Scheibe, Andrea; Gleixner, Gerd
2014-01-01
We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow. PMID:25486628
Scheibe, Andrea; Gleixner, Gerd
2014-01-01
We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow.
NASA Astrophysics Data System (ADS)
Wheeler, K. I.; Levia, D. F.; Hudson, J. E.
2017-09-01
In autumn, the dissolved organic matter (DOM) contribution of leaf litter leachate to streams in forested watersheds changes as trees undergo resorption, senescence, and leaf abscission. Despite its biogeochemical importance, little work has investigated how leaf litter leachate DOM changes throughout autumn and how any changes might differ interspecifically and intraspecifically. Since climate change is expected to cause vegetation migration, it is necessary to learn how changes in forest composition could affect DOM inputs via leaf litter leachate. We examined changes in leaf litter leachate fluorescent DOM (FDOM) from American beech (
Beech cupules as keystone structures for soil fauna.
Melguizo-Ruiz, Nereida; Jiménez-Navarro, Gerardo; Moya-Laraño, Jordi
2016-01-01
Facilitative or positive interactions are ubiquitous in nature and play a fundamental role in the configuration of ecological communities. In particular, habitat modification and niche construction, in which one organism locally modifies abiotic conditions and favours other organisms by buffering the effects of adverse environmental factors, are among the most relevant facilitative interactions. In line with this, 'keystone structures', which provide resources, refuge, or advantageous services decisive for other species, may allow the coexistence of various species and thus considerably contribute to diversity maintenance. Beech cupules are woody husks harbouring beech fruits that remain in the forest soil for relatively long periods of time. In this study, we explored the potential role of these cupules in the distribution and maintenance of the soil fauna inhabiting the leaf litter layer. We experimentally manipulated cupule availability and soil moisture in the field to determine if such structures are limiting and can provide moist shelter to soil animals during drought periods, contributing to minimize desiccation risks. We measured invertebrate abundances inside relative to outside the cupules, total abundances in the leaf litter and animal body sizes, in both dry and wet experimental plots. We found that these structures are preferentially used by the most abundant groups of smaller soil animals-springtails, mites and enchytraeids-during droughts. Moreover, beech cupules can be limiting, as an increase in use was found with higher cupule densities, and are important resources for many small soil invertebrates, driving the spatial structure of the soil community and promoting higher densities in the leaf litter, probably through an increase in habitat heterogeneity. We propose that fruit woody structures should be considered 'keystone structures' that contribute to soil community maintenance. Therefore, beech trees may indirectly facilitate soil fauna activities through their decaying fruit husks, hence acting as ecosystem engineers.
Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Jariyavidyanont, Katalee; Kaunzner, Jennifer; Juncheed, Kantida; Uengwetwanit, Tanaporn; Rudloff, Renate; Schulz, Elke; Hofrichter, Martin; Schloter, Michael; Krüger, Dirk; Buscot, François
2015-05-01
Forest management practices (FMPs) significantly influence important ecological processes and services in Central European forests, such as leaf litter decomposition and nutrient cycling. Changes in leaf litter diversity, and thus, its quality as well as microbial community structure and function induced by different FMPs were hypothesized to be the main drivers causing shifts in decomposition rates and nutrient release in managed forests. In a litterbag experiment lasting 473 days, we aimed to investigate the effects of FMPs (even-aged timber management, selective logging and unmanaged) on bacterial and fungal communities involved in leaf litter degradation over time. Our results showed that microbial communities in leaf litter were strongly influenced by both FMPs and sampling date. The results from nonmetric multidimensional scaling (NMDS) ordination revealed distinct patterns of bacterial and fungal successions over time in leaf litter. We demonstrated that FMPs and sampling dates can influence a range of factors, including leaf litter quality, microbial macronutrients, and pH, which significantly correlate with microbial community successions.
Biological decomposition efficiency in different woodland soils.
Herlitzius, H
1983-03-01
The decomposition (meaning disappearance) of different leaf types and artificial leaves made from cellulose hydrate foil was studied in three forests - an alluvial forest (Ulmetum), a beech forest on limestone soil (Melico-Fagetum), and a spruce forest in soil overlying limestone bedrock.Fine, medium, and coarse mesh litter bags of special design were used to investigate the roles of abiotic factors, microorganisms, and meso- and macrofauna in effecting decomposition in the three habitats. Additionally, the experimental design was carefully arranged so as to provide information about the effects on decomposition processes of the duration of exposure and the date or moment of exposure. 1. Exposure of litter samples oor 12 months showed: a) Litter enclosed in fine mesh bags decomposed to some 40-44% of the initial amount placed in each of the three forests. Most of this decomposition can be attributed to abiotic factors and microoganisms. b) Litter placed in medium mesh litter bags reduced by ca. 60% in alluvial forest, ca. 50% in beech forest and ca. 44% in spruce forest. c) Litter enclosed in coarse mesh litter bags was reduced by 71% of the initial weights exposed in alluvial and beech forests; in the spruce forest decomposition was no greater than observed with fine and medium mesh litter bags. Clearly, in spruce forest the macrofauna has little or no part to play in effecting decomposition. 2. Sequential month by month exposure of hazel leaves and cellulose hydrate foil in coarse mesh litter bags in all three forests showed that one month of exposure led to only slight material losses, they did occur smallest between March and May, and largest between June and October/November. 3. Coarse mesh litter bags containing either hazel or artificial leaves of cellulose hydrate foil were exposed to natural decomposition processes in December 1977 and subsampled monthly over a period of one year, this series constituted the From-sequence of experiments. Each of the From-sequence samples removed was immediately replaced by a fresh litter bag which was left in place until December 1978, this series constituted the To-sequence of experiments. The results arising from the designated From- and To-sequences showed: a) During the course of one year hazel leaves decomposed completely in alluvial forest, almost completely in beech forest but to only 50% of the initial value in spruce forest. b) Duration of exposure and not the date of exposure is the major controlling influence on decomposition in alluvial forest, a characteristic reflected in the mirror-image courses of the From- and To-sequences curves with respect to the abscissa or time axis. Conversely the date of exposure and not the duration of exposure is the major controlling influence on decomposition in the spruce forest, a characteristic reflected in the mirror-image courses of the From-and To-sequences with respect to the ordinate or axis of percentage decomposition. c) Leaf powder amendment increased the decomposition rate of the hazel and cellulose hydrate leaves in the spruce forest but had no significant effect on their decomposition rate in alluvial and beech forests. It is concluded from this, and other evidence, that litter amendment by leaf fragments of phytophage frass in sites of low biological decomposition activity (eg. spruce) enhances decomposition processes. d) The time course of hazel leaf decomposition in both alluvial and beech forest is sigmoidal. Three s-phases are distinguished and correspond to the activity of microflora/microfauna, mesofauna/macrofauna, and then microflora/microfauna again. In general, the sigmoidal pattern of the curve can be considered valid for all decomposition processes occurring in terrestrial situations. It is contended that no decomposition (=disappearance) curve actually follows an e-type exponential function. A logarithmic linear regression can be constructed from the sigmoid curve data and although this facilitates inter-system comparisons it does not clearly express the dynamics of decomposition. 4. The course of the curve constructed from information about the standard deviations of means derived from the From- and To-sequence data does reflect the dynamics of litter decomposition. The three s-phases can be recognised and by comparing the actual From-sequence deviation curve with a mirror inversion representation of the To-sequence curve it is possible to determine whether decomposition is primarily controlled by the duration of exposure or the date of exposure. As is the case for hazel leaf decomposition in beech forest intermediate conditions can be readily recognised.
Climate change triggers effects of fungal pathogens and insect herbivores on litter decomposition
NASA Astrophysics Data System (ADS)
Butenschoen, Olaf; Scheu, Stefan
2014-10-01
Increasing infestation by insect herbivores and pathogenic fungi in response to climate change will inevitably impact the amount and quality of leaf litter inputs into the soil. However, little is known on the interactive effect of infestation severity and climate change on litter decomposition, and no such study has been published for deciduous forests in Central Europe. We assessed changes in initial chemical quality of beech (Fagus sylvatica L.) and maple litter (Acer platanoides L.) in response to infestation by the gall midge Mikiola fagi Hart. and the pathogenic fungus Sawadaea tulasnei Fuckel, respectively, and investigated interactive effects of infestation severity, changes in temperature and soil moisture on carbon mineralization in a short-term laboratory study. We found that infestation by the gall midge M. fagi and the pathogenic fungus S. tulasnei significantly changed the chemical quality of beech and maple litter. Changes in element concentrations were generally positive and more pronounced, and if negative less pronounced for maple than beech litter most likely due to high quality fungal tissue remaining on litter after abscission. More importantly, alterations in litter chemical quality did not translate to distinct patterns of carbon mineralization at ambient conditions, but even low amounts of infested litter accelerated carbon mineralization at moderately increased soil moisture and in particular at higher temperature. Our results indicate that insect herbivores and fungal pathogens can markedly alter initial litter chemical quality, but that afterlife effects on carbon mineralization depend on soil moisture and temperature, suggesting that increased infestation severity under projected climate change potentially increases soil carbon release in deciduous forests in Central Europe.
NASA Astrophysics Data System (ADS)
Likhanov, Artur; Bilyera, Nataliya; Sedykh, Olena; Melnychuk, Maksym
2017-04-01
Keywords: micromycetes, beech, soil enzymes, illuminance, Penicillium canescens. European beech (Fagus sylvatica L.) is a commercially valuable tree species. As the potential distribution area for beech forest is restricted by Europe, planting of artificial stands is adopted in this region. Beech introduction can alter ecosystem considerably, but the mechanism of this transformation is not clear. We aimed to define abiotic and biotic parameters affecting floor development in beech stands introduced to the oak-hornbeam forest ecosystem ca.50 years ago in Eastern Europe (Ukraine). The daylight illuminace level was similar (2.9-6.5 klx) for both stands. However, grass cover in beech stands did not exceed 0.1-0.5 % even on sites with illuminace level 7.5-8.3 klx. It does not comply with the commonly used suggestion that shading is the main factor causes forest floor absence in the beech stands. We indicated predominantly biotic factors influencing forest floor formation. Thus, particular edaphon represented by micromycetes was able to inhibit plants and microorganisms. We isolated Penicillium canescens strains from soil under beech stands. These fungi utilized beech root exudates and phenol compounds of leaf litter, and produced biologically active substances caused cytostatic and mutagenic effects. They also accelerated (in 2-3.2 times) soil β-glucosidase activity, but had no effect on phosphatase. The biomass of fungi varied under cultivation of Penicillium canescens strains on Czapek medium with the addition of aqueous extracts of beech leaf litter. The biomass of micromycetes increased on 10-15 % at plant phenols concentrations up to 1 mg mL-1. On the contrary, increasing the concentration of phenols up to 4 mg mL-1resulted in a biomass decrease to 40%. The relationship between the concentration of plant phenols and rate of fungal biomass formation indicates that there is probably seasonal regulation of micromycetes activity in the forest biocenosis. The highest biological activity of soil fungi was observed in spring under the optimum phenol level for them. It was found experimentally that the cellulose addition to the Czapek medium at the amount of 100 mg L-1 leads to an increase in the synthesis of substances with a pronounced herbicidal action. Medium- and low polar fungi metabolites (curvularin, griseofulvin, polyacetylen) significantly inhibited root growth of test plants. They provided a cytostatic effect and caused numerous irregularities in cell division (formation of chromosome bridges and micronuclei). Thus, the introduction of Fagus sylvatica L. in Kyiv Polissya leads to the formation of unique environmental conditions in the forest soils. They contributed to the dominance of micromycetes (mainly genus Penicillium) in the soil. Soil fungi transformed leaf litter and inhibited the growth and development of plants of the lower tier by producing exudates. This led to a significant reduction in the biodiversity of the forest biocenosis.
NASA Astrophysics Data System (ADS)
Wheeler, K. I.; Levia, D. F., Jr.; Hudson, J. E.
2017-12-01
As trees undergo autumnal processes such as resorption, senescence, and leaf abscission, the dissolved organic matter (DOM) contribution of leaf litter leachate to streams changes. However, little research has investigated how the fluorescent DOM (FDOM) changes throughout the autumn and how this differs inter- and intraspecifically. Two of the major impacts of global climate change on forested ecosystems include altering phenology and causing forest community species and subspecies composition restructuring. We examined changes in FDOM in leachate from American beech (Fagus grandifolia Ehrh.) leaves in Maryland, Rhode Island, Vermont, and North Carolina and yellow poplar (Liriodendron tulipifera L.) leaves from Maryland throughout three different phenophases: green, senescing, and freshly abscissed. Beech leaves from Maryland and Rhode Island have previously been identified as belonging to the same distinct genetic cluster and beech trees from Vermont and the study site in North Carolina from the other. FDOM in samples was characterized using excitation-emission matrices (EEMs) and a six-component parallel factor analysis (PARAFAC) model was created to identify components. Self-organizing maps (SOMs) were used to visualize variation and patterns in the PARAFAC component proportions of the leachate samples. Phenophase and species had the greatest influence on determining where a sample mapped on the SOM when compared to genetic clusters and geographic origin. Throughout senescence, FDOM from all the trees transitioned from more protein-like components to more humic-like ones. Percent greenness of the sampled leaves and the proportion of the tyrosine-like component 1 were found to significantly differ between the two genetic beech clusters. This suggests possible differences in photosynthesis and resorption between the two genetic clusters of beech. The use of SOMs to visualize differences in patterns of senescence between the different species and genetic populations proved to be useful in ways that other multivariate analysis techniques lack.
Purahong, Witoon; Schloter, Michael; Pecyna, Marek J; Kapturska, Danuta; Däumlich, Veronika; Mital, Sanchit; Buscot, François; Hofrichter, Martin; Gutknecht, Jessica L M; Krüger, Dirk
2014-11-12
The widespread paradigm in ecology that community structure determines function has recently been challenged by the high complexity of microbial communities. Here, we investigate the patterns of and connections between microbial community structure and microbially-mediated ecological function across different forest management practices and temporal changes in leaf litter across beech forest ecosystems in Central Europe. Our results clearly indicate distinct pattern of microbial community structure in response to forest management and time. However, those patterns were not reflected when potential enzymatic activities of microbes were measured. We postulate that in our forest ecosystems, a disconnect between microbial community structure and function may be present due to differences between the drivers of microbial growth and those of microbial function.
NASA Astrophysics Data System (ADS)
Keiblinger, Katharina Maria; Hämmerle, Ieda; Zechmeister-Boltenstern, Sophie
2010-05-01
Little is known about how the variance in resources in terms of carbon (C), nitrogen (N), phosphorus (P) ratios affects respiration and nutrient dynamics. To elucidate how resource quantity and stoichiometry affect the decomposition process of beech (Fagus sylvatica) litter a terrestrial microcosm experiment was conducted. Our aim was to follow changes of beech litter stoichiometry and biogeochemical processes, and to quantify element losses as affected by temperature and moisture extremes. In addition to gaseous element losses (CO2) we examined the release of nutrients prone to leaching and the importance of environmental controls. We addressed mechanisms and pathways of carbon, nitrogen and phosphorus losses. In our experiment sterilised dried leaves were inoculated with a litter-soil suspension from a beech forest in order to ensure similar starting conditions. Beech litter from different Austrian sites covering C:N ratios from 45 to 66 and C:P ratios from 652 to 1467 were incubated at 15°C for six months. The water content was adjusted to 60% at regular intervals to keep the moisture constant. To monitor transient and persistent influences of environmental stress, the microcosms were subject to extreme changes in temperature (+30°C and -20°C) and moisture (draught) after an incubation time of three months. Litter stoichiometries (C:N, C:P) turned out to be strong predictors for respiration, and nitrogen, and phosphorous losses. (i) Litter with narrow litter C:nutrient ratios decomposed faster than litter with wider litter C:nutrient ratios; and therefore showed higher respiration rates. (ii) Increased nutrient losses as leachates were observed for high quality leaf litter i.e. inorganic nitrogen losses for sites with narrow litter C:N ratios and phosphate was released more quickly in sites with narrow C:P ratios. There was a strong functional response of the microbial community to environmental extremes. Respiration increased upon temperature extremes, especially in the litter with highest C:P ratio. A persistent effect of temperature extremes on NH4 and NO3 concentrations was observed for three months after stress application. However, the effect on PO4 concentrations was only transient. Environmental conditions had a strong affect on nutrient losses but only a minor affect on microbial carbon Cmic and microbial nitrogen Nmic. The impact of environmental stress (heat or freezing) on microbes in terms of Cmic, Nmic and C:Nmic was strongest in sites with narrow litter C:N ratios. Our results indicate a similar stoichiometric demand of microbes, with temporal changes which results in differences in nutrient cycling on substrates with different C:N:P ratios.
American Beech Leaf-litter Leachate Chemistry: Effects of Geography and Phenophase
NASA Astrophysics Data System (ADS)
Hudson, J. E.; Levia, D. F., Jr.; Wheeler, K. I.; Winters, C. G.; Vaughan, M.; Chace, J.; Sleeper, R.
2017-12-01
The decomposition of leaves from broadleaved trees contributes to the energy budget of forested watersheds via dissolved organic matter, nutrients, and biological activity. Although it is often implicitly assumed that intraspecific differences in leaf-litter leachate chemistry do not significantly differ geographically, we attempted to discern how these inputs may vary from single tree species that is known to have two genetically distinct and geographically separate populations, as well as how these inputs may change throughout autumn senescence and after abscission. We analyzed the physical and chemical leaf traits and leaf leachates of leaves from Fagus grandifolia (American beech; n = 360) during three phenophases: fresh green, senescing, and fallen. During each phenophase, leaves were collected from four sites along a geographic transect stretching from Vermont to North Carolina (over 1400 km), with two sites representing each genetic population and differing climatic conditions. Pooled leaf leachates from each site and phenophase were analyzed for routine solutes and nutrients, as well as fluorescent and UV-visible absorbance indices. Quantities of macro- and micronutrients were highly variable among sites and phenophases but tended to be lowest from fallen leaves, while measured fluorescence and absorbance indices tended to increase during leaves collected during senescence. Results suggest significant differences in leached nutrients among field sites, while optical properties and nutrients varied significantly among phenophases. Aromaticity and molecular weight of DOM in leachates was generally low, and aromaticity and humification of leachates both increased as leaves aged throughout the selected phenophases. Results also suggest that geographically (or genetically) separate populations of the same species do not experience senescence in the same way and that implicit assumptions of intraspecific uniformity of leaf-litter leachate chemistry for a given tree species may be invalid. Funding note: Research made possible by the U.S. National Science Foundation (Grant No. IIA-1330238, IIA-1330446, and IIA-1330406).
Predator-prey pursuit-evasion games in structurally complex environments.
Morice, Sylvie; Pincebourde, Sylvain; Darboux, Frédéric; Kaiser, Wilfried; Casas, Jérôme
2013-11-01
Pursuit and evasion behaviors in many predator-prey encounters occur in a geometrically structured environment. The physical structures in the environment impose strong constraints on the perception and behavioral responses of both antagonists. Nevertheless, no experimental or theoretical study has tackled the issue of quantifying the role of the habitat's architecture on the joint trajectories during a predator-prey encounter. In this study, we report the influence of microtopography of forest leaf litter on the pursuit-evasion trajectories of wolf spiders Pardosa sp. attacking the wood cricket Nemobius sylvestris. Fourteen intact leaf litter samples of 1 m × 0.5 m were extracted from an oak-beech forest floor in summer and winter, with later samples having the most recently fallen leaves. Elevation was mapped at a spatial resolution of 0.5 mm using a laser scanner. Litter structuring patterns were identified by height transects and experimental semi-variograms. Detailed analysis of all visible leaf-fragments of one sample enabled us to relate the observed statistical patterns to the underlying geometry of individual elements. Video recording of pursuit-evasion sequences in arenas with flat paper or leaf litter enabled us to estimate attack and fleeing distances as a function of substrate. The compaction index, the length of contiguous flat surfaces, and the experimental variograms showed that the leaf litter was smoother in summer than in winter. Thus, weathering as well as biotic activities compacted and flattened the litter over time. We found good agreement between the size of the structuring unit of leaf litter and the distance over which attack and escape behaviors both were initiated (both ∼3 cm). There was a four-fold topographical effect on pursuit-escape sequences; compared with a flat surface, leaf litter (1) greatly reduced the likelihood of launching a pursuit, (2) reduced pursuit and escape distances by half, (3) put prey and predator on par in terms of pursuit and escape distances, and (4) reduced the likelihood of secondary pursuits, after initial escape of the prey, to nearly zero. Thus, geometry of the habitat strongly modulates the rules of pursuit-evasion in predator-prey interactions in the wild.
Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk
2014-01-01
Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling. PMID:24699676
Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk
2014-01-01
Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.
Wiezik, Michal; Svitok, Marek; Wieziková, Adela; Dovčiak, Martin
2015-01-01
Global or regional environmental changes in climate or land use have been increasingly implied in shifts in boundaries (ecotones) between adjacent ecosystems such as beech or oak-dominated forests and forest-steppe ecotones that frequently co-occur near the southern range limits of deciduous forest biome in Europe. Yet, our ability to detect changes in biological communities across these ecosystems, or to understand their environmental drivers, can be hampered when different sampling methods are required to characterize biological communities of the adjacent but ecologically different ecosystems. Ants (Hymenoptera: Formicidae) have been shown to be particularly sensitive to changes in temperature and vegetation and they require different sampling methods in closed vs. open habitats. We compared ant assemblages of closed-forests (beech- or oak-dominated) and open forest-steppe habitats in southwestern Carpathians using methods for closed-forest (litter sifting) and open habitats (pitfall trapping), and developed an integrated sampling approach to characterize changes in ant assemblages across these adjacent ecosystems. Using both methods, we collected 5,328 individual ant workers from 28 species. Neither method represented ant communities completely, but pitfall trapping accounted for more species (24) than litter sifting (16). Although pitfall trapping characterized differences in species richness and composition among the ecosystems better, with beech forest being most species poor and ecotone most species rich, litter sifting was more successful in identifying characteristic litter-dwelling species in oak-dominated forest. The integrated sampling approach using both methods yielded more accurate characterization of species richness and composition, and particularly so in species-rich forest-steppe habitat where the combined sample identified significantly higher number of species compared to either of the two methods on their own. Thus, an integrated sampling approach should be used to fully characterize changes in ant assemblages across ecosystem boundaries, or with vegetation change over time, and particularly so in species-rich habitats such as forest-steppe ecotones. PMID:26226140
Wiezik, Michal; Svitok, Marek; Wieziková, Adela; Dovčiak, Martin
2015-01-01
Global or regional environmental changes in climate or land use have been increasingly implied in shifts in boundaries (ecotones) between adjacent ecosystems such as beech or oak-dominated forests and forest-steppe ecotones that frequently co-occur near the southern range limits of deciduous forest biome in Europe. Yet, our ability to detect changes in biological communities across these ecosystems, or to understand their environmental drivers, can be hampered when different sampling methods are required to characterize biological communities of the adjacent but ecologically different ecosystems. Ants (Hymenoptera: Formicidae) have been shown to be particularly sensitive to changes in temperature and vegetation and they require different sampling methods in closed vs. open habitats. We compared ant assemblages of closed-forests (beech- or oak-dominated) and open forest-steppe habitats in southwestern Carpathians using methods for closed-forest (litter sifting) and open habitats (pitfall trapping), and developed an integrated sampling approach to characterize changes in ant assemblages across these adjacent ecosystems. Using both methods, we collected 5,328 individual ant workers from 28 species. Neither method represented ant communities completely, but pitfall trapping accounted for more species (24) than litter sifting (16). Although pitfall trapping characterized differences in species richness and composition among the ecosystems better, with beech forest being most species poor and ecotone most species rich, litter sifting was more successful in identifying characteristic litter-dwelling species in oak-dominated forest. The integrated sampling approach using both methods yielded more accurate characterization of species richness and composition, and particularly so in species-rich forest-steppe habitat where the combined sample identified significantly higher number of species compared to either of the two methods on their own. Thus, an integrated sampling approach should be used to fully characterize changes in ant assemblages across ecosystem boundaries, or with vegetation change over time, and particularly so in species-rich habitats such as forest-steppe ecotones.
NASA Astrophysics Data System (ADS)
Nakahata, R.; Osawa, A.; Naramoto, M.; Mizunaga, H.; Sato, M.
2017-12-01
The masting phenomenon that seed production has large annual variation with spatial synchrony appears generally in beeches. Therefore, net primary production and carbon allocation mechanism in beech forests may differ among several years in relation to annual variation of seed production. On the other hand, fine roots play key roles in carbon dynamics and nutrient and water acquisition of an ecosystem. Evaluation of fine root dynamics is essential to understand long-term dynamics of production in forest ecosystems. Moreover, the influence of mast seeding on resource allocation should be clarified in such beech forests. The aim of this study is to clarify possible relationships between the patterns of above- and below-ground production in relation to the masting events using observation data of litter fall and fine root dynamics. We applied the litter trap method and a minirhizotron method in a cool-temperate natural forest dominated by beech (Fagus crenata Blume). Ten litter traps were set from 2008 to 2016, then annual leaf and seed production were estimated. Four minirhizotron tubes were buried in Aug. 2008 and soil profiles were scanned monthly until Nov. 2016 during the periods of no snow covering. The scanned soil profiles were analyzed for calculating fine root production using the WinRHIZO Tron software. In the present study site, rich production of mast seeding occurred biennially and fine root production showed various seasonal patterns. There was no significant correlation between seed production and annual fine root production in the same year. However, seed production had a positive correlation with fine root production in autumn in the previous year and indicated a negative correlation with that in autumn in the current year. These results indicate that higher fine root production has led to increased nutrient acquisition, which resulted in rich seed production in the next year. It is also suppressed after the masting events due to shortage in resources. This interpretation of the mechanism may be reasonable because the number of flowers and seeds in the current year may have been determined in summer of the previous year. The patterns of fine root production are reasonably changed to occur the masting phenomenon of beeches.
Tree species influence soil-atmosphere fluxes of the greenhouse gases CO2, CH4 and N2O
NASA Astrophysics Data System (ADS)
Steffens, Christina; Vesterdal, Lars; Pfeiffer, Eva-Maria
2016-04-01
In the temperate zone, forests are the greatest terrestrial sink for atmospheric CO2, and tree species affect soil C stocks and soil CO2 emissions. When considering the total greenhouse gas (GHG) balance of the forest soil, the relevant GHGs CH4 and N2O should also be considered as they have a higher global warming potential than CO2. The presented data are first results from a field study in a common garden site in Denmark where tree species with ectomycorrhizal colonization (beech - Fagus sylvatica, oak - Quercus robur) and with arbuscular mycorrhizal colonization (maple - Acer pseudoplatanus, ash - Fraxinus excelsior) have been planted in monocultures in adjacent blocks of about 0.25 ha in the year 1973 on former arable land. The soil-atmosphere fluxes of all three gases were measured every second week since August 2015. The hypothesis is that the total GHG efflux from forest soil would differ between species, and that these differences could be related to the type of mycorrhizal association and leaf litter quality. Preliminary results (August to December 2015) indicate that tree species influence the fluxes (converted to CO2-eq) of the three GHGs. Total soil CO2 efflux was in the low end of the range reported for temperate broadleaved forests but similar to the measurements at the same site approximately ten years ago. It was highest under oak (9.6±2.4 g CO2 m-2 d-1) and lowest under maple (5.2±1.6 g CO2 m-2 d-1). In contrast, soil under oak was a small but significant sink for CH4(-0.005±0.003 g CO2-eq m-2 d-1), while there were almost no detectable CH4 fluxes in maple. Emissions of N2O were highest under beech (0.6±0.6 g CO2-eq m-2 d-1) and oak (0.2±0.09 g CO2-eq m-2 d-1) and lowest under ash (0.03±0.04 g CO2-eq m-2 d-1). In the total GHG balance, soil CH4 uptake was negligible (≤0.1% of total emissions). Emissions of N2O (converted to CO2-eq) contributed <1% (ash) to 8% (beech) to total GHG emissions. Summing up all GHG emissions, the tree species were divided in two groups as hypothesized: Beech and oak, both colonized by ectomycorrhiza and producing leaf litter with a high lignin:N ratio, had higher total GHG emissions (8.9±3.5 and 10.3±2.9 g CO2-eq m-2 d-1) than maple and ash (6.2±1.4 and 6.2±0.9 g CO2-eq m-2 d-1) that are colonized by arbuscular mycorrhiza and produce leaf litter with a lower lignin:N ratio.
Schneider, Thomas; Keiblinger, Katharina M; Schmid, Emanuel; Sterflinger-Gleixner, Katja; Ellersdorfer, Günther; Roschitzki, Bernd; Richter, Andreas; Eberl, Leo; Zechmeister-Boltenstern, Sophie; Riedel, Kathrin
2012-01-01
Leaf-litter decomposition is a central process in carbon cycling; however, our knowledge about the microbial regulation of this process is still scarce. Metaproteomics allows us to link the abundance and activity of enzymes during nutrient cycling to their phylogenetic origin based on proteins, the ‘active building blocks' in the system. Moreover, we employed metaproteomics to investigate the influence of environmental factors and nutrients on the decomposer structure and function during beech litter decomposition. Litter was collected at forest sites in Austria with different litter nutrient content. Proteins were analyzed by 1-D-SDS-PAGE followed by liquid-chromatography and tandem mass-spectrometry. Mass spectra were assigned to phylogenetic and functional groups by a newly developed bioinformatics workflow, assignments being validated by complementary approaches. We provide evidence that the litter nutrient content and the stoichiometry of C:N:P affect the decomposer community structure and activity. Fungi were found to be the main producers of extracellular hydrolytic enzymes, with no bacterial hydrolases being detected by our metaproteomics approach. Detailed investigation of microbial succession suggests that it is influenced by litter nutrient content. Microbial activity was stimulated at higher litter nutrient contents via a higher abundance and activity of extracellular enzymes. PMID:22402400
NASA Astrophysics Data System (ADS)
Babl, E. K.; Alexander, H. D.; Siegert, C. M.; Willis, J. L.; Berry, A. I.
2017-12-01
Upland oak forests of the eastern United States are shifting dominance towards shade-tolerant, fire-intolerant species. This shift is hypothesized to be driven by anthropogenic fire suppression and lead to mesophication, a positive feedback loop where shade-tolerant, fire-sensitive species (i.e. mesophytes) create a cool, moist understory, reducing forest flammability and promoting their own proliferation at the expense of pyrophytic, shade-intolerant species such as oaks. There have been few empirical studies identifying mechanisms of mesophication, and these studies have yet to extensively explore potential mesophytes other than red maple (Acer rubrum). To address this issue, we sampled four hypothesized mesophytes (A. rubrum, A. saccharum, Carya glabra, and Fagus grandifolia) and two upland oak species (Quercus alba and Q. montana) across a gradient of sizes (20-60 cm DBH) in western Kentucky. We quantified canopy, bark, and leaf litter traits among upland oaks and mesophytes that may lead to differences in forest flammability. Preliminary results show that mesophytes had thinner and smoother bark than upland oaks and an increased canopy volume (normalized to stem volume), traits known to influence water movement through the canopy and understory microclimate. Maple leaf litter also decomposed faster, which could decrease fuel loads; after 6 months, red and sugar maple leaf litter lost 37% of original mass compared to 32%, 22%, and 14% mass loss in hickory, oak, and American beech litter, respectively. Furthermore, volumetric soil moisture of the soil organic layer beneath the canopies of mesophytes was 62% moister two days following a rainfall event compared to oaks. These differences in soil organic layer water retention after rainfall could lead to fuel discontinuity. These findings suggest that mesophytes may alter future forest flammability through their bark, canopy, and leaf litter traits which may modify fuel moisture, loads, and continuity and that a mesophication tipping point may eventually occur that prevents restoration efforts using prescribed fire.
Wittig, Rüdiger
2008-09-01
High SO(2) concentrations as have been observed over decades in the Ruhr district lead to a remarkable reduction of leaf area in the majority of the characteristic broad-leafed herbs of the Central European beech forests even after only a few months of experimental fumigation. Thus, it is no wonder in the time of high SO(2) pollution, e.g., in the town of Herne (centre of the Ruhr district), that there was not a single beech forest hosting, for instance, Viola reichenbachiana or Anemone nemorosa. As air quality has improved very much over some decades in the Ruhr district, one can expect a recolonisation of the beech forests by the species of former time characteristic for the herb layer. However, one has to consider that only the air pollution was reduced, while soil acidification and contamination with heavy metals and PAH are, on the short run, irreversible. That is why experiments were carried out, considering the question as to whether recolonisation of the forests of the Ruhr district by the aforementioned species is possible and why such a recolonisation up to now has not occurred. The experiments were carried out in a beech forest situated in the centre of the Ruhr district in the City of Herne. The wood anemone (A. nemorosa) was chosen as test plant because of its high frequency in beech forests on loess soils outside the Ruhr district, and its absence in beech forests in the Ruhr district. The experiments with A. nemorosa were carried out in three variants with different soils: (a): soil of the local forests (R); (b): soil of the local forests whose soot layer was removed (r); (c): imported soil from a clean air region far away from the Ruhr district (Odenwald). Survival of rhizomes of A. nemorosa is possible for some years in the soils of the Ruhr district; however, the establishment of a population could not be achieved. The results obtained by the imported soil show that it is no longer air pollution, but the soil which prevents the establishment of a population. Sexual reproduction is rather impossible because of the thick litter layer with which all of the Ruhr district's beech forests are covered. With respect to the unfavourable chemistry of the soil of the Ruhr district and in consideration of the unfavourable attributes of the soot layer, the author expected the following order of the development of shoot numbers: O > r > R. However, the result is: O > R > r. In contrast to the expected result, the soot layer has no negative but slightly positive effects on the implanted rhizomes. A possible explanation is that the soot layer, which is situated immediately below the top soil, prevents the top soil from drying up and thus even protects the rhizomes from desiccation. Also, the possibility has to be considered that the soot layer functions as a nutrient storage area. At present, a survival of the rhizomes of A. nemorosa in the soils of the Ruhr district is temporarily possible but does not lead to the establishment of a permanent population. This only can be achieved by additional sexual reproduction. However, the thick litter layer present in all beech forests of the Ruhr district prevents the establishment of seedlings, i.e., it does not allow sexual reproduction to contribute to the population. The soot layer situated below the litter layer represents a second hindrance for germination. Other than seedlings, rhizomes are not negatively affected by the soot layer but even a slight stabilisation has to be stated. As a reason for this slightly positive effect, a protection of the upper mineral soil from desiccation by the hydrophob soot layer has to be considered. Secondly, the soot layer may serve as a nutrient storage which is of particular importance in acid soils, because acidification generally leads to a leeching of nutrients. To answer these questions, detailed further research is necessary. In order to restore the formerly rich herbaceous layer of the forests of the Ruhr district, experiments (removal of the litter layer; liming; ploughing) should be carried out at broad-scale to solve the question of how the strong negative effects of the established thick raw humus layer can be reduced or even be avoided. When the problem of the humus layer is solved, the beech forests of the Ruhr district today highly impoverished in species will become a vivid ecosystem, rich in flowering herbaceous species and thus much more attractive for the people of the Ruhr district than at present.
Creating 13C- and 15N-enriched tree leaf litter for decomposition experiments
NASA Astrophysics Data System (ADS)
Szlavecz, K. A.; Pitz, S.; Chang, C.; Bernard, M.
2013-12-01
Labeling plant material with heavy isotopes of carbon and nitrogen can produce a traceable nutrient signal that can be followed into the different trophic levels and decomposer food web. We treated 60 tree saplings with 13C-enriched CO2 gas and 15N-enriched ammonium nitrate over a three-month period to create dually-labeled plant material for future decomposition experiments. The trees included both early (Red maple, Sweetgum, Tulip poplar) and late (American beech, White oak) successional deciduous tree species, and a conifer, White pine. We constructed a 2.4 m × 2.4 m × 2.4 m environmental chamber that was climate-controlled using an air conditioning system. An Arduino microcontroller interfaced with a Vaisala GMP343 CO2 probe maintained a CO2 concentration between 500-520 ppm by controlling a solenoid valve on the CO2 tank regulator. The trees were placed into the chamber in August 2012 and remained until senescence unless they were lost to death or disease. Ammonium nitrate was added twice, in September and October. Leaf samples were collected prior to the start of the experiment and after senescence, whereas root samples were collected only in December. Samples were dried, ground and analyzed using an isotope ratio mass spectrometer. American beech and White oak had 40% mortality, and 34% of tulip poplar trees were removed because of powdery mildew overgrowth or death. Most tulip poplar trees exhibited a second leaf out following senescence in late September. Nearly 1 kg of litter was produced with tulip poplar representing over half of the total mass. Levels of enrichment varied greatly by species. Beech (-14.2‰) and White oak (-4.8‰) had low levels of enrichment in comparison to early successional species such as Sweetgum (41.7‰) and Tulip poplar (30.7‰ [first leaf fall] and 238.0‰ [second leaf fall]). Leaf enrichment with 15N followed a similar pattern, though it was achieved at a higher level with δ15N values varying from 271.6‰ to 1354.2‰ at the end of the experiment. Enrichment of roots was significantly higher than leaves (δ13C range: 111.5-219.2‰; δ15N range: 1516.9-3939.3‰) indicating that nutrients were translocated away from leaves prior to senescence, which is supported by the increase in C:N ratio between the initial (19.0) and final (60.1) leaf sampling. Despite the variable levels of enrichment, leaves from all species were sufficiently labeled for use in future studies aimed at tracking the transformation of carbon and nitrogen during decomposition. The greatest challenges were treating diseases and pests and creating ideal growing conditions for many species within the same chamber. Reducing the number of individuals and better pest management will lead to even higher level enrichment in the future.
Physiological Responses of Beech and Sessile Oak in a Natural Mixed Stand During a Dry Summer
RAFTOYANNIS, YANNIS; RADOGLOU, KALLIOPI
2002-01-01
Responses of CO2 assimilation and stomatal conductance to decreasing leaf water potential, and to environmental factors, were analysed in a mixed natural stand of sessile oak (Quercus petraea ssp. medwediewii) and beech (Fagus sylvatica L.) in Greece during the exceptionally dry summer of 1998. Seasonal courses of leaf water potential were similar for both species, whereas mean net photosynthesis and stomatal conductance were always higher in sessile oak than in beech. The relationship between net photosynthesis and stomatal conductance was strong for both species. Sessile oak had high rates of photosynthesis even under very low leaf water potentials and high air temperatures, whereas the photosynthetic rate of beech decreased at low water potentials. Diurnal patterns were similar in both species but sessile oak had higher rates of CO2 assimilation than beech. Our results indicate that sessile oak is more tolerant of drought than beech, due, in part, to its maintenance of photosynthesis at low water potential. PMID:12102528
Rasmussen, Jes Jessen; Friberg, Nikolai; Larsen, Soren E
2008-11-21
In this study, the impact of a single pulse of the pyrethroid lambda-cyhalothrin was tested on a macroinvertebrate assemblage consisting of Gammarus pulex, Leuctra nigra, Heptagenia sulphurea and Ancylus fluviatilis in outdoor experimental stream channels. Channels (4m long, 0.1m wide) were groundwater fed and had natural substratum. Macroinvertebrates were exposed to 10.65 or 106.5 ng L(-1) lambda cyhalothrin for 90 min in the laboratory and after 24h introduced to the experimental stream channels with four replicates of each treatment and controls. Drift samples were taken with 24-h interval for 10 days and behaviour of drifted macroinvertebrates was assessed. Microalgae biomass was measured on days 1, 5, 8 and 10 along with leaf litter decomposition using leaf packs of beech (Fagus sylvatica). Numbers of drifting G. pulex and L. nigra with reduced mobility increased significantly with concentration of lambda-cyhalothrin. Increase of algal biomass was significantly greater in stream channels with macroinvertebrates exposed to 106.5 ng L(-1) compared to controls and 10.65 ng L(-1) treatments. Accrual of microalgal biomass was significantly higher in the high concentration treatment and decomposition of leaf litter was significantly greater in control channels compared to channels with exposed macroinvertebrates. This study may apply valuable knowledge to the understanding and assessment of how pyrethroids impact ecosystem functioning in streams.
NASA Astrophysics Data System (ADS)
Wang, L.; Ibrom, A.; Korhonen, J. F. J.; Arnoud Frumau, K. F.; Wu, J.; Pihlatie, M.; Schjoerring, J. K.
2012-07-01
Seasonal and spatial variations in foliar nitrogen (N) parameters were investigated in three European forests with different tree species, viz. beech (Fagus sylvatica L.), Douglas fir (Pseudotsuga menziesii, Mirb., Franco) and Scots pine (Pinus sylvestris L.) in Denmark, The Netherlands and Finland, respectively. This was done in order to obtain information about functional acclimation, tree internal N conservation and its relevance for both ecosystem internal N cycling and foliar N exchange with the atmosphere. Leaf N pools generally showed much higher seasonal variability in beech trees than in the coniferous canopies. The concentrations of N and chlorophyll in the beech leaves were synchronized with the seasonal course of solar radiation implying close physiological acclimation, which was not observed in the coniferous needles. During phases of intensive N metabolism in the beech leaves, the NH4+ concentration rose considerably. This was compensated for by a strong pH decrease resulting in relatively low Γ values (ratio between tissue NH4+ and H+). The Γ values in the coniferous were even smaller than in beech, indicating low probability of NH3 emissions from the foliage to the atmosphere as an N conserving mechanism. The reduction in foliage N content during senescence was interpreted as N re-translocation from the senescing leaves into the rest of the trees. The N re-translocation efficiency (ηr) ranged from 37 to 70% and decreased with the time necessary for full renewal of the canopy foliage. Comparison with literature data from in total 23 tree species showed a general tendency for ηr to on average be reduced by 8% per year the canopy stays longer, i.e. with each additional year it takes for canopy renewal. The boreal pine site returned the lowest amount of N via foliage litter to the soil, while the temperate Douglas fir stand which had the largest peak canopy N content and the lowestηr returned the highest amount of N to the soil. These results support the hypothesis that a high N status, e.g. as a consequence of chronically high atmospheric N inputs, increases ecosystem internal over tree-bulk-tissue internal N cycling in conifer stands. The two evergreen tree species investigated in the present study behaved very differently in all relevant parameters, i.e. needle longevity, Nc and ηr, showing that generalisations on tree internal vs. ecosystem internal N cycling cannot be made on the basis of the leaf habit alone.
Wang, Qian; Xu, Zheng; Hu, Tingxing; Rehman, Hafeez Ur; Chen, Hong; Li, Zhongbin; Ding, Bo; Hu, Hongling
2014-01-01
Walnut agroforestry systems have many ecological and economic benefits when intercropped with cool-season species. However, decomposing leaf litter is one of the main sources of allelochemicals in such systems. In this study, lettuce (Lactuca sativa var. angustata) was grown in the soil incorporated with walnut leaf litter to assess its allelopathic activity. Lettuce growth and physiological processes were inhibited by walnut leaf litter, especially during early growth stage (1-2 euphylla period) or with large amount of litter addition. The plants treated by small amount of leaf litter recovered their growth afterwards, while the inhibition for 180 g leaf litter persisted until harvest. Twenty-eight compounds were identified in the leaf litter, and several of them were reported to be phytotoxic, which may be responsible for the stress induced by walnut leaf litter. Thus, for highest economic value of vegetables such as lettuce, excessive incorporation of leaf litter should be discouraged.
Krashevska, Valentyna; Sandmann, Dorothee; Marian, Franca; Maraun, Mark; Scheu, Stefan
2017-10-01
We investigated the role of leaf litter chemistry and richness in affecting testate amoeba communities of tropical rainforest in the Ecuadorian Andes. Litterbags containing leaf litter from four dominating tree species (Clusia sp., Myrcia pubescens, Graffenrieda emarginata, and Cecropia andina) with richness 1, 2, and 4 species were established and exposed in the field for 12 months at 2000 m a.s.l. Chemical elements and compounds of leaf litter were analyzed before exposure. At the end of exposure, microbial biomass and litter mass loss were measured, and living testate amoeba species number, density, biomass, and community composition were determined. In total, 125 testate amoeba species colonized the litter in litterbags. The results suggest that high litter nitrogen and low lignin concentrations are indicators of high litter quality for testate amoebae density and species richness. Their species number and density significantly declined in the order 1 > 4 > 2 leaf litter species and varied with leaf litter chemistry being at a maximum in high-quality single leaf litter species and low in low-quality leaf litter. Further, the addition of litter of high-quality to low-quality litter increased testate amoebae biomass and density; however, the values did not exceed the ones in single high-quality litter treatments. Moreover, the structure of testate amoeba communities varied with litter chemistry, with Fe, Na, lignin, and litter C-to-N ratio being of major importance, and indicating that litter chemistry reflects habitat quality for testate amoebae. Overall, the data show that leaf litter chemistry overrides leaf litter richness in structuring testate amoeba communities.
Liers, Christiane; Arnstadt, Tobias; Ullrich, René; Hofrichter, Martin
2011-10-01
The degradation of lignocellulose and the secretion of extracellular oxidoreductases were investigated in beech-wood (Fagus sylvatica) microcosms using 11 representative fungi of four different ecophysiological and taxonomic groups causing: (1) classic white rot of wood (e.g. Phlebia radiata), (2) 'nonspecific' wood rot (e.g. Agrocybe aegerita), (3) white rot of leaf litter (Stropharia rugosoannulata) or (4) soft rot of wood (e.g. Xylaria polymorpha). All strong white rotters produced manganese-oxidizing peroxidases as the key enzymes of ligninolysis (75-2200 mU g(-1)), whereas lignin peroxidase activity was not detectable in the wood extracts. Interestingly, activities of two recently discovered peroxidases - aromatic peroxygenase and a manganese-independent peroxidase of the DyP-type - were detected in the culture extracts of A. aegerita (up to 125 mU g(-1)) and Auricularia auricula-judae (up to 400 mU g(-1)), respectively. The activity of classic peroxidases correlated to some extent with the removal of wood components (e.g. Klason lignin) and the release of small water-soluble fragments (0.5-1.0 kDa) characterized by aromatic constituents. In contrast, laccase activity correlated with the formation of high-molecular mass fragments (30-200 kDa). The differences observed in the degradation patterns allow to distinguish the rot types caused by basidiomycetes and ascomycetes and may be suitable for following the effects of oxidative key enzymes (ligninolytic peroxidases vs. laccases, role of novel peroxidases) during wood decay. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Bögelein, Rebekka; Hassdenteufel, Martin; Thomas, Frank M; Werner, Willy
2012-07-01
Combined δ(13) C and δ(18) O analyses of water-soluble leaf and twig phloem material were used to determine intrinsic water-use efficiency (iWUE) and variability of stomatal conductance at different crown positions in adult European beech (Fagus sylvatica) and Douglas-fir (Pseudotsuga menziesii) trees. Simultaneous gas exchange measurements allowed evaluation of the differences in calculating iWUE from leaf or phloem water-soluble compounds, and comparison with a semi-quantitative dual isotope model to infer variability of net photosynthesis (A(n) ) between the investigated crown positions. Estimates of iWUE from δ(13) C of leaf water-soluble organic matter (WSOM) outperformed the estimates from phloem compounds. In the beech crown, δ(13) C of leaf WSOM coincided clearly with gas exchange measurements. The relationship was not as reliable in the Douglas-fir. The differences in δ(18) O between leaf and phloem material were found to correlate with stomatal conductance. The semi-quantitative model approach was applicable for comparisons of daily average A(n) between different crown positions and trees. Intracanopy gradients were more pronounced in the beech than in the Douglas-fir, which reached higher values of iWUE at the respective positions, particularly under dry air conditions. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Goisser, Michael; Blanck, Christian; Geppert, Uwe; Häberle, Karl-Heinz; Matyssek, Rainer; Grams, Thorsten E. E.
2016-04-01
Mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) frequently reflect over-yielding, when compared to respective monospecific stands. Over-yielding is attributed to enhanced resource uptake efficiency through niche complementarity alleviating species competition. Under climate change, however, with severe and frequent summer drought, water limitation may become crucial in modifying the competitive interaction between neighboring beech and spruce trees. In view of the demands by silvicultural practice, basic knowledge from experimental field work about competitive versus facilitative interaction in maturing mixed beech-spruce forests is scarce. To this end, we investigate species-specific drought response including underlying mechanisms of species interaction in a maturing group-wise mixed beech-spruce forest, amongst 60 and 53 adult trees of beech and spruce, respectively (spruce 65 ± 2, beech 85 ± 4 years old). Severe and repeated experimental drought is being induced over several years through a stand-scale approach of rain throughfall exclusion (Kranzberg Forest Roof Experiment, KROOF). The experimental design comprises 6 roofed (E, automated, closing only during rain) and 6 control (C) plots with a total area of almost 1800 square meters. In 2015 minimum predawn potentials of -2.16 MPa and -2.26 MPa were reached in E for beech and spruce respectively. At the leaf level, spruce displayed high drought susceptibility reflected by a distinct decrease in both stomatal conductance and net CO2 uptake rate by more than 80% each, suggesting isohydric response. Beech rather displayed anisohydry indicated by less pronounced yet significant reduction of stomatal conductance and net CO2 uptake rate by more than 55% and 45%, respectively. Under the C regime, a negative species interaction effect on stomatal conductance was found in beech, contrasting with a positive effect in spruce. However, drought reversed the effect of species interaction on stomatal conductance, suggesting competition release in beech and by contrast, a shift from facilitation to competition in spruce, if both species grew in mixture. Based on fine root distribution and soil moisture assessments, we interpret this reversed interaction effect as a consequence of different spatio-temporal patterns of soil water use in combination with enhanced root stratification between neighboring beech and spruce trees. Under humid climate conditions (i.e. with only short drought) the rather conservative strategy of spruce (isohydric response, root dominance in upper soil) appears to be advantageous, facilitating pre-emption of nutrients from litter mineralization and water from precipitation. During extended periods of drought, however, shallow rooting and early stomatal closure limits the accessibility to deep soil water and, hence, photosynthetic carbon assimilation, eventually constraining competitiveness of spruce. Beech rather benefits from reduced water consumption of its drought stressed competitor spruce. Regarding stomatal conductance, positive effects of beech-spruce interaction are overridden under extended periods of drought.
Fabian, Jenny; Zlatanovic, Sanja; Mutz, Michael; Premke, Katrin
2017-01-01
Ecological functions of fungal and bacterial decomposers vary with environmental conditions. However, the response of these decomposers to particulate organic matter (POM) quality, which varies widely in aquatic ecosystems, remains poorly understood. Here we investigated how POM pools of substrates of different qualities determine the relative contributions of aquatic fungi and bacteria to terrigenous carbon (C) turnover. To this end, surface sediments were incubated with different POM pools of algae and/or leaf litter. 13C stable-isotope measurements of C mineralization were combined with phospholipid analysis to link the metabolic activities and substrate preferences of fungal and bacterial heterotrophs to dynamics in their abundance. We found that the presence of labile POM greatly affected the dominance of bacteria over fungi within the degrader communities and stimulated the decomposition of beech litter primarily through an increase in metabolic activity. Our data indicated that fungi primarily contribute to terrigenous C turnover by providing litter C for the microbial loop, whereas bacteria determine whether the supplied C substrate is assimilated into biomass or recycled back into the atmosphere in relation to phosphate availability. Thus, this study provides a better understanding of the role of fungi and bacteria in terrestrial–aquatic C cycling in relation to environmental conditions. PMID:27983721
Aggressiveness of Phytophthora cactorum, P. citricola I, and P. plurivora from European Beech
USDA-ARS?s Scientific Manuscript database
Phytophthora cactorum and P. citricola cause bleeding cankers on European beech trees in the northeastern United States. Inoculation experiments were conducted to compare the aggressiveness of P. cactorum and P. citricola isolates on stems, leaf disks, and roots of European beech and common lilac s...
Wang, Qing-kui; Wang, Si-long; Yu, Xiao-jun; Zhang, Jian; Liu, Yan-xin
2007-06-01
With incubation test, this paper studied the effects of Cunninghamia lanceolata leaf litter and its mixture with the litters of main broadleaved tree species in subtropical China, such as Alnus cremastogyne, Kalopanax septemlobus and Michelia macclurei on active soil organic matter. The results showed that adding leaf litters into soil could significantly increase soil microbial biomass C and N, respiration rate and dissolved organic C, and mixed leaf litters were more effective than C. lanceolata leaf litter in increasing soil dissolved organic C. By the end of the incubation, the increment of soil microbial biomass C and N, respiration rate, and dissolved organic C in treatments C. lanceolata leaf litter and C. lanceolata-broadleaved tree species mixed leaf litters was 49% and 63%, 35% and 75%, 65% and 100%, and 66% and 108%, respectively, compared with control. The addition of leaf litters had no significant effects on soil microbial quotient and microbial biomass C/N ratio.
Mangels, Jule; Blüthgen, Nico; Frank, Kevin; Grassein, Fabrice; Hilpert, Andrea; Mody, Karsten
2015-01-01
Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores. PMID:25938417
Differential Responses of Herbivores and Herbivory to Management in Temperate European Beech
Gossner, Martin M.; Pašalić, Esther; Lange, Markus; Lange, Patricia; Boch, Steffen; Hessenmöller, Dominik; Müller, Jörg; Socher, Stephanie A.; Fischer, Markus; Schulze, Ernst-Detlef; Weisser, Wolfgang W.
2014-01-01
Forest management not only affects biodiversity but also might alter ecosystem processes mediated by the organisms, i.e. herbivory the removal of plant biomass by plant-eating insects and other arthropod groups. Aiming at revealing general relationships between forest management and herbivory we investigated aboveground arthropod herbivory in 105 plots dominated by European beech in three different regions in Germany in the sun-exposed canopy of mature beech trees and on beech saplings in the understorey. We separately assessed damage by different guilds of herbivores, i.e. chewing, sucking and scraping herbivores, gall-forming insects and mites, and leaf-mining insects. We asked whether herbivory differs among different forest management regimes (unmanaged, uneven-aged managed, even-aged managed) and among age-classes within even-aged forests. We further tested for consistency of relationships between regions, strata and herbivore guilds. On average, almost 80% of beech leaves showed herbivory damage, and about 6% of leaf area was consumed. Chewing damage was most common, whereas leaf sucking and scraping damage were very rare. Damage was generally greater in the canopy than in the understorey, in particular for chewing and scraping damage, and the occurrence of mines. There was little difference in herbivory among differently managed forests and the effects of management on damage differed among regions, strata and damage types. Covariates such as wood volume, tree density and plant diversity weakly influenced herbivory, and effects differed between herbivory types. We conclude that despite of the relatively low number of species attacking beech; arthropod herbivory on beech is generally high. We further conclude that responses of herbivory to forest management are multifaceted and environmental factors such as forest structure variables affecting in particular microclimatic conditions are more likely to explain the variability in herbivory among beech forest plots. PMID:25119984
Simon, Judy; Li, Xiuyuan; Rennenberg, Heinz
2014-01-01
Plant species use different strategies for maximizing growth and fitness under changing environmental conditions. At the ecosystem level, seedlings in particular compete with other vegetation components for light and nitrogen (N), which often constitute growth-limiting resources. In this study, we investigated the effect of light availability on the competition for N between seedlings of European beech and sycamore maple and analysed the consequences of this competition for the composition of N metabolites in fine roots. Our results show different strategies in N acquisition between beech and sycamore maple. Both species responded to reduced light availability by adapting their morphological and physiological traits with a decrease in biomass and net assimilation rate and an increase in specific leaf area and leaf area ratio. For beech seedlings, competition with sycamore maple led to a reduction in organic N uptake capacity. Reduced light availability led to a decrease in ammonium, but an increase in glutamine-N uptake capacity in sycamore maple. However, this response was stronger compared with that of beech and was accompanied by reduced growth. Thus, our results suggest better adaptation of N acquisition to reduced light availability in beech compared with sycamore maple seedlings.
Effects of non-native earthworms on on below- and aboveground processes in the Mid-Atlantic region
NASA Astrophysics Data System (ADS)
Szlavecz, K. A.; McCormick, M. K.; Xia, L.; Pitz, S.; O'Neill, J.; Bernard, M.; Chang, C.; Whigham, D. F.
2011-12-01
Many biotic and abiotic disturbances have shaped the structure of the deciduous forests in the Mid-Atlantic region. One major anthropogenic factor is land use history. Agricultural practices in the past undoubtedly facilitated non-native earthworm colonization and establishment. Today most secondary forests are dominated by European lumbricid earthworms, although native species also occur in some habitats. To investigate how earthworm community composition and abundance affect belowground processes and tree seedling growth we set up a field manipulation experiment at the Smithsonian Environmental Research Center in Edgewater, MD. A total of 66 experimental plots were set up in successional (70 yrs) and mature (150 yrs) Tulip-poplar-Oak associations. We manipulated earthworm abundance and leaf litter input, and planted seedlings of Tulip poplar, Red maple, Red oak, and American beech. The experiment lasted for two years during which we regularly monitored density, biomass and species composition of earthworm assemblages and measured soil respiration. Soil moisture, temperature and air temperature were also continuously monitored using a wireless sensor network. At harvest, soil bulk density, pH, N pools, C:N ratio, potential N-mineralization rates, and enzyme activity were determined. We used quantitative PCR to assess the community composition of soil fungi. We also determined the extent of mycorrhizal colonization and biomass of roots, shoots and leaves. We conducted likelihood ratio tests for random and fixed effects based on mixed model analyses of variance. Differences between soil depths and among sites and plots accounted for a large portion of the variation in many soil properties. Litter quality affected soil pH and N mineralization. Earthworm densities affected bulk density, inorganic N content, and N mineralization. Both mycorrhizal groups were more abundant in mature than in successional forests. Both ectomycorrhizal (ECM) and arbuscular (AM) fungi were less abundant in the earthworm removal plots. There was a significant positive earthworm effect on the rate and thermal sensitivity of soil respiration. Soil respiration was consistently higher in plots with tulip poplar litter than those with beech litter, indicating a strong influence of plant residue quality. However, the differences were smaller in the second year than in the first one indicating an adaptation of the soil system. Oak and beech seedlings were smaller in high density earthworm plots, while the reverse was true for maple and tulip poplar seedlings. Non-native earthworms affect below- and aboveground processes, however, these effects depend on forest type and land use history. The earthworm effects also appear to be dynamic, as witnessed by a recent invasion of an Asian earthworm species in one of our forest stands.
NASA Astrophysics Data System (ADS)
Martin, F. P.; Abdullah, M.; Solichin; Hadiyanti, L. N.; Widianingrum, K.
2018-03-01
The leaf litter of trees along the existing streets on campus UNNES if not managed properly will be scattered and become garbage. Leaf litter Production in UNNES campus is not known for certain. UNNES does not own mapping of leaf litter Production of dominant tree species on campus. This cause leaf waste management is not optimal yet. There is still a lot of leaf litter that is discharged (not processed) because it exceeds the capacity of the fertilizer production equipment in the compost house. Aims of this study were to examine leaf litter production of dominant trees in Universitas Negeri Semarang and evaluate the relationship between leaf litter and average rainfall. Purposive sampling method placed pouches of nylon gauze measuring 1 × 1 mm2 as litter trap container with size 1 x l m2 (10 points mounted along street and campus forest). Litter trap mounted at the height of 50 cm above ground level. Leaf litter will be taken once a week for three months to observe the litter production. The litter was then dried by the oven at 70 ° C for 48 hours to obtain constant dry weight. Based on the results of the research, it was known that Mahogany tree in UNNES campus area has the potential to produce the litter of about 10 ton/ha / 3months in campus forest area and 2.5 ton/ha / 3months along campus street. There is a significant relationship between litter production of Mahogany leaves and precipitation during August - October 2017.
Maunoury-Danger, Florence; Felten, Vincent; Bojic, Clément; Fraysse, Fabrice; Cosin Ponce, Mar; Dedourge-Geffard, Odile; Geffard, Alain; Guérold, François; Danger, Michael
2018-04-01
Industrialization has left large surfaces of contaminated soils, which may act as a source of pollution for contiguous ecosystems, either terrestrial or aquatic. When polluted sites are recolonized by plants, dispersion of leaf litter might represent a non-negligible source of contaminants, especially metals. To evaluate the risks associated to contaminated leaf litter dispersion in aquatic ecosystems, we first measured the dynamics of metal loss from leaf litter during a 48-h experimental leaching. We used aspen (Populus tremula L.), a common tree species on these polluted sites, and collected leaf litter on three polluted sites (settling pond of a former steel mill) and three control sites situated in the same geographic area. Then, toxicity tests were carried out on individuals of a key detritivore species widely used in ecotoxicology tests, Gammarus fossarum (Crustacea, Amphipoda), with uncontaminated and contaminated leaf litter leachates, using a battery of biomarkers selected for their sensitivity to metallic stress. Leaf litters collected on polluted sites exhibited not only significantly higher cadmium and zinc concentrations but also lower lignin contents. All leaf litters released high amounts of chemical elements during the leaching process, especially potassium and magnesium, and, in a lesser extent, phosphorus, calcium, and trace metals (copper, cadmium, and zinc but not lead). Toxicity tests revealed that the most important toxic effects measured on G. fossarum were due to leaf litter leachates by themselves, whatever the origin of litter (from polluted or control sites), confirming the toxicity of such substances, probably due to their high content in phenolic compounds. Small additional toxic effects of leachates from contaminated leaf litters were only evidenced on gammarid lipid peroxidation, indicating that contaminated leaf litter leachates might be slightly more toxic than uncontaminated ones, but in a very reduced manner. Further studies will be required to verify if these patterns are generalizable to other species and to investigate the effects of contaminated leaf litter ingestion by consumers on aquatic food webs. Nevertheless, our results do not permit to exclude potential chronic effects of an exposure to contaminated leaf litter leachates in aquatic ecosystems.
The fate of nitrogen mineralized from leaf litter Initial evidence from 15N-labeled litter
Kathryn B. Piatek
2011-01-01
Decomposition of leaf litter includes microbial immobilization of nitrogen (N), followed by N mineralization. The fate of N mineralized from leaf litter is unknown. I hypothesized that N mineralized from leaf litter will be re-immobilized into other forms of organic matter, including downed wood. This mechanism may retain N in some forests. To test this hypothesis, oak...
Erdmann, Georgia; Scheu, Stefan; Maraun, Mark
2012-06-01
Most European forests are managed by humans. However, the manner and intensity of management vary. While the effect of forest management on above-ground communities has been investigated in detail, effects on the below-ground fauna remain poorly understood. Oribatid mites are abundant microarthropods in forest soil and important decomposers in terrestrial ecosystems. Here, we investigated the effect of four forest types (i.e., managed coniferous forests; 30 and 70 years old managed beech forests; natural beech forests) on the density, diversity and community structure of oribatid mites (Acari). The study was replicated at three regions in Germany: the Swabian Alb, the Hainich and the Schorfheide. To relate changes in oribatid mite community structure to environmental factors, litter mass, pH, C and N content of litter, fine roots and C content of soil were measured. Density of oribatid mites was highest in the coniferous forests and decreased in the order 30 years old, 70 years old, and natural beech forests. Mass of the litter layer and density of oribatid mites were strongly correlated indicating that the litter layer is an important factor regulating oribatid mite densities. Diversity of oribatid mites was little affected by forest type indicating that they harbor similar numbers of niches. Species composition differed between the forest types, suggesting different types of niches. The community structure of oribatid mites differed more strongly between the three regions than between the forest types indicating that regional factors are more important than effects associated with forest type.
Mata, Gerardo; Valdez, Karina; Mendoza, Remedios; Trigos, Ángel
2014-01-01
The chemical composition of the aroma of fresh fruiting bodies of the cultivated mushroom Lentinus boryanus is described here and compared with medicinal shiitake mushroom L. edodes. Volatile compounds were analyzed through headspace sampling coupled with gas chromatography-mass spectrometry. The mushrooms under study were grown on different substrates based on barley straw, sugarcane bagasse, oak wood sawdust, and beech leaf litter. It was determined that L. boryanus as well as L. edodes contain an abundant amount of a volatile compound identified as 3-octanone with a sweet fruity aroma. On the other hand, only L. boryanus produced 3-octanol a characteristic aroma of cod liver oil. In total, 10 aromatic compounds were identified, some of which were obtained exclusively in one species or substrate.
Bothwell, Lori D.; Giardina, Christian P.; Litton, Creighton M.
2014-01-01
Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT) gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5) across a broad range of ecosystems. The percentage of leaf litter nitrogen (N) remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming. PMID:25493213
Leaf litter bags as an index to populations of northern two-lined salamanders (Eurycea bislineata)
Chalmers, R.J.; Droege, S.
2002-01-01
Concern about recent amphibian declines has led to research on amphibian populations, but few statistically tested, standardized methods of counting amphibians exist. We tested whether counts of northern two-lined salamander larvae (Eurycea bislineata) sheltered in leaf litter bags--a relatively new, easily replicable survey technique--had a linear correlation to total number of larvae. Using experimental enclosures placed in streams, we compared number of salamanders found in artificial habitat (leaf litter bags) with total number of salamanders in each enclosure. Low numbers of the animals were found in leaf litter bags, and the relative amount of variation in the index (number of animals in leaf litter bags compared to total number of animals in stream enclosures) was high. The index of salamanders in leaf litter bags was not significantly related to total number of salamanders in enclosures for two-thirds of the replicates or with pooled replicates (P= 0.066). Consequently, we cannot recommend using leaf litter bags to index populations of northern two-lined salamanders.
NASA Astrophysics Data System (ADS)
Xia, M.; Pregitzer, K. S.; Talhelm, A. F.
2012-12-01
Plant litter is a major source of soil organic carbon (C). This litter is not homogenous, but instead primarily composed of fine root and leaf litter that adapted to different physiological functions. These unique functions suggest that root and leaf litter likely have different biochemical traits, and thus different decomposition patterns. However, few studies have compared their substrate quality and contributions to soil C. Also, much less attention has been given to fine roots although they can represent a substantial litter production. Here we hypothesize that 1) leaf litter and fine roots have different substrate quality as they are highly different in biochemical composition; 2) the biochemical composition of leaf litter and fine roots responds differently to the simulated nitrogen (N) deposition. To test these hypotheses, we collected leaf litter and fine roots of Acer saccharum (the dominant species in the northern temperate ecosystems we studied) in both ambient and N addition treatment plots at four sites of Michigan N deposition gradient study. We quantified ten biochemical components thought to be important on decomposition. Strikingly, we found a consistently three-fold higher lignin concentration in fine roots than that in leaf litter (P< 0.01). On average, lignin concentration of fine roots was 45.4±0.3% while that of leaf litter was 13.5±0.2%. Lignin has been considered highly recalcitrant and hypothesized as the major precursor of humus substance. Condensed tannin (CT) concentration in fine roots (13.13±0.51%) was also substantially higher than that in leaf litter (P< 0.01, 4.63±0.42 %). Tissue CT can inhibit litter decay by both precipitating proteins and by having antimicrobial properties. In contrast, fine roots exhibited lower concentrations of non-structural carbohydrates (NSC), soluble phenolics, and holocellulose (hemicelluloses & cellulose) than leaf litter (P< 0.01). These components are considered more easily accessible, and may stimulate the decay of lignin by providing required energy. Therefore, fine roots of Acer saccharum have a relatively recalcitrant nature based on their distinct biochemical composition, suggesting fine roots may be the major driver of soil carbon formation in the ecosystems we studied. Litter type and N addition had significant interactions on lignin, holocellulose, and NSC (P< 0.05), indicating these traits of different litter types respond differently to N addition. In leaf litter, the concentrations of lignin, NSC, and bound CT were affected by N addition (P< 0.05). By contrast, N addition only reduced the soluble protein concentration in fine roots (P< 0.05). Hence, substrate quality of leaf litter and fine roots responds differently to the simulated N deposition, and may eventually lead to different responses in decomposition pattern. This is one of few studies comparing the detailed biochemical profile of leaf litter and fine roots in a dominant tree species. Different biochemical traits of fine roots and leaf litter may reflect the different specializations for their physiological functions. This work highlights the importance of fine root in the soil carbon formation due to its recalcitrant nature, and emphasizes the necessity of differentiating the responses of leaf litter and fine root decompositions to environmental changes when modeling biogeochemical cycles.
Li, Qian; Liu, Zeng-Wen; Du, Liang-Zhen
2012-03-01
In this study, the leaf litters of Populus simonii and other 11 tree species were put into soil separately or in mixture after grinding, and incubated in laboratory to analyze the effects of their decomposition on soil properties and the interactions between the litters decomposition. The decomposition of each kind of the leaf litters in soil increased the soil urease, dehydrogenase, and phosphatase activities and the soil organic matter and available N contents markedly, but had greater differences in the effects on the soil available P content and CEC. The decomposition of the leaf litters of Caragana microphylla and of Amorpha fruticosa showed obvious effects in improving soil properties. The decomposition of the mixed leaf litters of P. simonii and Pinus tabulaeformis, Platycladus orientalis, Robinia pseudoacacia, or Ulmus pumila showed interactive promotion effects on the abundance of soil microbes, and that of the mixed leaf litters of P. simonii and P. orientalis or C. microphylla showed interactive promotion effects on the soil organic matter, available P, and available K contents and soil CEC but interactive inhibition effects on the activities of most of the soil enzymes tested. The decomposition of the mixed leaf litters of P. simonii and Larix principis-rupprechtii showed interactive promotion effects on the activities of most of the soil enzymes and soil nutrient contents, while that of the mixed leaf litters of P. simonii and P. sylvestris var. mongolica showed interactive inhibition effects. Overall, the decomposition of the mixed leaf litters of P. simo- nii and U. pumila, P. tabulaeformis, L. principis-rupprechtii, or R. pseudoacacia could improve soil quality, but the mixed leaf litters of P. simonii and P. orientalis, C. microphylla, P. sylvestris var. mongolica, Hippophae rhamnoides, or A. fruticosa showed an interactive inhibition effect during their decomposition.
Roger W. Perry
2013-01-01
In temperate portions of North America, some bats that remain active during winter undergo short periods of hibernation below leaf litter on the forest floor during episodes of below-freezing weather. These winter roosts may provide above-freezing conditions, but the thermal conditions under leaf litter are unclear. Further, little is known of the relationship between...
Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk
2017-01-01
The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition. PMID:28182638
Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk
2017-01-01
The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition.
Rain forest nutrient cycling and productivity in response to large-scale litter manipulation.
Wood, Tana E; Lawrence, Deborah; Clark, Deborah A; Chazdon, Robin L
2009-01-01
Litter-induced pulses of nutrient availability could play an important role in the productivity and nutrient cycling of forested ecosystems, especially tropical forests. Tropical forests experience such pulses as a result of wet-dry seasonality and during major climatic events, such as strong El Niños. We hypothesized that (1) an increase in the quantity and quality of litter inputs would stimulate leaf litter production, woody growth, and leaf litter nutrient cycling, and (2) the timing and magnitude of this response would be influenced by soil fertility and forest age. To test these hypotheses in a Costa Rican wet tropical forest, we established a large-scale litter manipulation experiment in two secondary forest sites and four old-growth forest sites of differing soil fertility. In replicated plots at each site, leaves and twigs (< 2 cm diameter) were removed from a 400-m2 area and added to an adjacent 100-m2 area. This transfer was the equivalent of adding 5-25 kg/ha of organic P to the forest floor. We analyzed leaf litter mass, [N] and [P], and N and P inputs for addition, removal, and control plots over a two-year period. We also evaluated basal area increment of trees in removal and addition plots. There was no response of forest productivity or nutrient cycling to litter removal; however, litter addition significantly increased leaf litter production and N and P inputs 4-5 months following litter application. Litter production increased as much as 92%, and P and N inputs as much as 85% and 156%, respectively. In contrast, litter manipulation had no significant effect on woody growth. The increase in leaf litter production and N and P inputs were significantly positively related to the total P that was applied in litter form. Neither litter treatment nor forest type influenced the temporal pattern of any of the variables measured. Thus, environmental factors such as rainfall drive temporal variability in litter and nutrient inputs, while nutrient release from decomposing litter influences the magnitude. Seasonal or annual variation in leaf litter mass, such as occurs in strong El Niño events, could positively affect leaf litter nutrient cycling and forest productivity, indicating an ability of tropical trees to rapidly respond to increased nutrient availability.
Dantec, Cécile F; Vitasse, Yann; Bonhomme, Marc; Louvet, Jean-Marc; Kremer, Antoine; Delzon, Sylvain
2014-11-01
With global warming, an advance in spring leaf phenology has been reported worldwide. However, it is difficult to forecast phenology for a given species, due to a lack of knowledge about chilling requirements. We quantified chilling and heat requirements for leaf unfolding in two European tree species and investigated their relative contributions to phenological variations between and within populations. We used an extensive database containing information about the leaf phenology of 14 oak and 10 beech populations monitored over elevation gradients since 2005. In parallel, we studied the various bud dormancy phases, in controlled conditions, by regularly sampling low- and high-elevation populations during fall and winter. Oak was 2.3 times more sensitive to temperature for leaf unfolding over the elevation gradient and had a lower chilling requirement for dormancy release than beech. We found that chilling is currently insufficient for the full release of dormancy, for both species, at the lowest elevations in the area studied. Genetic variation in leaf unfolding timing between and within oak populations was probably due to differences in heat requirement rather than differences in chilling requirement. Our results demonstrate the importance of chilling for leaf unfolding in forest trees and indicate that the advance in leaf unfolding phenology with increasing temperature will probably be less pronounced than forecasted. This highlights the urgent need to determine experimentally the interactions between chilling and heat requirements in forest tree species, to improve our understanding and modeling of changes in phenological timing under global warming.
Leaf litter breakdown of native and exotic tree species in two Hawaiian streams that differ in flow
Megan Roberts; Ayron M. Strauch; Tracy Wiegner; Richard A. Mackenzie
2016-01-01
Riparian leaf litter is a major source of allochthonous organic material to temperate and tropical streams, promoting primary and secondary productivity in lotic and nearshore habitats. In tropical island streams, where native leaf-shredding macroinvertebrates are absent, physical fragmentation from stream flow is an important factor affecting leaf litter breakdown and...
Wang, Lu; Yang, Hai Jun; Li, Ling; Nan, Xiao Fei; Zhang, Zhen Xing; Li, Kun
2017-11-01
Annually, about 70% of the streams in the Changbai Mountains are frosted during November to April, with manifest seasonal freeze-thaw characters. By using monoculture and mixing leaf litters of Tilia amurensis, Acer mono and Quecus mongolica, this research attempted to disentangle the relationship between leaf litter decomposition and colonization of macroinvertebrates in the stream during early frost period. A 35-day investigation was carried out in a headwater stream of the Changbai Mountains. Nylon bags with two hole sizes (5 mm and 0.3 mm) were used to examine decomposition of the litters. The results showed that the mass losses were significantly different among the three kinds of leaf litters in monoculture, whose decomposition rates descended as A. mono, T. amurensis, and Q. mongolica, however, there existed no significant difference among the litter mixing. Mass losses in both mesh bags all showed little difference, except T. amurensis and the mixed litters. Litter mixing effects occurred in the coarse mesh bags with A. mono and Q. mongolica, but no mixture effects for others. Community structures of the macroinvertebrates colonizing in the litter bags differed with each other, but shredders' density had no significant difference among the three litters, and the mixing effects on shredders were poor. Our results implied that microbes play the major decomposers of leaf litters, and macroinvertebrates contribute little to the decomposition in the early frost period. Despite shredder's density is lower, they determine the mixing effects of litters. Macroinvertebrates are selective to food and habitats, however, due to the short term colonizing, and the influence of leaf litters on shredders is still unsure. Our results might contribute to understanding the cold season ecological processes and related management issues of headwater stream ecosystem.
NASA Astrophysics Data System (ADS)
Seitz, Steffen; Goebes, Philipp; Assmann, Thorsten; Schuldt, Andreas; Scholten, Thomas
2017-04-01
In subtropical parts of China, high rainfall intensities cause continuous soil losses and thereby provoke severe harms to ecosystems. In woodlands, it is not the tree canopy, but mostly an intact forest floor that provides protection from soil erosion. Although the protective role of leaf litter covers against soil losses is known for a long time, little research has been conducted on the processes involved. For instance, the role of different leaf species and leaf species diversity has been widely disregarded. Furthermore, the impact of soil meso- and macrofauna within the litter layer on soil losses remains unclear. To investigate how leaf litter species and diversity as well as soil meso- and macrofauna affect sediment discharge in a subtropical forest ecosystem, a field experiment was carried out in Xingangshan, Jiangxi Province, PR China (BEF China). A full-factorial random design with 96 micro-scale runoff plots and seven domestic leaf species in three diversity levels and a bare ground feature were established. Erosion was initiated with a rainfall simulator. This study confirms that leaf litter cover generally protects forest soils from water erosion (-82 % sediment discharge on leaf covered plots compared to bare plots) and this protection is gradually removed as the litter layer decomposes. Different leaf species showed variable impacts on sediment discharge and thus erosion control. This effect can be related to different leaf habitus, leaf decomposition rates and food preferences of litter decomposing meso- and macrofauna. In our experiment, runoff plots with leaf litter from Machilus thunbergii in monoculture showed the highest sediment discharge (68.0 g m-2), whereas plots with Cyclobalanopsis glauca in monoculture showed the smallest rates (7.9 g m-2). At the same time, neither leaf species diversity, nor functional diversity showed any significant influence, only a negative trend could be observed. Nevertheless, the protective effect of the leaf litter layer was influenced by the presence (or absence) of soil meso- and macrofauna. Fauna presence increased soil erosion rates significantly by 58 %. It was assumed that this faunal effect arose from arthropods loosening and processing the soil surface as well as fragmenting and decomposing the protecting leaf litter covers. Thus, effects of this fauna group on sediment discharge have to be considered in soil erosion experiments.
NASA Astrophysics Data System (ADS)
Girona García, Antonio; Badía-Villas, David; Tomás Jiménez-Morillo, Nicasio; Martí-Dalmau, Clara; González-Pérez, José Antonio
2015-04-01
The replacement of native beech forests (Fagus sylvatica) by Scots pine (Pinus sylvestris) afforestation may exert changes in soil properties, particularly in soil organic matter (SOM) [1]. It is known that the products generated by Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) pyrolysis of organic matter are related to their origin [2 and references therein]. Therefore this technique can be used to investigate said changes. In this work, Py-GC/MS is used to study changes in SOM quality surrogated to the effect of the centennial replacement of beech by Scots pine. The soils studied were two acid soil profiles developed on quartzites under a humid climate at an altitude of 1400-1500 masl from Moncayo (Iberian range, NE-Spain). For each soil profile three organic layers (litter: OL, fragmented litter OF and humified litter OH) and the mineral soil horizons (Ah, E, Bhs and C) were sampled. After 100 years since the pine afforestation, differences in the relative abundance of lipids released by pyrolysis were observed in the O-layers ranging from 3.82-7.20% in pine soils and 0.98-1.25% in beech soils. No differences were observed in mineral horizons with depth except for the C horizons where beech lipid content was much higher (21.25%) than in that under pine (1.07%). Both pine and beech soils show similar nitrogen compounds relative contents along the soil profile, increasing from OL to Ah (3.49-9.11% and 2.75-11.73% in beech and pine respectively) with a conspicuous reduction in the E horizon. It is remarkable the absence of nitrogen compounds in beech Bhs and C horizons. The relative content of aromatic compounds in O-layers show opposite trends for beech and pine; an enrichment in aromatic compounds is observed in beech OL layer (12.39%) decreasing to 4.11% in OH layer in contrast, whereas for pine O-layers the aromatic compounds relative abundance was higher in the OH (5.83%) than in the OL layer (2.8%). Mineral Ah and E horizons show similar values in both beech (18.30-10.09%) and pine (15.81-10.01%) soils; nevertheless the relative abundance of aromatic compounds content is higher in beech mineral horizons Bhs (41.96%) and C (30.91%) than in those under pine (11.43% and 13.04% for Bhs and C respectively). Polycyclic aromatic hydrocarbons (PAHs) were only observed in the mineral soil horizons showing similar relative abundances ranging from 0.61-6.63% in beech and 0.96-3.05% in pine soils. The highest PAHs relative abundance was found in the Bhs horizon under beech. This may indicate the occurrence of fire events in the area and its translocation and accumulation by leaching from top soil in the spodic horizon. Differences in the relative abundances of lignin derived pyrolysis products (Methoxyphenols) were mainly observed in the O-layers whereas the relative abundances were similar for the mineral horizons that ranged from 1.49-4.31% in beech and 1.42-4.67% in pine. Lignin relative abundance is much higher in OH beech layer (31.88%) than in pine OH layer (14.99%) whereas similar relative contents were found in OL and OF layers ranging from 26.21-27-12% and 20.22-25.92% in beech and pine respectively. In the soil developed under beech the polysaccharide derived moieties show a relative content increase along the profile from a 9.86% in OL layer to a 29.86% in E horizon followed by a remarkable decrease in the Bhs (4.86%) and C (11.22%). Besides, the polysaccharide relative abundance in the soil under pine show a similar trend ranging from 12-23% to 30.65% but the decrease in Bhs and C horizons was found less marked (26.83% and 24.12% respectively). (1) Carceller F, Vallejo VR (1996). Influencia de la vegetación en los procesos de podsolización en los suelos de la Sierra del Moncayo (Zaragoza). Geogaceta 20: 1127-1130. (2) De la Rosa JM, Faria SR, Varela ME, Knicker H, González-Vila FJ, González-Pérez JA, Keizer J (2012). Characterization of wildfire effects on soil organic matter using analytical pyrolysis. Geoderma 191: 24-30. Acknowledgements This study is part of the results of the FUEGOSOL (CGL2013-43440-R) and GEOFIRE Projects (CGL2012-38655-C04-01) funded by the Spanish Ministry for Economy and Competitiveness. N.T Jiménez-Morillo is funded by a FPI research grant (BES-2013-062573).
Variations in the methane budget over the last two millennia
NASA Astrophysics Data System (ADS)
Derendorp, L.
2012-06-01
Leaf litter is available at the Earth’s surface in large quantities. During the decomposition of leaf litter, volatile compounds can be released into the atmosphere, where they potentially influence local air quality, atmospheric chemistry or the global climate. In this thesis the focus was on the emission of C2-C5 hydrocarbons, molecular hydrogen (H2), carbon monoxide (CO) and methyl chloride (CH3Cl) from leaf litter and the factors that control the emissions were investigated. For different plant species, the emission rates of several C2-C5 hydrocarbons increased with temperature between 20 and 100°C according to the Arrhenius relation. When leaf litter was irradiated with UV, the emission increased linearly with the intensity of the UV. UVB radiation was more efficient in the generation of hydrocarbons from leaf litter than UVA. A simple upscaling showed that C2-C5 hydrocarbon emissions from leaf litter are likely insignificant for their global budgets, but may have a small influence on atmospheric chemistry on the local scale. Senescent and dead plant material releases carbon monoxide (CO), methane and larger hydrocarbons upon heating or irradiation with UV, but emissions of hydrogen (H2) have not been reported. In this study, H2 was released from leaf litter of Sequoiadendron giganteum in detectable amounts at temperatures above 45°C, whereas CO was also emitted at ambient temperature. Leaf litter has been identified as a potentially important source of CH3Cl. However, the factors controlling the emissions are unclear. Laboratory experiments have been performed in which CH3Cl emissions were measured from leaf litter of different plant species. For each investigated plant species, the CH3Cl emission rate strongly increased with temperature according to the Arrhenius relation. However, at constant temperature, large differences between different plants were observed. Therefore, CH3Cl emissions were measured from halophyte leaf litter with a varying chloride content, but no significant correlation between the CH3Cl emission rate and the chloride content of the plant material was observed. A limited set of field experiments was performed in which CH3Cl emissions were measured. Leaf litter emitted CH3Cl, but only in periods with fresh leaf litter fall. Outside these periods, the flux from leaf litter was zero or even slightly negative. The CH3Cl emission rate increased with temperature, but the temperature increase did not follow the Arrhenius relation as was observed in the laboratory experiments. The global importance of leaf litter as a source of CH3Cl was investigated using the global chemistry transport model TM5. Forward simulations with different emission scenarios indicated that at station Trinidad Head (mid-latitudes of North America), a substantial seasonal emission from leaf litter was required to match the measured CH3Cl mixing ratios at this station. Inversions performed with the TM4-4D-Var system indicated that the main CH3Cl sources were located in the Tropics, whereas the mid- and high latitudes were only a minor source. Sensitivity studies performed to investigate the robustness of the optimized emissions indicated that more than 90% of the global net emissions was located in the Tropics.
Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K; Guérold, François
2016-03-01
Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Michalzik, Beate; Bischoff, Sebastian; Schwarz, Martin; Siemens, Jan; Thieme, Lisa; Wilcke, Wolfgang
2016-04-01
The amount and chemical nature of water-bound organic matter is a prerequisite for advancing our understanding of the C and nutrient cycling and associated ecosystem processes. While many investigations have addressed the nature and dynamics of DOM in terrestrial ecosystems, only a few have investigated the dynamics and composition of water-bound total OM (TOM) including the particulate organic matter fraction (POM; 0.45 μm < POM < 500 μm). Since water-bound element and nutrient concentrations are conventionally measured after 0.45 μm-filtration, the exclusion of the POM fraction results in misleading inferences and budgeting gaps of nutrient and energy fluxes in terrestrial ecosystems. Furthermore, tree species differ in leaf composition (e.g. nutrient, polyphenols content) and leaf litter quality, which in turn affect a variety of ecosystem processes. Nevertheless, the composition and amount of DOM and TOM derived from living plant material via throughfall (TF), stemflow (SF) and its compositional fate traversing the forest floor (FF) are insufficiently understood. In particular we asked: How do tree species and forest types affect the amount of dissolved and particulate C and N in TF and FF solutions and thus the input into the mineral soil? Do functional properties (e.g. aromaticity) of DOM and TOM differ in TF, SF and FF solutions collected in beech and spruce stands and among different beech stands across Germany? To monitor (mineral) soil input fluxes of DOM and POM in different spruce and beech forests, we fortnightly sampled TF and FF solution over three years (2010-2012) in the "Hainich-Dün-Exploratory", Thuringia, Central Germany, which forms part of the DFG SPP 1374 "Exploratories for Large-scale and Long-term Functional Biodiversity Research". To characterize chemical properties of DOM and TOM, we applied solid-state 13C NMR spectroscopy to TF, SF and FF solutions from three European beech regions across Germany and from Norway spruce sites of the Hainich-Dün-Exploratory. Fluxes of POC and PN were highly variable between years and added significantly to the annual budgets of DOC and DN in TF and FF solutions especially in beech forests. The non-consideration of these particle-bound element fluxes remarkable underestimates the TOC input to the soil by 30 to 40% and those of TN by 10 to 20%. We therefore emphasize the imperative to include POC and PN fluxes into C and N budgeting of forest ecosystems. 13C NMR spectroscopy revealed remarkable tree-species related differences in the composition of DOM and TOM. Compared to DOM, TOM generally showed higher intensities for the alkyl C region and lower ones for lignin-derived and aromatic C of the aryl C region resulting in lower aromaticity indices and a diminished degree of humification. Differences in the structural composition of DOM and TOM under beech lessened in the order: throughfall > stemflow > forest floor leachate. Compared to spruce, TF DOM under beech concordantly showed the highest intensities of aromatic and phenolic C and lowest ones of alkyl-C. Phenolic compounds are known for their allelopathic potential successfully impairing competing plants and hence altering ecosystem structure and functions - mechanisms being still imperfectly understood.
Baltzinger, Marie; Archaux, Frédéric; Dumas, Yann
2012-05-01
Litter is a key factor in structuring plant populations, through positive or negative interactions. The litter layer forms a mechanical barrier that is often strongly selective against individuals lacking hypocotyle plasticity. Litter composition also interacts with plant growth by providing beneficial nutrients or, inversely, by allowing harmful allelopathic leaching. As conspicuous litter fall accumulation is often observed under deciduous forests, interactions between tree litter and understorey plant populations are worthy of study. In a 1-year ex-situ experiment, the effects of tree litter on the growth of Anemone nemorosa, a small perennial forest geophyte, were investigated. Three 'litter quantity' treatments were defined, representative of forest floor litter (199, 356·5 and 514 g m(-2)), which were crossed with five 'litter composition' treatments (Quercus petraea, Fagus sylvatica, Carpinus betulus, Q. petraea + F. sylvatica and Q. petraea + C. betulus), plus a no-litter control. Path analysis was then used to investigate the pathways linking litter characteristics and components of adult plant growth. As expected, the heavier the litter, the longer the petiole; rhizome growth, however, was not depreciated by the litter-induced petiole lengthening. Both rhizome mass increment and number of initiated buds marginally increased with the amount of litter. Rhizome mass increment was in fact determined primarily by leaf area and leaf life span, neither of which was unequivocally correlated with any litter characteristics. However, the presence of litter significantly increased leafing success: following a late frost event, control rhizomes growing in the absence of litter experienced higher leaf mortality before leaf unfolding. The study questions the role of litter as a physical or chemical barrier to ground vegetation; to better understand this role, there is a need for ex-situ, longer-term experiments coupled with in-situ observations in the forest.
Baltzinger, Marie; Archaux, Frédéric; Dumas, Yann
2012-01-01
Background and Aims Litter is a key factor in structuring plant populations, through positive or negative interactions. The litter layer forms a mechanical barrier that is often strongly selective against individuals lacking hypocotyle plasticity. Litter composition also interacts with plant growth by providing beneficial nutrients or, inversely, by allowing harmful allelopathic leaching. As conspicuous litter fall accumulation is often observed under deciduous forests, interactions between tree litter and understorey plant populations are worthy of study. Methods In a 1-year ex-situ experiment, the effects of tree litter on the growth of Anemone nemorosa, a small perennial forest geophyte, were investigated. Three ‘litter quantity’ treatments were defined, representative of forest floor litter (199, 356·5 and 514 g m−2), which were crossed with five ‘litter composition’ treatments (Quercus petraea, Fagus sylvatica, Carpinus betulus, Q. petraea + F. sylvatica and Q. petraea + C. betulus), plus a no-litter control. Path analysis was then used to investigate the pathways linking litter characteristics and components of adult plant growth. Key Results As expected, the heavier the litter, the longer the petiole; rhizome growth, however, was not depreciated by the litter-induced petiole lengthening. Both rhizome mass increment and number of initiated buds marginally increased with the amount of litter. Rhizome mass increment was in fact determined primarily by leaf area and leaf life span, neither of which was unequivocally correlated with any litter characteristics. However, the presence of litter significantly increased leafing success: following a late frost event, control rhizomes growing in the absence of litter experienced higher leaf mortality before leaf unfolding. Conclusions The study questions the role of litter as a physical or chemical barrier to ground vegetation; to better understand this role, there is a need for ex-situ, longer-term experiments coupled with in-situ observations in the forest. PMID:22419760
Mercury in leaf litter in typical suburban and urban broadleaf forests in China.
Niu, Zhenchuan; Zhang, Xiaoshan; Wang, Zhangwei; Ci, Zhijia
2011-01-01
To study the role of leaf litter in the mercury (Hg) cycle in suburban broadleaf forests and the distribution of Hg in urban forests, we collected leaf litter and soil from suburban evergreen and deciduous broadleaf forests and from urban forests in Beijing. The Hg concentrations in leaf litter from the suburban forests varied from 8.3 to 205.0 ng/g, with an average (avg) of (49.7 +/- 36.9) ng/g. The average Hg concentration in evergreen broadleaf forest leaf litter (50.8 + 39.4) ng/g was higher than that in deciduous broadleaf forest leaf litter (25.8 +/- 10.1) ng/g. The estimated Hg fluxes of leaf litter in suburban evergreen and deciduous broadleaf forests were 179.0 and 83.7 mg/(ha x yr), respectively. The Hg concentration in organic horizons (O horizons) ((263.1 +/- 237.2) ng/g) was higher than that in eluvial horizons (A horizons) ((83.9 +/- 52.0) ng/g). These results indicated that leaf litterfall plays an important role in transporting atmospheric mercury to soil in suburban forests. For urban forests in Beijing, the Hg concentrations in leaf litter ranged from 8.8-119.0 (avg 28.1 +/- 16.6) ng/g, with higher concentrations at urban sites than at suburban sites for each tree. The Hg concentrations in surface soil in Beijing were 32.0-25300.0 ng/g and increased from suburban sites to urban sites, with the highest value from Jingshan (JS) Park at the centre of Beijing. Therefore, the distribution of Hg in Beijing urban forests appeared to be strongly influenced by anthropogenic activities.
Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.
Mora-Gómez, Juanita; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M
2018-04-15
Drought frequency and intensity in some temperate regions are forecasted to increase under the ongoing global change, which might expose permanent streams to intermittence and have severe repercussions on stream communities and ecosystem processes. In this study, we investigated the effect of drought duration on microbial decomposition of Populus nigra leaf litter in a temperate permanent stream (Oliveira, NW Portugal). Specifically, we measured the response of the structural (assemblage composition, bacterial and fungal biomass) and functional (leaf litter decomposition, extracellular enzyme activities (EEA), and fungal sporulation) parameters of fungal and bacterial communities on leaf litter exposed to emersion during different time periods (7, 14 and 21d). Emersion time affected microbial assemblages and litter decomposition, but the response differed among variables. Leaf decomposition rates and the activity of β-glucosidase, cellobiohydrolase and phosphatase were gradually reduced with increasing emersion time, while β-xylosidase reduction was similar when emersion last for 7 or more days, and the phenol oxidase reduction was similar at 14 and 21days of leaf emersion. Microbial biomass and fungal sporulation were reduced after 21days of emersion. The structure of microbial assemblages was affected by the duration of the emersion period. The shifts in fungal assemblages were correlated with a decreased microbial capacity to degrade lignin and hemicellulose in leaf litter exposed to emersion. Additionally, some resilience was observed in leaf litter mass loss, bacterial biomass, some enzyme activities and structure of fungal assemblages. Our study shows that drought can strongly alter structural and functional aspects of microbial decomposers. Therefore, the exposure of leaf litter to increasing emersion periods in temperate streams is expected to affect decomposer communities and overall decomposition of plant material by decelerating carbon cycling in streams. Copyright © 2017 Elsevier B.V. All rights reserved.
Barrientos, Zaidett
2012-09-01
Little is known about how restoration strategies affect aspects like leaf litter's quantity, depth and humidity. I analyzed leaf litter's quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration) and a 40 year old Cupressus lusitanica plantation (natural understory). The three habitats are located in the Rio Macho Forest Reserve, Costa Rica. Twenty litter samples were taken every three months (April 2009-April 2010) in each habitat; humidity was measured in 439g samples (average), depth and quantity were measured in five points inside 50x50cm plots. None of the restoration strategies reproduced the primary forest leaf litter humidity, depth and quantity yearly patterns. Primary forest leaf litter humidity was higher and more stable (mean=73.2), followed by secondary forest (mean=63.3) and cypress plantation (mean=52.9) (Kruskall-Wallis=77.93, n=232, p=0.00). In the primary (Kruskal-Wallis=31.63, n=78, p<0.001) and secondary (Kruskal-Wallis=11.79, n=75, p=0.008) forest litter accumulation was higher during April due to strong winds. In the primary forest (Kruskal-wallis=21.83, n=78, p<0.001) and the cypress plantation (Kruskal-wallis=39.99, n=80, p<0.001) leaf litter depth was shallow in October because heavy rains compacted it. Depth patterns were different from quantity patterns and described the leaf litter's structure in different ecosystems though the year. September 01.
Cornelissen, J H C; Quested, H M; van Logtestijn, R S P; Pérez-Harguindeguy, N; Gwynn-Jones, D; Díaz, S; Callaghan, T V; Press, M C; Aerts, R
2006-03-01
Plant traits have become popular as predictors of interspecific variation in important ecosystem properties and processes. Here we introduce foliar pH as a possible new plant trait, and tested whether (1) green leaf pH or leaf litter pH correlates with biochemical and structural foliar traits that are linked to biogeochemical cycling; (2) there is consistent variation in green leaf pH or leaf litter pH among plant types as defined by nutrient uptake mode and higher taxonomy; (3) green leaf pH can predict a significant proportion of variation in leaf digestibility among plant species and types; (4) leaf litter pH can predict a significant proportion of variation in leaf litter decomposability among plant species and types. We found some evidence in support of all four hypotheses for a wide range of species in a subarctic flora, although cryptogams (fern allies and a moss) tended to weaken the patterns by showing relatively poor leaf digestibility or litter decomposability at a given pH. Among seed plant species, green leaf pH itself explained only up to a third of the interspecific variation in leaf digestibility and leaf litter up to a quarter of the interspecific variation in leaf litter decomposability. However, foliar pH substantially improved the power of foliar lignin and/or cellulose concentrations as predictors of these processes when added to regression models as a second variable. When species were aggregated into plant types as defined by higher taxonomy and nutrient uptake mode, green-specific leaf area was a more powerful predictor of digestibility or decomposability than any of the biochemical traits including pH. The usefulness of foliar pH as a new predictive trait, whether or not in combination with other traits, remains to be tested across more plant species, types and biomes, and also in relation to other plant or ecosystem traits and processes.
Harada, Shigeki; Yanagisawa, Mitsunori
2017-04-01
The town of Marumori in southern Miyagi Prefecture borders on Fukushima Prefecture, and following the accident at the Fukushima Daiichi nuclear power plant, there were concerns about cesium deposition in forested areas. One of the authors of this paper has continually surveyed leaf litter from the forested areas. As leaf litter may be a source of cesium contamination from the forest to downstream areas, we considered a simplified version of wet oxidation, a method previously presented by one of the authors of this study, as a technology to reduce leaf litter weight and cesium concentration, separating radioactive nuclides from non-radioactive ones, in leaf litter. We tested our method in three experiments. Experiment 1 used new leaf litter (232 Bq/kg) from the surface of a small stream at the forest edge nearby an area with air dose level higher than the national standard threshold of 0.23 μSv/h for the implementation of governmental decontamination works. Experiment 2 applied wet oxidation to older leaf litter (705 Bq/kg) harvested from a pasture nearby the stream mentioned above. We also used the same leaf litter in experiment 3 for a cesium release tests using pure water. In experiment 1 and 2 we treated leaf litter with a sodium hypochlorite solution, optimizing sodium hypochlorite concentration and reaction temperature. We measured a 50-60% decrease in the leaf litter weight and a 60% decrease in the cesium concentration. Moreover, we also measured the amount of cesium washout. The cesium budget of experiment 1 showed no cesium gasification (wet oxidation avoids airborne cesium as this element is prone to be volatile at 600 °C), and that high sodium hypochlorite concentration and high temperature had a strong positive effect on leaf litter volume reduction and cesium decontamination. Experiment 2 confirmed the reproducibility of these results in leaves with different cesium concentration and harvested in different conditions. We could also explain the mechanism behind leaf litter weight and cesium concentration reduction. Experiment 3 helped us to investigate the effects of the matter present on the surface of the water and the contribution of water soluble cesium. Concurrent experiments on changes in leaf litter chemical composition confirmed that our modified wet oxidation method had an effect on the removal of acid-insoluble lignin. Removal of lignin, a refractory component, might allow for a better utilization of the residue left after implementation of the proposed simplified wet oxidation. Thus, real wastes could be smaller than the residues. Together with the observed smaller cesium concentration in the residue, the proposed method in this study is expected to contribute to mitigate the risk due to the fallen leaves containing cesium. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, X.; Szlavecz, K. A.; Langley, J. A.; Pitz, S.; Chang, C. H.
2017-12-01
Quantifying litter C into different C fluxes during litter decomposition is necessary to understand carbon cycling under changing climatic conditions. Rainfall patterns are predicted to change in the future, and their effects on the fate of litter carbon are poorly understood. Soils from deciduous forests in Smithsonian Environmental Research Center (SERC) in Maryland, USA were collected to reconstruct soil columns in the lab. 13C labeled tulip poplar leaf litter was used to trace carbon during litter decomposition. Top 1% and the mean of 15-minute historical precipitation data from nearby weather stations were considered as extreme and control rainfall intensity, respectively. Both intensity and frequency of rainfall were manipulated, while the total amount was kept constant. A pulse of CO2 efflux was detected right after each rainfall event in the soil columns with leaf litter. After the first event, CO2 efflux of the control rainfall treatment soils increased to threefold of the CO2 efflux before rain event and that of the extreme treatment soils increased to fivefold. However, in soils without leaf litter, CO2 efflux was suppressed right after rainfall events. After each rainfall event, the leaf litter contribution to CO2 efflux first showed an increase, decreased sharply in the following two days, and then stayed relatively constant. In soil columns with leaf litter, the order of cumulative CO2 efflux was control > extreme > intermediate. The order of cumulative CO2 efflux in the bare soil treatment was extreme > intermediate > control. The order of volume of leachate from different treatments was extreme > intermediate > control. Our initial results suggest that more intense rainfall events result in larger pulses of CO2, which is rarely measured in the field. Additionally, soils with and without leaf litter respond differently to precipitation events. This is important to consider in temperate regions where leaf litter cover changes throughout the year. Including the rainfall pattern as a parameter to the partitioning of litter carbon could help better project soil carbon cycling in the Mid-Atlantic region.
Evaluation of Methane from Sisal Leaf Residue and Palash Leaf Litter
NASA Astrophysics Data System (ADS)
Arisutha, S.; Baredar, P.; Deshpande, D. M.; Suresh, S.
2014-12-01
The aim of this study is to evaluate methane production from sisal leaf residue and palash leaf litter mixed with different bulky materials such as vegetable market waste, hostel kitchen waste and digested biogas slurry in a laboratory scale anaerobic reactor. The mixture was prepared with 1:1 proportion. Maximum methane content of 320 ml/day was observed in the case of sisal leaf residue mixed with vegetable market waste as the feed. Methane content was minimum (47 ml/day), when palash leaf litter was used as feed. This was due to the increased content of lignin and polyphenol in the feedstock which were of complex structure and did not get degraded directly by microorganisms. Sisal leaf residue mixtures also showed highest content of volatile fatty acids (VFAs) as compared to palash leaf litter mixtures. It was observed that VFA concentration in the digester first increased, reached maximum (when pH was minimum) and then decreased.
The results of this study suggests that there are two significantly distinct microbial communities in the leaf litter and soil components of this tropical forest. Fungi are more abundant in the leaf litter while bacteria are more abundant in the soil.
NASA Astrophysics Data System (ADS)
McLaren, J.; van de Weg, M. J.; Shaver, G. R.; Gough, L.
2013-12-01
Changes in global climate have resulted in a ';greening' of the Arctic as the abundance of deciduous shrub species increases. Consequently, not only the living plant community, but also the litter composition changes, which in turn can affect carbon turnover patterns in the Arctic. We examined effects of changing litter composition (both root and leaf litter) on decomposition rates with a litter bag study, and specifically focused on the impact of deciduous shrub Betula nana litter on litter decomposition from two evergreen shrubs (Ledum palustre, and Vaccinium vitis-idaea) and one graminoid (Eriophorum vaginatum) species. Additionally, we investigated how decomposition was affected by nutrient availability by placing the litterbags in an ambient and a fertilized moist acidic tundra environment. Measurements were carried out seasonally over 2 years (after snow melt, mid-growing season, end growing season). We measured litter mass loss over time, as well as the respiration rates (standardized for temperature and moisture) and temperature sensitivity of litter respiration at the time of harvesting the litter bags. For leaves, Betula litter decomposed faster than the other three species, with Eriophorum leaves decomposing the slowest. This pattern was observed for both mass loss and litter respiration rates, although the differences in respiration became smaller over time. Surprisingly, combining Betula with any other species resulted in slower overall weight loss rates than would be predicted based on monoculture weight loss rates. This contrasted with litter respiration at the time of sampling, which showed a positive mixing effect of adding Betula leaf liter to the other species. Apparently, during the first winter months (September - May) Betula litter decomposition is negatively affected by mixing the species and this legacy can still be observed in the total mass loss results later in the year. For root litter there were fewer effects of species identity on root decomposition rates; only Ledum roots decomposed slower than the other three species and the overall root litter respiration rates increased with the duration of the experiment (in contrast to leaf liter respiration). A fertilized environment had no effect on overall weight loss of the leaf or root litter within the time of our study, but leaf and root litter respiration rates were significantly larger at the end of the study in the fertilized tundra.The temperature sensitivity of leaf respiration was significantly lower for leaf litter respiration than root liter respiration after fist snow melt, but this difference disappeared throughout the first growing season and neither was influenced by species composition or fertilization with N+P. Overall, our results suggest that as arctic vegetation shifts towards shrub-dominated tundra, both species composition and seasonally dependent processes will determine effects of changing vegetation types on carbon turnover in arctic ecosystems.
NASA Astrophysics Data System (ADS)
Jonard, F.; André, F.; Ponette, Q.; Vincke, C.; Jonard, M.
2011-10-01
SummarySap flux density of European beech and common oak trees was determined from sap flow measurements in pure and mixed stands during the summer drought of 2003. Eight trees per species and per stand were equipped with sap flow sensors. Soil water content was monitored in each stand at different depths by using time-domain reflectometry (TDR). Leaf area index and vertical root distribution were also investigated during the growing season. From sap flux density ( SFD) data, mean stomatal conductance of individual trees ( G s) was calculated by inverting the Penman-Monteith equation. Linear mixed models were developed to analyse the effects of species and stand type (pure vs. mixed) on SFD and G s and on their sensitivity to environmental variables (vapour pressure deficit ( D), incoming solar radiation ( R G), and relative extractable water ( REW)). For reference environmental conditions, we did not find any tree species or stand type effects on SFD. The sensitivity of SFD to D was higher for oak than for beech in the pure stands ( P < 0.0001) but the mixing of species reduced it for oak and increased it for beech, so that the sensitivity of SFD to D became higher for beech than for oak in the mixed stand ( P < 0.0001). At reference conditions, G s was significantly higher for beech compared to oak (2.1 and 1.8 times in the pure and mixed stand, respectively). This was explained by a larger beech sapwood-to-leaf area ratio compared to oak. The sensitivity of G s to REW was higher for beech than for oak and was ascribed to a higher vulnerability of beech to air embolism and to a more sensitive stomatal regulation. The sensitivity of beech G s to REW was lower in the mixed than in the pure stand, which could be explained by a better sharing of the resources in the mixture, by facilitation processes (hydraulic lift), and by a rainfall partitioning in favour of beech.
Growth and physiological responses of beech seedlings to long-term exposure of acid fog.
Shigihara, Ado; Matsumoto, Kiyoshi; Sakurai, Naoki; Igawa, Manabu
2008-02-25
Seven-year-old beech seedlings (Fagus crenata) were exposed to simulated acid fog (SAF) at pH 3 or pH 5 (as control) prepared by adding a 2:1:1 mixture (molar ratio) of nitric acid, ammonium sulfate, and sodium chloride to ultrapure water from September 2004 to July 2006 in a mobile fog chamber. In comparison to control seedlings, seedlings from the pH 3 treatment displayed inferior plant height, stem diameter, number of leaves, and dry matter production, but greater leaf area. Furthermore, exposure to SAF induced early falling of leaves with a nearly two-times-greater normalized leaf number index than control. The starch levels in the stems of seedlings of the pH 3 treatment were much lower than those of control at the harvest. The acid fog-induced reduction of the starch accumulation is considered to occur mainly because of fewer leaves during the growth phase. Results of laboratory experiments demonstrate that the amount of base cations leached from the beech leaves increased with decreasing pH of SAF; the leaching amount of calcium ion from the beech was high relative to that of conifers such as fir and cedar. These results imply that chronic acid fog exposure suppresses growth and physiological activity of beech seedlings.
NASA Astrophysics Data System (ADS)
Mayer, Paul M.
2008-03-01
Identifying the biotic (e.g. decomposers, vegetation) and abiotic (e.g. temperature, moisture) mechanisms controlling litter decomposition is key to understanding ecosystem function, especially where variation in ecosystem structure due to successional processes may alter the strength of these mechanisms. To identify these controls and feedbacks, I measured mass loss and N flux in herbaceous, leaf, and wood litter along a successional gradient of ecosystem types (old field, transition forest, old-growth forest) while manipulating detritivore access to litter. Ecosystem type, litter type, and decomposers contributed directly and interactively to decomposition. Litter mass loss and N accumulation was higher while litter C:N remained lower in old-growth forests than in either old fields or transition forest. Old-growth forests influenced litter dynamics via microclimate (coolest and wettest) but also, apparently, through a decomposer community adapted to consuming the large standing stocks of leaf litter, as indicated by rapid leaf litter loss. In all ecosystem types, mass loss of herbaceous litter was greater than leaf litter which, in turn was greater than wood. However, net N loss from wood litter was faster than expected, suggesting localized N flux effects of wood litter. Restricting detritivore access to litter reduced litter mass loss and slowed the accumulation of N in litter, suggesting that macro-detritivores affect both physical and chemical characteristics of litter through selective grazing. These data suggest that the distinctive litter loss rates and efficient N cycling observed in old-growth forest ecosystems are not likely to be realized soon after old fields are restored to forested ecosystems.
The effect of leaf litter cover on surface runoff and soil erosion in Northern China.
Li, Xiang; Niu, Jianzhi; Xie, Baoyuan
2014-01-01
The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h-1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes.
The Effect of Leaf Litter Cover on Surface Runoff and Soil Erosion in Northern China
Li, Xiang; Niu, Jianzhi; Xie, Baoyuan
2014-01-01
The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h−1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes. PMID:25232858
Pan, Xu; Cornelissen, Johannes H C; Zhao, Wei-Wei; Liu, Guo-Fang; Hu, Yu-Kun; Prinzing, Andreas; Dong, Ming; Cornwell, William K
2014-09-01
Leaf litter decomposability is an important effect trait for ecosystem functioning. However, it is unknown how this effect trait evolved through plant history as a leaf 'afterlife' integrator of the evolution of multiple underlying traits upon which adaptive selection must have acted. Did decomposability evolve in a Brownian fashion without any constraints? Was evolution rapid at first and then slowed? Or was there an underlying mean-reverting process that makes the evolution of extreme trait values unlikely? Here, we test the hypothesis that the evolution of decomposability has undergone certain mean-reverting forces due to strong constraints and trade-offs in the leaf traits that have afterlife effects on litter quality to decomposers. In order to test this, we examined the leaf litter decomposability and seven key leaf traits of 48 tree species in the temperate area of China and fitted them to three evolutionary models: Brownian motion model (BM), Early burst model (EB), and Ornstein-Uhlenbeck model (OU). The OU model, which does not allow unlimited trait divergence through time, was the best fit model for leaf litter decomposability and all seven leaf traits. These results support the hypothesis that neither decomposability nor the underlying traits has been able to diverge toward progressively extreme values through evolutionary time. These results have reinforced our understanding of the relationships between leaf litter decomposability and leaf traits in an evolutionary perspective and may be a helpful step toward reconstructing deep-time carbon cycling based on taxonomic composition with more confidence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crutsinger, Greg; Habenicht, Melissa N; Classen, Aimee T
2008-01-01
Plant-insect interactions can alter ecosystem processes, especially if the insects modify plant architecture, quality, or the quantity of leaf litter inputs. In this study, we investigated the interactions between the gall midge Rhopalomyia solidaginis and tall goldenrod, Solidago altissima, to quantify the degree to which the midge alters plant architecture and how the galls affect rates of litter decomposition and nutrient release in an old-field ecosystem. R. solidaginis commonly leads to the formation of a distinct apical rosette gall on S. altissima and approximately 15% of the ramets in a S. altissima patch were galled (range: 3-34%). Aboveground biomass ofmore » galled ramets was 60% higher and the leaf area density was four times greater on galled leaf tissue relative to the portions of the plant that were not affected by the gall. Overall decomposition rate constants did not differ between galled and ungalled leaf litter. However, leaf-litter mass loss was lower in galled litter relative to ungalled litter, which was likely driven by modest differences in initial litter chemistry; this effect diminished after 12 weeks of decomposition in the field. The proportion of N remaining was always higher in galled litter than in ungalled litter at each collection date indicating differential release of nitrogen in galled leaf litter. Several studies have shown that plant-insect interactions on woody species can alter ecosystem processes by affecting the quality or quantity of litter inputs. Our results illustrate how plant-insect interactions in an herbaceous species can affect ecosystem processes by altering the quality and quantity of litter inputs. Given that S. altissima dominates fields and roadsides and that R. solidaginis galls are highly abundant throughout eastern North America, these interactions are likely to be important for both the structure and function of old-field ecosystems.« less
Larger temperature response of autumn leaf senescence than spring leaf-out phenology.
Fu, Yongshuo H; Piao, Shilong; Delpierre, Nicolas; Hao, Fanghua; Hänninen, Heikki; Liu, Yongjie; Sun, Wenchao; Janssens, Ivan A; Campioli, Matteo
2018-05-01
Climate warming is substantially shifting the leaf phenological events of plants, and thereby impacting on their individual fitness and also on the structure and functioning of ecosystems. Previous studies have largely focused on the climate impact on spring phenology, and to date the processes underlying leaf senescence and their associated environmental drivers remain poorly understood. In this study, experiments with temperature gradients imposed during the summer and autumn were conducted on saplings of European beech to explore the temperature responses of leaf senescence. An additional warming experiment during winter enabled us to assess the differences in temperature responses of spring leaf-out and autumn leaf senescence. We found that warming significantly delayed the dates of leaf senescence both during summer and autumn warming, with similar temperature sensitivities (6-8 days delay per °C warming), suggesting that, in the absence of water and nutrient limitation, temperature may be a dominant factor controlling the leaf senescence in European beech. Interestingly, we found a significantly larger temperature response of autumn leaf senescence than of spring leaf-out. This suggests a possible larger contribution of delays in autumn senescence, than of the advancement in spring leaf-out, to extending the growing season under future warmer conditions. © 2017 John Wiley & Sons Ltd.
Crous, Pedro W.; Verkley, Gerard J.M.; Groenewald, Johannes Z.
2006-01-01
A study of microfungi associated with living Eucalyptus leaves and leaf litter revealed several novel and interesting taxa. Cladoriella eucalypti gen. et sp. nov. is described as a Cladosporium-like genus associated with litter collected in South Africa, while Fulvoflamma eucalypti gen. et. sp. nov. is newly described from leaf litter collected in Spain. Beta-conidia are newly reported for species of Pestalotiopsis, namely Pestalotiopsis disseminata in New Zealand, and a Pestalotiopsis sp. from Colombia. Satchmopsis brasiliensis is reported from litter in Colombia and Indonesia, while Torrendiella eucalypti is reported from leaf litter in Indonesia, and shown to have a Sporothrix-like anamorph. Leptospora rubella is reported from living Eucalyptus leaves in Colombia, where it is associated with leaf spots of Mycosphaerella longibasalis, while Macrohilum eucalypti is reported from leaf spots of Eucalyptus in New Zealand. PMID:18490971
Lucisine, Pierre; Lecerf, Antoine; Danger, Michaël; Felten, Vincent; Aran, Delphine; Auclerc, Apolline; Gross, Elisabeth M; Huot, Hermine; Morel, Jean-Louis; Muller, Serge; Nahmani, Johanne; Maunoury-Danger, Florence
2015-12-15
Soil pollution has adverse effects on the performance and life history traits of microorganisms, plants, and animals, yet evidence indicates that even the most polluted sites can support structurally-complex and dynamic ecosystems. The present study aims at determining whether and how litter decomposition, one of the most important soil ecological processes leaf, is affected in a highly trace-metal polluted site. We postulated that past steel mill activities resulting in soil pollution and associated changes in soil characteristics would influence the rate of litter decomposition through two non-exclusive pathways: altered litter chemistry and responses of decomposers to lethal and sub-lethal toxic stress. We carried out a litter-bag experiment using Populus tremula L. leaf litter collected at, and allowed to decompose in, a trace metal polluted site and in three unpolluted sites used as controls. We designed a fully-factorial transplant experimental design to assess effects of litter origin and exposure site on the rate of litter decomposition. We further determined initial litter chemistry, fungal biomass, mesofauna abundance in litter bags, and the soil macrofauna community. Irrespective of the site of litter exposure, litter originating from the polluted site had a two-fold faster decomposition than litter from the unpolluted sites. Litter chemistry, notably the lignin content, seemed most important in explaining the degradation rate of the leaf litter. Abundance of meso and macro-detritivores was higher at the polluted site than at the unpolluted sites. However, litter decomposition proceeded at similar rates in polluted and unpolluted sites. Our results show that trace metal pollution and associated soil and litter changes do not necessarily weaken consumer control on litter decomposition through lethal and sub-lethal toxic stress. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hurley, Alexander
2017-04-01
Riparian wetlands represent an important ecotone at the interface of peatlands and forests within the Western Boreal Plain of Canada. Water storage and negative feedbacks to evaporation in these systems is crucial for the conservation and redistribution of water during dry periods and providing ecosystem resilience to disturbance. Litter cover can alter the relative importance of the physical processes that drive soil evaporation. Negative feedbacks to drying are created as the hydrophysical properties of the litter and soil override atmospheric controls on evaporation in dry conditions, subsequently dampening the effects of external forcings on the wetland moisture balance. In this study, water repellency in leaf litter has been shown to significantly correlate with surface-atmosphere interactions, whereby severely hydrophobic leaf litter is linked to the highest surface resistances to evaporation, and therefore lowest instantaneous evaporation. Decreasing moisture is associated with increasing hydrophobicity, which may reduce the evaporative flux further as the dry hydrophobic litter creates a hydrological disconnect between soil moisture and the atmosphere. In contrast, hydrophilic litter layers exhibited higher litter moistures, which is associated with reduced resistances to evaporation and enhanced evaporative fluxes. Water repellency of the litter layer has a greater control on evaporation than the presence or absence of litter itself. Litter removal had no significant effect on instantaneous evaporation or surface resistance to evaporation except under the highest evaporation conditions, where litter layers produced higher resistance values than bare peat soils. However, litter removal modified the dominant physical controls on evaporation: moisture loss in plots with leaf litter was driven by leaf and soil hydrophysical properties. Contrastingly, bare peat soils following litter removal exhibited cooler, wetter surfaces and were more strongly correlated to atmospheric controls. The interaction between evaporation, hydrophobicity and moisture of the soil surface, or litter, presents a potentially significant negative feedback to drying across wetland-forestland interfaces.
Richard V. Pouyat; Margaret M. Carreiro
2003-01-01
Using reciprocal leaf litter transplants, we investigated the effects of contrasting environments (urban vs. rural) and intraspecific variations in oak leaf litter quality on mass loss rates and nitrogen (N) dynamics along an urban-rural gradient in the New York City metropolitan area. Differences in earthworm abundances and temperature had previously been documented...
Leaf litter decomposition and elemental change in three Appalachian mountain streams of different pH
Steven W. Solada; Sue A. Perry; William B. Perry
1996-01-01
The decomposition of leaf litter provides the primary nutrient source for many of the headwater mountain streams in forested catchments. An investigation of factors affected by global change that influence organic matter decomposition, such as temperature and pH, is important in understanding the dynamics of these systems. We conducted a study of leaf litter elemental...
Darold P. Batzer; Brian J. Palik
2007-01-01
Aquatic invertebrates are crucial components of foodwebs in seasonal woodland ponds, and leaf litter is probably the most important food resource for those organisms. We quantified the influence of leaf litter inputs on aquatic invertebrates in two seasonal woodland ponds using an interception experiment. Ponds were hydrologically split using a sandbag-plastic barrier...
Energy content in dried leaf litter of some oaks and mixed mesophytic species that replace oaks
Aaron D. Stottlemeyer; G. Geoff Wang; Patrick H. Brose; Thomas A. Waldrop
2010-01-01
Mixed-mesophytic hardwood tree species are replacing upland oaks in vast areas of the Eastern United States deciduous forest. Some researchers have suggested that the leaf litter of mixed-mesophytic, oak replacement species renders forests less flammable where forest managers wish to restore a natural fire regime. We performed chemical analyses on dried leaf litter...
Plant structure predicts leaf litter capture in the tropical montane bromeliad Tillandsia turneri.
Ospina-Bautista, F; Estévez Varón, J V
2016-05-03
Leaves intercepted by bromeliads become an important energy and matter resource for invertebrate communities, bacteria, fungi, and the plant itself. The relationship between bromeliad structure, defined as its size and complexity, and accumulated leaf litter was studied in 55 bromeliads of Tillandsia turneri through multiple regression and the Akaike information criterion. Leaf litter accumulation in bromeliads was best explained by size and complexity variables such as plant cover, sheath length, and leaf number. In conclusion, plant structure determines the amount of litter that enters bromeliads, and changes in its structure could affect important processes within ecosystem functioning or species richness.
Liu, Heming; Shen, Guochun; Ma, Zunping; Yang, Qingsong; Xia, Jianyang; Fang, Xiaofeng; Wang, Xihua
2016-01-01
Conspecific adults have strong negative effect on the survival of nearby early-stage seedlings and thus can promote species coexistence by providing space for the regeneration of heterospecifics. The leaf litter fall from the conspecific adults, and it could mediate this conspecific negative adult effect. However, field evidence for such effect of conspecific leaf litter remains absent. In this study, we used generalized linear mixed models to assess the effects of conspecific leaf litter on the early-stage seedling survival of four dominant species (Machilus leptophylla, Litsea elongate, Acer pubinerve and Distylium myricoides) in early-stage seedlings in a subtropical evergreen broad-leaved forest in eastern China. Our results consistently showed that the conspecific leaf litter of three species negatively affected the seedling survival. Meanwhile, the traditional conspecific adult neighborhood indices failed to detect this negative conspecific adult effect. Our study revealed that the accumulation of conspecific leaf litter around adults can largely reduce the survival rate of nearby seedlings. Ignoring it could result in underestimation of the importance of negative density dependence and negative species interactions in the natural forest communities. PMID:27886275
Liu, Heming; Shen, Guochun; Ma, Zunping; Yang, Qingsong; Xia, Jianyang; Fang, Xiaofeng; Wang, Xihua
2016-11-25
Conspecific adults have strong negative effect on the survival of nearby early-stage seedlings and thus can promote species coexistence by providing space for the regeneration of heterospecifics. The leaf litter fall from the conspecific adults, and it could mediate this conspecific negative adult effect. However, field evidence for such effect of conspecific leaf litter remains absent. In this study, we used generalized linear mixed models to assess the effects of conspecific leaf litter on the early-stage seedling survival of four dominant species (Machilus leptophylla, Litsea elongate, Acer pubinerve and Distylium myricoides) in early-stage seedlings in a subtropical evergreen broad-leaved forest in eastern China. Our results consistently showed that the conspecific leaf litter of three species negatively affected the seedling survival. Meanwhile, the traditional conspecific adult neighborhood indices failed to detect this negative conspecific adult effect. Our study revealed that the accumulation of conspecific leaf litter around adults can largely reduce the survival rate of nearby seedlings. Ignoring it could result in underestimation of the importance of negative density dependence and negative species interactions in the natural forest communities.
McLaren, Jennie R; Buckeridge, Kate M; van de Weg, Martine J; Shaver, Gaius R; Schimel, Joshua P; Gough, Laura
2017-05-01
Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a 2-yr decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered by negative litter mixing effects during the early stages of encroachment. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Campioli, M.; Gielen, B.; Göckede, M.; Papale, D.; Bouriaud, O.; Granier, A.
2011-09-01
The allocation of carbon (C) taken up by the tree canopy for respiration and production of tree organs with different construction and maintenance costs, life span and decomposition rate, crucially affects the residence time of C in forests and their C cycling rate. The carbon-use efficiency, or ratio between net primary production (NPP) and gross primary production (GPP), represents a convenient way to analyse the C allocation at the stand level. In this study, we extend the current knowledge on the NPP-GPP ratio in forests by assessing the temporal variability of the NPP-GPP ratio at interannual (for 8 years) and seasonal (for 1 year) scales for a young temperate beech stand, reporting dynamics for both leaves and woody organs, in particular stems. NPP was determined with biometric methods/litter traps, whereas the GPP was estimated via the eddy covariance micrometeorological technique. The interannual variability of the proportion of C allocated to leaf NPP, wood NPP and leaf plus wood NPP (on average 11% yr-1, 29% yr-1 and 39% yr-1, respectively) was significant among years with up to 12% yr-1 variation in NPP-GPP ratio. Studies focusing on the comparison of NPP-GPP ratio among forests and models using fixed allocation schemes should take into account the possibility of such relevant interannual variability. Multiple linear regressions indicated that the NPP-GPP ratio of leaves and wood significantly correlated with environmental conditions. Previous year drought and air temperature explained about half of the NPP-GPP variability of leaves and wood, respectively, whereas the NPP-GPP ratio was not decreased by severe drought, with large NPP-GPP ratio on 2003 due mainly to low GPP. During the period between early May and mid June, the majority of GPP was allocated to leaf and stem NPP, whereas these sinks were of little importance later on. Improved estimation of seasonal GPP and of the contribution of previous-year reserves to stem growth, as well as reduction of data uncertainty, will be of relevance to increase the accuracy of the seasonal assessment of the NPP-GPP ratio in forests.
Page, B.D.; Bullen, T.D.; Mitchell, M.J.
2008-01-01
The calcium (Ca) isotope system is potentially of great use for understanding biogeochemical processes at multiple scales in forest ecosystems, yet remains largely unexplored for this purpose. In order to further our understanding of Ca behavior in forests, we examined two nearly adjacent hardwood-dominated catchments with differing soil Ca concentrations, developed from crystalline bedrock, to determine the variability of 44Ca/ 40Ca ratios (expressed as ??44Ca) within soil and vegetation pools. For both sugar maple and American beech, the Ca isotope compositions of the measured roots and calculated bulk trees were considerably lighter than those of soil pools at these sites, suggesting that the trees were able to preferentially take up light Ca at the root-soil interface. The Ca isotope compositions of three of four root samples were among the lightest values yet reported for terrestrial materials (??44Ca ???-3.95???). Our results further indicate that Ca isotopes were fractionated along the transpiration streams of both tree species with roots having the least ??44Ca values and leaf litter the greatest. An approximately 2??? difference in ??44Ca values between roots and leaf litter of both tree species suggests a persistent fractionation mechanism along the transpiration stream, likely related to Ca binding in wood tissue coupled with internal ion exchange. Finally, our data indicate that differing tree species demand for Ca and soil Ca concentrations together may influence Ca isotope distribution within the trees. Inter-catchment differences in Ca isotope distributions in soils and trees were minor, indicating that the results of our study may have broad transferability to studies of forest ecosystems in catchments developed on crystalline substrates elsewhere. ?? 2008 Springer Science+Business Media B.V.
Pan, Xu; Cornelissen, Johannes H C; Zhao, Wei-Wei; Liu, Guo-Fang; Hu, Yu-Kun; Prinzing, Andreas; Dong, Ming; Cornwell, William K
2014-01-01
Leaf litter decomposability is an important effect trait for ecosystem functioning. However, it is unknown how this effect trait evolved through plant history as a leaf ‘afterlife’ integrator of the evolution of multiple underlying traits upon which adaptive selection must have acted. Did decomposability evolve in a Brownian fashion without any constraints? Was evolution rapid at first and then slowed? Or was there an underlying mean-reverting process that makes the evolution of extreme trait values unlikely? Here, we test the hypothesis that the evolution of decomposability has undergone certain mean-reverting forces due to strong constraints and trade-offs in the leaf traits that have afterlife effects on litter quality to decomposers. In order to test this, we examined the leaf litter decomposability and seven key leaf traits of 48 tree species in the temperate area of China and fitted them to three evolutionary models: Brownian motion model (BM), Early burst model (EB), and Ornstein-Uhlenbeck model (OU). The OU model, which does not allow unlimited trait divergence through time, was the best fit model for leaf litter decomposability and all seven leaf traits. These results support the hypothesis that neither decomposability nor the underlying traits has been able to diverge toward progressively extreme values through evolutionary time. These results have reinforced our understanding of the relationships between leaf litter decomposability and leaf traits in an evolutionary perspective and may be a helpful step toward reconstructing deep-time carbon cycling based on taxonomic composition with more confidence. PMID:25535551
Temperatures below leaf litter during winter prescribed burns: implications for litter-roosting bats
Roger W. Perry; Virginia L. McDaniel
2015-01-01
Some bat species, including eastern red bats (Lasiurus borealis), roost for short periods beneath leaf litter on the forest floor during winter in the south-eastern USA, a region subjected to frequent fire. The variability in fuel consumption, the heterogeneous nature of burns, and the effects of litter and duff moisture on forest-floor...
NASA Astrophysics Data System (ADS)
Zagyvai-Kiss, Katalin Anita; Kalicz, Péter; Csáfordi, Péter; Kucsara, Mihály; Gribovszki, Zoltán
2013-04-01
Precipitation is trapped and temporarily stored by the surfaces of forest crown (canopy interception) and forest litter (litter interception). The stemflow and throughfall reach the litter, thus theoretically the litter moisture content depends on these parts of precipitation. Nowadays the moisture pattern of the forest floor, both spatial and temporal scale, have growing respect for the forestry. The transition to the continuous cover forestry induce much higher variability compared to the even aged, more-less homogeneous, monocultural stands. The gap cutting is one of the key methods in the Hungarian forestry. There is an active discussion among the forest professionals how to determine the optimal gap size to maintain the optimal conditions for the seedlings. Among the open questions is how to modify surrounding trees the moisture pattern of the forest floor in the gap? In the early steps of a multidisciplinary project we processed some available data, to estimate the spatial dependency between the water content of forest litter and the spatial pattern of the canopy represented by the tree trunk. The maximum water content depends on dry weight of litter, thus we also analysed that parameter. Data were measured in three different forest ecosystems: a middle age beech (Fagus sylvatica), a sessile oak (Quercus petraea) and a spruce (Picea abies) stand. The study site (Hidegvíz Valley Research Cathcment) is located in Sopron Hills at the eastern border of the Alps. Litter samples were collected under each stand (occasionally 10-10 pieces from 40?40 cm area) and locations of the samples and neighbouring trees were mapped. We determined dry weight and the water content of litter in laboratory. The relationship between water content and the distance of tree trunks in case of spruce and oak stands were not significant and in case of the beech stand was weakly significant. Climate change effects can influence significantly forest floor moisture content, therefore this factor has also taken into account. Acknowledgement: The research was financially supported by the TÁMOP-4.2.2.A-11/1/KONV-2012-0004 and TÁMOP-4.2.2.A-11/1/KONV-2012-0013 joint EU-national research projects.
NASA Astrophysics Data System (ADS)
Cook, A. A.; Trowbridge, A.; Jacobs, L. M.; Stoy, P. C.; Stevens, P. S.; Phillips, R.
2016-12-01
The sources of and controls over biogenic volatile organic compound (bVOC) fluxes between terrestrial ecosystems and the atmosphere remains poorly understood. Ecosystem bVOC flux models rarely include contributions from leaf litter and soils despite recent findings demonstrating that they can be nontrivial components of total ecosystem bVOC flux. Other recent studies have demonstrated the central role of arbuscular (AM) versus ectomycorrhizal (ECM) fungi in determining litter quality and soil biogeochemistry. Here, we quantify the role of mycorrhizal associations in controlling soil and leaf litter bVOC flux during the growing to non-growing season transition at the Morgan Monroe State Forest Ameriflux Core research site in Indiana, USA. We hypothesize that (1) total bVOC emissions will be greater from ECM plots due to larger belowground microbial biomass, and (2) fast-decomposing litter within the AM-dominated plots will result in an ephemeral pulse in bVOC emissions later in the season. AM and ECM-dominated forest soils were a net bVOC sink early in the growing season following leaf-out, but were net sources during the leaf-fall period in October. In the absence of leaf litter, soils dominated by ECM were a large sink of bVOCs, but leaf litter inputs resulted in a net source, suggesting that leaf litter and not merely soil microbial biomass is critical for understanding hypothesis (1). Temperature explains 57% (21%) of the variability of methanol flux - the bVOC of greatest quantity - in ECM (AM)-dominated plots. Non-methanol bVOC flux is only related to soil temperature in the Fall in ECM-dominated plots, where it explains 71% of the variability. Results are consistent with large methanol efflux with fresh litter after leaf-fall, especially in ECM plots (contrary to hypothesis 2), but net uptake with strong temperature-dependence during the growing season. Seasonality, phenology (including leaf litter dynamics) and mycorrhizal associations should be taken into account to accurately determine the relative contribution of forest soils to ecosystem bVOC fluxes in temperate forests and their sensitivity to environmental drivers.
Litter Breakdown and Microbial Succession on Two Submerged Leaf Species in a Small Forested Stream
Newman, Molli M.; Liles, Mark R.; Feminella, Jack W.
2015-01-01
Microbial succession during leaf breakdown was investigated in a small forested stream in west-central Georgia, USA, using multiple culture-independent techniques. Red maple (Acer rubrum) and water oak (Quercus nigra) leaf litter were incubated in situ for 128 days, and litter breakdown was quantified by ash-free dry mass (AFDM) method and microbial assemblage composition using phospholipid fatty acid analysis (PLFA), ribosomal intergenic spacer analysis (RISA), denaturing gradient gel electrophoresis (DGGE), and bar-coded next-generation sequencing of 16S rRNA gene amplicons. Leaf breakdown was faster for red maple than water oak. PLFA revealed a significant time effect on microbial lipid profiles for both leaf species. Microbial assemblages on maple contained a higher relative abundance of bacterial lipids than oak, and oak microbial assemblages contained higher relative abundance of fungal lipids than maple. RISA showed that incubation time was more important in structuring bacterial assemblages than leaf physicochemistry. DGGE profiles revealed high variability in bacterial assemblages over time, and sequencing of DGGE-resolved amplicons indicated several taxa present on degrading litter. Next-generation sequencing revealed temporal shifts in dominant taxa within the phylum Proteobacteria, whereas γ-Proteobacteria dominated pre-immersion and α- and β-Proteobacteria dominated after 1 month of instream incubation; the latter groups contain taxa that are predicted to be capable of using organic material to fuel further breakdown. Our results suggest that incubation time is more important than leaf species physicochemistry in influencing leaf litter microbial assemblage composition, and indicate the need for investigation into seasonal and temporal dynamics of leaf litter microbial assemblage succession. PMID:26098687
NASA Astrophysics Data System (ADS)
Tajovský, Karel; Šimek, Miloslav; Háněl, Ladislav; Šantrůčková, Hana; Frouz, Jan
2015-04-01
The millipedes Glomeris hexasticha (Diplopoda, Glomerida) were maintained under laboratory conditions and fed on oak leaf litter collected from a mixed oak forest (Abieto-Quercetum) in South Bohemia, Czech Republic. Every fourth day litter was changed and produced faecal pellets were separated and afterwards analysed. Content of organic carbon and C:N ratio lowered in faecal pellets as compared with consumed litter. Changes in content of chemical elements (P, K, Ca, Mg, Na) were recognised as those characteristic for the first stage of degradation of plant material. Samples of faecal pellets and oak leaf litter were then exposed in mesh bags between the F and H layers of forest soil for up to one year, subsequently harvested and analysed. A higher rate of decomposition of exposed litter than that of faecal pellets was found during the first two weeks. After 1-year exposure, the weight of litter was reduced to 51%, while that of pellets to 58% only, although the observed activity of present biotic components (algae, protozoans, nematodes; CO2 production, nitrogenase activity) in faecal pellets was higher as compared with litter. Different micro-morphological changes were observed in exposed litter and in pellets although these materials originated from the same initial sources. Comparing to intact leaf litter, another structural and functional processes occurred in pellets due to the fragmentation of plant material by millipedes. Both laboratory and field experiments showed that the millipede faecal pellets are not only a focal point of biodegradation activity in upper soil layers, but also confirmed that millipede feces undergo a slower decomposition than original leaf litter.
Bleaching of leaf litter and associated microfungi in subboreal and subalpine forests.
Hagiwara, Yusuke; Matsuoka, Shunsuke; Hobara, Satoru; Mori, Akira S; Hirose, Dai; Osono, Takashi
2015-10-01
Fungal decomposition of lignin leads to the whitening, or bleaching, of leaf litter, especially in temperate and tropical forests, but less is known about such bleaching in forests of cooler regions, such as boreal and subalpine forests. The purposes of the present study were to examine the extent of bleached area on the surface of leaf litter and its variation with environmental conditions in subboreal and subalpine forests in Japan and to examine the microfungi associated with the bleaching of leaf litter by isolating fungi from the bleached portions of the litter. Bleached area accounted for 21.7%-32.7% and 2.0%-10.0% of total leaf area of Quercus crispula and Betula ermanii, respectively, in subboreal forests, and for 6.3% and 18.6% of total leaf area of B. ermanii and Picea jezoensis var. hondoensis, respectively, in a subalpine forest. In subboreal forests, elevation, C/N ratio and pH of the FH layer, and slope aspect were selected as predictor variables for the bleached leaf area. Leaf mass per area and lignin content were consistently lower in the bleached area than in the nonbleached area of the same leaves, indicating that the selective decomposition of acid unhydrolyzable residue (recalcitrant compounds such as lignin, tannins, and cutins) enhanced the mass loss of leaf tissues in the bleached portions. Isolates of a total of 11 fungal species (6 species of Ascomycota and 5 of Basidiomycota) exhibited leaf-litter-bleaching activity under pure culture conditions. Two fungal species (Coccomyces sp. and Mycena sp.) occurred in both subboreal and subalpine forests, which were separated from each other by approximately 1100 km.
Comparing intra- and inter-specific effects on litter decomposition in an old-field ecosystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crutsinger, Greg; Sanders, Dr. Nathan James; Classen, Aimee T
2009-09-01
Plant species can differ in the quantity and quality of leaf litter they produce, and many studies have examined whether plant species diversity affects leaf-litter decomposition and nutrient release. A growing number of studies have indicated that intra-specific variation within plant species can also affect key ecosystem processes. However, the relative importance of intra- versus inter-specific variation for the functioning of ecosystems remains poorly known. Here, we investigate the effects of intra-specific variation in a dominant old-field plant species, tall goldenrod (Solidago altissima), and inter-specific variation among goldenrod species on litter quality, decomposition, and nitrogen (N) release. We found thatmore » the nutrient concentration of leaf litter varied among genotypes, which translated into 50% difference in decomposition rates. Variation among other goldenrod species in decomposition rate was more than twice that of genetic variation within S. altissima. Furthermore, by manipulating litterbags to contain 1, 3, 6, or 9 genotypes, we found that S. altissima genotype identity had much stronger effects than did genotypic diversity on leaf-litter quality, decomposition, and N release. Taken together, these results suggest that the order of ecological importance for controlling leaf-litter decomposition and N release dynamics is plant species identitygenotype identity>genotypic diversity.« less
Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong
2016-01-01
A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition. PMID:27256545
Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong
2016-06-03
A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition.
NASA Astrophysics Data System (ADS)
Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong
2016-06-01
A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition.
Jacquelyn M. Rowe; William B. Perry; Sue A. Perry
1996-01-01
Climate change has the potential to alter detrital processing in headwater streams, which receive the majority of their nutrient input as terrestrial leaf litter. Early placement of experimental leaf packs in streams, one month prior to most abscission, was used as an experimental manipulation to increase stream temperature during leaf pack breakdown. We studied leaf...
Dissolved organic carbon biodegradability from leaf litter leachates of riparian tropical trees
NASA Astrophysics Data System (ADS)
Bastianoni, A.; Montoya, J. V.; Mendez, C.; Paolini, J.
2012-04-01
It is generally assumed that leaf litter with varying chemical composition may show different rates of mass loss, dissolved organic carbon (DOC) release, and DOC biodegradability. Leaf litter is composed of different organic compounds, which may differ in their release rates. Some authors consider leaf litter chemical quality (carbon to nitrogen ratio (C:N) and polyphenolics content) as an indicator of leaf litter mass losses and DOC released into stream water through leaching. In this research, we determined if leachate's DOC biodegradability exhibited a positive relationship with leaf litter chemical quality and leaf litter mass loss due to leaching. In order to test these hypotheses, leaf litter from six riparian tree species (Bambusa vulgaris; Castilla elastica; Artocarpus altilis; Cecropia peltata; Hura crepitans and Ficus maxima), present in the lower reaches of a fifth-order stream in northern Venezuela was collected during the dry season of 2010. To evaluate leaf litter mass loss, air-dried leaves were incubated in Milli-Q water at room temperature in the dark. After 1h, 6h, 1d, 2d, 4d, 8d and 15d, microcosms were removed from the assay to determine remaining mass. DOC biodegradability was measured using 24 h leachates that were added into a 1L glass flask containing 250mL of unfiltered stream water, 4g of stream sediment, and nutrient amendments until all incubations had equal initial DOC concentrations. Biodegradability of DOC was measured at 0, 1, 2, 5 and 7 days as the decrease in DOC concentration through time. Chemical characterization of leaf litter involved the determination of total concentrations of C, N, and poliphenolics. Three replicates were used for all analyses. Initial chemical characterization of leaf litter showed that only two species (C. elastica and A. altilis), had similar C:N ratios (~31). The other four species, showed different C and N contents but presented C:N ratios between 21 and 23. Total polyphenolics content varied greatly among species. Based on the degree of DOC biodegradability, after 1d of incubation, all species could be grouped into three distinct categories (high, intermediate and low). Then, biodegradability of DOC declined steadily until reaching near-constant values at day 7 probably reflecting less availability of labile C compounds. Breakdown rates were not significantly correlated with DOC decay rates (r=-0.580, P =0.228, n=6). However when the remaining DOC and the remaining mass for all species was evaluated, a significant negative correlation was observed (r=-0.567, P =0.014, n=18) contradicting our initial hypothesis. Such results might be a consequence of the presence of secondary metabolites alongside labile DOC in some species leachates which could prevent microbial C consumption. Therefore, the quality of C released by leaching, measured as its biodegradability, does not seem to have a relationship with the amount of C lost by leaching. This could influence the C budget of the riparian ecosystem since the proportion of C consumed by stream microbes is affected by the chemical quality of leaf litter leachates.
Ab Hamid, Suhaila; Md Rawi, Che Salmah
2017-01-01
Leaf litter decomposition in a tropical stream was examined in two types of leaf packs; single species leaf packs of Pometia pinnata and two species leaf packs of equal combination of Pometia pinnata and Dolichandrone spathacea leaves. Both leaf packs were immersed in a river and weekly examined for remains of decomposed leaves and presence of EPT. In the control leaf packs, leaves in the two species leaf packs treatments decomposed within 35 days, faster than in single species leaf packs which decomposed after 42 days. In the presence of EPT, the leaf breakdown took 28 days in two species and 35 days for single species leaf packs. Higher abundance of EPT was observed in single species leaf packs but its diversity was higher in two species leaf packs. Litter breakdown in the stream was faster in the presence of EPT and softer leaves of D. spathacea with higher nitrogen content underwent faster decomposition and sustained higher numbers of EPT. PMID:28890763
Ab Hamid, Suhaila; Md Rawi, Che Salmah
2017-07-01
Leaf litter decomposition in a tropical stream was examined in two types of leaf packs; single species leaf packs of Pometia pinnata and two species leaf packs of equal combination of Pometia pinnata and Dolichandrone spathacea leaves. Both leaf packs were immersed in a river and weekly examined for remains of decomposed leaves and presence of EPT. In the control leaf packs, leaves in the two species leaf packs treatments decomposed within 35 days, faster than in single species leaf packs which decomposed after 42 days. In the presence of EPT, the leaf breakdown took 28 days in two species and 35 days for single species leaf packs. Higher abundance of EPT was observed in single species leaf packs but its diversity was higher in two species leaf packs. Litter breakdown in the stream was faster in the presence of EPT and softer leaves of D. spathacea with higher nitrogen content underwent faster decomposition and sustained higher numbers of EPT.
Bögelein, Rebekka; Thomas, Frank M; Kahmen, Ansgar
2017-07-01
Distinguishing meteorological and plant-mediated drivers of leaf water isotopic enrichment is prerequisite for ecological interpretations of stable hydrogen and oxygen isotopes in plant tissue. We measured input and leaf water δ 2 H and δ 18 O as well as micrometeorological and leaf morpho-physiological variables along a vertical gradient in a mature angiosperm (European beech) and gymnosperm (Douglas fir) tree. We used these variables and different enrichment models to quantify the influence of Péclet and non-steady state effects and of the biophysical drivers on leaf water enrichment. The two-pool model accurately described the diurnal variation of leaf water enrichment. The estimated unenriched water fraction was linked to leaf dry matter content across the canopy heights. Non-steady state effects and reduced stomatal conductance caused a higher enrichment of Douglas fir compared to beech leaf water. A dynamic effect analyses revealed that the light-induced vertical gradients of stomatal conductance and leaf temperature outbalanced each other in their effects on evaporative enrichment. We conclude that neither vertical canopy gradients nor the Péclet effect is important for estimates and interpretation of isotopic leaf water enrichment in hypostomatous trees. Contrarily, species-specific non-steady state effects and leaf temperatures as well as the water vapour isotope composition need careful consideration. © 2017 John Wiley & Sons Ltd.
Sabu, Thomas K; Vinod, K V
2009-01-01
The population dynamics of the rubber plantation litter beetle, Luprops tristis Fabricius 1801 (Coleoptera: Tenebrionidae) was assessed in relation to the phenology of leaf shedding and defoliation pattern of para rubber trees, Hevea brasiliensis Müll. Arg (Malpighiales: Euphorbiaceae), during a two year study period. The abundance of adults, larvae and pupae per 1m(2) of litter sample was recorded. Post dormancy beetles appeared in leaf litter following annual leaf shedding, whereas larvae, pupae and teneral adults were present after leaf flush. No stages were recorded from plantations following the summer rains until the annual litter fall in the next season. Parental adults peaked at the time of leaf sprouting and tender leaf fall. Larvae and teneral adults peaked at the time of premature fall of green leaves and flowers. Teneral adults of six age classes were recorded and all entered dormancy irrespective of the feeding time available to each age class. Females outnumbered males in the parent generation, while the sex ratio of new generation adults was not biased towards either sex. The phenological stages of rubber trees included leaf fall in late December and early January, leaf sprouting and new leaf production in January and flowering in February. All feeding stages of L. tristis peaked in abundance when premature leaves are most abundant in the leaf litter. Prediction of the timing of appearance of various developmental stages of L. tristis in plantations, invasion into buildings and intensity of population build up in rubber belts is possible by tracking the phenology of leaf fall in rubber plantations, time of return of post dormancy adults and the onset of summer rainfall. Perfect synchrony was recorded between the field return of parental adults with annual leaf shedding, the oviposition phase of parental adults with tender leaf fall at the time of leaf sprouting, and larval and teneral adult stages with premature fall of leaves. Premature leaf availability is suggested as contributing to the reproductive efficiency of parental adults, the survival of early developmental stages and of new generation adults during dormancy.
Sabu, Thomas K.; Vinod, K.V.
2009-01-01
The population dynamics of the rubber plantation litter beetle, Luprops tristis Fabricius 1801 (Coleoptera: Tenebrionidae) was assessed in relation to the phenology of leaf shedding and defoliation pattern of para rubber trees, Hevea brasiliensis Müll. Arg (Malpighiales: Euphorbiaceae), during a two year study period. The abundance of adults, larvae and pupae per 1m2 of litter sample was recorded. Post dormancy beetles appeared in leaf litter following annual leaf shedding, whereas larvae, pupae and teneral adults were present after leaf flush. No stages were recorded from plantations following the summer rains until the annual litter fall in the next season. Parental adults peaked at the time of leaf sprouting and tender leaf fall. Larvae and teneral adults peaked at the time of premature fall of green leaves and flowers. Teneral adults of six age classes were recorded and all entered dormancy irrespective of the feeding time available to each age class. Females outnumbered males in the parent generation, while the sex ratio of new generation adults was not biased towards either sex. The phenological stages of rubber trees included leaf fall in late December and early January, leaf sprouting and new leaf production in January and flowering in February. All feeding stages of L. tristis peaked in abundance when premature leaves are most abundant in the leaf litter. Prediction of the timing of appearance of various developmental stages of L. tristis in plantations, invasion into buildings and intensity of population build up in rubber belts is possible by tracking the phenology of leaf fall in rubber plantations, time of return of post dormancy adults and the onset of summer rainfall. Perfect synchrony was recorded between the field return of parental adults with annual leaf shedding, the oviposition phase of parental adults with tender leaf fall at the time of leaf sprouting, and larval and teneral adult stages with premature fall of leaves. Premature leaf availability is suggested as contributing to the reproductive efficiency of parental adults, the survival of early developmental stages and of new generation adults during dormancy. PMID:20050775
Roon, David A.; Wipfli, Mark S.; Wurtz, Tricia L.
2014-01-01
European bird cherry (Prunus padus) (EBC) is an invasive ornamental tree that is spreading rapidly in riparian forests of urban Alaska. To determine how the spread of EBC affects leaf litter processing by aquatic invertebrate shredders, we conducted complementary leaf pack experiments in two streams located in Anchorage, Alaska. The first experiment contrasted invasive EBC with three native tree species—thin-leaf alder (Alnus tenuifolia), paper birch (Betula neoalaskana), and black cottonwood (Populus trichocarpa)—in one reach of Chester Creek; finding that EBC leaf litter broke down significantly faster than birch and cottonwood, but at a similar rate to alder. The second experiment contrasted EBC with alder in four reaches of Campbell and Chester creeks; finding that while EBC leaf litter broke down significantly faster than alder in Chester Creek, EBC broke down at a similar rate to alder in Campbell Creek. Although EBC sometimes supported fewer shredders by both count and mass, shredder communities did not differ significantly between EBC and native plants. Collectively, these data suggest that invasive EBC is not currently exhibiting strong negative impacts on leaf litter processing in these streams, but could if it continues to spread and further displaces native species over time.
Nakanishi, Takahiro; Atarashi-Andoh, Mariko; Koarashi, Jun; Saito-Kokubu, Yoko; Hirai, Keizo
2014-02-01
Water-extractable organic carbon (WEOC) in soil consists of a mobile and bioavailable portion of the dissolved organic carbon (DOC) pool. WEOC plays an important role in dynamics of soil organic carbon (SOC) and transport of radionuclides in forest soils. Although considerable research has been conducted on the importance of recent litter versus older soil organic matter as WEOC sources in forest soil, a more thorough evaluation of the temporal pattern of WEOC is necessary. We investigated the seasonal variation in WEOC in a Japanese cool-temperate beech forest soil by using the carbon isotopic composition ((14)C and (13)C) of WEOC as a tracer for the carbon sources. Our observations demonstrated that fresh leaf litter DOC significantly contributed to WEOC in May (35-52%) when the spring snowmelt occurred because of the high water flux and low temperature. In the rainy season, increases in the concentration of WEOC and the proportion of hydrophobic compounds were caused by high microbial activity under wetter conditions. From summer to autumn, the WEOC in the mineral soil horizons was also dominated by microbial release from SOC (>90%). These results indicate that the origin and dynamics of WEOC are strongly controlled by seasonal events such as the spring snowmelt and the rainy season's intense rainfall. Copyright © 2013 Elsevier Ltd. All rights reserved.
Silva, N S; Saad, L P; Souza-Campana, D R; Bueno, O C; Morini, M S C
2017-02-01
In many sugarcane plantations in Brazil, the straw is left on the soil after harvesting, and vinasse, a by-product of the production of sugar and ethanol, is used for fertigation. Our goal was to compare ant community composition and species richness in the straw mulch of sugarcane crops with the leaf litter of neighboring forests. We tested the hypothesis that ant communities in the straw mulch of vinasse-irrigated sugarcane crops and in the forest leaf litter were similar, because the combination of straw mulching and vinasse irrigation has a positive effect on soil fauna. Straw mulch and leaf litter were collected from 21 sites and placed in Berlese funnels. In total, 61 species were found in the forest leaf litter, whereas 34 and 28 species were found in the straw mulch of sugarcane fields with and without vinasse, respectively. Ant communities differed between forest and crop fields, but the species in the sugarcane straw mulch were a subset of the species found in the forest leaf litter. Although vinasse is rich in organic matter, it did not increase ant diversity. Seven feeding and/or foraging types were identified and, among the different types, surface-foraging omnivorous ants were the most prevalent in all habitats. Vinasse-irrigated sugarcane straw mulch had more predatory species than mulch from vinasse-free fields, but fewer than forest leaf litter. However, this positive effect of vinasse irrigation should be carefully evaluated because vinasse has negative effects on the environment. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Leaf litter breakdown, microbial respiration and shredder production in metal-polluted streams
Carlisle, D.M.; Clements, W.H.
2005-01-01
1. If species disproportionately influence ecosystem functioning and also differ in their sensitivities to environmental conditions, the selective removal of species by anthropogenic stressors may lead to strong effects on ecosystem processes. We evaluated whether these circumstances held for several Colorado, U.S.A. streams stressed by Zn. 2. Benthic invertebrates and chemistry were sampled in five second-third order streams for 1 year. Study streams differed in dissolved metal concentrations, but were otherwise similar in chemical and physical characteristics. Secondary production of leaf-shredding insects was estimated using the increment summation and size-frequency methods. Leaf litter breakdown rates were estimated by retrieving litter-bags over a 171 day period. Microbial activity on leaf litter was measured in the laboratory using changes in oxygen concentration over a 48 h incubation period. 3. Dissolved Zn concentrations varied eightfold among two reference and three polluted streams. Total secondary production of shredders was negatively associated with metal contamination. Secondary production in reference streams was dominated by Taenionema pallidum. Results of previous studies and the current investigation demonstrate that this shredder is highly sensitive to metals in Colorado headwater streams. Leaf litter breakdown rates were similar between reference streams and declined significantly in the polluted streams. Microbial respiration at the most contaminated site was significantly lower than at reference sites. 4. Our results supported the hypothesis that some shredder species contribute disproportionately to leaf litter breakdown. Furthermore, the functionally dominant taxon was also the most sensitive to metal contamination. We conclude that leaf litter breakdown in our study streams lacked functional redundancy and was therefore highly sensitive to contaminant-induced alterations in community structure. We argue for the necessity of simultaneously measuring community structure and ecosystem function in anthropogenically stressed ecosystems.
Godoy, Oscar; Castro-Díez, Pilar; Van Logtestijn, Richard S P; Cornelissen, Johannes H C; Valladares, Fernando
2010-03-01
Leaf traits related to the performance of invasive alien species can influence nutrient cycling through litter decomposition. However, there is no consensus yet about whether there are consistent differences in functional leaf traits between invasive and native species that also manifest themselves through their "after life" effects on litter decomposition. When addressing this question it is important to avoid confounding effects of other plant traits related to early phylogenetic divergences and to understand the mechanism underlying the observed results to predict which invasive species will exert larger effects on nutrient cycling. We compared initial leaf litter traits, and their effect on decomposability as tested in standardized incubations, in 19 invasive-native pairs of co-familial species from Spain. They included 12 woody and seven herbaceous alien species representative of the Spanish invasive flora. The predictive power of leaf litter decomposition rates followed the order: growth form > family > status (invasive vs. native) > leaf type. Within species pairs litter decomposition tended to be slower and more dependent on N and P in invaders than in natives. This difference was likely driven by the higher lignin content of invader leaves. Although our study has the limitation of not representing the natural conditions from each invaded community, it suggests a potential slowing down of the nutrient cycle at ecosystem scale upon invasion.
Rezende, Renan de Souza; Gonçalves Júnior, José Francisco; Lopes, Aline; Piedade, Maria Teresa Fernandez; Cavalcante, Heloide de Lima; Hamada, Neusa
2017-01-01
Climate change may affect the chemical composition of riparian leaf litter and, aquatic organisms and, consequently, leaf breakdown. We evaluated the effects of different scenarios combining increased temperature and carbon dioxide (CO2) on leaf detritus of Hevea spruceana (Benth) Müll. and decomposers (insect shredders and microorganisms). We hypothesized that simulated climate change (warming and elevated CO2) would: i) decrease leaf-litter quality, ii) decrease survival and leaf breakdown by shredders, and iii) increase microbial leaf breakdown and fungal biomass. We performed the experiment in four microcosm chambers that simulated air temperature and CO2 changes in relation to a real-time control tracking current conditions in Manaus, Amazonas, Brazil. The experiment lasted seven days. During the experiment mean air temperature and CO2 concentration ranged from 26.96 ± 0.98ºC and 537.86 ± 18.36 ppmv in the control to 31.75 ± 0.50ºC and 1636.96 ± 17.99 ppmv in the extreme chamber, respectively. However, phosphorus concentration in the leaf litter decreased with warming and elevated CO2. Leaf quality (percentage of carbon, nitrogen, phosphorus, cellulose and lignin) was not influenced by soil flooding. Fungal biomass and microbial leaf breakdown were positively influenced by temperature and CO2 increase and reached their highest values in the intermediate condition. Both total and shredder leaf breakdown, and shredder survival rate were similar among all climatic conditions. Thus, low leaf-litter quality due to climate change and higher leaf breakdown under intermediate conditions may indicate an increase of riparian metabolism due to temperature and CO2 increase, highlighting the risk (e.g., decreased productivity) of global warming for tropical streams. PMID:29190723
Tracing C Fluxes From Leaf Litter To Microbial Respired CO2 And Specific Soil Compounds
NASA Astrophysics Data System (ADS)
Rubino, M.; Lubritto, C.; D'Onofrio, A.; Gleixner, G.; Terrasi, F.; Cotrufo, F. M.
2004-12-01
Despite litter decomposition is one of the major process controlling soil C stores and nutrient cycling, yet C dynamics during litter decay are poorly understood and quantified. Here we report the results of a laboratory experiment where 13C depleted leaf litter was incubated on a 13C enriched soil with the aims to: i) partition the C loss during litter decay into microbial respired-CO2 and C input into the soil; ii) identify the soil compounds where litter derived C is retained; iii) assess whether litter quality is a determinant of both the above processes. Three 13C-depleted leaf litter(delta13C ca. -43), differing in their degradability, were incubated on C4 soil (delta13C ca. -18) under laboratory controlled conditions for 8 months, with litter respiration and delta13C-CO2 being measured at regular intervals. At harvest, Compound Specific Isotope Analyses was performed on soil and litter samples in order to follow the fate of litter-derived C compounds in the various pools of SOMƒn The delta13C of soils carbohydrates, alkanes and Phospho Lipids Fatty Acids (PLFA) were measured, and the mixing model approach used to quantify the contribution of litter derived C to the specific compounds.
Rainfall interception by tree crown and leaf litter: an interactive process
Xiang Li; Qingfu Xiao; Jianzhi Niu; Salli Dymond; E. Gregory McPherson; Natalie van Doorn; Xinxiao Yu; Baoyuan Xie; Kebin Zhang; Jiao Li
2017-01-01
Rainfall interception research in forest ecosystems usually focuses on interception by either tree crown or leaf litter, although the 2 components interact when rainfall occurs. A process-based study was conducted to jointly measure rainfall interception by crown and litter and the interaction between the 2 interception processes for 4 tree species (...
SOA formation potential of emissions from soil and leaf litter.
Faiola, Celia L; Vanderschelden, Graham S; Wen, Miao; Elloy, Farah C; Cobos, Douglas R; Watts, Richard J; Jobson, B Thomas; Vanreken, Timothy M
2014-01-21
Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 μg-C m(-2) h(-1). The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and α-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Thus, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation.
David L. Dilcher; Elizabeth A. Kowalski; Michael C. Wiemann; Luis Felipe Hinojosa; Terry A. Lott
2009-01-01
One method to determine past climate has been the use of leaf morphological characteristics of fossil leaves quantified using modern climate and canopy leaf characteristics. Fossil assemblages are composed of abscised leaves, and climate may be more accurately determined by using leaves from leaf litter instead of the canopy. To better understand whether taphonomic...
Study on Hydrological Functions of Litter Layers in North China
Li, Xiang; Niu, Jianzhi; Xie, Baoyuan
2013-01-01
Canopy interception, throughfall, stemflow, and runoff have received considerable attention during the study of water balance and hydrological processes in forested ecosystems. Past research has either neglected or underestimated the role of hydrological functions of litter layers, although some studies have considered the impact of various characteristics of rainfall and litter on litter interception. Based on both simulated rainfall and litter conditions in North China, the effect of litter mass, rainfall intensity and litter type on the maximum water storage capacity of litter (S) and litter interception storage capacity (C) were investigated under five simulated rainfall intensities and four litter masses for two litter types. The results indicated: 1) the S values increased linearly with litter mass, and the S values of broadleaf litter were on average 2.65 times larger than the S values of needle leaf litter; 2) rainfall intensity rather than litter mass determined the maximum interception storage capacity (Cmax); Cmax increased linearly with increasing rainfall intensity; by contrast, the minimum interception storage capacity (Cmin) showed a linear relationship with litter mass, but a poor correlation with rainfall intensity; 3) litter type impacted Cmax and Cmin; the values of Cmax and Cmin for broadleaf litter were larger than those of needle leaf litter, which indicated that broadleaf litter could intercepte and store more water than needle leaf litter; 4) a gap existed between Cmax and Cmin, indicating that litter played a significant role by allowing rainwater to infiltrate or to produce runoff rather than intercepting it and allowing it to evaporate after the rainfall event; 5) Cmin was always less than S at the same litter mass, which should be considered in future interception predictions. Vegetation and precipitation characteristics played important roles in hydrological characteristics. PMID:23936188
Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams.
Iñiguez-Armijos, Carlos; Rausche, Sirkka; Cueva, Augusta; Sánchez-Rodríguez, Aminael; Espinosa, Carlos; Breuer, Lutz
2016-07-01
Tropical montane ecosystems of the Andes are critically threatened by a rapid land-use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest-pasture-urban) on stream physico-chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico-chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land-use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf-shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land-use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of native vegetation and riparian buffers to promote ecological integrity and functioning of tropical Andean stream ecosystems.
McGuire, Krista L; Fierer, Noah; Bateman, Carling; Treseder, Kathleen K; Turner, Benjamin L
2012-05-01
Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0-20 cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6 months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities.
Compson, Zacchaeus G; Adams, Kenneth J; Edwards, Joeseph A; Maestas, Jesse M; Whitham, Thomas G; Marks, Jane C
2013-10-01
Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders). We examined how aquatic insect emergence changed seasonally with litter from two foundation riparian trees, whose litter often dominates riparian streams of the southwestern United States: Fremont (Populus fremontii) and narrowleaf (Populus angustifolia) cottonwood. P. fremontii litter is fast-decomposing and lower in defensive phytochemicals (i.e., condensed tannins, lignin) relative to P. angustifolia. We experimentally manipulated leaf litter from these two species by placing them in leaf enclosures with emergence traps attached in order to determine how leaf type influenced insect emergence. Contrary to our initial predictions, we found that packs with slow-decomposing leaves tended to support more emergent insects relative to packs with fast-decomposing leaves. Three findings emerged. Firstly, abundance (number of emerging insects m(-2) day(-1)) was 25% higher on narrowleaf compared to Fremont leaves for the spring but did not differ in the fall, demonstrating that leaf quality from two dominant trees of the same genus yielded different emergence patterns and that these patterns changed seasonally. Secondly, functional feeding groups of emerging insects differed between treatments and seasons. Specifically, in the spring collector-gatherer abundance and biomass were higher on narrowleaf leaves, whereas collector-filterer abundance and biomass were higher on Fremont leaves. Shredder abundance and biomass were higher on narrowleaf leaves in the fall. Thirdly, diversity (Shannon's H') was higher on Fremont leaves in the spring, but no differences were found in the fall, showing that fast-decomposing leaves can support a more diverse, complex emergent insect assemblage during certain times of the year. Collectively, these results challenge the notion that leaf quality is a simple function of decomposition, suggesting instead that aquatic insects benefit differentially from different leaf types, such that some use slow-decomposing litter for habitat and its temporal longevity and others utilize fast-decomposing litter with more immediate nutrient release.
Leicht-Young, Stacey A.; Pavlovic, Noel B.; Grundel, Ralph
2013-01-01
Fire effects on invasive species are an important land management issue in areas subjected to prescribed fires as well as wildfires. These effects on invasive species can be manifested across life stages. The liana Celastrus orbiculatus (oriental bittersweet) is a widespread invader of eastern US habitats including those where fire management is in practice. This study examined if prescribed fire makes these habitats more susceptible to invasion of C. orbiculatus by seed at Indiana Dunes National Lakeshore. Four treatments (control, litter removed, high and low intensity fire) were applied in six habitat types (sand savanna/woodland, sand prairie, moraine prairie, sand oak forest, beech-maple forest, and oak-hickory forest) and germinating seedlings were tracked over two growing seasons. Treatment did not have a significant effect on the germination, survival, or biomass of C. orbiculatus. However, habitat type did influence these responses mostly in the first growing season. Moraine prairie, beech-maple forest, and oak-hickory forests had the greatest peak percentage of germinants. Moraine prairie had significantly greater survival than oak forest and savanna habitats. Control plots with intact litter, and the moraine prairie habitat had the tallest seedlings at germination, while tallest final heights and greatest aboveground biomass were highest in oak forest. Thus, fire and litter removal did not increase the susceptibility of these habitats to germination and survival of C. orbiculatus. These results indicate that most eastern US habitats are vulnerable to invasion by this species via seed regardless of the level or type of disturbance to the litter layer.
Xia, Lei; Wu, Fu-Zhong; Yang, Wan-Qin; Tan, Bo
2012-02-01
In order to quantify the contribution of soil fauna to the decomposition of birch (Betula albosinensis) leaf litter in subalpine forests in western Sichuan of Southwest China during freeze-thaw season, a field experiment with different mesh sizes (0.02, 0.125, 1 and 3 mm) of litterbags was conducted in a representative birch-fir (Abies faxoniana) forest to investigate the mass loss rate of the birch leaf litter from 26 October, 2010 to 18 April, 2011, and the contributions of micro-, meso- and macro-fauna to the decomposition of the leaf litter. Over the freeze-thaw season, 11.8%, 13.2%, 15.4% and 19.5% of the mass loss were detected in the litterbags with 0.02, 0. 125, 1 and 3 mm mesh sizes, respectively. The total contribution of soil fauna to the litter decomposition accounted for 39.5% of the mass loss, and the taxa and individual relative density of the soil fauna in the litterbags had the similar variation trend with that of the mass loss rate. The contribution rate of soil fauna to the leaf litter mass loss showed the order of micro- < meso- < macro-fauna, with the highest contribution of micro-fauna (7.9%), meso-fauna (11.9%), and macro-fauna (22.7%) at the onset of freezing stage, deeply frozen stage, and thawing stage, respectively. The results demonstrated that soil fauna played an important role in the litter decomposition in subalpine forests of western Sichuan during freeze-thaw season.
Factors influencing leaf litter decomposition: An intersite decomposition experiment across China
Zhou, G.; Guan, L.; Wei, X.; Tang, X.; Liu, S.; Liu, J.; Zhang, Dongxiao; Yan, J.
2008-01-01
The Long-Term Intersite Decomposition Experiment in China (hereafter referred to as LTIDE-China) was established in 2002 to study how substrate quality and macroclimate factors affect leaf litter decomposition. The LTIDE-China includes a wide variety of natural and managed ecosystems, consisting of 12 forest types (eight regional broadleaf forests, three needle-leaf plantations and one broadleaf plantation) at eight locations across China. Samples of mixed leaf litter from the south subtropical evergreen broadleaf forest in Dinghushan (referred to as the DHS sample) were translocated to all 12 forest types. The leaf litter from each of other 11 forest types was placed in its original forest to enable comparison of decomposition rates of DHS and local litters. The experiment lasted for 30 months, involving collection of litterbags from each site every 3 months. Our results show that annual decomposition rate-constants, as represented by regression fitted k-values, ranged from 0.169 to 1.454/year. Climatic factors control the decomposition rate, in which mean annual temperature and annual actual evapotranspiration are dominant and mean annual precipitation is subordinate. Initial C/N and N/P ratios were demonstrated to be important factors of regulating litter decomposition rate. Decomposition process may apparently be divided into two phases controlled by different factors. In our study, 0.75 years is believed to be the dividing line of the two phases. The fact that decomposition rates of DHS litters were slower than those of local litters may have been resulted from the acclimation of local decomposer communities to extraneous substrate. ?? 2008 Springer Science+Business Media B.V.
Lori D. Bothwell; Paul C. Selmants; Christian P. Giardina; Creighton M. Litton
2014-01-01
Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivityof leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical...
Interaction of Substrate and Nutrient Availability on wood Biofilm Processes in Streams
Jennifer L. Tank; J.R. Webster
1998-01-01
We examined the effect of decomposing leaf litter and dissolved inorganic nutrients on the heterotrophic biofilm of submerged wood in streams with and without leaves. Leaf litter was excluded from one headwater stream in August 1993 at Coweeta Hydrologic Laboratory in the southern Appalachian Mountains. We compared microbial processes on wood in the litter-excluded...
Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers
Jennifer J. Follstad Shah; John S. Kominoski; Marcelo Ardón; Walter K. Dodds; Mark O. Gessner; Natalie A. Griffiths; Charles P. Hawkins; Sherri L. Johnson; Antoine Lecerf; Carri J. LeRoy; David W. P. Manning; Amy D. Rosemond; Robert L. Sinsabaugh; Christopher M. Swan; Jackson R. Webster; Lydia H. Zeglin
2017-01-01
Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community...
NASA Astrophysics Data System (ADS)
Sanaullah, M.; Chabbi, A.; Rumpel, C.
2009-04-01
The influence of litter quality on its rate of decomposition is a crucial aspect of C cycle. In this study we concentrated on grassland ecosystems where leaf litter is one of the major sources of C input. To quantify the contribution of initial leaf chemistry within different plant species, the decomposition of chemically different leaf litter of three grassland species (Lolium perenne, Festuca arundinacea and Dactylis glomerata) was monitored, using the litter bag technique. Litter of different maturity stages i.e. green (fresh leaves) and brown litter (brown leaves were still attached to the plant), were incubated on bare soil surface. Samples were taken at different time intervals (0, 2, 4, 8, 20 and 44 weeks) and were analyzed for mass loss, organic C and N contents and stable isotopic signatures (C and N). Changes in litter chemistry were addressed by determining lignin-derived phenols after CuO oxidation and non-cellulosic polysaccharides after acid hydrolysis followed by gas chromatography. Green litter was chemically different from brown litter due to higher initial N and lower lignin contents. While in grassland species, both L. perenne and D. glomerata were similar in their initial chemical composition compared with F. arundinacea. Green litter showed higher rate of degradation. In green litter, Percent lignin remaining of initial (% OI) followed the similar decomposition pattern as of C remaining indicating lignin as controlling factor in decomposition. Constant Acid-to-Aldehyde ratios of lignin-derived phenols (vanillyl and syringyl) did not suggest any transformation in lignin structures. In green litter, increase in non-cellulosic polysaccharides ratios (C6/C5 and deoxy/C5) proposed microbial-derived sugars, while there was no significant increase in these ratios in brown litter. In conclusion, due to the differences in initial chemical composition (initial N and lignin contents), green litter decomposition was higher than brown litter in all grassland species. Regardless of similarities in initial composition of grassland species, green and brown litter of Lolium perenne decomposed more rapidly compared with other two species. So, Species related differences in initial litter chemistry did not control its degradation.
Uieda, V S; Carvalho, E M
2015-05-01
Through a manipulative experiment, the colonization of leaf litter by invertebrates was investigated in two sections of a tropical stream (spatial scale) that differed in function of the canopy cover, one with the presence (closed area) and another without riparian vegetation (open area), during one month of the dry and one of the wet season (temporal scale). The work aimed to verify differences related to four variables: season, canopy cover, leaf type and leaf condition. Litter bags containing arboreal and herbaceous leaves (leaf type variable), non-conditioned and preconditioned (leaf condition variable) were placed at the bottom of the stream in each area (canopy cover variable) and season (dry and wet), and removed after 13-day colonization. The analysis of the remaining litter dry mass per leaf bag emphasizes differences related mainly to seasonality, canopy cover and leaf type, although leaf condition was also important when combined with those three factors. Comparing the abundance of invertebrates per treatment, there was a tendency of high predominance of Chironomidae during the dry season and greater taxa diversity and evenness during the wet season, when the water flow increase could alter the availability of microhabitats for local fauna. Even though canopy cover alone was not a significant source of variation in the abundance of invertebrates, the results showed a tendency of a combined effect of canopy cover with seasonality and leaf condition.
Jo, Insu; Fridley, Jason D; Frank, Douglas A
2016-01-01
Invaders often have greater rates of production and produce more labile litter than natives. The increased litter quantity and quality of invaders should increase nutrient cycling through faster litter decomposition. However, the limited number of invasive species that have been included in decomposition studies has hindered the ability to generalize their impacts on decomposition rates. Further, previous decomposition studies have neglected roots. We measured litter traits and decomposition rates of leaves for 42 native and 36 nonnative woody species, and those of fine roots for 23 native and 25 nonnative species that occur in temperate deciduous forests throughout the Eastern USA. Among the leaf and root traits that differed between native and invasive species, only leaf nitrogen was significantly associated with decomposition rate. However, native and nonnative species did not differ systematically in leaf and root decomposition rates. We found that among the parameters measured, litter decomposer activity was driven by litter chemical quality rather than tissue density and structure. Our results indicate that litter decomposition rate per se is not a pathway by which forest woody invasive species affect North American temperate forest soil carbon and nutrient processes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Janeček, Štěpán; Lepš, Jan
2005-09-01
The effects of litter removal, leaf cover of established plants and cover of basal internodes of a dominant species Molinia caerulea on seedling germination and the dynamics of established plants were studied in a field experiment in an oligotrophic wet meadow. Although the negative influence of litter on total seedling number and seedling species composition was non-significant, litter significantly affected the dynamics of the established vegetation and caused inhibition of total leaf cover development. The effects of total leaf cover of established plants on seedling establishment changed during the vegetation season. Whereas the effect of total leaf cover was positive at the start and in the middle of the vegetation season, at the end the total leaf cover negatively affected seedling establishment. Both total leaf cover and cover of basal internodes affected seedling composition. Effects of these two variables were statistically separable suggesting that they are based on different mechanisms. The response of seedling establishment to these factors was species specific and, consequently, our data support the hypothesis that that biotically generated spatial heterogeneity can promote species co-existence through the differentiation of species regeneration niches.
Kitayama, Kanehiro; Suzuki, Shizuo; Hori, Masato; Takyu, Masaaki; Aiba, Shin-Ichiro; Majalap-Lee, Noreen; Kikuzawa, Kihachiro
2004-07-01
We investigated if tropical rainforest trees produced more-lignified leaves in less productive environments using forests on Mount Kinabalu, Borneo. Our investigation was based on two earlier suggestions that slower litter decomposition occurs under less productive forests and that trees under resource limitation invest a large amount of carbon as lignin as a defense substance to minimize the loss from herbivores. When nine forests at different altitudes (700-3100 m) and soil conditions (derived from sedimentary or ultrabasic rocks) but with the same gentle relief position were compared, the concentrations of leaf-litter lignin were positively correlated with litterfall rates and leaf-litter nitrogen concentrations. These patterns would be reinforced in intact leaves if the effects of resorption at the time of leaf shedding were taken into account, because greater magnitude of resorption of mobile elements but not of lignin would occur in less productive environments (i.e. dilution of lignin in intact leaves). These results did not support earlier suggestions to explain the variation of leaf-litter lignin. Instead, we suggest that lower lignin contents are adaptive to recycle minerals without retarding decomposition in less productive environments.
Li, Tian-yu; Kang, Feng-feng; Han, Hai-rong; Gao, Jing; Song, Xiao-shuai; Yu, Shu; Zhao, Jin-long; Yu, Xiao-wen
2015-03-01
Using litter bag method, we studied the effects of single and mixed litters from Betula platyphlla, Populus davidiana and Quercus mongolica on soil microbial biomass carbon (MBC), microbial respiration (MR) and microbial metabolic quotient (qCO2) in 0-5, 5-10 and 10-20 cm soil layers. The results showed that the average contents of MBC in 0-20 cm soil layer were 124.84, 325.29, 349.79 and 319.02 mg . kg-1 in the leaf litter removal treatment, Betula platyphlla treatment, Populus davidiana treatment and Quercus mongolica treatment, and the corresponding average rates of MR were 0.66, 1.12, 1.16 and 1.10 µg . g-1 . h-1, respectively. Meanwhile, in 0-20 cm soil layer, the average contents of MBC in the treatments with single leaf litter, mixed litter of two plant species and mixed litter of three plant species were 331. 37, 418. 52 and 529. 34 mg . kg-1, and the corresponding average rates of MR were 1.13, 1.30 and 1.46 µg . g-1 . h-1, respectively. In contrast to the MBC and MR, qCO2 in soil showed a reverse pattern. Our study suggested that characteristics of microbial carbolic metabolism were influenced by litter quality. Namely, the treatment with high litter quality had higher MBC, MR and utilization efficiency of soil carbon, compared with the treatment with low litter quality. Moreover, mixture of different species of leaf litter improved soil microbial activities, increased utilization efficiency on soil carbon and promoted diversity of microbial metabolic pathways, which could then contribute to maintaining and enhancing soil quality of forestland.
Todd A. Crowl; Vanessa Welsh; Tamara Heartsill Scalley
2006-01-01
Temperate headwater streams with closed canopies rely on inputs of terrestrially derived organic matter to provide the major energy basis for their food webs. Microbial colonization, or conditioning, makes leaf litter more nutritional and palatable to stream detritivores, but few studies have investigated the relative importance of litter source to macroshredders in...
William F.J. Parsons; Richard L. Lindroth; James G. Bockheim
2004-01-01
Litter decay dynamics of paper birch (Betula papyrifera) were assessed at the Aspen free-air CO2 enrichment (FACE) facility in northern Wisconsin, USA. Leaf litter was decomposed for 12 months under factorial combinations of 360 vs. 560 µLCO2 L-1, crossed with 36 vs. 55 nLO...
Scott R. Abella
2008-01-01
Seed availability and leaf litter limit plant establishment in some ecosystems. To evaluate the hypothesis that these factors limit understory plant recruitment in Pinus ponderosa forests, I conducted a seeding and litter removal experiment at six thinned sites in the Fort Valley Experimental Forest, northern Arizona. Experimental seeding of four native species (...
Scott R. Abella
2008-01-01
Seed availability and leaf litter limit plant establishment in some ecosystems. To evaluate the hypothesis that these factors limit understory plant recruitment in Pinus ponderosa forests, I conducted a seeding and litter removal experiment at six thinned sites in the Fort Valley Experimental Forest, northern Arizona. Experimental seeding of four native species (
Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition*
Fan, Dong-mei; Fan, Kai; Yu, Cui-ping; Lu, Ya-ting; Wang, Xiao-chang
2017-01-01
Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols. PMID:28124839
Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition.
Fan, Dong-Mei; Fan, Kai; Yu, Cui-Ping; Lu, Ya-Ting; Wang, Xiao-Chang
Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols.
SOA formation potential of emissions from soil and leaf litter
Faiola, Celia L.; VanderSchelden, Graham S.; Wen, Miao; ...
2013-12-13
Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 μg-C m –2 h –1. The composition of the SOA producedmore » was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and α-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Furthermore, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation.« less
Rock Hole Habitats of a Feral Population of Aedes aegypti on the Island of Anguilla, West Indies
1983-03-01
htAHCH, 1983 MOSQUITO NEWS $9 tions of medical importance. Annu. Rev. Entomol. 13:427-450. Fish, D. and S. R. Carpenter. 1982. Leaf litter and...Aedes mgspi larvae (ruler length is 0.31 m). it1 bare rock holes or those containing leaf litter arid/or soil. Larval densities are usually higher in...shade cover. At one end there is a la! er of leaf litter, the remainder has ;I thin mud layer over its rock bottom. During this time, the hole filled
How does the VPD response of isohydric and anisohydric plants depend on leaf surface particles?
Burkhardt, J; Pariyar, S
2016-01-01
Atmospheric vapour pressure deficit (VPD) is the driving force for plant transpiration. Plants have different strategies to respond to this 'atmospheric drought'. Deposited aerosols on leaf surfaces can interact with plant water relations and may influence VPD response. We studied transpiration and water use efficiency of pine, beech and sunflower by measuring sap flow, gas exchange and carbon isotopes, thereby addressing different time scales of plant/atmosphere interaction. Plants were grown (i) outdoors under rainfall exclusion (OD) and in ventilated greenhouses with (ii) ambient air (AA) or (iii) filtered air (FA), the latter containing <1% ambient aerosol concentrations. In addition, some AA plants were sprayed once with 25 mM salt solution of (NH4 )2 SO4 or NaNO3 . Carbon isotope values (δ(13) C) became more negative in the presence of more particles; more negative for AA compared to FA sunflower and more negative for OD Scots pine compared to other growth environments. FA beech had less negative δ(13) C than AA, OD and NaNO3 -treated beech. Anisohydric beech showed linearly increasing sap flow with increasing VPD. The slopes doubled for (NH4 )2 SO4 - and tripled for NaNO3 -sprayed beech compared to control seedlings, indicating decreased ability to resist atmospheric demand. In contrast, isohydric pine showed constant transpiration rates with increasing VPD, independent of growth environment and spray, likely caused by decreasing gs with increasing VPD. Generally, NaNO3 spray had stronger effects on water relations than (NH4 )2 SO4 spray. The results strongly support the role of leaf surface particles as an environmental factor affecting plant water use. Hygroscopic and chaotropic properties of leaf surface particles determine their ability to form wicks across stomata. Such wicks enhance unproductive water loss of anisohydric plant species and decrease CO2 uptake of isohydric plants. They become more relevant with increasing number of fine particles and increasing VPD and are thus related to air pollution and climate change. Wicks cause a deviation from the analogy between CO2 and water pathways through stomata, bringing some principal assumptions of gas exchange theory into question. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Fungal decomposers of leaf litter from an invaded and native mountain forest of NW Argentina.
Fernandez, Romina Daiana; Bulacio, Natalia; Álvarez, Analía; Pajot, Hipólito; Aragón, Roxana
2017-09-01
The impact of plant species invasions on the abundance, composition and activity of fungal decomposers of leaf litter is poorly understood. In this study, we isolated and compared the relative abundance of ligninocellulolytic fungi of leaf litter mixtures from a native forest and a forest invaded by Ligustrum lucidum in a lower mountain forest of Tucuman, Argentina. In addition, we evaluated the relationship between the relative abundance of ligninocellulolytic fungi and properties of the soil of both forest types. Finally, we identified lignin degrading fungi and characterized their polyphenol oxidase activities. The relative abundance of ligninocellulolytic fungi was higher in leaf litter mixtures from the native forest. The abundance of cellulolytic fungi was negatively related with soil pH while the abundance of ligninolytic fungi was positively related with soil humidity. We identified fifteen genera of ligninolytic fungi; four strains were isolated from both forest types, six strains only from the invaded forest and five strains were isolated only from the native forest. The results found in this study suggest that L. Lucidum invasion could alter the abundance and composition of fungal decomposers. Long-term studies that include an analysis of the nutritional quality of litter are needed, for a more complete overview of the influence of L. Lucidum invasion on fungal decomposers and on leaf litter decomposition.
Xiang, Tingting; Ying, Yuqi; Teng, Jiangnan; Huang, Zhangting; Wu, Jiasen; Meng, Cifu; Jiang, Peikun; Tang, Caixian; Li, Jianmin; Zheng, Rong
2016-10-01
Phytolith-occluded carbon (PhytOC) with high resistance against decomposition is an important carbon (C) sink in many ecosystems. This study compared concentrations of phytolith in plants and the PhytOC production of seven sympodial bamboo species in southern China, aiming to provide the information for the managed bamboo plantation and selection of bamboo species to maximize phytolith C sequestration. Leaf litters and living leaves of seven sympodial bamboo species were collected from the field sites. Concentrations of phytoliths, silicon (Si), and PhytOC in leaf litters and living leaves were measured. Carbon sequestration as PhytOC was estimated. There was a considerable variation in the PhytOC concentrations in the leaf litters and living leaves among the seven bamboo species. The mean concentrations of PhytOC ranged from 3.4 to 6.9 g kg(-1) in leaf litters and from 1.6 to 5.9 g kg(-1) in living leaves, with the PhytOC production rates ranging from 5.7 to 52.3 kg e-CO2 ha(-1) year(-1) as leaf litters. Dendrocalamopsis oldhami (Munro) Keng f. had the highest PhytOC production rate. Based on a bio-sequestration rate of 52.3 kg e-CO2 ha(-1) year(-1), we estimated that the current 8 × 10(5) ha of sympodial bamboo stands in China could potentially acquire 4.2 × 10(4) t e-CO2 yearly via phytolith carbon. Furthermore, the seven sympodial bamboo species stored 5.38 × 10(5) t e-CO2 as PhytOC in living leaves and leaf litters in China. It is concluded that sympodial bamboos make a significant contribution to C sequestration and that to maximize the PhytOC accumulation, the bamboo species with the highest PhytOC production rate should be selected for plantation.
NASA Astrophysics Data System (ADS)
Goebes, Philipp; Seitz, Steffen; Kühn, Peter; Scholten, Thomas
2016-04-01
Soil erosion is crucial for degradation of carbon (C) from their pools in the soil. If C of the eroded sediment and runoff are not only related to soil pools but also resulting additively from decomposition of litter cover, the system gets more complex. The role of these amounts for C cycling in a forest environment is not yet known properly and thus, the aim of this study was to investigate the role of leaf litter diversity, litter cover and soil fauna on C redistribution during interrill erosion. We established 96 runoff plots that were deployed with seven domestic leaf litter species resulting in none species (bare ground), 1-species, 2-species and 4-species mixtures. Every second runoff plot was equipped with a fauna extinction feature to investigate the role of soil meso- and macrofauna. Erosion processes were initiated using a rainfall simulator at two time steps (summer 2012 and autumn 2012) to investigate the role of leaf litter decomposition on C redistribution. C fluxes during 20 min rainfall simulation were 99.13 ± 94.98 g/m². C fluxes and C contents both were affected by soil fauna. C fluxes were higher with presence of soil fauna due to loosening and slackening of the soil surface rather than due to faster decomposition of leaves. In contrast, C contents were higher in the absence of soil fauna possibly resulting from a missing dilution effect in the top soil layer. Leaf litter diversity did not affect C fluxes, but indirectly affected C contents as it increased the soil fauna effect with higher leaf litter diversity due to superior food supply. Initial C contents in the soil mainly determined those of the eroded sediment. For future research, it will be essential to introduce a long-term decomposition experiment to get further insights into the processes of C redistribution.
Chapman, Samantha K.; Newman, Gregory S.; Hart, Stephen C.; Schweitzer, Jennifer A.; Koch, George W.
2013-01-01
To what extent microbial community composition can explain variability in ecosystem processes remains an open question in ecology. Microbial decomposer communities can change during litter decomposition due to biotic interactions and shifting substrate availability. Though relative abundance of decomposers may change due to mixing leaf litter, linking these shifts to the non-additive patterns often recorded in mixed species litter decomposition rates has been elusive, and links community composition to ecosystem function. We extracted phospholipid fatty acids (PLFAs) from single species and mixed species leaf litterbags after 10 and 27 months of decomposition in a mixed conifer forest. Total PLFA concentrations were 70% higher on litter mixtures than single litter types after 10 months, but were only 20% higher after 27 months. Similarly, fungal-to-bacterial ratios differed between mixed and single litter types after 10 months of decomposition, but equalized over time. Microbial community composition, as indicated by principal components analyses, differed due to both litter mixing and stage of litter decomposition. PLFA biomarkers a15∶0 and cy17∶0, which indicate gram-positive and gram-negative bacteria respectively, in particular drove these shifts. Total PLFA correlated significantly with single litter mass loss early in decomposition but not at later stages. We conclude that litter mixing alters microbial community development, which can contribute to synergisms in litter decomposition. These findings advance our understanding of how changing forest biodiversity can alter microbial communities and the ecosystem processes they mediate. PMID:23658639
Elder, John F.; Cairns, Duncan J.
1982-01-01
Measurements of litter fall (leaves and other particulate organic material) and leaf decomposition were made on the bottom-land hardwood swamp of the Apalachicola River flood plain in 1979-80. Litter fall was collected monthly from nets located in 16 study plots. The plots represented five forest types in the swamp and levee areas of the Apalachicola River flood plain. Forty-three species of trees, vines, and other plants contributed to the total litter fall, but more than 90 percent of the leaf material originated from 12 species. Nonleaf material made up 42 percent of the total litter fall. Average litter fall was determined to be 800 grams per square meter per year, resulting in an annual deposition of 3.6 ? 105 metric tons of organic material in the 454-square-kilometer flood plain. The levee communities have less tree biomass but greater tree diversity than do swamp communities. The levee vegetation, containing less tree biomass, produces slightly more litter fall per unit of ground surface area than does the swamp vegetation. The swamps are dominated by three genera: tupelo (Nyssa), cypress (Taxodium) and ash (Fraxinus). These genera account for more than 50 percent of the total leaf fall in the flood plain, but they are the least productive, on a weight-perbiomass basis, of any of the 12 major leaf producers. Decomposition rates of leaves from five common floodplain tree species were measured using a standard leaf-bag technique. Leaf decomposition was highly species dependent. Tupelo (Nyssa spp.) and sweetgum (Liquidambar styraciflua) leaves decomposed completely in 6 months when flooded by river water. Leaves of baldcypress (Taxodium distichum) and diamond-leaf oak (Quercus laurifolia) were much more resistant. Water hickory (Carya aquatica) leaves showed intermediate decomposition rates. Decomposition of all species was greatly reduced in dry environments. Carbon and biomass loss rates from the leaves were nearly linear over a 6-month period, but nitrogen and phosphorus leaching was nearly complete within 1 month. Much of the organic substance may be recycled in the forest ecosystem, but annual flooding of the river provides an important mechanism for mobilization of the litter-fall products.
Funck, J Arce; Clivot, H; Felten, V; Rousselle, P; Guérold, F; Danger, M
2013-11-15
The functioning of forested headwater streams is intimately linked to the decomposition of leaf litter by decomposers, mainly aquatic hyphomycetes, which enables the transfer of allochthonous carbon to higher trophic levels. Evaluation of this process is being increasingly used as an indicator of ecosystem health and ecological integrity. Yet, even though the individual impacts of contaminants and nutrient availability on decomposition have been well studied, the understanding of their combined effects remains limited. In the current study, we investigated whether the toxic effects of a reemerging contaminant, silver (Ag), on leaf litter decomposition could be partly overcome in situations where microorganisms were benefitting from high phosphorus (P) availability, the latter being a key chemical element that often limits detritus decomposition. We also investigated whether these interactive effects were mediated by changes in the structure of the aquatic hyphomycete community. To verify these hypotheses, leaf litter decomposition by a consortium of ten aquatic hyphomycete species was followed in a microcosm experiment combining five Ag contamination levels and three P concentrations. Indirect effects of Ag and P on the consumption of leaf litter by the detritivorous crustacean, Gammarus fossarum, were also evaluated. Ag significantly reduced decomposition but only at the highest concentration tested, independently of P level. By contrast, P and Ag interactively affected fungal biomass. Both P level and Ag concentrations shaped microbial communities without significantly affecting the overall species richness. Finally, the levels of P and Ag interacted significantly on G. fossarum feeding rates, high [Ag] reducing litter consumption and low P availability tending to intensify the feeding rate. Given the high level of contaminant needed to impair the decomposition process, it is unlikely that a direct effect of Ag on leaf litter decomposition could be observed in situ. However, subtle Ag effects in relation to nutrient levels in ecosystems could be expected. In particular, owing to higher consumption of low P leaf litter, shredding invertebrates could increase the ingestion of contaminated resources, which could, in turn, represent an important threat to headwater stream ecosystems. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Lin; Deng, Chang-chun; Chen Ya-mei; He, Run-lian; Zhang, Jian; Liu, Yang
2015-12-01
The relationships between litter decomposition rate and their initial quality of 14 representative plants in the alpine forest ecotone of western Sichuan were investigated in this paper. The decomposition rate k of the litter ranged from 0.16 to 1.70. Woody leaf litter and moss litter decomposed much slower, and shrubby litter decomposed a little faster. Then, herbaceous litters decomposed fastest among all plant forms. There were significant linear regression relationships between the litter decomposition rate and the N content, lignin content, phenolics content, C/N, C/P and lignin/N. Lignin/N and hemicellulose content could explain 78.4% variation of the litter decomposition rate (k) by path analysis. The lignin/N could explain 69.5% variation of k alone, and the direct path coefficient of lignin/N on k was -0.913. Principal component analysis (PCA) showed that the contribution rate of the first sort axis to k and the decomposition time (t) reached 99.2%. Significant positive correlations existed between lignin/N, lignin content, C/N, C/P and the first sort axis, and the closest relationship existed between lignin/N and the first sort axis (r = 0.923). Lignin/N was the key quality factor affecting plant litter decomposition rate across the alpine timberline ecotone, with the higher the initial lignin/N, the lower the decomposition rate of leaf litter.
Production of litter and detritus related to the density of mangrove
NASA Astrophysics Data System (ADS)
Budi Mulya, Miswar; Arlen, HJ
2018-03-01
Research about the production of leaf litter and detritus related to the density of mangrove trees has been done. The aims of this research are to know and analyze the amount of litter and detritus produced to the density of mangrove trees. The production and collection of leaf litter were carried out in five stations. Production of detritus and decomposition rate were calculated by measuring its dry weight. The density and level of mangrove trees were determined using transect quadratic method. The relationship between the leaf litter and detritus production ratio related to mangrove density were then analyzed. Results showed that mangrove trees with the density of 766.67 ind ha‑1 ccould produce the amount of litter and detritus to about 28597.33 gha‑1day‑1and 1099.35 gha‑1day‑1 while mangrove trees with the density of 1300 ind ha‑1 could produce the amount of litter and detritus to about 35093.33 g/ha/day and 1216.68 gha‑1day‑1 respectively. Data analysis showed that the increment of mangrove density is linearly related to the production increment of litter and detritus.
Scartazza, Andrea; Di Baccio, Daniela; Bertolotto, Pierangelo; Gavrichkova, Olga; Matteucci, Giorgio
2016-09-01
Forest functionality and productivity are directly related to canopy light interception and can be affected by potential damage from high irradiance. However, the mechanisms by which leaves adapt to the variable light environments along the multilayer canopy profile are still poorly known. We explored the leaf morphophysiological and metabolic responses to the natural light gradient in a pure European beech (Fagus sylvatica L.) forest at three different canopy heights (top, middle and bottom). Structural adjustment through light-dependent modifications in leaf mass per area was the reason for most of the variations in photosynthetic capacity. The different leaf morphology along the canopy influenced nitrogen (N) partitioning, water- and photosynthetic N-use efficiency, chlorophyll (Chl) fluorescence and quali-quantitative contents of photosynthetic pigments. The Chl a to Chl b ratio and the pool of xanthophyll-cycle pigments (VAZ) increased at the highest irradiance, as well as lutein and β-carotene. The total pool of ascorbate and phenols was higher in leaves of the top and middle canopy layers when compared with the bottom layer, where the ascorbate peroxidase was relatively more activated. The non-photochemical quenching was strongly and positively related to the VAZ/(Chl a + b) ratio, while Chl a/Chl b was related to the photochemical efficiency of photosystem II. Along the multilayer canopy profile, the high energy dissipation capacity of leaves was correlated to an elevated redox potential of antioxidants. The middle layer gave the most relevant contribution to leaf area index and carboxylation capacity of the canopy. In conclusion, a complex interplay among structural, physiological and biochemical traits drives the dynamic leaf acclimation to the natural gradients of variable light environments along the tree canopy profile. The relevant differences observed in leaf traits within the canopy positions of the beech forest should be considered for improving estimation of carbon fluxes in multilayer canopy models of temperate forests. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
J. S. King; K. S. Pregitzer; D. R. Zak; M. E. Kubiske; W. E. Holmes
2001-01-01
Rising atmospheric carbon dioxide has the potential to alter leaf litter chemistry, potentially affecting decomposition and rates of carbon and nitrogen cycling in forest ecosystems. This study was conducted to determine whether growth under elevated atmospheric CO2 altered the quality and microbial decomposition of leaf litter of a widely...
Mark E. Harmon; Whendee L. Silver; Becky Fasth; Hua Chen; Ingrid C. Burke; William J. Parton; Stephen C. Hart; William S. Currie; Ariel E. Lugo
2009-01-01
Decomposition is a critical process in global carbon cycling. During decomposition, leaf and fine root litter may undergo a later, relatively slow phase; past long-term experiments indicate this phase occurs, but whether it is a general phenomenon has not been examined. Data from Long-term Intersite Decomposition Experiment Team, representing 27 sites and nine litter...
Bakhshandeh-Navroud, Behzad; Abrari Vajari, Kambiz; Pilehvar, Babak; Kooch, Yahya
2018-06-26
This study investigated the interactions between tree-herb layer diversity and some physico-chemical and eco-physiological characteristics of soil in natural oriental beech stand in western Guilan, Iran. The data were collected from nine research sites (50 m × 50 m) which were described as a gradient from pure oriental beech (Fagus orientalis Lipsky) stands to mixed stands with up to nine deciduous tree species (n = 27) in Hyrcanian forest. Herbaceous plants were sampled within ten 1 m × 1 m sub-plots in two plots of 400 m 2 which were installed randomly in each research site. Composite soil samples were taken at five positions in each research site. We found that the increase in tree diversity in mature oriental beech stands brought about an increase in microbial biomass carbon, soil carbon content, and the ratio of microbial biomass carbon to the organic carbon (C mic /C org ). Increased soil organic carbon raised microbial biomass carbon through creating suitable environment for microorganisms. The findings also indicated that the ratio of microbial biomass carbon to the organic carbon (C mic /C org ) increased as a quantitative indicator of soil carbon dynamics that finally benefits soil fertility of mixed oriental beech stands compared to pure oriental beech stands. The results showed that humus layer and litter thickness were negatively correlated with tree layer richness. Generally, it can be stated that maintaining a mixture of tree layer species in natural oriental beech stands results in an increase in richness and diversity values of herb plants as well as carbon content and microbial biomass carbon of soil.
Paaso, Ulla; Keski-Saari, Sarita; Keinänen, Markku; Karvinen, Heini; Silfver, Tarja; Rousi, Matti; Mikola, Juha
2017-01-01
Abundant secondary metabolites, such as condensed tannins, and their interpopulation genotypic variation can remain through plant leaf senescence and affect litter decomposition. Whether the intrapopulation genotypic variation of a more diverse assortment of secondary metabolites equally persists through leaf senescence and litter decomposition is not well understood. We analyzed concentrations of intracellular phenolics, epicuticular flavonoid aglycones, epicuticular triterpenoids, condensed tannins, and lignin in green leaves, senescent leaves and partly decomposed litter of silver birch, Betula pendula. Broad-sense heritability (H2) and coefficient of genotypic variation (CVG) were estimated for metabolites in senescent leaves and litter using 19 genotypes selected from a B. pendula population in southern Finland. We found that most of the secondary metabolites remained through senescence and decomposition and that their persistence was related to their chemical properties. Intrapopulation H2 and CVG for intracellular phenolics, epicuticular flavonoid aglycones and condensed tannins were high and remarkably, increased from senescent leaves to decomposed litter. The rank of genotypes in metabolite concentrations was persistent through litter decomposition. Lignin was an exception, however, with a diminishing genotypic variation during decomposition, and the concentrations of lignin and condensed tannins had a negative genotypic correlation in the senescent leaves. Our results show that secondary metabolites and their intrapopulation genotypic variation can for the most part remain through leaf senescence and early decomposition, which is a prerequisite for initial litter quality to predict variation in litter decomposition rates. Persistent genotypic variation also opens an avenue for selection to impact litter decomposition in B. pendula populations through acting on their green foliage secondary chemistry. The negative genotypic correlations and diminishing heritability of lignin concentrations may, however, counteract this process. PMID:28694813
Paaso, Ulla; Keski-Saari, Sarita; Keinänen, Markku; Karvinen, Heini; Silfver, Tarja; Rousi, Matti; Mikola, Juha
2017-01-01
Abundant secondary metabolites, such as condensed tannins, and their interpopulation genotypic variation can remain through plant leaf senescence and affect litter decomposition. Whether the intrapopulation genotypic variation of a more diverse assortment of secondary metabolites equally persists through leaf senescence and litter decomposition is not well understood. We analyzed concentrations of intracellular phenolics, epicuticular flavonoid aglycones, epicuticular triterpenoids, condensed tannins, and lignin in green leaves, senescent leaves and partly decomposed litter of silver birch, Betula pendula . Broad-sense heritability ( H 2 ) and coefficient of genotypic variation ( CV G ) were estimated for metabolites in senescent leaves and litter using 19 genotypes selected from a B. pendula population in southern Finland. We found that most of the secondary metabolites remained through senescence and decomposition and that their persistence was related to their chemical properties. Intrapopulation H 2 and CV G for intracellular phenolics, epicuticular flavonoid aglycones and condensed tannins were high and remarkably, increased from senescent leaves to decomposed litter. The rank of genotypes in metabolite concentrations was persistent through litter decomposition. Lignin was an exception, however, with a diminishing genotypic variation during decomposition, and the concentrations of lignin and condensed tannins had a negative genotypic correlation in the senescent leaves. Our results show that secondary metabolites and their intrapopulation genotypic variation can for the most part remain through leaf senescence and early decomposition, which is a prerequisite for initial litter quality to predict variation in litter decomposition rates. Persistent genotypic variation also opens an avenue for selection to impact litter decomposition in B. pendula populations through acting on their green foliage secondary chemistry. The negative genotypic correlations and diminishing heritability of lignin concentrations may, however, counteract this process.
Mixing effects on litter decomposition rates in a young tree diversity experiment
NASA Astrophysics Data System (ADS)
Setiawan, Nuri Nurlaila; Vanhellemont, Margot; De Schrijver, An; Schelfhout, Stephanie; Baeten, Lander; Verheyen, Kris
2016-01-01
Litter decomposition is an essential process for biogeochemical cycling and for the formation of new soil organic matter. Mixing litter from different tree species has been reported to increase litter decomposition rates through synergistic effects. We assessed the decomposition rates of leaf litter from five tree species in a recently established tree diversity experiment on a post-agriculture site in Belgium. We used 20 different leaf litter compositions with diversity levels ranging from 1 up to 4 species. Litter mass loss in litterbags was assessed 10, 20, 25, 35, and 60 weeks after installation in the field. We found that litter decomposition rates were higher for high-quality litters, i.e., with high nitrogen content and low lignin content. The decomposition rates of mixed litter were more affected by the identity of the litter species within the mixture than by the diversity of the litter per se, but the variability in litter decomposition rates decreased as the litter diversity increased. Among the 15 different mixed litter compositions in our study, only three litter combinations showed synergistic effects. Our study suggests that admixing tree species with high-quality litter in post-agricultural plantations helps in increasing the mixture's early-stage litter decomposition rate.
NASA Astrophysics Data System (ADS)
Girona García, Antonio; Badía-Villas, David; González-Pérez, José Antonio; Tomás Jiménez-Morillo, Nicasio; Martí-Dalmau, Clara
2015-04-01
The replacement of native beech forests (Fagus sylvatica) by Scots pine (Pinus sylvestris) afforestation may exert changes in soil properties, particularly in soil organic matter (SOM) (Carceller and Vallejo, 1996). Stable isotopic signatures of light elements (d13C, d15N) in soils and plants are valuable proxies for the identification of biogeochemical processes and their rates in the pedosphere (Andreeva et al., 2013 and refs therein). In this work the C and N stable isotopic analysis is used as a proxy to detect changes in SOM surrogated to the effect of centennial replacement of beech by the Scots pinewood. Two acid soil profiles, developed on quartzites under a humid climate at an altitude of 1400-1500 masl, have been sampled in Moncayo (Iberian range, NE-Spain). For each soil profile three O-layers (litter: OL, fragmented litter OF and humified litter OH) and mineral soil horizons (Ah, E, Bhs and C) were sampled. Content and bulk isotopic signature of light elements (C and N) were analysed in a Flash 2000 elemental micro-analyser coupled via a ConFlo IV interface to a Delta V Advantage isotope ratio mass spectrometer (IRMS) (Thermo Scientific, Bremen, Germany). Isotopic ratios are reported as parts per thousand deviations from appropriate standards. The standard deviations of d13C and d15N were typically less than ± 0.05 per thousand, ± 0.2 per thousand, respectively. After 100 years since the pine afforestation, no differences on C content were observed in the O-layers, ranging from 30-47% in pine soils and 37-47 % in beech soils. Similarly, no differences on N content were observed in the O-layers, ranging from 1.24-1.86 % in pine soils and 1.70-1.71 % in beech soils. C and N contents decrease progressively in depth with the exception of E-horizons where the lowest C and N content values were found. C/N ratio is higher in pine soil (20.7-38.1) than in beech O soil horizons (21.8-27.5), showing similar behavior with soil depth. Pine biomass was slightly enriched in 13C as compared to that from beech (OL enrichment factor= 1.24 ± 0.13 per thousand). Along the soil profile the C isotopic signature (d13C) reflects the main vegetation signature being higher in pine than beech in the organic soil horizons (OL, OF and OH) down to the first mineral Ah horizon. At deeper horizons d13C value tends to equal that of the original beech soil indicating a limited influence of the afforested specie with depth even 100 years after afforestation. A consistent enrichment in d15N with depth was observed in the two profiles. This N enrichments have been related with progressive N losses being particularly pronounced in forest soils (Szpak, 2014 and refs therein). This phenomenon can be also related to migrations of N forms in a more evolved organic matter. In this view N losses in organic layers under beech seem to be less pronounced that under the alien pine. REFERENCES: Andreeva BD, Zech M, Glaser B, Erbajeva MA, Chimitdorgieva, Ermakova OD, Zech, W. (2013). Stable isotope (δ13C, δ15N, δ18O) record of soils in Buryatia, southern Siberia: Implications for biogeochemical and paleoclimatic interpretations. Quaternary International 290-291 (2013) 82-94 pp. Carceller F, Vallejo VR (1996). Influencia de la vegetación en los procesos de podsolización en los suelos de la Sierra del Moncayo (Zaragoza). Geogaceta 1127-1130. Szpak P (2014). Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices. Front. Plant Sci. 5: 288 1-19 pp. Acknowledgements: This study is part of the results of the FUEGOSOL (CGL2013-43440-R) and GEOFIRE Projects (CGL2012-38655-C04-01) funded by the Spanish Ministry for Economy and Competitiveness. N.T Jiménez-Morillo is funded by a FPI research grant (BES-2013-062573).
van Huysen, Tiff L.; Harmon, Mark E.; Perakis, Steven S.; Chen, Hua
2013-01-01
Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.
Zhang, Lin-Hai; Zeng, Cong-Sheng; Zhang, Wen-Juan; Wang, Tian-E; Tong, Chuan
2012-09-01
By using litterbag method, this paper studied the decomposition of the leaf- and flower litters of two emergent macrophytes, native species Phragmites australis and invasive species Spartina alterniflora, and related affecting factors in the Minjiang River estuary of East China. In the decomposition process of the litters, the decay of standing litter (0-90 days) was an important period, and the loss rate of the flower- and leaf litters dry mass of P. australis and S. alterniflora was 15.0 +/- 3.5% and 13.3 +/- 1.1%, and 31.9 +/- 1.1% and 20.8 +/- 1.4%, respectively. During lodging decay period (91-210 days), the loss rate of the flower- and leaf litters dry mass of P. australis and S. alterniflora was 69.5 +/- 0.6% and 71.5 +/- 2.5%, and 76.8 +/- 1.9% and 67.5 +/- 2.1%, respectively. In standing decay period, the decomposition rate of the two plants litters was positively correlated with the litters C/N but negatively correlated to the litters N/P, and the litters P was an important factor limiting the litters decay. In lodging decay period, the effects of the litters C/N, C/P, and N/P decreased, while the environment factors (climate, soil moisture, soil acidity and salinity, and sediment properties) acted more important roles. The differences in the factors affecting the decay of the litters in different decomposition periods were mainly related to the micro-environment and tidal process for the two plant communities.
Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong
2015-01-01
As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change. PMID:25608664
Franco, Ernesto; Troncozo, María I; Baez, Margot; Mirífico, María V; Robledo, Gerardo L; Balatti, Pedro A; Saparrat, Mario C N
2018-03-01
The role of microorganisms in litter degradation in arid and semi-arid zones, where soil and water salinization is one of the main factors limiting carbon turnover and decay, remains obscure. Heterostachys ritteriana (Amaranthaceae), a halophyte shrub growing in arid environments such as "Salinas Grandes" (Córdoba, Argentina), appears to be the main source of organic matter in the area. Little is known regarding the microorganisms associated with H. ritteriana, although they are a potential source of enzymes such as cellulolytic ones, which might be important in biotechnological fields such as bioethanol production using ionic liquids. In the present study, by studying the microbiota growing on H. ritteriana leaf litter in "Salinas Grandes," we isolated the cellulolytic fungus Fusarium equiseti LPSC 1166, which grew and degraded leaf litter under salt stress. The growth of this fungus was a function of the C substrate and the presence of NaCl. Although in vitro the fungus used both soluble and polymeric compounds from H. ritteriana litter and synthesized extracellular β-1,4 endoglucanases, its activity was reduced by 10% NaCl. Based on these results, F. equiseti LPSC 1166 can be described as a halotolerant cellulolytic fungus most probably playing a key role in the decay of H. ritteriana leaf litter in "Salinas Grandes."
NASA Astrophysics Data System (ADS)
van Meeningen, Ylva; Schurgers, Guy; Rinnan, Riikka; Holst, Thomas
2016-11-01
English oak (Quercus robur) and European beech (Fagus sylvatica) are amongst the most common tree species growing in Europe, influencing the annual biogenic volatile organic compound (BVOC) budget in this region. Studies have shown great variability in the emissions from these tree species, originating from both genetic variability and differences in climatic conditions between study sites. In this study, we examine the emission patterns for English oak and European beech in genetically identical individuals and the potential variation within and between sites. Leaf scale BVOC emissions, net assimilation rates and stomatal conductance were measured at the International Phenological Garden sites of Ljubljana (Slovenia), Grafrath (Germany) and Taastrup (Denmark). Sampling was conducted during three campaigns between May and July 2014. Our results show that English oak mainly emitted isoprene whilst European beech released monoterpenes. The relative contribution of the most emitted compounds from the two species remained stable across latitudes. The contribution of isoprene for English oak from Grafrath and Taastrup ranged between 92 and 97 % of the total BVOC emissions, whilst sabinene and limonene for European beech ranged from 30.5 to 40.5 and 9 to 15 % respectively for all three sites. The relative contribution of isoprene for English oak at Ljubljana was lower (78 %) in comparison to the other sites, most likely caused by frost damage in early spring. The variability in total leaf-level emission rates from the same site was small, whereas there were greater differences between sites. These differences were probably caused by short-term weather events and plant stress. A difference in age did not seem to affect the emission patterns for the selected trees. This study highlights the significance of within-genotypic variation of BVOC emission capacities for English oak and European beech, the influence of climatic variables such as temperature and light on emission intensities and the potential stability in relative compound contribution across a latitudinal gradient.
NASA Astrophysics Data System (ADS)
Levia, D. F.; van Stan, J. T.; Mage, S.; Hauske, P. W.
2009-05-01
Stemflow is a localized point input at the base of trees that can account for more than 10% of the incident gross precipitation in deciduous forests. Despite the fact that stemflow has been documented to be of hydropedological importance, affecting soil moisture patterns, soil erosion, soil chemistry, and the distribution of understory vegetation, our current understanding of the temporal variability of stemflow yield is poor. The aim of the present study, conducted in a beech-yellow poplar forest in northeastern Maryland (39°42'N, 75°50'W), was to better understand the temporal and variability of stemflow production from Fagus grandifolia Ehrh. (American beech) and Liriodendron tulipifera L. (yellow poplar) in relation to meteorological conditions and season in order to better assess its importance to canopy-soil interactions. The experimental plot had a stand density of 225 trees/ha, a stand basal area of 36.8 sq. m/ha, a mean dbh of 40.8 cm, and a mean tree height of 27.8 m. The stand leaf area index (LAI) is 5.3. Yellow poplar and beech constitute three- quarters of the stand basal area. Using a high resolution (5 min) sequential stemflow sampling network, consisting of tipping-bucket gauges interfaced with a Campbell CR1000 datalogger, the temporal variability of stemflow yield was examined. Beech produced significantly larger stemflow amounts than yellow poplar. The amount of stemflow produced by individual beech trees in 5 minute intervals reached three liters. Stemflow yield and funneling ratios decreased with increasing rain intensity. Temporal variability of stemflow inputs were affected by the nature of incident gross rainfall, season, tree species, tree size, and bark water storage capacity. Stemflow was greater during the leafless period than full leaf period. Stemflow yield was greater for larger beech trees and smaller yellow poplar trees, owing to differences in bark water storage capacity. The findings of this study indicate that stemflow has a detectable affect on soil moisture patterning and the hydraulic conductivity of forest soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, Christiane; Trumbore, Susan E.; Froberg, Mats J.
2010-01-01
Microbial communities in soil A horizons derive their carbon from several potential sources: organic carbon (C) transported down from overlying litter and organic horizons, root-derived C, or soil organic matter. We took advantage of a multi-year experiment that manipulated the {sup 14}C isotope signature of surface leaf litter inputs in a temperate forest at the Oak Ridge Reservation, Tennessee, USA, to quantify the contribution of recent leaf litter C to microbial respiration and biomarkers in the underlying mineral soil. We observed no measurable difference (< {approx}40{per_thousand} given our current analytical methods) in the radiocarbon signatures of microbial phospholipid fatty acidsmore » (PLFA) isolated from the top 10 cm of mineral soil in plots that experienced 3 years of litterfall that differed in each year by {approx}750{per_thousand} between high-{sup 14}C and low-{sup 14}C treatments. Assuming any difference in {sup 14}C between the high- and low-{sup 14}C plots would reflect C derived from these manipulated litter additions, we estimate that <6% of the microbial C after 4 years was derived from the added 1-4-year-old surface litter. Large contributions of C from litter < 1 year (or >4 years) old (which fell after (or prior to) the manipulation and therefore did not differ between plots) are not supported because the {sup 14}C signatures of the PLFA compounds (averaging 200-220{per_thousand}) is much higher that of the 2004-5 leaf litter (115{per_thousand}) or pre-2000 litter. A mesocosm experiment further demonstrated that C leached from {sup 14}C-enriched surface litter or the O horizon was not a detectable C source in underlying mineral soil microbes during the first eight months after litter addition. Instead a decline in the {sup 14}C of PLFA over the mesocosm experiment likely reflected the loss of a pre-existing substrate not associated with added leaf litter. Measured PLFA {Delta}{sup 14}C signatures were higher than those measured in bulk mineral soil organic matter in our experiments, but fell within the range of {sup 14}C values measured in mineral soil roots. Together, our experiments suggest that root-derived C is the major (>60%) source of C for microbes in these temperate deciduous forest soils.« less
Bernal, S; Butturini, A; Nin, E; Sabater, F; Sabater, S
2003-01-01
Mediterranean riparian zones can experience severe drought periods that lead to low soil moisture content, which dramatically affects their performance as nitrate removal systems. In the Mediterranean riparian zone of this study, we determined that N2O emission was practically nil. To understand the role of forest floor processes in nitrogen retention of a Mediterranean riparian area, we studied leaf litter dynamics of two tree species, London planetree [Platanus x acerifolia (Aiton) Willd.] and alder [Alnus glutinosa (L.) Gaertn.], for two years, along with soil nitrogen mineralization rates. Annual leaf litter fall equaled 562.6 +/- 10.1 (standard error) g dry wt. m(-2), 68% of which was planetree and 32% of which was alder. The temporal distribution of litterfall showed a two-peak annual cycle, one occurring in midsummer, the other in autumn. Planetree provided the major input of organic nitrogen to the forest floor, and the amount of planetree leaves remaining on the forest floor was equivalent to approximately four years of stock. Leaf litter decomposition was three times higher for alder (decay coefficient [k] = 1.13 yr(-1)) than for planetree (k = 0.365 yr(-1)). Mineralization rates showed a seasonal pattern, with the maximum rate in summer (1.92 mg N kg(-1) d(-1)). Although the forest floor was an important sink for nitrogen due to planetree leaf accumulation, 7.5% of this leaf litter was scoured to the streambed by wind. This loss was irrelevant for alder leaves. Due to the litter quality, the forest floor of this Mediterranean riparian forest acts as a nitrogen sink.
Vladislav Gulis; Keller Suberkropp
2003-01-01
The relative contributions of fungi and bacteria to carbon flow from submerged decaying plant litter at different levels of inorganic nutrients (N and P) were studied. We estimated leaf mass loss, fungal and bacterial biomass and production, and microbial respiration and constructed partial carbon budgets for red maple leaf disks precolonized in a stream and then...
David Lockley; Judith Turner; Gillian Humphries; Phil Jennings
2008-01-01
Phytophthora ramorum was identified as the cause of a leaf blight on rhododendrons in an historic garden in Cornwall in 2003. A programme of measures was set in place to eradicate the disease from the garden and several sites were selected to monitor the effect of these measures on the recovery of P. ramorum from soil, leaf litter...
Ren, Xiaoli; Liang, Baohong; Liu, Min; Xu, Xiaoyuan; Cui, Meihua
2012-12-01
The objective of this research was to seek a cost effective solution to prepare adsorbents for nitrogen oxide from surplus sludge. Leaf litter and powder coal ash were used as cheap and easily available additives. An adsorbent for nitrogen oxide was prepared by pyrolysis of dried sludge mixed with zinc chloride. Under optimum pyrolysis conditions of 375°C for 90 min and a zinc chloride content of 30%, the surface area of the adsorbent with leaf litter was 514.41 m(2)/g, the surface area of the adsorbent with powder coal ash was 432.34 m(2)/g, respectively, corresponding to an increase of 90.70% and 60.27% when compared to the adsorbent without the additives. The saturated adsorption quantity of the adsorbent with leaf litter reached 271 mg/g at 20°C. The results indicated that the sludge-derived adsorbent was quite promising for nitrogen oxide removal. Copyright © 2012 Elsevier Ltd. All rights reserved.
Li, Tian-yu; Kang, Feng-feng; Han, Hai-rong; Gao, Jing; Song, Xiao-shuai; Yu, Shu
2015-07-01
Using litter bag method, we studied the responses of soil microbial biomass carbon (MBC), microbial respiration (MR) and microbial metabolic quotient (qCO2) in 0-5 cm, 5-10 cm and 10-20 cm soil layers to home-field advantage of Betula platyphlla and Quercus mongolica leaf litter decomposition in Liaoheyuan Nature Reserve, northern Hebei Province. The results showed that the contents of MBC in Betula platyphila and Quercus mongolica leaf litter treatments in home environment (Bh and Qh treatments) were significant higher than that in B. platyphlla and Q. mongolica leaf litter treatments in non-home environment (Ba and Qa treatments). There was no significant difference in MR between home and non-home environments. Response degree of MBC and MR to home-field advantage of different litter decomposition was inconsistent. The MBC of the different soil layers in Qa treatment fell by 39.6%, 34.9% and 33.5% compared to Qh treatment, respectively, and that in B. platyphlla treatment was decreased by 31.6%, 27.1% and 17.0%, respectively. MR of the different soil layers in Qa treatment accounted for 96.3%, 92.4% and 83.7% of Qh treatment, respectively, while MR in B. platyphila treatment was 99. 4%, 97. 3% and 101.3%, respectively. In contrast to MBC, qCO2 in soil showed a reverse pattern. Our study suggested that rich nutrients in soil enhanced microbial activity and weakened the conflict of nutrient uptake between plants and microorganisms, which led to the result that MBC and qCO2 had an obvious response to home-field advantage of litter decomposition, when litter decomposed in its home environment. There was a weak response between MR and home-field advantage of litter decomposition, because of influence of soil temperature, water content and their interaction. Furthermore, MBC, MR and qCO2 had a higher response degree to home-field advantage of Q. mongolica litter than B. platyphila litter, since lower quality litter exhibited higher home-field advantage of litter decomposition.
Lee, Marissa R; Bernhardt, Emily S; van Bodegom, Peter M; Cornelissen, J Hans C; Kattge, Jens; Laughlin, Daniel C; Niinemets, Ülo; Peñuelas, Josep; Reich, Peter B; Yguel, Benjamin; Wright, Justin P
2017-01-01
Many exotic species have little apparent impact on ecosystem processes, whereas others have dramatic consequences for human and ecosystem health. There is growing evidence that invasions foster eutrophication. We need to identify species that are harmful and systems that are vulnerable to anticipate these consequences. Species' traits may provide the necessary insights. We conducted a global meta-analysis to determine whether plant leaf and litter functional traits, and particularly leaf and litter nitrogen (N) content and carbon: nitrogen (C : N) ratio, explain variation in invasive species' impacts on soil N cycling. Dissimilarity in leaf and litter traits among invaded and noninvaded plant communities control the magnitude and direction of invasion impacts on N cycling. Invasions that caused the greatest increases in soil inorganic N and mineralization rates had a much greater litter N content and lower litter C : N in the invaded than the reference community. Trait dissimilarities were better predictors than the trait values of invasive species alone. Quantifying baseline community tissue traits, in addition to those of the invasive species, is critical to understanding the impacts of invasion on soil N cycling. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Hajek, Peter; Kurjak, Daniel; von Wühlisch, Georg; Delzon, Sylvain; Schuldt, Bernhard
2016-01-01
In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvatica L.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0–14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature (δ13C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and δ13C, both hydraulic efficiency and embolism resistance were unrelated, disproving the assumed trade-off between hydraulic efficiency and safety. European beech seems to compensate increasing water stress with growing size mainly by adjusting vessel number and not vessel diameter. In conclusion, European beech has a high potential capacity to cope with climate change due to the high degree of intra-population genetic variability. PMID:27379112
Hajek, Peter; Kurjak, Daniel; von Wühlisch, Georg; Delzon, Sylvain; Schuldt, Bernhard
2016-01-01
In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvatica L.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0-14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature (δ(13)C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and δ(13)C, both hydraulic efficiency and embolism resistance were unrelated, disproving the assumed trade-off between hydraulic efficiency and safety. European beech seems to compensate increasing water stress with growing size mainly by adjusting vessel number and not vessel diameter. In conclusion, European beech has a high potential capacity to cope with climate change due to the high degree of intra-population genetic variability.
Demi, Lee M; Benstead, Jonathan P; Rosemond, Amy D; Maerz, John C
2018-02-01
Ecological stoichiometry theory (EST) is a key framework for predicting how variation in N:P supply ratios influences biological processes, at molecular to ecosystem scales, by altering the availability of C, N, and P relative to organismal requirements. We tested EST predictions by fertilizing five forest streams at different dissolved molar N:P ratios (2, 8, 16, 32, 128) for two years and tracking responses of macroinvertebrate consumers to the resulting steep experimental gradient in basal resource stoichiometry (leaf litter %N, %P, and N:P). Nitrogen and P content of leaf litter, the dominant basal resource, increased in all five streams following enrichment, with steepest responses in litter %P and N:P ratio. Additionally, increases in primary consumer biomass and production occurred in all five streams following N and P enrichment (averages across all streams: biomass by 1.2×, production by 1.6×). Patterns of both biomass and production were best predicted by leaf litter N:P and %P and were unrelated to leaf litter %N. Primary consumer production increased most in streams where decreases in leaf litter N:P were largest. Macroinvertebrate predator biomass and production were also strongly positively related to litter %P, providing robust experimental evidence for the primacy of P limitation at multiple trophic levels in these ecosystems. However, production of predatory macroinvertebrates was not related directly to primary consumer production, suggesting the importance of additional controls for macroinvertebrates at upper trophic positions. Our results reveal potential drivers of animal production in detritus-based ecosystems, including the relative importance of resource quality vs. quantity. Our study also sheds light on the more general impacts of variation in N:P supply ratio on nutrient-poor ecosystems, providing strong empirical support for predictions that nutrient enrichment increases food web productivity whenever large elemental imbalances between basal resources and consumer demand are reduced. © 2017 by the Ecological Society of America.
We examined the photoreactivity of chromophoric dissolved organic matter (CDOM) derived from Rhizophora mangle (red mangrove) leaf litter and floating Sargassum colonies as these marine plants can be important contributors to coastal and open ocean CDOM pools, respectively. Mangr...
NASA Astrophysics Data System (ADS)
Leonard, N. E.
2005-05-01
As wetlands are invaded by Chinese tallow trees (Triadica sebifera), native trees are displaced and detrital inputs to amphibian breeding ponds are altered. I used a mesocosm experiment to examine the effect of Chinese tallow leaf litter on the survival to, size at, and time to metamorphosis of amphibian larvae. Fifty 1000-L cattle watering tanks were treated with 1500 g dry weight of one of five leaf litter treatments: Chinese tallow, laurel oak (Quercus laurifolia), water tupelo (Nyssa aquatica), slash pine (Pinus elliottii), or a 3:1:1:1 mixture. Each tank received 45 tadpoles of Pseudacris feriarum, Bufo terrestris, and Hyla cinerea in sequence according to their natural breeding phonologies. Every Pseudacris feriarum and Bufo terrestris tadpole exposed to Chinese tallow died prior to metamorphosis. Hyla cinerea survival in tanks with tallow-only was significantly lower than that observed for all other leaf treatments. Hyla cinerea tadpoles from tallow-only and mixed-leaf treatments were larger at metamorphosis and transformed faster than those in tanks with native leaves only. These results suggest that Chinese tallow leaf litter may negatively affect tadpoles of early breeding frogs and that Chinese tallow invasion may change the structure of amphibian communities in temporary ponds.
Paoletti, M G; Dufour, D L; Cerda, H; Torres, F; Pizzoferrato, L; Pimentel, D
2000-11-22
At least 32 Amerindian groups in the Amazon basin use terrestrial invertebrates as food. Leaf- and litter-consuming invertebrates provide the more important, underestimated food sources for many Amerindian groups. Further, litter-consuming earthworms are also an important food resource for the Ye'Kuana (also known as Makiritare) in the Alto Orinoco (Amazonas, Venezuela). By selecting these small invertebrates the Amerindians are choosing their animal food from those food webs in the rainforest which have the highest energy flow and which constitute the greatest renewable stock of readily available nutrients. Here we show that the consumption of leaf- and litter-feeding invertebrates as a means of recovering protein, fat and vitamins by the forest-living peoples offers a new perspective for the development of sustainable animal food production within the paradigm of biodiversity maintenance.
Mantilla-Contreras, Jasmin
2018-01-01
Environmental and leaf trait effects on herbivory are supposed to vary among different feeding guilds. Herbivores also show variability in their preferences for plant ontogenetic stages. Along the vertical forest gradient, environmental conditions change, and trees represent juvenile and adult individuals in the understorey and canopy, respectively. This study was conducted in ten forests sites in Central Germany for the enrichment of canopy research in temperate forests. Arthropod herbivory of different feeding traces was surveyed on leaves of Fagus sylvatica Linnaeus (European beech; Fagaceae) in three strata. Effects of microclimate, leaf traits, and plant ontogenetic stage were analyzed as determining parameters for herbivory. The highest herbivory was caused by exophagous feeding traces. Herbivore attack levels varied along the vertical forest gradient for most feeding traces with distinct patterns. If differences of herbivory levels were present, they only occurred between juvenile and adult F. sylvatica individuals, but not between the lower and upper canopy. In contrast, differences of microclimate and important leaf traits were present between the lower and upper canopy. In conclusion, the plant ontogenetic stage had a stronger effect on herbivory than microclimate or leaf traits along the vertical forest gradient. PMID:29373542
Silfver, Tarja; Paaso, Ulla; Rasehorn, Mira; Rousi, Matti; Mikola, Juha
2015-01-01
Plant genetic variation and herbivores can both influence ecosystem functioning by affecting the quantity and quality of leaf litter. Few studies have, however, investigated the effects of herbivore load on litter decomposition at plant genotype level. We reduced insect herbivory using an insecticide on one half of field-grown Betula Pendula saplings of 17 genotypes, representing random intrapopulation genetic variation, and allowed insects to naturally colonize the other half. We hypothesized that due to induced herbivore defence, saplings under natural herbivory produce litter of higher concentrations of secondary metabolites (terpenes and soluble phenolics) and have slower litter decomposition rate than saplings under reduced herbivory. We found that leaf damage was 89 and 53% lower in the insecticide treated saplings in the summer and autumn surveys, respectively, which led to 73% higher litter production. Litter decomposition rate was also affected by herbivore load, but the effect varied from positive to negative among genotypes and added up to an insignificant net effect at the population level. In contrast to our hypothesis, concentrations of terpenes and soluble phenolics were higher under reduced than natural herbivory. Those genotypes, whose leaves were most injured by herbivores, produced litter of lowest mass loss, but unlike we expected, the concentrations of terpenes and soluble phenolics were not linked to either leaf damage or litter decomposition. Our results show that (1) the genetic and herbivore effects on B. pendula litter decomposition are not mediated through variation in terpene or soluble phenolic concentrations and suggest that (2) the presumably higher insect herbivore pressure in the future warmer climate will not, at the ecological time scale, affect the mean decomposition rate in genetically diverse B. pendula populations. However, (3) due to the significant genetic variation in the response of decomposition to herbivory, evolutionary changes in mean decomposition rate are possible. PMID:25622034
CDOM PRODUCTION BY MANGROVE LEAF LITTER AND SARGASSUM COLONIES IN FLORIDA KEYS COASTAL WATERS
We have investigated the importance of leaf litter from red mangroves (Rhizophora mangle) and living Sargassum plants as sources of chromophoric dissolved organic matter (CDOM) to the coastal ocean waters and coral reef system of the Florida Keys. The magnitude of UVB exposure t...
USDA-ARS?s Scientific Manuscript database
Silvopastoral management strategies seek to expand spatial and temporal boundaries of forage production and promote ecosystem integrity through a combination of tree thinning and understory pastures. We determined the effects of water extracts of leaf litter from yellow poplar, Liriodendron tulipife...
USDA-ARS?s Scientific Manuscript database
Andersonoplatus, new genus with 16 new species from Venezuela and Panama is described and illustrated. All the specimens are collected in leaf litter by R. Anderson and S. and J. Peck. Andersonoplatus is compared to Andersonaltica Linzmeier and Konstantinov, Apleuraltica Bechyne, Distigmoptera Blake...
Leaf litter decomposition in Torna stream before and after a red mud disaster.
Kucserka, T; Karádi-Kovács, Kata; Vass, M; Selmeczy, G B; Hubai, Katalin Eszter; Üveges, Viktória; Kacsala, I; Törő, N; Padisák, Judit
2014-03-01
The aim of the study was to estimate the breakdown of the allochthonous litter in an artificial stream running in an agricultural area and compare it with the same values following a toxic mud spill into the same stream. Litter bags were filled with three types of leaves (Quercus robur, Populus tremula and Salix alba) and placed to the bottom of the river. Ergosterol was used to detect fungal biomass. We supposed the absence of fungi and the retardation of leaf litter decomposition. Only pH and conductivity increased significantly. Leaf mass loss after the catastrophe was much slower than in 2009 and the decay curves did not follow the exponential decay model. Prior to the catastrophe, leaf mass loss was fast in Torna, compared to other streams in the area. The reason is that the stream is modified, the bed is trapezoid and covered with concrete stones. Fungal biomass was lower, than in the pre-disaster experiment, because fungi did not have enough leaves to sporulate. Leaf mass loss followed the exponential decay curve before the disaster, but after that it was possible only after a non-change period.
NASA Astrophysics Data System (ADS)
Natali, S.; Mauritz, M.; Pegoraro, E.; Schuur, E.
2015-12-01
Climate warming in arctic tundra has been associated with increased plant productivity and a shift in plant community composition, specifically an increase in shrub cover, which can impact soil organic matter through changes in the size and composition of the leaf litter pool. Shifts in litter quantity and quality will in turn interact with changes in the soil environment as the climate continues to warm. We examined the effects of permafrost thaw, soil moisture changes, and plant community composition on leaf litter decomposition in an upland tundra ecosystem in Interior Alaska. We present warming and drying effects on decomposition rates of graminoid-dominated and shrub-dominated leaf litter mixtures over three years (2 cm depth), and annual decomposition of a common cellulose substrate (0-10 cm and 10-20 cm) over five years at a permafrost thaw and soil drying experiment. We expected that warming and drying would increase decomposition, and that decomposition would be greater in the shrub litter than in the graminoid litter mix. Decomposition of Betula nana, the dominant shrub, was 50% greater in the shrub-dominated litter mix compared to the graminoid-dominated litter. Surprisingly, there was no significant difference in total litter mass loss between graminoid and shrub litter mixtures, despite significant differences in decomposition rates of the dominant plant species when decomposed alone and in community mixtures. Drying decreased decomposition of B. nana and of the shrub community litter overall, but after two years there was no detected warming effect on shrub-community decomposition. In contrast to leaf litter decomposition, both warming and drying increased decomposition of the common substrate. Warming caused an almost twofold increase in cellulose decomposition in surface soil (0-10cm), and drying caused a twofold increase in cellulose decomposition from deeper organic layer soils (10-20cm). These results demonstrate the importance of interactions among temperature, moisture and vegetation changes on organic matter decomposition, and the potential for increased plant productivity and vegetation changes to alter the size and composition of the soil organic matter pool.
Muturi, Ephantus J; Gardner, Allison M; Bara, Jeffrey J
2015-10-01
We examined how leaf litter of alien invasive honeysuckle (Lonicera maackii Rupr.) either alone or in combination with leaf litter of one of two native tree species, sugar maple (Acer saccharum Marshall) and northern red oak (Quercus rubra L.), affects the ecology of Culex restuans Theobald, Ochlerotatus triseriatus Say, and Ochlerotatus japonicus Theobald. Experimental mesocosms containing single species litter or a mixture of honeysuckle and one of two native tree species litter were established at South Farms and Trelease Woods study sites in Urbana, IL, and examined for their effect on 1) oviposition site selection by the three mosquito species, and 2) adult production and body size of Oc. triseriatus and Oc. japonicus. There were no significant effects of study site and leaf treatment on Oc. japonicus and Oc. triseriatus oviposition preference and adult production. In contrast, significantly more Cx. restuans eggs rafts were collected at South Farms relative to Trelease Woods and in honeysuckle litter relative to native tree species litter. Significantly larger adult females of Oc. japonicus and Oc. triseriatus were collected at South Farms relative to Trelease Woods and in honeysuckle litter relative to native tree species litter. Combining honeysuckle litter with native tree species litter had additive effects on Cx. restuans oviposition preference and Oc. japonicus and Oc. triseriatus body size, with the exception of honeysuckle and northern red oak litter combination, which had antagonistic effects on Oc. triseriatus body size. We conclude that input of honeysuckle litter into container aquatic habitats may alter the life history traits of vector mosquito species. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Valentini, Carla Maria Abido; Sanches, Luciana; de Paula, Sérgio Roberto; Vourlitis, George Louis; de Souza Nogueira, José; Pinto, Osvaldo Borges; de Almeida Lobo, Francisco
2008-12-01
Measurements of soil CO2 efflux, litter production, and the surface litter pool biomass were made over a 1 year period in a tropical transitional forest near Sinop, Mato Grosso, Brazil with the aim of quantifying the seasonal variation in soil respiration and litter decomposition and the annual contribution of litter decomposition to soil CO2 efflux. Average annual soil CO2 efflux (+/-95% confidence interval (CI)) was 7.91 +/- 1.16 g C m-2 d-1. Soil CO2 efflux was highest during the November-February wet season (9.15 +/- 0.90 g C m-2 d-1) and lowest during the May-September dry season (6.19 +/- 1.40 g C m-2 d-1), and over 60% of the variation in seasonal soil CO2 efflux was explained by seasonal variations in soil temperature and moisture. Mass balance estimates of mean (+/-95% CI) decomposition rates were statistically different between the wet and dry seasons (0.66 +/- 0.08 and 1.65 +/- 0.10 g C m-2 d-1, respectively), and overall, decomposition of leaf litter comprised 16% of the average annual soil respiration. Leaf litter production was higher during the dry season, and mean (+/-95% CI) leaf litter fall (5.6 +/- 1.7 Mg ha-1) comprised 73% of the total litter fall (7.8 +/- 2.3 Mg ha-1). Average (+/-95% CI) annual litter pool biomass was estimated to be 5.5 +/- 0.3 Mg ha-1, which was similar to the measured pool size (5.7 +/- 2.2 Mg ha-1). Overall, seasonal variations in environmental variables, specifically water availability (soil moisture and rainfall), had a profound influence on litter production, soil respiration, and surface litter decomposition.
Zang, Ulrich; Goisser, Michael; Grams, Thorsten E E; Häberle, Karl-Heinz; Matyssek, Rainer; Matzner, Egbert; Borken, Werner
2014-01-01
Drought reduces the carbon (C) assimilation of trees and decouples aboveground from belowground carbon fluxes, but little is known about the response of drought-stressed trees to rewetting. This study aims to assess dynamics and patterns of C allocation in beech saplings under dry and rewetted soil conditions. In October 2010, 5-year-old beech saplings from a forest site were transplanted into 20 l pots. In 2011, the saplings were subjected to different levels of soil drought ranging from non-limiting water supply (control) to severe water limitation with soil water potentials of less than -1.5 MPa. As a physiologically relevant measure of drought, the cumulated soil water potential (i.e., drought stress dose (DSD)) was calculated for the growing season. In late August, the saplings were transferred into a climate chamber and pulse-labeled with (13)C-depleted CO2 (δ(13)C of -47‰). Isotopic signatures in leaf and soil respiration were repeatedly measured. Five days after soil rewetting, a second label was applied using 99 atom% (13)CO2. After another 12 days, the fate of assimilated C in each sapling was assessed by calculating the (13)C mass balance. Photosynthesis decreased by 60% in saplings under severe drought. The mean residence time (MRT) of recent assimilates in leaf respiration was more than three times longer than under non-limited conditions and was positively correlated to DSD. Also, the appearance of the label in soil respiration was delayed. Within 5 days after rewetting, photosynthesis, MRT of recent assimilates in leaf respiration and appearance of the label in soil respiration recovered fully. Despite the fast recovery, less label was recovered in the biomass of the previously drought-stressed plants, which also allocated less C to the root compartment (45 vs 64% in the control). We conclude that beech saplings quickly recover from extreme soil drought, although transitional after-effects prevail in C allocation, possibly due to repair-driven respiratory processes.
Levia, Delphis F; Shiklomanov, Alexey N; Van Stan, John T; Scheick, Carrie E; Inamdar, Shreeram P; Mitchell, Myron J; McHale, Patrick J
2015-07-01
Ca/Al molar ratios are commonly used to assess the extent of aluminum stress in forests. This is among the first studies to quantify Ca/Al molar ratios for stemflow. Ca/Al molar ratios in bulk precipitation, throughfall, stemflow, litter leachate, near-trunk soil solution, and soil water were quantified for a deciduous forest in northeastern MD, USA. Data were collected over a 3-year period. The Ca/Al molar ratios in this study were above the threshold for aluminum stress (<1). Fagus grandifolia Ehrh. (American beech) had a median annual stemflow Ca/Al molar ratio of 15.7, with the leafed and leafless values of 12.4 and 19.2, respectively. The corresponding Ca/Al molar ratios for Liriodendron tulipifera L. (yellow poplar) were 11.9 at the annual time scale and 11.9 and 13.6 for leafed and leafless periods, respectively. Bayesian statistical analysis showed no significant effect of canopy state (leafed, leafless) on Ca/Al molar ratios. DOC was consistently an important predictor of calcium, aluminum, and Ca/Al ratios. pH was occasionally an important predictor of calcium and aluminum concentrations, but was not a good predictor of Ca/Al ratio in any of the best-fit models (of >500 examined). This study supplies new data on Ca/Al molar ratios for stemflow from two common deciduous tree species. Future work should examine Ca/Al molar ratios in stemflow of other species and examine both inorganic and organic aluminum species to better gauge the potential for, and understand the dynamics of, aluminum toxicity in the proximal area around tree boles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mack, R.N.
Artemisia tridentata on the A. tridentata-Agropyron spicatum habitat type (h.t.) annually sheds approximately 117 kg/ha of leaf and inflorescence litter as determined by collecting litter of shrubs enclosed in nylon net cages. Total available amounts of cations (kg/ha) to a depth of 1 m on this h.t. are Ca, 21,936; Mg, 4450; P, 127.2; and K, 3588. On the adjacent A. tridentata-Poa secunda h.t., approximately /sup 1///sub 2/ of the leaf litter is lost in the 1st year on the soil surface with an element mobility series of K > Mg > P = Ca. Inflorescence litter apparently decays completelymore » within 6 months after abscission.« less
USDA-ARS?s Scientific Manuscript database
Beasley Lake was assessed monthly in 2005 for biological impairment from 17 historic and current-use pesticides in water and leaf litter using Hyalella azteca (Saussure). Sixteen pesticides were detected in both water and leaf litter with peak detections in spring and summer. Detections ranged fro...
Timothy D. Meehan; Michael S. Crossley; Richard L. Lindroth
2010-01-01
Human alteration of atmospheric composition affects foliar chemistry and has possible implications for the structure and functioning of detrital communities. In this study, we explored the impacts of elevated carbon dioxide and ozone on aspen (Populus tremuloides) leaf litter chemistry, earthworm (Lumbricus terrestris) individual...
Decomposition of Metrosideros polymorpha leaf litter along elevational gradients in Hawaii
Paul G. Scowcroft; Douglas R. Turner; Peter M. Vitousek
2000-01-01
We examined interactions between temperature, soil development, and decomposition on three elevational gradients, the upper and lower ends of each being situated on a common lava flow or ash deposit. We used the reciprocal transplant technique to estimate decomposition rates of Metrosideros polymorpha leaf litter during a three-year period at warm...
Kozlov, Mikhail V; Zverev, Vitali; Zvereva, Elena L
2016-10-15
Leaf-eating insects can influence decomposition processes by modifying quality of leaf litter, and this impact can be especially pronounced in habitats where leaf-eating insects reach high densities, for example in heavily polluted areas. We hypothesized that the decomposition rate is faster for shelters of leaf-tying larvae than for leaves damaged by free-living insects, in particular due to the accumulation of larval frass within shelters. We exposed litter bags containing samples of three different compositions (shelters built by moth larvae, leaves damaged by free-living insects and intact leaves of mountain birch, Betula pubescens ssp. czerepanovii) for one year at two heavily polluted sites near the nickel-copper smelter at Monchegorsk in north-western Russia and at two unpolluted sites. The decomposition rate of leaves damaged by free-living insects was 91% of that of undamaged leaves, whereas the mass loss of leaves composing shelters did not differ of that of undamaged leaves. These differences between leaves damaged by different guilds of herbivorous insects were uniform across the study sites, although the decomposition rate in polluted sites was reduced to 77% of that in unpolluted sites. Addition of larval frass to undamaged leaves had no effect on the subsequent decomposition rate. Therefore we suggest that damaged leaves tied by shelter-building larvae decompose faster than untied damaged leaves due to a looser physical structure of the litter, which creates favourable conditions for detritivores and soil decomposers. Thus, while leaf damage by insects per se reduces litter quality and its decomposition rate, structuring of litter by leaf-tying insects counterbalances these negative effects. We conclude that leaf-tying larvae, in contrast to free-living defoliators, do not impose negative effects on nutrient turnover rate even at their high densities, which are frequently observed in heavily polluted sites. Copyright © 2016 Elsevier B.V. All rights reserved.
Menzel, Annette; Helm, Raimund; Zang, Christian
2015-01-01
Damage by late spring frost is a risk deciduous trees have to cope with in order to optimize the length of their growing season. The timing of spring phenological development plays a crucial role, not only at the species level, but also at the population and individual level, since fresh new leaves are especially vulnerable. For the pronounced late spring frost in May 2011 in Germany, we studied the individual leaf development of 35 deciduous trees (mainly European beech Fagus sylvatica L.) at a mountainous forest site in the Bayerischer Wald National Park using repeated digital photographs. Analyses of the time series of greenness by a novel Bayesian multiple change point approach mostly revealed five change points which almost perfectly matched the expected break points in leaf development: (i) start of the first greening between day of the year (DOY) 108–119 (mean 113), (ii) end of greening, and (iii) visible frost damage after the frost on the night of May 3rd/4th (DOY 123/124), (iv) re-sprouting 19–38 days after the frost, and (v) full maturity around DOY 178 (166–184) when all beech crowns had fully recovered. Since frost damage was nearly 100%, individual susceptibility did not depend on the timing of first spring leaf unfolding. However, we could identify significant patterns in fitness linked to an earlier start of leaf unfolding. Those individuals that had an earlier start of greening during the first flushing period had a shorter period of recovery and started the second greening earlier. Thus, phenological timing triggered the speed of recovery from such an extreme event. The maximum greenness achieved, however, did not vary with leaf unfolding dates. Two mountain ashes (Sorbus aucuparia L.) were not affected by the low temperatures of -5°C. Time series analysis of webcam pictures can thus improve process-based knowledge and provide valuable insights into the link between phenological variation, late spring frost damage, and recovery within one stand. PMID:25759707
Menzel, Annette; Helm, Raimund; Zang, Christian
2015-01-01
Damage by late spring frost is a risk deciduous trees have to cope with in order to optimize the length of their growing season. The timing of spring phenological development plays a crucial role, not only at the species level, but also at the population and individual level, since fresh new leaves are especially vulnerable. For the pronounced late spring frost in May 2011 in Germany, we studied the individual leaf development of 35 deciduous trees (mainly European beech Fagus sylvatica L.) at a mountainous forest site in the Bayerischer Wald National Park using repeated digital photographs. Analyses of the time series of greenness by a novel Bayesian multiple change point approach mostly revealed five change points which almost perfectly matched the expected break points in leaf development: (i) start of the first greening between day of the year (DOY) 108-119 (mean 113), (ii) end of greening, and (iii) visible frost damage after the frost on the night of May 3rd/4th (DOY 123/124), (iv) re-sprouting 19-38 days after the frost, and (v) full maturity around DOY 178 (166-184) when all beech crowns had fully recovered. Since frost damage was nearly 100%, individual susceptibility did not depend on the timing of first spring leaf unfolding. However, we could identify significant patterns in fitness linked to an earlier start of leaf unfolding. Those individuals that had an earlier start of greening during the first flushing period had a shorter period of recovery and started the second greening earlier. Thus, phenological timing triggered the speed of recovery from such an extreme event. The maximum greenness achieved, however, did not vary with leaf unfolding dates. Two mountain ashes (Sorbus aucuparia L.) were not affected by the low temperatures of -5°C. Time series analysis of webcam pictures can thus improve process-based knowledge and provide valuable insights into the link between phenological variation, late spring frost damage, and recovery within one stand.
Movement analyses of wood cricket ( Nemobius sylvestris) (Orthoptera: Gryllidae).
Brouwers, N C; Newton, A C
2010-12-01
Information on the dispersal ability of invertebrate species associated with woodland habitats is severely lacking. Therefore, a study was conducted examining the movement patterns of wood cricket (Nemobius sylvestris) (Orthoptera: Gryllidae) on the Isle of Wight, UK. Juvenile (i.e. nymphs) and adult wood crickets were released and observed over time within different ground surface substrates. Their movement paths were recorded and subsequently analysed using random walk models. Nymphs were found to move more slowly than adults did; and, when given a choice, both nymphs and adults showed a preference for moving through or over leaf litter compared to bare soil or grass. A correlated random walk (CRW) model accurately described the movement pattern of adult wood crickets through leaf litter, indicating a level of directional persistence in their movements. The estimated population spread through leaf litter for adults was 17.9 cm min-1. Movements of nymphs through leaf litter could not accurately be described by a random walk model, showing a change in their movement pattern over time from directed to more random movements. The estimated population spread through leaf litter for nymphs was 10.1 cm min-1. The results indicate that wood cricket adults can be considered as more powerful dispersers than nymphs; however, further analysis of how the insects move through natural heterogeneous environments at a range of spatio-temporal scales needs to be performed to provide a complete understanding of the dispersal ability of the species.
Keppel, Gunnar; Anderson, Sharolyn; Williams, Craig; Kleindorfer, Sonia; O'Connell, Christopher
2017-01-01
Extreme heat events will become more frequent under anthropogenic climate change, especially in Mediterranean ecosystems. Microhabitats can considerably moderate (buffer) the effects of extreme weather events and hence facilitate the persistence of some components of the biodiversity. We investigate the microclimatic moderation provided by two important microhabitats (cavities formed by the leaves of the grass-tree Xanthorrhoea semiplana F.Muell., Xanthorrhoeaceae; and inside the leaf-litter) during the summer of 2015/16 on the Fleurieu Peninsula of South Australia. We placed microsensors inside and outside these microhabitats, as well as above the ground below the forest canopy. Grass-tree and leaf-litter microhabitats significantly buffered against high temperatures and low relative humidity, compared to ground-below-canopy sensors. There was no significant difference between grass-tree and leaf-litter temperatures: in both microhabitats, daily temperature variation was reduced, day temperatures were 1-5°C cooler, night temperatures were 0.5-3°C warmer, and maximum temperatures were up to 14.4°C lower, compared to ground-below-canopy sensors. Grass-tree and leaf-litter microhabitats moderated heat increase at an average rate of 0.24°C temperature per 1°C increase of ambient temperature in the ground-below-canopy microhabitat. The average daily variation in temperature was determined by the type (grass-tree and leaf-litter versus ground-below-canopy) of microhabitat (explaining 67%), the amount of canopy cover and the area of the vegetation fragment (together explaining almost 10% of the variation). Greater canopy cover increased the amount of microclimatic moderation provided, especially in the leaf-litter. Our study highlights the importance of microhabitats in moderating macroclimatic conditions. However, this moderating effect is currently not considered in species distribution modelling under anthropogenic climate change nor in the management of vegetation. This shortcoming will have to be addressed to obtain realistic forecasts of future species distributions and to achieve effective management of biodiversity.
NASA Astrophysics Data System (ADS)
Crow, S. E.; Filley, T.; Conyers, G.; Stott, D.; McCormick, M.; Whigham, D.; Taylor, D.
2006-12-01
Changes in vegetation structure are expected in forests globally under predicted future climate scenarios. Shifts in type or quantity of litter inputs, which will be associated with changes in plant community, may influence soil organic matter (SOM) characteristics. We altered litter inputs in a mixed-deciduous forest at the Smithsonian Environmental Research Center beginning in May 2004: litter removal, leaf amendment, and wood amendment plots were established in three old (120-150 y) and three young (50-70 y) forests. Plots were amended with wood and leaves collected locally from the dominant tree species, tulip poplar (Lirodendron tulipifera). 0-5 cm A horizon soil was collected in November 2005, 18 months after initial treatment, and physically fractionated first by dispersal in HMP and size separation (53 μm) to remove silts and clays then the >53 μm fraction by density (1.4 g cm-3) in SPT to separate the organic debris (light fraction, LF) from the mineral material. Soil with the greatest amount of C present within the LF came from the wood amendment treatment (35.2 ± 0.1%), followed by the leaf amendment (27.7 ± 0.0%) and the litter removal (24.5 ± 0.0%) treatments. In a pattern opposite of the other treatments, leaf amended soil from the old sites had less C within LF than the young. Potentially, a priming effect from the leaf addition at the old sites resulted in increased decomposition of soil LF. While at the young sites, invasive earthworms potentially provided a rapid, direct mode for incorporation of fresh leaf inputs into LF. Preliminary data indicate differences in lignin and cutin/suberin decay rates during litter decomposition between old and young sites. An investigation into the biopolymer composition of LF will determine whether altering litter inputs will ultimately influence SOM dynamics at both the old and young forest sites.
Tharayil, Nishanth; Suseela, Vidya; Triebwasser, Daniella J; Preston, Caroline M; Gerard, Patrick D; Dukes, Jeffrey S
2011-07-01
• Climate change could increase the frequency with which plants experience abiotic stresses, leading to changes in their metabolic pathways. These stresses may induce the production of compounds that are structurally and biologically different from constitutive compounds. • We studied how warming and altered precipitation affected the composition, structure, and biological reactivity of leaf litter tannins in Acer rubrum at the Boston-Area Climate Experiment, in Massachusetts, USA. • Warmer and drier climatic conditions led to higher concentrations of protective compounds, including flavonoids and cutin. The abundance and structure of leaf tannins also responded consistently to climatic treatments. Drought and warming in combination doubled the concentration of total tannins, which reached 30% of leaf-litter DW. This treatment also produced condensed tannins with lower polymerization and a greater proportion of procyanidin units, which in turn reduced sequestration of tannins by litter fiber. Furthermore, because of the structural flexibility of these tannins, litter from this treatment exhibited five times more enzyme (β-glucosidase) complexation capacity on a per-weight basis. Warmer and wetter conditions decreased the amount of foliar condensed tannins. • Our finding that warming and drought result in the production of highly reactive tannins is novel, and highly relevant to climate change research as these tannins, by immobilizing microbial enzymes, could slow litter decomposition and thus carbon and nutrient cycling in a warmer, drier world. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H C
2015-08-18
In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation.
Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K.; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H.C.
2015-01-01
In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation. PMID:26282711
McIvor, C.C.; Smith, T. J.
1995-01-01
Existing paradigms suggest that mangrove leaf litter is processed primarily via the detrital pathway in forests in the Caribbean biogeographic realm whereas herbivorous crabs are relatively more important litter processors in the Indo-West Pacific. To test this hypothesis, we used pitfall traps to collect intertidal crabs to characterize the crab fauna in a mangrove estuary in southwest Florida. We also tethered mangrove leaves to determine if herbivorous crabs are major leaf consumers there. We compared the results with previously published data collected in an analogous manner from forests in northeastern Australia. The crab fauna in Rookery Bay, Florida, is dominated by carnivorous xanthid and deposit-feeding ocypodid crabs whereas that of the Murray River in northeastern Australia is dominated by herbivorous grapsid crabs. No leaves tethered at five sites in the forests in Southwest Florida were taken by crabs. This contrasts greatly with reported values of leaf removal by crabs in Australian forests of 28-79% of the leaves reaching the forest floor. These differences in the faunal assemblages and in the fate of marked or tethered leaves provide preliminary support for the hypothesis that leaf litter is in fact processed in fundamentally different ways in the two biogeographic realms.
Small scale variability of transport and composition of dissolved organic matter in the subsoil
NASA Astrophysics Data System (ADS)
Leinemann, T.; Mikutta, R.; Kalbitz, K.; Guggenberger, G.
2016-12-01
Dissolved organic matter (DOM) is the most mobile fraction of carbon in the soil and connects the carbon-rich topsoil with the subsoil where translocated OM may get stabilized. The water flux in soil is highly heterogeneous, both temporarily and spatially. We, therefore, hypothesize that at high flow velocities, DOM can bypass possible mineral binding sites and microorganisms, thus leading to less degraded DOM under high flow velocities. To address this question, we investigated water and DOM fluxes in situ using segmented suction plates (4 x 4 segments on 24 x 24 cm) installed into three soil observatories at three depths (10 cm, 50 cm, and 150 cm) in a Dystric Cambisol under Beech (Fagus sylvatica) near Hannover, Germany. To follow the transport of carbon from the litter layer through the soil, an in situ 13C-labelling experiment has been conducted in January 2015. Concentration of dissolved organic carbon (DOC) and DOM composition was analyzed using high temperature combustion and photometric methods. The amount of transported DOC decreased by ca. 80 % from 10 to 50 cm depth and by 40 % from 50 to 150 cm depth. Different flow patterns existed at the centimeter scale, which were stable over time for individual suction plate segments. The specific UV280 nm absorbance of DOM decreased with increasing soil depth. This indicates a selective loss of aromatic compounds. The influence of different flow regimes on the DOM quality became apparent in the subsoil samples (>50 cm depth) showing a correlation of increasing UV280 nm absorbance with increasing water flux. The 13C-labelling experiment showed that after 10 month just 0.3 % of the DOC in 150 cm depth was derived from fresh litter. The transport of leaf litter carbon seemed to be controlled by the flow regime as the DO13C ratio and the water flux correlated positively. This can be an indication for the importance of preferential flow on carbon transport to the subsoil.
Günthardt-Goerg, Madeleine Silvia; Vollenweider, Pierre
2015-01-01
Although enhanced carbon fixation by forest trees may contribute significantly to mitigating an increase in atmospheric carbon dioxide (CO2), capacities for this vary greatly among different tree species and locations. This study compared reactions in the foliage of a deciduous and a coniferous tree species (important central European trees, beech and spruce) to an elevated supply of CO2 and evaluated the importance of the soil type and increased nitrogen deposition on foliar nutrient concentrations and cellular stress reactions. During a period of 4 years, beech (represented by trees from four different regions) and spruce saplings (eight regions), planted together on either acidic or calcareous forest soil in the experimental model ecosystem chambers, were exposed to single and combined treatments consisting of elevated carbon dioxide (+CO2, 590 versus 374 μL L−1) and elevated wet nitrogen deposition (+ND, 50 versus 5 kg ha−1 a−1). Leaf size and foliage mass of spruce were increased by +CO2 on both soil types, but those of beech by +ND on the calcareous soil only. The magnitude of the effects varied among the tree origins in both species. Moreover, the concentration of secondary compounds (proanthocyanidins) and the leaf mass per area, as a consequence of cell wall thickening, were also increased and formed important carbon sinks within the foliage. Although the species elemental concentrations differed in their response to CO2 fertilization, the +CO2 treatment effect was weakened by an acceleration of cell senescence in both species, as shown by a decrease in photosynthetic pigment and nitrogen concentration, discolouration and stress symptoms at the cell level; the latter were stronger in beech than spruce. Hence, young trees belonging to a species with different ecological niches can show contrasting responses in their foliage size, but similar responses at the cell level, upon exposure to elevated levels of CO2. The soil type and its nutrient supply largely determined the fertilization gain, especially in the case of beech trees with a narrow ecological amplitude. PMID:26092041
The Trophic Significance of Bacteria in a Detritus-Based Stream Food Web
Robert O. Hall; Judy L. Meyer
1998-01-01
We compared relative use of streamwater dissolved organic carbon (DOC) by bacteria and the trophic significance of bacteria to invertebrates in two headwater streams at Coweeta Hydrologic Laboratory in North Carolina: a stream with all leaf litter inputs excluded for 1 yr, and a reference stream. Leaf litter standing crop in the treatment stream was
Richard A. MacKenzie; Tracy N. Wiegner; Frances Kinslow; Nicole Cormier; Ayron M. Strauch
2013-01-01
Abstract. We examined how invasion of tropical riparian forests by an exotic N-fixing tree (Falcataria moluccana) affects organic-matter dynamics in a Hawaiian river by comparing early stages of leaf-litter breakdown between the exotic F. moluccana and native Metrosideros polymorpha trees. We examined early...
M. L. Best; H. H. Welsh
2014-01-01
Woodland (Plethodontid) salamanders are the most abundant vertebrates in North American forests, functioning as predators on invertebrates and prey for higher trophic levels. We investigated the role of Ensatina (Ensatina eschscholtzii) in regulating invertebrate numbers and leaf litter retention in a northern California forest. Our objective was...
USDA-ARS?s Scientific Manuscript database
In forested ecosystems, the quality of dissolved organic matter (DOM) produced by freshly senesced litter may differ by litter type and species, and these differences may influence the amount of DOM that is respired versus that which may either contribute to soil organic matter accumulation or be le...
Bresson, Caroline C; Vitasse, Yann; Kremer, Antoine; Delzon, Sylvain
2011-11-01
The phenotypic responses of functional traits in natural populations are driven by genetic diversity and phenotypic plasticity. These two mechanisms enable trees to cope with rapid climate change. We studied two European temperate tree species (sessile oak and European beech), focusing on (i) in situ variations of leaf functional traits (morphological and physiological) along two altitudinal gradients and (ii) the extent to which these variations were under environmental and/or genetic control using a common garden experiment. For all traits, altitudinal trends tended to be highly consistent between species and transects. For both species, leaf mass per area displayed a positive linear correlation with altitude, whereas leaf size was negatively correlated with altitude. We also observed a significant increase in leaf physiological performance with increasing altitude: populations at high altitudes had higher maximum rates of assimilation, stomatal conductance and leaf nitrogen content than those at low altitudes. In the common garden experiment, genetic differentiation between populations accounted for 0-28% of total phenotypic variation. However, only two traits (leaf mass per area and nitrogen content) exhibited a significant cline. The combination of in situ and common garden experiments used here made it possible to demonstrate, for both species, a weaker effect of genetic variation than of variations in natural conditions, suggesting a strong effect of the environment on leaf functional traits. Finally, we demonstrated that intrapopulation variability was systematically higher than interpopulation variability, whatever the functional trait considered, indicating a high potential capacity to adapt to climate change.
Clarke, Peter J; Prior, Lynda D; French, Ben J; Vincent, Ben; Knox, Kirsten J E; Bowman, David M J S
2014-12-01
We used a mosaic of infrequently burnt temperate rainforest and adjacent, frequently burnt eucalypt forests in temperate eastern Australia to test whether: (1) there were differences in flammability of fresh and dried foliage amongst congeners from contrasting habitats, (2) habitat flammability was related to regeneration strategy, (3) litter fuels were more flammable in frequently burnt forests, (4) the severity of a recent fire influenced the flammability of litter (as this would suggest fire feedbacks), and (5) microclimate contributed to differences in fire hazard amongst habitats. Leaf-level comparisons were made among 11 congeneric pairs from rainforest and eucalypt forests. Leaf-level ignitability, combustibility and sustainability were not consistently higher for taxa from frequently burnt eucalypt forests, nor were they higher for species with fire-driven recruitment. The bulk density of litter-bed fuels strongly influenced flammability, but eucalypt forest litter was not less dense than rainforest litter. Ignitability, combustibility and flame sustainability of community surface fuels (litter) were compared using fuel arrays with standardized fuel mass and moisture content. Forests previously burned at high fire severity did not have consistently higher litter flammability than those burned at lower severity or long unburned. Thus, contrary to the Mutch hypothesis, there was no evidence of higher flammability of litter fuels or leaves from frequently burnt eucalypt forests compared with infrequently burnt rainforests. We suggest the manifest pyrogenicity of eucalypt forests is not due to natural selection for more flammable foliage, but better explained by differences in crown openness and associated microclimatic differences.
Marian, Franca; Sandmann, Dorothee; Krashevska, Valentyna; Maraun, Mark; Scheu, Stefan
2017-08-01
We investigated how altitude affects the decomposition of leaf and root litter in the Andean tropical montane rainforest of southern Ecuador, that is, through changes in the litter quality between altitudes or other site-specific differences in microenvironmental conditions. Leaf litter from three abundant tree species and roots of different diameter from sites at 1,000, 2,000, and 3,000 m were placed in litterbags and incubated for 6, 12, 24, 36, and 48 months. Environmental conditions at the three altitudes and the sampling time were the main factors driving litter decomposition, while origin, and therefore quality of the litter, was of minor importance. At 2,000 and 3,000 m decomposition of litter declined for 12 months reaching a limit value of ~50% of initial and not decomposing further for about 24 months. After 36 months, decomposition commenced at low rates resulting in an average of 37.9% and 44.4% of initial remaining after 48 months. In contrast, at 1,000 m decomposition continued for 48 months until only 10.9% of the initial litter mass remained. Changes in decomposition rates were paralleled by changes in microorganisms with microbial biomass decreasing after 24 months at 2,000 and 3,000 m, while varying little at 1,000 m. The results show that, irrespective of litter origin (1,000, 2,000, 3,000 m) and type (leaves, roots), unfavorable microenvironmental conditions at high altitudes inhibit decomposition processes resulting in the sequestration of carbon in thick organic layers.
NASA Astrophysics Data System (ADS)
Sampaio, Ana; Cortes, Rui; Leão, Cecília
2004-11-01
The composition of yeast and macroinvertebrate communities was studied on black alder, blue gum eucalyptus and English oak leaves decaying in a stream during a six-month period. ANOVA analysis showed significantly different values (p < 0.0001) of yeast and macroinvertebrate densities among the three leaf litters. Some yeast species such as Cryptococcus albidus (Saito), C. laurentii (Kufferath), Rhodothorula glutinis (Fresenius), R. colostri (Castelli), and Debaryomyces hansenii (Lodder and Kreger-van Rij) were present in all litter types. Other yeasts were restricted to a specific type of litter. Macroinvertebrates were dominated by collectors-gatherers on oak and eucalyptus leaves. Shredders reached highest densities in alder leaves. (
Scartazza, Andrea; Moscatello, Stefano; Matteucci, Giorgio; Battistelli, Alberto; Brugnoli, Enrico
2013-07-01
Seasonal and inter-annual dynamics of growth, non-structural carbohydrates (NSC) and carbon isotope composition (δ(13)C) of NSC were studied in a beech forest of Central Italy over a 2-year period characterized by different environmental conditions. The net C assimilated by forest trees was mainly used to sustain growth early in the season and to accumulate storage carbohydrates in trunk and root wood in the later part of the season, before leaf shedding. Growth and NSC concentration dynamics were only slightly affected by the reduced soil water content (SWC) during the drier year. Conversely, the carbon isotope analysis on NSC revealed seasonal and inter-annual variations of photosynthetic and post-carboxylation fractionation processes, with a significant increase in δ(13)C of wood and leaf soluble sugars in the drier summer year than in the wetter one. The highly significant correlation between δ(13)C of leaf soluble sugars and SWC suggests a decrease of the canopy C isotope discrimination and, hence, an increased water-use efficiency with decreasing soil water availability. This may be a relevant trait for maintaining an acceptable plant water status and a relatively high C sink capacity during dry seasonal periods. Our results suggest a short- to medium-term homeostatic response of the Collelongo beech stand to variations in water availability and solar radiation, indicating that this Mediterranean forest was able to adjust carbon-water balance in order to prevent C depletion and to sustain plant growth and reserve accumulation during relatively dry seasons.
NASA Astrophysics Data System (ADS)
Valentini, Carla Maria Abido; Sanches, Luciana; de Paula, SéRgio Roberto; Vourlitis, George Louis; de Souza Nogueira, José; Pinto, Osvaldo Borges; de Almeida Lobo, Francisco
2008-03-01
Measurements of soil CO2 efflux, litter production, and the surface litter pool biomass were made over a 1 year period in a tropical transitional forest near Sinop, Mato Grosso, Brazil with the aim of quantifying the seasonal variation in soil respiration and litter decomposition and the annual contribution of litter decomposition to soil CO2 efflux. Average annual soil CO2 efflux (±95% confidence interval (CI)) was 7.91 ± 1.16 g C m-2 d-1. Soil CO2 efflux was highest during the November-February wet season (9.15 ± 0.90 g C m-2 d-1) and lowest during the May-September dry season (6.19 ± 1.40 g C m-2 d-1), and over 60% of the variation in seasonal soil CO2 efflux was explained by seasonal variations in soil temperature and moisture. Mass balance estimates of mean (±95% CI) decomposition rates were statistically different between the wet and dry seasons (0.66 ± 0.08 and 1.65 ± 0.10 g C m-2 d-1, respectively), and overall, decomposition of leaf litter comprised 16% of the average annual soil respiration. Leaf litter production was higher during the dry season, and mean (±95% CI) leaf litter fall (5.6 ± 1.7 Mg ha-1) comprised 73% of the total litter fall (7.8 ± 2.3 Mg ha-1). Average (±95% CI) annual litter pool biomass was estimated to be 5.5 ± 0.3 Mg ha-1, which was similar to the measured pool size (5.7 ± 2.2 Mg ha-1). Overall, seasonal variations in environmental variables, specifically water availability (soil moisture and rainfall), had a profound influence on litter production, soil respiration, and surface litter decomposition.
D. Jordan; F., Jr. Ponder; V. C. Hubbard
2003-01-01
A greenhouse study examined the effects of soil compaction and forest leaf litter on the growth and nitrogen (N) uptake and recovery of red oak (Quercus rubra L.) and scarlet oak (Quercus coccinea Muencch) seedlings and selected microbial activity over a 6-month period. The experiment had a randomized complete block design with...
M.S. Strickland; M.A. Callaham; C.A. Davies; C.L. Lauber; K. Ramirez; D.D. Richter; N. Fierer; M.A. Bradford
2010-01-01
Plant-derived carbon compounds enter soils in a number of forms; two of the most abundant being leaf litter and rhizodeposition. Our knowledge concerning the predominant controls on the cycling of leaf litter far outweighs that for rhizodeposition even though the constituents of rhizodeposits includes a cocktail of low molecular weight organic compounds which represent...
James G. March; Catherine M. Pringle
2003-01-01
Tropical stream food webs are thought to be based primarily on terrestrial resources (leaf litter) in small forested headwater streams and algal resources in larger, wider streams. In tropical island streams, the dominant consumers are often omnivorous freshwater shrimps that consume algae, leaf litter, insects, and other shrimps. We used stable isotope analysis...
Impacts of emerald ash borer-induced tree mortality on leaf litter arthropods and exotic earthworms
Michael D. Ulyshen; Wendy S. Klooster; William T. Barrington; Daniel A. Herns
2011-01-01
Because leaf litter occurs at the interface between the soil and atmosphere, the invertebrates inhabiting it represent important linkages between above- and below-ground food webs. The responses of these organisms to forest disturbance brought about by invasive species should therefore have far-reaching ecological effects. The purpose of this study was to explore how...
Nutritional benefit from leaf litter utilization in the pitcher plant Nepenthes ampullaria.
Pavlovič, Andrej; Slováková, Ludmila; Šantrůček, Jiří
2011-11-01
The pitcher plant Nepenthes ampullaria has an unusual growth pattern, which differs markedly from other species in the carnivorous genus Nepenthes. Its pitchers have a reflexed lid and sit above the soil surface in a tighly packed 'carpet'. They contain a significant amount of plant-derived materials, suggesting that this species is partially herbivorous. We tested the hypothesis that the plant benefits from leaf litter utilization by increased photosynthetic efficiency sensu stricto cost/benefit model. Stable nitrogen isotope abundance indicated that N. ampullaria derived around 41.7 ± 5.5% of lamina and 54.8 ± 7.0% of pitcher nitrogen from leaf litter. The concentrations of nitrogen and assimilation pigments, and the rate of net photosynthesis (A(N)), increased in the lamina as a result of feeding, but did not increase in the trap. However, maximal (F(v) /F(m)) and effective photochemical quantum yield of photosystem II (Φ(PSII)) were unaffected. Our data indicate that N. ampullaria benefits from leaf litter utilization and our study provides the first experimental evidence that the unique nitrogen sequestration strategy of N. ampullaria provides benefits in term of photosynthesis and growth. © 2011 Blackwell Publishing Ltd.
Highly reduced mass loss rates and increased litter layer in radioactively contaminated areas.
Mousseau, Timothy A; Milinevsky, Gennadi; Kenney-Hunt, Jane; Møller, Anders Pape
2014-05-01
The effects of radioactive contamination from Chernobyl on decomposition of plant material still remain unknown. We predicted that decomposition rate would be reduced in the most contaminated sites due to an absence or reduced densities of soil invertebrates. If microorganisms were the main agents responsible for decomposition, exclusion of large soil invertebrates should not affect decomposition. In September 2007 we deposited 572 bags with uncontaminated dry leaf litter from four species of trees in the leaf litter layer at 20 forest sites around Chernobyl that varied in background radiation by more than a factor 2,600. Approximately one quarter of these bags were made of a fine mesh that prevented access to litter by soil invertebrates. These bags were retrieved in June 2008, dried and weighed to estimate litter mass loss. Litter mass loss was 40% lower in the most contaminated sites relative to sites with a normal background radiation level for Ukraine. Similar reductions in litter mass loss were estimated for individual litter bags, litter bags at different sites, and differences between litter bags at pairs of neighboring sites differing in level of radioactive contamination. Litter mass loss was slightly greater in the presence of large soil invertebrates than in their absence. The thickness of the forest floor increased with the level of radiation and decreased with proportional loss of mass from all litter bags. These findings suggest that radioactive contamination has reduced the rate of litter mass loss, increased accumulation of litter, and affected growth conditions for plants.
Lingli Liu; John S. King; Christian P. Giardina
2005-01-01
Human activities are increasing the concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]), potentially leading to changes in the quantity and chemical quality of leaf litter inputs to forest soils. Because the quality and quantity of labile and recalcitrant carbon (C) compounds influence forest...
Attermeyer, Katrin; Premke, Katrin; Hornick, Thomas; Hilt, Sabine; Grossart, Hans-Peter
2013-12-01
In aquatic systems, terrestrial dissolved organic matter (t-DOM) is known to stimulate bacterial activities in the water column, but simultaneous effects of autumnal leaf input on water column and sediment microbial dynamics in littoral zones of lakes remain largely unknown. The study's objective was to determine the effects of leaf litter on bacterial metabolism in the littoral water and sediment, and subsequently, the consequences for carbon cycling and food web dynamics. Therefore, in late fall, we simultaneously measured water and sediment bacterial metabolism in the littoral zone of a temperate shallow lake after adding terrestrial particulate organic matter (t-POM), namely, maize leaves. To better evaluate bacterial production (BP) and community respiration (CR) in sediments, we incubated sediment cores with maize leaves of different quality (nonleached and leached) under controlled laboratory conditions. Additionally, to quantify the incorporated leaf carbon into microbial biomass, we determined carbon isotopic ratios of fatty acids from sediment and leaf-associated microbes from a laboratory experiment using 13C-enriched beech leaves. The concentrations of dissolved organic carbon (DOC) increased significantly in the lake after the addition of maize leaves, accompanied by a significant increase in water BP. In contrast, sediment BP declined after an initial peak, showing no positive response to t-POM addition. Sediment BP and CR were also not stimulated by t-POM in the laboratory experiment, either in short-term or in long-term incubations, except for a short increase in CR after 18 hours. However, this increase might have reflected the metabolism of leaf-associated microorganisms. We conclude that the leached t-DOM is actively incorporated into microbial biomass in the water column but that the settling leached t-POM (t-POML) does not enter the food web via sediment bacteria. Consequently, t-POML is either buried in the sediment or introduced into the aquatic food web via microorganisms (bacteria and fungi) directly associated with t-POM(L) and via benthic macroinvertebrates by shredding of t-POM(L). The latter pathway represents a "benthic shortcut" which efficiently transfers t-POM(L) to higher trophic levels.
Monroy, Silvia; Menéndez, Margarita; Basaguren, Ana; Pérez, Javier; Elosegi, Arturo; Pozo, Jesús
2016-12-15
Drought, an important environmental factor affecting the functioning of stream ecosystems, is likely to become more prevalent in the Mediterranean region as a consequence of climate change and enhanced water demand. Drought can have profound impacts on leaf litter decomposition, a key ecosystem process in headwater streams, but there is still limited information on its effects at the regional scale. We measured leaf litter decomposition across a gradient of aridity in the Ebro River basin. We deployed coarse- and fine-mesh bags with alder and oak leaves in 11 Mediterranean calcareous streams spanning a range of over 400km, and determined changes in discharge, water quality, leaf-associated macroinvertebrates, leaf quality and decomposition rates. The study streams were subject to different degrees of drought, specific discharge (Ls -1 km -2 ) ranging from 0.62 to 9.99. One of the streams dried out during the experiment, another one reached residual flow, whereas the rest registered uninterrupted flow but with different degrees of flow variability. Decomposition rates differed among sites, being lowest in the 2 most water-stressed sites, but showed no general correlation with specific discharge. Microbial decomposition rates were not correlated with final nutrient content of litter nor to fungal biomass. Total decomposition rate of alder was positively correlated to the density and biomass of shredders; that of oak was not. Shredder density in alder bags showed a positive relationship with specific discharge during the decomposition experiment. Overall, the results point to a complex pattern of litter decomposition at the regional scale, as drought affects decomposition directly by emersion of bags and indirectly by affecting the functional composition and density of detritivores. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Manoj, K; Rajesh, T P; Prashanth Ballullaya, U; Meharabi, K M; Shibil, V K; Rajmohana, K; Sinu, Palatty Allesh
2017-06-01
Platygastridae is the third largest family of parasitic Hymenoptera in the world. It includes important egg and larval parasitoids of insects and spiders. Therefore, Platygastridae is functionally important in maintaining the stability of tropical rainforests and agroecosystems. Although the diversity of Platygastridae is relatively well-known in agroecosystems, we know little about their diversity in tropical rainforests, and particularly about that of the leaf litter layer. Here, we address the importance of monitoring Platygastridae in tropical rainforests, using data from the relic primary forests of the sacred groves of the Western Ghats. First, we demonstrate that pitfall traps allow us to catch a wide array of representative diversity of Platygastridae of the tropical rainforests, and we establish an efficient collection method to study Platygastridae of leaf litter layer. Second, we demonstrate that the community structure and composition of Platygastridae of the leaf litter layer is different from that seen in the understory of the forests. This indirectly informs us that the Malaise traps capture only a minor subset of the species active in the rainforests. Third, we find that the dry and wet seasons captured dissimilar community of Platygastridae, suggesting that the season might alter the potential host species or host stages. We conclude that monitoring parasitic Hymenoptera in the leaf litter layer of tropical rainforests can provide fresh insights on the species distribution of both the parasitoids and their hosts, and allows us to examine the current state of the tropical rainforests from a functional point of view. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mora-Gómez, Juanita; Elosegi, Arturo; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M
2016-08-01
Microorganisms are key drivers of leaf litter decomposition; however, the mechanisms underlying the dynamics of different microbial groups are poorly understood. We investigated the effects of seasonal variation and invertebrates on fungal and bacterial dynamics, and on leaf litter decomposition. We followed the decomposition of Populus nigra litter in a Mediterranean stream through an annual cycle, using fine and coarse mesh bags. Irrespective of the season, microbial decomposition followed two stages. Initially, bacterial contribution to total microbial biomass was higher compared to later stages, and it was related to disaccharide and lignin degradation; in a later stage, bacteria were less important and were associated with hemicellulose and cellulose degradation, while fungi were related to lignin decomposition. The relevance of microbial groups in decomposition differed among seasons: fungi were more important in spring, whereas in summer, water quality changes seemed to favour bacteria and slowed down lignin and hemicellulose degradation. Invertebrates influenced litter-associated microbial assemblages (especially bacteria), stimulated enzyme efficiencies and reduced fungal biomass. We conclude that bacterial and fungal assemblages play distinctive roles in microbial decomposition and differ in their sensitivity to environmental changes, ultimately affecting litter decomposition, which might be particularly relevant in highly seasonal ecosystems, such as intermittent streams. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Grams, Thorsten
2016-04-01
This contribution summarizes a series of C allocation studies in maturing European beech and Norway spruce trees at Kranzberg Forest, located in southern Germany. Study objects are 60 to 70 year old trees, readily accessible via scaffoldings and canopy crane. Allocation of recently fixed photoassimilates is assessed either by conventional branch-bag labelling with 99 atom% 13CO2 or whole-tree labeling using 13C-depleted CO2 (isoFACE system). While labeling in branch bags, employed for few hours only, focused on phloem functionality in particular under long-term drought, C labeling of whole tree canopies was employed for up to 20 days, studying allocation of recent photoassimilates from the canopy along branches and stems to roots and soils below ground. In all experiments, dynamics of C allocation were mostly pursued assessing carbon isotopic composition of CO2 efflux from woody tissues which typically reflected isotopic composition of phloem sugars. Effects of severe and long-term summer drought are assessed in an ongoing experiment with roughly 100 trees assigned to a total of 12 plots (kroof.wzw.tum.de). Precipitation throughfall was completely excluded since early spring, resulting in pre-dawn leaf water potentials of both beech and spruce up to -2.2 MPa. The hypothesis was tested that long-term drought affects allocation of recently fixed C to branches and phloem functionality. In the annual course under unstressed conditions, phloem transport speed from the canopy to the stem (breast height) was double in beech compared to spruce, with highest transport velocities in early summer (about 0.51 and 0.26 m/h) and lowest in spring (0.26 and 0.12 m/h for beech and spruce, respectively). After leaf flush in spring, growth respiration of beech trunks was largely supplied by C stores. Recent photoassimilates supplied beech stem growth in early summer and refilled C stores in late summer, whereas seasonality was less pronounced in spruce. The hypothesis that growth respiration is exclusively supplied by recently fixed C was rejected for both species. After long-term (7 years) exposure to elevated (i.e. twice-ambient) O3 concentrations, allocation of recently fixed C to stems was distinctly affected when studied during later summer. In correspondence with significantly lowered woody biomass development in beech (- 40 %), C allocation to stems was reduced in response to O3 exposure. Conversely in spruce, photoassimilate allocation to stems and coarse root respiration was hardly affected, reflecting the overall lower sensitivity of spruce to elevated O3 concentrations. Compartmental modeling characterized functional properties of substrate pools supplying respiratory C demands. Stem respiration of spruce appeared to be largely supplied by recent photoassimilates. Conversely in beech, stored C, putatively located in stem parenchyma cells, was a major source for respiration, reflecting the fundamental anatomical disparity between angiosperm beech and gymnosperm spruce. Overall, the observed differences in C allocation between the two study species reflect the high plasticity of beech trees in response to seasons and stressors such as drought and elevated O3, whereas spruce displayed much lower responsiveness to the applied stressors and along the seasonal course of the year.
Stohlgren, Thomas J.
1988-01-01
The factors influencing leaf litter decomposition and nutrient release patterns were investigated for 3.6 years in two mixed conifer forests in the southern Sierra Nevada of California. The giant sequoia–fir forest was dominated by giant sequoia (Sequoiadendrongiganteum (Lindl.) Buchh.), white fir (Abiesconcolor Lindl. & Gord.), and sugar pine (Pinuslambertiana Dougl.). The fir–pine forest was dominated by white fir, sugar pine, and incense cedar (Calocedrusdecurrens (Torr.) Florin). Initial concentrations of nutrients and percent lignin, cellulose, and acid detergent fiber vary considerably in freshly abscised leaf litter of the studied species. Giant sequoia had the highest concentration of lignin (20.3%) and the lowest concentration of nitrogen (0.52%), while incense cedar had the lowest concentration of lignin (9.6%) and second lowest concentration of nitrogen (0.63%). Long-term (3.6 years) foliage decomposition rates were best correlated with initial lignin/N (r2 = 0.94, p r2 = 0.92, p r2 = 0.80, p < 0.05). Patterns of nutrient release were highly variable. Giant sequoia immobilized N and P, incense cedar immobilized N and to a lesser extent P, while sugar pine immobilized Ca. Strong linear or negative exponential relationships existed between initial concentrations of N, P, K, and Ca and percent original mass remaining of those nutrients after 3.6 years. This suggests efficient retention of these nutrients in the litter layer of these ecosystems. Nitrogen concentrations steadily increase in decomposing leaf litter, effectively reducing the C/N ratios from an initial range of 68–96 to 27–45 after 3.6 years.
Litter dynamics in two Sierran mixed conifer forests. I. Litterfall and decomposition rates
Stohlgren, Thomas J.
1988-01-01
Litterfall was measured for 4 years and leaf litter decomposition rates were studied for 3.6 years in two mixed conifer forest (giant sequoia-fir and fir-pine) in the southern Sierra Nevada of California. The giant sequoia-fir forest (GS site) was dominated by giant sequoia (Sequoiadendron giganteum (Lindl.) Buchh.), white fir (Abies concolor Lindl. & Gord.), and sugar pine (Pinus lambertiana Dougl.). The fir-pine forest (FP site) was dominated by white fir, sugar pine, and incense cedar (Calocedrus decurrens (Torr.) Florin). Litterfall, including large woody debris -1•year-1 compared with 4355 kg•ha-1•year-1 at the FP site (3.4:1). In the GS site, leaf litter decomposition after 3.6 years was slowest for giant sequoia (28.2% mass loss), followed by sugar pine (34.3%) and white fie (45.1%). In the FP site, mass loss was slowest for sugar pine (40.0%), followed by white fir (45.1%), while incense cedar showed the greatest mass loss (56.9%) after 3.6 years. High litterfall rates of large woody debris (i.e., 2.5-15.2 cm diameter) and slow rates of leaf litter decomposition in the giant sequoia-fir forest type may result in higher litter accumulation rates than in the fir-pine type. Leaf litter times to 95% decay for the GS and FP sites were 30 and 27 years, respectively, if the initial 0.7-year period (a short period of rapid mass decay) was ignored in the calculation. A mass balance approach for total litterfall (<15.2 cm diameter) decomposition yielded lower decay constants than did the litterbag study and therefore longer times to 95% decay (57 years for the GS site and 62 years for the FP site).
Marcelo Ardon; Catherine M. Pringle; Susan L. Eggert
2009-01-01
Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to...
Barantal, Sandra; Schimann, Heidy; Fromin, Nathalie; Hättenschwiler, Stephan
2014-01-01
Plant leaf litter generally decomposes faster as a group of different species than when individual species decompose alone, but underlying mechanisms of these diversity effects remain poorly understood. Because resource C : N : P stoichiometry (i.e. the ratios of these key elements) exhibits strong control on consumers, we supposed that stoichiometric dissimilarity of litter mixtures (i.e. the divergence in C : N : P ratios among species) improves resource complementarity to decomposers leading to faster mixture decomposition. We tested this hypothesis with: (i) a wide range of leaf litter mixtures of neotropical tree species varying in C : N : P dissimilarity, and (ii) a nutrient addition experiment (C, N and P) to create stoichiometric similarity. Litter mixtures decomposed in the field using two different types of litterbags allowing or preventing access to soil fauna. Litter mixture mass loss was higher than expected from species decomposing singly, especially in presence of soil fauna. With fauna, synergistic litter mixture effects increased with increasing stoichiometric dissimilarity of litter mixtures and this positive relationship disappeared with fertilizer addition. Our results indicate that litter stoichiometric dissimilarity drives mixture effects via the nutritional requirements of soil fauna. Incorporating ecological stoichiometry in biodiversity research allows refinement of the underlying mechanisms of how changing biodiversity affects ecosystem functioning. PMID:25320173
Lingli Liu; John S. King; Christian P. Giardina
2007-01-01
Atmospheric changes could strongly influence how terrestrial ecosystems function by altering nutrient cycling. We examined how the dynamics of nutrient release from leaf litter responded to two important atmospheric changes: rising atmospheric Co2 and tropospheric O3. We evaluated the independent and combined effects of...
The Distribution and Abundance of Leaf Litter Arthropods in MOFEP Sites 1, 2, and 3
Jan Weaver; Sarah Heyman
1997-01-01
In June 1993, we collected 144 leaf litter samples from 36 plots (4 samples/plot) located in MOFEP forest sites 1, 2 and 3. Half of the plots were placed randomly on northeast-facing stands (ELT 18), and half randomly placed on southwest-facing stands (ELT 17). Arthropods were extracted using Tullgren funnels, and then sorted into morpho-species, counted, and measured...
Jonathan P. Benstead; James G. March; Catherine M. Pringle; Katherine C. Ewel; John W. Short
2009-01-01
Pacific island stream communities are species-poor because of the effects of extreme geographic isolation on colonization rates of taxa common to continental regions. The effects of such low species richness on stream ecosystem function are not well understood. Here, we provide data on community structure and leaf litter breakdown rate in a virtually pristine stream on...
The Impact of Coffee and Pasture Agriculture on Predatory and Omnivorous Leaf-Litter Ants
Dias, Nivia da Silva; Zanetti, Ronald; Santos, Mônica Silva; Peñaflor, Maria Fernanda Gomes Villalba; Broglio, Sônia Maria Forti; Delabie, Jacques Hubert Charles
2013-01-01
Ants are known to function as reliable biological indicators for habitat impact assessment. They play a wide range of ecological roles depending on their feeding and nesting habits. By clustering ants in guilds, it is possible both to assess how agriculture and forest fragmentation can disturb ant communities and to predict the ecological impacts due to losses of a specific guild. This study aimed at determining the impact of non-shaded coffee and pasture agriculture on predatory and omnivorous guilds of leaf-litter ants of Atlantic Forest fragments in Minas Gerais, Brazil. Both coffee and pasture agriculture influenced leaf-litter ant community, although coffee was more disruptive than pasture. Coffee agriculture not only disturbed the diversity of predatory ants, but also negatively affected the number of predatory and omnivorous ants when compared to forest fragments. In contrast, pasture agriculture only disrupted the abundance of predatory ants. Fragment edges skirting crops were negatively affected in terms of leaf-litter ant abundance, but not diversity. Cluster analysis showed that forest fragments were similar irrespective of the cultivation, but the borders were similar to the crop. The study assessed agriculture impact by surveying ant guilds, and revealed that the predatory guild is more susceptible than omnivorous ants. PMID:23902334
The impact of coffee and pasture agriculture on predatory and omnivorous leaf-litter ants.
Dias, Nivia da Silva; Zanetti, Ronald; Santos, Mônica Silva; Peñaflor, Maria Fernanda Gomes Villalba; Broglio, Sônia Maria Forti; Delabie, Jacques Hubert Charles
2013-01-01
Ants are known to function as reliable biological indicators for habitat impact assessment. They play a wide range of ecological roles depending on their feeding and nesting habits. By clustering ants in guilds, it is possible both to assess how agriculture and forest fragmentation can disturb ant communities and to predict the ecological impacts due to losses of a specific guild. This study aimed at determining the impact of non-shaded coffee and pasture agriculture on predatory and omnivorous guilds of leaf-litter ants of Atlantic Forest fragments in Minas Gerais, Brazil. Both coffee and pasture agriculture influenced leaf-litter ant community, although coffee was more disruptive than pasture. Coffee agriculture not only disturbed the diversity of predatory ants, but also negatively affected the number of predatory and omnivorous ants when compared to forest fragments. In contrast, pasture agriculture only disrupted the abundance of predatory ants. Fragment edges skirting crops were negatively affected in terms of leaf-litter ant abundance, but not diversity. Cluster analysis showed that forest fragments were similar irrespective of the cultivation, but the borders were similar to the crop. The study assessed agriculture impact by surveying ant guilds, and revealed that the predatory guild is more susceptible than omnivorous ants.
Crumsey, Jasmine M; Le Moine, James M; Capowiez, Yvan; Goodsitt, Mitchell M; Larson, Sandra C; Kling, George W; Nadelhoffer, Knute J
2013-12-01
Exotic earthworm introductions can alter above- and belowground properties of temperate forests, but the net impacts on forest soil carbon (C) dynamics are poorly understood. We used a mesocosm experiment to examine the impacts of earthworm species belonging to three different ecological groups (Lumbricus terrestris [anecic], Aporrectodea trapezoides [endogeic], and Eisenia fetida [epigeic]) on C distributions and storage in reconstructed soil profiles from a sandy temperate forest soil by measuring CO2 and dissolved organic carbon (DOC) losses, litter C incorporation into soil, and soil C storage with monospecific and species combinations as treatments. Soil CO2 loss was 30% greater from the Endogeic x Epigeic treatment than from controls (no earthworms) over the first 45 days; CO2 losses from monospecific treatments did not differ from controls. DOC losses were three orders of magnitude lower than CO2 losses, and were similar across earthworm community treatments. Communities with the anecic species accelerated litter C mass loss by 31-39% with differential mass loss of litter types (Acer rubrum > Populus grandidentata > Fagus grandifolia > Quercus rubra > or = Pinus strobus) indicative of leaf litter preference. Burrow system volume, continuity, and size distribution differed across earthworm treatments but did not affect cumulative CO2 or DOC losses. However, burrow system structure controlled vertical C redistribution by mediating the contributions of leaf litter to A-horizon C and N pools, as indicated by strong correlations between (1) subsurface vertical burrows made by anecic species, and accelerated leaf litter mass losses (with the exception of P. strobus); and (2) dense burrow networks in the A-horizon and the C and N properties of these pools. Final soil C storage was slightly lower in earthworm treatments, indicating that increased leaf litter C inputs into soil were more than offset by losses as CO2 and DOC across earthworm community treatments.
Olakanye, Ayodeji O; Nelson, Andrew; Ralebitso-Senior, T Komang
2017-07-01
A cadaver and dead plant organic matter, or litter, are rich energy sources that undergo a complex decomposition process, which impact the surrounding environmental microbiota. Advances in molecular microbiology techniques, with study of the 16S RNA genes, in particular, have highlighted the application of forensic ecogenomics in addressing key knowledge gaps. To investigate subsurface microbiome shifts as a novel tool to establish "postmortem microbial clock" and augment postmortem interval (PMI) and time-since-burial estimations, an in situ study with triplicate underground burials of piglets as human taphonomic proxies and Quercus robur leaf litter was monitored for 270 days. Changes in microbial community structure and composition were related directly to changes in seasonal temperature, with microbial shifts more pronounced during the summer. For example, Methylococcaceae could be used as seasonal bacterial indicators, from winter to summer, in establishing postmortem microbial clock for this site. Furthermore, Methylophilaceae (Methylophilales order) and Anaerolineaceae would differentiate for the piglet and leaf litter soils, respectively, 180 days after internment. Copyright © 2017 Elsevier B.V. All rights reserved.
Hättenschwiler, Stephan; Aeschlimann, Beat; Coûteaux, Marie-Madeleine; Roy, Jacques; Bonal, Damien
2008-01-01
Distinct ecosystem level carbon : nitrogen : phosphorus (C : N : P) stoichiometries in forest foliage have been suggested to reflect ecosystem-scale selection for physiological strategies in plant nutrient use. Here, this hypothesis was explored in a nutrient-poor lowland rainforest in French Guiana. Variation in C, N and P concentrations was evaluated in leaf litter and foliage from neighbour trees of 45 different species, and the litter concentrations of major C fractions were also measured. Litter C ranged from 45.3 to 52.4%, litter N varied threefold (0.68-2.01%), and litter P varied seven-fold (0.009-0.062%) among species. Compared with foliage, mean litter N and P concentrations decreased by 30% and 65%, respectively. Accordingly, the range in mass-based N : P shifted from 14 to 55 in foliage to 26 to 105 in litter. Resorption proficiencies indicated maximum P withdrawal in most species, but with a substantial increase in variation in litter P compared with foliage. These data suggest that constrained ecosystem-level C : N : P ratios do not preclude the evolution of highly diversified strategies of nutrient use and conservation among tropical rainforest tree species. The resulting large variation in litter quality will influence stoichiometric constraints within the decomposer food web, with potentially far-ranging consequences on nutrient dynamics and plant-soil feedbacks.
NASA Astrophysics Data System (ADS)
Altmann, Jens; Jansen, Boris; Kalbitz, Karsten; Filley, Timothy
2013-04-01
Dissolved organic matter (DOM) is one of the most dynamic carbon pools linking the terrestrial with the aquatic carbon cycle. Besides the insecure contribution of terrestrial DOM to the greenhouse effect, DOM also plays an important role for the mobility and availability of heavy metals and organic pollutants in soils. These processes depend very much on the molecular characteristics of the DOM. Surprisingly the processes that determine the molecular composition of DOM are only poorly understood. DOM can originate from various sources, which influence its molecular composition. It has been recognized that DOM formation is not a static process and DOM characteristics vary not only between different carbon sources. However, molecular characteristics of DOM extracts have scarcely been studied continuously over a longer period of time. Due to constant molecular changes of the parent litter material or soil organic matter during microbial degradation, we assumed that also the molecular characteristics of litter derived DOM varies at different stages during root and needle decomposition. For this study we analyzed the chemical composition of root and leaf samples of 6 temperate tree species during one year of litter decomposition in a laboratory incubation. During this long-term experiment we measured continuously carbon and nitrogen contents of the water extracts and the remaining residues, C mineralization rates, and the chemical composition of water extracts and residues by Curie-point pyrolysis mass spectrometry with TMAH We focused on the following questions: (I) How mobile are molecules derived from plant polymers like tannin, lignin, suberin and cutin? (II) How does the composition of root and leaf derived DOM change over time in dependence on the stage of decomposition and species? Litter derived DOM was generally dominated by aromatic compounds. Substituded fatty acids as typically cutin or suberin derived were not detected in the water extracts. Fresh leaf and needle samples released a much higher amount of tannins than fresh root samples. At later litter decomposition stages the influence of tannins decreased and lignin derived phenols dominated the extracts. With ongoing litter degradation the degree of oxidation for the litter material increased, which was also reflected by the water extracted molecules.
SOA Formation Potential of Emissions from Soil and Leaf Litter
NASA Astrophysics Data System (ADS)
Faiola, C. L.; Vanderschelden, G. S.; Wen, M.; Cobos, D. R.; Jobson, B. T.; VanReken, T. M.
2013-12-01
In the United States, emissions of volatile organic compounds (VOCs) from natural sources exceed all anthropogenic sources combined. VOCs participate in oxidative chemistry in the atmosphere and impact the concentrations of ozone and particulate material. The formation of secondary organic aerosol (SOA) is particularly complex and is frequently underestimated using state-of-the-art modeling techniques. We present findings that suggest emissions of important SOA precursors from soil and leaf litter are higher than current inventories would suggest, particularly under conditions typical of Fall and Spring. Soil and leaf litter samples were collected at Big Meadow Creek from the University of Idaho Experimental Forest. The dominant tree species in this area of the forest are ponderosa pine, Douglas-fir, and western larch. Samples were transported to the laboratory and housed within a 0.9 cubic meter Teflon dynamic chamber where VOC emissions were continuously monitored with a GC-FID-MS and PTR-MS. Aerosol was generated from soil and leaf litter emissions by pumping the emissions into a 7 cubic meter Teflon aerosol growth chamber where they were oxidized with ozone in the absence of light. The evolution of particle microphysical and chemical characteristics was monitored over the following eight hours. Particle size distribution and chemical composition were measured with a SMPS and HR-ToF-AMS respectively. Monoterpenes dominated the emission profile with emission rates up to 283 micrograms carbon per meter squared per hour. The dominant monoterpenes emitted were beta-pinene, alpha-pinene, and delta-3-carene in descending order. The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and alpha-pinene. Measured soil/litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest that during fall and spring when tree emissions are lower, monoterpene emissions within forests may be dominated by soil/litter emissions--soil/litter monoterpene emissions in spring could contribute up to 63% of total forest emissions. If this is the case, a significant portion of total forest monoterpene emission rates would be controlled by factors that affect soil/litter emissions rather than factors that affect plant emissions.
NASA Astrophysics Data System (ADS)
Chang, C.; Szlavecz, K. A.; Bernard, M.; Pitz, S.
2013-12-01
Through transformation of plant litter into soil organic matter (SOM) and translocation of ingested organic material among different soil depths, soil organisms, especially earthworms, are one of the major factors affecting SOM dynamics. In North America temperate soil, historical human activity has lead to invasion of European earthworms into habitats that were previously earthworm-free or inhabited only by native species. By consuming leaf litter and SOM, burrowing, and casting, invasive earthworms have been known for reducing the understory vegetation and leaf litter layer while increasing the thickness of organic soil, causing changes in the soil habitat and the distribution of SOM. Recently, another group of invasive earthworm, namely Amynthas from Asia, has been reported invading habitats already dominated by European species, causing a 'second wave of invasion' where the soil ecosystem, already modified by European species, is going through another transition. The mechanisms through which these functionally (ecologically) different species affect C and N transformation could be better understood by tracing the carbon and nitrogen derived from 13C- and 15N-labeled leaf litter into earthworm tissues and SOM. The objective of this study is to understand how earthworm species that differ ecologically, including the Asian Amynthas, interact with each other and how these interactions affect SOM dynamics. We hypothesized that 1) species feeding on different food resources will have different isotopic signature and their tissue 13C and 15N values will change due to facilitation or interspecific competition on food resources, and 2) the short-term fate of litter-derived carbon differs depending on the presence or absence of different earthworm species. These hypotheses were tested by field sampling and lab mesocosm experiments using 13C and 15N double-enriched Tulip Poplar leaf litter (mean 13C = 124‰, mean 15N = 1667‰) produced from tree saplings growing in an airtight chamber. Stable isotope mass balance calculation is used to estimate the recovery of litter-derived carbon from three pools (earthworm tissue, SOM, remaining litter), the loss of litter-derived carbon through soil respiration, and the contribution of different carbon sources to soil CO2 efflux in different earthworm treatments. Our results show that earthworm species recognized as 'soil feeders' have 13C and 15N values that are 1.2‰ and 3.8‰ higher than those of 'litter feeders', and 15N also differ significantly amount different soil feeders, suggesting different food resource usage even within the same functional group. There are strong species effects on both leaf litter disappearance rate and CO2 efflux rate, both being high when Amynthas earthworms are present. Our results suggest that changing earthworm species composition leads to changing resource use, which alters the fate of organic carbon in the forest floor and soil and could potentially affect long-term SOM dynamics in temperate forests.
A.E. Lugo; O. Abelleira Martínez; J. Fonseca da Silva
2012-01-01
The article presents comparative data for aboveground biomass, wood volume, nutirent stocks (N, P, K) and leaf litter in different types of forests in Puerto Rico. The aim of the study is to assess how novel forests of Castilla elastica, Panama Rubber Tree, and Spathodea campanulata, African Tulip Tree, compare with tree plantations and native historical forests (both...
C.K. Adams; D. Saenz
2012-01-01
Chinese tallow (Triadica sebifera (L.) Small) is an aggressive invasive tree species that can be abundant in parts of its non-native range. This tree species has the capability of producing monocultures, by outcompeting native trees, which can be in or near wetlands that are utilized by breeding amphibians. Existing research suggests that leaf litter from invasive...
Beaulieu, Karen M.; Button, Daniel T.; Eikenberry, Barbara C. Scudder; Riva-Murray, Karen; Chasar, Lia C.; Bradley, Paul M.; Burns, Douglas A.
2012-01-01
The U.S. Geological Survey National Water-Quality Assessment Program conducted a multidisciplinary study from 2005–09 to investigate the bioaccumulation of mercury in streams from two contrasting environmental settings. Study areas were located in the central Adirondack Mountains region of New York and the Inner Coastal Plain of South Carolina. Fish, macroinvertebrates, periphyton (attached algae and associated material), detritus, and terrestrial leaf litter were collected. Fish were analyzed for total mercury; macroinvertebrates, periphyton, and terrestrial leaf litter were analyzed for total mercury and methylmercury; and select samples of fish, macroinvertebrates, periphyton, detritus, and terrestrial leaf litter were analyzed for stable isotopes of carbon (δ13C) and nitrogen (δ15N). This report presents methodology and data on total mercury, methylmercury, stable isotopes, and other ecologically relevant measurements in biological tissues.
Patoine, Guillaume; Thakur, Madhav P; Friese, Julia; Nock, Charles; Hönig, Lydia; Haase, Josephine; Scherer-Lorenzen, Michael; Eisenhauer, Nico
2017-11-01
A better understanding of the mechanisms driving litter diversity effects on decomposition is needed to predict how biodiversity losses affect this crucial ecosystem process. In a microcosm study, we investigated the effects of litter functional diversity and two major groups of soil macro-detritivores on the mass loss of tree leaf litter mixtures. Furthermore, we tested the effects of litter trait community means and dissimilarity on litter mass loss for seven traits relevant to decomposition. We expected macro-detritivore effects on litter mass loss to be most pronounced in litter mixtures of high functional diversity. We used 24 leaf mixtures differing in functional diversity, which were composed of litter from four species from a pool of 16 common European tree species. Earthworms, isopods, or a combination of both were added to each litter combination for two months. Litter mass loss was significantly higher in the presence of earthworms than in that of isopods, whereas no synergistic effects of macro-detritivore mixtures were found. The effect of functional diversity of the litter material was highest in the presence of both macro-detritivore groups, supporting the notion that litter diversity effects are most pronounced in the presence of different detritivore species. Species-specific litter mass loss was explained by nutrient content, secondary compound concentration, and structural components. Moreover, dissimilarity in N concentrations increased litter mass loss, probably because detritivores having access to nutritionally diverse food sources. Furthermore, strong competition between the two macro-detritivores for soil surface litter resulted in a decrease of survival of both macro-detritivores. These results show that the effects of litter functional diversity on decomposition are contingent upon the macro-detritivore community and composition. We conclude that the temporal dynamics of litter trait diversity effects and their interaction with detritivore diversity are key to advancing our understanding of litter mass loss in nature.
Patoine, Guillaume; Thakur, Madhav P.; Friese, Julia; Nock, Charles; Hönig, Lydia; Haase, Josephine; Scherer-Lorenzen, Michael; Eisenhauer, Nico
2017-01-01
A better understanding of the mechanisms driving litter diversity effects on decomposition is needed to predict how biodiversity losses affect this crucial ecosystem process. In a microcosm study, we investigated the effects of litter functional diversity and two major groups of soil macro-detritivores on the mass loss of tree leaf litter mixtures. Furthermore, we tested the effects of litter trait community means and dissimilarity on litter mass loss for seven traits relevant to decomposition. We expected macro-detritivore effects on litter mass loss to be most pronounced in litter mixtures of high functional diversity. We used 24 leaf mixtures differing in functional diversity, which were composed of litter from four species from a pool of 16 common European tree species. Earthworms, isopods, or a combination of both were added to each litter combination for two months. Litter mass loss was significantly higher in the presence of earthworms than in that of isopods, whereas no synergistic effects of macro-detritivore mixtures were found. The effect of functional diversity of the litter material was highest in the presence of both macro-detritivore groups, supporting the notion that litter diversity effects are most pronounced in the presence of different detritivore species. Species-specific litter mass loss was explained by nutrient content, secondary compound concentration, and structural components. Moreover, dissimilarity in N concentrations increased litter mass loss, probably because detritivores having access to nutritionally diverse food sources. Furthermore, strong competition between the two macro-detritivores for soil surface litter resulted in a decrease of survival of both macro-detritivores. These results show that the effects of litter functional diversity on decomposition are contingent upon the macro-detritivore community and composition. We conclude that the temporal dynamics of litter trait diversity effects and their interaction with detritivore diversity are key to advancing our understanding of litter mass loss in nature. PMID:29180828
Richard C. Cobb; David M. Rizzo
2016-01-01
Forest pathogens have strong potential to shape ecosystem function by altering litterfall, microclimate, and changing community structure. We quantified changes in litter decomposition from a set of distinct diseases caused by Phytophthora ramorum, an exotic generalist pathogen. Phytophthora ramorum causes leaf blight and...
NASA Astrophysics Data System (ADS)
Lebourgeois, François; Pierrat, Jean-Claude; Perez, Vincent; Piedallu, Christian; Cecchini, Sébastien; Ulrich, Erwin
2010-09-01
After modeling the large-scale climate response patterns of leaf unfolding, leaf coloring and growing season length of evergreen and deciduous French temperate trees, we predicted the effects of eight future climate scenarios on phenological events. We used the ground observations from 103 temperate forests (10 species and 3,708 trees) from the French Renecofor Network and for the period 1997-2006. We applied RandomForest algorithms to predict phenological events from climatic and ecological variables. With the resulting models, we drew maps of phenological events throughout France under present climate and under two climatic change scenarios (A2, B2) and four global circulation models (HadCM3, CGCM2, CSIRO2 and PCM). We compared current observations and predicted values for the periods 2041-2070 and 2071-2100. On average, spring development of oaks precedes that of beech, which precedes that of conifers. Annual cycles in budburst and leaf coloring are highly correlated with January, March-April and October-November weather conditions through temperature, global solar radiation or potential evapotranspiration depending on species. At the end of the twenty-first century, each model predicts earlier budburst (mean: 7 days) and later leaf coloring (mean: 13 days) leading to an average increase in the growing season of about 20 days (for oaks and beech stands). The A2-HadCM3 hypothesis leads to an increase of up to 30 days in many areas. As a consequence of higher predicted warming during autumn than during winter or spring, shifts in leaf coloring dates appear greater than trends in leaf unfolding. At a regional scale, highly differing climatic response patterns were observed.
Fagus sylvatica L. provenances maintain different leaf metabolic profiles and functional response
NASA Astrophysics Data System (ADS)
Aranda, Ismael; Sánchez-Gómez, David; de Miguel, Marina; Mancha, Jose Antonio; Guevara, María Angeles; Cadahía, Estrella; Fernández de Simón, María Brígida
2017-07-01
Most temperate forest tree species will suffer important environmental changes as result of the climate change. Adaptiveness to local conditions could change at different sites in the future. In this context, the study of intra-specific variability is important to clarify the singularity of different local populations. Phenotypic differentiation between three beech provenances covering a wide latitudinal range (Spain/ES, Germany/DE and Sweden/SE), was studied in a greenhouse experiment. Non-target leaf metabolite profiles and ecophysiological response was analyzed in well-watered and water stressed seedlings. There was a provenance-specific pattern in the relative concentrations of some leaf metabolites regardless watering treatment. The DE and SE from the center and north of the distribution area of the species showed a clear differentiation from the ES provenance in the relative concentration of some metabolites. Thus the ES provenance from the south maintained larger relative concentration of some organic and amino acids (e.g. fumaric and succinic acids or valine and isoleucine), and in some secondary metabolites (e.g. kaempferol, caffeic and ferulic acids). The ecophysiological response to mild water stress was similar among the three provenances as a consequence of the moderate water stress applied to seedlings, although leaf N isotope composition (δ15N) and leaf C:N ratio were higher and lower respectively in DE than in the other two provenances. This would suggest potential differences in the capacity to uptake and post-process nitrogen according to provenance. An important focus of the study was to address for the first time inter-provenance leaf metabolic diversity in beech from a non-targeted metabolic profiling approach that allowed differentiation of the three studied provenances.
Lebourgeois, François; Pierrat, Jean-Claude; Perez, Vincent; Piedallu, Christian; Cecchini, Sébastien; Ulrich, Erwin
2010-09-01
After modeling the large-scale climate response patterns of leaf unfolding, leaf coloring and growing season length of evergreen and deciduous French temperate trees, we predicted the effects of eight future climate scenarios on phenological events. We used the ground observations from 103 temperate forests (10 species and 3,708 trees) from the French Renecofor Network and for the period 1997-2006. We applied RandomForest algorithms to predict phenological events from climatic and ecological variables. With the resulting models, we drew maps of phenological events throughout France under present climate and under two climatic change scenarios (A2, B2) and four global circulation models (HadCM3, CGCM2, CSIRO2 and PCM). We compared current observations and predicted values for the periods 2041-2070 and 2071-2100. On average, spring development of oaks precedes that of beech, which precedes that of conifers. Annual cycles in budburst and leaf coloring are highly correlated with January, March-April and October-November weather conditions through temperature, global solar radiation or potential evapotranspiration depending on species. At the end of the twenty-first century, each model predicts earlier budburst (mean: 7 days) and later leaf coloring (mean: 13 days) leading to an average increase in the growing season of about 20 days (for oaks and beech stands). The A2-HadCM3 hypothesis leads to an increase of up to 30 days in many areas. As a consequence of higher predicted warming during autumn than during winter or spring, shifts in leaf coloring dates appear greater than trends in leaf unfolding. At a regional scale, highly differing climatic response patterns were observed.
NASA Astrophysics Data System (ADS)
Graeber, Daniel; Poulsen, Jane R.; Rasmussen, Jes J.; Kronvang, Brian; Zak, Dominik; Kamjunke, Norbert
2016-04-01
In the recent years it has become clear that the largest part of the terrestrial dissolved organic carbon (DOC) pool is removed on the way from the land to the ocean. Yet it is still unclear, where in the freshwater systems terrestrial DOC is actually taken up, and for streams DOC uptake was assumed to happen mostly at the stream bottom (benthic zone). However, a recent monitoring study implies that water column but not benthic bacteria are strongly affected by the amount and composition of DOM entering streams from the terrestrial zone. We conducted an experiment to compare the reaction of the bacterial production and heterotrophic uptake in the water column and the benthic zone to a standardized source of terrestrial DOC (leaf leachate from Beech litter). In detail, we sampled gravel and water from eight streams with a gradient in stream size and land use. For each stream four different treatments were incubated at 16°C for three days and each stream: filtered stream water with gravel stones (representing benthic zone bacteria) or unfiltered stream water (representing water column bacteria), both either with (n = 5) or, without (n = 3) leaf leachate. We found that the bacterial uptake of leaf litter DOC was higher for the benthic zone likely due to the higher bacterial production compared to the water column. In contrast, the bacterial production per amount of leaf leachate DOC taken up was significantly higher for the bacteria in the water column than for those in the benthic zone. This clearly indicates a higher growth efficiency with the leaf leachate DOC for the bacteria in the water column than in the benthic zone. We found a high variability for the growth efficiency in the water column, which was best explained by a negative correlation of the DOC demand with stream width (R² = 0.86, linear correlation of log-transformed data). This was not the case for the benthic zone bacteria (R² = 0.02). This implies that water column bacteria in very small streams are more dependent on terrestrial DOC sources for their growth than those in larger streams. Based on this experiment and literature data we hypothesize that: I) The response of the bacterial production to terrestrial DOC in the water column is stronger than for the benthic zone and is decreasing with increasing stream size, likely due to the increase of autochthonous DOC production within the stream. II) Independent of stream size there is only a small reaction to terrestrial DOC for the bacterial production in the benthic zone, either due to internal DOC production or a stronger dependency on particulate organic carbon. We propose that this terrestrial DOC dependency concept is generally applicable, however, its potential underlying mechanisms and concept predictions need to be tested further for other stream and river ecosystems.
Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal
2017-02-15
We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg -1 soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg -1 soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO 2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.
Barantal, Sandra; Schimann, Heidy; Fromin, Nathalie; Hättenschwiler, Stephan
2014-12-07
Plant leaf litter generally decomposes faster as a group of different species than when individual species decompose alone, but underlying mechanisms of these diversity effects remain poorly understood. Because resource C : N : P stoichiometry (i.e. the ratios of these key elements) exhibits strong control on consumers, we supposed that stoichiometric dissimilarity of litter mixtures (i.e. the divergence in C : N : P ratios among species) improves resource complementarity to decomposers leading to faster mixture decomposition. We tested this hypothesis with: (i) a wide range of leaf litter mixtures of neotropical tree species varying in C : N : P dissimilarity, and (ii) a nutrient addition experiment (C, N and P) to create stoichiometric similarity. Litter mixtures decomposed in the field using two different types of litterbags allowing or preventing access to soil fauna. Litter mixture mass loss was higher than expected from species decomposing singly, especially in presence of soil fauna. With fauna, synergistic litter mixture effects increased with increasing stoichiometric dissimilarity of litter mixtures and this positive relationship disappeared with fertilizer addition. Our results indicate that litter stoichiometric dissimilarity drives mixture effects via the nutritional requirements of soil fauna. Incorporating ecological stoichiometry in biodiversity research allows refinement of the underlying mechanisms of how changing biodiversity affects ecosystem functioning. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
VOC emission into the atmosphere by trees and leaf litter in Polish forests
NASA Astrophysics Data System (ADS)
Isidorov, V.; Smolewska, M.; Tyszkiewicz, Z.
2009-04-01
It is generally recognized at present that the vegetation of continents is the principal source of reactive volatile organic compounds (VOC) of the atmosphere. The upper limit of the evaluation of global phytogenic VOC is 1100-1500 Tg/yr (Isidorov, 1990; Guenther et al., 1995). Although these global evaluations showing the place of phytogenic emission among of other VOC sources are important, evaluations for individual countries are also very important. This poster represents the results of the estimation of VOC emission from Polish forests. Calculations took into account the composition and age of forests. According to our estimation, the total VOC emission by the arboreal vegetation differs from 190 to 750 kt/yr, depending of weather conditions in different years. There are only few studies conducted on decaying plant material as a source of atmospheric VOCs, but still they are able to give evidence of the importance of this source. For Polish forests, the litter mass is estimated to be (16-19)106 t/yr. These organic materials undergo decomposition by mesofauna and microorganisms. In these processes volatile organic compounds (VOC) stored in the litter and secondary metabolites of litter-destroying fungi are emitted into the atmosphere. The scale of the phenomenon makes leaf litter an important VOC source in the atmosphere. The filling of numerous gaps in researches of VOC emissions from decomposing leaf litter demands carrying out of long term field experiments in various climatic conditions. In this communication we report also the results of 3.5-year experiment on qualitative and quantitative GC-MS investigations of VOC emitted into the gas phase from leaves litter of some species of deciduous and coniferous trees of Polish forests. Apart from terpenes and their oxygenated derivatives, which are usual in plant tissues, leaf litter intensively emits vast amounts of lower alcohols and carbonyl compounds. We suppose that these volatile substances are products of vital activity of fungi which decompose leaf litter. Verification of the hypothesis was carried out in the frames of a long-term experiment on decomposition of Scots pine and common spruce litter. The experiment was conducted in natural conditions by placing litter bags on undisturbed topsoil in a forest area where pine and spruce trees prevailed. Part of the needles placed were taken out of the litter bags on the 30th, 282nd, 490th, 630th and 920th day of the experiment for subsequent isolation of fungi which colonize the litter (overall there were identified 98 species which belong to 48 genera of fungi). The experiment revealed that species composition of the fungi colonizing pine and spruce litter varies considerably. At the early stages of decomposition, dematiceous hypnomycetes, which belongs to Cladosporum, Alternaria genera as well as Hormonem genus, capable of utilizing pectin, were dominant species. At the later stages they were substituted with phycomycetes (Mucor sp.), ascomycetes (Penicillium sp.) and basidiomycetes (Trichderma sp.), the most significant group of "secondary saprophytes" able to carry out biodegradation of polysaccharides and lignin. In volatile emissions of all the 15 species of fungi there were identified 80 VOCs of different classes: terpene hydrocarbons and their oxygenated derivatives, C6-C14 aliphatic and C6-C10 aromatic hydrocarbons, C1-C8 alcohols, C2-C9 carbonyls, esters, furans, and halocarbons. VOC composition was specific for each fungi species and depended on the litter of a particular tree species from which it had been isolated. For instance, the emission rate of terpenes, alcohols and carbonyl compounds by Trichoderma polysporum isolated from pine and spruce litter was 3-5 times different. Differences in composition of VOCs emitted into the gas phase by "primary" and "secondary" fungi species which colonize pine and spruce litter are also discussed. This work was supported by Grant MNiSW N305 067 32/2411.
Li, Huiyan; Wei, Zishang; Huangfu, Chaohe; Chen, Xinwei; Yang, Dianlin
2017-01-01
In natural ecosystems, invasive plant litter is often mixed with that of native species, yet few studies have examined the decomposition dynamics of such mixtures, especially across different degrees of invasion. We conducted a 1-year litterbag experiment using leaf litters from the invasive species Flaveria bidentis (L.) and the dominant co-occurring native species, Setaria viridis (L.). Litters were allowed to decompose either separately or together at different ratios in a mothproof screen house. The mass loss of all litter mixtures was non-additive, and the direction and strength of effects varied with species ratio and decomposition stage. During the initial stages of decomposition, all mixtures had a neutral effect on the mass loss; however, at later stages of decomposition, mixtures containing more invasive litter had synergistic effects on mass loss. Importantly, an increase in F. bidentis litter with a lower C:N ratio in mixtures led to greater net release of N over time. These results highlight the importance of trait dissimilarity in determining the decomposition rates of litter mixtures and suggest that F. bidentis could further synchronize N release from litter as an invasion proceeds, potentially creating a positive feedback linked through invasion as the invader outcompetes the natives for nutrients. Our findings also demonstrate the importance of species composition as well as the identity of dominant species when considering how changes in plant community structure influence plant invasion.
N2-fixing red alder indirectly accelerates ecosystem nitrogen cycling
Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.
2012-01-01
Symbiotic N2-fixing tree species can accelerate ecosystem N dynamics through decomposition via direct pathways by producing readily decomposed leaf litter and increasing N supply to decomposers, as well as via indirect pathways by increasing tissue and detrital N in non-fixing vegetation. To evaluate the relative importance of these pathways, we compared three-year decomposition and N dynamics of N2-fixing red alder leaf litter (2.34 %N) to both low-N (0.68 %N) and high-N (1.21 %N) litter of non-fixing Douglas-fir, and decomposed each litter source in four forests dominated by either red alder or Douglas-fir. We also used experimental N fertilization of decomposition plots to assess elevated N availability as a potential mechanism of N2-fixer effects on litter mass loss and N dynamics. Direct effects of N2-fixing red alder on decomposition occurred primarily as faster N release from red alder than Douglas-fir litter, but direct increases in N supply to decomposers via fertilization did not stimulate decomposition of any litter. Fixed N indirectly influenced detrital dynamics by increasing Douglas-fir tissue and litter N concentrations, which accelerated litter N release without accelerating mass loss. By increasing soil N, tissue N, and the rate of N release from litter of non-fixers, we conclude that N2-fixing vegetation can indirectly foster plant-soil feedbacks that contribute to the persistence of elevated N availability in terrestrial ecosystems.
T.L. van Huysen; M.E. Harmon; S.S. Perakis; H. Chen
2013-01-01
Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled...
Effects of river flow regime on cottonwood leaf litter dynamics in semi-arid northwestern Colorado
Andersen, D.C.; Nelson, S.M.
2003-01-01
We compared production and breakdown of Fremont cottonwood (Populus deltoides wislizenii) leaf litter at matched floodplain sites on the regulated Green River and unregulated Yampa River in semi-arid northwestern Colorado. Litter production under trees was similar at sites in 1999 (250 g/m2, oven-dry) but lower in 2000 (215 and 130 g/m2), a drought year that also featured an outbreak of defoliating beetles at the Yampa River site. Our production values were similar to the few others reported for riparian forests within semi-arid or arid areas. Leaf litter in portions of the floodplain not inundated during the spring flood lost organic matter at the same rate as leaves placed in upland sites in 1998 and 2000: 35 to 50% of organic matter during an approximately 160-day spring and summer period. Inundated litter lost 55 to 90% of its organic matter during the same period. Organic matter loss from inundated leaves increased with duration of inundation and with deposition of fine sediment. Pooled across locations, leafpack data suggested that nitrogen concentration (mg N/kg organic matter) increased until about 65% of the initial organic matter was lost. This increase likely reflected the buildup of microbial decomposer populations. The role of insects and other macroinvertebrates in litter breakdown apparently was minor at both sites. Large spatial and temporal variation in litter dynamics in aridland floodplain settings is ensured by microtopographic variation in the alluvial surface coupled with year-to-year variation associated with most natural flood regimes. Factors reducing flood flow frequency or magnitude will reduce overall breakdown rates on the floodplain towards those found in drier upland environments.
NASA Astrophysics Data System (ADS)
Parsons, S. A.; Valdez-Ramirez, V.; Congdon, R. A.; Williams, S. E.
2014-06-01
The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability, using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp: r2 = 0.63, n = 30 plots; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall inputs were generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry being more recalcitrant to decay.
NASA Astrophysics Data System (ADS)
Parsons, S. A.; Valdez-Ramirez, V.; Congdon, R. A.; Williams, S. E.
2014-09-01
The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp.: r2 = 0.63, n = 30; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall input was generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry season being more recalcitrant to decay.
Flood flows, leaf breakdown, and plant-available nitrogen on a dryland river floodplain
Andersen, Douglas C.; Nelson, S. Mark; Binkley, Dan
2003-01-01
We tested the hypothesis that decomposition in flood-inundated patches of riparian tree leaf litter results in higher plant-available nitrogen in underlying, nutrient-poor alluvium. We used leafpacks (n = 56) containing cottonwood (Populus deltoides ssp. wislizenii) leaf litter to mimic natural accumulations of leaves in an experiment conducted on the Yampa River floodplain in semi-arid northwestern Colorado, USA. One-half of the leafpacks were set on the sandy alluvial surface, and one-half were buried 5 cm below the surface. The presence of NO3− and NH4+ presumed to result from a leafpack's submergence during the predictable spring flood pulse was assessed using an ion-exchange resin bag (IER) placed beneath each leafpack and at control locations. Leafpacks and IERs were collected one week after flood peak (71 days total exposure) at half the stations; the remainder were collected three weeks later (93 days exposure). A multi-peaked spring flood with above-average maximum discharge inundated leafpacks for total time periods ranging from 133 to 577 hours. Litter lost from 43 to 68 percent of its initial organic matter (OM) content. Organic matter loss increased with total time inundated and total time of exposure on the floodplain. Burial retarded OM loss if the total time inundated was relatively long, and substrate texture (sand vs. silt) affected OM loss in a complex manner through interactions with total time inundated and total time of exposure. No pulse of N attributable to leaf breakdown was detected in the IERs, and leafpack litter showed no net change in the mass of nitrogen present. Patterns of leafpack and IER nitrogen levels suggested that litter removed N from floodwater and thereby reduced N availability in underlying sediment. Immobilization of floodwater-N by litter and N mineralization outside the flood period may be important components of N flux in semi-arid and arid floodplain environments.
Flux of carbon from 14C-enriched leaf litter throughout a forest soil mesocosm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Froberg, Mats J.; Hanson, Paul J; Trumbore, Susan E.
2009-01-01
The role of DOC for the build-up of soil organic carbon pools is still not well known, but it is thought to play a role in the transport of carbon to a greater depth where it becomes more stable. The aim of this study was to elucidate within-year dynamics of carbon transport from litter to the O (Oe and Oa) and A horizons. Mesocosms with constructed soil profiles were used to study dynamics of C transport from 14C-enriched (about 1000 ) leaf litter to the Oe/Oa and A horizons as well as the mineralization of leaf litter. The mesocosms weremore » placed in the field for 17 months during which time fluxes and 14C content of DOC and CO2 were measured. Changes in 14C in leaf litter and bulk soil C pools were also recorded. Significant simultaneous release and immobilization of DOC occurring in both the O and A horizons was hypothesized. Contrary to our hypothesis, DOC released from the labeled Oi horizon was not retained within the Oe/Oa layer. DOC originating in the unlabeled Oe/Oa layer was also released for transport. Extensive retention of DOC occurred in the A horizon. DOC leaching from A horizon consisted of a mix of DOC from different sources, with a main fraction originating in the A horizon and a smaller fraction leached from the overlaying horizons. The C and 14C budget for the litter layer also indicated a surprisingly large amount of carbon with ambient Δ14C-signature to be respired from this layer. Data for this site also suggested significant contributions from throughfall to dissolved organic carbon (DOC) transport into and respiration from the litter layer. The results from this study showed that DOC retentionwas low in the O horizon and therefore not important for the O horizon carbon budget. In the A horizon DOC retention was extensive, but annual DOC input was small compared to C stocks and therefore not important for changes in soil C on an annual timescale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, H.; O'Neill, R.V.; Gardner, R.H.
1984-01-01
A seventy-compartment model for a Danish beech forest ecosystem is described in outline. The unmodified model predicts considerable accumulation of wood litter and decreasing accumulation through secondary to final decomposition products. Increment rates are similar for all components of the detritus based food chain. Modification of fine root production rate produces strong, positive response for root litter, and less, but still significant, response for detritus, humus and the components of the decomposer food chain. Increase of microbial biomass with adjustments of metabolism and production causes reduced accumulation of detritus and humus. The soil organisms respond according to food source. Themore » use of the model for testing the sensitivity of the ecosystem to inaccuracies of rroot- and microflora estimates is discussed. 21 references, 3 figures, 1 table.« less
NASA Astrophysics Data System (ADS)
Guendehou, G. H. S.; Liski, J.; Tuomi, M.; Moudachirou, M.; Sinsin, B.; Mäkipää, R.
2013-05-01
We evaluated the applicability of the dynamic soil carbon model Yasso07 in tropical conditions in West Africa by simulating the litter decomposition process using as required input into the model litter mass, litter quality, temperature and precipitation collected during a litterbag experiment. The experiment was conducted over a six-month period on leaf litter of five dominant tree species, namely Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense and Diospyros mespiliformis in a semi-deciduous vertisol forest in Southern Benin. Since the predictions of Yasso07 were not consistent with the observations on mass loss and chemical composition of litter, Yasso07 was fitted to the dataset composed of global data and the new experimental data from Benin. The re-parameterized versions of Yasso07 had a good predictive ability and refined the applicability of the model in Benin to estimate soil carbon stocks, its changes and CO2 emissions from heterotrophic respiration as main outputs of the model. The findings of this research support the hypothesis that the high variation of litter quality observed in the tropics is a major driver of the decomposition and needs to be accounted in the model parameterization.
Honghua Ruana; Yiqing Lib; Xiaoming Zouc
2005-01-01
Forest debris on ground surface can interact with soil biota and consequently change ecosystem processes across heterogeneous landscape. We examined the interactions between forest debris and litter decomposition in riparian and upland sites within a tropical wet forest. Our experiment included control and debris-removal treatments. Debris-removal reduced leaf litter...
Terrestrial litter inputs as determinants of food quality of organic matter in a forest stream
J.L. Meyer; C. Hax; J.B. Wallace; S.L. Eggert; J.R. Webster
2000-01-01
Inputs of leaf litter and other organic matter from the catchment exceed autochthonous production and provide an important food resource in most streams (WEBSTER & MEYER 1997, ANDERSON & SEDELL 1979). An experimental long-term exclusion of terrestrial litter inputs to a forested headwater stream (WALLACE et al. 1997) provided an opportunity to determine if the...
Molecular Assessment of litter decay dynamics across old and young forest sites
NASA Astrophysics Data System (ADS)
Filley, T. R.; Crow, S.; Gamblin, D.; McCormick, M.; Whigham, D.; Taylor, D. L.
2006-12-01
The response of soil organic matter pools to changes in litter input, land cover, and ýinvertebrate activity is a research area of intensive study given the proposed impacts that ýrising CO2 and surface temperatures may have on forest productivity and distribution of ýinvasive species. In a mixed deciduous forest at the Smithsonian Environmental ýResearch Center litter amendment plots were established in old (120-150 y) and young ýý(50-70 y) forests. In May 2004, six plots were amended with locally collected ýLirodendron tulipifera wood (chipped) and leaves. At the same time, leaf and wood litter ýbag decomposition experiments on the sites were also started. Changes in the ýconcentration and composition of biopolymers, e.g. lignin and cutin/suberin, after ýapproximately four months of decay were tracked by alkaline CuO extraction. Resultant ýleaf and wood litter in the surface amendments was distinct between age groupings. ýYoung sites exhibited the greatest change in chemical character showing increased lignin ýand decreased cutin/suberin resulting in a cutin-poor residue. Minor changes to ýbiopolymer character were observed in older sites with residues exhibiting small but ýopposite trends to the young sites. In contrast, the litter bag studies exhibited little to no ývariation in chemistry with age of stand; although, generally leaf litter showed the ýgreatest age-related effect. These patterns in litter decay are consistent with both ýmicrobial activity and relative biomass of invasive earthworms; young forests exhibit ýrelatively higher activity of both phenol oxidase and B-glucosidase in the soil (0-5 cm) ýplots and greater biomass and relative abundance invasive earthworms. These results are ýimportant as they show how stand age and the presence of invertebrate species may have ýimportant controls on the impact that many global change drivers may have on forest soil ýand carbon exchange dynamics.ý
NASA Astrophysics Data System (ADS)
Rivera, N.; Mueller, K. E.; Mueller, C. W.; Oleksyn, J.; Hale, C.; Freeman, K. H.; Eissenstat, D.
2009-12-01
The relative contributions of leaf and root material to soil organic matter (SOM) are poorly understood despite the importance of constraining SOM sources to conceptual and numeric models of SOM dynamics. Selective ingestion and bioturbation of litter and soil by earthworms can alter the fate and spatial distribution of OM in soils, including stabilization pathways of leaf and root litter. However, studies on the contributions of leaves, roots, and earthworms to SOM dynamics are rare. In 3 stands of sycamore maple (Acer pseudoplatanus) with minimal O horizon development and high earthworm activity, we sampled surface litter (> 2 mm) from the Oi horizon, fine roots (< 2 mm), bulk mineral soils (0-20 cm depth), and earthworm casts from Lumbricus terrestris middens. The chemical composition of these samples was estimated by wet-chemical degradation followed by GC-MS analysis. In addition, elemental analyses (C and N) were performed on bulk soils and earthworm casts, before and after physical fractionation by means of particle size and density. Relative to bulk soils, earthworm casts were highly enriched in organic matter, dominated by large particulate OM, and had lower acid to aldehyde ratios among lignin monomers (a proxy for extent of decomposition), confirming that L. terrestris casts stabilize recent plant litter inputs. Maple fine roots and surface litter were distinguished by different profiles of carboxylic acids estimated by GC-MS, facilitating interpretation of OM sources in bulk soil and earthworm casts. Earthworm casts were characterized by a distribution of carboxylic acids similar to that of surface litter while bulk soils had a carboxylic acid profile much closer to that of roots. These results confirm that L. terrestris is primarily a surface, leaf feeder and suggest that OM in the bulk soil may be dominated by root inputs. In bulk soils, the ratio of lignin to hydroxy- and diacids derived from suberin and cutin was low relative to plant litter, confirming the often-observed selective preservation of aliphatic over aromatic biomolecules. The ratio of lignin to cutin/suberin acids in earthworm casts was also low; based on the minimal extent of decomposition in casts evident by lignin acid to aldehyde ratios, we attribute this to selective ingestion by L. terrestris of leaf litter rich in aliphatic biomolecules at the expense of woody debris and petioles rich in lignin, rather than selective preservation.
USDA-ARS?s Scientific Manuscript database
Phytophthora kernoviae, a recently described species of Phytophthora, is an invasive pathogen of forest trees and shrubs such as beech (Fagus sylvatica) and rhododendron (Rhododendron ponticum) that has become established in woodlands and public gardens in Cornwall, United Kingdom. Although the ori...
Bahamonde, Héctor A.; Gil, Luis; Fernández, Victoria
2018-01-01
Plant surfaces have a considerable degree of chemical and physical variability also in relation to different environmental conditions, organs and state of development. The potential changes on plant surface properties in association with environmental variations have been little explored so far. Using two model tree species (i.e., Quercus petraea, sessile oak and Fagus sylvatica, beech) growing in ‘Montejo de la Sierra Forest,’ we examined various traits of the abaxial and adaxial surface of leaves of both species collected at a height of approximately 15 m (top canopy), versus 3.5–5.5 m for beech and sessile oak, lower canopy leaves. Leaf surface ultra-structure was analyzed by scanning and transmission electron microscopy, and the surface free energy and related parameter were estimated after measuring drops of 3 liquids with different degrees of polarity and apolarity. The permeability of the adaxial and abaxial surface of top and bottom canopy leaves to CaCl2 was estimated by depositing 2 drops of 3–4 μl per cm2 and comparing the concentration of Ca in leaf tissues 24 h after treatment, and also Ca and Cl concentrations in the washing liquid. Higher Ca concentrations were recorded after the application of CaCl2 drops onto the veins and adaxial blade of top canopy beech leaves, while no significant evidence for foliar Ca absorption was gained with sessile oak leaves. Surprisingly, high amounts of Cl were recovered after washing untreated, top canopy beach and sessile oak leaves with deionised water, a phenomenon which was not traced to occur on lower canopy leaves of both species. It is concluded that the surface of the two species analyzed is heterogeneous in nature and may have areas favoring the absorption of water and solutes as observed for the veins of beech leaves. PMID:29720987
Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples
NASA Technical Reports Server (NTRS)
Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.
2008-01-01
Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.
Kozlov, Mikhail V; Zvereva, Elena L
2015-07-01
The decrease in litter decomposition rate in polluted habitats is well documented, but the factors that explain the observed variation in the magnitude of this pollution effect on litter decomposition remain poorly understood. We explored effects of environmental conditions and leaf quality on decomposition rate of mountain birch (Betula pubescens ssp. czerepanovii) leaves in a heavily polluted industrial barren near the nickel-copper smelter at Monchegorsk. Litter bags filled with leaves collected from two heavily polluted barren sites and from two control forest sites were buried at 2.5-cm depth and exposed for 2 and 4 years at each of these four sites. The relative mass loss of native leaves in the industrial barren during 2 years of exposure was reduced to 49% of the loss observed in the unpolluted forest. We found a similar reduction in mass loss when leaves from control sites were exposed to polluted sites and when leaves from polluted sites were exposed to control sites. We conclude that the reduction in leaf litter decomposition in an industrial barren is caused by pollution-induced changes in both environmental conditions and leaf quality. This reduction is much smaller than expected, given the four-fold decrease in soil microbial activity and nearly complete extinction of saprophagous invertebrates in the polluted soil. We suggest that a longer snowless period and higher spring and summer temperatures at the barren sites have partially counterbalanced the adverse effects caused by the toxicity of metal pollutants.
Seasonal and local differences in leaf litter flammability of six Mediterranean tree species.
Kauf, Zorica; Fangmeier, Andreas; Rosavec, Roman; Španjol, Željko
2015-03-01
One of the suggested management options for reducing fire danger is the selection of less flammable plant species. Nevertheless, vegetation flammability is both complex and dynamic, making identification of such species challenging. While large efforts have been made to connect plant traits to fire behavior, seasonal changes and within species variability of traits are often neglected. Currently, even the most sophisticated fire danger systems presume that intrinsic characteristics of leaf litter stay unchanged, and plant species flammability lists are often transferred from one area to another. In order to assess if these practices can be improved, we performed a study examining the relationship between morphological characteristics and flammability parameters of leaf litter, thereby taking into account seasonal and local variability. Litter from six Mediterranean tree species was sampled throughout the fire season from three different locations along a climate gradient. Samples were subjected to flammability testing involving an epiradiator operated at 400 °C surface temperature with 3 g sample weight. Specific leaf area, fuel moisture content, average area, and average mass of a single particle had significant influences on flammability parameters. Effects of sampling time and location were significant as well. Due to the standardized testing conditions, these effects could be attributed to changes in intrinsic characteristics of the material. As the aforementioned effects were inconsistent and species specific, these results may potentially limit the generalization of species flammability rankings. Further research is necessary in order to evaluate the importance of our findings for fire danger modeling.
Dietz, H; Steinlein, T; Winterhalter, P; Ullmann, I
1996-10-01
Leaf extracts ofBunias orientalis were shown to inhibit seed germination of a variety of cultivar plant species and of species cooccurring withB. orientalis in the field. Root exudate solutions and leaf litter leachates ofB. orientalis were tested for their allelopathic activity using seedling growth assays. Additionally, in comparative seedling growth assays soil cores removed from denseB. orientalis stands were tested bimonthly for elevated allelopathic effects. The impact of root exudates on seedling growth was generally weak and varied between species. Similar results were obtained for the effect ofB. orientalis leaf litter leachates on seedlings grown in sand culture relative to the effect of leaf litter leachates of a plant species mixture. When soil as a growth substrate was used, no consistent differences in seedling growth were obtained between the two litter leachate treatments. In the soil core experiment seedlings grown in soil cores collected from a denseB. orientalis stand unexpectedly showed better performance than seedlings grown in soil cores collected from a nearby mixed plant stand withoutB. orientalis, at least in early spring and late autumn. Predominating nutrient effects are, therefore, assumed to conceal a potentially increased allelopathic effect of soil beneath denseB. orientalis stands. It is concluded that other factors than allelopathy must be investigated to explain the rapid establishment of dense stands of this alien plant species.
No effect of Bt-transgenic rice litter on the meiobenthos community in field ditches.
Liu, Yongbo; Jiang, Wanxiang; Liang, Yuyong; Zhao, Caiyun; Li, Junsheng
2017-06-01
The non-target effect of Bacillus thuringiensis (Bt) toxins in aquatic ecosystems is crucial to improve the present assessment of Bt-transgenic plants, particularly where crops are cultivated near aquatic ecosystems. We conducted decomposition experiments during two growing seasons to determine the effects of Bt-transgenic rice litter with and without insecticide application on the meiobenthos communities in a field ditch. The community composition of meiobenthos colonised on leaf litter was not significantly different between Bt and non-Bt rice. The abundance of meiobenthos colonising leaves differed between insecticide application and control, and this insecticide effect interacted with rice type. No Bt toxin was detected in field ditch water. Leaf decomposition and nutrient content were comparable for both Bt and non-Bt rice with or without insecticide application. Bt-transgenic rice litter had no effect on the meiobenthos community composition in field ditches, but the chronic persistence of transgenic litter in nature needs to be taken into account at large scales in aquatic ecosystems. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Saenz, Daniel; Fucik, Erin M; Kwiatkowski, Matthew A
2013-01-01
Changes in climate and the introduction of invasive species are two major stressors to amphibians, although little is known about the interaction between these two factors with regard to impacts on amphibians. We focused our study on an invasive tree species, the Chinese tallow (Triadica sebifera), that annually sheds its leaves and produces leaf litter that is known to negatively impact aquatic amphibian survival. The purpose of our research was to determine whether the timing of leaf fall from Chinese tallow and the timing of amphibian breeding (determined by weather) influence survival of amphibian larvae. We simulated a range of winter weather scenarios, ranging from cold to warm, by altering the relative timing of when leaf litter and amphibian larvae were introduced into aquatic mesocosms. Our results indicate that amphibian larvae survival was greatly affected by the length of time Chinese tallow leaf litter decomposes in water prior to the introduction of the larvae. Larvae in treatments simulating warm winters (early amphibian breeding) were introduced to the mesocosms early in the aquatic decomposition process of the leaf litter and had significantly lower survival compared with cold winters (late amphibian breeding), likely due to significantly lower dissolved oxygen levels. Shifts to earlier breeding phenology, linked to warming climate, have already been observed in many amphibian taxa, and with most climate models predicting a significant warming trend over the next century, the trend toward earlier breeding should continue if not increase. Our results strongly suggest that a warming climate can interact with the effects of invasive plant species, in ways we have not previously considered, to reduce the survival of an already declining group of organisms. PMID:24363907
Saenz, Daniel; Fucik, Erin M; Kwiatkowski, Matthew A
2013-11-01
Changes in climate and the introduction of invasive species are two major stressors to amphibians, although little is known about the interaction between these two factors with regard to impacts on amphibians. We focused our study on an invasive tree species, the Chinese tallow (Triadica sebifera), that annually sheds its leaves and produces leaf litter that is known to negatively impact aquatic amphibian survival. The purpose of our research was to determine whether the timing of leaf fall from Chinese tallow and the timing of amphibian breeding (determined by weather) influence survival of amphibian larvae. We simulated a range of winter weather scenarios, ranging from cold to warm, by altering the relative timing of when leaf litter and amphibian larvae were introduced into aquatic mesocosms. Our results indicate that amphibian larvae survival was greatly affected by the length of time Chinese tallow leaf litter decomposes in water prior to the introduction of the larvae. Larvae in treatments simulating warm winters (early amphibian breeding) were introduced to the mesocosms early in the aquatic decomposition process of the leaf litter and had significantly lower survival compared with cold winters (late amphibian breeding), likely due to significantly lower dissolved oxygen levels. Shifts to earlier breeding phenology, linked to warming climate, have already been observed in many amphibian taxa, and with most climate models predicting a significant warming trend over the next century, the trend toward earlier breeding should continue if not increase. Our results strongly suggest that a warming climate can interact with the effects of invasive plant species, in ways we have not previously considered, to reduce the survival of an already declining group of organisms.
NASA Astrophysics Data System (ADS)
Hagel Svendsen, Sarah; Schostag, Morten; Voriskova, Jana; Kramshøj, Magnus; Priemé, Anders; Suhr Jacobsen, Carsten; Rinnan, Riikka
2017-04-01
Emissions of biogenic volatile organic compounds (BVOCs) from natural ecosystems have significant impact on atmospheric chemistry and belowground chemical processes. Most attention has been given to emissions from plants. However, several studies have found that soil, and especially the decomposing leaf and needle litter, emits substantial amounts of BVOCs. The contribution of litter to ecosystem BVOC emissions may be increasingly significant in the Arctic, where the living plant biomass is low, and the amount of litter increasing due to the expansion of deciduous vegetation in response to climate change. It is known that the types and amounts of BVOCs emitted from the soil are highly dependent on the microbial community composition and the type of substrate. In this study we measured emissions of BVOCs from the leaf litter of common arctic plant species at different temperatures. The BVOC measurements were coupled with an analysis of the relative abundance of dominating bacterial species (determined as operational taxonomic units, OTUs). Leaf litter from evergreen Cassiope tetragona and two species of deciduous Salix were collected from two arctic locations; one in the High Arctic and one in the Low Arctic. The litter was incubated in dark at 5 ?C. Over an eight week period the temperature was increased 7 ?C every two weeks, giving temperature incubations at 5 ?C, 12 ?C, 19 ?C and 26 ?C. Emissions of BVOCs from the litter were sampled in adsorbent cartridges weekly and analyzed using gas chromatography-mass spectrometry. The relative abundance of bacteria was determined at the end of the incubation at each temperature using DNA sequencing. Results showed that emissions of BVOCs belonging to different chemical functional groups responded differently to increasing temperatures and were highly dependent on the type of substrate. For instance, terpenoid emissions from the Cassiope litter increased with increasing temperature, whereas the emissions from the Salix litter decreased. Likewise, the relative abundance of bacteria depended on temperature and the type of substrate. Especially the actinobacteria showed strong increasing trends with increasing temperature in the Salix litter. Acidobacteria had much higher relative abundance in the Cassiope litter than in the Salix litter. Multivariate analyses were used to assess potential links between the BVOC and bacterial abundance datasets. Similar patterns in the BVOC emissions and bacterial community composition at different temperatures and for different substrates suggest that the differences in BVOC emissions, at least to some extent, are driven by changes in the microbial community composition.
Canopy transpiration of pure and mixed forest stands with variable abundance of European beech
NASA Astrophysics Data System (ADS)
Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph
2012-06-01
SummaryThe importance of tree species identity and diversity for biogeochemical cycles in forests is not well understood. In the past, forestry has widely converted mixed forests to pure stands while contemporary forest policy often prefers mixed stands again. However, the hydrological consequences of these changes remain unclear. We tested the hypotheses (i) that significant differences in water use per ground area exist among the tree species of temperate mixed forests and that these differences are more relevant for the amount of stand-level canopy transpiration (Ec) than putative complementarity effects of tree water use, and (ii) that the seasonal patterns of Ec in mixed stands are significantly influenced by the identity of the present tree species. We measured xylem sap flux during 2005 (average precipitation) and 2006 (relatively dry) synchronously in three nearby old-growth forest stands on similar soil differing in the abundance of European beech (pure beech stand, 3-species stand with 70% beech, 5-species stand with <10% beech). In summer 2005 with average rainfall, Ec was 50% higher in the beech-poor 5-species stand than in the two stands with moderate to high beech presence (158 vs. 97 and 101 mm yr-1); in the dry summer 2006, all stands converged toward similar Ec totals (128-139 mm yr-1). Species differences in Ec were large on a sapwood area basis, reflecting a considerable variation in hydraulic architecture and leaf conductance regulation among the co-existing species. Moreover, transpiration per crown projection area (ECA) also differed up to 5-fold among the different species in the mixed stands, probably reflecting contrasting sapwood/crown area ratios. We conclude that Ec is not principally higher in mixed forests than in pure beech stands. However, tree species-specific traits have an important influence on the height of Ec and affect its seasonal variation. Species with a relatively high ECA (notably Tilia) may exhaust soil water reserves early in summer, thereby increasing drought stress in dry years and possibly reducing ecosystem stability in mixed forests.
Land use not litter quality is a stronger driver of decomposition in hyperdiverse tropical forest.
Both, Sabine; Elias, Dafydd M O; Kritzler, Ully H; Ostle, Nick J; Johnson, David
2017-11-01
In hyperdiverse tropical forests, the key drivers of litter decomposition are poorly understood despite its crucial role in facilitating nutrient availability for plants and microbes. Selective logging is a pressing land use with potential for considerable impacts on plant-soil interactions, litter decomposition, and nutrient cycling. Here, in Borneo's tropical rainforests, we test the hypothesis that decomposition is driven by litter quality and that there is a significant "home-field advantage," that is positive interaction between local litter quality and land use. We determined mass loss of leaf litter, collected from selectively logged and old-growth forest, in a fully factorial experimental design, using meshes that either allowed or precluded access by mesofauna. We measured leaf litter chemical composition before and after the experiment. Key soil chemical and biological properties and microclimatic conditions were measured as land-use descriptors. We found that despite substantial differences in litter quality, the main driver of decomposition was land-use type. Whilst inclusion of mesofauna accelerated decomposition, their effect was independent of land use and litter quality. Decomposition of all litters was slower in selectively logged forest than in old-growth forest. However, there was significantly greater loss of nutrients from litter, especially phosphorus, in selectively logged forest. The analyses of several covariates detected minor microclimatic differences between land-use types but no alterations in soil chemical properties or free-living microbial composition. These results demonstrate that selective logging can significantly reduce litter decomposition in tropical rainforest with no evidence of a home-field advantage. We show that loss of key limiting nutrients from litter (P & N) is greater in selectively logged forest. Overall, the findings hint at subtle differences in microclimate overriding litter quality that result in reduced decomposition rates in selectively logged forests and potentially affect biogeochemical nutrient cycling in the long term.
Olubajo, Awobajo Funmileyi; Adefunke, Adegoke Olufeyisipe; Olubusola, Iranloye Bolanle; Ibilola, Olatunji-Bello Ibiyemi
2013-01-01
The impact of aqueous leaf extract of Hybanthus enneaspermus (HEaq) on pregnancy factors and litter survival was investigated in Sprague Dawley (SD) rat. Control group received distilled water while the test group received 2g/kg body weight of HEaq orally. Blood samples were collected on days one and twenty of pregnancy for total blood count, serum thyroid hormone, thyroid stimulating hormone (TSH) and thyrotropin releasing hormone (TRH) assay. Half the number of rats in each group was sacrificed on day nineteen of pregnancy and the placenta and foetus were removed and weighed. The second half carried their pregnancy to term. Number and weights of litter were recorded at birth and the litter were also subjected to righting reflex test. Post-natal survival rate was determined for each group while effect of HEaq was also examined in-vivo on the activities of pregnant myometrial muscle. HEaq significantly decreased (p<0.05) foetal weight, placenta weight, foetal growth and survival, number and weights of litter at birth, maternal serum triiodotyroxine T3 and TSH level. Mean corpuscular haemoglobin, white blood cell count, platelet count and lipid profile were significantly increased (P<0.05). HEaq increased the frequency and percentage contraction of gravid myometrial muscle in a dose dependent manner. Maternal consumption of aqueous leaf extract of Hybanthus enneaspermus adversely affected pregnancy and development of the foetus, as it precipitated resorption of developing foetus and reduced size and weight of litter at term.
LeSage, C.M.; Merritt, R.W.; Wipfli, M.S.
2005-01-01
We examined how management of young upland forests in southeastern Alaska affect riparian invertebrate taxa richness, density, and biomass, in turn, potentially influencing food abundance for fish and wildlife. Southeastern Alaska forests are dominated by coniferous trees including Sitka spruce (Picea sitchensis (Bong.) Carr.), western hemlock (Tsuga heterophylla (Raf.) Sarg.), with mixed stands of red cedar (Thuja plicata Donn.). Red alder (Alnus rubra Bong.) is hypothesized to influence the productivity of young-growth conifer forests and through forest management may provide increased riparian invertebrate abundance. To compare and contrast invertebrate densities between coniferous and alder riparian habitats, leaf litter and wood debris (early and late decay classes) samples were collected along eleven headwater streams on Prince of Wales Island, Alaska, during the summers of 2000 and 2001. Members of Acarina and Collembola were the most abundant taxa collected in leaf litter with alder litter having significantly higher mean taxa richness than conifer litter. Members of Acarina were the most abundant group collected on wood debris and alder wood had significantly higher mean taxa richness and biomass than conifer wood. Alder wood debris in more advanced decay stages had the highest mean taxa richness and biomass, compared to other wood types, while conifer late decay wood debris had the highest densities of invertebrates. The inclusion of alder in young-growth conifer forests can benefit forest ecosystems by enhancing taxa richness and biomass of riparian forest invertebrates. ?? 2005 by the Northwest Scientific Association. All rights reserved.
Marcelo Ard& #243; n; Catherine M. Pringle; Susan L. Eggert
2009-01-01
Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to measure leaf chemistry. We used standardized analytical techniques to measure chemistry and breakdown rate of leaves from common riparian tree species at 2 sites, 1...
Xu, Wenjing; Shi, Lingling; Chan, Onchim; Li, Jiao; Casper, Peter; Zou, Xiaoming
2013-01-01
Although bacteria and fungi are well-known to be decomposers of leaf litter, few studies have examined their compositions and diversities during the decomposition process in tropical stream water. Xishuangbanna is a tropical region preserving one of the highest floristic diversity areas in China. In this study, leaf litter of four dominant plant species in Xishuangbanna was incubated in stream water for 42 days during which samples were taken regularly. Following DNA extraction, PCR-DGGE (denaturing gradient gel electrophoresis) and clone-sequencing analyses were performed using bacterial and fungal specific primers. Leaf species have slightly influences on bacterial community rather than fungal community. The richness and diversity of bacteria was higher than that of fungi, which increased towards the end of the 42-day-incubation. The bacterial community was initially more specific upon the type of leaves and gradually became similar at the later stage of decomposition with alpha-proteobacteria as major component. Sequences affiliated to methanotrophs were obtained that indicates potentially occurrence of methane oxidation and methanogenesis. For the fungal community, sequences affiliated to Aspergillus were predominant at the beginning and then shifted to Pleosporales. Our results suggest that the microorganisms colonizing leaf biofilm in tropical stream water were mostly generalists that could exploit the resources of leaves of various species equally well. PMID:24367682
The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire
2016-01-01
Studies of palaeofire rely on quantifying the abundance of fossil charcoals in sediments to estimate changes in fire activity. However, gaining an understanding of the behaviour of palaeofires is also essential if we are to determine the palaeoecological impact of wildfires. Here, I use experimental approaches to explore relationships between litter fire behaviour and leaf traits that are observable in the fossil record. Fire calorimetry was used to assess the flammability of 15 species of conifer litter and indicated that leaf morphology related to litter bulk density and fuel load that determined the duration of burning and the total energy released. These data were applied to a fossil case study that couples estimates of palaeolitter fire behaviour to charcoal-based estimates of fire activity and observations of palaeoecological changes. The case study reveals that significant changes in fire activity and behaviour likely fed back to determine ecosystem composition. This work highlights that we can recognize and measure plant traits in the fossil record that relate to fire behaviour and therefore that further research is warranted towards estimating palaeofire behaviour as it can enhance our ability to interpret the palaeoecological impact of palaeofires throughout Earth's long evolutionary history. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216520
Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage.
Christian, Natalie; Herre, Edward Allen; Mejia, Luis C; Clay, Keith
2017-07-12
It is increasingly recognized that microbiota affect host health and physiology. However, it is unclear what factors shape microbiome community assembly in nature, and how microbiome assembly can be manipulated to improve host health. All plant leaves host foliar endophytic fungi, which make up a diverse, environmentally acquired fungal microbiota. Here, we experimentally manipulated assembly of the cacao tree ( Theobroma cacao ) fungal microbiome in nature and tested the effect of assembly outcome on host health. Using next-generation sequencing, as well as culture-based methods coupled with Sanger sequencing, we found that manipulating leaf litter exposure and location within the forest canopy significantly altered microbiome composition in cacao. Exposing cacao seedlings to leaf litter from healthy conspecific adults enriched the seedling microbiome with Colletotrichum tropicale , a fungal endophyte known to enhance pathogen resistance of cacao seedlings by upregulating host defensive pathways. As a result, seedlings exposed to healthy conspecific litter experienced reduced pathogen damage. Our results link processes that affect the assembly and composition of microbiome communities to their functional consequences for host success, and have broad implications for understanding plant-microbe interactions. Deliberate manipulation of the plant-fungal microbiome also has potentially important applications for cacao production and other agricultural systems in general. © 2017 The Author(s).
The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire.
Belcher, Claire M
2016-06-05
Studies of palaeofire rely on quantifying the abundance of fossil charcoals in sediments to estimate changes in fire activity. However, gaining an understanding of the behaviour of palaeofires is also essential if we are to determine the palaeoecological impact of wildfires. Here, I use experimental approaches to explore relationships between litter fire behaviour and leaf traits that are observable in the fossil record. Fire calorimetry was used to assess the flammability of 15 species of conifer litter and indicated that leaf morphology related to litter bulk density and fuel load that determined the duration of burning and the total energy released. These data were applied to a fossil case study that couples estimates of palaeolitter fire behaviour to charcoal-based estimates of fire activity and observations of palaeoecological changes. The case study reveals that significant changes in fire activity and behaviour likely fed back to determine ecosystem composition. This work highlights that we can recognize and measure plant traits in the fossil record that relate to fire behaviour and therefore that further research is warranted towards estimating palaeofire behaviour as it can enhance our ability to interpret the palaeoecological impact of palaeofires throughout Earth's long evolutionary history.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).
Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.
Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans
2015-05-01
Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of vegetation quality (community-weighted mean trait values and functional diversity) from those of vegetation quantity (biomass) on ecosystem processes and services.
Restoration of Tidal Flow to Impounded Salt Marsh Exerts Mixed Effect on Leaf Litter Decomposition
NASA Astrophysics Data System (ADS)
Henry, B. A.; Schade, J. D.; Foreman, K.
2015-12-01
Salt marsh impoundments (e.g. roads, levees) disconnect marshes from ocean tides, which impairs ecosystem services and often promotes invasive species. Numerous restoration projects now focus on removing impoundments. Leaf litter decomposition is a central process in salt marsh carbon and nutrient cycles, and this study investigated the extent to which marsh restoration alters litter decomposition rates. We considered three environmental factors that can potentially change during restoration: salinity, tidal regime, and dominant plant species. A one-month field experiment (Cape Cod, MA) measured decay of litter bags in impounded, restored, and natural marshes under ambient conditions. A two-week lab experiment measured litter decay in controlled incubations under experimental treatments for salinity (1ppt and 30 ppt), tidal regime (inundated and 12 hr wet-dry cycles), and plant species (native Spartina alterniflora and invasive Phragmites australis). S. alterniflora decomposed faster in situ than P. australis (14±1.0% mass loss versus 0.74±0.69%). Corroborating this difference in decomposition, S. alterniflora supported greater microbial respiration during lab incubation, measured as CO2 flux from leaf litter and biological oxygen demand of water containing leached organic matter (OM). However, nutrient analysis of plant tissue and leached OM show P. australis released more nitrogen than S. alterniflora. Low salinity treatments in both lab and field experiments decayed more rapidly than high salinity treatments, suggesting that salinity inhibited microbial activity. Manipulation of inundation regime did not affect decomposition. These findings suggest the reintroduction of tidal flow to an impounded salt marsh can have mixed effects; recolonization by the native cordgrass could supply labile OM to sediment and slow carbon sequestration, while an increase in salinity might inhibit decomposition and accelerate sequestration.
Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems
Austin, Amy T.; Méndez, M. Soledad; Ballaré, Carlos L.
2016-01-01
A mechanistic understanding of the controls on carbon storage and losses is essential for our capacity to predict and mitigate human impacts on the global carbon cycle. Plant litter decomposition is an important first step for carbon and nutrient turnover, and litter inputs and losses are essential in determining soil organic matter pools and the carbon balance in terrestrial ecosystems. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in arid lands; however, the global significance of this process as a control on carbon cycling in terrestrial ecosystems is not known. Here we show that, across a wide range of plant species, photodegradation enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility to plant litter carbohydrates for microbial enzymes. Photodegradation of plant litter, driven by UV radiation, and especially visible (blue–green) light, reduced the structural and chemical bottleneck imposed by lignin in secondary cell walls. In leaf litter from woody species, specific interactions with UV radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized effect of sunlight exposure on subsequent microbial activity, mediated by increased accessibility to cell wall polysaccharides, suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release, and the carbon balance in a broad range of terrestrial ecosystems. PMID:27044070
Kimak, Adam; Kern, Zoltan; Leuenberger, Markus
2015-01-01
Foliar samples were harvested from two oaks, a beech, and a yew at the same site in order to trace the development of the leaves over an entire vegetation season. Cellulose yield and stable isotopic compositions (δ13C, δ18O, and δD) were analyzed on leaf cellulose. All parameters unequivocally define a juvenile and a mature period in the foliar expansion of each species. The accompanying shifts of the δ13C-values are in agreement with the transition from remobilized carbohydrates (juvenile period), to current photosynthates (mature phase). While the opponent seasonal trends of δ18O of blade and vein cellulose are in perfect agreement with the state-of-art mechanistic understanding, the lack of this discrepancy for δD, documented for the first time, is unexpected. For example, the offset range of 18 permil (oak veins) to 57 permil (oak blades) in δD may represent a process driven shift from autotrophic to heterotrophic processes. The shared pattern between blade and vein found for both oak and beech suggests an overwhelming metabolic isotope effect on δD that might be accompanied by proton transfer linked to the Calvin-cycle. These results provide strong evidence that hydrogen and oxygen are under different biochemical controls even at the leaf level. PMID:26635835
Kimak, Adam; Kern, Zoltan; Leuenberger, Markus
2015-01-01
Foliar samples were harvested from two oaks, a beech, and a yew at the same site in order to trace the development of the leaves over an entire vegetation season. Cellulose yield and stable isotopic compositions (δ(13)C, δ(18)O, and δD) were analyzed on leaf cellulose. All parameters unequivocally define a juvenile and a mature period in the foliar expansion of each species. The accompanying shifts of the δ(13)C-values are in agreement with the transition from remobilized carbohydrates (juvenile period), to current photosynthates (mature phase). While the opponent seasonal trends of δ(18)O of blade and vein cellulose are in perfect agreement with the state-of-art mechanistic understanding, the lack of this discrepancy for δD, documented for the first time, is unexpected. For example, the offset range of 18 permil (oak veins) to 57 permil (oak blades) in δD may represent a process driven shift from autotrophic to heterotrophic processes. The shared pattern between blade and vein found for both oak and beech suggests an overwhelming metabolic isotope effect on δD that might be accompanied by proton transfer linked to the Calvin-cycle. These results provide strong evidence that hydrogen and oxygen are under different biochemical controls even at the leaf level.
James M. Vose; Neal H. Sullivan; Barton D. Clinton; Paul V. Bolstad
1995-01-01
We quantified stand leaf area index and vertical leaf area distribution, and developed canopy extinction coefficients (k), in four mature hardwood stands. Leaf area index, calculated from litter fall and specific leaf area (cm²·g-1), ranged from 4.3 to 5.4 m²·m-2. In three of the four stands, leaf area was distributed in...
Andersen, D.C.; Nelson, S.M.
2006-01-01
Patterns and processes involved in litter breakdown on desert river floodplains are not well understood. We used leafpacks containing Fremont cottonwood (Populus deltoides subsp. wislizenii) leaf litter to investigate the roles of weather and microclimate, flooding (immersion), and macroinvertebrates on litter organic matter (OM) and nitrogen (N) loss on a floodplain in a cool-temperate semi-arid environment (Yampa River, northwestern Colorado, USA). Total mass of N in fresh autumn litter fell by ∼20% over winter and spring, but in most cases there was no further N loss prior to termination of the study after 653 days exposure, including up to 20 days immersion during the spring flood pulse. Final OM mass was 10–40% of initial values. The pattern of OM and N losses suggested most N would be released outside the flood season, when retention within the floodplain would be likely. The exclusion of macroinvertebrates modestly reduced the rate of OM loss (by about 10%) but had no effect on N dynamics over nine months. Immersion in floodwater accelerated OM loss, but modest variation in litter quality did not affect the breakdown rate. These results are consistent with the concept that decomposition on desert floodplains progresses much as does litter processing in desert uplands, but with periodic bouts of processing typical of aquatic environments when litter is inundated by floodwaters. The strong dependence of litter breakdown rate on weather and floods means that climate change or river flow management can easily disrupt floodplain nutrient dynamics.
NASA Astrophysics Data System (ADS)
Kitz, Florian; Gomez-Brandon, Maria; Hammerle, Albin; Spielmann, Felix M.; Insam, Heribert; Ibrom, Andreas; Migliavacca, Mirco; Moreno, Gerardo; Noe, Steffen M.; Wohlfahrt, Georg
2017-04-01
Flux partitioning, the quantification of photosynthesis and respiration, is a major uncertainty in modelling the carbon cycle and in times when robust models are needed to assess future global changes a persistent problem. A promising new approach is to derive gross primary production (GPP) from measurements of the carbonyl sulfide (COS) flux, the most abundant sulfur-containing trace gas in the atmosphere, with a mean concentration of about 500 pptv in the troposphere. This is possible because COS and CO2 enter the leaf via a similar pathway and are processed by the same enzyme (carbonic anhydrase). A prerequisite for using COS as a proxy for photosynthesis is a robust estimation of all non-leaf sources and sinks in an ecosystem. Past studies described soils either as a sink or source, depending on their properties like soil temperature and soil water content. In 2016 we conducted field campaigns in Austria (managed temperate mountain grassland), Spain (savannah), Denmark (temperate beech forest) and Estonia (hemiboreal forest) to estimate the soil-atmosphere COS fluxes under ambient conditions in different biomes. We used self-built fused silica soil chambers to avoid COS emissions from built-in materials and to assess the impact of radiation. At the grassland sites (Austria, Spain) vegetation was removed below the chambers, therefor more radiation reached the soil surface compared to natural conditions. The grassland sites were characterized by highly positive COS fluxes during daytime and COS fluxes around zero during nighttime. In contrast, the soils at the forest sites (Denmark, Estonia), characterized by less radiation on the soil surface, acted as a sink for COS. The impact of other abiotic factors, like soil water content and soil temperature, varied between the ecosystems. In addition to the field measurements soil and litter samples were taken at the study sites and used to measure COS fluxes under controlled conditions in the lab. Results from the temperate mountain grassland in Austria suggest high initial but rapidly decreasing COS emission from soil mixed with litter, but uptake by soil alone. Those lab measurements were followed up by genetical analyses to link the fluxes to the soil microbial communities present in the samples.
Eilmann, B; Sterck, F; Wegner, L; de Vries, S M G; von Arx, G; Mohren, G M J; den Ouden, J; Sass-Klaassen, U
2014-08-01
Planting provenances originating from southern to northern locations has been discussed as a strategy to speed up species migration and mitigate negative effects of climate change on forest stability and productivity. Especially for drought-susceptible species such as European beech (Fagus sylvatica L.), the introduction of drought-tolerant provenances from the south could be an option. Yet, beech has been found to respond plastically to environmental conditions, suggesting that the climate on the plantation site might be more important for tree growth than the genetic predisposition of potentially drought-adapted provenances. In this study, we compared the radial growth, wood-anatomical traits and leaf phenology of four beech provenances originating from southern (Bulgaria, France) and northern locations (Sweden, the Netherlands) and planted in a provenance trial in the Netherlands. The distribution of precipitation largely differs between the sites of origin. The northern provenances experience a maximum and the southern provenances experience a minimum of rainfall in summer. We compared tree productivity and the anatomy of the water-conducting system for the period from 2000 to 2010, including the drought year 2003. In addition, tree mortality and the timing of leaf unfolding in spring were analysed for the years 2001, 2007 and 2012. Comparison of these traits in the four beech provenances indicates the influence of genetic predisposition and local environmental factors on the performance of these provenances under moderate site conditions. Variation in radial growth was controlled by environment, although the growth level slightly differed due to genetic background. The Bulgarian provenance had an efficient water-conducting system which was moreover unaffected by the drought in 2003, pointing to a high ability of this provenance to cope well with dry conditions. In addition, the Bulgarian provenance showed up as most productive in terms of height and radial growth. Altogether, we conclude that the similarity in ring-width variation among provenances points to environmental control of this trait, whereas the differences encountered in wood-anatomical traits between the well-performing Bulgarian provenance and the other three provenances, as well as the consistent differences in flushing pattern over 3 years under various environmental conditions, support the hypothesis of genetic control of these features. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Atmospheric nitrogen deposition induces a forest carbon sink across broad parts of the Northern Hemisphere; this carbon sink may partly result from slower litter decomposition. Although microbial responses to experimental nitrogen deposition have been well-studied, evidence linki...
Pernin, Céline; Cortet, Jérôme; Joffre, Richard; Le Petit, Jean; Torre, Franck
2006-01-01
Effects of sewage sludge on litter mesofauna communities (Collembola and Acari) and cork oak (Quercus suber L.) leaf litter decomposition have been studied during 18 mo using litterbags in an in situ experimental forest firebreak in southeastern France. The sludge (2.74 t DM ha(-1) yr(-1)) was applied to fertilize and maintain a pasture created on the firebreak. Litterbag colonization had similar dynamics on both the control and fertilized plots and followed a typical Mediterranean pattern showing a greater abundance in spring and autumn and a lower abundance in summer. After 9 mo of litter colonization, Collembola and Acari, but mainly Oribatida, were more abundant on the sludge-fertilized plot. Leaf litter decomposition showed a similar pattern on both plots, but it was faster on the control plot. Furthermore, leaves from the fertilized plot were characterized by greater nitrogen content. Both chemical composition of leaves and sludges and the decomposition state of leaves have significantly affected the mesofauna community composition from each plot.
Winder, Richard S; Lamarche, Josyanne; Constabel, C Peter; Hamelin, Richard C
2013-01-01
The impacts of leaf litter from genetically modified hybrid poplar accumulating high levels of condensed tannins (proanthocyanidins) were examined in soil microcosms consisting of moss growing on sieved soil. Moss preferentially proliferated in microcosms with lower tannin content; DGGE (denaturing gradient gel electrophoresis) detected increased fungal diversity in microcosms with low-tannin litter. The proportion of cloned rDNA sequences from Actinobacteria decreased with litter addition while Bacteroidetes, Chloroflexi, Cyanobacteria, and α-Proteobacteria significantly increased. β-Proteobacteria were proportionally more numerous at high-tannin levels. Tannins had no significant impact on overall diversity of bacterial communities analyzed with various estimators. There was an increased proportion of N-fixing bacteria corresponding to the addition of litter with low-tannin levels. The addition of litter increased the proportion of Ascomycota/Basidiomycota. Dothideomycetes, Pucciniomycetes, and Tremellomycetes also increased and Agaricomycetes decreased. Agaricomycetes and Sordariomycetes were significantly more abundant in controls, whereas Pucciniomycetes increased in soil with litter from transformed trees (P = 0.051). Richness estimators and diversity indices revealed no significant difference in the composition of fungal communities; PCoA (principal coordinate analyses) partitioned the fungal communities into three groups: (i) those with higher amounts of added tannin from both transformed and untransformed treatments, (ii) those corresponding to soils without litter, and (iii) those corresponding to microcosms with litter added from trees transformed only with a β-glucuronidase control vector. While the litter from transformed poplars had significant effects on soil microbe communities, the observed impacts reflected known impacts on soil processes associated with tannins, and were similar to changes that would be expected from natural variation in tannin levels.
Saxe, H; Kerstiens, G
2005-07-01
This study identifies the important role of climate change and photosynthetic photon flux density (PPFD) in the regenerative competence of ash and beech seedlings in 12 inter- and intra-specific competition designs in simulated mixed ash-beech forest gaps under conditions of non-limiting soil volume, water and nutrient supply. The growth conditions simulated natural forest conditions as closely as possible. Simulations were performed by growing interacting seedling canopies for one season in temperature-regulated closed-top chambers (CTCs). Eight CTCs were used in a factorial design with replicate treatments of [CO2] x temperature x PPFD x competition design. [CO2] tracked ambient levels or was 360 micromol mol-1 higher. Temperature tracked ambient levels or was 2.8 degrees C higher. PPFD on two plant tables inside each CTC was 16% and 5% of open-field levels, respectively, representative of typical light flux levels in a natural forest gap. In several of the competition designs, climate change made the ash seedlings grow taller than the beech seedlings and, at the same time, attain a larger leaf area and a larger total biomass. Advantages of this type for ash were found particularly at lower PPFD. There was a positive synergistic interaction of elevated temperature x [CO2] for both species, but more so for ash. There are many uncertainties when a study of chambered seedlings is to be projected to real changes in natural forests. Nevertheless, this study supports a possible future shift towards ash in north European, unmanaged, mixed ash-beech forests in response to the predicted climate change.
Comparison of the carbon stock in forest soil of sessile oak and beech forests
NASA Astrophysics Data System (ADS)
Horváth, Adrienn; Bene, Zsolt; Bidló, András
2016-04-01
Forest ecosystems are the most important carbon sinks. The forest soils play an important role in the global carbon cycle, because the global climate change or the increase of atmospheric CO2 level. We do not have enough data about the carbon stock of soils and its change due to human activities, which have similar value to carbon content of biomass. In our investigation we measured the carbon stock of soil in 10 stands of Quercus petraea and Fagus sylvatica. We took a 1.1 m soil column with soil borer and divided to 11 samples each column. The course organic and root residues were moved. After evaluation, we compared our results with other studies and the carbon stock of forests to each other. Naturally, the amount of SOC was the highest in the topsoil layers. However, we found significant difference between forest stands which stayed on the same homogenous bedrock, but very close to each other (e.g. distance was 1 or 2 km). We detected that different forest utilizations and tree species have an effect on the forest carbon as the litter as well (amount, composition). In summary, we found larger amount (99.1 C t/ha on average) of SOC in soil of stands, where sessile oak were the main stand-forming tree species. The amount of carbon was the least in turkey oak-sessile oak stands (85.4 C t/ha on average). We found the highest SOC (118.3 C t/ha) in the most mixed stand (silver lime-beech-red oak). In the future, it will be very important: How does climate change affect the spread of tree species or on carbon storage? Beech is more sensitive, but even sessile oak. These species are expected to replace with turkey oak, which is less sensitive to drought. Thus, it is possible in the future that we can expect to decrease of forest soil carbon stock capacity, which was confirmed by our experiment. Keywords: carbon sequestration, mitigation, Fagus sylvatica, Quercus petraea, litter Acknowledgements: Research is supported by the "Agroclimate.2" (VKSZ_12-1-2013-0034) EU-national joint funded research project.
Fichtner, E J; Lynch, S C; Rizzo, D M
2009-05-01
Because the role of soil inoculum of Phytophthora ramorum in the sudden oak death disease cycle is not well understood, this work addresses survival, chlamydospore production, pathogen suppression, and splash dispersal of the pathogen in infested forest soils. Colonized rhododendron and bay laurel leaf disks were placed in mesh sachets before transfer to the field in January 2005 and 2006. Sachets were placed under tanoak, bay laurel, and redwood at three vertical locations: leaf litter surface, litter-soil interface, and below the soil surface. Sachets were retrieved after 4, 8, 20, and 49 weeks. Pathogen survival was higher in rhododendron leaf tissue than in bay tissue, with >80% survival observed in rhododendron tissue after 49 weeks in the field. Chlamydospore production was determined by clearing infected tissue in KOH. Moist redwood-associated soils suppressed chlamydospore production. Rain events splashed inoculum as high as 30 cm from the soil surface, inciting aerial infection of bay laurel and tanoak. Leaf litter may provide an incomplete barrier to splash dispersal. This 2-year study illustrates annual P. ramorum survival in soil and the suppressive nature of redwood-associated soils to chlamydospore production. Infested soil may serve as primary inoculum for foliar infections by splash dispersal during rain events.
Technetium-99 cycling in maple trees: characterization of changes in chemical form.
Garten, C T; Lomax, R D
1989-08-01
Prior field studies near an old radioactive waste disposal site at Oak Ridge, TN, indicated that following root uptake, metabolism by deciduous trees rendered 99Tc less biogeochemically mobile than expected, based on chemistry of the pertechnetate (TcO-4) anion. Subsequently, the form of technetium (Tc) in maple tree (Acer sp.) sap, leaves, wood and forest leaf litter was characterized using one or more of the following methods: dialysis, physical fractionation, chemical extraction, gel permeation chromatography, enzymatic extraction, or thin layer chromatography (TLC) on silica gel. Chromatography (Sephadex G-25) of TcO-4 incubated in vitro with tree sap showed it to behave similar to TcO-4 anion. When labeled wood and leaf tissues were processed using a tissue homogenizer, 15% and 40%, respectively, of the Tc was solubilized into phosphate buffer. Most (65% to 80%) of the solubilized Tc passing a 0.45-micron filter also passed through an ultrafiltration membrane with a nominal molecular weight cutoff of 10,000 atomic mass units (amu). A majority (72% to 80%) of the Tc in wood could be chemically removed by successive extractions with ethanol, water and weak mineral acid. These same extractants removed only 23% to 31% of the Tc from maple leaves or forest floor leaf litter. Most of the Tc in leaves and leaf litter was removed only by strongly alkaline reagents typically used to release structural polysaccharides (hemicelluloses) from plant tissues. Chromatography (Sephadex G-25) of the ethanol-water extract from wood and the alkaline extract from leaves demonstrated that Tc in these extracts was not principally TcO-4 but was complexed with molecules greater than 1000 amu. Incubations of leaf and wood homogenates with protease approximately doubled the amount of Tc released from contaminated tissues. Ultrafiltration of protease-solubilized Tc from leaves and wood showed that 40% and 93%, respectively, of the Tc was less than 10,000 amu. TLC of the less than 10,000 amu fraction indicated the presence of TcO-4 in wood but not in leaves. In the leaf, TcO-4 is converted to less soluble forms apparently associated with structural components of leaf cell walls. This conversion explains why 99Tc is not easily leached by rainfall from tree foliage and why 99Tc appears to accumulate in forest floor leaf litter layers at the Oak Ridge study site.
Nishimura, Satoshi; Maie, Nagamitsu; Baba, Mitsuhisa; Sudo, Takahiro; Sugiura, Toshihiro; Shima, Eikichi
2012-01-01
Chromophoric dissolved organic matter (CDOM) leached from leaf litter is a major source of humus in mineral soil of forest ecosystems. While their functions and refractoriness depend on the physicochemical structure, there is little information on the quality of CDOM, especially for that leached in the very early stages of litter decomposition when a large amount of dissolved organic matter (DOM) is leached. This study aimed to better understand the variations/changes in the composition of CDOM leached from senescent leaf litter from two tree species during the early stage of decomposition. Leaf litter from a conifer tree (Japanese cedar, D. Don) and a deciduous broad-leaved tree (Konara oak, Thunb.) were incubated in columns using simulated rainfall events periodically for a total of 300 d at 20°C. The quality of CDOM was investigated based on the fluorescence properties by using a combination of excitation-emission matrix fluorescence (EEM) and parallel factor analysis (PARAFAC). In addition, the phenolic composition of DOM was investigated at a molecular level by thermally assisted hydrolysis and methylation-gas chromatography-mass spectrometry (THM-GC-MS) in the presence of tetramethylammonium hydroxide (TMAH). The EEM was statistically decomposed into eight fluorescence components (two tannin/peptide-like peaks, one protein-like peak, and five humic-like peaks). A significant contribution of tannin/peptide-like peaks was observed at the beginning of incubation, but these peaks decreased quickly and humic-like peaks increased within 1 mo of incubation. The composition of humic-like peaks was different between tree species and changed over the incubation period. Since tannin-derived phenolic compounds were detected in the DOM collected after 254 d of incubation on THM-GC-MS, it was suggested that tannins partially changed its structure, forming various humic-like peaks during the early decomposition. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
USDA-ARS?s Scientific Manuscript database
Litter decomposition is a central focus of ecosystem science because of its importance to biogeochemical pools and cycling, but predicting dryland decomposition dynamics is problematic. Some studies indicate photodegradation by ultraviolet (UV) radiation can be a significant driver of dryland decomp...
Leaf Litter Decomposition and Nutrient Dynamics in Four Southern Forested Floodplain Communities
Terrell T. Baker; B. Graeme Lockaby; William H. Conner; Calvin E. Meier; John A. Stanturf
2001-01-01
Decomposition of site-specific litter mixtures was monitored for 100 wk in four Roodplaht communities: (i) a mixed oak community along the Cache River in central Arkansas, (ii) a sweetgum (Liquidambar styraciflua L.)-cherrybark oak (Quercus falcata var. pagodaefolia Ell.) community along Iatt Creek in...
NASA Astrophysics Data System (ADS)
Isidorov, Valery; Tyszkiewicz, Zofia; Pirożnikow, Ewa
2016-04-01
Leaf litter fungi are partly responsible for decomposition of dead material, nutrient mobilization and gas fluxes in forest ecosystems. It can be assumed that microbial destruction of dead plant materials is an important source of volatile organic compounds (VOCs) emitted into the atmosphere from terrestrial ecosystems. However, little information is available on both the composition of fungal VOCs and their producers whose community can be changed at different stages of litter decomposition. The fungal community succession was investigated in a litter bag experiment with Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) needle litter. The succession process can be divided into a several stages controlled mostly by changes in litter quality. At the very first stages of decomposition the needle litter was colonized by ascomycetes which can use readily available carbohydrates. At the later stages, the predominance of Trichoderma sp., the known producers of cellulolytic enzymes, was documented. To investigate the fungi-derived VOCs, eight fungi species were isolated. As a result of gas chromatographic analyses, as many as 75C2sbnd C15 fungal volatile compounds were identified. Most components detected in emissions were very reactive substances: the principal groups of VOCs were formed by monoterpenes, carbonyl compounds and aliphatic alcohols. It was found that production of VOCs by fungi is species specific: only 10 metabolites were emitted into the gas phase by all eight species. The reported data confirm that the leave litter decomposition is important source of reactive organic compounds under the forest canopy.
NASA Astrophysics Data System (ADS)
Filley, Timothy R.; McCormick, Melissa K.; Crow, Susan E.; Szlavecz, Katalin; Whigham, Dennis F.; Johnston, Cliff T.; van den Heuvel, Ronald N.
2008-03-01
To investigate the control of earthworm populations on leaf litter biopolymer decay dynamics, we analyzed the residues of Liriodendron tulipifera L. (tulip poplar) leaves after six months of decay, comparing open surface litter and litter bag experiments among forests with different native and invasive earthworm abundances. Six plots were established in successional tulip poplar forests where sites varied in earthworm density and biomass, roughly 4-10 fold, of nonnative lumbricid species. Analysis of residues by diffuse reflectance Fourier transform infrared spectroscopy and alkaline CuO extraction indicated that open decay in sites with abundant earthworms resulted in residues depleted in cuticular aliphatic and polysaccharide components and enriched in ether-linked lignin relative to open decay in low earthworm abundance plots. Decay within earthworm-excluding litter bags resulted in an increase in aliphatic components relative to initial amendment and similar chemical trajectory to low earthworm open decay experiments. All litter exhibited a decline in cinnamyl-based lignin and an increase in nitrogen content. The influence of earthworm density on the chemical trajectory of litter decay was primarily a manifestation of the physical separation and concentration of lignin-rich and cutin-poor petioles with additional changes promoted by either microorganisms and/or mesofauna resulting in nitrogen addition and polysaccharide loss. These results illustrate how projected increases in invasive earthworm activity in northern North American forests could alter the chemical composition of organic matter in litter residues and potentially organic matter reaching the soil which may result in shifts in the aromatic and aliphatic composition of soils in different systems.
Effects of road deicer (NaCl) and amphibian grazers on detritus processing in pond mesocosms.
Van Meter, Robin J; Swan, Christopher M; Trossen, Carrie A
2012-10-01
Road deicers have been identified as potential stressors in aquatic habitats throughout the United States, but we know little regarding associated impacts to ecosystem function. A critical component of ecosystem function that has not previously been evaluated with respect to freshwater salinization is the impact on organic matter breakdown. The purpose of this study was to evaluate cumulative effects of road deicers and tadpole grazers on leaf litter breakdown rate (g d(-1) ) and microbial respiration (mg O(2) g leaf(-1) h(-1) ). To test this interaction, in May 2008 the authors added dry leaf litter (Quercus spp.) to forty 600-L pond mesocosms and inoculated each with algae and zooplankton. In a full-factorial design, they manipulated a realistic level of road salt (ambient or elevated at 645 mg L(-1) Cl(-) ) and tadpole (Hyla versicolor) presence or absence. The elevated chloride treatment reduced microbial respiration by 24% in the presence of tadpoles. The breakdown of leaf litter by tadpoles occurred 9.7% faster under ambient chloride conditions relative to the elevated chloride treatment. Results of the present study suggest that the microbial community is directly impacted by road deicers and heavy tadpole grazing under ambient conditions limits microbial capacity to process detritus. Road salts and tadpoles interact to limit microbial respiration, but to a lesser extent leaf mass loss rate, thereby potentially restricting energy flow from detrital sources in pond ecosystems. Copyright © 2012 SETAC.
The Influence of Leaf Fall and Organic Carbon Availability on Nitrogen Cycling in a Headwater Stream
NASA Astrophysics Data System (ADS)
Thomas, S. A.; Kristin, A.; Doyle, B.; Goodale, C. L.; Gurwick, N. P.; Lepak, J.; Kulkari, M.; McIntyre, P.; McCalley, C.; Raciti, S.; Simkin, S.; Warren, D.; Weiss, M.
2005-05-01
The study of allochthonous carbon has a long and distinguished history in stream ecology. Despite this legacy, relatively little is known regarding the influence of leaf litter on nutrient dynamics. We conducted 15N-NO3 tracer additions to a headwater stream in upstate New York before and after autumn leaf fall to assess the influence of leaf litter on nitrogen spiraling. In addition, we amended the stream with labile dissolved organic carbon (as acetate) midway through each experiment to examine whether organic carbon availability differentially stimulated nitrogen cycling. Leaf standing stocks increased from 53 to 175 g dry mass m-2 and discharge more than tripled (6 to 20 L s-1) between the pre- and post-leaf fall period. In contrast, nitrate concentration fell from approximately 50 to less then 10 ug L-1. Despite higher discharge, uptake length was shorter following leaf fall under both ambient (250 and 72 m, respectively) and DOC amended (125 and 45 m) conditions. Uptake velocity increased dramatically following leaf fall, despite a slight decline in the areal uptake rate. Dissolved N2 gas samples were also collected to estimate denitrification rates under each experimental condition. The temporal extent of increased nitrogen retention will also be explored.
Sorption of polyphenolics (tannins) to natural soils
USDA-ARS?s Scientific Manuscript database
Tannins enter soil systems via rainfall through the leaf canopy, leaf litter decomposition, and root exudation and decomposition. For tannins released into soils, the relative importance of sorption to soil; chemical reactions with soil minerals; and biological decomposition is unknown. Determinin...
Rinkes, Zachary L.; Sinsabaugh, Robert L.; Moorhead, Daryl L.; Grandy, A. Stuart; Weintraub, Michael N.
2013-01-01
Fluctuations in climate and edaphic factors influence field decomposition rates and preclude a complete understanding of how microbial communities respond to plant litter quality. In contrast, laboratory microcosms isolate the intrinsic effects of litter chemistry and microbial community from extrinsic effects of environmental variation. Used together, these paired approaches provide mechanistic insights to decomposition processes. In order to elucidate the microbial mechanisms underlying how environmental conditions alter the trajectory of decay, we characterized microbial biomass, respiration, enzyme activities, and nutrient dynamics during early (<10% mass loss), mid- (10–40% mass loss), and late (>40% mass loss) decay in parallel field and laboratory litter bag incubations for deciduous tree litters with varying recalcitrance (dogwood < maple < maple-oak mixture < oak). In the field, mass loss was minimal (<10%) over the first 50 days (January–February), even for labile litter types, despite above-freezing soil temperatures and adequate moisture during these winter months. In contrast, microcosms displayed high C mineralization rates in the first week. During mid-decay, the labile dogwood and maple litters in the field had higher mass loss per unit enzyme activity than the lab, possibly due to leaching of soluble compounds. Microbial biomass to litter mass (B:C) ratios peaked in the field during late decay, but B:C ratios declined between mid- and late decay in the lab. Thus, microbial biomass did not have a consistent relationship with litter quality between studies. Higher oxidative enzyme activities in oak litters in the field, and higher nitrogen (N) accumulation in the lab microcosms occurred in late decay. We speculate that elevated N suppressed fungal activity and/or biomass in microcosms. Our results suggest that differences in microbial biomass and enzyme dynamics alter the decay trajectory of the same leaf litter under field and lab conditions. PMID:24027563
Fenoy, Encarnación; Casas, J Jesús; Díaz-López, Manuel; Rubio, Juan; Guil-Guerrero, J Luís; Moyano-López, Francisco J
2016-11-01
Abiotic factors, substrate chemistry and decomposers community composition are primary drivers of leaf litter decomposition. In soil, much of the variation in litter decomposition is explained by climate and substrate chemistry, but with a significant contribution of the specialisation of decomposer communities to degrade specific substrates (home-field advantage, HFA). In streams, however, HFA effects on litter decomposition have not been explicitly tested. We evaluated responses of microbial decomposition and β-glucosidase activity to abiotic factors, substrate and decomposer assemblages, using a reciprocal litter transplant experiment: 'ecosystem type' (mountain vs lowland streams) × 'litter chemistry' (alder vs reed). Temperature, pH and ionic concentration were higher in lowland streams. Decomposition for both species was faster in lowland streams. Decomposition of reed was more accelerated in lowland compared with mountain streams than that of alder, suggesting higher temperature sensitivity of decomposition in reed. Q10 (5°C-15°C) values of β-glucosidase activity were over 2. The alkaline pH and high ionic concentration of lowland streams depleted enzyme activity. We found similar relationships of decomposition or enzyme activity with abiotic factors for both species, suggesting limited support to the HFA hypothesis. Overall, our results suggest a prime role of temperature interacting with substrate chemistry on litter decomposition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Saltcedar (Tamarix ramosissima) invasion alters organic matter dynamics in a desert stream
Kennedy, T.A.; Hobbie, S.E.
2004-01-01
1. We investigated the impacts of saltcedar invasion on organic matter dynamics in a spring-fed stream (Jackrabbit Spring) in the Mojave Desert of southern Nevada, U.S.A., by experimentally manipulating saltcedar abundance. 2. Saltcedar heavily shaded Jackrabbit Spring and shifted the dominant organic matter inputs from autochthonous production that was available throughout the year to allochthonous saltcedar leaf litter that was strongly pulsed in the autumn. Specifically, reaches dominated by saltcedar had allochthonous litter inputs of 299 g ash free dry mass (AFDM) m-2 year-1, macrophyte production of 15 g AFDM m-2 year-1 and algal production of 400 g AFDM m-2 year-1, while reaches dominated by native riparian vegetation or where saltcedar had been experimentally removed had allochthonous litter inputs of 7-34 g AFDM m -2 year-1, macrophyte production of 118-425 g AFDM m -2 year-1 and algal production of 640-900 g AFDM m -2 year-1. 3. A leaf litter breakdown study indicated that saltcedar also altered decomposition in Jackrabbit Spring, mainly through its influence on litter quality rather than by altering the environment for decomposition. Decomposition rates for saltcedar were lower than for ash (Fraxinus velutina), the dominant native allochthonous litter type, but faster than for bulrush (Scirpus americanus), the dominant macrophyte in this system.
USDA-ARS?s Scientific Manuscript database
Soil respiration is frequently measured as a surrogate for biological activities and is important in soil carbon cycling. The heterotrophic component of soil respiration is primarily driven by microbial decomposition of leaf litter and soil organic matter, and is partially controlled by resource ava...
Matt R. Whiles; J. Bruce Wallace
1997-01-01
Benthic invertebrates, litter decomposition, and litterbag invertebrates were examined in streams draining pine monoculture and undisturbed hardwood catchments at the Coweeta Hydrologic Laboratory in the southern Appalachian Mountains, USA. Bimonthly benthic samples were collected from a stream draining a pine catchment at Coweeta during 1992, and compared to...
Climate history shapes contemporary leaf litter decomposition
Michael S. Strickland; Ashley D. Keiser; Mark A. Bradford
2015-01-01
Litter decomposition is mediated by multiple variables, of which climate is expected to be a dominant factor at global scales. However, like other organisms, traits of decomposers and their communities are shaped not just by the contemporary climate but also their climate history. Whether or not this affects decomposition rates is underexplored. Here we source...
Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers
Follstad Shah, Jennifer J.; Kominoski, John S.; Ardón, Marcelo; ...
2017-02-28
Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. We synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by themore » activation energy (Ea, in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5–21% with a 1–4 °C rise in water temperature, rather than a 10–45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale.« less
Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follstad Shah, Jennifer J.; Kominoski, John S.; Ardón, Marcelo
Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. We synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by themore » activation energy (Ea, in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5–21% with a 1–4 °C rise in water temperature, rather than a 10–45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale.« less
USDA-ARS?s Scientific Manuscript database
Leaf litter quality and quantity can influence soil nutrient dynamics and stream productivity through decomposition and serving as allochthonous stream inputs. Leaf deposition, nitrogen (N)-resorption efficiency and proficiency, and decomposition rates were analyzed in riparian stands of Arundinaria...
Effects of multiple but low pesticide loads on aquatic fungal communities colonizing leaf litter.
Talk, Anne; Kublik, Susanne; Uksa, Marie; Engel, Marion; Berghahn, Rüdiger; Welzl, Gerhard; Schloter, Michael; Mohr, Silvia
2016-08-01
In the first tier risk assessment (RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, fungicides, and insecticides. However, fungi as key organisms for nutrient cycling in ecosystems as well as multiple pesticide applications are not considered in the RA. In this study, the effects of multiple low pesticide pulses using regulatory acceptable concentrations (RACs) on the dynamics of non-target aquatic fungi were investigated in a study using pond mesocosm. For that, fungi colonizing black alder (Alnus glutinosa) leaves were exposed to multiple, low pulses of 11 different pesticides over a period of 60days using a real farmer's pesticide application protocol for apple cropping. Four pond mesocosms served as treatments and 4 as controls. The composition of fungal communities colonizing the litter material was analyzed using a molecular fingerprinting approach based on the terminal Restriction Fragment Length Polymorphism (t-RFLP) of the fungal Internal Transcribed Spacer (ITS) region of the ribonucleic acid (RNA) gene(s). Our data indicated a clear fluctuation of fungal communities based on the degree of leaf litter degradation. However significant effects of the applied spraying sequence were not observed. Consequently also degradation rates of the litter material were not affected by the treatments. Our results indicate that the nutrient rich environment of the leaf litter material gave fungal communities the possibility to express genes that induce tolerance against the applied pesticides. Thus our data may not be transferred to other fresh water habitats with lower nutrient availability. Copyright © 2016. Published by Elsevier B.V.
Combination of different methods to assess the fate of lignin in decomposing needle and leave litter
NASA Astrophysics Data System (ADS)
Klotzbücher, Thimo; Filley, Timothy; Kaiser, Klaus; Kalbitz, Karsten
2010-05-01
Lignin is a major component of plant litter. However, its fate during litter decay is still poorly understood. One reason is the difficult analysis. Commonly used methods utilize different methodological approaches and focus on different aspects, e.g., content of lignin and/or of lignin-derived phenols and the degree of oxidation. The comparability and feasibility of the methods has not been tested so far. Our aims were: (1) to compare different methods with respect to track lignin degradation during plant litter decay and (2) to evaluate possible advantages of combining the different results. We assessed lignin degradation in decaying litter by 13C-TMAH thermochemolysis and CuO oxidation (each combined with GC/MS) and by determination of acid-detergent lignin (ADL) combined with near infrared spectroscopy. Furthermore, water-extractable organic matter produced during litter decay was examined for indicators of lignin-derived compounds by UV absorbance at 280 nm, fluorescence spectroscopy, and 13C-TMAH GC/MS. The study included litter samples from 5 different tree species (acer, ash, beech, pine, spruce), exposed in litterbags to degradation in a spruce stand for 27 months. First results suggested stronger lignin degradation in coniferous than in deciduous litter. This was indicated by complementary results from various methods: Conifer litter showed a more pronounced decrease in ADL content and a stronger increase in oxidation degree of side chains (Ac/Al ratios of CuO oxidation and 13C-TMAH products). Furthermore water extracted organic matter from needles showed a higher aromaticity and molecule complexity. Thus properties of water extractable organic matter seemed to reflect the extents of lignin degradation in solid litter samples. Contents of lignin-derived phenols determined with the CuO method (VSC content) hardly changed during decay of needles and leaves. These results thus not matched the trends found with the ADL method. Our results suggested that water-soluble phenolic acids that are included in the CuO oxidation products, accumulated during decay of litter with less stable lignin and then contributed to VSC contents and to the pool of water- extractable organic matter. By combining results from different methods we gained a better understanding about the differences in lignin degradation between the litter species.
NASA Astrophysics Data System (ADS)
André, Frédéric; Jonard, Mathieu; Jonard, François; Lambot, Sébastien
2015-04-01
Decomposing litter accumulated at the soil surface in forest ecosystems play a major role in a series of ecosystem processes (soil carbon sequestration, nutrient release through decomposition, water retention, buffering of soil temperature variations, tree regeneration, population dynamics of ground vegetation and soil fauna, ...). Besides, the presence of litter is acknowledged to influence remote sensing radar data over forested areas and accurate quantification of litter radiative properties is essential for proper processing of these data. In these respects, ground-penetrating radar (GPR) presents particular interests, potentially allowing for fast and non-invasive characterization of organic layers with fine spatial and/or temporal resolutions as well as for providing detailed information on litter electrical properties which are required for modeling either active or passive microwave remote sensing data. We designed an experiment in order to analyze the backscattering from forest litter horizons and to investigate the potentialities of GPR for retrieving the physical properties of these horizons. For that purpose, we used an ultrawide band radar system connected to a transmitting and receiving horn antenna. The GPR data were processed resorting to full-wave inversion of the signal, through which antenna effects are accounted for. In a first step, GPR data were acquired over artificially reconstructed layers of three different beech litter types (i.e., (i) recently fallen litter with easily discernible plant organs (OL layer), (ii) fragmented litter in partial decomposition without entire plant organs (OF layer) and (iii) combination of OL and OF litter layers) and considering in each case a range of layer thicknesses. In a second step, so as to validate the adopted methodology in real natural conditions, GPR measurements were performed in situ along a transect crossing a wide range of litter properties in terms of thickness and composition through stands of various tree species. Results from the controlled experiment demonstrated the ability of GPR to reconstruct litter horizons, showing close correspondence between inversely estimated and measured litter layer thicknesses and providing reliable estimates of litter electromagnetic properties. This experiment also highlighted the necessity of considering scattering and dielectric losses occurring within litter for proper modeling of the GPR signal, which was accounted for through frequency dependence of an effective electrical conductivity of the litter. Similar findings emerged from the in situ experiment, though somewhat lower agreement was observed between estimated and reference layer thickness values. These results show great promise for the use of GPR for non-invasive characterization of forest litter. Index Terms: Ground-penetrating radar (GPR), forest litter, frequency dependence, scattering Reference: André F., Jonard M., Lambot S., 2015. Non-invasive forest litter characterization using full-wave inversion of microwave radar data, IEEE Transactions on Geoscience and Remote Sensing, 53(2), 828-840.
Bhaskar, Radika; Porder, Stephen; Balvanera, Patricia; Edwards, Erika J
2016-05-01
We assessed the role of ecological and evolutionary processes in driving variation in leaf and litter traits related to nitrogen (N) use among tropical dry forest trees in old-growth and secondary stands in western Mexico. Our expectation was that legumes (Fabaceae), a dominant component of the regional flora, would have consistently high leaf N and therefore structure phylogenetic variation in N-related traits. We also expected ecological selection during succession for differences in nitrogen use strategies, and corresponding shifts in legume abundance. We used phylogenetic analyses to test for trait conservatism in foliar and litter N, C:N, and N resorption. We also evaluated differences in N-related traits between old-growth and secondary forests. We found a weak phylogenetic signal for all traits, partly explained by wide variation within legumes. Across taxa we observed a positive relationship between leaf and litter N, but no shift in resorption strategies along the successional gradient. Despite species turnover, N-resorption, and N-related traits showed little change across succession, suggesting that, at least for these traits, secondary forests rapidly recover ecosystem function. Collectively, our results also suggest that legumes should not be considered a single functional group from a biogeochemical perspective.
Wanger, Thomas C; Iskandar, Djoko T; Motzke, Iris; Brook, Barry W; Sodhi, Navjot S; Clough, Yann; Tscharntke, Teja
2010-06-01
Little is known about the effects of anthropogenic land-use change on the amphibians and reptiles of the biodiverse tropical forests of Southeast Asia. We studied a land-use modification gradient stretching from primary forest, secondary forest, natural-shade cacao agroforest, planted-shade cacao agroforest to open areas in central Sulawesi, Indonesia. We determined species richness, abundance, turnover, and community composition in all habitat types and related these to environmental correlates, such as canopy heterogeneity and thickness of leaf litter. Amphibian species richness decreased systematically along the land-use modification gradient, but reptile richness and abundance peaked in natural-shade cacao agroforests. Species richness and abundance patterns across the disturbance gradient were best explained by canopy cover and leaf-litter thickness in amphibians and by canopy heterogeneity and cover in reptiles. Amphibians were more severely affected by forest disturbance in Sulawesi than reptiles. Heterogeneous canopy cover and thick leaf litter should be maintained in cacao plantations to facilitate the conservation value for both groups. For long-term and sustainable use of plantations, pruned shade trees should be permanently kept to allow rejuvenation of cacao and, thus, to prevent repeated forest encroachment.
Nilsen, E T; Walker, J F; Miller, O K; Semones, S W; Lei, T T; Clinton, B D
1999-11-01
In the southern Appalachian mountains a subcanopy species, Rhododendron maximum, inhibits the establishment and survival of canopy tree seedlings. One of the mechanisms by which seedlings could be inhibited is an allelopathic effect of decomposing litter or leachate from the canopy of R. maximum (R.m.) on seed germination, root elongation, or mycorrhizal colonization. The potential for allelopathy by R.m. was tested with two bioassay species (lettuce and cress), with seeds from four native tree species, and with three ectomycorrhizal fungi. Inhibitory influences of throughfall, fresh litter, and decomposed litter (organic layer) from forest with R.m. (+R.m. sites) were compared to similar extractions made from forest without R.m. (-R.m. sites). Throughfall and leachates of the organic layer from both +R.m. and -R.m. sites stimulated germination of the bioassay species above that of the distilled water control, to a similar extent. There was an inhibitory effect of leachates of litter from +R.m. sites on seed germination and root elongation rate of both bioassay species compared with that of litter from -R.m. sites. Native tree seed stratified in forest floor material from both forest types had a slightly higher seed germination rate compared with the control. A 2-yr study of seed germination and seedling mortality of two tree species, Quercus rubra and Prunus serotina, in field plots showed no significant influence of litter or organic layer from either forest type. Incorporating R.m. leaf material into the growth medium in vitro depressed growth of one ectomycorrhizal species but did not affect two other species. Leaf material from other deciduous tree species depressed ectomycorrhizal growth to a similar or greater extent as leaf material from R.m. In conclusion, R.m. litter can have an allelopathic effect on seed germination and root elongation of bioassay species as well as some ectomycorrhizal species. However, this allelopathic affect is not manifest in field sites and is not likely to be an important cause for the inhibition of seedling survival within thickets of R.m.
NASA Astrophysics Data System (ADS)
Brédoire, Félix; Zeller, Bernd; Nikitich, Polina; Barsukov, Pavel A.; Rusalimova, Olga; Bakker, Mark R.; Legout, Arnaud; Bashuk, Alexander; Kayler, Zachary E.; Derrien, Delphine
2017-04-01
The suitability of Siberia for agriculture is expected to increase in the next decades due to strong and rapid climatic changes, but little is known on the environmental drivers of soil fertility there, especially nitrogen (N). Plant-available N is mainly derived from litter decomposition. South-western (SW) Siberia is located on the transition between several bioclimatic zones that are predicted to shift and extend along with climate change (steppe, forest-steppe, sub-taiga). The soils of this region are formed on a common loess deposit but they are submitted to different climatic conditions and vegetation cover. In the south of the region, typically in steppe/forest-steppe, soil freezes over winter because of a relatively shallow snow-pack, and water shortages are frequent in summer. In the north, typically in sub-taiga, the soil is barely frozen in winter due to a thick snow-pack and sufficient soil moisture in summer. In this study, we characterized the dynamics of leaf litter decomposition and the transfer of N from leaf litter to the soil and back to plants. Four sites were chosen along a climate gradient (temperature, precipitation and snow depth). At each site, we applied 15N-labelled leaf litter on the soil surface in experimental plots in an aspen (Populus tremula L.) forest and in a grassland. Twice a year during three years, we tracked the 15N derived from the decomposing labelled-litter in the organic layers, in the first 15 cm of the soil, and in above-ground vegetation. Soil temperature and moisture were monitored at a daily timestep over three years and soil water budgets were simulated (BILJOU model, Granier et al. 1999). We observed contrasting patterns in the fate of litter-derived 15N between bioclimatic zones. Over three years, along with faster decay rates, the release of leaf litter-N was faster in sub-taiga than in forest-steppe. As such, higher quantities of 15N were transferred into the soil in sub-taiga. The transfer was also deeper there, which might be related to a more intense drainage because of higher snow levels, as inferred from soil water budget modelling. Interestingly, this higher drainage seems to induce only a small loss of N from the system. Such retention could result from soil physico-chemical properties (higher fine silt and oxides contents) enhancing soil organic matter stabilization, and/or by the immobilization of N in microbial metabolites. We observed differing N dynamics between forest and grassland that can be related to the different chemical composition of initial litter (tree leaves vs. grasses) and plant-soil interactions. In general, N was retained in the first centimeters of the mineral soil in grassland while the transfer was deeper in the forest soils. As fine root exploration is denser in grassland topsoil than in forest topsoil, we infer that an efficient uptake of N by grasses in the first soil layers limits N migration down the profile. It is also possible that grasses are active earlier in the season than trees and understorey species, i.e. at snow-melt when drainage is the most intense.
Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce
Nacke, Heiko; Goldmann, Kezia; Schöning, Ingo; Pfeiffer, Birgit; Kaiser, Kristin; Castillo-Villamizar, Genis A.; Schrumpf, Marion; Buscot, François; Daniel, Rolf; Wubet, Tesfaye
2016-01-01
The complex interactions between trees and soil microbes in forests as well as their inherent seasonal and spatial variations are poorly understood. In this study, we analyzed the effects of major European tree species (Fagus sylvatica L. and Picea abies (L.) Karst) on soil bacterial and fungal communities. Mineral soil samples were collected from different depths (0–10, 10–20 cm) and at different horizontal distances from beech or spruce trunks (0.5, 1.5, 2.5, 3.5 m) in early summer and autumn. We assessed the composition of soil bacterial and fungal communities based on 16S rRNA gene and ITS DNA sequences. Community composition of bacteria and fungi was most strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g., Tylospora) known to establish mutualistic associations with plant roots showed a tree species preference. Moreover, bacterial and fungal community composition showed spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance of saprotrophic fungi was higher at a depth of 0–10 vs. 10–20 cm depth. This was presumably a result of changes in nutrient availability, as litter input and organic carbon content decreased with soil depth. Overall bacterial community composition showed strong variations under spruce with increasing distance from the tree trunks, which might be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall bacterial community composition was strongly affected by season under deciduous trees. PMID:28066384
Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce.
Nacke, Heiko; Goldmann, Kezia; Schöning, Ingo; Pfeiffer, Birgit; Kaiser, Kristin; Castillo-Villamizar, Genis A; Schrumpf, Marion; Buscot, François; Daniel, Rolf; Wubet, Tesfaye
2016-01-01
The complex interactions between trees and soil microbes in forests as well as their inherent seasonal and spatial variations are poorly understood. In this study, we analyzed the effects of major European tree species ( Fagus sylvatica L. and Picea abies (L.) Karst) on soil bacterial and fungal communities. Mineral soil samples were collected from different depths (0-10, 10-20 cm) and at different horizontal distances from beech or spruce trunks (0.5, 1.5, 2.5, 3.5 m) in early summer and autumn. We assessed the composition of soil bacterial and fungal communities based on 16S rRNA gene and ITS DNA sequences. Community composition of bacteria and fungi was most strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g., Tylospora ) known to establish mutualistic associations with plant roots showed a tree species preference. Moreover, bacterial and fungal community composition showed spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance of saprotrophic fungi was higher at a depth of 0-10 vs. 10-20 cm depth. This was presumably a result of changes in nutrient availability, as litter input and organic carbon content decreased with soil depth. Overall bacterial community composition showed strong variations under spruce with increasing distance from the tree trunks, which might be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall bacterial community composition was strongly affected by season under deciduous trees.
Greenaway, P; Raghaven, S
1998-01-01
Two species of herbivorous land crabs from Christmas Island, Cardisoma hirtipes and Gecarcoidea natalis, overlap in both diet and distribution. This study compared the dietary preferences and digestive capabilities of these two species on a diet of leaf litter to establish the digestive strategies each adopts and the likely degree of competition for food. C. hirtipes preferred green to yellow or brown leaves of Ficus macrophylla in short-term food-choice experiments. Brown leaves were least favoured. G. natalis showed no preference for the different leaf types and in the field ate chiefly brown and decomposing leaf litter. When fed green leaves, C. hirtipes had a low food intake (4.5+/-0.36 g kg-1 d-1) and a short retention time for food, and the readily digestible components of the diet constituted greater than 84% of the dry matter assimilated. When fed brown leaves, the intake was increased 3.3 times, but retention time remained short, and assimilation coefficients for all nutrients were low. The readily digestible fraction of the diet made the chief contribution to dry matter assimilation (69%), and hemicellulose (19%) and cellulose (21%) were also significantly used. This pattern of food intake and assimilation contrasts with that for G. natalis, which had a low intake of brown leaves and a longer retention time associated with higher nutrient assimilation, particularly of complex polysaccharides. It is suggested that through their feeding preferences and habits, these two sympatric species use opposite ends of the leaf litter quality spectrum on Christmas Island.
Hildén, Kristiina; Mäkelä, Miia R; Steffen, Kari T; Hofrichter, Martin; Hatakka, Annele; Archer, David B; Lundell, Taina K
2014-11-01
Agrocybe praecox is a litter-decomposing Basidiomycota species of the order Agaricales, and is frequently found in forests and open woodlands. A. praecox grows in leaf-litter and the upper soil and is able to colonize bark mulch and wood chips. It produces extracellular manganese peroxidase (MnP) activities and mineralizes synthetic lignin. In this study, the A. praecox MnP1 isozyme was purified, cloned and enzymatically characterized. The enzyme catalysed the oxidation of Mn(2+) to Mn(3+), which is the specific reaction for manganese-dependent class II heme-peroxidases, in the presence of malonate as chelator with an activity maximum at pH 4.5; detectable activity was observed even at pH 7.0. The coding sequence of the mnp1 gene demonstrates a short-type of MnP protein with a slightly modified Mn(2+) binding site. Thus, A. praecox MnP1 may represent a novel group of atypical short-MnP enzymes. In lignocellulose-containing cultures composed of cereal bran or forest litter, transcription of mnp1 gene was followed by quantitative real-time RT-PCR. On spruce needle litter, mnp1 expression was more abundant than on leaf litter after three weeks cultivation. However, the expression was constitutive in wheat and rye bran cultures. Our data show that the atypical MnP of A. praecox is able to catalyse Mn(2+) oxidation, which suggests its involvement in lignocellulose decay by this litter-decomposer. Copyright © 2014 Elsevier Inc. All rights reserved.
Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Hertel, Dietrich
2016-02-01
Tropical landscapes are not only rapidly transformed by ongoing land-use change, but are additionally confronted by increasing seasonal climate variation. There is an increasing demand for studies analyzing the effects and feedbacks on ecosystem functioning of large-scale conversions of tropical natural forest into intensively managed cash crop agriculture. We analyzed the seasonality of aboveground litterfall, fine root litter production, and aboveground woody biomass production (ANPP(woody)) in natural lowland forests, rubber agroforests under natural tree cover ("jungle rubber"), rubber and oil palm monocultures along a forest-to-agriculture transformation gradient in Sumatra. We hypothesized that the temporal fluctuation of litter production increases with increasing land-use intensity, while the associated nutrient fluxes and nutrient use efficiency (NUE) decrease. Indeed, the seasonal variation of aboveground litter production and ANPP(woody) increased from the natural forest to the plantations, while aboveground litterfall generally decreased. Nutrient return through aboveground litter was mostly highest in the natural forest; however, it was significantly lower only in rubber plantations. NUE of N, P and K was lowest in the oil palm plantations, with natural forest and the rubber systems showing comparably high values. Root litter production was generally lower than leaf litter production in all systems, while the root-to-leaf ratio of litter C flux increased along the land-use intensity gradient. Our results suggest that nutrient and C cycles are more directly affected by climate seasonality in species-poor agricultural systems than in species-rich forests, and therefore might be more susceptible to inter-annual climate fluctuation and climate change.
Zhu, Wenyan; Wang, Jinzhou; Zhang, Zhenhua; Ren, Fei; Chen, Litong; He, Jin-Sheng
2016-01-01
The effects of nitrogen (N) and phosphorus (P) addition on litter decomposition are poorly understood in Tibetan alpine meadows. Leaf litter was collected from plots within a factorial N × P addition experiment and allowed to decompose over 708 days in an unfertilized plot to determine the effects of N and/or P addition on litter decomposition. Results showed that nutrient addition significantly affected initial P and P-related biochemical properties of litter from all four species. However, the responses of litter N and N-related biochemical properties to nutrient addition were quite species-specific. Litter C decomposition and N release were species-specific. However, N and P addition significantly affected litter P release. Ratios of Hemicellulose + Cellulose to N and P were significantly related to litter C decomposition; C:N ratio was a determinant of litter N release; and C:P and (Hemicellulose + Cellulose):P controlled litter P release. Overall, litter C decomposition was controlled by litter quality of different plant species, and strongly affected by P addition. Increasing N availability is likely to affect litter C decomposition more indirectly by shifting plant species composition than directly by improving litter quality, and may accelerate N and P cycles, but shift the ecosystem to P limitation. PMID:27694948
NASA Astrophysics Data System (ADS)
La Spina, Sylvie; de Cannière, Charles; Molenberg, Jean-Marc; Vincke, Caroline; Deman, Déborah; Grégoire, Jean-Claude
2010-05-01
Climate change tends to induce more frequent abiotic and biotic extreme events, having large impacts on tree vitality. Weakened trees are then more susceptible to secondary insect outbreaks, as it happened in Belgium in the early 2000s: after an early frost event, secondary Scolytine ambrosia beetles attacks were observed on beech trees. In this study, we test if a combination of stress, i.e. a soil water deficit preceding an early frost, could render trees more attractive to beetles. An experimental study was set in autumn 2008. Two parcels of a beech forest were covered with plastic tents to induce a water stress by rain interception. The parcels were surrounded by 2-meters depth trenches to avoid water supply by streaming. Soil water content and different indicators of tree water use (sap flow, predawn leaf water potential, tree radial growth) were followed. In autumn 2010, artificial frost injuries will be inflicted to trees using dry ice. Trees attractivity for Scolytine insects, and the success of insect colonization will then be studied. The poster will focus on experiment setting and first results (impacts of soil water deficit on trees).
Hoshika, Yasutomo; Watanabe, Makoto; Inada, Naoki; Koike, Takayoshi
2013-01-01
Background and Aims Resistance of plants to ozone stress can be classified as either avoidance or tolerance. Avoidance of ozone stress may be explained by decreased stomatal conductance during ozone exposure because stomata are the principal interface for entry of ozone into plants. In this study, a coupled photosynthesis–stomatal model was modified to test whether the presence of ozone can induce avoidance of ozone stress by stomatal closure. Methods The response of Siebold's beech (Fagus crenata), a representative deciduous tree species, to ozone was studied in a free-air ozone exposure experiment in Japan. Photosynthesis and stomatal conductance were measured under ambient and elevated ozone. An optimization model of stomata involving water, CO2 and ozone flux was tested using the leaf gas exchange data. Key Results The data suggest that there are two phases in the avoidance of ozone stress via stomatal closure for Siebold's beech: (1) in early summer ozone influx is efficiently limited by a reduction in stomatal conductance, without any clear effect on photosynthetic capacity; and (2) in late summer and autumn the efficiency of ozone stress avoidance was decreased because the decrease in stomatal conductance was small and accompanied by an ozone-induced decline of photosynthetic capacity. Conclusions Ozone-induced stomatal closure in Siebold's beech during early summer reduces ozone influx and allows the maximum photosynthetic capacity to be reached, but is not sufficient in older leaves to protect the photosynthetic system. PMID:23904447
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fell, J.W.; Cefalu, R.
1984-01-01
The paper discusses the meiofauna associated with decomposing leaf litter from two species of coastal marshland plants: the black needle rush, Juncus roemerianus and the red mangrove, Rhizophora mangle. The following aspects were investigated: (1) types of meiofauna present, especially nematodes; (2) changes in meiofaunal community structures with regard to season, station location, and type of plant litter; (3) amount of nematode and copepod biomass present on the decomposing plant litter; and (4) an estimation of the possible role of the nematodes in the decomposition process. 28 references, 5 figures, 9 tables. (ACR)
Erik S. Engstrom; Sean K. Meegan; Sue A. Perry; William B. Perry
1996-01-01
We studied the effects of acidification on leaf litter decomposition in six headwater streams in the Monongahela National Forest. These streams differed in underlying geology and mean baseflow pH (3.99, 4.24, 6.13, 6.47, 6.59, and 7.52). We placed 10-gram leaf packs of white oak, red maple, and yellow poplar in each stream, and retrieved them after two days, two weeks...
Highly Active Ice Nuclei from Tree Leaf Litters Retain Activity for Decades
NASA Astrophysics Data System (ADS)
Schnell, R. C.; Hill, T. C. J.
2015-12-01
Biogenic ice nuclei (IN) studied since the 1960s were first observed in tree leaf litters, in a few bacteria species and later in fungi and lichens. Recently, viable IN bacteria in precipitation have been used as a metric of their possible role in precipitation formation. Although bacterial IN activity is deactivated by a variety of common environmental stresses, we present data showing that IN found in a potpourri of decayed plant leaves, bacteria, molds and fungi etc. in plant litters are exceptionally stable and active over decades while in storage. As such, their atmospheric IN potential is worthy of further study due to their environmental persistence. In August 1970 litter collected in a grove of deciduous trees near Red Deer, AB, Canada was tested for IN (drop freezing technique). The sample initiated ice at -4C with 109 IN per gram of litter active at -10C. A few kilograms were stored in a plastic bag and tested every few years for IN content; the IN activity remained essentially unchanged over 40 years. In 2011, litter collected in the same grove had the same IN activity as the sample tested over the intervening 40 years. Boiling a gram sample of this litter in 100 grams of water deactivated 99 % of the IN activity down to -13C. None of 88 different bacteria cultures several of which appeared to Pseudomonads (common IN producing bacteria) from the fresh litter produced any active IN. A sample of the litter was placed on the top of a 15 cm column of laboratory grade kaolin and water dripped onto the litter. Ten days later the water reached the bottom of the column. The kaolin was dried and tested for IN. The prior essentially IN free kaolin now exhibited IN activity at -4C with 105 IN active at -10C. The litter exposed kaolin retained the IN activity for 25 years. Baking the kaolin removed the active IN. This suggests that IN activity attributed to kaolin particles sometimes seen at the nucleus of snow crystals could be of biological origin.
NASA Astrophysics Data System (ADS)
Campioli, M.; Gielen, B.; Granier, A.; Verstraeten, A.; Neirynck, J.; Janssens, I. A.
2010-10-01
Carbon taken up by the forest canopy is allocated to tree organs for biomass production and respiration. Because tree organs have different life span and decomposition rate, the tree C allocation determines the residence time of C in the ecosystem and its C cycling rate. The study of the carbon-use efficiency, or ratio between net primary production (NPP) and gross primary production (GPP), represents a convenient way to analyse the C allocation at the stand level. Previous studies mostly focused on comparison of the annual NPP-GPP ratio among forests of different functional types, biomes and age. In this study, we extend the current knowledge by assessing (i) the annual NPP-GPP ratio and its interannual variability (for five years) for five tree organs (leaves, fruits, branches, stem and coarse roots), and (ii) the seasonal dynamic of NPP-GPP ratio of leaves and stems, for two stands dominated by European beech and Scots pine. The average NPP-GPP ratio for the beech stand (38%) was similar to previous estimates for temperate deciduous forests, whereas the NPP-GPP ratio for the pine stand (17%) is the lowest recorded till now in the literature. The proportion of GPP allocated to leaf NPP was similar for both species, whereas beech allocated a remarkable larger proportion of GPP to wood NPP than pine (29% vs. 6%, respectively). The interannual variability of the NPP-GPP ratio for wood was substantially larger than the interannual variability of the NPP-GPP ratio for leaves, fruits and overall stand and it is likely to be controlled by previous year air temperature (both species), previous year drought intensity (beech) and thinning (pine). Seasonal pattern of NPP-GPP ratio greatly differed between beech and pine, with beech presenting the largest ratio in early season, and pine a more uniform ratio along the season. For beech, NPP-GPP ratio of leaves and stems peaked during the same period in the early season, whereas they peaked in opposite periods of the growing season for pine. Seasonal differences in C allocation are likely due to functional differences between deciduous and evergreen species and temporal variability of the sink strength. The similar GPP and autotrophic respiration between stands and the remarkable larger C allocation to wood at the beech stand indicate that at the beech ecosystem C has a longer residence time than at the pine ecosystem. Further research on belowground production and particularly on fine roots and ectomycorrhizal fungi likely represents the most important step to progress our knowledge on C allocation dynamics.
J.S. Kominoski; C.M. Pringle; B.A. Ball; M.A. Bradford; D.C. Coleman; D.B. Hall; M.D. Hunter
2007-01-01
Since species loss is predicted to be nonrandom, it is important to understand the manner in which those species that we anticipate losing interact with other species to affect ecosystem function. We tested whether litter species diversity, measured as richness and composition, affects breakdown dynamics in a detritus-based stream. Using full-factorial analyses of...
H.E. Erickson; E.H. Helmer; T.J. Brandeis; A.E. Lugo
2014-01-01
Litter chemistry varies across landscapes according to factors rarely examined simultaneously. We analyzed 11 elements in forest floor (fallen) leaves and additional litter components from 143 forest inventory plots systematically located across Puerto Rico, a tropical island recovering from large-scale forest clearing. We assessed whether three existing, independently...
John S. King; Kurt S. Pregitzer; Donald R. Zak; Mark E. Kubiske; Jennifer A. Ashby; William E. Holmes
2001-01-01
It has been hypothesized that greater production of total nonstructural carbohydrates (TNC) in foliage grown under elevated atmospheric carbon dioxide (CO2) will result in higher concentrations of defensive compounds in tree leaf litter, possibly leading to reduced rates of decomposition and nutrient cycling in forest ecosystems of the future....
William F.J. Parsons; James G. Bockheim; Richard L. Lindroth
2008-01-01
The future capacity of forest ecosystems to sequester atmospheric carbon is likely to be influenced by CO2-mediated shifts in nutrient cycling through changes in litter chemistry, and by interactions with pollutants like O3. We evaluated the independent and interactive effects of elevated CO2 and O...
Leaf litter is an important mediator of soil respiration in an oak-dominated forest
Jared L. DeForest; Jiquan Chen; Steve G. McNulty
2009-01-01
The contribution of the organic (O) horizon to total soil respiration is poorly understood even though it can represent a large source of uncertainty due to seasonal changes in microclimate and O horizon properties due to plant phenology. Our objectives were to partition the CO2 effluxes of litter layer and mineral soil from total soil...
R. Governo; B. G. Lockaby; Robert B. Rummer; C. Colson
2004-01-01
The purpose of this watershed study on three intermittent streams was to evaluate responses of riparian processes to three streamside management zone (SMZ) treatments; no harvest, clearcut, and partial hawest (50% basal area removal). Riparian response variables measured included litter$all, leaf litter decomposition, understory vegetation, soil temperature and water...
Mac A. Callaham; Peter H. Anderson; Thomas A. Waldrop; Darren J. Lione; Victor B. Shelburne
2004-01-01
As part of the National Fire and Fire Surrogate Study, we measured the short-term effects of different fuel-management practices on leaf litter decomposition and soil respiration in loblolly pine stands on the upper Piedmont of South Carolina. These stands had been subjected to a factorial arrangement of experimental fuel-management treatments that included prescribed...
Castellanos-Barliza, Jeiner; León Peláez, Juan Diego
2011-03-01
Several factors control the decomposition in terrestrial ecosystems such as humidity, temperature, quality of litter and microbial activity. We investigated the effects of rainfall and soil plowing prior to the establishment of Acacia mangium plantations, using the litterbag technique, during a six month period, in forests plantations in Bajo Cauca region, Colombia. The annual decomposition constants (k) of simple exponential model, oscillated between 1.24 and 1.80, meanwhile k1 y k2 decomposition constants of double exponential model were 0.88-1.81 and 0.58-7.01. At the end of the study, the mean residual dry matter (RDM) was 47% of the initial value for the three sites. We found a slow N, Ca and Mg release pattern from the A. mangium leaf litter, meanwhile, phosphorus (P) showed a dominant immobilization phase, suggesting its low availability in soils. Chemical leaf litter quality parameters (e.g. N and P concentrations, C/N, N/P ratios and phenols content) showed an important influence on decomposition rates. The results of this study indicated that rainfall plays an important role on the decomposition process, but not soil plowing.
Evaluation of leaf litter leaching kinetics through commonly-used mathematical models
NASA Astrophysics Data System (ADS)
Montoya, J. V.; Bastianoni, A.; Mendez, C.; Paolini, J.
2012-04-01
Leaching is defined as the abiotic process by which soluble compounds of the litter are released into the water. Most studies dealing with leaf litter breakdown and leaching kinetics apply the single exponential decay model since it corresponds well with the understanding of the biology of decomposition. However, during leaching important mass losses occur and mathematical models often fail in describing this process adequately. During the initial hours of leaching leaf litter experience high decay rates which are not properly modelled. Adjusting leaching losses to mathematical models has not been investigated thoroughly and the use of models assuming constant decay rates leads to inappropriate assessments of leaching kinetics. We aim to describe, assess, and compare different leaching kinetics models fitted to leaf litter mass losses from six Neotropical riparian forest species. Leaf litter from each species was collected in the lower reaches of San Miguel stream in Northern Venezuela. Air-dried leaves from each species were incubated in 250 ml of water in the dark at room temperature. At 1h, 6h, 1d, 2d, 4d, 8d and 15d, three jars were removed from the assay in a no-replacement experimental design. At each time leaves from each jar were removed and oven-dried. Afterwards, dried up leaves were weighed and remaining dry mass was determined and expressed as ash-free dry mass. Mass losses of leaf litter showed steep declines for the first two days followed by a steady decrease in mass loss. Data was fitted to three different models: single-exponential, power and rational. Our results showed that the mass loss predicted with the single-exponential model did not reflect the real data at any stage of the leaching process. The power model showed a better adjustment, but fails predicting successfully the behavior during leaching's early stages. To evaluate the performance of our models we used three criteria: Adj-R2, Akaike's Information Criteria (AIC), and residual distribution. Higher Adj-R2 were obtained for the power and the rational-type models. However, when AIC and residuals distribution were used, the only model that could satisfactory predict the behavior of our dataset was the rational-type. Even if the Adj-R2 was higher for some species when using the power model compared to the rational-type; our results showed that this criterion alone cannot demonstrate the predicting performance of any model. Usually Adj-R2 is used when assessing the goodness of fit for any mathematical model disregarding the fact that a good Adj-R2 could be obtained even when statistical assumptions required for the validity of the model are not satisfied. Our results showed that sampling at the initial stages of leaching is necessary to adequately describe this process. We also provided evidence that using traditional mathematical models is not the best option to evaluate leaching kinetics because of its mathematical inability to properly describe the abrupt changes that occur during the early stages of leaching. We also found useful applying different criteria to evaluate the goodness-of-fit and performance of any model considered taking into account both statistical and biological meaning of the results.
Meehan, Timothy D; Couture, John J; Bennett, Alison E; Lindroth, Richard L
2014-10-01
Anthropogenic changes in atmospheric carbon dioxide (CO2 ) and ozone (O3 ) are known to alter tree physiology and growth, but the cascading effects on herbivore communities and herbivore-mediated nutrient cycling are poorly understood. We sampled herbivore frass, herbivore-mediated greenfall, and leaf-litter deposition in temperate forest stands under elevated CO2 (c. 560 ppm) and O3 (c. 1.5× ambient), analyzed substrate chemical composition, and compared the quality and quantity of fluxes under multiple atmospheric treatments. Leaf-chewing herbivores fluxed 6.2 g m(-2) yr(-1) of frass and greenfall from the canopy to the forest floor, with a carbon : nitrogen (C : N) ratio 32% lower than that of leaf litter. Herbivore fluxes of dry matter, C, condensed tannins, and N increased under elevated CO2 (35, 32, 63 and 39%, respectively), while fluxes of N decreased (18%) under elevated O3 . Herbivore-mediated dry matter inputs scaled across atmospheric treatments as a constant proportion of leaf-litter inputs. Increased fluxes under elevated CO2 were consistent with increased herbivore consumption and abundance, and with increased plant growth and soil respiration, previously reported for this experimental site. Results suggest that insect herbivory will reinforce other factors, such as photosynthetic rate and fine-root production, impacting C sequestration by forests in future environments. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.
Trees as templates for tropical litter arthropod diversity.
Donoso, David A; Johnston, Mary K; Kaspari, Michael
2010-09-01
Increased tree species diversity in the tropics is associated with even greater herbivore diversity, but few tests of tree effects on litter arthropod diversity exist. We studied whether tree species influence patchiness in diversity and abundance of three common soil arthropod taxa (ants, gamasid mites, and oribatid mites) in a Panama forest. The tree specialization hypothesis proposes that tree-driven habitat heterogeneity maintains litter arthropod diversity. We tested whether tree species differed in resource quality and quantity of their leaf litter and whether more heterogeneous litter supports more arthropod species. Alternatively, the abundance-extinction hypothesis states that arthropod diversity increases with arthropod abundance, which in turn tracks resource quantity (e.g., litter depth). We found little support for the hypothesis that tropical trees are templates for litter arthropod diversity. Ten tree species differed in litter depth, chemistry, and structural variability. However, the extent of specialization of invertebrates on particular tree taxa was low and the more heterogeneous litter between trees failed to support higher arthropod diversity. Furthermore, arthropod diversity did not track abundance or litter depth. The lack of association between tree species and litter arthropods suggests that factors other than tree species diversity may better explain the high arthropod diversity in tropical forests.
Riparian plant litter quality increases with latitude.
Boyero, Luz; Graça, Manuel A S; Tonin, Alan M; Pérez, Javier; J Swafford, Andrew; Ferreira, Verónica; Landeira-Dabarca, Andrea; A Alexandrou, Markos; Gessner, Mark O; McKie, Brendan G; Albariño, Ricardo J; Barmuta, Leon A; Callisto, Marcos; Chará, Julián; Chauvet, Eric; Colón-Gaud, Checo; Dudgeon, David; Encalada, Andrea C; Figueroa, Ricardo; Flecker, Alexander S; Fleituch, Tadeusz; Frainer, André; Gonçalves, José F; Helson, Julie E; Iwata, Tomoya; Mathooko, Jude; M'Erimba, Charles; Pringle, Catherine M; Ramírez, Alonso; Swan, Christopher M; Yule, Catherine M; Pearson, Richard G
2017-09-05
Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce 'syndromes' resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.
Simulated nitrogen deposition affects wood decomposition by cord-forming fungi.
Bebber, Daniel P; Watkinson, Sarah C; Boddy, Lynne; Darrah, Peter R
2011-12-01
Anthropogenic nitrogen (N) deposition affects many natural processes, including forest litter decomposition. Saprotrophic fungi are the only organisms capable of completely decomposing lignocellulosic (woody) litter in temperate ecosystems, and therefore the responses of fungi to N deposition are critical in understanding the effects of global change on the forest carbon cycle. Plant litter decomposition under elevated N has been intensively studied, with varying results. The complexity of forest floor biota and variability in litter quality have obscured N-elevation effects on decomposers. Field experiments often utilize standardized substrates and N-levels, but few studies have controlled the decay organisms. Decomposition of beech (Fagus sylvatica) blocks inoculated with two cord-forming basidiomycete fungi, Hypholoma fasciculare and Phanerochaete velutina, was compared experimentally under realistic levels of simulated N deposition at Wytham Wood, Oxfordshire, UK. Mass loss was greater with P. velutina than with H. fasciculare, and with N treatment than in the control. Decomposition was accompanied by growth of the fungal mycelium and increasing N concentration in the remaining wood. We attribute the N effect on wood decay to the response of cord-forming wood decay fungi to N availability. Previous studies demonstrated the capacity of these fungi to scavenge and import N to decaying wood via a translocating network of mycelium. This study shows that small increases in N availability can increase wood decomposition by these organisms. Dead wood is an important carbon store and habitat. The responses of wood decomposers to anthropogenic N deposition should be considered in models of forest carbon dynamics.
Zavišić, Aljosa; Yang, Nan; Marhan, Sven; Kandeler, Ellen; Polle, Andrea
2018-01-01
Phosphorus (P) is an important nutrient, whose plant-available form phosphate is often low in natural forest ecosystems. Mycorrhizal fungi mine the soil for P and supply their host with this resource. It is unknown how ectomycorrhizal communities respond to changes in P availability. Here, we used young beech (Fagus sylvatica L.) trees in natural forest soil from a P-rich and P-poor site to investigate the impact of P amendment on soil microbes, mycorrhizas, beech P nutrition, and photosynthesis. We hypothesized that addition of P to forest soil increased P availability, thereby, leading to enhanced microbial biomass and mycorrhizal diversity in P-poor but not in P-rich soil. We expected that P amendment resulted in increased plant P uptake and enhanced photosynthesis in both soil types. Young beech trees with intact soil cores from a P-rich and a P-poor forest were kept in a common garden experiment and supplied once in fall with triple superphosphate. In the following summer, labile P in the organic layer, but not in the mineral top soil, was significantly increased in response to fertilizer treatment. P-rich soil contained higher microbial biomass than P-poor soil. P treatment had no effect on microbial biomass but influenced the mycorrhizal communities in P-poor soil and shifted their composition toward higher similarities to those in P-rich soil. Plant uptake efficiency was negatively correlated with the diversity of mycorrhizal communities and highest for trees in P-poor soil and lowest for fertilized trees. In both soil types, radioactive P tracing (H333PO4) revealed preferential aboveground allocation of new P in fertilized trees, resulting in increased bound P in xylem tissue and enhanced soluble P in bark, indicating increased storage and transport. Fertilized beeches from P-poor soil showed a strong increase in leaf P concentrations from deficient to luxurious conditions along with increased photosynthesis. Based on the divergent behavior of beech in P-poor and P-rich forest soil, we conclude that acclimation of beech to low P stocks involves dedicated mycorrhizal community structures, low P reserves in storage tissues and photosynthetic inhibition, while storage and aboveground allocation of additional P occurs regardless of the P nutritional status. PMID:29706979
Cornwell, William K; Cornelissen, Johannes H C; Amatangelo, Kathryn; Dorrepaal, Ellen; Eviner, Valerie T; Godoy, Oscar; Hobbie, Sarah E; Hoorens, Bart; Kurokawa, Hiroko; Pérez-Harguindeguy, Natalia; Quested, Helen M; Santiago, Louis S; Wardle, David A; Wright, Ian J; Aerts, Rien; Allison, Steven D; van Bodegom, Peter; Brovkin, Victor; Chatain, Alex; Callaghan, Terry V; Díaz, Sandra; Garnier, Eric; Gurvich, Diego E; Kazakou, Elena; Klein, Julia A; Read, Jenny; Reich, Peter B; Soudzilovskaia, Nadejda A; Vaieretti, M Victoria; Westoby, Mark
2008-10-01
Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation; (ii) the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation-soil feedbacks, and for improving forecasts of the global carbon cycle.
Du, Jingjing; Zhang, Yuyan; Guo, Wei; Li, Ningyun; Gao, Chaoshuai; Cui, Minghui; Lin, Zhongdian; Wei, Mingbao; Zhang, Hongzhong
2018-05-15
Titanium dioxide (TiO 2 ) nanoparticles have been applied in diverse commercial products, which could lead to toxic effects on aquatic microbes and would inhibit some important ecosystem processes. The study aimed to investigate the chronic impacts of TiO 2 nanoparticles with different concentrations (5, 50, and 500 mg L -1 ) on Populus nigra L. leaf decomposition in the freshwater ecosystem. After 50 d of decomposing, a significant decrease in decomposition rates was observed with higher concentrations of TiO 2 nanoparticles. During the period of litter decomposition, exposure of TiO 2 nanoparticles led to decreases in extracellular enzyme activities, which was caused by the reduction of microbial especially fungal biomass. In addition, the diversity and composition of the fungal community associated with litter decomposition were strongly affected by the concentrations of TiO 2 nanoparticles. The diversity and composition of the fungal community associated with litter decomposition was strongly affected. The abundance of Tricladium chaetocladium decreased with the increasing concentrations of TiO 2 nanoparticles, indicating the little contribution of the species to the litter decomposition. In conclusion, this study provided the evidence for the chronic exposure effects of TiO 2 nanoparticles on the litter decomposition and further the functions of freshwater ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Qiang; Yu, Pujia; Chen, Xiaoying; Li, Guangdi; Zhou, Daowei; Zheng, Wei
2014-01-01
In the current study, a field experiment was conducted to examine effects of litter on seedling emergence and early growth of four dominant weed species from the early successional stages of old field ecosystem and two perennial grassland species in late successional stages. Our results showed that increased litter cover decreased soil temperature and temperature variability over time and improved soil moisture status. Surface soil electrical conductivity increased as litter increased. The increased litter delayed seedling emergence time and rate. The emergence percentage of seedlings and establishment success rate firstly increased then decreased as litter cover increased. When litter biomass was below 600 g m(-2), litter increased seedlings emergence and establishment success in all species. With litter increasing, the basal diameter of seedling decreased, but seedling height increased. Increasing amounts of litter tended to increase seedling dry weight and stem leaf ratio. Different species responded differently to the increase of litter. Puccinellia tenuiflora and Chloris virgata will acquire more emergence benefits under high litter amount. It is predicted that Chloris virgata will dominate further in this natural succession old field ecosystem with litter accumulation. Artificial P. tenuiflora seeds addition may be required to accelerate old field succession toward matured grassland.
Li, Qiang; Yu, Pujia; Chen, Xiaoying; Li, Guangdi; Zhou, Daowei; Zheng, Wei
2014-01-01
In the current study, a field experiment was conducted to examine effects of litter on seedling emergence and early growth of four dominant weed species from the early successional stages of old field ecosystem and two perennial grassland species in late successional stages. Our results showed that increased litter cover decreased soil temperature and temperature variability over time and improved soil moisture status. Surface soil electrical conductivity increased as litter increased. The increased litter delayed seedling emergence time and rate. The emergence percentage of seedlings and establishment success rate firstly increased then decreased as litter cover increased. When litter biomass was below 600 g m−2, litter increased seedlings emergence and establishment success in all species. With litter increasing, the basal diameter of seedling decreased, but seedling height increased. Increasing amounts of litter tended to increase seedling dry weight and stem leaf ratio. Different species responded differently to the increase of litter. Puccinellia tenuiflora and Chloris virgata will acquire more emergence benefits under high litter amount. It is predicted that Chloris virgata will dominate further in this natural succession old field ecosystem with litter accumulation. Artificial P. tenuiflora seeds addition may be required to accelerate old field succession toward matured grassland. PMID:25110722
Richards, Travis M.; Krebs, Justin M.; McIvor, Carole C.
2011-01-01
Mangrove rivulus (Kryptolebias marmoratus) is one of the few species of fish that is semi-terrestrial and able to use exposed intertidal and potentially supratidal habitats for prolonged periods of time. Based on previous work demonstrating frequent use of subterranean crab burrows as well as damp leaf litter and logs, we examined the microhabitat associations of rivulus in a mosquito-ditched mangrove forest on the Gulf coast of Florida near the northern limit of its distribution. We captured 161 rivulus on 20 dates between late April and mid-December 2007 using trench traps. Fish ranged in size from 7 to 35 mm SL. Peak abundance in mid-summer coincided with recruitment of a new year-class. The three study sites occurred within 0.5 km of one another, and experienced similar water temperatures and salinities. Nevertheless, they differed in their degree of tidal inundation, standing stock of leaf litter, and density of entrances to fiddler crab burrows. We consistently observed the highest mean catches of rivulus away from permanent subtidal waters of mosquito ditches, at intermediate relative elevations, and where leaf litter was locally abundant. Density of entrances to crab burrows was apparently unrelated to rivulus distribution or abundance in these forests.
Long-Term Simulated Atmospheric Nitrogen Deposition Alters ...
Atmospheric nitrogen deposition has been suggested to increase forest carbon sequestration across much of the Northern Hemisphere; slower organic matter decomposition could contribute to this increase. At four sugar maple (Acer saccharum)-dominated northern hardwood forests, we previously observed that 10 years of chronic simulated nitrogen deposition (30 kg N ha-1 yr-1) increased soil organic carbon. Over three years at these sites, we investigated the effects of nitrogen additions on decomposition of two substrates with documented differences in biochemistry: leaf litter (more labile) and fine roots (more recalcitrant). Further, we combined decomposition rates with annual leaf and fine root litter production to estimate how nitrogen additions altered the accumulation of soil organic matter. Nitrogen additions marginally stimulated early-stage decomposition of leaf litter, a substrate with little acid-insoluble material (e.g., lignin). In contrast, nitrogen additions inhibited the late stage decomposition of fine roots, a substrate with high amount of acid insoluble material and a change consistent with observed decreases in lignin-degrading enzyme activities with nitrogen additions at these sites. At the ecosystem scale, the slower fine root decomposition led to additional root mass retention (g m-2), which explained 5, 48, and 52 % of previously-documented soil carbon accumulation due to nitrogen additions. Our results demonstrated that nitrogen deposition ha
Ren, Wei-ling; Guo, Jian-fen; Wu, Bo-bo; Wan, Jing-juan; Ji, Shu-rong; Liu, Xiao-fei
2015-04-01
A field experiment was conducted to understand the decomposition rates and chemical composition changes of leaf litter in logging residues of a 35-year-old secondary Castanopsis carlesii plantation over a period of one year. Mass loss rate of leaf litter showed an exponential decrease with time from May 2012 to April 2013, with a total 80% loss of initial dry mass. Net potassium (K) release was observed during this period, with only 5% of initial K remained. Nitrogen ( N) featured a pattern of accumulation at the early stage and release later, while phosphorus (P) exhibited a sequence of release, accumulation, and release. The remaining of N and P were 19% and 16% of their initial mass, respectively. The release rate was highest for K and the lowest for N. Decomposition of lignin indicated a trend of release-accumulation-release from May 2012 to October 2012, with no further significant change from November 2012 to the end of the experiment. The concentration of cellulose nearly unchanged during the experiment. The N/P rate increased with decomposition, ranging from 18.6 to 21.1. The lignin/N rate fluctuated greatly at the early stage and then almost stabilized thereafter.
Scale-dependent effects of nonnative plant invasion on host-seeking tick abundance
Adalsteinsson, Solny A.; D’Amico, Vincent; Shriver, W. Gregory; Brisson, Dustin; Buler, Jeffrey J.
2016-01-01
Nonnative, invasive shrubs can affect human disease risk through direct and indirect effects on vector populations. Multiflora rose (Rosa multiflora) is a common invader within eastern deciduous forests where tick-borne disease (e.g. Lyme disease) rates are high. We tested whether R. multiflora invasion affects blacklegged tick (Ixodes scapularis) abundance, and at what scale. We sampled host-seeking ticks at two spatial scales: fine-scale, within R. multiflora-invaded forest fragments; and patch scale, among R. multiflora-invaded and R. multiflora-free forest fragments. At a fine scale, we trapped 2.3 times more ticks under R. multiflora compared to paired traps 25 m away from R. multiflora. At the patch scale, we trapped 3.2 times as many ticks in R. multiflora-free forests compared to R. multiflora-invaded forests. Thus, ticks are concentrated beneath R. multiflora within invaded forests, but uninvaded forests support significantly more ticks. Among all covariates tested, leaf litter volume was the best predictor of tick abundance; at the patch scale, R. multiflora-invaded forests had less leaf litter than uninvaded forests. We suggest that leaf litter availability at the patch-scale plays a greater role in constraining tick abundance than the fine-scale, positive effect of invasive shrubs. PMID:27088044
NASA Astrophysics Data System (ADS)
Yang, Liyang; Chang, Soon-Woong; Shin, Hyun-Sang; Hur, Jin
2015-04-01
The source of river dissolved organic matter (DOM) during storm events has not been well constrained, which is critical in determining the quality and reactivity of DOM. This study assessed temporal changes in the contributions of four end members (weeds, leaf litter, soil, and groundwater), which exist in a small forested watershed (the Ehwa Brook, South Korea), to the stream DOM during two storm events, using end member mixing analysis (EMMA) based on spectroscopic properties of DOM. The instantaneous export fluxes of dissolved organic carbon (DOC), chromophoric DOM (CDOM), and fluorescent components were all enhanced during peak flows. The DOC concentration increased with the flow rate, while CDOM and humic-like fluorescent components were diluted around the peak flows. Leaf litter was dominant for the DOM source in event 2 with a higher rainfall, although there were temporal variations in the contributions of the four end members to the stream DOM for both events. The contribution of leaf litter peaked while that of deeper soils decreased to minima at peak flows. Our results demonstrated that EMMA based on DOM properties could be used to trace the DOM source, which is of fundamental importance for understanding the factors responsible for river DOM dynamics during storm events.
Regional variation in canopy transpiration of Central European beech forests.
Schipka, Florian; Heimann, Jutta; Leuschner, Christoph
2005-03-01
Forest hydrologists have hypothesised that canopy transpiration (E(c)) of European temperate forests occurs at rather similar rates in stands with different tree species and hydrologic regimes. We tested this hypothesis by synchronously measuring xylem sap flow in four mature stands of Fagus sylvatica along a precipitation gradient with the aim (1) of exploring the regional variability of annual canopy transpiration (E(c(t))) in this species, and (2) of analysing the relationship between precipitation (P) and E(c(t)). E(c(t)) rates of 216, 225, 272 and 303 mm year(-1) corresponded to precipitation averages of 520, 710, 801 and 1,040 mm year(-1) in the four stands. We explored the regional variability of E(c(t)) in Central European colline to sub-montane beech stands in two meta-analyses based on (1) existing sap flow data on beech (n=5 observations), or (2) all canopy transpiration data on beech obtained by different techniques (sap flow, micrometeorological or soil water budget approaches, n=25). With a coefficient of variation (CV) of 20%, the regional variability of E(c(t)) (213-421 mm year(-1)) was smaller than the variation in corresponding precipitation (550-1,480 mm year(-1)). The mean E(c(t)) for beech was 289 (+/-58) mm year(-1) (n=25). A humped-shaped relationship between E(c(t)) and P, with a broad transpiration maximum in the precipitation range from ca. 700 to 1,000 mm year(-1), was found which may indicate soil moisture limitation of transpiration for P
Andrade, Ricardo; Pascoal, Cláudia; Cássio, Fernanda
2016-07-01
Freshwater fungi play a key role in plant litter decomposition and have been used to investigate the relationships between biodiversity and ecosystem functioning in streams. Although there is evidence of positive effects of biodiversity on ecosystem processes, particularly on biomass produced, some studies have shown that neutral or negative effects may occur. We manipulated the composition and the number of species and genotypes in aquatic fungal assemblages creating different levels of genetic divergence to assess effects of fungal diversity on biomass produced and leaf decomposition. Generally, diversity effects on fungal biomass produced were positive, suggesting complementarity between species, but in assemblages with more species positive diversity effects were reduced. Genotype diversity and genetic divergence had net positive effects on leaf mass loss, but in assemblages with higher diversity leaf decomposition decreased. Our results highlight the importance of considering multiple biodiversity measures when investigating the relationship between biodiversity and ecosystem functioning. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Abril, Meritxell; Muñoz, Isabel; Menéndez, Margarita
2016-05-15
In temporary Mediterranean streams, flow fragmentation during summer droughts originates an ephemeral mosaic of terrestrial and aquatic habitat types. The heterogeneity of habitat types implies a particular ecosystem functioning in temporary streams that is still poorly understood. We assessed the initial phases of leaf litter decomposition in selected habitat types: running waters, isolated pools and moist and dry streambed sediments. We used coarse-mesh litter bags containing Populus nigra leaves to examine decomposition rates, microbial biomass, macroinvertebrate abundance and dissolved organic carbon (DOC) release rates in each habitat type over an 11-day period in late summer. We detected faster decomposition rates in aquatic (running waters and isolated pools) than in terrestrial habitats (moist and dry streambed sediments). Under aquatic conditions, decomposition was characterized by intense leaching and early microbial colonization, which swiftly started to decompose litter. Microbial colonization in isolated pools was primarily dominated by bacteria, whereas in running waters fungal biomass predominated. Under terrestrial conditions, leaves were most often affected by abiotic processes that resulted in small mass losses. We found a substantial decrease in DOC release rates in both aquatic habitats within the first days of the study, whereas DOC release rates remained relatively stable in the moist and dry sediments. This suggests that leaves play different roles as a DOC source during and after flow fragmentation. Overall, our results revealed that leaf decomposition is heterogeneous during flow fragmentation, which has implications related to DOC utilization that should be considered in future regional carbon budgets. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Ji-Li; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Jin, Sen
2013-12-01
Mongolian oak (Quercus mongolica) is an important constructive and accompanying species in mixed broadleaf-conifer forest in Northeast China, In this paper, a laboratory burning experiment was conducted under zero-slope and no-wind conditions to study the effects of fuel moisture content, loading, and thickness on the fireline intensity, fuel consumption, and combustion efficiency of the Mongolian oak leaf litter fuelbed. The fuel moisture content, loading, and thickness all had significant effects on the three fire behavior indices, and there existed interactions between these three affecting factors. Among the known models, the Byram model could be suitable for the prediction of local leaf litter fire intensity only after re-parameterization. The re-estimated alpha and beta parameters of the re-parameterized Byram model were 98.009 and 1.099, with an adjusted determination coefficient of 0.745, the rooted mean square error (RMSE) of 8.676 kW x m(-1), and the mean relative error (MRE) of 21%, respectively (R2 = 0.745). The re-estimated a and b by the burning efficiency method proposed by Albini were 0.069 and 0.169, and the re-estimated values were all higher than 93%, being mostly overestimated. The Consume model had a stronger suitability for the fuel. The R2 of the general linear models established for fireline intensity, fuel consumption, and burning efficiency was 0.82, 0.73 and 0.53, and the RMSE was 8.266 kW x m(-1) 0.081 kg x m(-2), and 0.203, respectively. In low intensity surface fires, the fine fuels could not be completely consumed, and thus, to consider the leaf litter and fine fuel in some forest ecosystems being completely consumed would overestimate the carbon release from forest fires.
Ferreira, Rodrigo B; Beard, Karen H; Crump, Martha L
2016-01-01
Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil's Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i) 200 m inside the forest, ii) 50 m inside the forest, iii) at the forest edge, and iv) 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types). By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders) was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH > 15 cm) and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog distributions in response to edge effect and matrix types, and can guide more effective management and conservation actions.
Ferreira, Rodrigo B.; Beard, Karen H.; Crump, Martha L.
2016-01-01
Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil’s Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i) 200 m inside the forest, ii) 50 m inside the forest, iii) at the forest edge, and iv) 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types). By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders) was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH > 15 cm) and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog distributions in response to edge effect and matrix types, and can guide more effective management and conservation actions. PMID:27272328
García-Martínez, Miguel Á; Valenzuela-González, Jorge E; Escobar-Sarria, Federico; López-Barrera, Fabiola; Castaño-Meneses, Gabriela
2017-01-01
Riparian vegetation is a distinctive and ecologically important element of landscapes worldwide. However, the relative influence of the surrounding landscape on the conservation of the biodiversity of riparian remnants in human-modified tropical landscapes is poorly understood. We studied the surrounding landscape to evaluate its influence on leaf-litter-ant alpha and beta diversity in riparian remnants in the tropical montane cloud forest region of central Veracruz, Mexico. Sampling was carried out in 12 sites with riparian vegetation during both rainy (2011) and dry (2012) seasons. Ten leaf-litter samples were collected along a 100-m transect per site and processed with Berlese-Tullgren funnels and Winkler sacks. Using remotely-sensed and ground-collected data, we characterized the landscape around each site according to nine land cover types and computed metrics of landscape composition and configuration. We collected a total of 8,684 ant individuals belonging to 53 species, 22 genera, 11 tribes, and 7 subfamilies. Species richness and the diversity of Shannon and Simpson increased significantly in remnants immersed in landscapes with a high percentage of riparian land cover and a low percentage of land covers with areas reforested with Pinus, cattle pastures, and human settlements and infrastructure. The composition of ant assemblages was a function of the percentage of riparian land cover in the landscape. This study found evidence that leaf-litter ants, a highly specialized guild of arthropods, are mainly impacted by landscape composition and the configuration of the focal remnant. Maintaining or improving the surrounding landscape quality of riparian vegetation remnants can stimulate the movement of biodiversity among forest and riparian remnants and foster the provision of ecosystem services by these ecosystems. Effective outcomes may be achieved by considering scientific knowledge during the early stages of riparian policy formulation, in addition to integrating riparian management strategies with broader environmental planning instruments.
Valenzuela-González, Jorge E.; Escobar-Sarria, Federico; López-Barrera, Fabiola; Castaño-Meneses, Gabriela
2017-01-01
Riparian vegetation is a distinctive and ecologically important element of landscapes worldwide. However, the relative influence of the surrounding landscape on the conservation of the biodiversity of riparian remnants in human-modified tropical landscapes is poorly understood. We studied the surrounding landscape to evaluate its influence on leaf-litter-ant alpha and beta diversity in riparian remnants in the tropical montane cloud forest region of central Veracruz, Mexico. Sampling was carried out in 12 sites with riparian vegetation during both rainy (2011) and dry (2012) seasons. Ten leaf-litter samples were collected along a 100-m transect per site and processed with Berlese-Tullgren funnels and Winkler sacks. Using remotely-sensed and ground-collected data, we characterized the landscape around each site according to nine land cover types and computed metrics of landscape composition and configuration. We collected a total of 8,684 ant individuals belonging to 53 species, 22 genera, 11 tribes, and 7 subfamilies. Species richness and the diversity of Shannon and Simpson increased significantly in remnants immersed in landscapes with a high percentage of riparian land cover and a low percentage of land covers with areas reforested with Pinus, cattle pastures, and human settlements and infrastructure. The composition of ant assemblages was a function of the percentage of riparian land cover in the landscape. This study found evidence that leaf-litter ants, a highly specialized guild of arthropods, are mainly impacted by landscape composition and the configuration of the focal remnant. Maintaining or improving the surrounding landscape quality of riparian vegetation remnants can stimulate the movement of biodiversity among forest and riparian remnants and foster the provision of ecosystem services by these ecosystems. Effective outcomes may be achieved by considering scientific knowledge during the early stages of riparian policy formulation, in addition to integrating riparian management strategies with broader environmental planning instruments. PMID:28234948
Does 'you are what you eat' apply to mangrove grapsid crabs?
Bui, Thi Hong Hanh; Lee, Shing Yip
2014-01-01
In tropical mangroves, brachyuran crabs have been observed to consume high percentages of leaf litter production. However, questions concerning their ability to assimilate this low-quality food remain, as stable isotope analysis of C and N does not seem to support assimilation. Individuals of the common eastern Australian mangrove grapsid Parasesarma erythodactyla feeding on a mangrove leaf litter or mangrove+microphytobenthos diet developed a significantly higher hepatosomatic index than those with access to only sediment. Lipid biomarker analysis and feeding experiments using (13)C and (15)N-enriched mangrove leaf litter confirmed rapid assimilation of mangrove C and N by P. erythodactyla. Eight-week feeding experiments utilizing three food types (mangrove leaf litter, microphytobenthos and prawn muscle) established different food-specific trophic discrimination values (Δδ(13)C and Δδ(15)N) that are significantly different from those commonly applied to mixing model calculations. The mean Δδ(13)C(crab-mangrove) of +5.45‰ was close to the mean and median literature values for grapsid-mangrove pairs in 29 past studies (+5.2 ± 1.8‰ and +5.6‰, respectively), suggesting that this large discrimination may generally be characteristic of detritivorous grapsid crabs. Solutions from the IsoConc mixing model using our determined trophic discrimination values suggest significantly higher and dominant contributions of mangrove C to the diet than those based on the global mean trophic discrimination values. Our results reaffirm the physiological capacity for and important mediating role of grapsid crabs in processing low-quality mangrove C in tropical estuaries, and caution against the use of global trophic discrimination values in stable isotope analysis of food-web data, especially those involving detritivores. While recent studies have questioned the trophic significance of mangrove detritus in coastal food chains, the contribution of this productive carbon source needs to be re-assessed in the light of these data.
Does ‘You Are What You Eat’ Apply to Mangrove Grapsid Crabs?
Bui, Thi Hong Hanh; Lee, Shing Yip
2014-01-01
In tropical mangroves, brachyuran crabs have been observed to consume high percentages of leaf litter production. However, questions concerning their ability to assimilate this low-quality food remain, as stable isotope analysis of C and N does not seem to support assimilation. Individuals of the common eastern Australian mangrove grapsid Parasesarma erythodactyla feeding on a mangrove leaf litter or mangrove+microphytobenthos diet developed a significantly higher hepatosomatic index than those with access to only sediment. Lipid biomarker analysis and feeding experiments using 13C and 15N-enriched mangrove leaf litter confirmed rapid assimilation of mangrove C and N by P. erythodactyla. Eight-week feeding experiments utilizing three food types (mangrove leaf litter, microphytobenthos and prawn muscle) established different food-specific trophic discrimination values (Δδ13C and Δδ15N) that are significantly different from those commonly applied to mixing model calculations. The mean Δδ13C(crab-mangrove) of +5.45‰ was close to the mean and median literature values for grapsid-mangrove pairs in 29 past studies (+5.2±1.8‰ and +5.6‰, respectively), suggesting that this large discrimination may generally be characteristic of detritivorous grapsid crabs. Solutions from the IsoConc mixing model using our determined trophic discrimination values suggest significantly higher and dominant contributions of mangrove C to the diet than those based on the global mean trophic discrimination values. Our results reaffirm the physiological capacity for and important mediating role of grapsid crabs in processing low-quality mangrove C in tropical estuaries, and caution against the use of global trophic discrimination values in stable isotope analysis of food-web data, especially those involving detritivores. While recent studies have questioned the trophic significance of mangrove detritus in coastal food chains, the contribution of this productive carbon source needs to be re-assessed in the light of these data. PMID:24551220
Martínez, Aingeru; Pérez, Javier; Molinero, Jon; Sagarduy, Mikel; Pozo, Jesús
2015-01-15
Although temporary streams represent a high proportion of the total number and length of running waters, historically the study of intermittent streams has received less attention than that of perennial ones. The goal of the present study was to assess the effects of flow cessation on litter decomposition in calcareous streams under oceanic climate conditions. For this, leaf litter of alder was incubated in four streams (S1, S2, S3 and S4) with different flow regimes (S3 and S4 with zero-flow periods) from northern Spain. To distinguish the relative importance and contribution of decomposers and detritivores, fine- and coarse-mesh litter bags were used. We determined processing rates, leaf-C, -N and -P concentrations, invertebrate colonization in coarse bags and benthic invertebrates. Decomposition rates in fine bags were similar among streams. In coarse bags, only one of the intermittent streams, S4, showed a lower rate than that in the other ones as a consequence of lower invertebrate colonization. The material incubated in fine bags presented higher leaf-N and -P concentrations than those in the coarse ones, except in S4, pointing out that the decomposition in this stream was driven mainly by microorganisms. Benthic macroinvertebrate and shredder density and biomass were lower in intermittent streams than those in perennial ones. However, the bags in S3 presented a greater amount of total macroinvertebrates and shredders comparing with the benthos. The most suitable explanation is that the fauna find a food substrate in bags less affected by calcite precipitation, which is common in the streambed at this site. Decomposition rate in coarse bags was positively related to associated shredder biomass. Thus, droughts in streams under oceanic climate conditions affect mainly the macroinvertebrate detritivore activity, although macroinvertebrates may show distinct behavior imposed by the physicochemical properties of water, mainly travertine precipitation, which can override the flow intermittence effects. Copyright © 2014. Published by Elsevier B.V.
Jochum, Malte; Barnes, Andrew D; Weigelt, Patrick; Ott, David; Rembold, Katja; Farajallah, Achmad; Brose, Ulrich
2017-09-01
High biodiversity and biomass of soil communities are crucial for litter decomposition in terrestrial ecosystems such as tropical forests. However, the leaf litter that these communities consume is of particularly poor quality as indicated by elemental stoichiometry. The impact of resource quantity, quality and other habitat parameters on species richness and biomass of consumer communities is often studied in isolation, although much can be learned from simultaneously studying both community characteristics. Using a dataset of 780 macro-invertebrate consumer species across 32 sites in tropical lowland rain forest and agricultural systems on Sumatra, Indonesia, we investigated the effects of basal resource stoichiometry (C:X ratios of N, P, K, Ca, Mg, Na, S in local leaf litter), litter mass (basal resource quantity and habitat space), plant species richness (surrogate for litter habitat heterogeneity), and soil pH (acidity) on consumer species richness and biomass across different consumer groups (i.e. 3 feeding guilds and 10 selected taxonomic groups). In order to distinguish the most important predictors of consumer species richness and biomass, we applied a standardised model averaging approach investigating the effects of basal resource stoichiometry, litter mass, plant species richness and soil pH on both consumer community characteristics. This standardised approach enabled us to identify differences and similarities in the magnitude and importance of such effects on consumer species richness and biomass. Across consumer groups, we found litter mass to be the most important predictor of both species richness and biomass. Resource stoichiometry had a more pronounced impact on consumer species richness than on their biomass. As expected, taxonomic groups differed in which resource and habitat parameters (basal resource stoichiometry, litter mass, plant species richness and pH) were most important for modulating their community characteristics. The importance of litter mass for both species richness and biomass indicates that these tropical consumers strongly depend on habitat space and resource availability. Our study supports previous theoretical work indicating that consumer species richness is jointly influenced by resource availability and the balanced supply of multiple chemical elements in their resources. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Flammability across the gymnosperm phylogeny: the importance of litter particle size.
Cornwell, William K; Elvira, Alba; van Kempen, Lute; van Logtestijn, Richard S P; Aptroot, André; Cornelissen, J Hans C
2015-04-01
Fire is important to climate, element cycles and plant communities, with many fires spreading via surface litter. The influence of species on the spread of surface fire is mediated by their traits which, after senescence and abscission, have 'afterlife' effects on litter flammability. We hypothesized that differences in litter flammability among gymnosperms are determined by litter particle size effects on litterbed packing. We performed a mesocosm fire experiment comparing 39 phylogenetically wide-ranging gymnosperms, followed by litter size and shape manipulations on two chemically contrasting species, to isolate the underlying mechanism. The first-order control on litter flammability was, indeed, litter particle size in both experiments. Most gymnosperms were highly flammable, but a prominent exception was the non-Pinus Pinaceae, in which small leaves abscised singly produced dense, non-flammable litterbeds. There are two important implications: first, ecosystems dominated by gymnosperms that drop small leaves separately will develop dense litter layers, which will be less prone to and inhibit the spread of surface litter fire. Second, some of the needle-leaved species previously considered to be flammable in single-leaf experiments were among the least flammable in litter fuel beds, highlighting the role of the litter traits of species in affecting surface fire regimes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
D. Jean Lodge; Sharon A. Cantrell; Grizelle Gonzalez
2014-01-01
Fungi are important for maintaining fast rates of decomposition in low quality tropical leaf litter via immobilization and translocation of limiting nutrients from sources to sinks and conserving nutrients after disturbance. Tropical trees often have low nutrient to carbon ratios. Disturbances such as hurricanes and logging transfer a large mass of green leaves with...
Henry L. Gholz; David A. Wedin; Stephen M. Smitherman; Mark E. Harmon; William J. Parton
2000-01-01
We analysed data on mass loss after five years of decomposition in the field from both fine root and leaf litters from two highly contrasting trees, Drypetes glallca, a tropical hardwood tree from Puerto Rico, and pine species from North America as part of the Long-Term Intersite Decomposition Experiment (LIDET). LIDET is a reciprocal litterbag study...
Michael C. Demchik; William E. Sharpe
2004-01-01
Previous research has shown that decomposition of organic matter is slower in soils with high levels of soil acidity and available aluminum (Al). The objective of this experiment was to determine if differences in decomposition rates of northern red oak leaves occurred between extremely acidic and less acidic sites that also differed in oak mortality. Leaf litter from...
Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers.
Follstad Shah, Jennifer J; Kominoski, John S; Ardón, Marcelo; Dodds, Walter K; Gessner, Mark O; Griffiths, Natalie A; Hawkins, Charles P; Johnson, Sherri L; Lecerf, Antoine; LeRoy, Carri J; Manning, David W P; Rosemond, Amy D; Sinsabaugh, Robert L; Swan, Christopher M; Webster, Jackson R; Zeglin, Lydia H
2017-08-01
Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. Here, we synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by the activation energy (E a , in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which E a could be calculated. Higher values of E a were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). E a values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the E a was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5-21% with a 1-4 °C rise in water temperature, rather than a 10-45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in E a values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that E a values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale. © 2017 John Wiley & Sons Ltd.
Tree leaf control on low flow water quality in a small Virginia stream
Slack, K.V.; Feltz, H.R.
1968-01-01
Impaired water quality in a small stream was related to autumn leaf fall from riparian vegetation. Dissolved oxygen and pH decreased, and water color, specific conductance, iron, manganese, and bicarbonate values increased as the rate of leaf fall increased. Similar quality changes occurred in laboratory cultures of tree leaves in filtered stream water, but the five leaf species studied produced widely differing results. Stream quality improved rapidly following channel flushing by storm flow. Organic loading by tree litter can exert significant control on water composition, especially during low flow.
Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.
Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S
2016-09-01
We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.
NASA Astrophysics Data System (ADS)
Rambey, R.; Delvian; Sianturi, S. D.
2018-02-01
Research on the decomposition rate of Rhizopora stylosa litter in Tanjung Rejo village, Deli Serdang Regency, North Sumatera Province was conducted from September 2016 to May 2017. The objectives of this research were (1) to measure the decomposition rate of Rhizophora stylosa litter and (2) to determine the type of functional fungi in decomposition of litter. R. stylosa litter decomposition is characterized by a reduction in litter weight per observation period. Decomposition rate tended to increase every week, which was from 0.238 in the seventh day and reached 0.302 on the fiftysixthth day. The decomposition rate of R. stylosa litter of leaf was high with the value of k per day > 0,01 caused by macrobentos and fungi, and also the decomposition of R. stylosa litter conducted in the pond area which is classified far from the coast. Therefore, to enable the high population of fungi which affect the decomposition rate of the litter. The types of fungi decomposers were: Aspergillus sp.-1, Aspergillus sp.-2, Aspergillus sp.-3, Rhizophus sp.-1., Rhizophus sp.-2, Penicillium sp., Syncephalastrum sp. and Fusarium sp.
Michelot, Alice; Simard, Sonia; Rathgeber, Cyrille; Dufrêne, Eric; Damesin, Claire
2012-08-01
Monitoring cambial phenology and intra-annual growth dynamics is a useful approach for characterizing the tree growth response to climate change. However, there have been few reports concerning intra-annual wood formation in lowland temperate forests with high time resolution, especially for the comparison between deciduous and coniferous species. The main objective of this study was to determine how the timing, duration and rate of radial growth change between species as related to leaf phenology and the dynamics of non-structural carbohydrates (NSC) under the same climatic conditions. We studied two deciduous species, Fagus sylvatica L. and Quercus petraea (Matt.) Liebl., and an evergreen conifer, Pinus sylvestris L. During the 2009 growing season, we weekly monitored (i) the stem radial increment using dendrometers, (ii) the xylem growth using microcoring and (iii) the leaf phenology from direct observations of the tree crowns. The NSC content was also measured in the eight last rings of the stem cores in April, June and August 2009. The leaf phenology, NSC storage and intra-annual growth were clearly different between species, highlighting their contrasting carbon allocation. Beech growth began just after budburst, with a maximal growth rate when the leaves were mature and variations in the NSC content were low. Thus, beech radial growth seemed highly dependent on leaf photosynthesis. For oak, earlywood quickly developed before budburst, which probably led to the starch decrease quantified in the stem from April to June. For pine, growth began before the needles unfolding and the lack of NSC decrease during the growing season suggested that the substrates for radial growth were new assimilates of the needles from the previous year. Only for oak, the pattern determined from the intra-annual growth measured using microcoring differed from the pattern determined from dendrometer data. For all species, the ring width was significantly influenced by growth duration and not by growth rate, which differs from previous studies. The observed between-species difference at the intra-annual scale is key information for anticipating suitability of future species in temperate forests.
Jess K. Zimmerman; William M. Pulliam; D. Jean Lodge; Vanessa Quinones-Orfila; Ned Fetcher; Sandra Guzman-Grajales; John A. Parrotta; Clyde E. Asbury; Lars R. Walker; Robert B. Waide
1995-01-01
Following damage caused by Hurricane Hugo (September 1989) we monitored inorgaÂnic nitrogen availability in soil twice in 1990, leaf area index in 1991 and 1993, and litter production from 1990 through 1992 in subtropical wet forest of eastem Puerto Rico. Experimental removal of litter and woody debris generated by the hurricane (plus any standing stocks present before...
Cathryn H. Greenberg
2001-01-01
Reptile and amphibian communities were sampled in intact gaps created by wind disturbance, salvage-logged gaps, and closed canopy mature forest (controls). Sampling was conducted during JuneâOctober in 1997 and 1998 using drift fences with pitfall and funnel traps. Basal area of live trees, shade, leaf litter coverage, and litter depth was highest in controls and...
Chronic nitrogen deposition influences the chemical dynamics ...
Atmospheric nitrogen deposition induces a forest carbon sink across broad parts of the Northern Hemisphere; this carbon sink may partly result from slower litter decomposition. Although microbial responses to experimental nitrogen deposition have been well-studied, evidence linking these microbial responses to changes in the degradation of specific compounds in decaying litter is sparse. We used wet chemistry and Fourier transform infrared spectroscopy (FTIR) methodologies to study the effects of chronic simulated nitrogen deposition on leaf litter and fine root chemistry during a three-year decomposition experiment at four northern hardwood forests in the north-central USA. Leaf litter and fine roots were highly different in initial chemistry such as concentrations of acid-insoluble fraction (AIF, or Klason lignin) and condensed tannins (CTs). These initial differences persisted over the course of decomposition. Results from gravimetrically-defined AIF and lignin/carbohydrate reference IR peak ratios both provide evidence that lignin in fine roots was selectively preserved under simulated nitrogen deposition. Lignin/carbohydrate peak ratios were strongly correlated with AIF, suggesting that AIF is a good predictor of lignin. Because AIF is abundant in fine roots, slower AIF degradation was the major driver of the slower fine root decomposition under nitrogen enrichment, explaining 73.9 % of the additional root mass retention. Nitrogen enrichment also slowed the
Chen, Ya-mei; He, Run-lian; Deng, Chang-chun; Yang, Wan-qin; Zhang, Jian; Yang, Lin; Liu, Yang
2015-11-01
The mass loss and lignocellulose enzyme activities of Actinothuidium hookeri residues and Cystopteris montana leaf litter in coniferous forest and timberline of western Sichuan, China were investigated. The results showed that both the mass loss rates of A. hookeri and C. Montana in timberline were higher than those in coniferous forest, while enzyme activities in timberline were lower than those in coniferous forest which was contrast with the hypothesis. The mass loss of two ground covers had significant differences in different seasons. The mass loss rate of A. hookeri in snow-covered season accounted for 69.8% and 83.0% of the whole year' s in timberline and coniferous forest, while that of C. montana in the growing season accounted for 82.6% and 83.4% of the whole year' s in timberline and coniferous forest, respectively. C. montana leaf litter decayed faster in the growing season, which was consistent with its higher cellulase activity in the growing season. The result illustrated that the enzymatic hydrolysis of cellulose and hemicellulose might be the main driving force for the early stage of litter decomposition. Multiple linear regression analysis showed that environmental factors and initial litter quality could explain 45.8%-85.1% variation of enzyme activity. The enzyme activities of A. hookeri and C. montana in the process of decomposition were mainly affected by the freeze-thaw cycle in snow-covered season.
Carbon and nitrogen loss during initial erosion processes under litter cover
NASA Astrophysics Data System (ADS)
Seitz, Steffen; Goebes, Philipp; Kühn, Peter; Scholten, Thomas
2013-04-01
Soil erosion translocates carbon (C) and nitrogen (N) from the soil pool. In natural or near-natural ecosystems like forests the soil is usually covered by litter. It can be assumed that litter decomposition and dust particles adhered on the surface of the leaves contribute to C and N fluxes during erosion processes as well. To our knowledge, the contribution of these compartments to the C and N balance of soil erosion is not yet known. As part of the "New Integrated Litter Experiment" within the DFG research unit "Biodiversity and Ecosystem Functioning (BEF)-China" we conducted a rainfall simulation experiment to quantify the role of litter cover for C and N fluxes during soil erosion in subtropical China. 96 mini runoff plots (40cm x 40cm) were established and divided into four blocks, two of them replicates. Seven different domestic litter species were used in this study combined to 1-species, 2-species and 4-species mixtures and complemented by none species plots (bare ground). Erosion processes were initiated by artificial rainfall using a rainfall simulator with a continuous and stable intensity of 60 mm/h. Sediment discharge and runoff volume were measured every 5 minutes for 20 minutes of rainfall duration and filtrated in the laboratory. Two time steps of rainfall simulation were carried out (summer 2012 and autumn 2012). Total C and N content were quantified from the solid sediment and the liquid runoff volume. Leaf decomposition rates were calculated based on the mass, leaf litter coverage was measured and loss of C and N contents from the decomposing leaves were provided by other project members. Additionally, C and N content of corresponding soils were designated. Lab work and statistical analysis are still ongoing. First results show that C and N concentrations of runoff and sediment are slightly higher for plots covered by litter than bare plots during the first run in summer 2012. It seems that 4-species plots have the highest C and N flux during rainfall simulation. Further analysis will focus on the role of litter diversity on C and N concentration and fluxes during initial erosion processes.
NASA Astrophysics Data System (ADS)
Andivia, Enrique; Rolo, Víctor; Jonard, Mathieu; Formánek, Pavel; Ponette, Quentin
2015-04-01
Management of existing forests has been identified as the main strategy to enhance carbon sequestration and to mitigate the impact of climate change on forest ecosystems. In this direction, the conversion of Norway spruce monospecific stands into mixed stands by intermingling individuals of European beech is an ongoing trend in adaptive forest management strategies, especially in Central Europe. However, studies assessing the effect of changes in tree species composition on soil organic carbon (SOC) and nitrogen stocks are still scarce and there is a lack of scientific evidence supporting tree species selection as a feasible management option to mitigate the effects of predicted future climatic scenarios. We compared C and N stocks in the forest floor (litter and humus) and the top 10 cm of mineral soil in two monospecific stands of Norway spruce and European beech and in a mixed stand of both species. The effect of tree species composition on the C and N stocks and its spatial distribution was evaluated based on litterfall, root production, elevation and canopy opening, and by using a combination of modelling and geostatistical techniques. C stock was highest in the Norway spruce and the mixed stands, while N stock was highest in the mixed stand and lowest under European beech, with intermediate values in the Norway spruce stand. Each forest type showed differences in forest floor properties, suggesting that species composition is an important factor governing forest floor characteristics, including C and N stocks. The distribution of C and N stocks between forest soil layers was different for each forest type. C and N stocks were highest in the hummus layer under Norway spruce, whereas both stocks were lowest in the European beech stand. On the other hand, the mixed stand showed the highest C and N accumulation in the uppermost mineral soil layer, while the monospecific stands showed similar values. Litterfall was the main contribution to C and N stocks of the humus layer in monospecific stands. Forest floor stocks were also influenced by microelevation and canopy opening in the European beech stand and by microelevation in the Norway spruce stand. Root turnover and Norway spruce litterfall proportion directly increased C stocks in the mineral soil of the mixed stand. Additionally, N stock in the forest floor of the mixed stand was positively correlated with the Norway spruce litterfall proportion. Spatial analyses further confirmed that species composition was the main source of spatial variability of SOC stock in mixed stands. These results suggest that the admixture of individuals of European beech and Norway spruce may lead to a translocation of SOC from the forest floor to the better protected mineral soil layer, which might be beneficial for long term SOC sequestration.
Influences of travertine dam formation on leaf litter decomposition and algal accrual
Codey D. Carter; Jane C. Marks
2007-01-01
At the time of this study Fossil Creek was being considered as a site for the restoration of a native fish assemblage, however there was concern amongst fisheries managers about the stream being food limited due to calcium carbonate (travertine) deposition. To evaluate the effects of travertine deposition on the aquatic food base we used leaf litterbags to compare...
Effects of Fungicides on Aquatic Fungi and Bacteria
NASA Astrophysics Data System (ADS)
Conners, D. E.; Rosemond, A. D.; Black, M. C.
2005-05-01
Aquatic microorganisms play an important role in conditioning leaf litter that enters streams and serves as an important base of production for consumers. Contamination of streams by fungicides may adversely affect microorganisms and alter leaf litter processing rates. Unfortunately, microorganisms are rarely used in acute toxicity tests for fungicide evaluation and registration. We adapted the resazurin reduction assay, which is used in medical microbiology, to assess the acute toxicity of four fungicides (azoxystrobin, trifloxystrobin, kresoxim-methyl and chlorothalonil) to aquatic fungi (Articulospora tetracladia) and bacteria (Cytophaga spp.), and investigated the ability of the toxicants to inhibit leaf breakdown in microcosms. Fungi were more sensitive to fungicides than many standard test organisms (cladocerans, green algae, trout), while bacteria were often the least sensitive. All of the fungicides except kresoxim-methyl, when added to microcosms at concentrations that inhibited the fungi by 90 percent in acute tests, reduced leaf breakdown rates by an average of 14.7 percent. Thus, aquatic fungi and their associated functions in streams may be relatively sensitive to fungicides applied terrestrially that enter streams through non-point sources. These data highlight the importance of including aquatic fungi in safety assessments of pesticides for protection of microbial function.
Isotopic characteristics of canopies in simulated leaf assemblages
NASA Astrophysics Data System (ADS)
Graham, Heather V.; Patzkowsky, Mark E.; Wing, Scott L.; Parker, Geoffrey G.; Fogel, Marilyn L.; Freeman, Katherine H.
2014-11-01
The geologic history of closed-canopy forests is of great interest to paleoecologists and paleoclimatologists alike. Closed canopies have pronounced effects on local, continental and global rainfall and temperature patterns. Although evidence for canopy closure is difficult to reconstruct from the fossil record, the characteristic isotope gradients of the ;canopy effect; could be preserved in leaves and proxy biomarkers. To assess this, we employed new carbon isotopic data for leaves collected in diverse light environments within a deciduous, temperate forest (Maryland, USA) and for leaves from a perennially closed canopy, moist tropical forest (Bosque Protector San Lorenzo, Panamá). In the tropical forest, leaf carbon isotope values range 10‰, with higher δ13Cleaf values occurring both in upper reaches of the canopy, and with higher light exposure and lower humidity. Leaf fractionation (Δleaf) varied negatively with height and light and positively with humidity. Vertical 13C enrichment in leaves largely reflects changes in Δleaf, and does not trend with δ13C of CO2 within the canopy. At the site in Maryland, leaves express a more modest δ13C range (∼6‰), with a clear trend that follows both light and leaf height. Using a model we simulate leaf assemblage isotope patterns from canopy data binned by elevation. The re-sampling (bootstrap) model determined both the mean and range of carbon isotope values for simulated leaf assemblages ranging in size from 10 to over 1000 leaves. For the tropical forest data, the canopy's isotope range is captured with 50 or more randomly sampled leaves. Thus, with a sufficient number of fossil leaves it is possible to distinguish isotopic gradients in an ancient closed canopy forest from those in an open forest. For very large leaf assemblages, mean isotopic values approximate the δ13C of carbon contributed by leaves to soil and are similar to observed δ13Clitter values at forested sites within Panamá, including the site where leaves were sampled. The model predicts a persistent ∼1‰ difference in δ13Clitter for the two sites which is consistent with higher water availability in the tropical forests. This work provides a new framework for linking contemporary ecological observations to the geochemical record using flux-weighted isotope data and lends insights to the effect of forest architecture on organic and isotopic records of ancient terrestrial ecosystems. How many leaves from a litter assemblage are necessary to distinguish the isotopic gradient characteristics of canopy closure? Are mean δ13Cleaf values for a litter assemblage diagnostic of a forest biome? Can we predict the δ13C values of cumulative litter, soil organic matter, and organic carbon in sedimentary archives using litter flux and isotope patterns in canopies? We determined the δ13C range and mean for different sized assemblages of leaves sampled from data for each forest. We re-sampled very high numbers of leaves in order to estimate the isotopic composition of cumulative carbon delivered to soils as litter, and compared these results to available data from forest soils. Modeled leaf and soil organic carbon isotope patterns in this study offer insights to how forest structure can be derived from carbon isotope measurements of fossil leaves, as well as secondary material - such as teeth, hair, paleosol carbonates, or organic soil carbon (van der Merwe and Medina, 1989; Koch, 1998; Secord et al., 2008; Levin et al., 2011).Distinct climate and seasonal difference in the Panamá and Maryland, USA forests are reflected in their canopy isotope gradients. In the tropical forest of Panamá, leaves are produced throughout the year within a canopy that is both extensively and persistently closed (Leigh, 1975; Lowman and Wittman, 1996). In the temperate forest of Maryland leaves are produced during the spring when canopy conditions are relatively open (Korner and Basler, 2010).
NASA Astrophysics Data System (ADS)
Nordhaus, Inga; Salewski, Tabea; Jennerjahn, Tim C.
2017-06-01
Mangrove leaves form a large pool of carbon, nitrogen and energy that is a major driver of element cycles and detrital food webs inside mangrove forests as well as in adjacent coastal waters. However, there are large gaps in knowledge on the transformation pathways and ultimate fate of leaf nitrogen. Therefore, the main objective of this study was to determine the amount and composition of nitrogenous organic matter and possible species-specific differences during the decomposition of mangrove leaf litter. For that purpose a three month decomposition experiment with litterbags was conducted using leaves of Aegiceras corniculatum, Avicennia alba, Ceriops decandra, Rhizophora apiculata, and Sonneratia caseolaris in the mangrove forest of the Segara Anakan Lagoon, Java, Indonesia. Detrital leaves were analyzed for bulk carbon and total nitrogen (N), stable carbon and nitrogen isotope composition (δ13C, δ15N), total hydrolyzable amino acids (THAA) and total hydrolyzable hexosamines (THHA). Decomposition rates (k d-1) were highest and tM50 values (when 50% of the original mass had been degraded) lowest in S. caseolaris (k = 0.0382 d-1; tM50 = 18 days), followed by A. alba, C. decandra, A. corniculatum, and R. apiculata (k = 0.0098 d-1; tM50 = 71 days). The biochemical composition of detrital leaves differed significantly among species and over time. S. caseolaris and A. alba had higher concentrations of N, THAA and THHA and a lower C/N ratio than the other three species. For most of the species concentrations of N, THAA and THHA increased during decomposition. The hexosamine galactosamine, indicative of bacterial cell walls, was first found in leaves after 5-7 days of decomposition and increased afterwards. Our findings suggest an increasing, but species-specific varying, portion of labile nitrogenous OM and total N in decomposing leaves over time that is partly related to the activity of leaf-colonizing bacteria. Despite a higher relative nitrogen content in the remaining litter of the fast decomposing S. caseolaris and A. alba as compared to the other three species, the total loss of nitrogen was even higher because of the much higher mass loss after three months of decomposition. It is inferred that the amount of labile nitrogenous organic matter plays a major role in determining the rate of decomposition of leaf litter in mangroves.
NASA Astrophysics Data System (ADS)
Xu, X.; Medvigy, D.; Wu, J.; Wright, S. J.; Kitajima, K.; Pacala, S. W.
2016-12-01
Tropical evergreen forests play a key role in the global carbon, water and energy cycles. Despite apparent evergreenness, this biome shows strong seasonality in leaf litter and photosynthesis. Recent studies have suggested that this seasonality is not directly related to environmental variability but is dominated by seasonal changes of leaf development and senescence. Meanwhile, current terrestrial biosphere models (TBMs) can not capture this pattern because leaf life cycle is highly underrepresented. One challenge to model this leaf life cycle is the remarkable diversity in leaf longevity, ranging from several weeks to multiple years. Ecologists have proposed models where leaf longevity is regarded as a strategy to optimize carbon gain. However previous optimality models can not be readily integrated into TBMs because (i) there are still large biases in predicted leaf longevity and (ii) it is never tested whether the carbon optimality model can capture the observed seasonality in leaf demography and canopy photosynthesis. In this study, we develop a new carbon optimality model for leaf demography. The novelty of our approach is two-fold. First, we incorporate a mechanistic photosynthesis model that can better estimate leaf carbon gain. Second, we consider the interspecific variations in leaf senescence rate, which strongly influence the modelled optimal carbon gain. We test our model with a leaf trait database for Panamanian evergreen forests. Then, we apply the model at seasonal scale and compare simulated seasonality of leaf litter and canopy photosynthesis with in-situ observations from several Amazonian forest sites. We find that (i) compared with original optimality model, the regression slope between observed and predicted leaf longevity increases from 0.15 to 1.04 in our new model and (ii) that our new model can capture the observed seasonal variations of leaf demography and canopy photosynthesis. Our results suggest that the phenology in tropical evergreen forests might result from plant adaptation to optimize canopy carbon gain. Finally, this proposed trait-driven prognostic phenology model could potentially be incorporated into next generation TBMs to improve simulation of carbon and water fluxes in the tropics.
NASA Astrophysics Data System (ADS)
Wang, Jinniu; Xu, Bo; Wu, Yan; Gao, Jing; Shi, Fusun
2016-10-01
Litters of reproductive organs have rarely been studied despite their role in allocating nutrients for offspring reproduction. This study determines the mechanism through which flower litters efficiently increase the available soil nutrient pool. Field experiments were conducted to collect plant litters and calculate biomass production in an alpine meadow of the eastern Tibetan Plateau. C, N, P, lignin, cellulose content, and their relevant ratios of litters were analyzed to identify their decomposition features. A pot experiment was performed to determine the effects of litter addition on the soil nutrition pool by comparing the treated and control samples. The litter-bag method was used to verify decomposition rates. The flower litters of phanerophyte plants were comparable with non-flower litters. Biomass partitioning of other herbaceous species accounted for 10-40 % of the aboveground biomass. Flower litter possessed significantly higher N and P levels but less C / N, N / P, lignin / N, and lignin and cellulose concentrations than leaf litter. The litter-bag experiment confirmed that the flower litters of Rhododendron przewalskii and Meconopsis integrifolia decompose approximately 3 times faster than mixed litters within 50 days. Pot experiment findings indicated that flower litter addition significantly increased the available nutrient pool and soil microbial productivity. The time of litter fall significantly influenced soil available N and P, and soil microbial biomass. Flower litters fed the soil nutrition pool and influenced nutrition cycling in alpine ecosystems more efficiently because of their non-ignorable production, faster decomposition rate, and higher nutrient contents compared with non-flower litters. The underlying mechanism can enrich nutrients, which return to the soil, and non-structural carbohydrates, which feed and enhance the transitions of soil microorganisms.
Blok, Daan; Faucherre, Samuel; Banyasz, Imre; Rinnan, Riikka; Michelsen, Anders; Elberling, Bo
2018-06-01
Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high-arctic tundra heath sites in NE-Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above- and belowground tundra carbon turnover, possibly governed by microbial resource availability. © 2017 John Wiley & Sons Ltd.
Al Harun, Md Abdullah Yousuf; Johnson, Joshua; Uddin, Md Nazim; Robinson, Randall W
2015-01-01
Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days) exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial quantity of free proline in the target species also suggests that the plant was in a stressed condition due to litter allelopathy. These findings are important for better understanding the invasive potential of boneseed and in devising control strategies.
Al Harun, Md Abdullah Yousuf; Johnson, Joshua; Uddin, Md Nazim; Robinson, Randall W.
2015-01-01
Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days) exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial quantity of free proline in the target species also suggests that the plant was in a stressed condition due to litter allelopathy. These findings are important for better understanding the invasive potential of boneseed and in devising control strategies. PMID:26465595
General and specific gypsy moth predators
Ronald M. Weseloh
1991-01-01
General larval predators of low-density gypsy moth, Lymantria dispar (L.), populations have been assessed by exposing caterpillars tethered by threads. Most mortality occurred on tree trunks and in leaf litter.
Antibiotic mixture effects on growth of the leaf-shredding stream detritivore Gammarus fossarum.
Bundschuh, Mirco; Hahn, Torsten; Gessner, Mark O; Schulz, Ralf
2017-05-01
Pharmaceuticals contribute greatly to human and animal health. Given their specific biological targets, pharmaceuticals pose a significant environmental risk by affecting organisms and ecosystem processes, including leaf-litter decomposition. Although litter decomposition is a central process in forest streams, the consequences of exposure to pharmaceuticals remain poorly known. The present study assessed the impact of antibiotics as an important class of pharmaceuticals on the growth of the leaf-shredding amphipod Gammarus fossarum over 24 days. Exposure scenarios involved an antibiotic mixture (i.e. sulfamethoxazole, trimethoprim, erythromycin-H 2 O, roxithromycin, clarithromycin) at 0, 2 and 200 µg/L to assess impacts resulting from exposure to both water and food. The antibiotics had no effect on either leaf-associated fungal biomass or bacterial abundance. However, modification of leaf quality (e.g. through shifts in leaf-associated microbial communities) may have triggered faster growth of gammarids (assessed in terms of body mass gain) at the low antibiotic concentration relative to the control. At 200 µg/L, however, gammarid growth was not stimulated. This outcome might be due to a modified ability of the gut microflora to assimilate nutrients and carbon. Furthermore, the observed lack of increases in the diameter of the gammarids' peduncles, despite an increase in gammarid mass, suggests antibiotic-induced effects in the moulting cycle. Although the processes responsible for the observed effects have not yet been identified, these results suggest a potential role of food-quality, gammarid gut microflora and alteration in the moulting cycle in mediating impacts of antibiotics on these detritivores and the leaf decomposition process in streams.
Kelly, John J.; Bansal, Amit; Winkelman, Jonathan; Janus, Lori R.; Hell, Shannon; Wencel, Marie; Belt, Patricia; Kuehn, Kevin A.; Rier, Steven T.; Tuchman, Nancy C.
2010-01-01
Elevated atmospheric CO2 can cause increased carbon fixation and altered foliar chemical composition in a variety of plants, which has the potential to impact forested headwater streams because they are detritus-based ecosystems that rely on leaf litter as their primary source of organic carbon. Fungi and bacteria play key roles in the entry of terrestrial carbon into aquatic food webs, as they decompose leaf litter and serve as a source of nutrition for invertebrate consumers. This study tested the hypothesis that changes in leaf chemistry caused by elevated atmospheric CO2 would result in changes in the size and composition of microbial communities colonizing leaves in a woodland stream. Three tree species, Populus tremuloides, Salix alba, and Acer saccharum, were grown under ambient (360 ppm) or elevated (720 ppm) CO2, and their leaves were incubated in a woodland stream. Elevated-CO2 treatment resulted in significant increases in the phenolic and tannin contents and C/N ratios of leaves. Microbial effects, which occurred only for P. tremuloides leaves, included decreased fungal biomass and decreased bacterial counts. Analysis of fungal and bacterial communities on P. tremuloides leaves via terminal restriction fragment length polymorphism (T-RFLP) and clone library sequencing revealed that fungal community composition was mostly unchanged by the elevated-CO2 treatment, whereas bacterial communities showed a significant shift in composition and a significant increase in diversity. Specific changes in bacterial communities included increased numbers of alphaproteobacterial and cytophaga-flavobacter-bacteroides (CFB) group sequences and decreased numbers of betaproteobacterial and firmicutes sequences, as well as a pronounced decrease in overall Gram-positive bacterial sequences. PMID:20543045
Kelly, John J; Bansal, Amit; Winkelman, Jonathan; Janus, Lori R; Hell, Shannon; Wencel, Marie; Belt, Patricia; Kuehn, Kevin A; Rier, Steven T; Tuchman, Nancy C
2010-08-01
Elevated atmospheric CO(2) can cause increased carbon fixation and altered foliar chemical composition in a variety of plants, which has the potential to impact forested headwater streams because they are detritus-based ecosystems that rely on leaf litter as their primary source of organic carbon. Fungi and bacteria play key roles in the entry of terrestrial carbon into aquatic food webs, as they decompose leaf litter and serve as a source of nutrition for invertebrate consumers. This study tested the hypothesis that changes in leaf chemistry caused by elevated atmospheric CO(2) would result in changes in the size and composition of microbial communities colonizing leaves in a woodland stream. Three tree species, Populus tremuloides, Salix alba, and Acer saccharum, were grown under ambient (360 ppm) or elevated (720 ppm) CO(2), and their leaves were incubated in a woodland stream. Elevated-CO(2) treatment resulted in significant increases in the phenolic and tannin contents and C/N ratios of leaves. Microbial effects, which occurred only for P. tremuloides leaves, included decreased fungal biomass and decreased bacterial counts. Analysis of fungal and bacterial communities on P. tremuloides leaves via terminal restriction fragment length polymorphism (T-RFLP) and clone library sequencing revealed that fungal community composition was mostly unchanged by the elevated-CO(2) treatment, whereas bacterial communities showed a significant shift in composition and a significant increase in diversity. Specific changes in bacterial communities included increased numbers of alphaproteobacterial and cytophaga-flavobacter-bacteroides (CFB) group sequences and decreased numbers of betaproteobacterial and firmicutes sequences, as well as a pronounced decrease in overall gram-positive bacterial sequences.
Jian, Qianyun; Boyer, Treavor H; Yang, Xiuhong; Xia, Beicheng; Yang, Xin
2016-06-01
Dissolved organic matter (DOM) was leached from leaves of two trees commonly grown in subtropical regions, Pinus elliottii (commonly known as slash pine) and Schima superba (S. superba), and its degradation pattern and potential for forming disinfection byproducts (DBPs) were evaluated. The leaves were exposed in the field for up to one year before leaching. The DOM leached from slash pine litter contained on average 10.4 mg of dissolved organic carbon (DOC) per gram of dry weight; for S. superba the average was 37.2 mg-DOC/g-dry weight. Ultraviolet and visible light absorbance, fluorescence, and molecular weight analysis indicated that more aromatic/humic and higher molecular weight compounds are formed as leaf litter ages. A 4-component parallel factor analysis of the fluorescence data showed that the intensity of peaks related with protein-like components decreased gradually during biodegradation, while that of peaks attributed to humic-acid-like components increased continuously. Fresh slash pine leachates formed on average 40.0 μg of trihalomethane (THM) per milligram of DOC, while S. superba leachates formed 45.6 μg. THM formation showed peak values of 55.7 μg/mg DOC for slash pine and 74.9 μg/mg DOC for S. superba after 8 months of aging. The formation of haloacetonitrile (HAN) and trichloronitromethane (TCNM) increased with increasing leaf age, while chloral hydrate (CH) formation did not show such a trend. Specific UV absorbance showed some positive correlation with DBPs, but humic-acid-like and protein-like absorbance peaks correlated with CH and TCNM yields in only some leaf samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Silveira, Juliana M; Barlow, Jos; Louzada, Julio; Moutinho, Paulo
2010-09-21
Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance.
Silveira, Juliana M.; Barlow, Jos; Louzada, Julio; Moutinho, Paulo
2010-01-01
Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance. PMID:20877720
NASA Astrophysics Data System (ADS)
Larionova, A. A.; Maltseva, A. N.; Lopes de Gerenyu, V. O.; Kvitkina, A. K.; Bykhovets, S. S.; Zolotareva, B. N.; Kudeyarov, V. N.
2017-04-01
The mineralization and humification of leaf litter collected in a mixed forest of the Prioksko-Terrasny Reserve depending on temperature (2, 12, and 22°C) and moisture (15, 30, 70, 100, and 150% of water holding capacity ( WHC)) has been studied in long-term incubation experiments. Mineralization is the most sensitive to temperature changes at the early stage of decomposition; the Q 10 value at the beginning of the experiment (1.5-2.7) is higher than at the later decomposition stages (0.3-1.3). Carbon losses usually exceed nitrogen losses during decomposition. Intensive nitrogen losses are observed only at the high temperature and moisture of litter (22°C and 100% WHC). Humification determined from the accumulation of humic substances in the end of incubation decreases from 34 to 9% with increasing moisture and temperature. The degree of humification CHA/CFA is maximum (1.14) at 12°C and 15% WHC; therefore, these temperature and moisture conditions are considered optimal for humification. Humification calculated from the limit value of litter mineralization is almost independent of temperature, but it significantly decreases from 70 to 3% with increasing moisture. A possible reason for the difference between the humification values measured by two methods is the conservation of a significant part of hemicelluloses, cellulose, and lignin during the transformation of litter and the formation of a complex of humic substances with plant residues, where HSs fulfill a protectoral role and decrease the decomposition rate of plant biopolymers.
Nevers, Meredith; Przybyla-Kelly, Kasia; Spoljaric, Ashley; Shively, Dawn A.; Whitman, Richard L.; Byappanahalli, Muruleedhara
2016-01-01
We investigated the occurrence, persistence, and growth potential of Escherichia coli associated with freshwater organic debris (i.e., wrack) frequently deposited along shorelines (shoreline wrack), inputs from rivers (river CPOM), and parking lot runoffs (urban litter). Samples were collected from 9 Great Lakes beaches, 3 creeks, and 4 beach parking lots. Shoreline wrack samples were mainly composed of wood chips, straw, sticks, leaf litter, seeds, feathers, and mussel shells; creek and parking lot samples included dry grass, straw, seeds, wood chips, leaf/pine needle litter; soil particles were present in parking lot samples only. E. coli concentrations (most probable number, MPN) were highly variable in all sample types: shoreline wrack frequently reached 105/g dry weight (dw), river CPOM ranged from 81 to 7,916/g dw, and urban litter ranged from 0.5 to 24,952/g dw. Sequential rinsing studies showed that 61–87% of E. coli concentrations were detected in the first wash of shoreline wrack, with declining concentrations associated with 4–8 subsequent washings; viable counts were still detected even after 8 washes. E. coli grew readily in shoreline wrack and river CPOM incubated at 35 °C. At 30°C, growth was only detected in river CPOM and not in shoreline wrack or urban litter, but the bacteria persisted for at least 16 days. In summary, freshwater wrack is an understudied component of the beach ecosystem that harbors E. coli and thus likely influences estimations of water quality and the microbial community in the nearshore as a result of transfer between environments.
Relationship of host recurrence in fungi to rates of tropical leaf decomposition
Mirna E. Santanaa; JeanD. Lodgeb; Patricia Lebowc
2004-01-01
Here we explore the significance of fungal diversity on ecosystem processes by testing whether microfungal âpreferencesâ for (i.e., host recurrence) different tropical leaf species increases the rate of decomposition. We used pairwise combinations of girradiated litter of five tree species with cultures of two dominant microfungi derived from each plant in a microcosm...
Ecophysiology of a Mangrove Forest in Jobos Bay, Puerto Rico
ARIEL E. LUGO; ERNESTO MEDINA; ELVIRA CUEVAs; CINTR& #211; GILBERTO N; EDDIE N. LABOY NIEVES; SCH& #196; YARA EFFER NOVELLI
2007-01-01
We studied gas exchange, leaf dimensions, litter production, leaf and litterfall chemistry, nutrient flux to the forest floor, retranslocation rates, and nutrient use efficiency of mangroves in Jobos Bay, Puerto Rico. The fringe forest had a salinity gradient from the ocean (35â°) to a salt flat (100â°) and a basin (about 80â°). Red (Rhizophora mangle), white (...
Relationship of host recurrence in fungi to rates of tropical leaf decomposition
Mirna E. Santana; D. Jean Lodge; Patricia Lebow
2005-01-01
Here we explore the significance of fungal diversity on ecosystem processes by testing whether microfungal âpreferencesâ for (i.e., host recurrence) different tropical leaf species increases the rate of decomposition. We used pairwise combinations of [gamma]-irradiated litter of five tree species with cultures of two dominant microfungi derived from each plant in a...
NASA Astrophysics Data System (ADS)
Phillips, R.; Midgley, M.; Brzostek, E. R.
2012-12-01
While it is well-established that tree species modify soil organic matter (SOM) through differences in leaf litter chemistry, far less is known about the role of roots and their microbial associates in influencing SOM dynamics. We investigated the extent to which temperate hardwood trees which associate with arbuscular mycorrhizal (AM) fungi differ in their effects on SOM turnover from those associating with ectomycorrhizal (EM) fungi using 1) root and fungal ingrowth cores, 2) experimental tree girdling and 3) fertilization additions. We conducted our research in the central hardwood forests of southern Indiana where a rich assemblage of AM (e.g. maples, ashes, tulip poplar, black cherry) and EM (e.g. oaks, hickories, beech, pine) tree species co-occur on soils developed from similar parent materials. Our results indicate that EM trees likely play a greater role in contributing to SOM turnover than AM trees as rhizosphere enzyme activities were greater in EM soils than AM soils, and both girdling and fertilization reduced enzyme activities in EM soils but not in AM soils. Although girdling and fertilization had little effect on enzyme activities in AM soils, soil respiration decreased suggesting that much of the carbon (C) allocated belowground was likely derived from roots rather than from mycorrhizal fungi. Collectively our results suggest AM and EM trees influence SOM dynamics in fundamentally unique ways, and that categorizing forests based on the relative abundance of AM and EM trees may provide a useful framework for predicting complex biogeochemical interactions between roots, microbes and SOM.
Schuldt, Bernhard; Knutzen, Florian; Delzon, Sylvain; Jansen, Steven; Müller-Haubold, Hilmar; Burlett, Régis; Clough, Yann; Leuschner, Christoph
2016-04-01
Climate warming will increase the drought exposure of many forests world-wide. It is not well understood how trees adapt their hydraulic architecture to a long-term decrease in water availability. We examined 23 traits characterizing the hydraulic architecture and growth rate of branches and the dependent foliage of mature European beech (Fagus sylvatica) trees along a precipitation gradient (855-594 mm yr(-1) ) on uniform soil. A main goal was to identify traits that are associated with xylem efficiency, safety and growth. Our data demonstrate for the first time a linear increase in embolism resistance with climatic aridity (by 10%) across populations within a species. Simultaneously, vessel diameter declined by 7% and pit membrane thickness (Tm ) increased by 15%. Although specific conductivity did not change, leaf-specific conductivity declined by 40% with decreasing precipitation. Of eight plant traits commonly associated with embolism resistance, only vessel density in combination with pathway redundancy and Tm were related. We did not confirm the widely assumed trade-off between xylem safety and efficiency but obtained evidence in support of a positive relationship between hydraulic efficiency and growth. We conclude that the branch hydraulic system of beech has a distinct adaptive potential to respond to a precipitation reduction as a result of the environmental control of embolism resistance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Riparian litter inputs to streams in the central Oregon Coast Range
Hart, Stephanie K.; Hibbs, David E.; Perakis, Steven S.
2013-01-01
Riparian-zone vegetation can influence terrestrial and aquatic food webs through variation in the amount, timing, and nutritional content of leaf and other litter inputs. We investigated how riparian-forest community composition, understory density, and lateral slope shaped vertical and lateral litter inputs to 16 streams in the Oregon Coast Range. Riparian forests dominated by deciduous red alder delivered greater annual vertical litter inputs to streams (504 g m−2 y−1) than did riparian forests dominated by coniferous Douglas-fir (394 g m−2 y−1). Deciduous forests also contributed greater lateral litter inputs per meter of stream bank on one side (109 g m−1 y−1) than did coniferous forests (63 g m−1 y−1). Total litter inputs from deciduous forests exceeded those from coniferous forests most strongly in November, coincident with an autumn peak in litter inputs. Lateral litter inputs contributed most to total inputs during winter in both forest types. Annual lateral litter movement increased with slope at deciduous sites, but only in spring/summer months at coniferous sites. Neither experimental removal of understory vegetation nor installation of mesh fences to block downslope litter movement affected lateral litter inputs to streams, suggesting that ground litter moves <5 m downslope annually. N concentrations of several litter fractions were higher at deciduous sites and, when combined with greater litter amounts, yielded twice as much total litter N flux to streams in deciduous than coniferous sites. The presence of red alder in riparian forests along many small streams of the deeply incised and highly dendritic basins of the Oregon Coast Range enhances total fluxes and seasonality of litter delivery to both terrestrial and aquatic food webs in this region and complements the shade and large woody debris provided by large coniferous trees.
Song, Yanyu; Song, Changchun; Ren, Jiusheng; Tan, Wenwen; Jin, Shaofei; Jiang, Lei
2018-06-01
Nitrogen (N) availability affects litter decomposition and nutrient dynamics, especially in N-limited ecosystems. We investigated the response of litter decomposition to N additions in Eriophorum vaginatum and Vaccinium uliginosum peatlands. These two species dominate peatlands in Northeast China. In 2012, mesh bags containing senesced leaf litter of Eriophorum vaginatum and Vaccinium uliginosum were placed in N addition plots and sprayed monthly for two years with NH 4 NO 3 solution at dose rates of 0, 6, 12, and 24gNm -2 year -1 (CK, N1, N2 and N3, respectively). Mass loss, N and phosphorus (P) content, and enzymatic activity were measured over time as litter decomposed. In the control plots, V. uliginosum litter decomposed faster than E. vaginatum litter. N1, N2, and N3 treatments increased the mass losses of V. uliginosum litter by 6%, 9%, and 4% respectively, when compared with control. No significant influence of N additions was found on the decomposition of E. vaginatum litter. However, N and P content in E. vaginatum litter and V. uliginosum litter significantly increased with N additions. Moreover, N additions significantly promoted invertase and β-glucosidase activity in E. vaginatum and V. uliginosum litter. However, only in V. uliginosum litter was polyphenol oxidase activity significantly enhanced. Our results showed that initial litter quality and polyphenol oxidase activity influence the response of plant litter to N additions in peatland ecosystems. Increased N availability may change peatland soil N and P cycling by enhancing N and P immobilization during litter decomposition. Copyright © 2018 Elsevier B.V. All rights reserved.
G. Gonzalez; D.J. Lodge; B.A. Richardson; M.J. Richardson
2014-01-01
In this study, we used a replicated factorial design to separate the individual and interacting effects of two main components of a severe hurricane â canopy opening and green debris deposition on leaf litter decay in the tabonuco forest in the Luquillo Mountains of Puerto Rico. We quantify changes in percent mass remaining (PMR), the concentration and absolute amounts...
NASA Astrophysics Data System (ADS)
Kristensen, J. A.; Metcalfe, D. B.; Rousk, J.
2017-12-01
Climate warming may increase insect herbivore ranges and outbreak intensities in arctic ecosystems. Thorough understanding of the implications of these changes for ecosystem processes is essential to make accurate predictions of surface-atmosphere carbon (C) feedbacks. Yet, we lack a comprehensive understanding of the impacts of herbivore outbreaks on soil microbial underpinnings of C and nitrogen (N) fluxes. Here, we investigate the growth responses of heterotrophic soil decomposers and C and N mineralisation to simulated defoliator outbreaks in Subarctic birch forests. In microcosms, topsoil was incubated with leaf litter, insect frass, mineral N and combinations of the three; all was added in equal amounts of N. A higher fraction of added C and N was mineralised during outbreaks (frass addition) relative to non-outbreak years (litter addition). However, under high mineral N-availability in the soil of the kind likely under longer periods of enhanced insect herbivory (litter+mineral N), the mineralised fraction of added C decreased while the mineralised fraction of N increased substantially, which suggest a shift towards more N-mining of the organic substrates. This shift was accompanied by higher fungal dominance, and may facilitate soil C-accumulation assuming constant quality of C-inputs. Thus, long-term increases of insect herbivory, of the kind observed in some areas and projected by some models, may facilitate higher ecosystem C-sink capacity in this Subarctic ecosystem.
NASA Astrophysics Data System (ADS)
Koarashi, Jun; Atarashi-Andoh, Mariko; Takeuchi, Erina; Nishimura, Syusaku
2014-10-01
The accident at the Fukushima Daiichi nuclear power plant caused serious radiocesium (137Cs) contamination of forest ecosystems located in mountainous and hilly regions with steep terrain. To understand topographic effects on the redistribution and accumulation of 137Cs on forest floor, we investigated the distribution of Fukushima-derived 137Cs in forest-floor litter layers on a steep hillslope in a Japanese deciduous forest in August 2013 (29 months after the accident). Both leaf-litter materials and litter-associated 137Cs were accumulated in large amounts at the bottom of the hillslope. At the bottom, a significant fraction (65%) of the 137Cs inventory was observed to be associated with newly shed and less degraded leaf-litter materials, with estimated mean ages of 0.5-1.5 years, added via litterfall after the accident. Newly emerged leaves were contaminated with Fukushima-derived 137Cs in May 2011 (two months after the accident) and 137Cs concentration in them decreased with time. However, the concentrations were still two orders of magnitude higher than the pre-accident level in 2013 and 2014. These observations are the first to show that 137Cs redistribution on a forested hillslope is strongly controlled by biologically mediated processes and continues to supply 137Cs to the bottom via litterfall at a reduced rate.
John S. Kominoski; Catherine M. Pringle
2009-01-01
1. Understanding relationships between resource and consumer diversity is essential to predicting how changes in resource diversity might affect several trophic levels and overall ecosystem functioning...
Pesticides from wastewater treatment plant effluents affect invertebrate communities.
Münze, Ronald; Hannemann, Christin; Orlinskiy, Polina; Gunold, Roman; Paschke, Albrecht; Foit, Kaarina; Becker, Jeremias; Kaske, Oliver; Paulsson, Elin; Peterson, Märit; Jernstedt, Henrik; Kreuger, Jenny; Schüürmann, Gerrit; Liess, Matthias
2017-12-01
We quantified pesticide contamination and its ecological impact up- and downstream of seven wastewater treatment plants (WWTPs) in rural and suburban areas of central Germany. During two sampling campaigns, time-weighted average pesticide concentrations (c TWA ) were obtained using Chemcatcher® passive samplers; pesticide peak concentrations were quantified with event-driven samplers. At downstream sites, receiving waters were additionally grab sampled for five selected pharmaceuticals. Ecological effects on macroinvertebrate structure and ecosystem function were assessed using the biological indicator system SPEAR pesticides (SPEcies At Risk) and leaf litter breakdown rates, respectively. WWTP effluents substantially increased insecticide and fungicide concentrations in receiving waters; in many cases, treated wastewater was the exclusive source for the neonicotinoid insecticides acetamiprid and imidacloprid in the investigated streams. During the ten weeks of the investigation, five out of the seven WWTPs increased in-stream pesticide toxicity by a factor of three. As a consequence, at downstream sites, SPEAR values and leaf litter degradation rates were reduced by 40% and 53%, respectively. The reduced leaf litter breakdown was related to changes in the macroinvertebrate communities described by SPEAR pesticides and not to altered microbial activity. Neonicotinoids showed the highest ecological relevance for the composition of invertebrate communities, occasionally exceeding the Regulatory Acceptable Concentrations (RACs). In general, considerable ecological effects of insecticides were observed above and below regulatory thresholds. Fungicides, herbicides and pharmaceuticals contributed only marginally to acute toxicity. We conclude that pesticide retention of WWTPs needs to be improved. Copyright © 2017 Elsevier B.V. All rights reserved.
Jinggut, Tajang; Yule, Catherine M; Boyero, Luz
2012-10-15
In common with most of Borneo, the Bakun region of Sarawak is currently subject to heavy deforestation mainly due to logging and, to a lesser extent, traditional slash-and-burn farming practices. This has the potential to affect stream ecosystems, which are integrators of environmental change in the surrounding terrestrial landscape. This study evaluated the effects of both types of deforestation by using functional and structural indicators (leaf litter decomposition rates and associated detritivores or 'shredders', respectively) to compare a fundamental ecosystem process, leaf litter decomposition, within logged, farmed and pristine streams. Slash-and-burn agricultural practices increased the overall rate of decomposition despite a decrease in shredder species richness (but not shredder abundance) due to increased microbial decomposition. In contrast, decomposition by microbes and invertebrates was slowed down in the logged streams, where shredders were less abundant and less species rich. This study suggests that shredder communities are less affected by traditional agricultural farming practices, while modern mechanized deforestation has an adverse effect on both shredder communities and leaf breakdown. Copyright © 2012 Elsevier B.V. All rights reserved.
Riggs, Charlotte E; Hobbie, Sarah E; Cavender-Bares, Jeannine; Savage, Jessica A; Wei, Xiaojing
2015-10-01
Environmental variation in moisture directly influences plant litter decomposition through effects on microbial activity, and indirectly via plant species traits. Whether the effects of moisture and plant species traits are mutually reinforcing or counteracting during decomposition are unknown. To disentangle the effects of moisture from the effects of species traits that vary with moisture, we decomposed leaf litter from 12 plant species in the willow family (Salicaceae) with different native habitat moisture preferences in paired mesic and wetland plots. We fit litter mass loss data to an exponential decomposition model and estimated the decay rate of the rapidly cycling litter fraction and size of the remaining fraction that decays at a rate approaching zero. Litter traits that covaried with moisture in the species' native habitat significantly influenced the decomposition rate of the rapidly cycling litter fraction, but moisture in the decomposition environment did not. In contrast, for the slowly cycling litter fraction, litter traits that did not covary with moisture in the species' native habitat and moisture in the decomposition environment were significant. Overall, the effects of moisture and plant species traits on litter decomposition were somewhat reinforcing along a hydrologic gradient that spanned mesic upland to wetland (but not permanently surface-saturated) plots. In this system, plant trait and moisture effects may lead to greater in situ decomposition rates of wetland species compared to upland species; however, plant traits that do not covary with moisture will also influence decomposition of the slowest cycling litter fraction.
Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begovich, C.L.
2002-10-28
Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence onmore » chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.« less
Snaddon, Jake L.; Turner, Edgar C.; Fayle, Tom M.; Khen, Chey V.; Eggleton, Paul; Foster, William A.
2012-01-01
The exceptionally high species richness of arthropods in tropical rainforests hinges on the complexity of the forest itself: that is, on features such as the high plant diversity, the layered nature of the canopy and the abundance and the diversity of epiphytes and litter. We here report on one important, but almost completely neglected, piece of this complex jigsaw—the intricate network of rhizomorph-forming fungi that ramify through the vegetation of the lower canopy and intercept falling leaf litter. We show that this litter-trapping network is abundant and intercepts substantial amounts of litter (257.3 kg ha−1): this exceeds the amount of material recorded in any other rainforest litter-trapping system. Experimental removal of this fungal network resulted in a dramatic reduction in both the abundance (decreased by 70.2 ± 4.1%) and morphospecies richness (decreased by 57.4 ± 5.1%) of arthropods. Since the lower canopy levels can contain the highest densities of arthropods, the proportion of the rainforest fauna dependent on the fungal networks is likely to be substantial. Fungal litter-trapping systems are therefore a crucial component of habitat complexity, providing a vital resource that contributes significantly to rainforest biodiversity. PMID:22188674
Soil Organic Carbon Sources of Respired CO2 in a Mid-successional North Temperate Forest
NASA Astrophysics Data System (ADS)
Medina, N. L.; Hatton, P. J.; Le Moine, J.; Nadelhoffer, K. J.
2015-12-01
Given that soil organic matter (SOM) is the largest global terrestrial carbon (C) pool, some fractions of which have turnover times of centuries to millennia, it is critical to understand the mechanisms by which higher net primary productivity (NPP) and higher litter inputs, in the future, as predicted by some models, might alter the potentials of forest soils to serve as long-term C sinks. Here, we use a 10-year-old site in the DIRT (Detritus Input and Removal Treatments) network of litter manipulations to compare plots in a forested, northern-temperate sandy soil that were subjected to double-leaf-litter additions (DL) and both root- and leaf-litter removals (no inputs, NI) to non-manipulated controls. Previous data show that rather than increasing soil organic carbon (SOC) stocks, plots receiving doubled litter inputs lose SOC at rates similar to losses in Control soils. To trace the source of extra mineralized SOC, we analyzed field CO2 effluxes for δ13C and characterized SOC of varying degrees of organo-mineral association with sequential density fractionations. Soils in DL plots respired significantly faster (p=0.095) and proportionally more (p=0.015) than control soils over the course of July, August, and October 2014. This suggests a greater fresh litter contribution to soil efflux in DL than in Control plots after 10 years of treatment. Preliminary data show that intermediate (1.85 - 2.4 g/mL) and dense (>2.4 g/mL) fractions are relatively larger in DL than in Control soils. This suggests that the addition C from doubled litter could be more rapidly transferred into those more dense fractions, or that higher litter inputs prime the decomposition of lighter particulate SOC forms, leading to a relative increase of the dense organo-mineral associations. Using δ13C values to parameterize a multi-source mixing model, we partition the fate of both fresh litter and partially-decomposed SOC and will present on the modeled relative contributions of various sources to field CO2 effluxes from diverse treatments. Our preliminary data and expected results may suggest important contributions from mineral-associated SOC, rather than simply from free SOC, to seasonal field soil respiration. Thus, with higher litterfall rates, C that similar forest soils sequester may exhibit shorter ecosystem-level residence times.
Zeleznik, P; Hrenko, M; Then, C; Koch, N; Grebenc, T; Levanic, T; Kraigher, H
2007-03-01
Tropospheric ozone (O(3)) triggers physiological changes in leaves that affect carbon source strength leading to decreased carbon allocation below-ground, thus affecting roots and root symbionts. The effects of O(3) depend on the maturity-related physiological state of the plant, therefore adult and young forest trees might react differently. To test the applicability of young beech plants for studying the effects of O(3) on forest trees and forest stands, beech seedlings were planted in containers and exposed for two years in the Kranzberg forest FACOS experiment (Free-Air Canopy O(3) Exposure System, http://www.casiroz.de ) to enhanced ozone concentration regime (ambient [control] and double ambient concentration, not exceeding 150 ppb) under different light conditions (sun and shade). After two growing seasons the biomass of the above- and below-ground parts, beech roots (using WinRhizo programme), anatomical and molecular (ITS-RFLP and sequencing) identification of ectomycorrhizal types and nutrient concentrations were assessed. The mycorrhization of beech seedlings was very low ( CA. 5 % in shade, 10 % in sun-grown plants), no trends were observed in mycorrhization (%) due to ozone treatment. The number of Cenococcum geophilum type of ectomycorrhiza, as an indicator of stress in the forest stands, was not significantly different under different ozone treatments. It was predominantly occurring in sun-exposed plants, while its majority share was replaced by Genea hispidula in shade-grown plants. Different light regimes significantly influenced all parameters except shoot/root ratio and number of ectomycorrhizal types. In the ozone fumigated plants the number of types, number of root tips per length of 1 to 2 mm root diameter, root length density per volume of soil and concentration of Mg were significantly lower than in control plants. Trends to a decrease were found in root, shoot, leaf, and total dry weights, total number of root tips, number of vital mycorrhizal root tips, fine root (mass) density, root tip density per surface, root area index, concentration of Zn, and Ca/Al ratio. Due to the general reduction in root growth indices and nutrient cycling in ozone-fumigated plants, alterations in soil carbon pools could be predicted.
Keller Suberkropp; Vladislav Gulis; Amy D. Rosemond; Jonathan Benstead
2010-01-01
Our study examined the response of leaf detritusâassociated microorganisms (both bacteria and fungi) to a 5-yr continuous nutrient enrichment of a forested headwater stream. Leaf litter dominates detritus inputs to such streams and, on a system wide scale, serves as the key substrate for microbial colonization. We determined physiological responses as microbial biomass...
Dimilin effects on leaf-decomposing aquatic fungi on the Fernow Experimental Forest, West Virginia
T. Dubey; S. L. Stephenson; P. J. Edwards
1995-01-01
Dimilin was applied to two watersheds on the Fernow Experimental Forest on May 16,1992, as part of a study to evaluate its effect on non-target organisms. Data were obtained on the occurrence, conidial production, and leaf litter colonization of aquatic hyphomycetes 5 days prior to and 2, 10, 25, and 55 days following application in the two treated watersheds and two...
Direct and Indirect Effects of UV-B Exposure on Litter Decomposition: A Meta-Analysis
Song, Xinzhang; Peng, Changhui; Jiang, Hong; Zhu, Qiuan; Wang, Weifeng
2013-01-01
Ultraviolet-B (UV-B) exposure in the course of litter decomposition may have a direct effect on decomposition rates via changing states of photodegradation or decomposer constitution in litter while UV-B exposure during growth periods may alter chemical compositions and physical properties of plants. Consequently, these changes will indirectly affect subsequent litter decomposition processes in soil. Although studies are available on both the positive and negative effects (including no observable effects) of UV-B exposure on litter decomposition, a comprehensive analysis leading to an adequate understanding remains unresolved. Using data from 93 studies across six biomes, this introductory meta-analysis found that elevated UV-B directly increased litter decomposition rates by 7% and indirectly by 12% while attenuated UV-B directly decreased litter decomposition rates by 23% and indirectly increased litter decomposition rates by 7%. However, neither positive nor negative effects were statistically significant. Woody plant litter decomposition seemed more sensitive to UV-B than herbaceous plant litter except under conditions of indirect effects of elevated UV-B. Furthermore, levels of UV-B intensity significantly affected litter decomposition response to UV-B (P<0.05). UV-B effects on litter decomposition were to a large degree compounded by climatic factors (e.g., MAP and MAT) (P<0.05) and litter chemistry (e.g., lignin content) (P<0.01). Results suggest these factors likely have a bearing on masking the important role of UV-B on litter decomposition. No significant differences in UV-B effects on litter decomposition were found between study types (field experiment vs. laboratory incubation), litter forms (leaf vs. needle), and decay duration. Indirect effects of elevated UV-B on litter decomposition significantly increased with decay duration (P<0.001). Additionally, relatively small changes in UV-B exposure intensity (30%) had significant direct effects on litter decomposition (P<0.05). The intent of this meta-analysis was to improve our understanding of the overall effects of UV-B on litter decomposition. PMID:23818993
The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.
Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano
2016-01-01
Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR.
Terrestrial leaves are a major energy source for forested stream ecosystems around the world. Leaves entering streams as litterfall undergo a series of physical and chemical transformations mediated by internal chemistry and the interaction of microbes and invertebrates resulting...
The potential phototoxicity of nano-scale ZnO induced by visible light on freshwater ecosystems.
Du, Jingjing; Qv, Mingxiang; Zhang, Yuyan; Yin, Xiaoyun; Wan, Ning; Zhang, Baozhong; Zhang, Hongzhong
2018-06-06
With the development of nanotechnology, nanomaterials have been widely applied in anti-bacterial coating, electronic device, and personal care products. NanoZnO is one of the most used materials and its ecotoxicity has been extensively studied. To explore the potential phototoxicity of nanoZnO induced by visible light, we conducted a long-term experiment on litter decomposition of Typha angustifolia leaves with assessment of fungal multifaceted natures. After 158 d exposure, the decomposition rate of leaf litter was decreased by nanoZnO but no additional effect by visible light. However, visible light enhanced the inhibitory effect of nanoZnO on fungal sporulation rate due to light-induced dissolution of nanoZnO. On the contrary, enzymes such as β-glucosidase, cellobiohydrolase, and leucine-aminopeptidase were significantly increased by the interaction of nanoZnO and visible light, which led to high efficiency of leaf carbon decomposition. Furthermore, different treatments and exposure time separated fungal community associated with litter decomposition. Therefore, the study provided the evidence of the contribution of visible light to nanoparticle phototoxicity at the ecosystem level. Copyright © 2018 Elsevier Ltd. All rights reserved.
Psomas, Elizabeth; Holdsworth, Sholto; Eggleton, Paul
2018-04-20
Pselaphinae is a species-rich beetle subfamily found globally, with many exhibiting myrmecophily-a symbiotic association with ants. Pselaphine-ant associations vary from facultative to obligate, but direct behavioral observations still remain scarce. Pselaphines are speciose and ecologically abundant within tropical leaf litter invertebrate communities where ants dominate, implying a potentially important ecological role that may be affected by habitat disturbances that impact ants. In this study, we measured and analyzed putative functional traits of leaf litter pselaphines associated with myrmecophily through morphometric analysis. We calculated "myrmecophile functional diversity" of pselaphines at different sites and examined this measure's relationship with ant abundance, in both old growth and logged rainforest sites in Sabah, Borneo. We show that myrmecophile functional diversity of pselaphine beetles increases as ant abundance increases. Old growth rainforest sites support a high abundance of ants, which is associated with a high abundance of probable myrmecophilous pselaphines. These results suggest a potential link between adult morphological characters and the functional role these beetles play in rainforest litter as ecological interaction partners with ants. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Simeone, Simone; De Falco, Giovanni
2012-05-01
Posidonia oceanica seagrass litter is commonly found along sandy shores in the Mediterranean region, forming structures called banquettes, which are often removed in order to allow the beach to be used for tourism. This paper evaluates the relationship between the morphology and composition of banquettes and beach exposure to dominant waves. A Real Time Kinematic Differential Global Positioning System was used to evaluate the variability of banquettes and beach morphology over a period of 1 year. Banquette samples, collected at two different levels of the beach profile (i.e. foreshore and backshore), were used to evaluate the contribution of leaves, rhizomes and sediments to the total weight. Banquettes showed a higher volume, thickness and cross-shore length on exposed beaches, whereas narrower litter deposits were found on the sheltered beach. On exposed beaches, banquettes were deposited in beach zones characterized by changes in elevation. These changes in elevation were mainly due to the deposition and erosion of sediments and secondly to the deposition and or erosion of leaf litter. On sheltered beaches, the variability in beach morphology was low and was restricted to areas where the banquettes were located. The leaf/sediment ratio changed along the cross-shore profile. On the backshore, banquettes were a mixture of sediments and leaves, whereas leaves were the main component on the foreshore, independently of the beach exposure. The processes which control the morphodynamics in the swash zone could explain the variability of banquette composition along the cross-shore profile. Finally, this study highlighted that Posidonia oceanica seagrass litter plays an important role in the geomorphology of the beachface and its removal can have a harmful impact on the beaches.
He, Yuejun; Cornelissen, J Hans C; Zhong, Zhangcheng; Dong, Ming; Jiang, Changhong
2017-04-01
In the karst landscape, widespread in the world including southern China, soil nutrient supply is strongly constrained. In such environments, arbuscular mycorrhizal (AM) fungi may facilitate plant nutrient uptake. However, the possible role of different AM fungal species, and their interactions, especially in transferring nitrogen (N) from litter to plant, is poorly understood. We conducted two microcosm experiments to investigate the role that two karst soil AM fungi, Glomus etunicatum and Glomus mosseae, play in the transfer of N from decomposing litter to the host plant and to determine how N availability influences these processes. In experiment 1, Cinnamomum camphora tree seedlings were grown in compartments inoculated with G. etunicatum. Lolium perenne leaf litter labeled with δ 15 N was added to the soil in unplanted compartments. Compartments containing the δ 15 N labeled litter were either accessible to hyphae but not to seedling roots or were not accessible to hyphae or roots. The addition of mineral N to one of the host compartments at the start of the experiment significantly increased the biomass of the C. camphora seedlings, N content and N:P ratio, AM mycelium length, and soil microbial biomass carbon and N. However, significantly, more δ 15 N was acquired, from the leaf litter by the AM hyphae and transferred to the host when mineral N was not added to the soil. In experiment 2, in which C. camphora seedlings were inoculated with both G. etunicatum and G. mosseae rather than with G. mosseae alone, there was a significant increase in mycelial growth (50.21%), in soil microbial biomass carbon (417.73%) in the rhizosphere, and in the amount of δ 15 N that was transferred to the host. These findings suggest that maintaining AM fungal diversity in karst soils could be important for mediating N transfer from organic material to host plants in N-poor soils.
Predator effects on a detritus-based food web are primarily mediated by non-trophic interactions.
Majdi, Nabil; Boiché, Anatole; Traunspurger, Walter; Lecerf, Antoine
2014-07-01
Predator effects on ecosystems can extend far beyond their prey and are often not solely lethally transmitted. Change in prey traits in response to predation risk can have important repercussions on community assembly and key ecosystem processes (i.e. trait-mediated indirect effects). In addition, some predators themselves alter habitat structure or nutrient cycling through ecological engineering effects. Tracking these non-trophic pathways is thus an important, yet challenging task to gain a better grasp of the functional role of predators. Multiple lines of evidence suggest that, in detritus-based food webs, non-trophic interactions may prevail over purely trophic interactions in determining predator effects on plant litter decomposition. This hypothesis was tested in a headwater stream by modulating the density of a flatworm predator (Polycelis felina) in enclosures containing oak (Quercus robur) leaf litter exposed to natural colonization by small invertebrates and microbial decomposers. Causal path modelling was used to infer how predator effects propagated through the food web. Flatworms accelerated litter decomposition through positive effects on microbial decomposers. The biomass of prey and non-prey invertebrates was not negatively affected by flatworms, suggesting that net predator effect on litter decomposition was primarily determined by non-trophic interactions. Flatworms enhanced the deposition and retention of fine sediments on leaf surface, thereby improving leaf colonization by invertebrates - most of which having strong affinities with interstitial habitats. This predator-induced improvement of habitat availability was attributed to the sticky nature of the mucus that flatworms secrete in copious amount while foraging. Results of path analyses further indicated that this bottom-up ecological engineering effect was as powerful as the top-down effect on invertebrate prey. Our findings suggest that predators have the potential to affect substantially carbon flow and nutrient cycling in detritus-based ecosystems and that this impact cannot be fully appreciated without considering non-trophic effects. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Transmission of Phytophthora ramorum in Mixed-Evergreen Forest in California.
Davidson, Jennifer M; Wickland, Allison C; Patterson, Heather A; Falk, Kristen R; Rizzo, David M
2005-05-01
ABSTRACT During 2001 to 2003, the transmission biology of Phytophthora ramorum, the causal agent of sudden oak death, was studied in mixedevergreen forest, a common forest type in northern, coastal California. Investigation of the sources of spore production focused on coast live oak (Quercus agrifolia) and bay laurel (Umbellularia californica), dominant hosts that comprised 39.7 and 46.2% of the individuals at the study site, respectively. All tests for inoculum production from the surface of infected coast live oak bark or exudates from cankers were negative. In contrast, sporangia and chlamydospores were produced on the surface of infected bay laurel leaves. Mean number of zoospores produced from infected bay laurel leaves under natural field conditions during rainstorms was 1,173.0 +/- SE 301.48, and ranged as high as 5,200 spores/leaf. P. ramorum was recovered from rainwater, soil, litter, and streamwater during the mid- to late rainy season in all 3 years of the study. P. ramorum was not recovered from sporadic summer rains or soil and litter during the hot, dry summer months. Concentrations of inoculum in rainwater varied significantly from year to year and increased as the rainy season progressed for the two complete seasons that were studied. Potential dispersal distances were investigated for rainwater, soil, and streamwater. In rainwater, inoculum moved 5 and 10 m from the inoculum source. For soil, transmission of inoculum was demonstrated from infested soil to bay laurel green leaf litter, and from bay laurel green leaf litter to aerial leaves of bay laurel seedlings. One-third to one-half of the hikers tested at the study site during the rainy season also were carrying infested soil on their shoes. In streamwater, P. ramorum was recovered from an unforested site in pasture 1 km downstream of forest with inoculum sources. In total, these studies provide details on the production and spread of P. ramorum inoculum in mixed-evergreen forest to aid forecasting and managing disease transmission of this environmentally destructive pathogen.
An approach to modeling the consequences of beech mortality from beech bark disease
Harry T. Valentine
1983-01-01
Changes to an extant model of forest growth and transition that allow an evaluation of the consequences of beech bark disease are outlined. Required are a function to scale beech growth for the effects of beech bark disease, a function to predict beech mortality from beech bark disease, and a function that predicts root-sprout regeneration of beech.
Gaxiola, Aurora; Armesto, Juan J.
2015-01-01
Differences in litter quality, microbial activity or abiotic conditions cannot fully account for the variability in decomposition rates observed in semiarid ecosystems. Here we tested the role of variation in litter quality, water supply, and UV radiation as drivers of litter decomposition in arid lands. And show that carry-over effects of litter photodegradation during dry periods can regulate decomposition during subsequent wet periods. We present data from a two-phase experiment, where we first exposed litter from a drought-deciduous and an evergreen shrub to natural UV levels during five, rainless summer months and, subsequently, in the laboratory, we assessed the carry-over effects of photodegradation on biomass loss under different irrigation treatments representing the observed range of local rainfall variation among years (15–240 mm). Photodegradation of litter in the field produced average carbon losses of 12%, but deciduous Proustia pungens lost >25%, while evergreen Porlieria chilensis less than 5%. Natural exposure to UV significantly reduced carbon-to-nitrogen and lignin:N ratios in Proustia litter but not in Porlieria. During the subsequent wet phase, remaining litter biomass was lower in Proustia than in Porlieria. Indeed UV exposure increased litter decomposition of Proustia under low and medium rainfall treatments, whereas no carry-over effects were detected under high rainfall treatment. Consequently, for deciduous Proustia carry-over effects of UV exposure were negligible under high irrigation. Litter decomposition of the evergreen Porlieria depended solely on levels of rainfall that promote microbial decomposers. Our two-phase experiment revealed that both the carry-over effects of photodegradation and litter quality, modulated by inter-annual variability in rainfall, can explain the marked differences in decomposition rates and the frequent decoupling between rainfall and litter decomposition observed in semiarid ecosystems. PMID:25852705
Yang, Zhi Min; Hasitamier; Liu, Xin Min
2016-09-01
Grazing has been considered to be an important factor determining the composition of soil animals and decomposition of leaf litter in grassland ecosystem. Sampling plots were selected in ungrazed grassland, grazed grassland and sandy land. Litter bags were used to compare the changes of physicochemical properties of Stipa grandis litter and the composition of soil fauna in the process of the litter decomposition in Baiyinxile, Inner Mongolia, since 2010 to 2012. A total number of 67056 soil animals were captured, belonging to five phyla and eight classes, including 23 families of mites and 19 families of insects. After 780 days' decomposition, the loss of the organic matter of S. grandis litter was from 92.5% to 40.0% in the ungrazed grassland, and to 41.3% in the grazed grassland, with no significant difference observed. However, there was a significant difference (P<0.05) between the ratio of litter residues of the ungrazed grassland (50.0%) and that of the grazed grassland (23.0%). The abundance of soil animals in the residual litters was significantly decreased in the grazed grassland compared to the ungrazed grassland. When the litter was moved into the sandy land, the decomposition rate of organic matter in the residual litter was not significant changed but the ratio of litter residue declined significantly, and the composition of mite community in the resi-dual litter changed significantly. Our results illustrated that grazing activity could affect the composition and abundance of soil fauna in temperate grassland, but slightly influenced the decomposition of organic matter. Therefore, soil animals had relatively weak direct effects on the decomposition of litter in this semi-arid region.
Gaxiola, Aurora; Armesto, Juan J
2015-01-01
Differences in litter quality, microbial activity or abiotic conditions cannot fully account for the variability in decomposition rates observed in semiarid ecosystems. Here we tested the role of variation in litter quality, water supply, and UV radiation as drivers of litter decomposition in arid lands. And show that carry-over effects of litter photodegradation during dry periods can regulate decomposition during subsequent wet periods. We present data from a two-phase experiment, where we first exposed litter from a drought-deciduous and an evergreen shrub to natural UV levels during five, rainless summer months and, subsequently, in the laboratory, we assessed the carry-over effects of photodegradation on biomass loss under different irrigation treatments representing the observed range of local rainfall variation among years (15-240 mm). Photodegradation of litter in the field produced average carbon losses of 12%, but deciduous Proustia pungens lost >25%, while evergreen Porlieria chilensis less than 5%. Natural exposure to UV significantly reduced carbon-to-nitrogen and lignin:N ratios in Proustia litter but not in Porlieria. During the subsequent wet phase, remaining litter biomass was lower in Proustia than in Porlieria. Indeed UV exposure increased litter decomposition of Proustia under low and medium rainfall treatments, whereas no carry-over effects were detected under high rainfall treatment. Consequently, for deciduous Proustia carry-over effects of UV exposure were negligible under high irrigation. Litter decomposition of the evergreen Porlieria depended solely on levels of rainfall that promote microbial decomposers. Our two-phase experiment revealed that both the carry-over effects of photodegradation and litter quality, modulated by inter-annual variability in rainfall, can explain the marked differences in decomposition rates and the frequent decoupling between rainfall and litter decomposition observed in semiarid ecosystems.
CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Energy Sources
Introduction to changes in basal energy sources with urbanization, overview of terrestrial leaf litter dynamics in urban streams, overview of how urbanization can affect primary production, respiration, and dissolved organic carbon quantity and quality.
Fiers, Frank; Jocque, Merlijn
2013-01-01
Five different species of Copepoda were extracted from a leaf litter sample collected on the top (at 2000 m a.s.l.) of a cloud forested mountain in El Cusuco National Park, Honduras. Three of them, one Cyclopidae and two Canthocamptidae are new to science, and are described herein. Olmeccyclops hondo sp. nov. is the second representative thus far known of this New World genus. Moraria catracha sp. nov. and Moraria cusuca sp. nov. are the first formally described members of the genus occurring in Central America. The concept of a "Moraria-group" is considered to be an artificial grouping and is limited here to the genera Moraria and Morariopsis only. The distributional range of this group is essentially Holarctic, with the mountainous regions in Honduras, and probably in west Nicaragua, as the southernmost limits in the New World.
Rowley, Jodi J L; Tran, Dao T A; Le, Duong T T; Dau, Vinh Q; Peloso, Pedro L V; Nguyen, Truong Q; Hoang, Huy D; Nguyen, Tao T; Ziegler, Thomas
2016-03-01
The Leptolalax applebyi group of Asian leaf-litter frogs currently comprises four species of particularly small-bodied (<40 mm SVL) species distributed in the Central Highlands of Vietnam and northeastern Cambodia. In addition to their small size, the group is characterized by their morphological and genetic similarities, as well as their breeding habitat at headwaters of small mountain streams and seeps. A recent study suggested that at least two-thirds of the diversity of the group remained hidden within morphologically cryptic lineages. We expand upon the molecular, morphometric, and acoustic data and formally delineate and describe five of these lineages as distinct species: Leptolalax ardens sp. nov., Leptolalax kalonensis sp. nov., Leptolalax pallidus sp. nov., Leptolalax maculosus sp. nov., and Leptolalax tadungensis sp. nov. Due to habitat loss, the current ranges of these species are likely to be a fraction of their historical extent and under continued threat from deforestation.
Oribatid mites and nutrient cycling. [Nutrient release by decomposition of leaf litter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crossley, D.A. Jr.
1976-08-01
Communities of oribatid mites (Cryptostigmata) in leaf litter and forest soils consist of an impressive number of individuals. Total populations of the order of 10/sup 5/ oribatids per square meter are commonly reported from forest floors. Because of their numbers, oribatids have been believed to be important contributors to the breakdown of organic detritus. Results are reported from studies of mineral or nutrient element cycling in forest floor ecosystems using radioisotopes as tracers. The phenomenon of cycling allows for the study of feedback loops among ecosystem processes, whereas energy flow is unidirectional. Evaluation of feedback loops can be a meansmore » of quantifying indirect effects of consumers. The availability of radioactive isotopes or radioactive analogs of mineral elements allows for the direct measurement of transfer rates. In decomposition studies applications of radioactive tracers have helped to identify pathways of transfer from microflora to oribatids.« less
Soil and leaf litter metaproteomics—a brief guideline from sampling to understanding
Keiblinger, Katharina M.; Fuchs, Stephan; Zechmeister-Boltenstern, Sophie; Riedel, Katharina
2016-01-01
The increasing application of soil metaproteomics is providing unprecedented, in-depth characterization of the composition and functionality of in situ microbial communities. Despite recent advances in high-resolution mass spectrometry, soil metaproteomics still suffers from a lack of effective and reproducible protein extraction protocols and standardized data analyses. This review discusses the opportunities and limitations of selected techniques in soil-, and leaf litter metaproteomics, and presents a step-by-step guideline on their application, covering sampling, sample preparation, extraction and data evaluation strategies. In addition, we present recent applications of soil metaproteomics and discuss how such approaches, linking phylogenetics and functionality, can help gain deeper insights into terrestrial microbial ecology. Finally, we strongly recommend that to maximize the insights environmental metaproteomics may provide, such methods should be employed within a holistic experimental approach considering relevant aboveground and belowground ecosystem parameters. PMID:27549116
Tissiani, A S O; Sousa, W O; Santos, G B; Ide, S; Battirola, L; Marques, M I
2015-11-01
Here we examine assemblage structure of coprophagous Scarabaeidae (dung beetles) in the Pantanal of the state of Mato Grosso with respect to flooding regimes, soil texture, leaf litter volume and tree dominance in native and exotic pastures. Samples were collected along 30 transects of 250 m in length in a 5×5 km grid (25 km2). Five pitfalls baited with human feces were placed in each transect. A total of 1692 individuals in 19 species were captured, the majority in the subfamily Scarabaeinae and Aphodiinae. Assemblages were influenced by the duration of flooding and leaf litter volume. None of the other habitat variables was correlated with species richness. Cultivated pastures with exotic grasses were unimportant for composition of the assemblages of beetles. These results indicate that duration of flooding is the most important regulating force in this community.
Rarity and diversity in forest ant assemblages of Great Smoky Mountains National Park
Lessard, J.-P.; Dunn, R.R.; Parker, C.R.; Sanders, N.J.
2007-01-01
We report on a systematic survey of the ant fauna occurring in hardwood forests in the Great Smoky Mountains National Park. At 22-mixed hardwood sites, we collected leaf-litter ant species using Winkler samplers. At eight of those sites, we also collected ants using pitfall and Malaise traps. In total, we collected 53 ant species. As shown in other studies, ant species richness tended to decline with increasing elevation. Leaf-litter ant assemblages were also highly nested. Several common species were both locally abundant and had broad distributions, while many other species were rarely detected. Winkler samplers, pitfall traps, and Malaise traps yielded samples that differed in composition, but not richness, from one another. Taken together, our work begins to illuminate the factors that govern the diversity, distribution, abundance, and perhaps rarity of ants of forested ecosystems in the Great Smoky Mountains National Park.
Feeding Ecology of Two Plecopterans in Low Order Andean-Patagonian Streams
NASA Astrophysics Data System (ADS)
Albariño, Ricardo J.; Díaz Villanueva, Verónica
2006-05-01
Feeding plasticity of the Andean plecopteran Klapopteryx kuscheli and Notoperla archiplatae larvae was assessed through a field experiment using enclosures. K. kuscheli has previously been described as a shredder and N. archiplatae as a scraper. Further information on gut contents from different populations supported those results. In the experiment, larvae of both species were exposed to contrasting food items: leaf litter and periphyton. Consumption, growth and the efficiency of food conversion were measured. K. kuscheli was able to feed on periphyton, though it did not grow. N. archiplatae failed to feed on leaf litter. While K. kuscheli might be considered a facultative shredder, N. archiplatae functions as a specialist scraper. The natural distribution and seasonal abundance in two small streams showed contrasting habitat use of both species. N. archiplatae inhabited high velocity runs and riffles underneath large substrates while K. kuscheli presented a higher habitat plasticity. Implications of those results for ecosystem function are discussed.
NASA Astrophysics Data System (ADS)
Park, Andrew; Friesen, Patrick; Serrud, Aneth Aracelly Sarmiento
2010-03-01
SummaryThe hydrological properties of leaf litter layers remain relatively unexplored, especially in tropical vegetation communities. In this paper we explore the hydrological dynamics of litter samples from reforestation plots of tropical hardwoods and the invasive sugar cane Saccharum spontaneum, which these trees were planted to replace. Water holding capacity (WHC) and drying rates were compared under controlled conditions, and throughfall interception, drainage and calculated evaporation were measured in two field experiments (A and B) conducted with different sets of samples. The WHC of samples varied from 3.4 to 6.5 mm in experiment A, and from 1.6 to 7.1 mm in experiment B. Drainage through the litter samples averaged 78.3 ± 34.4% and 61.2 ± 34.70% TF in experiments A and B, respectively. Daily water storage was 70.8 ± 14.25% of total WHC in experiment A and 78.6 ± 25.35% of total WHC in experiment B. Estimated evaporation averaged 34.8 ± 12.52% of WHC in experiment A and 34.3 ± 14.91% of WHC in experiment B. Although significant interspecific differences in WHC, interception of TF and evaporation were recorded, species rankings tended to be different in experiments A and B. The exception was litter from the leguminous tree Gliricidia sepium, which maintained the lowest WHC and water storage in the field in both experiments, but which evaporated water more rapidly than other species. The depth of throughfall draining through litter samples in the field was similar among all species in both experiments. Comparisons of regression slopes also showed that drainage depth increased with increasing throughfall at similar rates among species. On the other hand, both slopes and slope elevations differed among species when drainage was expressed in l kg -1. Patterns of water storage and drainage in our samples were in broad agreement with those of other studies, although WHC and litter necromass in our young tree plantations fell into the lower end of the range reported for mature Amazonian forest.
Groff, Luke A.; Calhoun, Aram J.K.; Loftin, Cynthia S.
2016-01-01
Poikilothermic species, such as amphibians, endure harsh winter conditions via freeze-tolerance or freeze-avoidance strategies. Freeze-tolerance requires a suite of complex, physiological mechanisms (e.g., cryoprotectant synthesis); however, behavioral strategies (e.g., hibernal habitat selection) may be used to regulate hibernaculum temperatures and promote overwintering survival. We investigated the hibernal ecology of the freeze-tolerant Wood Frog (Lithobates sylvaticus) in north-central Maine. Our objectives were to characterize the species hibernaculum microclimate (temperature, relative humidity), evaluate hibernal habitat selection, and describe the spatial arrangement of breeding, post-breeding, and hibernal habitats. We monitored 15 frogs during two winters (2011/12: N = 10; 2012/13: N = 5), measured hibernal habitat features at micro (2 m) and macro (10 m) spatial scales, and recorded microclimate hourly in three strata (hibernaculum, leaf litter, ambient air). We compared these data to that of 57 random locations with logistic regression models, Akaike Information Criterion, and Kolmogorov–Smirnov tests. Hibernaculum microclimate was significantly different and less variable than leaf litter, ambient air, and random location microclimate. Model averaging indicated that canopy cover (−), leaf litter depth (+), and number of logs and stumps (+; microhabitat only) were important predictors of Wood Frog hibernal habitat. These habitat features likely act to insulate hibernating frogs from extreme and variable air temperatures. For example, decreased canopy cover facilitates increased snowpack depth and earlier snowpack accumulation and melt. Altered winter temperature and precipitation patterns attributable to climate change may reduce snowpack insulation, facilitate greater temperature variation in the underlying hibernacula, and potentially compromise Wood Frog winter survival.
Du, Baoming; Liu, Chunjiang; Kang, Hongzhang; Zhu, Penghua; Yin, Shan; Shen, Guangrong; Hou, Jingli; Ilvesniemi, Hannu
2014-01-01
Decreasing temperature and increasing precipitation along altitude gradients are typical mountain climate in subtropical China. In such a climate regime, identifying the patterns of the C stable isotope composition (δ13C) in plants and soils and their relations to the context of climate change is essential. In this study, the patterns of δ13C variation were investigated for tree leaves, litters, and soils in the natural secondary forests at four altitudes (219, 405, 780, and 1268 m a.s.l.) in Lushan Mountain, central subtropical China. For the dominant trees, both leaf and leaf-litter δ13C decreased as altitude increased from low to high altitude, whereas surface soil δ13C increased. The lower leaf δ13C at high altitudes was associated with the high moisture-related discrimination, while the high soil δ13C is attributed to the low temperature-induced decay. At each altitude, soil δ13C became enriched with soil depth. Soil δ13C increased with soil C concentrations and altitude, but decreased with soil depth. A negative relationship was also found between O-alkyl C and δ13C in litter and soil, whereas a positive relationship was observed between aromatic C and δ13C. Lower temperature and higher moisture at high altitudes are the predominant control factors of δ13C variation in plants and soils. These results help understand C dynamics in the context of global warming. PMID:24466099
Batish, Daizy R; Singh, Harminder P; Setia, Nidhi; Kaur, Shalinder; Kohli, Ravinder K
2006-01-01
A total of 23 volatile constituents was identified and characterized by GC and GC-MS in the volatile essential oil extracted from intact (juvenile and adult) and fallen (senescent and leaf litter) leaves of lemon-scented eucalyptus (Eucalyptus citriodora Hook.). The leaves differed in their pigment, water and protein content, and C/N ratio. The oils were, in general, monoterpenoid in nature with 18 monoterpenes and 5 sesquiterpenes. However, a great variability in the amount of essential oils and their individual constituents was observed in different leaf tissues. The amount was maximum in the senescent leaves collected from the floor of the tree closely followed by that from juvenile leaves. In all, 19 constituents were identified in oil from juvenile and senescent leaves compared to 23 in adult leaves and 20 in leaf litter, respectively. Citronellal, a characteristic monoterpene of the oil reported hitherto was found to be more (77-78%) in the juvenile and senescent leaves compared to 48 and 54%, respectively, in the adult leaves and leaf litter. In the adult leaves, however, the content of citronellol--another important monoterpene-- was very high (21.9%) compared to other leaf types (7.8-12.2%). Essential oil and its two major monoterpenes viz. citronellal and citronellol were tested for their phytotoxicity against two weeds (Amaranthus viridis and Echinochloa crus-galli) and two crops (Triticum aestivum and Oryza sativa) under laboratory conditions. A difference in the phytotoxicity, measured in terms of seedling length and dry weight, of oil from different leaves and major monoterpenes was observed. Oil from adult leaves was found to be most phytotoxic although it occurs in smaller amount (on unit weight basis). The different toxicity of different oil types was due to the relative amount of individual monoterpenes present in the oil, their solubility and interactive action. The study concludes that oil from senescent and juvenile leaves being rich in citronellal could be used as commercial source of citronellal whereas that from adult leaves for weed management programmes as it was the most phytotoxic.
Ott, David; Rall, Björn C; Brose, Ulrich
2012-11-05
Macrofauna invertebrates of forest floors provide important functions in the decomposition process of soil organic matter, which is affected by the nutrient stoichiometry of the leaf litter. Climate change effects on forest ecosystems include warming and decreasing litter quality (e.g. higher C : nutrient ratios) induced by higher atmospheric CO(2) concentrations. While litter-bag experiments unravelled separate effects, a mechanistic understanding of how interactions between temperature and litter stoichiometry are driving decomposition rates is lacking. In a laboratory experiment, we filled this void by quantifying decomposer consumption rates analogous to predator-prey functional responses that include the mechanistic parameters handling time and attack rate. Systematically, we varied the body masses of isopods, the environmental temperature and the resource between poor (hornbeam) and good quality (ash). We found that attack rates increased and handling times decreased (i) with body masses and (ii) temperature. Interestingly, these relationships interacted with litter quality: small isopods possibly avoided the poorer resource, whereas large isopods exhibited increased, compensatory feeding of the poorer resource, which may be explained by their higher metabolic demands. The combination of metabolic theory and ecological stoichiometry provided critically important mechanistic insights into how warming and varying litter quality may modify macrofaunal decomposition rates.
NASA Astrophysics Data System (ADS)
Malenovsky, Zbynek; Homolova, Lucie; Janoutova, Ruzena; Landier, Lucas; Gastellu-Etchegorry, Jean-Philippe; Berthelot, Beatrice; Huck, Alexis
2016-08-01
In this study we investigated importance of the space- borne instrument Sentinel-2 red edge spectral bands and reconstructed red edge position (REP) for retrieval of the three eco-physiological plant parameters, leaf and canopy chlorophyll content and leaf area index (LAI), in case of maize agricultural fields and beech and spruce forest stands. Sentinel-2 spectral bands and REP of the investigated vegetation canopies were simulated in the Discrete Anisotropic Radiative Transfer (DART) model. Their potential for estimation of the plant parameters was assessed through training support vector regressions (SVR) and examining their P-vector matrices indicating significance of each input. The trained SVR were then applied on Sentinel-2 simulated images and the acquired estimates were cross-compared with results from high spatial resolution airborne retrievals. Results showed that contribution of REP was significant for canopy chlorophyll content, but less significant for leaf chlorophyll content and insignificant for leaf area index estimations. However, the red edge spectral bands contributed strongly to the retrievals of all parameters, especially canopy and leaf chlorophyll content. Application of SVR on Sentinel-2 simulated images demonstrated, in general, an overestimation of leaf chlorophyll content and an underestimation of LAI when compared to the reciprocal airborne estimates. In the follow-up investigation, we will apply the trained SVR algorithms on real Sentinel-2 multispectral images acquired during vegetation seasons 2015 and 2016.
NASA Astrophysics Data System (ADS)
Chianucci, Francesco; Disperati, Leonardo; Guzzi, Donatella; Bianchini, Daniele; Nardino, Vanni; Lastri, Cinzia; Rindinella, Andrea; Corona, Piermaria
2016-05-01
Accurate estimates of forest canopy are essential for the characterization of forest ecosystems. Remotely-sensed techniques provide a unique way to obtain estimates over spatially extensive areas, but their application is limited by the spectral and temporal resolution available from these systems, which is often not suited to meet regional or local objectives. The use of unmanned aerial vehicles (UAV) as remote sensing platforms has recently gained increasing attention, but their applications in forestry are still at an experimental stage. In this study we described a methodology to obtain rapid and reliable estimates of forest canopy from a small UAV equipped with a commercial RGB camera. The red, green and blue digital numbers were converted to the green leaf algorithm (GLA) and to the CIE L*a*b* colour space to obtain estimates of canopy cover, foliage clumping and leaf area index (L) from aerial images. Canopy attributes were compared with in situ estimates obtained from two digital canopy photographic techniques (cover and fisheye photography). The method was tested in beech forests. UAV images accurately quantified canopy cover even in very dense stand conditions, despite a tendency to not detecting small within-crown gaps in aerial images, leading to a measurement of a quantity much closer to crown cover estimated from in situ cover photography. Estimates of L from UAV images significantly agreed with that obtained from fisheye images, but the accuracy of UAV estimates is influenced by the appropriate assumption of leaf angle distribution. We concluded that true colour UAV images can be effectively used to obtain rapid, cheap and meaningful estimates of forest canopy attributes at medium-large scales. UAV can combine the advantage of high resolution imagery with quick turnaround series, being therefore suitable for routine forest stand monitoring and real-time applications.
Chase, Alexander B.; Karaoz, Ulas; Brodie, Eoin L.; ...
2017-11-14
Much genetic diversity within a bacterial community is likely obscured by microdiversity within operational taxonomic units (OTUs) defined by 16S rRNA gene sequences. However, it is unclear how variation within this microdiversity influences ecologically relevant traits. Here, we employ a multifaceted approach to investigate microdiversity within the dominant leaf litter bacterium,Curtobacterium, which comprises 7.8% of the bacterial community at a grassland site undergoing global change manipulations. We use cultured bacterial isolates to interpret metagenomic data, collectedin situover 2 years, together with lab-based physiological assays to determine the extent of trait variation within this abundant OTU. The response ofCurtobacteriumto seasonal variability andmore » the global change manipulations, specifically an increase in relative abundance under decreased water availability, appeared to be conserved across sixCurtobacteriumlineages identified at this site. Genomic and physiological analyses in the lab revealed that degradation of abundant polymeric carbohydrates within leaf litter, cellulose and xylan, is nearly universal across the genus, which may contribute to its high abundance in grassland leaf litter. However, the degree of carbohydrate utilization and temperature preference for this degradation varied greatly among clades. Overall, we find that traits withinCurtobacteriumare conserved at different phylogenetic depths. We speculate that similar to bacteria in marine systems, diverse microbes within this taxon may be structured in distinct ecotypes that are key to understandingCurtobacteriumabundance and distribution in the environment. IMPORTANCE. Despite the plummeting costs of sequencing, characterizing the fine-scale genetic diversity of a microbial community—and interpreting its functional importance—remains a challenge. Indeed, most studies, particularly studies of soil, assess community composition at a broad genetic level by classifying diversity into taxa (OTUs) defined by 16S rRNA sequence similarity. However, these classifications potentially obscure variation in traits that result in fine-scale ecological differentiation among closely related strains. Here, we investigated “microdiversity” in a highly diverse and poorly characterized soil system (leaf litter in a southern Californian grassland). Here, we focused on the most abundant bacterium,Curtobacterium, which by standard methods is grouped into only one OTU. We find that the degree of carbohydrate usage and temperature preference vary within the OTU, whereas its responses to changes in precipitation are relatively uniform. These results suggest that microdiversity may be key to understanding how soil bacterial diversity is linked to ecosystem functioning.« less
NASA Astrophysics Data System (ADS)
Maltsev, Ye. I.; Didovich, S. V.; Maltseva, I. A.
2017-08-01
Specific structural and dynamic parameters of communities from various ecological and trophic groups of microorganisms and algae in the litter of artificial tree stands were studied using the example of the Staro-Berdyansky Forest in the steppe zone of Ukraine. The composition of the communities was shown to vary by seasons and depend on the forest-forming woody species. In spring, in all the litters, the maximal number of actinomycetes and aminotrophs was recorded; in the leaf litter, the number of phosphate-mobilizing organisms was also the largest. In summer, the development of cellulolytic organisms, ammonifiers, and nitrogen-fixers was intensified; in autumn, the number of micromycetes and oligotrophic organisms decreased. The composition of dominants, the species richness of algae and their abundance also varied by seasons. Representatives of the Chlorophyta division predominated. The highest species richness of algae was characteristic of the spring litter samples, and their number, for the spring and autumn ones. The positive correlation was established between the numbers of micromycetes and oligotrophs, micromycetes and algae. The negative correlation was found between the numbers of micromycetes and actinomycetes, cellulose-decompose bacteria and algae in the litters.
Gautam, Mukesh Kumar; Lee, Kwang-Sik; Song, Byeong-Yeol; Lee, Dongho; Bong, Yeon-Sik
2016-05-01
Decomposition, nutrient, and isotopic (δ(13)C and δ(15)N) dynamics during 1 year were studied for leaf and twig litters of Pinus densiflora, Castanea crenata, Erigeron annuus, and Miscanthus sinensis growing on a highly weathered soil with constrained nutrient supply using litterbags in a cool temperate region of South Korea. Decay constant (k/year) ranged from 0.58 to 1.29/year, and mass loss ranged from 22.36 to 58.43 % among litter types. The results demonstrate that mass loss and nutrient dynamics of decomposing litter were influenced by the seasonality of mineralization and immobilization processes. In general, most nutrients exhibited alternate phases of rapid mineralization followed by gradual immobilization, except K, which was released throughout the field incubation. At the end of study, among all the nutrients only N and P showed net immobilization. Mobility of different nutrients from decomposing litter as the percentage of initial litter nutrient concentration was in the order of K > Mg > Ca > N ≈ P. The δ(13)C (0.32-6.70 ‰) and δ(15)N (0.74-3.90 ‰) values of residual litters showed nonlinear increase and decrease, respectively compared to initial isotopic values during decomposition. Litter of different functional types and chemical quality converged toward a conservative nutrient use strategy through mechanisms of slow decomposition and slow nutrient mobilization. Our results indicate that litter quality and season, are the most important regulators of litter decomposition in these forests. The results revealed significant relationships between litter decomposition rates and N, C:N ratio and P, and seasonality (temperature). These results and the convergence of different litters towards conservative nutrient use in these nutrient constrained ecosystems imply optimization of litter management because litter removal can have cascading effects on litter decomposition and nutrient availability in these systems.
Parraga-Aguado, Isabel; Querejeta, Jose-Ignacio; González-Alcaraz, María Nazaret; Conesa, Hector M
2014-07-01
The goal of this study was to evaluate internal metal(loid) cycling and the risk of metal(loid) accumulation in litter from Pinus halepensis trees growing at a mine tailing disposal site in semiarid Southeast Spain. Internal nutrient retranslocation was also evaluated in order to gain insight into the ability of pine trees to cope with the low-fertility soil conditions at the tailings. We measured metal(loid) concentrations in the foliage (young and old needles), woody stems and fresh leaf litter of pine trees growing on tailings. The nutrient status and stable isotope composition of pine foliage (δ(13)C, δ(15)N, δ(18)O as indicators of photosynthesis and water use efficiency) were also analyzed. Tailing soil properties in vegetation patches and in adjacent bare soil patches were characterized as well. Significant amounts of metal(loid)s such us Cd, Cu, Pb and Sb were immobilized in the woody stems of Pinus halepensis trees growing on tailings. Leaf litterfall showed high concentrations of As, Cd, Sb, Pb and Zn, which thereby return to the soil. However, water extractable metal(loid) concentrations in tailing soils were similar between vegetation patches (mineral soil under the litter layer) and bare soil patches. The pines growing on mine tailings showed very low foliar P concentrations in all leaf age classes, which suggests severe P deficiency. Young (current year) needles showed lower accumulation of metal(loid)s, higher nutrient concentrations (P and K), and higher water use efficiency (as indicated by and δ(13)C and δ(18)O data) than older needles. Substantial nutrient resorption occurred before leaf litterfall, with 46% retranslocation efficiency for P and 89% for K. In conclusion, phytostabilization of semiarid mine tailings with Pinus halepensis is feasible but would require careful monitoring of the trace elements released from litterfall, in order to assess the long term risk of metal(loid) transfer to the food chain. Copyright © 2014 Elsevier B.V. All rights reserved.
Entling, Martin H.; Mantilla-Contreras, Jasmin
2017-01-01
Microclimate in different positions on a host plant has strong direct effects on herbivores. But little is known about indirect effects due to changes of leaf traits. We hypothesized that herbivory increases from upper canopy to lower canopy and understory due to a combination of direct and indirect pathways. Furthermore, we hypothesized that herbivory in the understory differs between tree species in accordance with their leaf traits. We investigated herbivory by leaf chewing insects along the vertical gradient of mixed deciduous forest stands on the broad-leaved tree species Fagus sylvatica L. (European beech) with study sites located along a 140 km long transect. Additionally, we studied juvenile Acer pseudoplatanus L. (sycamore maple) and Carpinus betulus L. (hornbeam) individuals within the understory as a reference of leaf traits in the same microclimate. Lowest levels of herbivory were observed in upper canopies, where temperatures were highest. Temperature was the best predictor for insect herbivory across forest layers in our study. However, the direction was opposite to the generally known positive relationship. Herbivory also varied between the three tree species with lowest levels for F. sylvatica. Leaf carbon content was highest for F. sylvatica and probably indicates higher amounts of phenolic defense compounds. We conclude that the effect of temperature must have been indirect, whereby the expected higher herbivory was suppressed due to unfavorable leaf traits (lower nitrogen content, higher toughness and carbon content) of upper canopy leaves compared to the understory. PMID:28099483
Fate of leaf litter deposits and impacts on oxygen availability in bank filtration column studies.
Bayarsaikhan, Uranchimeg; Filter, Josefine; Gernert, Ulrich; Jekel, Martin; Ruhl, Aki Sebastian
2018-07-01
Degradation of particulate organic carbon (POC) such as leaf litter might deplete dissolved oxygen within the upper layers of bank filtration, an efficient and robust barrier for pathogens and for various organic micro-pollutants (OMP) in water supply systems worldwide. The degradation of OMP during bank filtration depends on the redox conditions. The present study aimed at identifying the impacts and fates of different local leaves on the oxygen consumption and the possible biological degradation of indicator OMP. Oxygen concentrations initially decreased within the columns from around 8 mg/L in the influent to low concentrations indicating extensive consumption within a short travel distance. Still a substantial oxygen consumption was observed after 250 days. OMP concentrations were not significantly affected by the microbial processes. A layer of calcium carbonate crystallites was observed on the POC layer. Some leaf fragments appeared to be persistant towards degradation and the carbon content relative to nitrogen and sulfur contents decreased within 250 days. The results demonstrate that trees at bank filtration sites might have a strong long-term impact on the subsurface redox conditions. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Grams, Thorsten
2017-04-01
Understanding biotic interactions among tree species with their microbial associates under drought will be crucial for silviculture in meeting ecological challenges of the future. This contribution gives an overview on a project integrating a throughfall-exclusion experiment (TEE) on adult trees with a natural precipitation gradient (PGR) in central European forests. Focus is on drought affecting species interaction above and belowground, including associated ectomycorrhizal (ECM) communities. Study objects are pure and mixed forests dominated by adult European beech and Norway spruce trees (c. 70-years old). At the throughfall-exclusion experiment (TEE), trees are readily accessible via scaffolding and canopy crane (Kranzberg Forest, southern Germany). Effects of experimentally induced, repeated summer drought are assessed with roughly 100 trees assigned to a total of 12 plots (Kranzberg forest ROOF experiment, kroof.wzw.tum.de). The summer drought treatment started in 2014 and was repeated in 2015 and 2106. The focus on species interaction is intensified by a parallel study along a natural precipitation gradient with plot triplets of monocultures and mixed cultures of European beech and Norway spruce at each of the five study sites. Complementary resource use, effects of competitive vs. facilitation and related changes in ECM communities are exemplified for the two tree species of contrasting foliage (i.e. deciduous vs. evergreen) and stomatal sensitivity to drought (i.e. an-isohydric vs. isohydric behavior). At the TEE site, precipitation throughfall was completely excluded from early spring to late fall (i.e. March to November), resulting in pre-dawn leaf water potentials of both beech and spruce as low as -2.5 MPa. Despite significant reductions in growth and rate of photosynthesis by up to 80% under drought, NSC budget of trees was hardly affected. Moreover, phloem functionality, tested as phloem transport velocity through 13C-labeling of recent photoassimilates, remained unaffected. The link between photosynthesis and stem cellulose (DBH) was assessed based on natural abundance of delta13C and delta18O. Under drought, mixing of recent photoassimilates with older carbohydrates during phloem transport significantly affected isotopic signatures of transported sucrose, diminishing the impact of drought. A quantitative relationship of this mixing effect (i.e. uncoupling of photosynthetic fractionation at the leaf level and isotopic signatures in stem cellulose) was established. Belowground, a distinct decline in fine root biomass, in particular in spruce, was observed. Along that line, repeated summer drought affected species composition of associated ECM fungi in both species. In particular, changes of ECM exploration types (i.e. contact/short-distance vs. long distance) may be related to C shortage of trees. Along the natural precipitation gradient (PGR), basal area increment of tree stems (DBH) was related to 13C discrimination in tree rings. Carbon isotope signatures proved to be a more sensible indicator of tree responses to drought that BAI. Sensitivity of trees was significantly affected by growth conditions, i.e. growth in mono- vs. mixed culture. Higher drought resistance was displayed by spruce on drier sites (i.e. habituation effect) and, conversely, by beech on moist sites, in particular when grown in mixture with spruce.
Transfer of radio-cesium from forest soil to woodchips using fungal activities
NASA Astrophysics Data System (ADS)
Kaneko, Nobuhiro; Huang, Yao; Tanaka, Yoichiro; Fujiwara, Yoshihiro; Sasaki, Michiko; Toda, Hiroto; Takahashi, Terumasa; Kobayashi, Tatsuaki; Harada, Naoki; Nonaka, Masahiro
2014-05-01
Raido-cesium released to terrestrial ecosystems by nuclear accidents is know to accumulate forest soil and organic layer on the soil. Forests in Japan are not exceptions. Practically it is impossible to decontaminate large area of forests. However, there is a strong demand from local people, who has been using secondary forests (Satoyama) around croplands in hilly areas, to decontaminate radio-cesium, because those people used to collect wild mushrooms and edible plants, and there are active cultures of mushrooms using logs and sawdusts. These natural resource uses consist substantial part of their economical activities, Therefore it is needed to decontaminate some selected part of forests in Japan to local economy. Clear cutting and scraping surface soil and organic matter are common methods of decontamination. However the efficiency of decontamination is up to 30% reduction of aerial radiation, and the cost to preserve contaminated debris is not affordable. In this study we used wood chips as a growth media for saprotrophic fungi which are known to accumulate redio-cesium. There are many studies indicated that mushrooms accumulated redio-cesium from forest soil and organic layer. It is not practical to collect mushrooms to decontaminate redio-cesium, because biomass of mushrooms are not enough to collect total contaminants. Mushrooms are only minor part of saprotrophic fungi. Fungal biomass in forest soil is about 1% of dead organic matter on forest floor. Our previous study to observe Cs accumulation to decomposing leaf litter indicated 18% absorption of total soil radio-Cs to litter during one year field incubation (Kaneko et al., 2013), and Cs concentration was proportional to fungal biomass on litter. This result indicated that fungi transferred radio-cesium around newly supplied leaf litter free of contamination. Therefore effective decontamination will be possible if we can provide large amount of growth media for saprotrophic fungi, and the media can be removed from forests with fungal bodies. We covered forest floor using wood chips, and observed Cs accumulation, and found that up to 50% of soil radio-cesium was transferred from soil to wood chips after 6-month of field incubation. Therefore this method is effective to decontaminate forest using ecological process. Kaneko N, Huang Y, Nakamori T, Tanaka Y, Nonaka M. Radio-cesium accumulation during decomposition of leaf litter in a deciduous forest after the Fukushima NPP accident. Geophysical Research Abstracts. 2013;15(EGU2013):7809.
NASA Astrophysics Data System (ADS)
Filley, T. R.; Top, S. M.; Hopkins, F. M.
2010-12-01
The influence of CO2-driven increase in net primary productivity on soil organic carbon accrual has received considerable emphasis in ecological literature with conclusions varying from positive, to neutral, to negative. What has been understudied is the coupled role of soil fauna, such as earthworms, in controlling the ultimate fate of new above and below ground plant carbon under elevated CO2. Such considerations are particularly relevant considering that in most northern North American forests earthworms are an exotic organism known to cause significant changes to forest floor chemistry and soil structure, possibly increasing nutrient loss from both soil and leaf litter and mixing litter and humus deep into the mineral soil. The impact of these exotic earthworms on overall soil carbon stabilization is largely unknown but likely a function of both species composition and edaphic soil properties. In this paper we present the initial results of a carbon isotope study (13C, 14C) conducted at the Aspen free air CO2 enrichment (FACE) site, Rhinelander, WI, USA to track allocation and redistribution within the soil of plant litter and root carbon (bulk and biopolymer). Along with litter and soil to 25 cm depth, earthworm populations were quantified, and their gut contents collected for isotopic and plant biopolymer chemistry analysis. Contributions of root vs. leaf input to soil and earthworm fecal matter were derived from differences in the chemical and isotope composition of alkaline CuO-derived lignin and substituted fatty acids (SFA) from cutin and suberin. Our investigation demonstrates the presence of invasive European earthworms, of both litter and surface soil dwelling (epigeic) and deep soil dwelling (endogeic) varieties, whose abundance increases under elevated CO2 conditions. Additionally, the different species show selective vertical movement of new and pre-FACE plant biopolymers indicating dynamics in root and leaf decomposition and burial (down to 30 cm) based upon exotic earthworm activity. The isotopic analysis also demonstrates that these invasive ecosystem engineers are bringing up “old” pre-FACE carbon to the surface, diluting the surface soil carbon isotope signature and potentially causing an apparent “slowing” of the rate of accumulation of FACE derived carbon. Our results highlight the complexity of determining soil C dynamics and the important role of invertebrate ecology in this process.
Input-decomposition balance of heterotrophic processes in a warm-temperate mixed forest in Japan
NASA Astrophysics Data System (ADS)
Jomura, M.; Kominami, Y.; Ataka, M.; Makita, N.; Dannoura, M.; Miyama, T.; Tamai, K.; Goto, Y.; Sakurai, S.
2010-12-01
Carbon accumulation in forest ecosystem has been evaluated using three approaches. One is net ecosystem exchange (NEE) estimated by tower flux measurement. The second is net ecosystem production (NEP) estimated by biometric measurements. NEP can be expressed as the difference between net primary production and heterotrophic respiration. NEP can also be expressed as the annual increment in the plant biomass (ΔW) plus soil (ΔS) carbon pools defined as follows; NEP = ΔW+ΔS The third approach needs to evaluate annual carbon increment in soil compartment. Soil carbon accumulation rate could not be measured directly in a short term because of the small amount of annual accumulation. Soil carbon accumulation rate can be estimated by a model calculation. Rothamsted carbon model is a soil organic carbon turnover model and a useful tool to estimate the rate of soil carbon accumulation. However, the model has not sufficiently included variations in decomposition processes of organic matters in forest ecosystems. Organic matter in forest ecosystems have a different turnover rate that creates temporal variations in input-decomposition balance and also have a large variation in spatial distribution. Thus, in order to estimate the rate of soil carbon accumulation, temporal and spatial variation in input-decomposition balance of heterotrophic processes should be incorporated in the model. In this study, we estimated input-decomposition balance and the rate of soil carbon accumulation using the modified Roth-C model. We measured respiration rate of many types of organic matters, such as leaf litter, fine root litter, twigs and coarse woody debris using a chamber method. We can illustrate the relation of respiration rate to diameter of organic matters. Leaf and fine root litters have no diameter, so assumed to be zero in diameter. Organic matters in small size, such as leaf and fine root litter, have high decomposition respiration. It could be caused by the difference in structure of organic matter. Because coarse woody debris has shape of cylinder, microbes decompose from the surface of it. Thus, respiration rate of coarse woody debris is lower than that of leaf and fine root litter. Based on this result, we modified Roth-C model and estimate soil carbon accumulation rate in recent years. Based on the results from a soil survey, the forest soil stored 30tC ha-1 in O and A horizon. We can evaluate the modified model using this result. NEP can be expressed as the annual increment in the plant biomass plus soil carbon pools. So if we can estimate NEP using this approach, then we can evaluate NEP estimated by micrometeorological and ecological approaches and reduce uncertainty of NEP estimation.
ERIC Educational Resources Information Center
Travis, Holly
2016-01-01
Many ground-dwelling amphibians, reptiles, small mammals, insects, and other arthropods seek cover during their resting hours. Their natural hideaways include underground burrows, rotting logs, and leaf litter, which are widely distributed and difficult to discover and observe. To make observation easier, scientists, educators, and students can…
RESPONSE OF NUTRIENTS, BIOFILM, AND BENTHIC INSECTS TO SALMON CARCASS ADDITION
Salmon carcass addition to streams is expected to increase stream productivity at multiple trophic levels. This study examined stream nutrient (nitrogen, phosphorus, and carbon), epilithic biofilm (ash-free dry mass and chlorophyll a), leaf-litter decomposition, and macroinverte...
Armillaria mellea and mortality of beech affected by beech bark disease
Philip M. Wargo
1983-01-01
The role of Armillaria mellea in the mortality of beech trees affected by beech bark disease was determined by excavating root systems of beech trees infested by beech scale, Cryptococcus fagisuga, or also infected by the bark fungus, Nectria coccinea var. faginata. Only trees infected by
Leaf Litter Decomposition as a Functional Assessment of a Natural Stream Channel Design Project
NASA Astrophysics Data System (ADS)
Gentry, A.; Word, D.; Carreiro, M.; Jack, J.
2005-05-01
In October 2003, a 965m reach of Wilson Creek (Bernheim Research Forest, Kentucky, USA) was relocated, and meanders and riffle-pool sequences were restored, providing a unique opportunity to measure the re-establishment of post-restoration stream functions. Leaf litter bags were placed across riffles in the restored reach, in an upstream reference site and in two reference streams. Bags were collected for nine months, and mass loss, N dynamics and fungal ergosterol were measured. Daily mass loss rates in the restored and reference riffles in Wilson Creek were faster (k= -0.00759 and k= -0.00855, respectively) than those of the two reference streams (k= -0.00511 and k= -0.00308). This is equivalent to litter mean residence times of 132 days for the restored reach in Wilson, 117 days in the upstream reference site, and 196 and 325 days for the reference streams. It appears that the decay rate in the restored reach is similar to the upstream portion of Wilson Creek, indicating rapid mass loss recovery in the restored reach. We also determined that same-stream reference sites are important for evaluating the restoration of stream functions, because of high decay rate variation among nearby streams within the same watershed.
NASA Astrophysics Data System (ADS)
Wong, J. C.; Williams, D.
2009-05-01
Detrital energy in temperate headwater streams is mainly derived from the annual input of leaf litter from the surrounding landscape. Presumably, its decomposition and other sources of autochthonous organic matter will change dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) quality. To investigate this, DOM was leached from two allochthonous sources: white birch (Betula papyrifera) and white cedar (Thuja occidentalis); and one autochthonous source, streambed biofilm, for a period of 7 days on 3 separate occasions in fall 2007. As a second treatment, microorganisms from the water column were filtered out. Deciduous leaf litter was responsible for high, short-term increases to DOC concentrations whereas the amounts leached from conifer needles were relatively constant in each month. Using UV spectroscopy, changes to DOM characteristics like aromaticity, spectral slopes, and molecular weight were mainly determined by source and indicated a preferential use of the labile DOM pool by the microorganisms. Excitation-emission matrices (EEMs) collected using fluorescence spectroscopy suggested that cedar litter was an important source of protein-like fluorescence and that the nature of the fluorescing DOM components changed in the presence of microorganisms. This study demonstrates that simultaneous examination of DOC concentrations and DOM quality will allow a better understanding of the carbon dynamics that connect terrestrial with aquatic ecosystems.
Arnold, A. Elizabeth
2016-01-01
Background Fungal endophytes inhabit symptomless, living tissues of all major plant lineages to form one of earth’s most prevalent groups of symbionts. Many reproduce from senesced and/or decomposing leaves and can produce extracellular leaf-degrading enzymes, blurring the line between symbiotrophy and saprotrophy. To better understand the endophyte–saprotroph continuum we compared fungal communities and functional traits of focal strains isolated from living leaves to those isolated from leaves after senescence and decomposition, with a focus on foliage of woody plants in five biogeographic provinces ranging from tundra to subtropical scrub forest. Methods We cultured fungi from the interior of surface-sterilized leaves that were living at the time of sampling (i.e., endophytes), leaves that were dead and were retained in plant canopies (dead leaf fungi, DLF), and fallen leaves (leaf litter fungi, LLF) from 3–4 species of woody plants in each of five sites in North America. Our sampling encompassed 18 plant species representing two families of Pinophyta and five families of Angiospermae. Diversity and composition of fungal communities within and among leaf life stages, hosts, and sites were compared using ITS-partial LSU rDNA data. We evaluated substrate use and enzyme activity by a subset of fungi isolated only from living tissues vs. fungi isolated only from non-living leaves. Results Across the diverse biomes and plant taxa surveyed here, culturable fungi from living leaves were isolated less frequently and were less diverse than those isolated from non-living leaves. Fungal communities in living leaves also differed detectably in composition from communities in dead leaves and leaf litter within focal sites and host taxa, regardless of differential weighting of rare and abundant fungi. All focal isolates grew on cellulose, lignin, and pectin as sole carbon sources, but none displayed ligninolytic or pectinolytic activity in vitro. Cellulolytic activity differed among fungal classes. Within Dothideomycetes, activity differed significantly between fungi from living vs. non-living leaves, but such differences were not observed in Sordariomycetes. Discussion Although some fungi with endophytic life stages clearly persist for periods of time in leaves after senescence and incorporation into leaf litter, our sampling across diverse biomes and host lineages detected consistent differences between fungal assemblages in living vs. non-living leaves, reflecting incursion by fungi from the leaf exterior after leaf death and as leaves begin to decompose. However, fungi found only in living leaves do not differ consistently in cellulolytic activity from those fungi detected thus far only in dead leaves. Future analyses should consider Basidiomycota in addition to the Ascomycota fungi evaluated here, and should explore more dimensions of functional traits and persistence to further define the endophytism-to-saprotrophy continuum. PMID:27994976
U'Ren, Jana M; Arnold, A Elizabeth
2016-01-01
Fungal endophytes inhabit symptomless, living tissues of all major plant lineages to form one of earth's most prevalent groups of symbionts. Many reproduce from senesced and/or decomposing leaves and can produce extracellular leaf-degrading enzymes, blurring the line between symbiotrophy and saprotrophy. To better understand the endophyte-saprotroph continuum we compared fungal communities and functional traits of focal strains isolated from living leaves to those isolated from leaves after senescence and decomposition, with a focus on foliage of woody plants in five biogeographic provinces ranging from tundra to subtropical scrub forest. We cultured fungi from the interior of surface-sterilized leaves that were living at the time of sampling (i.e., endophytes), leaves that were dead and were retained in plant canopies (dead leaf fungi, DLF), and fallen leaves (leaf litter fungi, LLF) from 3-4 species of woody plants in each of five sites in North America. Our sampling encompassed 18 plant species representing two families of Pinophyta and five families of Angiospermae. Diversity and composition of fungal communities within and among leaf life stages, hosts, and sites were compared using ITS-partial LSU rDNA data. We evaluated substrate use and enzyme activity by a subset of fungi isolated only from living tissues vs. fungi isolated only from non-living leaves. Across the diverse biomes and plant taxa surveyed here, culturable fungi from living leaves were isolated less frequently and were less diverse than those isolated from non-living leaves. Fungal communities in living leaves also differed detectably in composition from communities in dead leaves and leaf litter within focal sites and host taxa, regardless of differential weighting of rare and abundant fungi. All focal isolates grew on cellulose, lignin, and pectin as sole carbon sources, but none displayed ligninolytic or pectinolytic activity in vitro . Cellulolytic activity differed among fungal classes. Within Dothideomycetes, activity differed significantly between fungi from living vs. non-living leaves, but such differences were not observed in Sordariomycetes. Although some fungi with endophytic life stages clearly persist for periods of time in leaves after senescence and incorporation into leaf litter, our sampling across diverse biomes and host lineages detected consistent differences between fungal assemblages in living vs. non-living leaves, reflecting incursion by fungi from the leaf exterior after leaf death and as leaves begin to decompose. However, fungi found only in living leaves do not differ consistently in cellulolytic activity from those fungi detected thus far only in dead leaves. Future analyses should consider Basidiomycota in addition to the Ascomycota fungi evaluated here, and should explore more dimensions of functional traits and persistence to further define the endophytism-to-saprotrophy continuum.
Measuring microbial fitness in a field reciprocal transplant experiment.
Boynton, Primrose J; Stelkens, Rike; Kowallik, Vienna; Greig, Duncan
2017-05-01
Microbial fitness is easy to measure in the laboratory, but difficult to measure in the field. Laboratory fitness assays make use of controlled conditions and genetically modified organisms, neither of which are available in the field. Among other applications, fitness assays can help researchers detect adaptation to different habitats or locations. We designed a competitive fitness assay to detect adaptation of Saccharomyces paradoxus isolates to the habitat they were isolated from (oak or larch leaf litter). The assay accurately measures relative fitness by tracking genotype frequency changes in the field using digital droplet PCR (DDPCR). We expected locally adapted S. paradoxus strains to increase in frequency over time when growing on the leaf litter type from which they were isolated. The DDPCR assay successfully detected fitness differences among S. paradoxus strains, but did not find a tendency for strains to be adapted to the habitat they were isolated from. Instead, we found that the natural alleles of the hexose transport gene we used to distinguish S. paradoxus strains had significant effects on fitness. The origin of a strain also affected its fitness: strains isolated from oak litter were generally fitter than strains from larch litter. Our results suggest that dispersal limitation and genetic drift shape S. paradoxus populations in the forest more than local selection does, although further research is needed to confirm this. Tracking genotype frequency changes using DDPCR is a practical and accurate microbial fitness assay for natural environments. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
Catalogue of snout mites (Acariformes: Bdellidae) of the world
USDA-ARS?s Scientific Manuscript database
Bdellidae (Trombidiformes: Prostigmata) are moderate to large sized predatory mites that inhabit soil, leaves, leaf litter, and intertidal rocks. They are readily recognized by an elongated, snout-like gnathosoma and by elbowed pedipalps bearing two (one in Monotrichobdella) long terminal setae. Des...
Assessment of beech scale resistance in full- and half-sibling American beech families
Jennifer L. Koch; David W. Carey; Mary E. Mason; C. Dana Nelson
2010-01-01
A beech bark disease infested American beech tree (Fagus grandifolia Ehrh.) and two uninfested trees were selected in a mature natural stand in Michigan, USA, and mated to form two full-sib families for evaluating the inheritance of resistance to beech scale (Cryptococcus fagisuga Lind.), the insect element of beech bark disease....
Lidman, Johan; Jonsson, Micael; Burrows, Ryan M; Bundschuh, Mirco; Sponseller, Ryan A
2017-02-01
Although the importance of stream condition for leaf litter decomposition has been extensively studied, little is known about how processing rates change in response to altered riparian vegetation community composition. We investigated patterns of plant litter input and decomposition across 20 boreal headwater streams that varied in proportions of riparian deciduous and coniferous trees. We measured a suite of in-stream physical and chemical characteristics, as well as the amount and type of litter inputs from riparian vegetation, and related these to decomposition rates of native (alder, birch, and spruce) and introduced (lodgepole pine) litter species incubated in coarse- and fine-mesh bags. Total litter inputs ranged more than fivefold among sites and increased with the proportion of deciduous vegetation in the riparian zone. In line with differences in initial litter quality, mean decomposition rate was highest for alder, followed by birch, spruce, and lodgepole pine (12, 55, and 68% lower rates, respectively). Further, these rates were greater in coarse-mesh bags that allow colonization by macroinvertebrates. Variance in decomposition rate among sites for different species was best explained by different sets of environmental conditions, but litter-input composition (i.e., quality) was overall highly important. On average, native litter decomposed faster in sites with higher-quality litter input and (with the exception of spruce) higher concentrations of dissolved nutrients and open canopies. By contrast, lodgepole pine decomposed more rapidly in sites receiving lower-quality litter inputs. Birch litter decomposition rate in coarse-mesh bags was best predicted by the same environmental variables as in fine-mesh bags, with additional positive influences of macroinvertebrate species richness. Hence, to facilitate energy turnover in boreal headwaters, forest management with focus on conifer production should aim at increasing the presence of native deciduous trees along streams, as they promote conditions that favor higher decomposition rates of terrestrial plant litter.
Sobieszczyk, Steven; Keith, Mackenzie K.; Rounds, Stewart A.; Goldman, Jami H.
2014-01-01
For this study, we explored the amount, type, and distribution of foliar biomass that is deposited annually as leaf litter to Fanno Creek and its floodplain in Portland, Oregon, USA. Organic matter is a significant contributor to the decreased dissolved oxygen concentrations observed in Fanno Creek each year and leaf litter is amongst the largest sources of organic matter to the stream channel and floodplain. Using a combination of field measurements and light detection and ranging (LiDAR) point cloud data, the annual foliar biomass was estimated for 13 stream reaches along the creek. Biomass estimates were divided into two sets: (1) the annual foliage available from the entire floodplain overstory canopy, and (2) the annual foliage overhanging the stream, which likely contributes leaf litter directly to the creek each year. Based on these computations, an estimated 991 (±22%) metric tons (tonnes, t) of foliar biomass is produced annually above the floodplain, with about 136 t (±24%) of that foliage falling directly into Fanno Creek. The distribution of foliar biomass varies by reach, with between 150 and 640 t/km2 produced along the floodplain and between 400 and 1100 t/km2 available over the channel. Biomass estimates vary by reach based primarily on the density of tree cover, with forest-dominant reaches containing more mature deciduous trees with broader tree canopies than either wetland or urban-dominant reaches, thus supplying more organic material to the creek. By quantifying the foliar biomass along Fanno Creek we have provided a reach-scale assessment of terrestrial organic matter loading, thereby providing land managers useful information for planning future restoration efforts.
NASA Astrophysics Data System (ADS)
Sobieszczyk, Steven; Keith, Mackenzie K.; Rounds, Stewart A.; Goldman, Jami H.
2014-11-01
For this study, we explored the amount, type, and distribution of foliar biomass that is deposited annually as leaf litter to Fanno Creek and its floodplain in Portland, Oregon, USA. Organic matter is a significant contributor to the decreased dissolved oxygen concentrations observed in Fanno Creek each year and leaf litter is amongst the largest sources of organic matter to the stream channel and floodplain. Using a combination of field measurements and light detection and ranging (LiDAR) point cloud data, the annual foliar biomass was estimated for 13 stream reaches along the creek. Biomass estimates were divided into two sets: (1) the annual foliage available from the entire floodplain overstory canopy, and (2) the annual foliage overhanging the stream, which likely contributes leaf litter directly to the creek each year. Based on these computations, an estimated 991 (±22%) metric tons (tonnes, t) of foliar biomass is produced annually above the floodplain, with about 136 t (±24%) of that foliage falling directly into Fanno Creek. The distribution of foliar biomass varies by reach, with between 150 and 640 t/km2 produced along the floodplain and between 400 and 1100 t/km2 available over the channel. Biomass estimates vary by reach based primarily on the density of tree cover, with forest-dominant reaches containing more mature deciduous trees with broader tree canopies than either wetland or urban-dominant reaches, thus supplying more organic material to the creek. By quantifying the foliar biomass along Fanno Creek we have provided a reach-scale assessment of terrestrial organic matter loading, thereby providing land managers useful information for planning future restoration efforts.
2009-01-01
Background The isotopic composition of generalist consumers may be expected to vary in space as a consequence of spatial heterogeneity in isotope ratios, the abundance of resources, and competition. We aim to account for the spatial variation in the carbon and nitrogen isotopic composition of a generalized predatory species across a 500 ha. tropical rain forest landscape. We test competing models to account for relative influence of resources and competitors to the carbon and nitrogen isotopic enrichment of gypsy ants (Aphaenogaster araneoides), taking into account site-specific differences in baseline isotope ratios. Results We found that 75% of the variance in the fraction of 15N in the tissue of A. araneoides was accounted by one environmental parameter, the concentration of soil phosphorus. After taking into account landscape-scale variation in baseline resources, the most parsimonious model indicated that colony growth and leaf litter biomass accounted for nearly all of the variance in the δ15N discrimination factor, whereas the δ13C discrimination factor was most parsimoniously associated with colony size and the rate of leaf litter decomposition. There was no indication that competitor density or diversity accounted for spatial differences in the isotopic composition of gypsy ants. Conclusion Across a 500 ha. landscape, soil phosphorus accounted for spatial variation in baseline nitrogen isotope ratios. The δ15N discrimination factor of a higher order consumer in this food web was structured by bottom-up influences - the quantity and decomposition rate of leaf litter. Stable isotope studies on the trophic biology of consumers may benefit from explicit spatial design to account for edaphic properties that alter the baseline at fine spatial grains. PMID:19930701
Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation.
Davies, Richard G
2002-10-01
Biomass collapse and its associated microclimatic stresses within recently isolated rain forest fragments may negatively affect species diversity of most resident taxa. However, for some decomposer organisms, increased resource availability via accompanying tree die-off may effect positive responses, at least for a time, with implications for rates of nutrient cycling and greenhouse gas release. This study investigates the early effects of forest fragmentation on a Neotropical termite assemblage. Numbers of encounters (surrogate for relative abundance) and species richness of wood and leaf-litter feeders, soil feeders, and the whole assemblage, were studied across true forest islands and mainland sites at a hydroelectric reservoir in French Guiana. Results showed no overall effect of fragmentation on either total termite encounters or species richness. However, numbers of encounters and species richness of wood and leaf-litter feeders showed positive responses to forest fragmentation. By contrast, soil feeders showed a negative response for numbers of encounters and no significant effect for species richness. Environmental data suggest that increased tree die-off, and other edge effects associated with biomass collapse, were underway at the time of sampling. Resulting increase in resource availability may therefore explain the positive influence on wood and leaf-litter feeders. A possible decrease in predation pressure from ants with decrease in island size was not tested for, but was a likely effect of the flooded matrix habitat. Fragmentation effects on soil feeder encounters may be due to the energetic and microclimatic constraints of feeding lower down the humification gradient of termite food substrates, but were not sufficient to affect species richness. The patterns revealed suggest that rates of wood decomposition following tree die-off, and of soil nutrient cycling, under different rain forest fragmentation scenarios, merit further study.
NASA Astrophysics Data System (ADS)
Reed, E.; Armstrong, A.
2016-12-01
The optical properties and lability of fresh leaf and litter leachates obtained from Delmarva wetlands were analyzed to gain a further understanding of the carbon inputs and outputs of that wetland system. Carbon entering the wetland system may be digested by microbes and then given off as either carbon dioxide or methane, both of which enter the atmosphere as greenhouse gases. Delmarva Bays are often considered geographically isolated and only have surface water present in certain times of year. The vegetation around the wetlands are assumed to be a major input of the dissolved organic matter (DOM) in the wetland surface water. An understanding of the sources and lability of wetland water DOM can lead to further insight into the connections between vegetation, wetland management, and carbon cycling. Two paired wetland sites were sampled in this study, each included a forested catchment and a prior-converted agricultural wetland that had undergone hydrological ecosystem restoration. Leaf samples of Liquidambar styraciflua, Acer rubrum, Nyssa sylvatica, Polygonum, and Typha were taken directly from the living plant or from surrounding ground as litter. Spectral properties of the leachates were determined from fluorescence and absorbance, including PARAFAC components, fluorescence index (FI), humification index (HI), and the specific ultraviolet absorbance (SUVA). Leachates were also incubated with microbes taken from Tuckahoe Creek, a stream to which all sampled sites eventually drain, to determine the bioavailability of the carbon. There were measurable differences found between samples obtained from leaves and litter, as well as a difference between the herbaceous and tree samples. The results obtained from this study can help create more accurate models of how carbon cycles through these wetlands, both in forested and restored environments.
The effect of latitudinal gradient on the species diversity of Chinese litter-dwelling thrips
Wang, Jun; Tong, Xiaoli; Wu, Donghui
2014-01-01
Abstract To understand the global distribution patterns of litter-dwelling thrips, a total 150 leaf litter samples were collected from 6 natural reserves located in three climatic regions, temperate, subtropical and tropical. The results showed the relative abundance of Thysanoptera was over 3.0% in 4 natural reserves from subtropical and tropical zone, and reached 5.9% in one tropical reserve, only less than Acarina and Collembola. In contrast it was only 0.3% in the warm temperate natural reserves, and no thrips were collected in a mid temperate reserve. The order on the average species numbers per plot of litter thrips was tropic > subtropics > temperate (n=25, p<0.05). Mean density of litter thrips per plots in the tropics and subtropics was significantly higher than that in the temperate region (n=25, p<0.05), but the average density was not significantly different between tropical and subtropical zones (n=25, p>0.05). The diversity of litter thrips in the tropics and subtropics was much higher than that in the temperate area based on comparsions of Shannon-Wiener diversity index (H’), Pielou eveness index (J), and Simpson dominance index (D). All of these results indicated that litter-dwelling thrips lived mainly in tropical and subtropical regions; meanwhile, species number and relative abundance increased with decreasing latitude. PMID:25061351
Can visible light impact litter decomposition under pollution of ZnO nanoparticles?
Du, Jingjing; Zhang, Yuyan; Liu, Lina; Qv, Mingxiang; Lv, Yanna; Yin, Yifei; Zhou, Yinfei; Cui, Minghui; Zhu, Yanfeng; Zhang, Hongzhong
2017-11-01
ZnO nanoparticles is one of the most used materials in a wide range including antibacterial coating, electronic device, and personal care products. With the development of nanotechnology, ecotoxicology of ZnO nanoparticles has been received increasing attention. To assess the phototoxicity of ZnO nanoparticles in aquatic ecosystem, microcosm experiments were conducted on Populus nigra L. leaf litter decomposition under combined effect of ZnO nanoparticles and visible light radiation. Litter decomposition rate, pH value, extracellular enzyme activity, as well as the relative contributions of fungal community to litter decomposition were studied. Results showed that long-term exposure to ZnO nanoparticles and visible light led to a significant decrease in litter decomposition rate (0.26 m -1 vs 0.45 m -1 ), and visible light would increase the inhibitory effect (0.24 m -1 ), which caused significant decrease in pH value of litter cultures, fungal sporulation rate, as well as most extracellular enzyme activities. The phototoxicity of ZnO nanoparticles also showed impacts on fungal community composition, especially on the genus of Varicosporium, whose abundance was significantly and positively related to decomposition rate. In conclusion, our study provides the evidence for negatively effects of ZnO NPs photocatalysis on ecological process of litter decomposition and highlights the contribution of visible light radiation to nanoparticles toxicity in freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Frossard, Aline; Gerull, Linda; Mutz, Michael; Gessner, Mark O
2013-05-01
Successional changes of terrestrial vegetation can profoundly influence stream ecosystem structure and function. We hypothesized that microbial enzyme production and community structure in stream beds depend on terrestrial litter inputs that reflect different stages of riparian succession. Outdoor experimental channels were supplied with leaf-litter of varying quantities and qualities to mimic litter supply during five successional stages: (1) an initial biofilm stage; (2) an open-land stage with grass litter; (3) a transitional stage with mixed grass and birch litter; (4) an early forest stage with birch litter; and (5) an advanced forest stage with 2.5 × the amount of birch litter. Mean potential activities of nitrogen- and phosphorus-acquiring enzymes in sediments (20.7 and 67.3 μmol g(-1) dry mass) were 12-70 times greater than those of carbon-acquiring enzymes (0.96-1.71 μmol g(-1) dry mass), with the former reduced 1.3-8.3-fold in channels with tree litter. These patterns could suggest gradually diminishing nutrient limitation of microbial activity during riparian succession, potentially linked both to an increasing supply by the added litter and to a lower nutrient demand as algal biomass and labile carbon supply by photosynthetic exudates declined. As the observed shifts in nutrient-acquiring enzymes were reflected in changes of sediment microbial communities, these results indicate that both the type and density of terrestrial vegetation control microbial community structure and function in stream sediments, particularly enzyme production related to nutrient cycling. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Kreutzweiser, David; Thompson, Dean; Grimalt, Susana; Chartrand, Derek; Good, Kevin; Scarr, Taylor
2011-09-01
The non-target effects of an azadirachtin-based systemic insecticide used for control of wood-boring insect pests in trees were assessed on litter-dwelling earthworms, leaf-shredding aquatic insects, and microbial communities in terrestrial and aquatic microcosms. The insecticide was injected into the trunks of ash trees at a rate of 0.2 gazadirachtin cm(-1) tree diameter in early summer. At the time of senescence, foliar concentrations in most (65%) leaves where at or below detection (<0.01 mg kg(-1) total azadirachtin) and the average concentration among leaves overall at senescence was 0.19 mg kg(-1). Leaves from the azadirachtin-treated trees at senescence were added to microcosms and responses by test organisms were compared to those in microcosms containing leaves from non-treated ash trees (controls). No significant reductions were detected among earthworm survival, leaf consumption rates, growth rates, or cocoon production, aquatic insect survival and leaf consumption rates, and among terrestrial and aquatic microbial decomposition of leaf material in comparison to controls. In a further set of microcosm tests containing leaves from intentional high-dose trees, the only significant, adverse effect detected was a reduction in microbial decomposition of leaf material, and only at the highest test concentration (∼6 mg kg(-1)). Results indicated no significant adverse effects on litter-dwelling earthworms or leaf-shredding aquatic insects at concentrations up to at least 30 × the expected field concentrations at operational rates, and at 6 × expected field concentrations for adverse effects on microbial decomposition. We conclude that when azadirachtin is used as a systemic insecticide in trees for control of insect pests such as the invasive wood-boring beetle, emerald ash borer, resultant foliar concentrations in senescent leaf material are likely to pose little risk of harm to decomposer invertebrates. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
Isotopic Discrimination During Leaf Litter Decomposition
NASA Astrophysics Data System (ADS)
Ngao, J.; Rubino, M.
2006-12-01
Methods involving stable isotopes have been successfully applied since decades in various research fields. Tracing 13C natural abundance in ecosystem compartments greatly enhanced the understanding of the C fluxes in the plant-soil-atmosphere C exchanges when compartments present different C isotopic signatures (i.e. atmospheric CO2 vs photosynthetic leaves, C3 vs C4; etc.). However, the assumption that no isotopic discrimination occurs during respiration is commonly made in numbers of C isotope-based ecological studies. Furthermore, verifications of such assumption are sparse and not enough reliable. The aim of our study is to assess the potential isotopic discrimination that may occur during litter decomposition. Leaf litter from an Arbutus unedo (L.) stand (Tolfa, Italy) was incubated in 1L jars, under constant laboratory conditions (i.e. 25 ° C and 135% WC). During the entire incubation period, gravimetric mass loss, litter respiration rates and the isotopic composition of respired CO2 are monitored at regular intervals. Data from 7 months of incubation will be presented and discussed. After two months, the litter mass loss averaged 16% of initial dry mass. During the same time-period, the respiration rate decreased significantly by 58% of the initial respiration rate. Isotopic compositions of respired CO2 ranged between -27.95‰ and - 25.69‰. Mean values did not differ significantly among the sampling days, in spite of an apparent enrichment in 13C of respired CO2 with time. The significance of these isotopic enrichment will be determined at a longer time scale. They may reveal both/either a direct microbial discrimination during respiration processes and/or a use of different litter compounds as C source along time. Further chemical and compound-specific isotopic analysis of dry matter will be performed in order to clarify these hypotheses. This work is part of the "ALICE" project, funded by the European Union's Marie Curie Fellowship Actions that aims to implement an advanced laser spectrometry technology to measure the isotopic composition in respired CO2. The laser spectrometer will be used to investigate the isotopic discrimination during soil respiration, in laboratory and field studies.
NASA Astrophysics Data System (ADS)
Köstner, B.
Spatial scaling from patch to the landscape level requires knowledge on the effects of vegetation structure on maximum surface conductances and evaporation rates. The following paper summarizes results on atmospheric, edaphic, and structural controls on forest evaporation and transpiration observed in stands of Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica). Forest canopy transpiration (Ec) was determined by tree sapflow measurements scaled to the stand level. Estimates of understory transpiration and forest floor evaporation were derived from lysimeter and chamber measurements. Strong reduction of Ec due to soil drought was only observed at a Scots pine stand when soil water content dropped below 16% v/v. Although relative responses of Ec on atmospheric conditions were similar, daily maximum rates of could differ more than 100% between forest patches of different structure (1.5-3.0mmd-1 and 2.6-6.4mmd-1 for spruce and beech, respectively). A significant decrease of Ecmax per leaf area index with increasing stand age was found for monocultures of Norway spruce, whereas no pronounced changes in were observed for beech stands. It is concluded that structural effects on Ecmax can be specified and must be considered for spatial scaling from forest stands to landscapes. Hereby, in conjunction with LAI, age-related structural parameters are important for Norway spruce stands. Although compensating effects of tree canopy layers and understory on total evaporation of forests were observed, more information is needed to quantify structure-function relationships in forests of heterogenous structure.
NASA Astrophysics Data System (ADS)
Schneider, Thomas; Keiblinger, Katharina; Gerrits, Bertran; Schmid, Emanuel; Eberl, Leo; Zechmeister-Boltenstern, Sophie; Riedel, Kathrin
2010-05-01
The composition of organic matter in natural ecosystems is strongly influenced by the microorganisms present. Conversely, bacteria and fungi are limited by the amount and type of organic matter available in a given environment, most of which is ultimately derived from plants. Changes in the stoichiometry and biochemical constituents of plant litter may therefore alter species composition and elicit changes in the activities of microbial communities and their component parts. The identification of the microbial proteins of a given habitat together with the analysis of their phylogenetic origin and their spatial and temporal distribution are expected to provide fundamentally new insights into the role of microbial diversity in biogeochemical processes. To relate structure and functionality of microbial communities involved in leaf-litter decomposition we determined biogeochemistry, community structure by phospholipid fatty acid (PLFA)-analyses, enzymatic activities, and analysed the protein complement of different litter types, which were collected in winter and spring at various Austrian sampling sites, in a semi-quantitative proteomics approach by one dimensional polyacrylamide gel electrophoresis (1-D-SDS-PAGE) combined with liquid chromatography/tandem mass-spectrometry (LC-MS/MS). Protein abundances were determined by counting the number of MS/MS spectra assigned to each protein. In samples with high manganese and phosphor content a significant increase of fungal proteins from February to May was observed, which was in good agreement with the PLFA-analyses showing similar trends towards an increase of the fungal community. In contrast, the PLFA analysis revealed no temporal changes in the community at Achenkirch and even a decrease in the fungal/bacterial ratio at Klausen-Leopoldsdorf, two sampling sites low in P and Mn; similar trends are reflected in our spectral counts. In conclusion, semi-quantitative proteome- and PLFA-analyses suggest that fungal and bacterial abundance positively correlates with the total amount of P and Mn within the different litter types. Spectral counts of extracellular enzymes demonstrated a significant increase of these enzymes in the May, which was also mirrored by measurements of total enzymatic activities. The finding that almost all hydrolytic enzymes identified from litter were of fungal origin suggests a prominent role of fungi during aerobic litter decomposition.
Battling beech bark disease: establishment of beech seed orchards in Michigan
Jennifer L. Koch; Robert L. Heyd
2013-01-01
Amidst the dead, dying, and deformed beech trees left in the wake of beech bark disease (BBD), we are fortunate to find beech trees that remain healthy even in heavily infested areas. In stands across several US states it has been reported that disease-free beech trees are often found in clusters, providing evidence that resistance could be a genetic trait. Trees...
USDA-ARS?s Scientific Manuscript database
A new genus (Andersonaltica) containing four new species from Central America is described and illustrated. It is compared to Aedmon Clark, Apleuraltica Bechyne, Distigmoptera Blake, Hypolampsis Clark, and Pseudolampsis Horn and a key to identification of these genera is provided...
NASA Astrophysics Data System (ADS)
Filley, T. R.; Dria, K.
2004-12-01
Soil organic matter (SOM) is the largest terrestrial C and N store. Microbial yand abiotic processes that control the transformation of protein nitrogen in litter and ysoils into macromolecular humic materials play an important role in organic matter ystorage and soil productivity. There are major gaps, however, in our understanding of ythese processes and behaviors. Abiotic reactions of amines, phenols and sugars derived yfrom forest leachates or present in detrital and litter organic matter are known to be ykey processes in the formation of complex organic nitrogen. We present here the yresults from a study designed to investigate how the inherent chemistry of lignin, leaf ylitter, and progressively advanced brown-rot wood decay impact the chemical reaction yof amino acids with this organic matter. Additionally, experiments in the presence of ybirnessite (MnO2) were also conducted to investigate the role of mineral induced phenol yoxidation on specific amino acid chemical humifcation processes. Solid and liquid state yNMR, 13C-labelled tetramethyl ammonium hydroxide thermochemolysis and stable ycarbon and nitrogen isotope ratio mass spectrometry were used to track the alteration yof litter material and document uptake of 13C and 15N labeled amino acids. yPreliminary results from birnessite-containing experiments suggest that the metal-ypromoted oxidation of the lignin, leaf litter, and, in particular, demethylated brown rot ywood residues, is necessary to convert the phenols to quinones of some type permitting yamine addition. This relationship is particularly true for the production of soluble yfractions after two and six weeks of reaction in the presence of the manganese oxides. yAdditionally, the production of leachable organic matter with incorporated N was ypromoted in the soluble fractions. Ongoing NMR studies will elucidate the nature of ythe chemical binding in these experiments. y
Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.
2012-01-01
High tissue nitrogen (N) accelerates decomposition of high-quality leaf litter in the early phases of mass loss, but the influence of initial tissue N variation on the decomposition of lignin-rich litter is less resolved. Because environmental changes such as atmospheric N deposition and elevated CO2 can alter tissue N levels within species more rapidly than they alter the species composition of ecosystems, it is important to consider how within-species variation in tissue N may shape litter decomposition and associated N dynamics. Douglas-fir (Pseudotsuga menziesii ) is a widespread lignin-rich conifer that dominates forests of high carbon (C) storage across western North America, and displays wide variation in tissue and litter N that reflects landscape variation in soil N. We collected eight unique Douglas-fir litter sources that spanned a two-fold range in initial N concentrations (0.67–1.31%) with a narrow range of lignin (29–35%), and examined relationships between initial litter chemistry, decomposition, and N dynamics in both ambient and N fertilized plots at four sites over 3 yr. High initial litter N slowed decomposition rates in both early (0.67 yr) and late (3 yr) stages in unfertilized plots. Applications of N fertilizer to litters accelerated early-stage decomposition, but slowed late-stage decomposition, and most strongly affected low-N litters, which equalized decomposition rates across litters regardless of initial N concentrations. Decomposition of N-fertilized litters correlated positively with initial litter manganese (Mn) concentrations, with litter Mn variation reflecting faster turnover of canopy foliage in high N sites, producing younger litterfall with high N and low Mn. Although both internal and external N inhibited decomposition at 3 yr, most litters exhibited net N immobilization, with strongest immobilization in low-N litter and in N-fertilized plots. Our observation for lignin-rich litter that high initial N can slow decomposition yet accelerate N release differs from findings where litter quality variation across species promotes coupled C and N release during decomposition. We suggest reevaluation of ecosystem models and projected global change effects to account for a potential decoupling of ecosystem C and N feedbacks through litter decomposition in lignin-rich conifer forests.
NASA Astrophysics Data System (ADS)
Krab, E. J.; Berg, M. P.; Aerts, R.; van Logtestijn, R. S. P.; Cornelissen, H. H. C.
2014-12-01
Climate-change-induced trends towards shrub dominance in subarctic, moss-dominated peatlands will most likely have large effects on soil carbon (C) dynamics through an input of more easily decomposable litter. The mechanisms by which this increase in vascular litter input interacts with the abundance and diet-choice of the decomposer community to alter C-processing have, however, not yet been unraveled. We used a novel 13C tracer approach to link invertebrate species composition (Collembola), abundance and species-specific feeding behavior to C-processing of vascular and peat moss litters. We incubated different litter mixtures, 100% Sphagnum moss litter, 100% Betula leaf litter, and a 50/50 mixture of both, in mesocosms for 406 days. We revealed the transfer of C from the litters to the soil invertebrate species by 13C labeling of each of the litter types and assessed 13C signatures of the invertebrates Collembola species composition differed significantly between Sphagnum and Betula litter. Within the 'single type litter' mesocosms, Collembola species showed different 13C signatures, implying species-specific differences in diet choice. Surprisingly, the species composition and Collembola abundance changed relatively little as a consequence of Betula input to a Sphagnum based system. Their diet choice, however, changed drastically; species-specific differences in diet choice disappeared and approximately 67% of the food ingested by all Collembola originated from Betula litter. Furthermore, litter decomposition patterns corresponded to these findings; mass loss of Betula increased from 16.1% to 26.2% when decomposing in combination with Sphagnum, while Sphagnum decomposed even slower in combination with Betula litter (1.9%) than alone (4.7%). This study is the first to empirically show that collective diet shifts of the peatland decomposer community from mosses towards vascular plant litter may drive altered decomposition patterns. In addition, we showed that although species-specific differences in Collembola feeding behavior appear to exist, species are very plastic in their diet. This implies that changes in C turnover rates with vegetation shifts, might well be due to diet shifts of the present decomposer community rather than by changes in species composition.
Dynamics of the Leaf-Litter Arthropod Fauna Following Fire in a Neotropical Woodland Savanna
Vasconcelos, Heraldo L.; Pacheco, Renata; Silva, Raphael C.; Vasconcelos, Pedro B.; Lopes, Cauê T.; Costa, Alan N.; Bruna, Emilio M.
2009-01-01
Fire is an important agent of disturbance in tropical savannas, but relatively few studies have analyzed how soil-and-litter dwelling arthropods respond to fire disturbance despite the critical role these organisms play in nutrient cycling and other biogeochemical processes. Following the incursion of a fire into a woodland savanna ecological reserve in Central Brazil, we monitored the dynamics of litter-arthropod populations for nearly two years in one burned and one unburned area of the reserve. We also performed a reciprocal transplant experiment to determine the effects of fire and litter type on the dynamics of litter colonization by arthropods. Overall arthropod abundance, the abundance of individual taxa, the richness of taxonomic groups, and the species richness of individual taxa (Formiciade) were lower in the burned site. However, both the ordinal-level composition of the litter arthropod fauna and the species-level composition of the litter ant fauna were not dramatically different in the burned and unburned sites. There is evidence that seasonality of rainfall interacts with fire, as differences in arthropod abundance and diversity were more pronounced in the dry than in the wet season. For many taxa the differences in abundance between burned and unburned sites were maintained even when controlling for litter availability and quality. In contrast, differences in abundance for Collembola, Formicidae, and Thysanoptera were only detected in the unmanipulated samples, which had a lower amount of litter in the burned than in the unburned site throughout most of our study period. Together these results suggest that arthropod density declines in fire-disturbed areas as a result of direct mortality, diminished resources (i.e., reduced litter cover) and less favorable microclimate (i.e., increased litter desiccation due to reduction in tree cover). Although these effects were transitory, there is evidence that the increasingly prevalent fire return interval of only 1–2 years may jeopardize the long-term conservation of litter arthropod communities. PMID:19898619
Jennifer Koch; Dave Carey; M.E. Mason
2010-01-01
Cross-species amplification of six microsatellite markers from European beech (Fagus sylvatica Linn) and nine markers from Japanese beech (Fagus crenata Blume) was tested in American beech (Fagus grandifolia Ehrh.). Three microsatellites from each species were successfully adapted for use in American beech...
Gui, Heng; Hyde, Kevin; Xu, Jianchu; Mortimer, Peter
2017-01-01
Although there is a growing amount of evidence that arbuscular mycorrhizal fungi (AMF) influence the decomposition process, the extent of their involvement remains unclear. Therefore, given this knowledge gap, our aim was to test how AMF influence the soil decomposer communities. Dual compartment microcosms, where AMF (Glomus mosseae) were either allowed access (AM+) to or excluded (AM−) from forest soil compartments containing litterbags (leaf litter from Calophyllum polyanthum) were used. The experiment ran for six months, with destructive harvests at 0, 90, 120, 150, and 180 days. For each harvest we measured AMF colonization, soil nutrients, litter mass loss, and microbial biomass (using phospholipid fatty acid analysis (PLFA)). AMF significantly enhanced litter decomposition in the first 5 months, whilst delaying the development of total microbial biomass (represented by total PLFA) from T150 to T180. A significant decline in soil available N was observed through the course of the experiment for both treatments. This study shows that AMF have the capacity to interact with soil microbial communities and inhibit the development of fungal and bacterial groups in the soil at the later stage of the litter decomposition (180 days), whilst enhancing the rates of decomposition. PMID:28176855
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chase, Alexander B.; Karaoz, Ulas; Brodie, Eoin L.
ABSTRACT Much genetic diversity within a bacterial community is likely obscured by microdiversity within operational taxonomic units (OTUs) defined by 16S rRNA gene sequences. However, it is unclear how variation within this microdiversity influences ecologically relevant traits. Here, we employ a multifaceted approach to investigate microdiversity within the dominant leaf litter bacterium, Curtobacterium , which comprises 7.8% of the bacterial community at a grassland site undergoing global change manipulations. We use cultured bacterial isolates to interpret metagenomic data, collected in situ over 2 years, together with lab-based physiological assays to determine the extent of trait variation within this abundant OTU. Themore » response of Curtobacterium to seasonal variability and the global change manipulations, specifically an increase in relative abundance under decreased water availability, appeared to be conserved across six Curtobacterium lineages identified at this site. Genomic and physiological analyses in the lab revealed that degradation of abundant polymeric carbohydrates within leaf litter, cellulose and xylan, is nearly universal across the genus, which may contribute to its high abundance in grassland leaf litter. However, the degree of carbohydrate utilization and temperature preference for this degradation varied greatly among clades. Overall, we find that traits within Curtobacterium are conserved at different phylogenetic depths. We speculate that similar to bacteria in marine systems, diverse microbes within this taxon may be structured in distinct ecotypes that are key to understanding Curtobacterium abundance and distribution in the environment. IMPORTANCE Despite the plummeting costs of sequencing, characterizing the fine-scale genetic diversity of a microbial community—and interpreting its functional importance—remains a challenge. Indeed, most studies, particularly studies of soil, assess community composition at a broad genetic level by classifying diversity into taxa (OTUs) defined by 16S rRNA sequence similarity. However, these classifications potentially obscure variation in traits that result in fine-scale ecological differentiation among closely related strains. Here, we investigated “microdiversity” in a highly diverse and poorly characterized soil system (leaf litter in a southern Californian grassland). We focused on the most abundant bacterium, Curtobacterium , which by standard methods is grouped into only one OTU. We find that the degree of carbohydrate usage and temperature preference vary within the OTU, whereas its responses to changes in precipitation are relatively uniform. These results suggest that microdiversity may be key to understanding how soil bacterial diversity is linked to ecosystem functioning.« less
Chase, Alexander B.; Karaoz, Ulas; Brodie, Eoin L.; ...
2017-11-14
ABSTRACT Much genetic diversity within a bacterial community is likely obscured by microdiversity within operational taxonomic units (OTUs) defined by 16S rRNA gene sequences. However, it is unclear how variation within this microdiversity influences ecologically relevant traits. Here, we employ a multifaceted approach to investigate microdiversity within the dominant leaf litter bacterium, Curtobacterium , which comprises 7.8% of the bacterial community at a grassland site undergoing global change manipulations. We use cultured bacterial isolates to interpret metagenomic data, collected in situ over 2 years, together with lab-based physiological assays to determine the extent of trait variation within this abundant OTU. Themore » response of Curtobacterium to seasonal variability and the global change manipulations, specifically an increase in relative abundance under decreased water availability, appeared to be conserved across six Curtobacterium lineages identified at this site. Genomic and physiological analyses in the lab revealed that degradation of abundant polymeric carbohydrates within leaf litter, cellulose and xylan, is nearly universal across the genus, which may contribute to its high abundance in grassland leaf litter. However, the degree of carbohydrate utilization and temperature preference for this degradation varied greatly among clades. Overall, we find that traits within Curtobacterium are conserved at different phylogenetic depths. We speculate that similar to bacteria in marine systems, diverse microbes within this taxon may be structured in distinct ecotypes that are key to understanding Curtobacterium abundance and distribution in the environment. IMPORTANCE Despite the plummeting costs of sequencing, characterizing the fine-scale genetic diversity of a microbial community—and interpreting its functional importance—remains a challenge. Indeed, most studies, particularly studies of soil, assess community composition at a broad genetic level by classifying diversity into taxa (OTUs) defined by 16S rRNA sequence similarity. However, these classifications potentially obscure variation in traits that result in fine-scale ecological differentiation among closely related strains. Here, we investigated “microdiversity” in a highly diverse and poorly characterized soil system (leaf litter in a southern Californian grassland). We focused on the most abundant bacterium, Curtobacterium , which by standard methods is grouped into only one OTU. We find that the degree of carbohydrate usage and temperature preference vary within the OTU, whereas its responses to changes in precipitation are relatively uniform. These results suggest that microdiversity may be key to understanding how soil bacterial diversity is linked to ecosystem functioning.« less