape scale, greatly changes the quality and quantity of resources available for female bees to provision their offspring. These changes may alter or constrain the tradeoffs in maternal investment allocation between offspring size, number and sex required to maximize fitness. Here we investigate the relationship between landscape scale agricultural intensification and the size and number of individuals within a wild ground nesting bee species, Andrena nasonii. We show that agricultural intensification at the landscape scale was associated with a reduction in the average size of field collected A. nasonii adults in highly agricultural landscapes but not with the number of individuals collected. Small females carried significantly smaller (40%) pollen loads than large females, which is likely to have consequences for subsequent offspring production and fitness. Thus, landscape simplification is likely to constrain allocation of resources to offspring through a reduction in the overall quantity, quality and distribution of resources. PMID:26943127

  3. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome

    PubMed Central

    Bromenshenk, Jerry J.; Henderson, Colin B.; Seccomb, Robert A.; Welch, Phillip M.; Debnam, Scott E.; Firth, David R.

    2015-01-01

    This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%–80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management. PMID:26529030

  4. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome.

    PubMed

    Bromenshenk, Jerry J; Henderson, Colin B; Seccomb, Robert A; Welch, Phillip M; Debnam, Scott E; Firth, David R

    2015-10-30

    This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%-80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management.

  5. Metagenomic analysis of Varroa-free Australian honey bees (Apis mellifera) shows a diverse Picornavirales virome.

    PubMed

    Roberts, John M K; Anderson, Denis L; Durr, Peter A

    2018-06-01

    The viral landscape of the honey bee (Apismellifera) has changed as a consequence of the global spread of the parasitic mite Varroa destructor and accompanying virulent strains of the iflavirus deformed wing virus (DWV), which the mite vectors. The presence of DWV in honey bee populations is known to influence the occurrence of other viruses, suggesting that the current known virome of A. mellifera may be undercharacterized. Here we tested this hypothesis by examining the honey bee virome in Australia, which is uniquely free of parasitic mites or DWV. Using a high-throughput sequencing (HTS) approach, we examined the RNA virome from nine pools of A. mellifera across Australia. In addition to previously reported honey bee viruses, several other insect viruses were detected, including strains related to aphid lethal paralysis virus (ALPV) and Rhopalosiphum padi virus (RhPV), which have recently been identified as infecting honey bees in the USA, as well as several other viruses recently found in Drosophila spp. A further 42 putative novel insect virus genomes spanning the order Picornavirales were assembled, which significantly increases the known viral diversity in A. mellifera. Among these novel genomes, we identified several that were similar (but different) to key A. mellifera viruses, such as DWV, that warrant further investigation. We propose that A. mellifera may be preferentially infected with viruses of the order Picornavirales and that a diverse population of these viruses may be representative of a Varroa-free landscape.

  6. A cell line resource derived from honey bee (Apis mellifera) embryonic tissues.

    PubMed

    Goblirsch, Michael J; Spivak, Marla S; Kurtti, Timothy J

    2013-01-01

    A major hindrance to the study of honey bee pathogens or the effects of pesticides and nutritional deficiencies is the lack of controlled in vitro culture systems comprised of honey bee cells. Such systems are important to determine the impact of these stress factors on the developmental and cell biology of honey bees. We have developed a method incorporating established insect cell culture techniques that supports sustained growth of honey bee cells in vitro. We used honey bee eggs mid to late in their embryogenesis to establish primary cultures, as these eggs contain cells that are progressively dividing. Primary cultures were initiated in modified Leibovitz's L15 medium and incubated at 32(°)C. Serial transfer of material from several primary cultures was maintained and has led to the isolation of young cell lines. A cell line (AmE-711) has been established that is composed mainly of fibroblast-type cells that form an adherent monolayer. Most cells in the line are diploid (2n = 32) and have the Apis mellifera karyotype as revealed by Giemsa stain. The partial sequence for the mitochondrial-encoded cytochrome c oxidase subunit I (Cox 1) gene in the cell line is identical to those from honey bee tissues and a consensus sequence for A. mellifera. The population doubling time is approximately 4 days. Importantly, the cell line is continuously subcultured every 10-14 days when split at a 1:3 ratio and is cryopreserved in liquid nitrogen. The cell culture system we have developed has potential application for studies aimed at honey bee development, genetics, pathogenesis, transgenesis, and toxicology.

  7. Evaluating the effects of mosquito control adulticides on honey bees

    USDA-ARS?s Scientific Manuscript database

    While mosquito control adulticides can be effective in rapidly reducing mosquito populations during times of high arbovirus transmission, the impacts of these control measures on pollinators has been of recent interest. The purpose of our study was to evaluate mosquito and honey bee mortality using ...

  8. Estimating the number of tree species in forest populations using current vegetation survey and forest inventory and analysis approximation plots and grid intensities

    Treesearch

    Hans T. Schreuder; Jin-Mann S. Lin; John Teply

    2000-01-01

    We estimate number of tree species in National Forest populations using the nonparametric estimator. Data from the Current Vegetation Survey (CVS) of Region 6 of the USDA Forest Service were used to estimate the number of tree species with a plot close in size to the Forest Inventory and Analysis (FIA) plot and the actual CVS plot for the 5.5 km FIA grid and the 2.7 km...

  9. Within-Colony Variation in the Immunocompetency of Managed and Feral Honey Bees (Apis mellifera L.) in Different Urban Landscapes

    PubMed Central

    Appler, R. Holden; Frank, Steven D.; Tarpy, David R.

    2015-01-01

    Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living) and managed (beekeeper-owned) honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and around Raleigh, NC, USA. We then analyzed adult workers using two standard bioassays for insect immune function (encapsulation response and phenoloxidase activity). We found that there was far more variation within colonies for encapsulation response or phenoloxidase activity than among rural to urban landscapes, and we did not observe any significant difference in immune response between feral and managed bees. These findings suggest that social pollinators, like honey bees, may be sufficiently robust or variable in their immune responses to obscure any subtle effects of urbanization. Additional studies of immune physiology and disease ecology of social and solitary bees in urban, suburban, and natural ecosystems will provide insights into the relative effects of changing urban environments on several important factors that influence pollinator productivity and health. PMID:26529020

  10. Crop domestication facilitated rapid geographical expansion of a specialist pollinator, the squash bee Peponapis pruinosa.

    PubMed

    López-Uribe, Margarita M; Cane, James H; Minckley, Robert L; Danforth, Bryan N

    2016-06-29

    Squash was first domesticated in Mexico and is now found throughout North America (NA) along with Peponapis pruinosa, a pollen specialist bee species of the squash genus Cucurbita The origin and spread of squash cultivation is well-studied archaeologically and phylogenetically; however, no study has documented how cultivation of this or any other crop has influenced species in mutualistic interactions. We used molecular markers to reconstruct the demographic range expansion and colonization routes of P. pruinosa from its native range into temperate NA. Populations east of the Rocky Mountains expanded from the wild host plant's range in Mexico and were established by a series of founder events. Eastern North America was most likely colonized from squash bee populations in the present-day continental Midwest USA and not from routes that followed the Gulf and Atlantic coasts from Mexico. Populations of P. pruinosa west of the Rockies spread north from the warm deserts much more recently, showing two genetically differentiated populations with no admixture: one in California and the other one in eastern Great Basin. These bees have repeatedly endured severe bottlenecks as they colonized NA, following human spread of their Cucurbita pollen hosts during the Holocene. © 2016 The Author(s).

  11. Bee species-specific nesting material attracts a generalist parasitoid: implications for co-occurring bees in nest box enhancements.

    PubMed

    Macivor, J Scott; Salehi, Baharak

    2014-08-01

    Artificial nests (e.g., nest boxes) for bees are increasingly being used to contribute to nesting habitat enhancement for bees that use preexisting cavities to provision brood. They usually incorporate additional nesting materials that vary by species. Cavity-nesting bees are susceptible to brood parasitoids that recognize their host(s) using visual and chemical cues. Understanding the range of cues that attract parasitoids to bee nests, including human-made analogues, is important if we wish to control parasitism and increase the potential value of artificial nests as habitat-enhancement strategies. In this study, we investigated the cues associated with the orientation of the generalist brood parasitoid Monodontomerus obscurus Westwood (Hymenoptera: Torymidae) to the nests of a common cavity-nesting resin bee Megachile campanulae (Robertson) (Megachilidae). The parasitoids were reared from previously infested M. campanulae brood cells and placed into choice trials where they were presented with pairs of different nest material cues. Among different materials tested, we found that Mo. obscurus was most attracted to fresh resin collected directly from Pinus strobus trees followed by previously used resin collected from the bee nest. The parasitoid also attacked other bee species in the same nest boxes, including those that do not use resin for nesting. Our findings suggest that M. campanulae could act as a magnet, drawing parasites away from other bee hosts co-occurring in nest boxes, or, as an attractant of Mo. obscurus to nest boxes, increasing attacks on co-occurring host bee species, potentially undermining bee diversity enhancement initiatives.

  12. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards

    PubMed Central

    Russo, Laura; Park, Mia; Gibbs, Jason; Danforth, Bryan

    2015-01-01

    Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness. PMID:26380684

  13. Statistical methods to quantify the effect of mite parasitism on the probability of death in honey bee colonies

    USDA-ARS?s Scientific Manuscript database

    Varroa destructor is a mite parasite of European honey bees, Apis mellifera, that weakens the population, can lead to the death of an entire honey bee colony, and is believed to be the parasite with the most economic impact on beekeeping. The purpose of this study was to estimate the probability of ...

  14. Mapping sleeping bees within their nest: spatial and temporal analysis of worker honey bee sleep.

    PubMed

    Klein, Barrett Anthony; Stiegler, Martin; Klein, Arno; Tautz, Jürgen

    2014-01-01

    Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns.

  15. Late Onset of Acute Urticaria after Bee Stings.

    PubMed

    Asai, Yuko; Uhara, Hisashi; Miyazaki, Atsushi; Saiki, Minoru; Okuyama, Ryuhei

    2016-01-01

    Here we report the cases of five patients with a late onset of acute urticaria after a bee sting. The ages of the five Japanese patients ranged from 33 to 86 years (median: 61). All patients had no history of an allergic reaction to bee stings. The onset of urticaria was 6-14 days (median: 10) after a bee sting. Although four of the patients did not describe experiencing a bee sting at their presentation, the subsequent examination detected anti-bee-specific IgE antibodies. So, we think a history of a bee sting should thus be part of the medical interview sheet for patients with acute urticaria, and an examination of IgE for bees may help prevent a severe bee-related anaphylactic reaction in the future.

  16. Large-scale mitochondrial DNA analysis of native honey bee Apis mellifera populations reveals a new African subgroup private to the South West Indian Ocean islands.

    PubMed

    Techer, Maéva Angélique; Clémencet, Johanna; Simiand, Christophe; Preeaduth, Sookar; Azali, Hamza Abdou; Reynaud, Bernard; Hélène, Delatte

    2017-06-02

    The South West Indian Ocean (SWIO) archipelagos and Madagascar constitute a hotspot of biodiversity with a high rate of endemism. In this area, the endemic subspecies A. m. unicolor has been described in Madagascar. It belongs to the African lineage, one of the four described evolutionary lineages in honey bees. Despite a long beekeeping tradition and several recorded European introductions, few studies have been carried out on the diversity and proportion of honey bee subspecies. In order to identify and define which evolutionary lineages and potential sub-lineages are present in the SWIO, the COI-COII intergenic region and the ND2 gene of the mtDNA were sequenced in honey bee colonies from three archipelagos. An extensive sampling (n = 1184 colonies) was done in the Mascarene (La Réunion, Mauritius, Rodrigues), Seychelles (Mahé, Praslin, La Digue) and Comoros (Grande Comore, Mohéli, Anjouan, Mayotte) archipelagos. Islands genetic diversity was compared to newly sampled populations from Madagascar, continental African and European populations. African lineage haplotypes were found in all islands (except for Rodrigues). Madagascar, Comoros and Seychelles had 100% of A lineage, 95.5% in La Réunion and 56.1% in Mauritius. Among all African colonies detected in the SWIO, 98.1% (n = 633) of COI-COII haplotypes described the presence of the subspecies A. M. unicolor. Both genetic markers revealed i) a new private A I mitochondrial group shared by the SWIO archipelagos and Madagascar distant from continental populations; ii) the private African haplotypes for each island suggested diversity radiation in the archipelagos; iii) the detection of the Comoros archipelago as a possible contact area between insular and continental African populations. The exotic European C and M lineages were only detected in the Mascarene archipelago, but striking differences of proportion were observed among islands. Merely 4.6% of European colonies were found in La Réunion whereas

  17. Infestation of Japanese native honey bees by tracheal mite and virus from non-native European honey bees in Japan.

    PubMed

    Kojima, Yuriko; Toki, Taku; Morimoto, Tomomi; Yoshiyama, Mikio; Kimura, Kiyoshi; Kadowaki, Tatsuhiko

    2011-11-01

    Invasion of alien species has been shown to cause detrimental effects on habitats of native species. Insect pollinators represent such examples; the introduction of commercial bumble bee species for crop pollination has resulted in competition for an ecological niche with native species, genetic disturbance caused by mating with native species, and pathogen spillover to native species. The European honey bee, Apis mellifera, was first introduced into Japan for apiculture in 1877, and queen bees have been imported from several countries for many years. However, its effects on Japanese native honey bee, Apis cerana japonica, have never been addressed. We thus conducted the survey of honey bee viruses and Acarapis mites using both A. mellifera and A. c. japonica colonies to examine their infestation in native and non-native honey bee species in Japan. Honey bee viruses, Deformed wing virus (DWV), Black queen cell virus (BQCV), Israeli acute paralysis virus (IAPV), and Sacbrood virus (SBV), were found in both A. mellifera and A. c. japonica colonies; however, the infection frequency of viruses in A. c. japonica was lower than that in A. mellifera colonies. Based on the phylogenies of DWV, BQCV, and SBV isolates from A. mellifera and A. c. japonica, DWV and BQCV may infect both honey bee species; meanwhile, SBV has a clear species barrier. For the first time in Japan, tracheal mite (Acarapis woodi) was specifically found in the dead honey bees from collapsing A. c. japonica colonies. This paper thus provides further evidence that tracheal-mite-infested honey bee colonies can die during cool winters with no other disease present. These results demonstrate the infestation of native honey bees by parasite and pathogens of non-native honey bees that are traded globally.

  18. Parallel epigenomic and transcriptomic responses to viral infection in honey bees (Apis mellifera).

    PubMed

    Galbraith, David A; Yang, Xingyu; Niño, Elina Lastro; Yi, Soojin; Grozinger, Christina

    2015-03-01

    Populations of honey bees are declining throughout the world, with US beekeepers losing 30% of their colonies each winter. Though multiple factors are driving these colony losses, it is increasingly clear that viruses play a major role. However, information about the molecular mechanisms mediating antiviral immunity in honey bees is surprisingly limited. Here, we examined the transcriptional and epigenetic (DNA methylation) responses to viral infection in honey bee workers. One-day old worker honey bees were fed solutions containing Israeli Acute Paralysis Virus (IAPV), a virus which causes muscle paralysis and death and has previously been associated with colony loss. Uninfected control and infected, symptomatic bees were collected within 20-24 hours after infection. Worker fat bodies, the primary tissue involved in metabolism, detoxification and immune responses, were collected for analysis. We performed transcriptome- and bisulfite-sequencing of the worker fat bodies to identify genome-wide gene expression and DNA methylation patterns associated with viral infection. There were 753 differentially expressed genes (FDR<0.05) in infected versus control bees, including several genes involved in epigenetic and antiviral pathways. DNA methylation status of 156 genes (FDR<0.1) changed significantly as a result of the infection, including those involved in antiviral responses in humans. There was no significant overlap between the significantly differentially expressed and significantly differentially methylated genes, and indeed, the genomic characteristics of these sets of genes were quite distinct. Our results indicate that honey bees have two distinct molecular pathways, mediated by transcription and methylation, that modulate protein levels and/or function in response to viral infections.

  19. Abundance and Diversity of Wild Bees (Hymenoptera: Apoidea) Found in Lowbush Blueberry Growing Regions of Downeast Maine.

    PubMed

    Bushmann, Sara L; Drummond, Francis A

    2015-08-01

    Insect-mediated pollination is critical for lowbush blueberry (Ericaceae: Vaccinium angustifolium Aiton) fruit development. Past research shows a persistent presence of wild bees (Hymenoptera: Apoidea) providing pollination services even when commercial pollinators are present. We undertook the study to 1) provide a description of bee communities found in lowbush blueberry-growing regions, 2) identify field characteristics or farm management practices that influence those communities, 3) identify key wild bee pollinators that provide pollination services for the blueberry crop, and 4) identify non-crop plants found within the cropping system that provide forage for wild bees. During a 4-year period, we collected solitary and eusocial bees in over 40 fields during and after blueberry bloom, determining a management description for each field. We collected 4,474 solitary bees representing 124 species and 1,315 summer bumble bees representing nine species. No bumble bee species were previously unknown in Maine, yet we document seven solitary bee species new for the state. These include species of the genera Nomada, Lasioglossum, Calliopsis, and Augochloropsis. No field characteristic or farm management practice related to bee community structure, except bumble bee species richness was higher in certified organic fields. Pollen analysis determined scopal loads of 67-99% ericaceous pollen carried by five species of Andrena. Our data suggest two native ericaceous plants, Kalmia angustifolia L. and Gaylussacia baccata (Wangenheim), provide important alternative floral resources. We conclude that Maine blueberry croplands are populated with a species-rich bee community that fluctuates in time and space. We suggest growers develop and maintain wild bee forage and nest sites. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. A Measure of the Forest Protected Areas Benefits for the Surrounding Population: A Case Study of the Bouaflé Protected Forest (CÔTE D'IVOIRE)

    NASA Astrophysics Data System (ADS)

    Kouame, B. N. P.

    2015-12-01

    Côte d'Ivoire located in West Africa, registers high level of biodiversity which occurs mainly in forest land. The country has suffered severe deforestation. However, deforestation and forest degradation release Greenhouse Gases into the atmosphere which contributes to Climate Change. In order to address the deforestation, many actions are taken, one of which is the implementation of protected areas within countries. These measures put restrictions on the access of local communities to forest services. However, local communities supplement their daily livelihood from forests, especially from timber and non-timber forest products. What are the effects of forests conservation in protected areas on surrounding population? This study focuses on the Bouaflé protected forest (foret classée de Bouaflé) in the western part of Côte d'Ivoire. The forest is 20350 ha and was made a protected forest in 1974. It is one of the most deforested protected areas in the country. Firstly, we described the perception of forest benefits by the population. Secondly, we estimated the benefits of forest conservation using a contingent valuation approach, particularly the Willingness to Pay (WTP) methodology. From our sample size of 156 households, it appears that most of the individuals are aware of the importance of the forest (94 % against 6%). According to the estimate of the benefits, it results on average, people are willing to pay 1658.491F CFA (2.53 Euros). The median WTP is 1000 FCFA. This study will be helpful by adding to the scientific literature and for inducing local people implication in conservation.

  1. Differences in Townsend's chipmunk populations between second- and old-growth forests in western Oregon

    Treesearch

    D.K. Rosenberg; R.G. Anthony

    1993-01-01

    Because Townsend's chipmunks (Tomias townsendii) may be important in maintaining natural ecosystem processes in forests in the central Oregon Cascade Range, we compared their population characteristics in young second-growth and old-growth forests. We live-trapped Townsend's chipmunks in 5 young (30-60 yr old) second-growth and 5 old-...

  2. Increased Tolerance and Resistance to Virus Infections: A Possible Factor in the Survival of Varroa destructor-Resistant Honey Bees (Apis mellifera)

    PubMed Central

    Locke, Barbara; Forsgren, Eva; de Miranda, Joachim R.

    2014-01-01

    The honey bee ectoparasitic mite, Varroa destructor, has a world-wide distribution and inflicts more damage than all other known apicultural diseases. However, Varroa-induced colony mortality is more accurately a result of secondary virus infections vectored by the mite. This means that honey bee resistance to Varroa may include resistance or tolerance to virus infections. The aim of this study was to see if this is the case for a unique population of mite-resistant (MR) European honey bees on the island of Gotland, Sweden. This population has survived uncontrolled mite infestation for over a decade, developing specific mite-related resistance traits to do so. Using RT-qPCR techniques, we monitored late season virus infections, Varroa mite infestation and honey bee colony population dynamics in the Gotland MR population and compared this to mite-susceptible (MS) colonies in a close by apiary. From summer to autumn the deformed wing virus (DWV) titres increased similarly between the MR and MS populations, while the black queen cell virus (BQCV) and sacbrood virus (SBV) titres decreased substantially in the MR population compared to the MS population by several orders of magnitude. The MR colonies all survived the following winter with high mite infestation, high DWV infection, small colony size and low proportions of autumn brood, while the MS colonies all perished. Possible explanations for these changes in virus titres and their relevance to Varroa resistance and colony winter survival are discussed. PMID:24926792

  3. Preventing bee mortality with RNA interference

    USDA-ARS?s Scientific Manuscript database

    We present a real world example of the successful use of an RNAi product for disease control. RNAi increased bee health in the presence of the bee viral pathogen, IAPV. The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsib...

  4. Comparative virulence and competition between Nosema apis and Nosema ceranae in honey bees (Apis mellifera).

    PubMed

    Milbrath, Meghan O; van Tran, Toan; Huang, Wei-Fong; Solter, Leellen F; Tarpy, David R; Lawrence, Frank; Huang, Zachary Y

    2015-02-01

    Honey bees (Apis mellifera) are infected by two species of microsporidia: Nosema apis and Nosemaceranae. Epidemiological evidence indicates that N. ceranae may be replacing N. apis globally in A. mellifera populations, suggesting a potential competitive advantage of N. ceranae. Mixed infections of the two species occur, and little is known about the interactions among the host and the two pathogens that have allowed N. ceranae to become dominant in most geographical areas. We demonstrated that mixed Nosema species infections negatively affected honey bee survival (median survival=15-17days) more than single species infections (median survival=21days and 20days for N. apis and N. ceranae, respectively), with median survival of control bees of 27days. We found similar rates of infection (percentage of bees with active infections after inoculation) for both species in mixed infections, with N. apis having a slightly higher rate (91% compared to 86% for N. ceranae). We observed slightly higher spore counts in bees infected with N. ceranae than in bees infected with N. apis in single microsporidia infections, especially at the midpoint of infection (day 10). Bees with mixed infections of both species had higher spore counts than bees with single infections, but spore counts in mixed infections were highly variable. We did not see a competitive advantage for N. ceranae in mixed infections; N. apis spore counts were either higher or counts were similar for both species and more N. apis spores were produced in 62% of bees inoculated with equal dosages of the two microsporidian species. N. ceranae does not, therefore, appear to have a strong within-host advantage for either infectivity or spore growth, suggesting that direct competition in these worker bee mid-guts is not responsible for its apparent replacement of N. apis. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Bees' subtle colour preferences: how bees respond to small changes in pigment concentration

    NASA Astrophysics Data System (ADS)

    Papiorek, Sarah; Rohde, Katja; Lunau, Klaus

    2013-07-01

    Variability in flower colour of animal-pollinated plants is common and caused, inter alia, by inter-individual differences in pigment concentrations. If and how pollinators, especially bees, respond to these small differences in pigment concentration is not known, but it is likely that flower colour variability impacts the choice behaviour of all flower visitors that exhibit innate and learned colour preferences. In behavioural experiments, we simulated varying pigment concentrations and studied its impact on the colour choices of bumblebees and honeybees. Individual bees were trained to artificial flowers having a specific concentration of a pigment, i.e. Acridine Orange or Aniline Blue, and then given the simultaneous choice between three test colours including the training colour, one colour of lower and one colour of higher pigment concentration. For each pigment, two set-ups were provided, covering the range of low to middle and the range of middle to high pigment concentrations. Despite the small bee-subjective perceptual contrasts between the tested stimuli and regardless of training towards medium concentrations, bees preferred neither the training stimuli nor the stimuli offering the highest pigment concentration but more often chose those stimuli offering the highest spectral purity and the highest chromatic contrast against the background. Overall, this study suggests that bees choose an intermediate pigment concentration due to its optimal conspicuousness. It is concluded that the spontaneous preferences of bees for flower colours of high spectral purity might exert selective pressure on the evolution of floral colours and of flower pigmentation.

  6. Comparison of neotropical migrant landbird populations wintering in tropical forest, isolated forest fragments, and agricultural habitats

    USGS Publications Warehouse

    Robbins, C.S.; Dowell, B.A.; Dawson, D.K.; Colon, J.A.; Estrada, R.; Sutton, A.; Sutton, R.; Weyer, D.; Hagan, John M.; Johnston, David W.

    1992-01-01

    Neotropical migrant bird populations were sampled at 76 sites in seven countries by using mist nets and point counts during a six-winter study. Populations in major agricultural habitats were compared with those in extensive forest and isolated forest fragments. Certain Neotropical migrants, such as the Northern Parula, American Redstart, and the Black-throated Blue, Magnolia, Black-and-white, and Hooded warblers, were present in arboreal agricultural habitats such as pine, cacao, citrus, and shade coffee plantations in relatively large numbers. Many north temperate zone shrub-nesting species, such as the Gray Catbird, White-eyed Vireo, Tennessee Warbler, Common Yellowthroat, and Indigo Bunting, also used agricultural habitats in winter, as did resident hummingbirds and migrant orioles. Ground-foraging migrants, such as thrushes and Kentucky Warblers, were rarely found in the agricultural habitats sampled. Although many Neotropical migrants use some croplands, this use might be severely limited by overgrazing by cattle, by intensive management (such as removal of ground cover in an orchard), or by heavy use of insecticides, herbicides, or fungicides.

  7. Genetic stock identification of Russian honey bees.

    PubMed

    Bourgeois, Lelania; Sheppard, Walter S; Sylvester, H Allen; Rinderer, Thomas E

    2010-06-01

    A genetic stock certification assay was developed to distinguish Russian honey bees from other European (Apis mellifera L.) stocks that are commercially produced in the United States. In total, 11 microsatellite and five single-nucleotide polymorphism loci were used. Loci were selected for relatively high levels of homogeneity within each group and for differences in allele frequencies between groups. A baseline sample consisted of the 18 lines of Russian honey bees released to the Russian Bee Breeders Association and bees from 34 queen breeders representing commercially produced European honey bee stocks. Suitability tests of the baseline sample pool showed high levels of accuracy. The probability of correct assignment was 94.2% for non-Russian bees and 93.3% for Russian bees. A neighbor-joining phenogram representing genetic distance data showed clear distinction of Russian and non-Russian honey bee stocks. Furthermore, a test of appropriate sample size showed a sample of eight bees per colony maximizes accuracy and consistency of the results. An additional 34 samples were tested as blind samples (origin unknown to those collecting data) to determine accuracy of individual assignment tests. Only one of these samples was incorrectly assigned. The 18 current breeding lines were represented among the 2009 blind sampling, demonstrating temporal stability of the genetic stock identification assay. The certification assay will be used through services provided by a service laboratory, by the Russian Bee Breeders Association to genetically certify their stock. The genetic certification will be used in conjunction with continued selection for favorable traits, such as honey production and varroa and tracheal mite resistance.

  8. Hot spots in the bee hive

    NASA Astrophysics Data System (ADS)

    Bujok, Brigitte; Kleinhenz, Marco; Fuchs, Stefan; Tautz, Jürgen

    2002-06-01

    Honeybee colonies (Apis mellifera) maintain temperatures of 35-36°C in their brood nest because the brood needs high and constant temperature conditions for optimal development. We show that incubation of the brood at the level of individual honeybees is done by worker bees performing a particular and not yet specified behaviour: such bees raise the brood temperature by pressing their warm thoraces firmly onto caps under which the pupae develop. The bees stay motionless in a characteristic posture and have significantly higher thoracic temperatures than bees not assuming this posture in the brood area. The surface of the brood caps against which warm bees had pressed their thorax were up to 3.2°C warmer than the surrounding area, confirming that effective thermal transfer had taken place.

  9. Revisiting the Iberian honey bee (Apis mellifera iberiensis) contact zone: maternal and genome-wide nuclear variations provide support for secondary contact from historical refugia.

    PubMed

    Chávez-Galarza, Julio; Henriques, Dora; Johnston, J Spencer; Carneiro, Miguel; Rufino, José; Patton, John C; Pinto, M Alice

    2015-06-01

    Dissecting diversity patterns of organisms endemic to Iberia has been truly challenging for a variety of taxa, and the Iberian honey bee is no exception. Surveys of genetic variation in the Iberian honey bee are among the most extensive for any honey bee subspecies. From these, differential and complex patterns of diversity have emerged, which have yet to be fully resolved. Here, we used a genome-wide data set of 309 neutrally tested single nucleotide polymorphisms (SNPs), scattered across the 16 honey bee chromosomes, which were genotyped in 711 haploid males. These SNPs were analysed along with an intergenic locus of the mtDNA, to reveal historical patterns of population structure across the entire range of the Iberian honey bee. Overall, patterns of population structure inferred from nuclear loci by multiple clustering approaches and geographic cline analysis were consistent with two major clusters forming a well-defined cline that bisects Iberia along a northeastern-southwestern axis, a pattern that remarkably parallels that of the mtDNA. While a mechanism of primary intergradation or isolation by distance could explain the observed clinal variation, our results are more consistent with an alternative model of secondary contact between divergent populations previously isolated in glacial refugia, as proposed for a growing list of other Iberian taxa. Despite current intense honey bee management, human-mediated processes have seemingly played a minor role in shaping Iberian honey bee genetic structure. This study highlights the complexity of the Iberian honey bee patterns and reinforces the importance of Iberia as a reservoir of Apis mellifera diversity. © 2015 John Wiley & Sons Ltd.

  10. Mapping Sleeping Bees within Their Nest: Spatial and Temporal Analysis of Worker Honey Bee Sleep

    PubMed Central

    Klein, Barrett Anthony; Stiegler, Martin; Klein, Arno; Tautz, Jürgen

    2014-01-01

    Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns. PMID:25029445

  11. Crop Pollination Exposes Honey Bees to Pesticides Which Alters Their Susceptibility to the Gut Pathogen Nosema ceranae

    PubMed Central

    Pettis, Jeffery S.; Lichtenberg, Elinor M.; Andree, Michael; Stitzinger, Jennie; Rose, Robyn; vanEngelsdorp, Dennis

    2013-01-01

    Recent declines in honey bee populations and increasing demand for insect-pollinated crops raise concerns about pollinator shortages. Pesticide exposure and pathogens may interact to have strong negative effects on managed honey bee colonies. Such findings are of great concern given the large numbers and high levels of pesticides found in honey bee colonies. Thus it is crucial to determine how field-relevant combinations and loads of pesticides affect bee health. We collected pollen from bee hives in seven major crops to determine 1) what types of pesticides bees are exposed to when rented for pollination of various crops and 2) how field-relevant pesticide blends affect bees’ susceptibility to the gut parasite Nosema ceranae. Our samples represent pollen collected by foragers for use by the colony, and do not necessarily indicate foragers’ roles as pollinators. In blueberry, cranberry, cucumber, pumpkin and watermelon bees collected pollen almost exclusively from weeds and wildflowers during our sampling. Thus more attention must be paid to how honey bees are exposed to pesticides outside of the field in which they are placed. We detected 35 different pesticides in the sampled pollen, and found high fungicide loads. The insecticides esfenvalerate and phosmet were at a concentration higher than their median lethal dose in at least one pollen sample. While fungicides are typically seen as fairly safe for honey bees, we found an increased probability of Nosema infection in bees that consumed pollen with a higher fungicide load. Our results highlight a need for research on sub-lethal effects of fungicides and other chemicals that bees placed in an agricultural setting are exposed to. PMID:23894612

  12. A Multiuser Detector Based on Artificial Bee Colony Algorithm for DS-UWB Systems

    PubMed Central

    Liu, Xiaohui

    2013-01-01

    Artificial Bee Colony (ABC) algorithm is an optimization algorithm based on the intelligent behavior of honey bee swarm. The ABC algorithm was developed to solve optimizing numerical problems and revealed premising results in processing time and solution quality. In ABC, a colony of artificial bees search for rich artificial food sources; the optimizing numerical problems are converted to the problem of finding the best parameter which minimizes an objective function. Then, the artificial bees randomly discover a population of initial solutions and then iteratively improve them by employing the behavior: moving towards better solutions by means of a neighbor search mechanism while abandoning poor solutions. In this paper, an efficient multiuser detector based on a suboptimal code mapping multiuser detector and artificial bee colony algorithm (SCM-ABC-MUD) is proposed and implemented in direct-sequence ultra-wideband (DS-UWB) systems under the additive white Gaussian noise (AWGN) channel. The simulation results demonstrate that the BER and the near-far effect resistance performances of this proposed algorithm are quite close to those of the optimum multiuser detector (OMD) while its computational complexity is much lower than that of OMD. Furthermore, the BER performance of SCM-ABC-MUD is not sensitive to the number of active users and can obtain a large system capacity. PMID:23983638

  13. The effect of Agaricus brasiliensis extract supplementation on honey bee colonies.

    PubMed

    Stevanovic, Jevrosima; Stanimirovic, Zoran; Simeunovic, Predrag; Lakic, Nada; Radovic, Ivica; Sokovic, Marina; Griensven, Leo J L D VAN

    2018-01-01

    This study was done to discover any beneficial effect of a medicinal mushroom Agaricus brasiliensis extract on the honey bee. Firstly, a laboratory experiment was conducted on 640 bees reared in 32 single-use plastic rearing cups. A. brasiliensis extract proved safe in all doses tested (50, 100 and 150 mg/kg/day) irrespective of feeding mode (sugar syrup or candy). Secondly, a three-year field experiment was conducted on 26 colonies treated with a single dose of A. brasiliensis extract (100 mg/kg/day) added to syrup. Each year the colonies were treated once in autumn and twice in spring. The treatments significantly increased colony strength parameters: brood rearing improvement and adult population growth were noticed more often than the increase in honey production and pollen reserves. These positive effects were mainly observed in April. In conclusion, A. brasiliensis extract is safe for the bees and helps maintaining strong colonies, especially in spring.

  14. On the Effects of Artificial Feeding on Bee Colony Dynamics: A Mathematical Model

    PubMed Central

    Paiva, Juliana Pereira Lisboa Mohallem; Paiva, Henrique Mohallem; Esposito, Elisa; Morais, Michelle Manfrini

    2016-01-01

    This paper proposes a new mathematical model to evaluate the effects of artificial feeding on bee colony population dynamics. The proposed model is based on a classical framework and contains differential equations that describe the changes in the number of hive bees, forager bees, and brood cells, as a function of amounts of natural and artificial food. The model includes the following elements to characterize the artificial feeding scenario: a function to model the preference of the bees for natural food over artificial food; parameters to quantify the quality and palatability of artificial diets; a function to account for the efficiency of the foragers in gathering food under different environmental conditions; and a function to represent different approaches used by the beekeeper to feed the hive with artificial food. Simulated results are presented to illustrate the main characteristics of the model and its behavior under different scenarios. The model results are validated with experimental data from the literature involving four different artificial diets. A good match between simulated and experimental results was achieved. PMID:27875589

  15. Density-dependent effects of ants on selection for bumble bee pollination in Polemonium viscosum.

    PubMed

    Galen, Candace; Geib, Jennifer C

    2007-05-01

    Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly

  16. Effects of residual novaluron on reproduction in alfalfa leafcutting bees, Megachile rotundata F. (Megachilidae).

    PubMed

    Pitts-Singer, Theresa L; Barbour, James D

    2017-01-01

    The chitin synthesis inhibitor novaluron can suppress pests that affect alfalfa seed production, but can negatively affect reproductive success in the alfalfa pollinator Megachile rotundata. Novaluron is considered to be a reduced-risk insecticide because it disrupts ecdysis and is non-lethal to adult insects, but some exposed adults have fewer eggs and suppressed egg hatch. For this experiment, bees nested in field cages where they were exposed to alfalfa that had never been treated with novaluron, alfalfa that had recently been sprayed or alfalfa that had been sprayed 1 and 2 weeks earlier. Compared with the control, greater proportions of dead eggs and larvae and lower proportions of live prepupae occurred when bees were exposed to recent novaluron sprays as well as one- or two-week old spray residues. Two possible routes of residual pesticide exposure were revealed. Mother bees become contaminated through ingestion or direct contact, or pollen-nectar provisions become contaminated with novaluron (1) on or within leaf pieces that surround provisions or (2) transferred from mother bees' bodies to provisions. We found strong immature mortality effects of novaluron and its residues on M. rotundata. Understanding all possible pesticide exposure routes for pollinating bees enhances decision-making for maintaining bee populations while protecting crops. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. A new threat to bees? Entomopathogenic nematodes used in biological pest control cause rapid mortality in Bombus terrestris.

    PubMed

    Dutka, Alexandrea; McNulty, Alison; Williamson, Sally M

    2015-01-01

    There is currently a great deal of concern about population declines in pollinating insects. Many potential threats have been identified which may adversely affect the behaviour and health of both honey bees and bumble bees: these include pesticide exposure, and parasites and pathogens. Whether biological pest control agents adversely affect bees has been much less well studied: it is generally assumed that biological agents are safer for wildlife than chemical pesticides. The aim of this study was to test whether entomopathogenic nematodes sold as biological pest control products could potentially have adverse effects on the bumble bee Bombus terrestris. One product was a broad spectrum pest control agent containing both Heterorhabditis sp. and Steinernema sp., the other product was specifically for weevil control and contained only Steinernema kraussei. Both nematode products caused ≥80% mortality within the 96 h test period when bees were exposed to soil containing entomopathogenic nematodes at the recommended field concentration of 50 nematodes per cm(2) soil. Of particular concern is the fact that nematodes from the broad spectrum product could proliferate in the carcasses of dead bees, and therefore potentially infect a whole bee colony or spread to the wider environment.

  18. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.)

    PubMed Central

    Fleming, James C.; Schmehl, Daniel R.; Ellis, James D.

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony’s nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees’ consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees’ midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts. PMID:26226229

  19. Imidacloprid Alters Foraging and Decreases Bee Avoidance of Predators

    PubMed Central

    Tan, Ken; Chen, Weiwen; Dong, Shihao; Liu, Xiwen; Wang, Yuchong; Nieh, James C.

    2014-01-01

    Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb) imidacloprid, honey bees (Apis cerana) showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera), to other important bee species. PMID:25025334

  20. Variation in and responses to brood pheromone of the honey bee (Apis mellifera L.).

    PubMed

    Metz, Bradley N; Pankiw, Tanya; Tichy, Shane E; Aronstein, Katherine A; Crewe, Robin M

    2010-04-01

    The 10 fatty acid ester components of brood pheromone were extracted from larvae of different populations of USA and South African honey bees and subjected to gas chromatography-mass spectrometry quantitative analysis. Extractable amounts of brood pheromone were not significantly different by larval population; however, differences in the proportions of components enabled us to classify larval population of 77% of samples correctly by discriminant analysis. Honeybee releaser and primer pheromone responses to USA, Africanized and-European pheromone blends were tested. Texas-Africanized and Georgia-European colonies responded with a significantly greater ratio of returning pollen foragers when treated with a blend from the same population than from a different population. There was a significant interaction of pheromone blend by adult population source among Georgia-European bees for modulation of sucrose response threshold, a primer response. Brood pheromone blend variation interacted with population for pollen foraging response of colonies, suggesting a self recognition cue for this pheromone releaser behavior. An interaction of pheromone blend and population for priming sucrose response thresholds among workers within the first week of adult life suggested a more complex interplay of genotype, ontogeny, and pheromone blend.

  1. What currency do bumble bees maximize?

    PubMed

    Charlton, Nicholas L; Houston, Alasdair I

    2010-08-16

    In modelling bumble bee foraging, net rate of energetic intake has been suggested as the appropriate currency. The foraging behaviour of honey bees is better predicted by using efficiency, the ratio of energetic gain to expenditure, as the currency. We re-analyse several studies of bumble bee foraging and show that efficiency is as good a currency as net rate in terms of predicting behaviour. We suggest that future studies of the foraging of bumble bees should be designed to distinguish between net rate and efficiency maximizing behaviour in an attempt to discover which is the more appropriate currency.

  2. What Currency Do Bumble Bees Maximize?

    PubMed Central

    Charlton, Nicholas L.; Houston, Alasdair I.

    2010-01-01

    In modelling bumble bee foraging, net rate of energetic intake has been suggested as the appropriate currency. The foraging behaviour of honey bees is better predicted by using efficiency, the ratio of energetic gain to expenditure, as the currency. We re-analyse several studies of bumble bee foraging and show that efficiency is as good a currency as net rate in terms of predicting behaviour. We suggest that future studies of the foraging of bumble bees should be designed to distinguish between net rate and efficiency maximizing behaviour in an attempt to discover which is the more appropriate currency. PMID:20808437

  3. Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps

    PubMed Central

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G.; Fries, Ingemar; Bommarco, Riccardo

    2015-01-01

    It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines. PMID:26313444

  4. Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps.

    PubMed

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Fries, Ingemar; Bommarco, Riccardo

    2015-01-01

    It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines.

  5. Divergence in male sexual odor signal and genetics across populations of the red mason bee, Osmia bicornis, in Europe.

    PubMed

    Conrad, Taina; Paxton, Robert J; Assum, Günter; Ayasse, Manfred

    2018-01-01

    In some insect species, females may base their choice for a suitable mate on male odor. In the red mason bee, Osmia bicornis, female choice is based on a male's odor bouquet as well as its thorax vibrations, and its relatedness to the female, a putative form of optimal outbreeding. Interestingly, O. bicornis can be found as two distinct color morphs in Europe, which are thought to represent subspecies and between which we hypothesize that female discrimination may be particularly marked. Here we investigated (i) if these two colors morphs do indeed represent distinct, reproductively differentiated populations, (ii) how odor bouquets of male O. bicornis vary within and between populations, and (iii) whether variation in male odor correlates with genetic distance, which might represent a cue by which females could optimally outbreed. Using GC and GC-MS analysis of male odors and microsatellite analysis of males and females from 9 populations, we show that, in Denmark, an area of subspecies sympatry, the two color morphs at any one site do not differ, either in odor bouquet or in population genetic differentiation. Yet populations across Europe are distinct in their odor profile as well as being genetically differentiated. Odor differences do not, however, mirror genetic differentiation between populations. We hypothesize that populations from Germany, England and Denmark may be under sexual selection through female choice for local odor profiles, which are not related to color morph though which could ultimately lead to population divergence and speciation.

  6. Immunology of Bee Venom.

    PubMed

    Elieh Ali Komi, Daniel; Shafaghat, Farzaneh; Zwiener, Ricardo D

    2018-06-01

    Bee venom is a blend of biochemicals ranging from small peptides and enzymes to biogenic amines. It is capable of triggering severe immunologic reactions owing to its allergenic fraction. Venom components are presented to the T cells by antigen-presenting cells within the skin. These Th2 type T cells then release IL-4 and IL-13 which subsequently direct B cells to class switch to production of IgE. Generating venom-specific IgE and crosslinking FcεR1(s) on the surface of mast cells complete the sensitizing stage in allergic individuals who are most likely to experience severe and even fatal allergic reactions after being stung. Specific IgE for bee venom is a double-edged sword as it is a powerful mediator in triggering allergic events but is also applied successfully in diagnosis of the venom allergic patient. The healing capacity of bee venom has been rediscovered under laboratory-controlled conditions using animal models and cell cultures. The potential role of enzymatic fraction of bee venom including phospholipase A2 in the initiation and development of immune responses also has been studied in numerous research settings. Undoubtedly, having insights into immunologic interactions between bee venom components and innate/specific immune cells both locally and systematically will contribute to the development of immunologic strategies in specific and epitope-based immunotherapy especially in individuals with Hymenoptera venom allergy.

  7. Escalated convergent artificial bee colony

    NASA Astrophysics Data System (ADS)

    Jadon, Shimpi Singh; Bansal, Jagdish Chand; Tiwari, Ritu

    2016-03-01

    Artificial bee colony (ABC) optimisation algorithm is a recent, fast and easy-to-implement population-based meta heuristic for optimisation. ABC has been proved a rival algorithm with some popular swarm intelligence-based algorithms such as particle swarm optimisation, firefly algorithm and ant colony optimisation. The solution search equation of ABC is influenced by a random quantity which helps its search process in exploration at the cost of exploitation. In order to find a fast convergent behaviour of ABC while exploitation capability is maintained, in this paper basic ABC is modified in two ways. First, to improve exploitation capability, two local search strategies, namely classical unidimensional local search and levy flight random walk-based local search are incorporated with ABC. Furthermore, a new solution search strategy, namely stochastic diffusion scout search is proposed and incorporated into the scout bee phase to provide more chance to abandon solution to improve itself. Efficiency of the proposed algorithm is tested on 20 benchmark test functions of different complexities and characteristics. Results are very promising and they prove it to be a competitive algorithm in the field of swarm intelligence-based algorithms.

  8. C-type allatostatins mimic stress-related effects of alarm pheromone on honey bee learning and memory recall.

    PubMed

    Urlacher, Elodie; Devaud, Jean-Marc; Mercer, Alison R

    2017-01-01

    As honey bee populations worldwide are declining there is an urgent need for a deeper understanding of stress reactivity in these important insects. Our data indicate that stress responses in bees (Apis mellifera L.) may be mediated by neuropeptides identified, on the basis of sequence similarities, as allatostatins (ASTA, ASTC and ASTCC). Effects of allatostatin injection are compared with stress-related changes in learning performance induced by the honeybee alarm pheromone, isopentylacetate (IPA). We find that bees can exhibit two markedly different responses to IPA, with opposing effects on learning behaviour and memory generalisation, and that strikingly similar responses can be elicited by allatostatins, in particular ASTCC. These findings lend support to the hypothesis that allatostatins mediate stress reactivity in honey bees and suggest responses to stress in these insects are state dependent.

  9. Multi-dimensionality and variability in folk classification of stingless bees (Apidae: Meliponini).

    PubMed

    Zamudio, Fernando; Hilgert, Norma I

    2015-05-23

    Not long ago Eugene Hunn suggested using a combination of cognitive, linguistic, ecological and evolutionary theories in order to account for the dynamic character of ethnoecology in the study of folk classification systems. In this way he intended to question certain homogeneity in folk classifications models and deepen in the analysis and interpretation of variability in folk classifications. This paper studies how a rural culturally mixed population of the Atlantic Forest of Misiones (Argentina) classified honey-producing stingless bees according to the linguistic, cognitive and ecological dimensions of folk classification. We also analyze the socio-ecological meaning of binomialization in naming and the meaning of general local variability in the appointment of stingless bees. We used three different approaches: the classical approach developed by Brent Berlin which relies heavily on linguistic criteria, the approach developed by Eleonor Rosch which relies on psychological (cognitive) principles of categorization and finally we have captured the ecological dimension of folk classification in local narratives. For the second approximation, we developed ways of measuring the degree of prototypicality based on a total of 107 comparisons of the type "X is similar to Y" identified in personal narratives. Various logical and grouping strategies coexist and were identified as: graded of lateral linkage, hierarchical and functional. Similarity judgments among folk taxa resulted in an implicit logic of classification graded according to taxa's prototypicality. While there is a high agreement on naming stingless bees with monomial names, a considerable number of underrepresented binomial names and lack of names were observed. Two possible explanations about reported local naming variability are presented. We support the multidimensionality of folk classification systems. This confirms the specificity of local classification systems but also reflects the use of grouping

  10. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies.

    PubMed

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  11. Stable genetic diversity despite parasite and pathogen spread in honey bee colonies

    NASA Astrophysics Data System (ADS)

    Jara, Laura; Muñoz, Irene; Cepero, Almudena; Martín-Hernández, Raquel; Serrano, José; Higes, Mariano; De la Rúa, Pilar

    2015-10-01

    In the last decades, the rapid spread of diseases, such as varroosis and nosemosis, associated with massive honey bee colonies mortality around the world has significantly decreased the number and size of honey bee populations and possibly their genetic diversity. Here, we compare the genetic diversity of Iberian honey bee colonies in two samplings performed in 2006 and 2010 in relation to the presence of the pathogenic agents Nosema apis, Nosema ceranae, and Varroa destructor in order to determine whether parasite and pathogen spread in honey bee colonies reflects changes in genetic diversity. We found that the genetic diversity remained similar, while the incidence of N. ceranae increased and the incidence of N. apis and V. destructor decreased slightly. These results indicate that the genetic diversity was not affected by the presence of these pathogenic agents in the analyzed period. However, the two groups of colonies with and without Nosema/Varroa detected showed significant genetic differentiation (G test). A detailed analysis of the allelic segregation of microsatellite loci in Nosema/Varroa-negative colonies and parasitized ones revealed two outlier loci related to genes involved in immune response.

  12. Fruit Set and Single Visit Stigma Pollen Deposition by Managed Bumble Bees and Wild Bees in Citrullus lanatus (Cucurbitales: Cucurbitaceae).

    PubMed

    Campbell, Joshua W; Daniels, Jaret C; Ellis, James D

    2018-04-02

    Pollinators provide essential services for watermelon, Citrullus lanatus (Thunb.; Cucurbitales: Cucurbitaceae). Managed bumble bees, Bombus impatiens (Cresson; Hymenoptera: Apidae), have been shown to be a useful watermelon pollinator in some areas. However, the exact contribution bumble bees make to watermelon pollination and how their contribution compares to that of other bees is unclear. We used large cages (5.4 × 2.5 × 2.4 m) to confine bumble bee hives to watermelon plants and compared fruit set in those cages to cages containing watermelons but no pollinators, and to open areas of field next to cages (allows all pollinators). We also collected data on single visit pollen deposition onto watermelon stigmas by managed bumble bees, honey bees, and wild bees. Overall, more fruit formed within the open cages than in cages of the other two treatment groups. B. impatiens and Melissodes spp. deposited the most pollen onto watermelon stigmas per visit, but all bee species observed visiting watermelon flowers were capable of depositing ample pollen to watermelon stigmas. Although B. impatiens did deposit large quantities of pollen to stigmas, they were not common within the field (i.e., outside the cages) as they were readily drawn to flowering plants outside of the watermelon field. Overall, bumble bees can successfully pollinate watermelon, but may be useful in greenhouses or high tunnels where watermelon flowers have no competition from other flowering plants that could draw bumble bees away from watermelon.

  13. Spatial variation in population dynamics of Sitka mice in floodplain forests.

    Treesearch

    T.A. Hanley; J.C. Barnard

    1999-01-01

    Population dynamics and demography of the Sitka mouse, Peromyscus keeni sitkensis, were studied by mark-recapture live-trapping over a 4-year period in four floodplain and upland forest habitats: old-growth Sitka spruce (Picea sitchensis) floodplain; red alder (Alnus rubra) floodplain; beaver-pond...

  14. Why does bee health matter? The science surrounding honey bee health concerns and what we can do about it

    USGS Publications Warehouse

    Spivak, Marla S; Browning, Zac; Goblirsch, Mike; Lee, Katie; Otto, Clint R.; Smart, Matthew; Wu-Smart, Judy

    2017-01-01

    A colony of honey bees is an amazing organism when it is healthy; it is a superorganism in many senses of the word. As with any organism, maintaining a state of health requires cohesiveness and interplay among cells and tissues and, in the case of a honey bee colony, the bees themselves. The individual bees that make up a honey bee colony deliver to the superorganism what it needs: pollen and nectar collected from flowering plants that contain nutrients necessary for growth and survival. Honey bees with access to better and more complete nutrition exhibit improved immune system function and behavioral defenses for fighting off effects of pathogens and pesticides (Evans and Spivak 2010; Mao, Schuler, and Berenbaum 2013; Wahl and Ulm 1983). Sadly, as this story is often told in the headlines, the focus is rarely about what it means for a honey bee colony to be healthy and is instead primarily focused on colony survival rates. Bee colonies are chronically exposed to parasitic mites, viruses, diseases, miticides, pesticides, and poor nutrition, which weaken and make innate defenses insufficient at overcoming these combined stressors. Colonies that are chronically weakened can be even more susceptible to infections and levels of pesticide exposure that might otherwise be innocuous, further promoting a downward spiral of health. Sick and weakened bees diminish the colony’s resiliency, ultimately leading to a breakdown in the social structure, production, efficiency, immunity, and reproduction of the colony, and eventual or sudden colony death.

  15. Cage-Fighting Bees: Can Aggressive Competition Increase Pollination Efficacy for an Oligolectic Native Bee?

    USDA-ARS?s Scientific Manuscript database

    Pollination efficacy of the oligolectic bee Ptilothrix bombiformis was measured as the number of pollen grains delivered to virgin Hibiscus stigmas. Such specialized bee foragers are often assumed to be highly efficient pollinators. Intriguingly, however, we discovered females fight over host blooms...

  16. Feedbacks between nutrition and disease in honey bee health.

    PubMed

    Dolezal, Adam G; Toth, Amy L

    2018-04-01

    Declines in honey bee health have been attributed to multiple interacting environmental stressors; among the most important are forage/nutrition deficits and parasites and pathogens. Recent studies suggest poor honey bee nutrition can exacerbate the negative impacts of infectious viral and fungal diseases, and conversely, that common honey bee parasites and pathogens can adversely affect bee nutritional physiology. This sets up the potential for harmful feedbacks between poor nutrition and infectious disease that may contribute to spiraling declines in bee health. We suggest that improving bees' nutritional resilience should be a major goal in combating challenges to bee health; this approach can buffer bees from other environmental stressors such as pathogen infection. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. [Bee mite: Varroa jacobsoni qudemans].

    PubMed

    Ozer, N; Boşgelmez, A

    1983-07-01

    Varroatosis caused by varroa jacobsoni on honeybee, Apis mellifera L., is currently one of the worlds major bee keeping problems. The mite parasites the adult honey bee, as well as its developmental stages, by sucking the insects's haemolymph. Up to date, many chemicals were used against this mite but still there is no chemical which has 100% effect and at the same time bees and their brood demonstrate a good tolerance. The investigations on biology and therapy on Varroa are still going on in many countries.

  18. Sun compensation by bees.

    PubMed

    Gould, J L

    1980-02-01

    In both their navigation and dance communication, bees are able to compensate for the sun's movement. When foragers are prevented from seeing the sun for 2 hours, they compensate by extrapolation, using the sun's rate of movement when last observed. These and other data suggest a time-averaging processing strategy in honey bee orientation.

  19. Can We Disrupt the Sensing of Honey Bees by the Bee Parasite Varroa destructor?

    PubMed Central

    Eliash, Nurit; Singh, Nitin Kumar; Kamer, Yosef; Pinnelli, Govardhana Reddy; Plettner, Erika; Soroker, Victoria

    2014-01-01

    Background The ectoparasitic mite, Varroa destructor, is considered to be one of the most significant threats to apiculture around the world. Chemical cues are known to play a significant role in the host-finding behavior of Varroa. The mites distinguish between bees from different task groups, and prefer nurses over foragers. We examined the possibility of disrupting the Varroa – honey bee interaction by targeting the mite's olfactory system. In particular, we examined the effect of volatile compounds, ethers of cis 5-(2′-hydroxyethyl) cyclopent-2-en-1-ol or of dihydroquinone, resorcinol or catechol. We tested the effect of these compounds on the Varroa chemosensory organ by electrophysiology and on behavior in a choice bioassay. The electrophysiological studies were conducted on the isolated foreleg. In the behavioral bioassay, the mite's preference between a nurse and a forager bee was evaluated. Principal findings We found that in the presence of some compounds, the response of the Varroa chemosensory organ to honey bee headspace volatiles significantly decreased. This effect was dose dependent and, for some of the compounds, long lasting (>1 min). Furthermore, disruption of the Varroa volatile detection was accompanied by a reversal of the mite's preference from a nurse to a forager bee. Long-term inhibition of the electrophysiological responses of mites to the tested compounds was a good predictor for an alteration in the mite's host preference. Conclusions These data indicate the potential of the selected compounds to disrupt the Varroa - honey bee associations, thus opening new avenues for Varroa control. PMID:25226388

  20. Can we disrupt the sensing of honey bees by the bee parasite Varroa destructor?

    PubMed

    Eliash, Nurit; Singh, Nitin Kumar; Kamer, Yosef; Pinnelli, Govardhana Reddy; Plettner, Erika; Soroker, Victoria

    2014-01-01

    The ectoparasitic mite, Varroa destructor, is considered to be one of the most significant threats to apiculture around the world. Chemical cues are known to play a significant role in the host-finding behavior of Varroa. The mites distinguish between bees from different task groups, and prefer nurses over foragers. We examined the possibility of disrupting the Varroa--honey bee interaction by targeting the mite's olfactory system. In particular, we examined the effect of volatile compounds, ethers of cis 5-(2'-hydroxyethyl) cyclopent-2-en-1-ol or of dihydroquinone, resorcinol or catechol. We tested the effect of these compounds on the Varroa chemosensory organ by electrophysiology and on behavior in a choice bioassay. The electrophysiological studies were conducted on the isolated foreleg. In the behavioral bioassay, the mite's preference between a nurse and a forager bee was evaluated. We found that in the presence of some compounds, the response of the Varroa chemosensory organ to honey bee headspace volatiles significantly decreased. This effect was dose dependent and, for some of the compounds, long lasting (>1 min). Furthermore, disruption of the Varroa volatile detection was accompanied by a reversal of the mite's preference from a nurse to a forager bee. Long-term inhibition of the electrophysiological responses of mites to the tested compounds was a good predictor for an alteration in the mite's host preference. These data indicate the potential of the selected compounds to disrupt the Varroa--honey bee associations, thus opening new avenues for Varroa control.