Sample records for bees

  1. Red mason bees cannot compete with honey bees for floral resources in a cage experiment.

    PubMed

    Hudewenz, Anika; Klein, Alexandra-Maria

    2015-11-01

    Intensive beekeeping to mitigate crop pollination deficits and habitat loss may cause interspecific competition between bees. Studies show negative correlations between flower visitation of honey bees (Apis mellifera) and wild bees, but effects on the reproduction of wild bees were not proven. Likely reasons are that honey bees can hardly be excluded from controls and wild bee nests are generally difficult to detect in field experiments. The goal of this study was to investigate whether red mason bees (Osmia bicornis) compete with honey bees in cages in order to compare the reproduction of red mason bees under different honey bee densities. Three treatments were applied, each replicated in four cages of 18 m³ with 38 red mason bees in all treatments and 0, 100, and 300 honey bees per treatment with 10-20% being foragers. Within the cages, the flower visitation and interspecific displacements from flowers were observed. Niche breadths and resource overlaps of both bee species were calculated, and the reproduction of red mason bees was measured. Red mason bees visited fewer flowers when honey bees were present. Niche breadth of red mason bees decreased with increasing honey bee density while resource overlaps remained constant. The reproduction of red mason bees decreased in cages with honey bees. In conclusion, our experimental results show that in small and isolated flower patches, wild bees can temporarily suffer from competition with honey bees. Further research should aim to test for competition on small and isolated flower patches in real landscapes.

  2. Non-bee insects are important contributors to global crop pollination.

    PubMed

    Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A; Garratt, Michael P D; Howlett, Brad G; Winfree, Rachael; Cunningham, Saul A; Mayfield, Margaret M; Arthur, Anthony D; Andersson, Georg K S; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G; Chacoff, Natacha P; Entling, Martin H; Foully, Benjamin; Freitas, Breno M; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R; Gross, Caroline L; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q; Lindström, Sandra A M; Mandelik, Yael; Monteiro, Victor M; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E; Pereira, Natália de O; Pisanty, Gideon; Potts, Simon G; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G; Stanley, Dara A; Stout, Jane C; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H; Viana, Blandina F; Woyciechowski, Michal

    2016-01-05

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.

  3. Non-bee insects are important contributors to global crop pollination

    PubMed Central

    Bartomeus, Ignasi; Garibaldi, Lucas A.; Garratt, Michael P. D.; Howlett, Brad G.; Winfree, Rachael; Cunningham, Saul A.; Mayfield, Margaret M.; Arthur, Anthony D.; Andersson, Georg K. S.; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G.; Chacoff, Natacha P.; Entling, Martin H.; Foully, Benjamin; Freitas, Breno M.; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R.; Gross, Caroline L.; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q.; Lindström, Sandra A. M.; Mandelik, Yael; Monteiro, Victor M.; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E.; de O. Pereira, Natália; Pisanty, Gideon; Potts, Simon G.; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S.; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G.; Stanley, Dara A.; Stout, Jane C.; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H.; Viana, Blandina F.; Woyciechowski, Michal

    2016-01-01

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25–50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines. PMID:26621730

  4. Resource overlap and possible competition between honey bees and wild bees in central Europe.

    PubMed

    Steffan-Dewenter, I; Tscharntke, T

    2000-02-01

    Evidence for interspecific competition between honey bees and wild bees was studied on 15 calcareous grasslands with respect to: (1) foraging radius of honey bees, (2) overlap in resource use, and (3) possible honey bee effects on species richness and abundance of flower-visiting, ground-nesting and trap-nesting wild bees. The grasslands greatly differed in the number of honey bee colonies within a radius of 2 km and were surrounded by agricultural habitats. The number of flower-visiting honey bees on both potted mustard plants and small grassland patches declined with increasing distance from the nearest apiary and was almost zero at a distance of 1.5-2.0 km. Wild bees were observed visiting 57 plant species, whereas honey bees visited only 24 plant species. Percentage resource overlap between honey bees and wild bees was 45.5%, and Hurlbert's index of niche overlap was 3.1. In total, 1849 wild bees from 98 species were recorded on the calcareous grasslands. Neither species richness nor abundance of wild bees were negatively correlated with the density of honey bee colonies (within a radius of 2 km) or the density of flower-visiting honey bees per site. Abundance of flower- visiting wild bees was correlated only with the percentage cover of flowering plants. In 240 trap nests, 1292 bee nests with 6066 brood cells were found. Neither the number of bee species nor the number of brood cells per grassland was significantly correlated with the density of honey bees. Significant correlations were found only between the number of brood cells and the percentage cover of shrubs. The number of nest entrances of ground-nesting bees per square metre was not correlated with the density of honey bees but was negatively correlated with the cover of vegetation. Interspecific competition by honey bees for food resources was not shown to be a significant factor determining abundance and species richness of wild bees.

  5. 'Bee hotels' as tools for native pollinator conservation: a premature verdict?

    PubMed

    MacIvor, J Scott; Packer, Laurence

    2015-01-01

    Society is increasingly concerned with declining wild bee populations. Although most bees nest in the ground, considerable effort has centered on installing 'bee hotels'--also known as nest boxes or trap nests--which artificially aggregate nest sites of above ground nesting bees. Campaigns to 'save the bees' often promote these devices despite the absence of data indicating they have a positive effect. From a survey of almost 600 bee hotels set up over a period of three years in Toronto, Canada, introduced bees nested at 32.9% of sites and represented 24.6% of more than 27,000 total bees and wasps recorded (47.1% of all bees recorded). Native bees were parasitized more than introduced bees and females of introduced bee species provisioned nests with significantly more female larva each year. Native wasps were significantly more abundant than both native and introduced bees and occupied almost 3/4 of all bee hotels each year; further, introduced wasps were the only group to significantly increase in relative abundance year over year. More research is needed to elucidate the potential pitfalls and benefits of using bee hotels in the conservation and population dynamics of wild native bees.

  6. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation

    PubMed Central

    Dolezal, Adam G.; Hendrix, Stephen D.; Scavo, Nicole A.; Carrillo-Tripp, Jimena; Harris, Mary A.; Wheelock, M. Joseph; O’Neal, Matthew E.; Toth, Amy L.

    2016-01-01

    Evidence of inter-species pathogen transmission from managed to wild bees has sparked concern that emerging diseases could be causing or exacerbating wild bee declines. While some pathogens, like RNA viruses, have been found in pollen and wild bees, the threat these viruses pose to wild bees is largely unknown. Here, we tested 169 bees, representing 4 families and 8 genera, for five common honey bee (Apis mellifera) viruses, finding that more than 80% of wild bees harbored at least one virus. We also quantified virus titers in these bees, providing, for the first time, an assessment of viral load in a broad spectrum of wild bees. Although virus detection was very common, virus levels in the wild bees were minimal—similar to or lower than foraging honey bees and substantially lower than honey bees collected from hives. Furthermore, when we experimentally inoculated adults of two different bee species (Megachile rotundata and Colletes inaequalis) with a mixture of common viruses that is lethal to honey bees, we saw no effect on short term survival. Overall, we found that honey bee RNA viruses can be commonly detected at low levels in many wild bee species, but we found no evidence that these pathogens cause elevated short-term mortality effects. However, more work on these viruses is greatly needed to assess effects on additional bee species and life stages. PMID:27832169

  7. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation.

    PubMed

    Dolezal, Adam G; Hendrix, Stephen D; Scavo, Nicole A; Carrillo-Tripp, Jimena; Harris, Mary A; Wheelock, M Joseph; O'Neal, Matthew E; Toth, Amy L

    2016-01-01

    Evidence of inter-species pathogen transmission from managed to wild bees has sparked concern that emerging diseases could be causing or exacerbating wild bee declines. While some pathogens, like RNA viruses, have been found in pollen and wild bees, the threat these viruses pose to wild bees is largely unknown. Here, we tested 169 bees, representing 4 families and 8 genera, for five common honey bee (Apis mellifera) viruses, finding that more than 80% of wild bees harbored at least one virus. We also quantified virus titers in these bees, providing, for the first time, an assessment of viral load in a broad spectrum of wild bees. Although virus detection was very common, virus levels in the wild bees were minimal-similar to or lower than foraging honey bees and substantially lower than honey bees collected from hives. Furthermore, when we experimentally inoculated adults of two different bee species (Megachile rotundata and Colletes inaequalis) with a mixture of common viruses that is lethal to honey bees, we saw no effect on short term survival. Overall, we found that honey bee RNA viruses can be commonly detected at low levels in many wild bee species, but we found no evidence that these pathogens cause elevated short-term mortality effects. However, more work on these viruses is greatly needed to assess effects on additional bee species and life stages.

  8. Effects of honey bee (Hymenoptera: Apidae) and bumble bee (Hymenoptera: Apidae) presence on cranberry (Ericales: Ericaceae) pollination.

    PubMed

    Evans, E C; Spivak, M

    2006-06-01

    Honey bees, Apis mellifera L., are frequently used to pollinate commercial cranberries, Vaccinium macrocarpon Ait., but information is lacking on the relative contribution of honey bees and native bees, the effects of surrounding vegetation on bee visitation, and on optimal timing for honey bee introduction. We begin with a descriptive study of numbers of honey bees, bumble bees, and other bees visiting cranberry blossoms, and their subsequent effect on cranberry yield, on three cranberry properties in 1999. The property surrounded by agricultural land, as opposed to wetlands and woodlands, had fewer numbers of all bee types. In 2000, one property did not introduce honey bee colonies, providing an opportunity to document the effect of lack of honey bees on yield. With no honey bees, plants along the edge of the bed had significantly higher berry weights compared with nonedge plants, suggesting that wild pollinators were only effective along the edge. Comparing the same bed between 1999, with three honey bee colonies per acre, and 2000, with no honey bees, we found a significant reduction in average berry size. In 2000, we compared stigma loading on properties with and without honey bees. Significantly more stigmas received the minimum number of tetrads required for fruit set on the property with honey bees. Significantly more tetrads were deposited during mid-bloom compared with early bloom, indicating that mid-bloom was the best time to have honey bees present. This study emphasizes the importance and effectiveness of honey bees as pollinators of commercial size cranberry plantings.

  9. ‘Bee Hotels’ as Tools for Native Pollinator Conservation: A Premature Verdict?

    PubMed Central

    MacIvor, J. Scott; Packer, Laurence

    2015-01-01

    Society is increasingly concerned with declining wild bee populations. Although most bees nest in the ground, considerable effort has centered on installing ‘bee hotels’—also known as nest boxes or trap nests—which artificially aggregate nest sites of above ground nesting bees. Campaigns to ‘save the bees’ often promote these devices despite the absence of data indicating they have a positive effect. From a survey of almost 600 bee hotels set up over a period of three years in Toronto, Canada, introduced bees nested at 32.9% of sites and represented 24.6% of more than 27,000 total bees and wasps recorded (47.1% of all bees recorded). Native bees were parasitized more than introduced bees and females of introduced bee species provisioned nests with significantly more female larva each year. Native wasps were significantly more abundant than both native and introduced bees and occupied almost 3/4 of all bee hotels each year; further, introduced wasps were the only group to significantly increase in relative abundance year over year. More research is needed to elucidate the potential pitfalls and benefits of using bee hotels in the conservation and population dynamics of wild native bees. PMID:25785609

  10. Bee Pollen

    MedlinePlus

    ... confuse bee pollen with bee venom, honey, or royal jelly. People take bee pollen for nutrition; as an ... menstrual cycles. This product contains 6 mg of royal jelly, 36 mg of bee pollen extract, bee pollen, ...

  11. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems

    PubMed Central

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity. PMID:26765140

  12. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems.

    PubMed

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.

  13. Widespread occurrence of honey bee pathogens in solitary bees.

    PubMed

    Ravoet, Jorgen; De Smet, Lina; Meeus, Ivan; Smagghe, Guy; Wenseleers, Tom; de Graaf, Dirk C

    2014-10-01

    Solitary bees and honey bees from a neighbouring apiary were screened for a broad set of putative pathogens including protists, fungi, spiroplasmas and viruses. Most sampled bees appeared to be infected with multiple parasites. Interestingly, viruses exclusively known from honey bees such as Apis mellifera Filamentous Virus and Varroa destructor Macula-like Virus were also discovered in solitary bees. A microsporidium found in Andrena vaga showed most resemblance to Nosema thomsoni. Our results suggest that bee hives represent a putative source of pathogens for other pollinators. Similarly, solitary bees may act as a reservoir of honey bee pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Bee communities along a prairie restoration chronosequence: similar abundance and diversity, distinct composition.

    PubMed

    Tonietto, Rebecca K; Ascher, John S; Larkin, Daniel J

    2017-04-01

    Recognition of the importance of bee conservation has grown in response to declines of managed honey bees and some wild bee species. Habitat loss has been implicated as a leading cause of declines, suggesting that ecological restoration is likely to play an increasing role in bee conservation efforts. In the midwestern United States, restoration of tallgrass prairie has traditionally targeted plant community objectives without explicit consideration for bees. However, restoration of prairie vegetation is likely to provide ancillary benefits to bees through increased foraging and nesting resources. We investigated community assembly of bees across a chronosequence of restored eastern tallgrass prairies and compared patterns to those in control and reference habitats (old fields and prairie remnants, respectively). We collected bees for 3 yr and measured diversity and abundance of in-bloom flowering plants, vegetation structure, ground cover, and surrounding land use as predictors of bee abundance and bee taxonomic and functional diversity. We found that site-level variables, but not site type or restoration age, were significant predictors of bee abundance (bloom diversity, P = 0.004; bare ground cover, P = 0.02) and bee diversity (bloom diversity, P = 0.01). There were significant correlations between overall composition of bee and blooming plant communities (Mantel test, P = 0.002), and both plant and bee assemblages in restorations were intermediate between those of old fields and remnant prairies. Restorations exhibited high bee beta diversity, i.e., restored sites' bee assemblages were taxonomically and functionally differentiated from each other. This pattern was strong in younger restorations (<20 yr old), but absent from older restorations (>20 yr), suggesting restored prairie bee communities become more similar to one another and more similar to remnant prairie bee communities over time with the arrival of more species and functional groups of bees. Our results indicate that old fields, restorations, and remnants provide habitat for diverse and abundant bee communities, but continued restoration of old fields will help support and conserve bee communities more similar to reference bee communities characteristic of remnant prairies. © 2016 by the Ecological Society of America.

  15. Do managed bees drive parasite spread and emergence in wild bees?

    PubMed

    Graystock, Peter; Blane, Edward J; McFrederick, Quinn S; Goulson, Dave; Hughes, William O H

    2016-04-01

    Bees have been managed and utilised for honey production for centuries and, more recently, pollination services. Since the mid 20th Century, the use and production of managed bees has intensified with hundreds of thousands of hives being moved across countries and around the globe on an annual basis. However, the introduction of unnaturally high densities of bees to areas could have adverse effects. Importation and deployment of managed honey bee and bumblebees may be responsible for parasite introductions or a change in the dynamics of native parasites that ultimately increases disease prevalence in wild bees. Here we review the domestication and deployment of managed bees and explain the evidence for the role of managed bees in causing adverse effects on the health of wild bees. Correlations with the use of managed bees and decreases in wild bee health from territories across the globe are discussed along with suggestions to mitigate further health reductions in wild bees.

  16. The endangered Iris atropurpurea (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators

    PubMed Central

    Watts, Stella; Sapir, Yuval; Segal, Bosmat; Dafni, Amots

    2013-01-01

    Background and Aims The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented. Methods Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated. Key Results The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal–low deposition pollinators, whereas honey-bees were high removal–low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas. Conclusions Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside reserves, where the bulk of Oncocyclus iris species are protected. PMID:23275630

  17. The influence of Nosema (Microspora: Nosematidae) infection on honey bee (Hymenoptera: Apidae) defense against Varroa destructor (Mesostigmata: Varroidae).

    PubMed

    Bahreini, Rassol; Currie, Robert W

    2015-11-01

    The objectives of this study were to quantify the costs and benefits of co-parasitism with Varroa (Varroa destructor Anderson and Trueman) and Nosema (Nosema ceranae Fries and Nosema apis Zander) on honey bees (Apis mellifera L.) with different defense levels. Newly-emerged worker bees from either high-mite-mortality-rate (high-MMR) bees or low-mite-mortality-rate (low-MMR) bees were confined in forty bioassay cages which were either inoculated with Nosema spores [Nosema (+) group] or were left un-inoculated [Nosema (-) group]. Caged-bees were then inoculated with Varroa mites [Varroa (+) group] or were left untreated [Varroa (-) group]. This established four treatment combinations within each Nosema treatment group: (1) low-MMR Varroa (-), (2) high-MMR Varroa (-), (3) low-MMR Varroa (+) and (4) high-MMR Varroa (+), each with five replicates. Overall mite mortality in high-MMR bees (0.12±0.02 mites per day) was significantly greater than in the low-MMR bees (0.06±0.02 mites per day). In the Nosema (-) groups bee mortality was greater in high-MMR bees than low-MMR bees but only when bees had a higher mite burden. Overall, high-MMR bees in the Nosema (-) group showed greater reductions in mean abundance of mites over time compared with low-MMR bees, when inoculated with additional mites. However, high-MMR bees could not reduce mite load as well as in the Nosema (-) group when fed with Nosema spores. Mean abundance of Nosema spores in live bees and dead bees of both strains of bees was significantly greater in the Nosema (+) group. Molecular analyses confirmed the presence of both Nosema species in inoculated bees but N. ceranae was more abundant than N. apis and unlike N. apis increased over the course of the experiment. Collectively, this study showed differential mite mortality rates among different genotypes of bees, however, Nosema infection restrained Varroa removal success in high-MMR bees. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The endangered Iris atropurpurea (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators.

    PubMed

    Watts, Stella; Sapir, Yuval; Segal, Bosmat; Dafni, Amots

    2013-03-01

    The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented. Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated. The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal-low deposition pollinators, whereas honey-bees were high removal-low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas. Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside reserves, where the bulk of Oncocyclus iris species are protected.

  19. Modeling Honey Bee Populations.

    PubMed

    Torres, David J; Ricoy, Ulises M; Roybal, Shanae

    2015-01-01

    Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population.

  20. Modeling Honey Bee Populations

    PubMed Central

    Torres, David J.; Ricoy, Ulises M.; Roybal, Shanae

    2015-01-01

    Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population. PMID:26148010

  1. Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan.

    PubMed

    Radzevičiūtė, Rita; Theodorou, Panagiotis; Husemann, Martin; Japoshvili, George; Kirkitadze, Giorgi; Zhusupbaeva, Aigul; Paxton, Robert J

    2017-06-01

    The essential ecosystem service of pollination is provided largely by insects, which are considered threatened by diverse biotic and abiotic global change pressures. RNA viruses are one such pressure, and have risen in prominence as a major threat for honey bees (Apis mellifera) and global apiculture, as well as a risk factor for other bee species through pathogen spill-over between managed honey bees and sympatric wild pollinator communities. Yet despite their potential role in global bee decline, the prevalence of honey bee-associated RNA viruses in wild bees is poorly known from both geographic and taxonomic perspectives. We screened members of pollinator communities (honey bees, bumble bees and other wild bees belonging to four families) collected from apple orchards in Georgia, Germany and Kyrgyzstan for six common honey bee-associated RNA virus complexes encompassing nine virus targets. The Deformed wing virus complex (DWV genotypes A and B) had the highest prevalence across all localities and host species and was the only virus complex found in wild bee species belonging to all four studied families. Based on amplification of negative-strand viral RNA, we found evidence for viral replication in wild bee species of DWV-A/DWV-B (hosts: Andrena haemorrhoa and several Bombus spp.) and Black queen cell virus (hosts: Anthophora plumipes, several Bombus spp., Osmia bicornis and Xylocopa spp.). Viral amplicon sequences revealed that DWV-A and DWV-B are regionally distinct but identical in two or more bee species at any one site, suggesting virus is shared amongst sympatric bee taxa. This study demonstrates that honey bee associated RNA viruses are geographically and taxonomically widespread, likely infective in wild bee species, and shared across bee taxa. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The conservation and restoration of wild bees.

    PubMed

    Winfree, Rachael

    2010-05-01

    Bees pollinate most of the world's wild plant species and provide economically valuable pollination services to crops; yet knowledge of bee conservation biology lags far behind other taxa such as vertebrates and plants. There are few long-term data on bee populations, which makes their conservation status difficult to assess. The best-studied groups are the genus Bombus (the bumble bees), and bees in the EU generally; both of these are clearly declining. However, it is not known to what extent these groups represent the approximately 20,000 species of bees globally. As is the case for insects in general, bees are underrepresented in conservation planning and protection efforts. For example, only two bee species are on the global IUCN Red List, and no bee is listed under the U.S. Endangered Species Act, even though many bee species are known to be in steep decline or possibly extinct. At present, bee restoration occurs mainly in agricultural contexts, funded by government programs such as agri-environment schemes (EU) and the Farm Bill (USA). This is a promising approach given that many bee species can use human-disturbed habitats, and bees provide valuable pollination services to crops. However, agricultural restorations only benefit species that persist in agricultural landscapes, and they are more expensive than preserving natural habitat elsewhere. Furthermore, such restorations benefit bees in only about half of studied cases. More research is greatly needed in many areas of bee conservation, including basic population biology, bee restoration in nonagricultural contexts, and the identification of disturbance-sensitive bee species.

  3. Bee-Wild about Pollinators!

    ERIC Educational Resources Information Center

    Johnson, Bonnie; Kil, Jenny; Evans, Elaine; Koomen, Michele Hollingsworth

    2014-01-01

    With their sunny stripes and fuzzy bodies, bees are beloved--but unfortunately, they are in trouble. Bee decline, of both wild bees as well as managed bees like honey bees, has been in the news for the last several years. Habitat loss, diseases, pests, and pesticides have made it difficult for bees to survive in many parts of our world (Walsh…

  4. Colonies of Bumble Bees (Bombus impatiens) Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure.

    PubMed

    Bernauer, Olivia M; Gaines-Day, Hannah R; Steffan, Shawn A

    2015-06-01

    Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens). Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems.

  5. Colour is more than hue: preferences for compiled colour traits in the stingless bees Melipona mondury and M. quadrifasciata.

    PubMed

    Koethe, Sebastian; Bossems, Jessica; Dyer, Adrian G; Lunau, Klaus

    2016-10-01

    The colour vision of bees has been extensively analysed in honeybees and bumblebees, but few studies consider the visual perception of stingless bees (Meliponini). In a five-stage experiment the preference for colour intensity and purity, and the preference for the dominant wavelength were tested by presenting four colour stimuli in each test to freely flying experienced workers of two stingless bee species, Melipona mondury and Melipona quadrifasciata. The results with bee-blue, bee-UV-blue and bee-green colours offered in four combinations of varying colour intensity and purity suggest a complex interaction between these colour traits for the determination of colour choice. Specifically, M. mondury preferred bee-UV-blue colours over bee-green, bee-blue and bee-blue-green colours while M. quadrifasciata preferred bee-green colour stimuli. Moreover in M. mondury the preferences were different if the background colour was changed from grey to green. There was a significant difference between species where M. mondury preferred UV-reflecting over UV-absorbing bee-blue-green colour stimuli, whereas M. quadrifasciata showed an opposite preference. The different colour preferences of the free flying bees in identical conditions may be caused by the bees' experience with natural flowers precedent to the choice tests, suggesting reward partitioning between species.

  6. Do managed bees have negative effects on wild bees?: A systematic review of the literature

    PubMed Central

    Gratton, Claudio

    2017-01-01

    Managed bees are critical for crop pollination worldwide. As the demand for pollinator-dependent crops increases, so does the use of managed bees. Concern has arisen that managed bees may have unintended negative impacts on native wild bees, which are important pollinators in both agricultural and natural ecosystems. The goal of this study was to synthesize the literature documenting the effects of managed honey bees and bumble bees on wild bees in three areas: (1) competition for floral and nesting resources, (2) indirect effects via changes in plant communities, including the spread of exotic plants and decline of native plants, and (3) transmission of pathogens. The majority of reviewed studies reported negative effects of managed bees, but trends differed across topical areas. Of studies examining competition, results were highly variable with 53% reporting negative effects on wild bees, while 28% reported no effects and 19% reported mixed effects (varying with the bee species or variables examined). Equal numbers of studies examining plant communities reported positive (36%) and negative (36%) effects, with the remainder reporting no or mixed effects. Finally, the majority of studies on pathogen transmission (70%) reported potential negative effects of managed bees on wild bees. However, most studies across all topical areas documented the potential for impact (e.g. reporting the occurrence of competition or pathogens), but did not measure direct effects on wild bee fitness, abundance, or diversity. Furthermore, we found that results varied depending on whether managed bees were in their native or non-native range; managed bees within their native range had lesser competitive effects, but potentially greater effects on wild bees via pathogen transmission. We conclude that while this field has expanded considerably in recent decades, additional research measuring direct, long-term, and population-level effects of managed bees is needed to understand their potential impact on wild bees. PMID:29220412

  7. Do managed bees have negative effects on wild bees?: A systematic review of the literature.

    PubMed

    Mallinger, Rachel E; Gaines-Day, Hannah R; Gratton, Claudio

    2017-01-01

    Managed bees are critical for crop pollination worldwide. As the demand for pollinator-dependent crops increases, so does the use of managed bees. Concern has arisen that managed bees may have unintended negative impacts on native wild bees, which are important pollinators in both agricultural and natural ecosystems. The goal of this study was to synthesize the literature documenting the effects of managed honey bees and bumble bees on wild bees in three areas: (1) competition for floral and nesting resources, (2) indirect effects via changes in plant communities, including the spread of exotic plants and decline of native plants, and (3) transmission of pathogens. The majority of reviewed studies reported negative effects of managed bees, but trends differed across topical areas. Of studies examining competition, results were highly variable with 53% reporting negative effects on wild bees, while 28% reported no effects and 19% reported mixed effects (varying with the bee species or variables examined). Equal numbers of studies examining plant communities reported positive (36%) and negative (36%) effects, with the remainder reporting no or mixed effects. Finally, the majority of studies on pathogen transmission (70%) reported potential negative effects of managed bees on wild bees. However, most studies across all topical areas documented the potential for impact (e.g. reporting the occurrence of competition or pathogens), but did not measure direct effects on wild bee fitness, abundance, or diversity. Furthermore, we found that results varied depending on whether managed bees were in their native or non-native range; managed bees within their native range had lesser competitive effects, but potentially greater effects on wild bees via pathogen transmission. We conclude that while this field has expanded considerably in recent decades, additional research measuring direct, long-term, and population-level effects of managed bees is needed to understand their potential impact on wild bees.

  8. Clinical and immunological surveys in bee keepers.

    PubMed

    Bousquet, J; Coulomb, Y; Robinet-Levy, M; Michel, F B

    1982-07-01

    Two hundred and fifty bee keepers in the South of France, working seasonally, were clinically investigated by means of a questionnaire. Forty-three per cent had presented anaphylactic symptoms and 7.0% toxic reactions when stung by bees. The personal atopic history was found to be significantly (P less than 0.01) elevated in bee keepers who experienced anaphylaxis. Total serum IgE and been venom-specific IgE were titrated in 100 subjects. Total serum IgE was significantly elevated in allergic bee keepers (P = 0.02). Although bee venom-specific IgE were significantly (P less than 0.01) higher in allergic bee keepers this parameter cannot discriminate between allergic and non-allergic bee keepers owing to a considerable overlap. Bee venom-specific IgG was assayed in seventy subjects. Their level was significantly (P less than 0.001) higher in allergic and non-allergic bee keepers as compared with non-allergic blood donors and non-bee-keeping allergic patients. In both bee keeper groups there was no difference in bee venom-specific IgG titres.

  9. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.).

    PubMed

    Fleming, James C; Schmehl, Daniel R; Ellis, James D

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts.

  10. Vegetation Management and Host Density Influence Bee-Parasite Interactions in Urban Gardens.

    PubMed

    Cohen, Hamutahl; Quistberg, Robyn D; Philpott, Stacy M

    2017-12-08

    Apocephalus borealis phorid flies, a parasitoid of bumble bees and yellow jacket wasps in North America, was recently reported as a novel parasitoid of the honey bee Apis mellifera Linnaeus (Hymenoptera: Apidae). Little is known about the ecology of this interaction, including phorid fecundity on bee hosts, whether phorid-bee parasitism is density dependent, and which local habitat and landscape features may correlate with changes in parasitism rates for either bumble or honey bees. We examined the impact of local and landscape drivers and host abundance on phorid parasitism of A. mellifera and the bumble bee Bombus vosnesenskii Radoszkowski (Hymenoptera: Apidae). We worked in 19 urban gardens along the North-Central Coast of California, where phorid parasitism of honey bees was first reported in 2012. We collected and incubated bees for phorid emergence, and surveyed local vegetation, ground cover, and floral characteristics as well as land cover types surrounding gardens. We found that phorid parasitism was higher on bumble bees than on honey bees, and phorids produced nearly twice as many pupae on individual bumble bee hosts than on honey bee hosts. Parasitism of both bumble and honey bees increased with abundance of honey bees in a site. Differences in landscape surroundings did not correlate with parasitism, but local factors related to bee resource provisioning (e.g., tree and shrub abundance) positively correlated with increased parasitism. This research thus helps to document and describe conditions that may have facilitated phorid fly host shift to honey bees and further elucidate how resource provisioning in urban gardens influences bee-parasite interactions. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Bee Stings & Their Consequences.

    ERIC Educational Resources Information Center

    Rupp, Robert M.

    1991-01-01

    Relevant information concerning bee stings is provided. Possible reactions to a bee sting and their symptoms, components of bee venom, diagnosis of hypersensitivity, and bee sting prevention and treatment are topics of discussion. The possibility of bee stings occurring during field trips and the required precautions are discussed. (KR)

  12. From silkworms to bees: Diseases of beneficial insects

    USDA-ARS?s Scientific Manuscript database

    The diseases of the silkworm (Bombyx mori) and managed bees, including the honey bee (Apis mellifera), bumbles bees (Bombus spp.), the alfalfa leafcutting bee (Megachile rotundata), and mason bees (Osmia spp.) are reviewed, with diagnostic descriptions and a summary of control methods for production...

  13. A review of ecosystem service benefits from wild bees across social contexts.

    PubMed

    Matias, Denise Margaret S; Leventon, Julia; Rau, Anna-Lena; Borgemeister, Christian; von Wehrden, Henrik

    2017-05-01

    In order to understand the role of wild bees in both social and ecological systems, we conducted a quantitative and qualitative review of publications dealing with wild bees and the benefits they provide in social contexts. We classified publications according to several attributes such as services and benefits derived from wild bees, types of bee-human interactions, recipients of direct benefits, social contexts where wild bees are found, and sources of changes to the bee-human system. We found that most of the services and benefits from wild bees are related to food, medicine, and pollination. We also found that wild bees directly provide benefits to communities to a greater extent than individuals. In the social contexts where they are found, wild bees occupy a central role. Several drivers of change affect bee-human systems, ranging from environmental to political drivers. These are the areas where we recommend making interventions for conserving the bee-human system.

  14. The antagonistic basic helix-loop-helix partners BEE and IBH1 contribute to control plant tolerance to abiotic stress.

    PubMed

    Moreno, Javier E; Moreno-Piovano, Guillermo; Chan, Raquel L

    2018-06-01

    The bHLH family is composed by canonical and non-canonical transcription factors (TFs) that differ in the presence or absence of their DNA-binding domain, respectively. Since both types of bHLH proteins are able to dimerize, their relative abundance impacts their biological activity. Among this TF family BEE and IBH are canonical and non-canonical bHLHs, respectively and previous reports indicated that BEE2 and IBH1 dimerize. Wondering whether BEE TFs participate in the abiotic stress response and how the dimerization with IBH1 could regulate their role in Arabidopsis, double bee1/bee2 and triple bee1/bee2/bee3 mutants were tested under salinity and drought stresses. The bee1/bee2/bee3 mutant showed an enhanced tolerance whereas the double mutant behaved similar to wild type plants. These results indicated that BEE genes play a role in the stress response and also put in evidence the redundancy within the BEE family. Moreover, ectopic expression of IBH1 on different mutant backgrounds improved plant tolerance to abiotic stress, independently of the background. However, the yield of these transgenic plants was penalized with abortive seeds. Our results suggest that BEE genes are negative regulators of physiological responses to abiotic stress whereas IBH1 is a positive modulator via different pathways, one of them involving BEE TFs. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Similar Comparative Low and High Doses of Deltamethrin and Acetamiprid Differently Impair the Retrieval of the Proboscis Extension Reflex in the Forager Honey Bee (Apis mellifera).

    PubMed

    Thany, Steeve H; Bourdin, Céline M; Graton, Jérôme; Laurent, Adèle D; Mathé-Allainmat, Monique; Lebreton, Jacques; Questel, Jean-Yves le

    2015-09-28

    In the present study, the effects of low (10 ng/bee) and high (100 ng/bee) doses of acetamiprid and deltamethrin insecticides on multi-trial learning and retrieval were evaluated in the honey bee Apis mellifera. After oral application, acetamiprid and deltamethrin at the concentrations used were not able to impair learning sessions. When the retention tests were performed 1 h, 6 h, and 24 h after learning, we found a significant difference between bees after learning sessions when drugs were applied 24 h before learning. Deltamethrin-treated bees were found to be more sensitive at 10 ng/bee and 100 ng/bee doses compared to acetamiprid-treated bees, only with amounts of 100 ng/bee and at 6 h and 24 h delays. When insecticides were applied during learning sessions, none of the tested insecticides was able to impair learning performance at 10 ng/bee or 100 ng/bee but retention performance was altered 24 h after learning sessions. Acetamiprid was the only one to impair retrieval at 10 ng/bee, whereas at 100 ng/bee an impairment of retrieval was found with both insecticides. The present results therefore suggest that acetamiprid and deltamethrin are able to impair retrieval performance in the honey bee Apis mellifera.

  16. Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation

    PubMed Central

    van Dooremalen, Coby; Gerritsen, Lonne; Cornelissen, Bram; van der Steen, Jozef J. M.; van Langevelde, Frank; Blacquière, Tjeerd

    2012-01-01

    Background Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter. Methodology/Principal Findings Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated). We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts) increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years. Conclusions/Significance This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter. PMID:22558421

  17. Nosema ceranae in age cohorts of the western honey bee (Apis mellifera).

    PubMed

    Smart, Matthew D; Sheppard, Walter S

    2012-01-01

    Nosemaceranae intensity (mean spores per bee) and prevalence (proportion of bees infected in a sample) were analyzed in honey bees of known ages. Sealed brood combs from five colonies were removed, emerging bees were marked with paint, released back into their colonies of origin, and collected as recently emerged (0-3 days old), as house bees (8-11 days old), and as foragers (22-25 days old). Fifty bees from each of the five colonies were processed individually at each collection date for the intensity and prevalence of N. ceranae infection. Using PCR and specific primers to differentiate Nosema species, N. ceranae was found to be the only species present during the experiment. At each collection age (recent emergence, house, forager) an additional sample from the inner hive cover (background bees=BG) of each colony was collected to compare the N. ceranae results of this sampling method, commonly used for Nosema spore quantification, to the samples comprised of marked bees of known ages. No recently emerged bees exhibited infection with N. ceranae. One house bee out of the 250 individuals analyzed (prevalence=0.4%) tested positive for N. ceranae, at an infection level of 3.35×10(6) spores. Infection levels were not statistically different between the recently emerged (mean=0 spores/bee) and house bees (mean=1.34×10(4) spores/bee) (P=0.99). Foragers exhibited the highest prevalence (8.3%) and infection intensity (mean=2.38×10(6) spores/bee), with a range of 0-8.72×10(7) spores in individual bees. The average infection level across all foragers was significantly higher than that of recently emerged bees (P=0.01) and house bees (P=0.01). Finally, the prevalence of Nosema in infected bees was found to be positively correlated with the infection intensity in the sample. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Floral Resource Competition Between Honey Bees and Wild Bees: Is There Clear Evidence and Can We Guide Management and Conservation?

    PubMed

    Wojcik, Victoria A; Morandin, Lora A; Davies Adams, Laurie; Rourke, Kelly E

    2018-06-05

    Supporting managed honey bees by pasturing in natural landscapes has come under review due to concerns that honey bees could negatively impact the survival of wild bees through competition for floral resources. Critique and assessment of the existing body of published literature against our criteria focussing on studies that can support best management resulted in 19 experimental papers. Indirect measures of competition examining foraging patterns and behavior yielded equivocal results. Direct measures of reproduction and growth were investigated in only seven studies, with six indicating negative impacts to wild bees from the presence of managed honey bees. Three of these studies examined fitness impacts to BombusLatreille and all three indicated reduced growth or reduced reproductive output. Because there is a severe lack of literature, yet potential that honey bee presence could negatively impact wild bees, exemplified with bumble bee studies, we advocate for further research into the fitness impacts of competition between managed and wild pollinators. Conservative approaches should be taken with respect to pasturing honey bees on natural lands with sensitive bumble bee populations. Correspondingly, forage opportunities for honey bees in managed, agricultural landscapes, should be increased in an effort to reduce potential pressure and infringement on wild bee populations in natural areas.

  19. The habitat disruption induces immune-suppression and oxidative stress in honey bees

    PubMed Central

    Morimoto, Tomomi; Kojima, Yuriko; Toki, Taku; Komeda, Yayoi; Yoshiyama, Mikio; Kimura, Kiyoshi; Nirasawa, Keijiro; Kadowaki, Tatsuhiko

    2011-01-01

    The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycling of honey bee colonies. To understand the physiological states of honey bees used for long-term pollination in greenhouses, we characterized their gene expression profiles by microarray. We found that the greenhouse environment changes the gene expression profiles and induces immune-suppression and oxidative stress in honey bees. In fact, the increase of the number of Nosema microsporidia and protein carbonyl content was observed in honey bees during pollination in greenhouses. Thus, honey bee colonies are likely to collapse during pollination in greenhouses when heavily infested with pathogens. Degradation of honey bee habitat by changing the outside environment of the colony, during pollination services for example, imposes negative impacts on honey bees. Thus, worldwide use of honey bees for crop pollination in general could be one of reasons for the decline of managed honey bee colonies. PMID:22393496

  20. Imidacloprid Alters Foraging and Decreases Bee Avoidance of Predators

    PubMed Central

    Tan, Ken; Chen, Weiwen; Dong, Shihao; Liu, Xiwen; Wang, Yuchong; Nieh, James C.

    2014-01-01

    Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb) imidacloprid, honey bees (Apis cerana) showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera), to other important bee species. PMID:25025334

  1. Chronic Bee Paralysis Virus and Nosema ceranae Experimental Co-Infection of Winter Honey Bee Workers (Apis mellifera L.)

    PubMed Central

    Toplak, Ivan; Jamnikar Ciglenečki, Urška; Aronstein, Katherine; Gregorc, Aleš

    2013-01-01

    Chronic bee paralysis virus (CBPV) is an important viral disease of adult bees which induces significant losses in honey bee colonies. Despite comprehensive research, only limited data is available from experimental infection for this virus. In the present study winter worker bees were experimentally infected in three different experiments. Bees were first inoculated per os (p/o) or per cuticle (p/c) with CBPV field strain M92/2010 in order to evaluate the virus replication in individual bees. In addition, potential synergistic effects of co-infection with CBPV and Nosema ceranae (N. ceranae) on bees were investigated. In total 558 individual bees were inoculated in small cages and data were analyzed using quantitative real time RT-PCR (RT-qPCR). Our results revealed successful replication of CBPV after p/o inoculation, while it was less effective when bees were inoculated p/c. Dead bees harbored about 1,000 times higher copy numbers of the virus than live bees. Co-infection of workers with CBPV and N. ceranae using either method of virus inoculation (p/c or p/o) showed increased replication ability for CBPV. In the third experiment the effect of inoculation on bee mortality was evaluated. The highest level of bee mortality was observed in a group of bees inoculated with CBPV p/o, followed by a group of workers simultaneously inoculated with CBPV and N. ceranae p/o, followed by the group inoculated with CBPV p/c and the group with only N. ceranae p/o. The experimental infection with CBPV showed important differences after p/o or p/c inoculation in winter bees, while simultaneous infection with CBPV and N. ceranae suggesting a synergistic effect after inoculation. PMID:24056674

  2. Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter?

    PubMed Central

    Di Pasquale, Garance; Salignon, Marion; Le Conte, Yves; Belzunces, Luc P.; Decourtye, Axel; Kretzschmar, André; Suchail, Séverine; Brunet, Jean-Luc; Alaux, Cédric

    2013-01-01

    Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen) necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pollen availability on bee health is well-established but whether quality and diversity of pollen diets can modify bee health remains largely unknown. We therefore tested the influence of pollen diet quality (different monofloral pollens) and diversity (polyfloral pollen diet) on the physiology of young nurse bees, which have a distinct nutritional physiology (e.g. hypopharyngeal gland development and vitellogenin level), and on the tolerance to the microsporidian parasite Nosema ceranae by measuring bee survival and the activity of different enzymes potentially involved in bee health and defense response (glutathione-S-transferase (detoxification), phenoloxidase (immunity) and alkaline phosphatase (metabolism)). We found that both nurse bee physiology and the tolerance to the parasite were affected by pollen quality. Pollen diet diversity had no effect on the nurse bee physiology and the survival of healthy bees. However, when parasitized, bees fed with the polyfloral blend lived longer than bees fed with monofloral pollens, excepted for the protein-richest monofloral pollen. Furthermore, the survival was positively correlated to alkaline phosphatase activity in healthy bees and to phenoloxydase activities in infected bees. Our results support the idea that both the quality and diversity (in a specific context) of pollen can shape bee physiology and might help to better understand the influence of agriculture and land-use intensification on bee nutrition and health. PMID:23940803

  3. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter?

    PubMed

    Di Pasquale, Garance; Salignon, Marion; Le Conte, Yves; Belzunces, Luc P; Decourtye, Axel; Kretzschmar, André; Suchail, Séverine; Brunet, Jean-Luc; Alaux, Cédric

    2013-01-01

    Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen) necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pollen availability on bee health is well-established but whether quality and diversity of pollen diets can modify bee health remains largely unknown. We therefore tested the influence of pollen diet quality (different monofloral pollens) and diversity (polyfloral pollen diet) on the physiology of young nurse bees, which have a distinct nutritional physiology (e.g. hypopharyngeal gland development and vitellogenin level), and on the tolerance to the microsporidian parasite Nosemaceranae by measuring bee survival and the activity of different enzymes potentially involved in bee health and defense response (glutathione-S-transferase (detoxification), phenoloxidase (immunity) and alkaline phosphatase (metabolism)). We found that both nurse bee physiology and the tolerance to the parasite were affected by pollen quality. Pollen diet diversity had no effect on the nurse bee physiology and the survival of healthy bees. However, when parasitized, bees fed with the polyfloral blend lived longer than bees fed with monofloral pollens, excepted for the protein-richest monofloral pollen. Furthermore, the survival was positively correlated to alkaline phosphatase activity in healthy bees and to phenoloxydase activities in infected bees. Our results support the idea that both the quality and diversity (in a specific context) of pollen can shape bee physiology and might help to better understand the influence of agriculture and land-use intensification on bee nutrition and health.

  4. Multitrophic interaction facilitates parasite-host relationship between an invasive beetle and the honey bee.

    PubMed

    Torto, Baldwyn; Boucias, Drion G; Arbogast, Richard T; Tumlinson, James H; Teal, Peter E A

    2007-05-15

    Colony defense by honey bees, Apis mellifera, is associated with stinging and mass attack, fueled by the release of alarm pheromones. Thus, alarm pheromones are critically important to survival of honey bee colonies. Here we report that in the parasitic relationship between the European honey bee and the small hive beetle, Aethina tumida, the honey bee's alarm pheromones serve a negative function because they are potent attractants for the beetle. Furthermore, we discovered that the beetles from both Africa and the United States vector a strain of Kodamaea ohmeri yeast, which produces these same honey bee alarm pheromones when grown on pollen in hives. The beetle is not a pest of African honey bees because African bees have evolved effective methods to mitigate beetle infestation. However, European honey bees, faced with disease and pest management stresses different from those experienced by African bees, are unable to effectively inhibit beetle infestation. Therefore, the environment of the European honey bee colony provides optimal conditions to promote the unique bee-beetle-yeast-pollen multitrophic interaction that facilitates effective infestation of hives at the expense of the European honey bee.

  5. Diversity and human perceptions of bees (Hymenoptera: Apoidea) in Southeast Asian megacities.

    PubMed

    Sing, Kong-Wah; Wang, Wen-Zhi; Wan, Tao; Lee, Ping-Shin; Li, Zong-Xu; Chen, Xing; Wang, Yun-Yu; Wilson, John-James

    2016-10-01

    Urbanization requires the conversion of natural land cover to cover with human-constructed elements and is considered a major threat to biodiversity. Bee populations, globally, are under threat; however, the effect of rapid urban expansion in Southeast Asia on bee diversity has not been investigated. Given the pressing issues of bee conservation and urbanization in Southeast Asia, coupled with complex factors surrounding human-bee coexistence, we investigated bee diversity and human perceptions of bees in four megacities. We sampled bees and conducted questionnaires at three different site types in each megacity: a botanical garden, central business district, and peripheral suburban areas. Overall, the mean species richness and abundance of bees were significantly higher in peripheral suburban areas than central business districts; however, there were no significant differences in the mean species richness and abundance between botanical gardens and peripheral suburban areas or botanical gardens and central business districts. Urban residents were unlikely to have seen bees but agreed that bees have a right to exist in their natural environment. Residents who did notice and interact with bees, even though being stung, were more likely to have positive opinions towards the presence of bees in cities.

  6. Experience-dependent plasticity in the mushroom bodies of the solitary bee Osmia lignaria (Megachilidae).

    PubMed

    Withers, Ginger S; Day, Nancy F; Talbot, Emily F; Dobson, Heidi E M; Wallace, Christopher S

    2008-01-01

    All members of the solitary bee species Osmia lignaria (the orchard bee) forage upon emergence from their natal nest cell. Conversely, in the honey bee, days-to-weeks of socially regulated behavioral development precede the onset of foraging. The social honey bee's behavioral transition to foraging is accompanied by neuroanatomical changes in the mushroom bodies, a region of the insect brain implicated in learning. If these changes were general adaptations to foraging, they should also occur in the solitary orchard bee. Using unbiased stereological methods, we estimated the volume of the major compartments of the mushroom bodies, the neuropil and Kenyon cell body region, in adult orchard bees. We compared the mushroom bodies of recently emerged bees with mature bees that had extensive foraging experience. To separate effects of general maturation from field foraging, some orchard bees were confined to a cage indoors. The mushroom body neuropil of experienced field foragers was significantly greater than that of both recently emerged and mature caged orchard bees, suggesting that, like the honey bee, this increase is driven by outdoor foraging experience. Unlike the honey bee, where increases in the ratio of neuropil to Kenyon cell region occur in the worker after emerging from the hive cell, the orchard bee emerged from the natal nest cell with a ratio that did not change with maturation and was comparable to honey-bee foragers. These results suggest that a common developmental endpoint may be reached via different development paths in social and solitary species of foraging bees.

  7. Chem I Supplement: Bee Sting: The Chemistry of an Insect Venom.

    ERIC Educational Resources Information Center

    O'Connor, Rod; Peck, Larry

    1980-01-01

    Considers various aspects of bee stings including the physical mechanism of the venom apparatus in the bee, categorization of physiological responses of nonprotected individuals to bee sting, chemical composition of bee venom and the mechanisms of venom action, and areas of interest in the synthesis of bee venom. (CS)

  8. Complementary crops and landscape features sustain wild bee communities.

    PubMed

    Martins, Kyle T; Albert, Cécile H; Lechowicz, Martin J; Gonzalez, Andrew

    2018-06-01

    Wild bees, which are important for commercial pollination, depend on floral and nesting resources both at farms and in the surrounding landscape. Mass-flowering crops are only in bloom for a few weeks and unable to support bee populations that persist throughout the year. Farm fields and orchards that flower in succession potentially can extend the availability of floral resources for pollinators. However, it is unclear whether the same bee species or genera will forage from one crop to the next, which bees specialize on particular crops, and to what degree inter-crop visitation patterns will be mediated by landscape context. We therefore studied local- and landscape-level drivers of bee diversity and species turnover in apple orchards, blueberry fields, and raspberry fields that bloom sequentially in southern Quebec, Canada. Despite the presence of high bee species turnover, orchards and small fruit fields complemented each other phenologically by supporting two bee genera essential to their pollination: mining bees (Andrena spp.) and bumble bees (Bombus spp.). A number of bee species specialized on apple, blueberry, or raspberry blossoms, suggesting that all three crops could be used to promote regional bee diversity. Bee diversity (rarefied richness, wild bee abundance) was highest across crops in landscapes containing hedgerows, meadows, and suburban areas that provide ancillary nesting and floral resources throughout the spring and summer. Promoting phenological complementarity in floral resources at the farmstead and landscape scales is essential to sustaining diverse wild bee populations. © 2018 by the Ecological Society of America.

  9. Seed coating with a neonicotinoid insecticide negatively affects wild bees.

    PubMed

    Rundlöf, Maj; Andersson, Georg K S; Bommarco, Riccardo; Fries, Ingemar; Hederström, Veronica; Herbertsson, Lina; Jonsson, Ove; Klatt, Björn K; Pedersen, Thorsten R; Yourstone, Johanna; Smith, Henrik G

    2015-05-07

    Understanding the effects of neonicotinoid insecticides on bees is vital because of reported declines in bee diversity and distribution and the crucial role bees have as pollinators in ecosystems and agriculture. Neonicotinoids are suspected to pose an unacceptable risk to bees, partly because of their systemic uptake in plants, and the European Union has therefore introduced a moratorium on three neonicotinoids as seed coatings in flowering crops that attract bees. The moratorium has been criticized for being based on weak evidence, particularly because effects have mostly been measured on bees that have been artificially fed neonicotinoids. Thus, the key question is how neonicotinoids influence bees, and wild bees in particular, in real-world agricultural landscapes. Here we show that a commonly used insecticide seed coating in a flowering crop can have serious consequences for wild bees. In a study with replicated and matched landscapes, we found that seed coating with Elado, an insecticide containing a combination of the neonicotinoid clothianidin and the non-systemic pyrethroid β-cyfluthrin, applied to oilseed rape seeds, reduced wild bee density, solitary bee nesting, and bumblebee colony growth and reproduction under field conditions. Hence, such insecticidal use can pose a substantial risk to wild bees in agricultural landscapes, and the contribution of pesticides to the global decline of wild bees may have been underestimated. The lack of a significant response in honeybee colonies suggests that reported pesticide effects on honeybees cannot always be extrapolated to wild bees.

  10. Floral and nesting resources, habitat structure, and fire influence bee distribution across an open-forest gradient

    USGS Publications Warehouse

    Grundel, R.; Jean, R.P.; Frohnapple, K.J.; Glowacki, G.A.; Scott, P.E.; Pavlovic, N.B.

    2010-01-01

    Given bees' central effect on vegetation communities, it is important to understand how and why bee distributions vary across ecological gradients. We examined how plant community composition, plant diversity, nesting suitability, canopy cover, land use, and fire history affected bee distribution across an open-forest gradient in northwest Indiana, USA, a gradient similar to the historic Midwest United States landscape mosaic. When considered with the other predictors, plant community composition was not a significant predictor of bee community composition. Bee abundance was negatively related to canopy cover and positively to recent fire frequency, bee richness was positively related to plant richness and abundance of potential nesting resources, and bee community composition was significantly related to plant richness, soil characteristics potentially related to nesting suitability, and canopy cover. Thus, bee abundance was predicted by a different set of environmental characteristics than was bee species richness, and bee community composition was predicted, in large part, by a combination of the significant predictors of bee abundance and richness. Differences in bee community composition along the woody vegetation gradient were correlated with relative abundance of oligolectic, or diet specialist, bees. Because oligoleges were rarer than diet generalists and were associated with open habitats, their populations may be especially affected by degradation of open habitats. More habitat-specialist bees were documented for open and forest/scrub habitats than for savanna/woodland habitats, consistent with bees responding to habitats of intermediate woody vegetation density, such as savannas, as ecotones rather than as distinct habitat types. Similarity of bee community composition, similarity of bee abundance, and similarity of bee richness between sites were not significantly related to proximity of sites to each other. Nestedness analysis indicated that species composition in species-poor sites was not merely a subset of species composition at richer sites. The lack of significant proximity or nestedness effects suggests that factors at a small spatial scale strongly influence bees' use of sites. The findings indicate that patterns of plant diversity, nesting resource availability, recent fire, and habitat shading, present at the scale of a few hundred meters, are key determinants of bee community patterns in the mosaic open-savanna-forest landscape. ?? 2010 by the Ecological Society of America.

  11. Immunological studies on bee-keepers: specific IgG and subclass typing IgG against bee venom and bee venom components.

    PubMed

    Urbanek, R; Forster, J; Ziupa, J; Karitzky, D

    1980-11-17

    Specific IgE antibodies against bee venom and its components were studied in 23 bee-keepers. The highest IgG serum levels were observed for whole bee venom followed by phospholipase A. The serum levels of specific IgG antibodies against melittin and MCD-peptide were lower, the lowest serum levels being observed for apamin. After a 5 month absence from bee-keeping a fall in the serum levels of IgG antibodies was observed in all the bee-keepers studied. The investigation of the IgG subclass antibodies 1-4 against bee venom and phospholipase A demonstrated the highest serum levels for IgG 4 and IgG 2, the lowest levels were observed for IgG 1. The lowest IgG serum levels were associated with the least effective protection to bee stings. These findings support the concept that specific IgG antibodies prevent the development of allergic symptoms after bee sting.

  12. Feedbacks between nutrition and disease in honey bee health.

    PubMed

    Dolezal, Adam G; Toth, Amy L

    2018-04-01

    Declines in honey bee health have been attributed to multiple interacting environmental stressors; among the most important are forage/nutrition deficits and parasites and pathogens. Recent studies suggest poor honey bee nutrition can exacerbate the negative impacts of infectious viral and fungal diseases, and conversely, that common honey bee parasites and pathogens can adversely affect bee nutritional physiology. This sets up the potential for harmful feedbacks between poor nutrition and infectious disease that may contribute to spiraling declines in bee health. We suggest that improving bees' nutritional resilience should be a major goal in combating challenges to bee health; this approach can buffer bees from other environmental stressors such as pathogen infection. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.)

    PubMed Central

    Fleming, James C.; Schmehl, Daniel R.; Ellis, James D.

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony’s nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees’ consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees’ midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts. PMID:26226229

  14. Landscape and Local Correlates of Bee Abundance and Species Richness in Urban Gardens.

    PubMed

    Quistberg, Robyn D; Bichier, Peter; Philpott, Stacy M

    2016-03-31

    Urban gardens may preserve biodiversity as urban population densities increase, but this strongly depends on the characteristics of the gardens and the landscapes in which they are embedded. We investigated whether local and landscape characteristics are important correlates of bee (Hymenoptera: Apiformes) abundance and species richness in urban community gardens. We worked in 19 gardens in the California central coast and sampled bees with aerial nets and pan traps. We measured local characteristics (i.e., vegetation and ground cover) and used the USGS National Land Cover Database to classify the landscape surrounding our garden study sites at 2 km scales. We classified bees according to nesting type (i.e., cavity, ground) and body size and determined which local and landscape characteristics correlate with bee community characteristics. We found 55 bee species. One landscape and several local factors correlated with differences in bee abundance and richness for all bees, cavity-nesting bees, ground-nesting bees, and different sized bees. Generally, bees were more abundant and species rich in bigger gardens, in gardens with higher floral abundance, less mulch cover, more bare ground, and with more grass. Medium bees were less abundant in sites surrounded by more medium intensity developed land within 2 km. The fact that local factors were generally more important drivers of bee abundance and richness indicates a potential for gardeners to promote bee conservation by altering local management practices. In particular, increasing floral abundance, decreasing use of mulch, and providing bare ground may promote bees in urban gardens. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Africanized bees extend their distribution in California.

    PubMed

    Lin, Wei; McBroome, Jakob; Rehman, Mahwish; Johnson, Brian R

    2018-01-01

    Africanized honey bees (Apis mellifera) arrived in the western hemisphere in the 1950s and quickly spread north reaching California in the 1990s. These bees are highly defensive and somewhat more difficult to manage for commercial purposes than the European honey bees traditionally kept. The arrival of these bees and their potentially replacing European bees over much of the state is thus of great concern. After a 25 year period of little systematic sampling, a recent small scale study found Africanized honey bees in the Bay Area of California, far north of their last recorded distribution. The purpose of the present study was to expand this study by conducting more intensive sampling of bees from across northern California. We found Africanized honey bees as far north as Napa and Sacramento. We also found Africanized bees in all counties south of these counties. Africanized honey bees were particularly abundant in parts of the central valley and Monterey. This work suggests the northern spread of Africanized honey bees may not have stopped. They may still be moving north at a slow rate, although due to the long gaps in sampling it is currently impossible to tell for certain. Future work should routinely monitor the distribution of these bees to distinguish between these two possibilities.

  16. Pollution monitoring using bees: a new service provided by honey bees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromenshenk, J.J.; Thomas, J.M.; Simpson, J.C.

    1983-10-01

    The objectives are to provide a tool for assessing pollutant distributions and the effects of pollutants on living systems. The potential of bees as pollution monitors was studied by examining bees exposed to toxic metals near a smelter in Montana and bees in the area surrounding a hazardous waste disposal site near Puget Sound, Washington. Levels of toxic metals in the bees and brood survival were examined. It was concluded bees were, indeed, suitable indicators of pollution levels. (ACR)

  17. Using Nonmetric Multidimensional Scaling to Analyze Bee Visitation in East Tennessee Crops as an Indicator of Pollination Services Provided by Honey Bees (Apis mellifera L.) and Native Bees.

    PubMed

    Wilson, Michael E; Skinner, John A; Wszelaki, Annette L; Drummond, Frank

    2016-04-01

    This study investigated bee visitation on 10 agricultural crops grown on diverse small farms in Tennessee to determine the abundance of native bees and honey bees and the partitioning of visitation among crops. Summaries for each crop are used to generate mean proportions of bee visitation by categories of bees. This shows that native bee visits often occur as frequently, or in greater proportions than non-native honey bee visits. Visitation across multiple crops is then analyzed together with nonmetric multidimensional scaling to show how communities of bees that provide crop pollination change depending on the crop. Within squash and pumpkin plantings, continuous and discrete factors, such as "time of day" and "organic practices," further explain shifts in the community composition of flower visitors. Results from this study show that native bees frequently visit flowers on various crops, indicating that they are likely contributing to pollination services in addition to honey bees. Furthermore, the community of bees visiting flowers changes based on crop type, phenology, and spatial-temporal factors. Results suggest that developing pollinator conservation for farms that grow a wide variety of crops will likely require multiple conservation strategies. Farms that concentrate on a single crop may be able to tailor conservation practices toward the most important bees in their system and geographic locale. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Chinese sacbrood virus infection in Asian honey bees (Apis cerana cerana) and host immune responses to the virus infection

    USDA-ARS?s Scientific Manuscript database

    Chinese Sacbrood virus (CSBV) is a common honey bee virus that infects both the European honey bee (A. mellifera) and the Asian honey bee (A. cerana). However, CSBV has much more devastating effects on Asian honey bees than on European honey bees, posing a serious threat to the agricultural and nat...

  19. Linking magnetite in the abdomen of honey bees to a magnetoreceptive function

    PubMed Central

    Lambinet, Veronika; Hayden, Michael E.; Reigl, Katharina; Gomis, Surath

    2017-01-01

    Previous studies of magnetoreception in honey bees, Apis mellifera, focused on the identification of magnetic material, its formation, the location of the receptor and potential underlying sensory mechanisms, but never directly linked magnetic material to a magnetoreceptive function. In our study, we demonstrate that ferromagnetic material consistent with magnetite plays an integral role in the bees' magnetoreceptor. Subjecting lyophilized and pelletized bee tagmata to analyses by a superconducting quantum interference device generated a distinct hysteresis loop for the abdomen but not for the thorax or the head of bees, indicating the presence of ferromagnetic material in the bee abdomen. Magnetic remanence of abdomen pellets produced from bees that were, or were not, exposed to the 2.2-kOe field of a magnet while alive differed, indicating that magnet exposure altered the magnetization of this magnetite in live bees. In behavioural two-choice field experiments, bees briefly exposed to the same magnet, but not sham-treated control bees, failed to sense a custom-generated magnetic anomaly, indicating that magnet exposure had rendered the bees' magnetoreceptor dysfunctional. Our data support the conclusion that honey bees possess a magnetite-based magnetoreceptor located in the abdomen. PMID:28330921

  20. Linking magnetite in the abdomen of honey bees to a magnetoreceptive function.

    PubMed

    Lambinet, Veronika; Hayden, Michael E; Reigl, Katharina; Gomis, Surath; Gries, Gerhard

    2017-03-29

    Previous studies of magnetoreception in honey bees, Apis mellifera , focused on the identification of magnetic material, its formation, the location of the receptor and potential underlying sensory mechanisms, but never directly linked magnetic material to a magnetoreceptive function. In our study, we demonstrate that ferromagnetic material consistent with magnetite plays an integral role in the bees' magnetoreceptor. Subjecting lyophilized and pelletized bee tagmata to analyses by a superconducting quantum interference device generated a distinct hysteresis loop for the abdomen but not for the thorax or the head of bees, indicating the presence of ferromagnetic material in the bee abdomen. Magnetic remanence of abdomen pellets produced from bees that were, or were not, exposed to the 2.2-kOe field of a magnet while alive differed, indicating that magnet exposure altered the magnetization of this magnetite in live bees. In behavioural two-choice field experiments, bees briefly exposed to the same magnet, but not sham-treated control bees, failed to sense a custom-generated magnetic anomaly, indicating that magnet exposure had rendered the bees' magnetoreceptor dysfunctional. Our data support the conclusion that honey bees possess a magnetite-based magnetoreceptor located in the abdomen. © 2017 The Authors.

  1. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema

    NASA Astrophysics Data System (ADS)

    Pettis, Jeffery S.; Vanengelsdorp, Dennis; Johnson, Josephine; Dively, Galen

    2012-02-01

    Global pollinator declines have been attributed to habitat destruction, pesticide use, and climate change or some combination of these factors, and managed honey bees, Apis mellifera, are part of worldwide pollinator declines. Here we exposed honey bee colonies during three brood generations to sub-lethal doses of a widely used pesticide, imidacloprid, and then subsequently challenged newly emerged bees with the gut parasite, Nosema spp. The pesticide dosages used were below levels demonstrated to cause effects on longevity or foraging in adult honey bees. Nosema infections increased significantly in the bees from pesticide-treated hives when compared to bees from control hives demonstrating an indirect effect of pesticides on pathogen growth in honey bees. We clearly demonstrate an increase in pathogen growth within individual bees reared in colonies exposed to one of the most widely used pesticides worldwide, imidacloprid, at below levels considered harmful to bees. The finding that individual bees with undetectable levels of the target pesticide, after being reared in a sub-lethal pesticide environment within the colony, had higher Nosema is significant. Interactions between pesticides and pathogens could be a major contributor to increased mortality of honey bee colonies, including colony collapse disorder, and other pollinator declines worldwide.

  2. Wild bees enhance honey bees' pollination of hybrid sunflower.

    PubMed

    Greenleaf, Sarah S; Kremen, Claire

    2006-09-12

    Pollinators are required for producing 15-30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages.

  3. Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production.

    PubMed

    Gibbs, Jason; Elle, Elizabeth; Bobiwash, Kyle; Haapalainen, Tiia; Isaacs, Rufus

    2016-01-01

    Highbush blueberry yields are dependent on pollination by bees, and introduction of managed honey bees is the primary strategy used for pollination of this crop. Complementary pollination services are also provided by wild bees, yet highbush blueberry is increasingly grown in regions outside its native range where wild bee communities may be less adapted to the crop and growers may still be testing appropriate honey bee stocking densities. To contrast crop pollination in native and non-native production regions, we sampled commercial 'Bluecrop' blueberry fields in British Columbia and Michigan with grower-selected honey bee stocking rates (0-39.5 hives per ha) to compare bee visitors to blueberry flowers, pollination and yield deficits, and how those vary with local- and landscape-scale factors. Observed and Chao-1 estimated species richness, as well as Shannon diversity of wild bees visiting blueberries were significantly higher in Michigan where the crop is within its native range. The regional bee communities were also significantly different, with Michigan farms having greater dissimilarity than British Columbia. Blueberry fields in British Columbia had fewer visits by honey bees than those in Michigan, irrespective of stocking rate, and they also had lower berry weights and a significant pollination deficit. In British Columbia, pollination service increased with abundance of wild bumble bees, whereas in Michigan the abundance of honey bees was the primary predictor of pollination. The proportion of semi-natural habitat at local and landscape scales was positively correlated with wild bee abundance in both regions. Wild bee abundance declined significantly with distance from natural borders in Michigan, but not in British Columbia where large-bodied bumble bees dominated the wild bee community. Our results highlight the varying dependence of crop production on different types of bees and reveal that strategies for pollination improvement in the same crop can vary greatly across production regions.

  4. Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production

    PubMed Central

    Gibbs, Jason; Elle, Elizabeth; Bobiwash, Kyle; Haapalainen, Tiia; Isaacs, Rufus

    2016-01-01

    Highbush blueberry yields are dependent on pollination by bees, and introduction of managed honey bees is the primary strategy used for pollination of this crop. Complementary pollination services are also provided by wild bees, yet highbush blueberry is increasingly grown in regions outside its native range where wild bee communities may be less adapted to the crop and growers may still be testing appropriate honey bee stocking densities. To contrast crop pollination in native and non-native production regions, we sampled commercial ‘Bluecrop’ blueberry fields in British Columbia and Michigan with grower-selected honey bee stocking rates (0–39.5 hives per ha) to compare bee visitors to blueberry flowers, pollination and yield deficits, and how those vary with local- and landscape-scale factors. Observed and Chao-1 estimated species richness, as well as Shannon diversity of wild bees visiting blueberries were significantly higher in Michigan where the crop is within its native range. The regional bee communities were also significantly different, with Michigan farms having greater dissimilarity than British Columbia. Blueberry fields in British Columbia had fewer visits by honey bees than those in Michigan, irrespective of stocking rate, and they also had lower berry weights and a significant pollination deficit. In British Columbia, pollination service increased with abundance of wild bumble bees, whereas in Michigan the abundance of honey bees was the primary predictor of pollination. The proportion of semi-natural habitat at local and landscape scales was positively correlated with wild bee abundance in both regions. Wild bee abundance declined significantly with distance from natural borders in Michigan, but not in British Columbia where large-bodied bumble bees dominated the wild bee community. Our results highlight the varying dependence of crop production on different types of bees and reveal that strategies for pollination improvement in the same crop can vary greatly across production regions. PMID:27391969

  5. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees

    PubMed Central

    2011-01-01

    Background Malnutrition is a major factor affecting animal health, resistance to disease and survival. In honey bees (Apis mellifera), pollen, which is the main dietary source of proteins, amino acids and lipids, is essential to adult bee physiological development while reducing their susceptibility to parasites and pathogens. However, the molecular mechanisms underlying pollen's nutritive impact on honey bee health remained to be determined. For that purpose, we investigated the influence of pollen nutrients on the transcriptome of worker bees parasitized by the mite Varroa destructor, known for suppressing immunity and decreasing lifespan. The 4 experimental groups (control bees without a pollen diet, control bees fed with pollen, varroa-parasitized bees without a pollen diet and varroa-parasitized bees fed with pollen) were analyzed by performing a digital gene expression (DGE) analysis on bee abdomens. Results Around 36, 000 unique tags were generated per DGE-tag library, which matched about 8, 000 genes (60% of the genes in the honey bee genome). Comparing the transcriptome of bees fed with pollen and sugar and bees restricted to a sugar diet, we found that pollen activates nutrient-sensing and metabolic pathways. In addition, those nutrients had a positive influence on genes affecting longevity and the production of some antimicrobial peptides. However, varroa parasitism caused the development of viral populations and a decrease in metabolism, specifically by inhibiting protein metabolism essential to bee health. This harmful effect was not reversed by pollen intake. Conclusions The DGE-tag profiling methods used in this study proved to be a powerful means for analyzing transcriptome variation related to nutrient intake in honey bees. Ultimately, with such an approach, applying genomics tools to nutrition research, nutrigenomics promises to offer a better understanding of how nutrition influences body homeostasis and may help reduce the susceptibility of bees to (less virulent) pathogens. PMID:21985689

  6. Solitary invasive orchid bee outperforms co-occurring native bees to promote fruit set of an invasive Solanum.

    PubMed

    Liu, Hong; Pemberton, Robert W

    2009-03-01

    Our understanding of the effects of introduced invasive pollinators on plants has been exclusively drawn from studies on introduced social bees. One might expect, however, that the impacts of introduced solitary bees, with much lower population densities and fewer foragers, would be small. Yet little is known about the potential effects of naturalized solitary bees on the environment. We took advantage of the recent naturalization of an orchid bee, Euglossa viridissima, in southern Florida to study the effects of this solitary bee on reproduction of Solanum torvum, an invasive shrub. Flowers of S. torvum require specialized buzz pollination. Through timed floral visitor watches and two pollination treatments (control and pollen supplementation) at three forest edge and three open area sites, we found that the fruit set of S. torvum was pollen limited at the open sites where the native bees dominate, but was not pollen limited at the forest sites where the invasive orchid bees dominate. The orchid bee's pollination efficiency was nearly double that of the native halictid bees, and was also slightly higher than that of the native carpenter bee. Experiments using small and large mesh cages (to deny or allow E. viridissima access, respectively) at one forest site indicated that when the orchid bee was excluded, the flowers set one-quarter as many fruit as when the bee was allowed access. The orchid bee was the most important pollinator of the weed at the forest sites, which could pose additional challenges to the management of this weed in the fragmented, endangered tropical hardwood forests in the region. This specialized invasive mutualism may promote populations of both the orchid bee and this noxious weed. Invasive solitary bees, particularly species that are specialized pollinators, appear to have more importance than has previously been recognized.

  7. Late Onset of Acute Urticaria after Bee Stings.

    PubMed

    Asai, Yuko; Uhara, Hisashi; Miyazaki, Atsushi; Saiki, Minoru; Okuyama, Ryuhei

    2016-01-01

    Here we report the cases of five patients with a late onset of acute urticaria after a bee sting. The ages of the five Japanese patients ranged from 33 to 86 years (median: 61). All patients had no history of an allergic reaction to bee stings. The onset of urticaria was 6-14 days (median: 10) after a bee sting. Although four of the patients did not describe experiencing a bee sting at their presentation, the subsequent examination detected anti-bee-specific IgE antibodies. So, we think a history of a bee sting should thus be part of the medical interview sheet for patients with acute urticaria, and an examination of IgE for bees may help prevent a severe bee-related anaphylactic reaction in the future.

  8. Bee (Hymenoptera: Apoidea) Diversity and Sampling Methodology in a Midwestern USA Deciduous Forest.

    PubMed

    McCravy, Kenneth W; Ruholl, Jared D

    2017-08-04

    Forests provide potentially important bee habitat, but little research has been done on forest bee diversity and the relative effectiveness of bee sampling methods in this environment. Bee diversity and sampling methodology were studied in an Illinois, USA upland oak-hickory forest using elevated and ground-level pan traps, malaise traps, and vane traps. 854 bees and 55 bee species were collected. Elevated pan traps collected the greatest number of bees (473), but ground-level pan traps collected greater species diversity (based on Simpson's diversity index) than did elevated pan traps. Elevated and ground-level pan traps collected the greatest bee species richness, with 43 and 39 species, respectively. An estimated sample size increase of over 18-fold would be required to approach minimum asymptotic richness using ground-level pan traps. Among pan trap colors/elevations, elevated yellow pan traps collected the greatest number of bees (266) but the lowest diversity. Malaise traps were relatively ineffective, collecting only 17 bees. Vane traps collected relatively low species richness (14 species), and Chao1 and abundance coverage estimators suggested that minimum asymptotic species richness was approached for that method. Bee species composition differed significantly between elevated pan traps, ground-level pan traps, and vane traps. Indicator species were significantly associated with each of these trap types, as well as with particular pan trap colors/elevations. These results indicate that Midwestern deciduous forests provide important bee habitat, and that the performance of common bee sampling methods varies substantially in this environment.

  9. Floral abundance, richness, and spatial distribution drive urban garden bee communities.

    PubMed

    Plascencia, M; Philpott, S M

    2017-10-01

    In urban landscapes, gardens provide refuges for bee diversity, but conservation potential may depend on local and landscape features. Foraging and population persistence of bee species, as well as overall pollinator community structure, may be supported by the abundance, richness, and spatial distribution of floral resources. Floral resources strongly differ in urban gardens. Using hand netting and pan traps to survey bees, we examined whether abundance, richness, and spatial distribution of floral resources, as well as ground cover and garden landscape surroundings influence bee abundance, species richness, and diversity on the central coast of California. Differences in floral abundance and spatial distribution, as well as urban cover in the landscape, predicted different bee community variables. Abundance of all bees and of honeybees (Apis mellifera) was lower in sites with more urban land cover surrounding the gardens. Honeybee abundance was higher in sites with patchy floral resources, whereas bee species richness and bee diversity was higher in sites with more clustered floral resources. Surprisingly, bee species richness and bee diversity was lower in sites with very high floral abundance, possibly due to interactions with honeybees. Other studies have documented the importance of floral abundance and landscape surroundings for bees in urban gardens, but this study is the first to document that the spatial arrangement of flowers strongly predicts bee abundance and richness. Based on these findings, it is likely that garden managers may promote bee conservation by managing for floral connectivity and abundance within these ubiquitous urban habitats.

  10. Microbial characterization of bee pollen from the Vesuvius area collected by using three different traps.

    PubMed

    Mauriello, Gianluigi; De Prisco, Annachiara; Di Prisco, Gennaro; La Storia, Antonietta; Caprio, Emilio

    2017-01-01

    Flower pollen is collected by honeybee foragers, adhered on their rear legs and transported into the hives in the form of pellets. Once in the hives, bee pollen is moisturised with nectar and bee mouth secretions and due to enzymatically modifications it becomes the so-called bee-bread, the protein reservoir of young bees. Bee pollen can be artificially removed from bee legs and collected by using specific systems, the bee pollen traps. Bee pollen is commercialized for human consumption as fresh product and after freezing or drying. Although bee pollen is nowadays largely consumed in developed countries, as food or food supplement according to local legislation, little is known on its safety related to microbiological hazards. In this work, we aimed to characterize for the first time the microbiological profile of Italian bee pollen in fresh, frozen and dried form collected along an entire harvesting season. Moreover, monthly microbiological analyses were performed on frozen (storage at -18°C) and dried (storage at room temperature) bee pollen over a 4 months period. Further aim of this work was the evaluation of the possible impact on production level of three different traps used for pollen collection. Our results on microbial contamination of fresh and frozen bee pollen show that a more comprehensive microbiological risk assessment of bee pollen is required. On the other side, dried pollen showed very low microbial contamination and no pathogen survived after the drying process and during storage.

  11. Microbial characterization of bee pollen from the Vesuvius area collected by using three different traps

    PubMed Central

    De Prisco, Annachiara; Di Prisco, Gennaro; La Storia, Antonietta; Caprio, Emilio

    2017-01-01

    Flower pollen is collected by honeybee foragers, adhered on their rear legs and transported into the hives in the form of pellets. Once in the hives, bee pollen is moisturised with nectar and bee mouth secretions and due to enzymatically modifications it becomes the so-called bee-bread, the protein reservoir of young bees. Bee pollen can be artificially removed from bee legs and collected by using specific systems, the bee pollen traps. Bee pollen is commercialized for human consumption as fresh product and after freezing or drying. Although bee pollen is nowadays largely consumed in developed countries, as food or food supplement according to local legislation, little is known on its safety related to microbiological hazards. In this work, we aimed to characterize for the first time the microbiological profile of Italian bee pollen in fresh, frozen and dried form collected along an entire harvesting season. Moreover, monthly microbiological analyses were performed on frozen (storage at -18°C) and dried (storage at room temperature) bee pollen over a 4 months period. Further aim of this work was the evaluation of the possible impact on production level of three different traps used for pollen collection. Our results on microbial contamination of fresh and frozen bee pollen show that a more comprehensive microbiological risk assessment of bee pollen is required. On the other side, dried pollen showed very low microbial contamination and no pathogen survived after the drying process and during storage. PMID:28934240

  12. Influence of pollen feeding and physiological condition on pesticide sensitivity of the honey bee Apis mellifera carnica.

    PubMed

    Wahl, O; Ulm, K

    1983-08-01

    In two consecutive years heavy bee mortality at end April/early May followed the use of pesticides classed as harmless for bees along road verges. It was thought that old weak winter bees had succumbed to a preparation otherwise innocuous. Extensive tests to reveal any links between the bees' physiological condition and pesticide sensitivity involved 6 hormone herbicides, 11 fungicides and 2 insecticides, all approved harmless for bees and functioning on them wholly or mainly as stomach poisons. As a rule bee sensitivity was measured as LD 50 per os, in smaller tests as percentage mortality. Amount and quality of pollen ingested in the first days of life affected the pesticide sensitivity of young and older bees. Bees fed adequate high quality pollen are less sensitive than counterparts fed inadequate or inferior pollen or pollen substitute; such differences persisted if the LD 50 was calculated for the same body weight. Pesticides containing manganese are an exception. To these, bees fed inadequate pollen are no more or even less sensitive than comparable well-fed bees. Pesticide sensitivity decreases generally from early to late summer. Quality of pollen available for larvae has no effect on poison sensitivity of imagines. Food supply conditions however exert a clear influence: tested with the same pesticides, hive bees from colonies having had a rich early food supply, and young bees bred then, are less sensitive than their counterparts having had moderate or no early food supply. Poison sensitivity of summer bees increases with age; most sensitive are old winter bees which had practiced broodcare in early spring.Inadequate pollen intake can be regarded as causing protein deficiency. Investigation of this in mammals and man indicate that the higher poison sensitivity in bees results from inhibition of the enzymatic decomposition of pesticides. For practical bee protection it is important that all organic fungicides tested are effectively harmless. Hormone hebicides can be ranked as practically harmless even for bees inadequately protein-fed, as long as the approved concentrations are observed. Our tests raised doubts however about the registration as harmless for bees of insecticides based on Endosulfan and Phosalon. Of interest in practice and for the official testing of pesticides are also the high pesticide sensitivity of old winter bees, the decrease in sensitivity of bees on a stable feed from early to late summer, and the sensitivity-reducing influence of pollen-rich food supply promoting development.It is important ecologically that pollens of different plant species vary in nutrient quality for the honey bee: there are perfectly worthless (conifers), poor-to-medium, and highly effective pollen types. As shown in this paper, these differences are relevant not only for the development of the physiological condition and breeding potential of the bee, but also for pesticide sensitivity. That bees gather worthless and poor-quality, sometimes even poisonous, pollen (some Ranunculus sp.) is evidently due to the phagostimulant present in all pollen types.

  13. Imidacloprid Decreases Honey Bee Survival Rates but Does Not Affect the Gut Microbiome.

    PubMed

    Raymann, Kasie; Motta, Erick V S; Girard, Catherine; Riddington, Ian M; Dinser, Jordan A; Moran, Nancy A

    2018-07-01

    Accumulating evidence suggests that pesticides have played a role in the increased rate of honey bee colony loss. One of the most commonly used pesticides in the United States is the neonicotinoid imidacloprid. Although the primary mode of action of imidacloprid is on the insect nervous system, it has also been shown to cause changes in insects' digestive physiology and alter the microbiota of Drosophila melanogaster larvae. The honey bee gut microbiome plays a major role in bee health. Although many studies have shown that imidacloprid affects honey bee behavior, its impact on the microbiome has not been fully elucidated. Here, we investigated the impact of imidacloprid on the gut microbiome composition, survivorship, and susceptibility to pathogens of honey bees. Consistent with other studies, we show that imidacloprid exposure results in an elevated mortality of honey bees in the hive and increases the susceptibility to infection by pathogens. However, we did not find evidence that imidacloprid affects the gut bacterial community of honey bees. Our in vitro experiments demonstrated that honey bee gut bacteria can grow in the presence of imidacloprid, and we found some evidence that imidacloprid can be metabolized in the bee gut environment. However, none of the individual bee gut bacterial species tested could metabolize imidacloprid, suggesting that the observed metabolism of imidacloprid within in vitro bee gut cultures is not caused by the gut bacteria. Overall, our results indicate that imidacloprid causes increased mortality in honey bees, but this mortality does not appear to be linked to the microbiome. IMPORTANCE Growing evidence suggests that the extensive use of pesticides has played a large role in the increased rate of honey bee colony loss. Despite extensive research on the effects of imidacloprid on honey bees, it is still unknown whether it impacts the community structure of the gut microbiome. Here, we investigated the impact of imidacloprid on the gut microbiome composition, survivorship, and susceptibility to pathogens of honey bees. We found that the exposure to imidacloprid resulted in an elevated mortality of honey bees and increased the susceptibility to infection by opportunistic pathogens. However, we did not find evidence that imidacloprid affects the gut microbiome of honey bees. We found some evidence that imidacloprid can be metabolized in the bee gut environment in vitro , but because it is quickly eliminated from the bee, it is unlikely that this metabolism occurs in nature. Thus, imidacloprid causes increased mortality in honey bees, but this does not appear to be linked to the microbiome. Copyright © 2018 American Society for Microbiology.

  14. Food consumption and food exchange of caged honey bees using a radioactive labelled sugar solution

    PubMed Central

    Libor, Anika; Kupelwieser, Vera; Crailsheim, Karl

    2017-01-01

    We measured the distribution of sugar solution within groups of caged honey bees (Apis mellifera) under standard in vitro laboratory conditions using 14C polyethylene glycol as a radioactive marker to analyze ingestion by individual bees after group feeding. We studied the impact of different experimental setups by varying the number of bees, age of bees, origin of bees, duration of experiment, the amount of available diet, and the influence of the neurotoxic pesticide imidacloprid in the diet on the feeding and food sharing behavior (trophallaxis). Sugar solution was non-uniformly distributed in bees in 36 out of 135 cages. As a measure of the extent to which the sugar diet was equally distributed between caged bees, we calculated the (inner 80%) intake ratio by dividing the intake of the 90th percentile bee by the intake of the 10th percentile bee. This intake ratio ranged from 1.3 to 94.8 in 133 individual cages, further supporting a non-uniform distribution of food among caged bees. We can expect a cage with 10 or 30 bees containing one bee that ingests, on average, the 8.8-fold of the bee in the same cage ingesting the smallest quantity of food. Inner 80% intake ratios were lower in experiments with a permanent or chronic offering of labelled sugar solution compared to temporary or acute feedings. After pooling the data of replicates to achieve a higher statistical power we compared different experimental setups. We found that uniform food distribution is best approached with 10 newly emerged bees per cage, which originate from a brood comb from a single colony. We also investigated the trophallaxis between caged honey bees which originally consumed the diet and newly added bees. Color marked bees were starved and added to the cages in a ratio of 10:5 or 20:20 after the initial set of bees consumed all the labelled sugar solution. The distribution of the labelled sugar solution by trophallaxis within 48 hours to added bees was 25% (10:5) or 45% (20:20) of the initial sugar solution. Imidacloprid at its median lethal dose (LD50) in the sugar solution reduced this post-feeding food transmission to 27% (20:20). Our results show that differences in food intake exist within caged bees that may lead to differential exposure that can influence the interpretation of toxicity tests. PMID:28355267

  15. Food consumption and food exchange of caged honey bees using a radioactive labelled sugar solution.

    PubMed

    Brodschneider, Robert; Libor, Anika; Kupelwieser, Vera; Crailsheim, Karl

    2017-01-01

    We measured the distribution of sugar solution within groups of caged honey bees (Apis mellifera) under standard in vitro laboratory conditions using 14C polyethylene glycol as a radioactive marker to analyze ingestion by individual bees after group feeding. We studied the impact of different experimental setups by varying the number of bees, age of bees, origin of bees, duration of experiment, the amount of available diet, and the influence of the neurotoxic pesticide imidacloprid in the diet on the feeding and food sharing behavior (trophallaxis). Sugar solution was non-uniformly distributed in bees in 36 out of 135 cages. As a measure of the extent to which the sugar diet was equally distributed between caged bees, we calculated the (inner 80%) intake ratio by dividing the intake of the 90th percentile bee by the intake of the 10th percentile bee. This intake ratio ranged from 1.3 to 94.8 in 133 individual cages, further supporting a non-uniform distribution of food among caged bees. We can expect a cage with 10 or 30 bees containing one bee that ingests, on average, the 8.8-fold of the bee in the same cage ingesting the smallest quantity of food. Inner 80% intake ratios were lower in experiments with a permanent or chronic offering of labelled sugar solution compared to temporary or acute feedings. After pooling the data of replicates to achieve a higher statistical power we compared different experimental setups. We found that uniform food distribution is best approached with 10 newly emerged bees per cage, which originate from a brood comb from a single colony. We also investigated the trophallaxis between caged honey bees which originally consumed the diet and newly added bees. Color marked bees were starved and added to the cages in a ratio of 10:5 or 20:20 after the initial set of bees consumed all the labelled sugar solution. The distribution of the labelled sugar solution by trophallaxis within 48 hours to added bees was 25% (10:5) or 45% (20:20) of the initial sugar solution. Imidacloprid at its median lethal dose (LD50) in the sugar solution reduced this post-feeding food transmission to 27% (20:20). Our results show that differences in food intake exist within caged bees that may lead to differential exposure that can influence the interpretation of toxicity tests.

  16. Comparison of the chemical compositions of the cuticle and the Dufour's gland of two solitary bee species from laboratory and field conditions

    USDA-ARS?s Scientific Manuscript database

    The biochemistry, morphology, and function of the Dufour’s glands have been investigated for social bees and some non-social bee families. This is a gland associated with the female bee stinger but does not deliver any poison. Most of the solitary bees examined previously are ground-nesting bees t...

  17. Bumble Bee Fauna of Palouse Prairie: Survey of Native Bee Pollinators in a Fragmented Ecosystem

    PubMed Central

    Hatten, T. D.; Looney, C.; Strange, J. P.; Bosque-Pérez, N. A.

    2013-01-01

    Bumble bees, Bombus Latreille (Hymenoptera: Apidae:), are dominant pollinators in the northern hemisphere, providing important pollination services for commercial crops and innumerable wild plants. Nationwide declines in several bumble bee species and habitat losses in multiple ecosystems have raised concerns about conservation of this important group. In many regions, such as the Palouse Prairie, relatively little is known about bumble bee communities, despite their critical ecosystem functions. Pitfall trap surveys for ground beetles in Palouse prairie remnants conducted in 2002–2003 contained considerable by-catch of bumble bees. The effects of landscape context, remnant features, year, and season on bumble bee community composition were examined. Additionally, bees captured in 2002–2003 were compared with historic records for the region to assess changes in the presence of individual species. Ten species of bumble bee were captured, representing the majority of the species historically known from the region. Few detectable differences in bumble bee abundances were found among remnants. Community composition differed appreciably, however, based on season, landscape context, and elevation, resulting in different bee assemblages between western, low-lying remnants and eastern, higherelevation remnants. The results suggest that conservation of the still species-rich bumble bee fauna should take into account variability among prairie remnants, and further work is required to adequately explain bumble bee habitat associations on the Palouse. PMID:23902138

  18. A New Threat to Honey Bees, the Parasitic Phorid Fly Apocephalus borealis

    PubMed Central

    Core, Andrew; Runckel, Charles; Ivers, Jonathan; Quock, Christopher; Siapno, Travis; DeNault, Seraphina; Brown, Brian; DeRisi, Joseph; Smith, Christopher D.; Hafernik, John

    2012-01-01

    Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD), a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees show hive abandonment behavior, leaving their hives at night and dying shortly thereafter. On average, seven days later up to 13 phorid larvae emerge from each dead bee and pupate away from the bee. Using DNA barcoding, we confirmed that phorids that emerged from honey bees and bumble bees were the same species. Microarray analyses of honey bees from infected hives revealed that these bees are often infected with deformed wing virus and Nosema ceranae. Larvae and adult phorids also tested positive for these pathogens, implicating the fly as a potential vector or reservoir of these honey bee pathogens. Phorid parasitism may affect hive viability since 77% of sites sampled in the San Francisco Bay Area were infected by the fly and microarray analyses detected phorids in commercial hives in South Dakota and California's Central Valley. Understanding details of phorid infection may shed light on similar hive abandonment behaviors seen in CCD. PMID:22235317

  19. Conversion of high and low pollen protein diets into protein in worker honey bees (Hymenoptera: Apidae).

    PubMed

    Basualdo, M; Barragán, S; Vanagas, L; García, C; Solana, H; Rodríguez, E; Bedascarrasbure, E

    2013-08-01

    Adequate protein levels are necessary to maintain strong honey bee [Apis mellifera (L.)] colonies. The aim of this study was to quantify how pollens with different crude protein contents influence protein stores within individual honey bees. Caged bees were fed one of three diets, consisting of high-protein-content pollen, low-protein-content pollen, or protein-free diet as control; measurements were made based on protein content in hemolymph and fat body, fat body weight, and body weight. Vitellogenin in hemolymph was also measured. Bees fed with high crude protein diet had significantly higher levels of protein in hemolymph and fat bodies. Caged bees did not increase pollen consumption to compensate for the lower protein in the diet, and ingesting approximately 4 mg of protein per bee could achieve levels of 20 microg/microl protein in hemolymph. Worker bees fed with low crude protein diet took more time in reaching similar protein content of the bees that were fed with high crude protein diet. The data showed that fat bodies and body weight were not efficient methods of measuring the protein status of bees. The determination of total protein or vitellogenin concentration in the hemolymph from 13-d-old bees and protein concentration of fat bodies from 9-d-old bees could be good indicators of nutritional status of honey bees.

  20. Sound: An Element Common to Communication of Stingless Bees and to Dances of the Honey Bee.

    PubMed

    Esch, H; Esch, I; Kerr, W E

    1965-07-16

    Sounds are an important part of the communication behavior, the so-called dances, of the honey bee. Stingless bees, which do not use dances for communication, use sound signals to indicate the existence and, in some cases, the distance of a feeding place. The social organization of communities of stingless bees is more primitive than that of honey bees, yet certain commonfeatures of communication behavior in these two groups lead to a new hypothesis of the evolution of dancing behavior of the honey bee.

  1. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology

    PubMed Central

    Traynor, Kirsten S.; Andree, Michael; Lichtenberg, Elinor M.; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L.

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors impacting bee health. PMID:28715431

  2. Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development.

    PubMed

    Tautz, Jurgen; Maier, Sven; Groh, Claudia; Rossler, Wolfgang; Brockmann, Axel

    2003-06-10

    To investigate the possible consequences of brood-temperature regulation in honey bee colonies on the quality of behavioral performance of adults, we placed honey bee pupae in incubators and allowed them to develop at temperatures held constant at 32 degrees C, 34.5 degrees C, and 36 degrees C. This temperature range occurs naturally within hives. On emergence, the young adult bees were marked and introduced into foster colonies housed in normal and observation hives and allowed to live out their lives. No obvious difference in within-hive behavior was noted between the temperature-treated bees and the foster-colony bees. However, when the temperature-treated bees became foragers and were trained to visit a feeder 200 m from the hive, they exhibited clear differences in dance performance that could be correlated with the temperatures at which they had been raised: bees raised at 32 degrees C completed only approximately 20% of the dance circuits when compared with bees of the higher-temperature group. Also, the variance in the duration of the waggle phase is larger in 32 degrees C-raised bees compared with 36 degrees C-raised bees. All other parameters compared across all groups were not significantly different. One-trial learning and memory consolidation in the bees raised at different temperatures was investigated 1 and 10 min after conditioning the proboscis-extension reflex. Bees raised at 36 degrees C performed as expected for bees typically classified as "good learners," whereas bees raised at 32 degrees C and 34.5 degrees C performed significantly less well. We propose that the temperature at which pupae are raised will influence their behavioral performance as adults and may determine the tasks they carry out best inside and outside the hive.

  3. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology.

    PubMed

    vanEngelsdorp, Dennis; Traynor, Kirsten S; Andree, Michael; Lichtenberg, Elinor M; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors impacting bee health.

  4. The African honey bee: factors contributing to a successful biological invasion.

    PubMed

    Scott Schneider, Stanley; DeGrandi-Hoffman, Gloria; Smith, Deborah Roan

    2004-01-01

    The African honey bee subspecies Apis mellifera scutellata has colonized much of the Americas in less than 50 years and has largely replaced European bees throughout its range in the New World. The African bee therefore provides an excellent opportunity to examine the factors that influence invasion success. We provide a synthesis of recent research on the African bee, concentrating on its ability to displace European honey bees. Specifically, we consider (a) the genetic composition of the expanding population and the symmetry of gene flow between African and European bees, (b) the mechanisms that favor the preservation of the African genome, and (c) the possible range and impact of the African bee in the United States.

  5. Cellular energy metabolism maintains young status in old queen honey bees (Apis mellifera).

    PubMed

    Lu, Cheng-Yen; Qiu, Jiantai Timothy; Hsu, Chin-Yuan

    2018-05-02

    Trophocytes and oenocytes of queen honey bees are used in studies of cellular longevity, but their cellular energy metabolism with age is poorly understood. In this study, the molecules involved in cellular energy metabolism were evaluated in the trophocytes and oenocytes of young and old queen bees. The findings indicated that there were no significant differences between young and old queen bees in β-oxidation, glycolysis, and protein synthesis. These results indicate that the cellular energy metabolism of trophocytes and oenocytes in old queen bees is similar to young queen bees and suggests that maintaining cellular energy metabolism in a young status may be associated with the longevity of queen bees. Fat and glycogen accumulation increased with age indicating that old queen bees are older than young queen bees. © 2018 Wiley Periodicals, Inc.

  6. Bees without Flowers: Before Peak Bloom, Diverse Native Bees Find Insect-Produced Honeydew Sugars.

    PubMed

    Meiners, Joan M; Griswold, Terry L; Harris, David J; Ernest, S K Morgan

    2017-08-01

    Bee foragers respond to complex visual, olfactory, and extrasensory cues to optimize searches for floral rewards. Their abilities to detect and distinguish floral colors, shapes, volatiles, and ultraviolet signals and even gauge nectar availability from changes in floral humidity or electric fields are well studied. Bee foraging behaviors in the absence of floral cues, however, are rarely considered. We observed 42 species of wild bees visiting inconspicuous, nonflowering shrubs during early spring in a protected Mediterranean habitat. We determined experimentally that these bees were accessing sugary honeydew secretions from scale insects without the aid of standard cues. While honeydew use is known among some social Hymenoptera, its use across a diverse community of solitary bees is a novel observation. The widespread ability of native bees to locate and use unadvertised, nonfloral sugars suggests unappreciated sensory mechanisms and/or the existence of an interspecific foraging network among solitary bees that may influence how native bees cope with scarcity of floral resources and increasing environmental change.

  7. Size and Sex-Dependent Shrinkage of Dutch Bees during One-and-a-Half Centuries of Land-Use Change.

    PubMed

    Oliveira, Mikail O; Freitas, Breno M; Scheper, Jeroen; Kleijn, David

    2016-01-01

    Land-use change and global warming are important factors driving bee decline, but it is largely unknown whether these drivers have resulted in changes in the life-history traits of bees. Recent studies have shown a stronger population decline of large- than small-bodied bee species, suggesting there may have been selective pressure on large, but not on small species to become smaller. Here we test this hypothesis by analyzing trends in bee body size of 18 Dutch species over a 147-year period using specimens from entomological collections. Large-bodied female bees shrank significantly faster than small-bodied female bees (6.5% and 0.5% respectively between 1900 and 2010). Changes in temperature during the flight period of bees did not influence the size-dependent shrinkage of female bees. Male bees did not shrink significantly over the same time period. Our results could imply that under conditions of declining habitat quantity and quality it is advantageous for individuals to be smaller. The size and sex-dependent responses of bees point towards an evolutionary response but genetic studies are required to confirm this. The declining body size of the large bee species that currently dominate flower visitation of both wild plants and insect-pollinated crops may have negative consequences for pollination service delivery.

  8. Pollination of tomatoes by the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera (Hymenoptera, Apidae).

    PubMed

    dos Santos, S A Bispo; Roselino, A C; Hrncir, M; Bego, L R

    2009-06-30

    The pollination effectiveness of the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera was tested in tomato plots. The experiment was conducted in four greenhouses as well as in an external open plot in Ribeirão Preto, SP, Brazil. The tomato plants were exposed to visits by M. quadrifasciata in one greenhouse and to A. mellifera in another; two greenhouses were maintained without bees (controls) and an open field plot was exposed to pollinators in an area where both honey bee and stingless bee colonies are abundant. We counted the number of tomatoes produced in each plot. Two hundred tomatoes from each plot were weighed, their vertical and transversal circumferences were measured, and the seeds were counted. We collected 253 Chrysomelidae, 17 Halictidae, one Paratrigona sp, and one honey bee from the flowers of the tomato plants in the open area. The largest number of fruits (1414 tomatoes), the heaviest and largest tomatoes, and the ones with the most seed were collected from the greenhouse with stingless bees. Fruits cultivated in the greenhouse with honey bees had the same weight and size as those produced in one of the control greenhouses. The stingless bee, M. quadrifasciata, was significantly more efficient than honey bees in pollinating greenhouse tomatoes.

  9. Improving Nutrient Release of Wall-disruption Bee Pollen with a Combination of Ultrasonication and High Shear Technique.

    PubMed

    Wu, Wei; Wang, Kai; Qiao, Jiangtao; Dong, Jie; Li, Zhanping; Zhang, Hongcheng

    2018-06-22

    Bee pollen, collected by honey bees, contains a substantial amount of nutrients and has a high nutritive value. However, a high level of nutrients can be difficult to be digested and absorbed due to the complex wall of bee pollen. We observed that amino acids were mostly distributed inside cell wall of lotus bee pollen, rape bee pollen, apricot bee pollen, wuweizi bee pollen and camellia bee pollen, using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Thus, five species of bee pollen were wall-disrupted with a combination of ultrasonication and high shear technique (US-HS). After the treatment, bee pollen walls were entirely broken into fragments, and a high number of nutrients were released. The contents of amino acids, fatty acids, protein, crude fat, reducing sugar, β-carotene, calcium, iron, zinc, selenium obviously increased after wall-disruption. Overall, our study demonstrates that US-HS can disrupt bee pollen wall to release nutrients. Therefore, further studies are being conducted to compare the digestibility and absorptivity of pollen nutrients before and after wall-disruption. Additionally, TOF-SIMS seems to be a reliable mapping technique for determining the distribution of food ingredients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Influence of landscape context on the abundance and diversity of bees in Mediterranean olive groves.

    PubMed

    Tscheulin, T; Neokosmidis, L; Petanidou, T; Settele, J

    2011-10-01

    The diversity and abundance of wild bees ensures the delivery of pollination services and the maintenance of ecosystem diversity. As previous studies carried out in Central Europe and the US have shown, bee diversity and abundance is influenced by the structure and the composition of the surrounding landscape. Comparable studies have so far not been carried out in the Mediterranean region. The present study examines the influence of Mediterranean landscape context on the diversity and abundance of wild bees. To do this, we sampled bees in 13 sites in olive groves on Lesvos Island, Greece. Bees were assigned to five categories consisting of three body size groups (small, medium and large bees), the single most abundant bee species (Lasioglossum marginatum) and all species combined. The influence of the landscape context on bee abundance and species richness was assessed at five radii (250, 500, 750, 1000 and 1250 m) from the centre of each site. We found that the abundance within bee groups was influenced differently by different landscape parameters and land covers, whereas species richness was unaffected. Generally, smaller bees' abundance was impacted by landscape parameters at smaller scales and larger bees at larger scales. The land cover that influenced bee abundance positively was olive grove, while phrygana, conifer forest, broad-leaved forest, cultivated land, rock, urban areas and sea had mostly negative or no impact. We stress the need for a holistic approach, including all land covers, when assessing the effects of landscape context on bee diversity and abundance in the Mediterranean.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Seol Ah, E-mail: s6022029@korea.ac.kr; Choi, Young-Im, E-mail: yichoi99@forest.go.kr; Cho, Jin-Seong, E-mail: jinsung3932@gmail.com

    Brassinosteroids (BRs) play important roles in many aspects of plant growth and development, including regulation of vascular cambium activities and cell elongation. BR-induced BEE3 (brassinosteroid enhanced expression 3) is required for a proper BR response. Here, we identified a poplar (Populus alba × Populus glandulosa) BEE3-like gene, PagBEE3L, encoding a putative basic helix-loop-helix (bHLH)-type transcription factor. Expression of PagBEE3L was induced by brassinolide (BL). Transcripts of PagBEE3L were mainly detected in stems, with the internode having a low level of transcription and the node having a relatively higher level. The function of the PagBEE3L gene was investigated through phenotypic analyses with PagBEE3L-overexpressingmore » (ox) transgenic lines. This work particularly focused on a potential role of PagBEE3L in stem growth and development of polar. The PagBEE3L-ox poplar showed thicker and longer stems than wild-type plants. The xylem cells from the stems of PagBEE3L-ox plants revealed remarkably enhanced proliferation, resulting in an earlier thickening growth than wild-type plants. Therefore, this work suggests that xylem development of poplar is accelerated in PagBEE3L-ox plants and PagBEE3L plays a role in stem growth by increasing the proliferation of xylem cells to promote the initial thickening growth of poplar stems. - Highlights: • We identify the BEE3-like gene form hybrid poplar (Populus alba × Populus glandulosa). • We examine effects of overexpression of PagBEE3L on growth in poplar. • We found that 35S:BEE3L transgenic plants showed more rapid growth than wild-type plants. • BEE3L protein plays an important role in the development of plant stem.« less

  12. Inter-assemblage facilitation: the functional diversity of cavity-producing beetles drives the size diversity of cavity-nesting bees.

    PubMed

    Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine

    2016-01-01

    Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee species assemblages in forested landscapes.

  13. 7 CFR 322.29 - Dead bees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...

  14. 7 CFR 322.29 - Dead bees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...

  15. 7 CFR 322.29 - Dead bees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...

  16. 7 CFR 322.29 - Dead bees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...

  17. 7 CFR 322.29 - Dead bees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...

  18. Responses of Varroa-resistant honey bees (Apis mellifera L.) to Deformed wing virus

    USDA-ARS?s Scientific Manuscript database

    The negative impact of Deformedwing virus (DWV) on European honey bees Apis mellifera is magnified by Varroa destructor parasitism. This study compared the responses of two Varroa-resistant honey bee stocks, pure Russian honey bees (RHB) and out-crossed Varroa Sensitive Hygienic bees, Pol-line (POL)...

  19. Live bee acupuncture (Bong-Chim) dermatitis: dermatitis due to live bee acupuncture therapy in Korea.

    PubMed

    Park, Joon Soo; Lee, Min Jung; Chung, Ki Hun; Ko, Dong Kyun; Chung, Hyun

    2013-12-01

    Live bee acupuncture (Bong-Chim) dermatitis is an iatrogenic disease induced by so-called live bee acupuncture therapy, which applies the honeybee (Apis cerana) stinger directly into the lesion to treat various diseases in Korea. We present two cases of live bee acupuncture dermatitis and review previously published articles about this disease. We classify this entity into three stages: acute, subacute, and chronic. The acute stage is an inflammatory reaction, such as anaphylaxis or urticaria. In the chronic stage, a foreign body granuloma may develop from the remaining stingers, similar to that of a bee sting reaction. However, in the subacute stage, unlike bee stings, we see the characteristic histological "flame" figures resulting from eosinophilic stimulation induced by excessive bee venom exposure. We consider this stage to be different from the adverse skin reaction of accidental bee sting. © 2013 The International Society of Dermatology.

  20. Allergenicity of Artemisia contained in bee pollen is proportional to its mass.

    PubMed

    Nonotte-Varly, C

    2015-11-01

    Bee product mugwort is identified as being at the origin of allergic accidents but the biological potency of Artemisia contained in bee pollen is not well known. In this experiment, Artemisia mass was identified in bee pollen mass and after having calculated the proportion of Artemisia using the bee pollen melissopalynology spectrum. Skin reactivity to Artemisia was assessed by measuring wheal diameters (W) from skin prick tests using three serial dilutions of bee pollen on 11 allergic patients to Artemisia, in order to calculate the relationship between Artemisia mass (Massartemisia) in bee pollen and skin reactivity. The dose-response power regression curve (Wartemisia)=3.328 (Massartemisia)0.297 (R2=0.9947) and the linear function Log10 (Wartemisia)=0.297 (Log10 (Massartemisia)+0.520 (R=0.9974)) were established using a bee pollen sample with 0.246 mg of Artemisia pollen per mg. Mugwort allergens seem to be little or not altered by bee secretions and bee pollen retains its allergenic capacity. To our knowledge this is the first time it has been shown that skin reactivity of patients allergic to mugwort is proportional to the absolute mugwort mass contained in the bee pollen.

  1. Bee species diversity enhances productivity and stability in a perennial crop.

    PubMed

    Rogers, Shelley R; Tarpy, David R; Burrack, Hannah J

    2014-01-01

    Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning--and, therefore, their importance in maintaining and enhancing these services-remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services.

  2. Bee Species Diversity Enhances Productivity and Stability in a Perennial Crop

    PubMed Central

    Rogers, Shelley R.; Tarpy, David R.; Burrack, Hannah J.

    2014-01-01

    Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning—and, therefore, their importance in maintaining and enhancing these services—remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services. PMID:24817218

  3. Wild bees enhance honey bees’ pollination of hybrid sunflower

    PubMed Central

    Greenleaf, Sarah S.; Kremen, Claire

    2006-01-01

    Pollinators are required for producing 15–30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages. PMID:16940358

  4. Flowers and Wild Megachilid Bees Share Microbes.

    PubMed

    McFrederick, Quinn S; Thomas, Jason M; Neff, John L; Vuong, Hoang Q; Russell, Kaleigh A; Hale, Amanda R; Mueller, Ulrich G

    2017-01-01

    Transmission pathways have fundamental influence on microbial symbiont persistence and evolution. For example, the core gut microbiome of honey bees is transmitted socially and via hive surfaces, but some non-core bacteria associated with honey bees are also found on flowers, and these bacteria may therefore be transmitted indirectly between bees via flowers. Here, we test whether multiple flower and wild megachilid bee species share microbes, which would suggest that flowers may act as hubs of microbial transmission. We sampled the microbiomes of flowers (either bagged to exclude bees or open to allow bee visitation), adults, and larvae of seven megachilid bee species and their pollen provisions. We found a Lactobacillus operational taxonomic unit (OTU) in all samples but in the highest relative and absolute abundances in adult and larval bee guts and pollen provisions. The presence of the same bacterial types in open and bagged flowers, pollen provisions, and bees supports the hypothesis that flowers act as hubs of transmission of these bacteria between bees. The presence of bee-associated bacteria in flowers that have not been visited by bees suggests that these bacteria may also be transmitted to flowers via plant surfaces, the air, or minute insect vectors such as thrips. Phylogenetic analyses of nearly full-length 16S rRNA gene sequences indicated that the Lactobacillus OTU dominating in flower- and megachilid-associated microbiomes is monophyletic, and we propose the name Lactobacillus micheneri sp. nov. for this bacterium.

  5. Community and species-specific responses of wild bees to insect pest control programs applied to a pollinator-dependent crop.

    PubMed

    Tuell, Julianna K; Isaacs, Rufus

    2010-06-01

    Wild bee conservation is regarded as essential for sustainable production of pollinator-dependent crops, yet little is known about the effects on wild bee communities of typical insect pest management programs used postbloom. We developed an insecticide program risk (IPR) index to quantify the relative risk to wild bees of insecticide programs applied to blueberry fields. This was used to determine the relationship between IPR and the abundance, diversity, and richness of wild bee communities sampled during three successive flowering seasons. In 2 of 3 yr, bee abundance and species richness declined with increasing IPR. Bee diversity declined with IPR in one of 3 yr. These results indicate that wild bee communities are negatively affected by increasingly intensive chemical pest management activities in crop fields and that interyear variability in bee populations has the potential to mask such effects in short-term studies. When several wild bee species were analyzed separately, two of three solitary and one of three social blueberry-foraging species declined with increasing IPR values, suggesting that different life histories and nesting habits may help some bee populations escape the negative effects of insecticides applied after bloom. Pollinator conservation programs aimed strictly at reducing insecticide use may have varying success, depending on the biology of the target bee species. The IPR index provides a standard method to compare pest management programs for their potential effect on wild bee communities, with broad application for use in other agricultural systems.

  6. Abundance and Diversity of Wild Bees (Hymenoptera: Apoidea) Found in Lowbush Blueberry Growing Regions of Downeast Maine.

    PubMed

    Bushmann, Sara L; Drummond, Francis A

    2015-08-01

    Insect-mediated pollination is critical for lowbush blueberry (Ericaceae: Vaccinium angustifolium Aiton) fruit development. Past research shows a persistent presence of wild bees (Hymenoptera: Apoidea) providing pollination services even when commercial pollinators are present. We undertook the study to 1) provide a description of bee communities found in lowbush blueberry-growing regions, 2) identify field characteristics or farm management practices that influence those communities, 3) identify key wild bee pollinators that provide pollination services for the blueberry crop, and 4) identify non-crop plants found within the cropping system that provide forage for wild bees. During a 4-year period, we collected solitary and eusocial bees in over 40 fields during and after blueberry bloom, determining a management description for each field. We collected 4,474 solitary bees representing 124 species and 1,315 summer bumble bees representing nine species. No bumble bee species were previously unknown in Maine, yet we document seven solitary bee species new for the state. These include species of the genera Nomada, Lasioglossum, Calliopsis, and Augochloropsis. No field characteristic or farm management practice related to bee community structure, except bumble bee species richness was higher in certified organic fields. Pollen analysis determined scopal loads of 67-99% ericaceous pollen carried by five species of Andrena. Our data suggest two native ericaceous plants, Kalmia angustifolia L. and Gaylussacia baccata (Wangenheim), provide important alternative floral resources. We conclude that Maine blueberry croplands are populated with a species-rich bee community that fluctuates in time and space. We suggest growers develop and maintain wild bee forage and nest sites. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Black elderberry extract attenuates inflammation and metabolic dysfunction in diet-induced obese mice.

    PubMed

    Farrell, Nicholas J; Norris, Gregory H; Ryan, Julia; Porter, Caitlin M; Jiang, Christina; Blesso, Christopher N

    2015-10-28

    Dietary anthocyanins have been shown to reduce inflammation in animal models and may ameliorate obesity-related complications. Black elderberry is one of the richest sources of anthocyanins. We investigated the metabolic effects of anthocyanin-rich black elderberry extract (BEE) in a diet-induced obese C57BL/6J mouse model. Mice were fed either a low-fat diet (n 8), high-fat lard-based diet (HFD; n 16), HFD+0·25 % (w/w) BEE (0·25 %-BEE; n 16) or HFD+1·25 % BEE (1·25 %-BEE; n 16) for 16 weeks. The 0·25 % BEE (0·034 % anthocyanin, w/w) and 1·25 % BEE (0·17 % anthocyanin, w/w) diets corresponded to estimated anthocyanin doses of 20-40 mg and 100-200 mg per kg of body weight, respectively. After 16 weeks, both BEE groups had significantly lower liver weights, serum TAG, homoeostasis model assessment and serum monocyte chemoattractant protein-1 compared with HFD. The 0·25 %-BEE also had lower serum insulin and TNFα compared with HFD. Hepatic fatty acid synthase mRNA was lower in both BEE groups, whereas PPARγ2 mRNA and liver cholesterol were lower in 1·25 %-BEE, suggesting decreased hepatic lipid synthesis. Higher adipose PPARγ mRNA, transforming growth factor β mRNA and adipose tissue histology suggested a pro-fibrogenic phenotype that was less inflammatory in 1·25 %-BEE. Skeletal muscle mRNA expression of the myokine IL-6 was higher in 0·25 %-BEE relative to HFD. These results suggest that BEE may have improved some metabolic disturbances present in this mouse model of obesity by lowering serum TAG, inflammatory markers and insulin resistance.

  8. First detection of the larval chalkbrood disease pathogen Ascosphaera apis (Ascomycota: Eurotiomycetes: Ascosphaerales) in adult bumble bees.

    PubMed

    Maxfield-Taylor, Sarah A; Mujic, Alija B; Rao, Sujaya

    2015-01-01

    Fungi in the genus Ascosphaera (Ascomycota: Eurotiomycetes: Ascosphaerales) cause chalkbrood disease in larvae of bees. Here, we report the first-ever detection of the fungus in adult bumble bees that were raised in captivity for studies on colony development. Wild queens of Bombus griseocollis, B. nevadensis and B. vosnesenskii were collected and maintained for establishment of nests. Queens that died during rearing or that did not lay eggs within one month of capture were dissected, and tissues were examined microscopically for the presence of pathogens. Filamentous fungi that were detected were plated on artificial media containing broad spectrum antibiotics for isolation and identification. Based on morphological characters, the fungus was identified as Ascosphaera apis (Maasen ex Claussen) Olive and Spiltoir, a species that has been reported earlier only from larvae of the European honey bee, Apis mellifera, the Asian honey bee, Apis cerana, and the carpenter bee Xylocopa californica arizonensis. The identity of the fungus was confirmed using molecular markers and phylogenetic analysis. Ascosphaera apis was detected in queens of all three bumble bee species examined. Of 150 queens dissected, 12 (8%) contained vegetative and reproductive stages of the fungus. Both fungal stages were also detected in two workers collected from colonies with Ascosphaera-infected B. nevadensis queens. In this study, wild bees could have been infected prior to capture for rearing, or, the A. apis infection could have originated via contaminated European honey bee pollen fed to the bumble bees in captivity. Thus, the discovery of A. apis in adult bumble bees in the current study has important implications for commercial production of bumble bee colonies and highlights potential risks to native bees via pathogen spillover from infected bees and infected pollen.

  9. Honey bee foraging preferences, effects of sugars, and fruit fly toxic bait components.

    PubMed

    Mangan, Robert L; Moreno, Aleena Tarshis

    2009-08-01

    Field tests were carried out to evaluate the repellency of the Dow AgroSciences fruit fly toxic bait GF-120 (NF Naturalyte) to domestic honey bees (Apis mellifera L.). GF-120 is an organically registered attractive bait for tephritid fruit flies composed of spinosad, hydrolyzed protein (Solulys), high-fructose corn syrup (ADM CornSweet 42 high-fructose corn syrup, referred to as invertose sugar or invertose here), vegetable oils, adjuvants, humectants, and attractants. Tests were carried out with non-Africanized honey bees in February and March 2005 and 2007 during periods of maximum hunger for these bees. In all tests, bees were first trained to forage from plates of 30% honey-water (2005) or 30% invertose (2007). In 2005 bees were offered choices between honey-water and various bait components, including the complete toxic bait. In 2007, similar tests were performed except bees were attracted with 30% invertose then offered the bait components or complete bait as no-choice tests. Initially, the 2005 tests used all the components of GF-120 except the spinosad as the test bait. After we were convinced that bees would not collect or be contaminated by the bait, we tested the complete GF-120. Behavior of the bees indicated that during initial attraction and after switching the baits, the bait components and the complete bait were repellent to honey bees, but the honey-water remained attractive. Invertose was shown to be less attractive to bees, addition of Solulys eliminated almost all bee activity, and addition of ammonium acetate completely eliminated feeding in both choice and no-choice tests. These results confirm previous tests showing that bees do not feed on GF-120 and also show that honey bees are repelled by the fruit fly attractant components of the bait in field tests.

  10. Infestation of Japanese native honey bees by tracheal mite and virus from non-native European honey bees in Japan.

    PubMed

    Kojima, Yuriko; Toki, Taku; Morimoto, Tomomi; Yoshiyama, Mikio; Kimura, Kiyoshi; Kadowaki, Tatsuhiko

    2011-11-01

    Invasion of alien species has been shown to cause detrimental effects on habitats of native species. Insect pollinators represent such examples; the introduction of commercial bumble bee species for crop pollination has resulted in competition for an ecological niche with native species, genetic disturbance caused by mating with native species, and pathogen spillover to native species. The European honey bee, Apis mellifera, was first introduced into Japan for apiculture in 1877, and queen bees have been imported from several countries for many years. However, its effects on Japanese native honey bee, Apis cerana japonica, have never been addressed. We thus conducted the survey of honey bee viruses and Acarapis mites using both A. mellifera and A. c. japonica colonies to examine their infestation in native and non-native honey bee species in Japan. Honey bee viruses, Deformed wing virus (DWV), Black queen cell virus (BQCV), Israeli acute paralysis virus (IAPV), and Sacbrood virus (SBV), were found in both A. mellifera and A. c. japonica colonies; however, the infection frequency of viruses in A. c. japonica was lower than that in A. mellifera colonies. Based on the phylogenies of DWV, BQCV, and SBV isolates from A. mellifera and A. c. japonica, DWV and BQCV may infect both honey bee species; meanwhile, SBV has a clear species barrier. For the first time in Japan, tracheal mite (Acarapis woodi) was specifically found in the dead honey bees from collapsing A. c. japonica colonies. This paper thus provides further evidence that tracheal-mite-infested honey bee colonies can die during cool winters with no other disease present. These results demonstrate the infestation of native honey bees by parasite and pathogens of non-native honey bees that are traded globally.

  11. The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera).

    PubMed

    Wilson-Rich, Noah; Dres, Stephanie T; Starks, Philip T

    2008-01-01

    Honey bees (Apis mellifera) are of vital economic and ecological importance. These eusocial animals display temporal polyethism, which is an age-driven division of labor. Younger adult bees remain in the hive and tend to developing brood, while older adult bees forage for pollen and nectar to feed the colony. As honey bees mature, the types of pathogens they experience also change. As such, pathogen pressure may affect bees differently throughout their lifespan. We provide the first direct tests of honey bee innate immune strength across developmental stages. We investigated immune strength across four developmental stages: larvae, pupae, nurses (1-day-old adults), and foragers (22-30 days old adults). The immune strength of honey bees was quantified using standard immunocompetence assays: total hemocyte count, encapsulation response, fat body quantification, and phenoloxidase activity. Larvae and pupae had the highest total hemocyte counts, while there was no difference in encapsulation response between developmental stages. Nurses had more fat body mass than foragers, while phenoloxidase activity increased directly with honey bee development. Immune strength was most vigorous in older, foraging bees and weakest in young bees. Importantly, we found that adult honey bees do not abandon cellular immunocompetence as has recently been proposed. Induced shifts in behavioral roles may increase a colony's susceptibility to disease if nurses begin foraging activity prematurely.

  12. 75 FR 76405 - Winter Bee, Inc., Provisional Acceptance of a Settlement Agreement and Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... CONSUMER PRODUCT SAFETY COMMISSION [CPSC Docket No. 11-C0002] Winter Bee, Inc., Provisional...(e).\\1\\ Published below is a provisionally-accepted Settlement Agreement with Winter Bee, Inc... 1. In accordance with 16 CFR 1118.20, Winter Bee, Inc. (``Winter Bee'') and the staff (``Staff'') of...

  13. Discovery of the Western Palearctic bee, Megachile (Pseudomegachile) ericetorum, (Hymenoptera: Megachilidae), in Ontario Canada

    USDA-ARS?s Scientific Manuscript database

    The bees of North America are very diverse, including over 3500 species. Approximately thirty of these bee species are not native to this continent. Recently another non-native bee, Megachile (Pseudomegachile) ericetorum, was found in a naturalized area in Ontario, Canada. This bee nests in holes...

  14. Transcriptional responses in honey bee larvae infected with chalkbrood fungus

    USDA-ARS?s Scientific Manuscript database

    Diseases and other stress factors working synergistically weaken honey bee health and may play a major role in the losses of bee populations in recent years. Among a large number of bee diseases, chalkbrood has been on the rise. We present here the experimental identification of honey bee genes that...

  15. Allee effects and colony collapse disorder in honey bees

    USDA-ARS?s Scientific Manuscript database

    We propose a mathematical model to quantify the hypothesis that a major ultimate cause of Colony Collapse Disorder (CCD) in honey bees is the presence of an Allee effect in the growth dynamics of honey bee colonies. In the model, both recruitment of adult bees as well as mortality of adult bees have...

  16. The effect of using prebiotic and probiotic products on intestinal micro-flora of the honeybee (Apis mellifera carpatica).

    PubMed

    Pătruică, S; Mot, D

    2012-12-01

    Maintaining bee colonies in a healthy state throughout the year is one of the main concerns of apiculture researchers. The phenomenon of disappearance of bee colonies is determined by several factors, one of which is bee disease. Due to the organizational structure of the bee colony, disease transmission is rapid, especially through infected food or via the nurse worker bees that feed the brood bees of the colony concerned. The practice of stimulating the bee colonies in spring using sugar syrup feeds with added prebiotic products (lactic acid or acetic acid) and probiotics (Lactobacillus acidophilus LA-14 and Bifidobacterium lactis BI-04) by using an Enterobiotic product (Lactobacillus casei), marketed as Enterolactis Plus, for three weeks, resulted in a significant reduction of the total number of bacteria in the digestive tracts of the bees, compared with the control group. By contrast, intestinal colonization with beneficial bacteria contained in probiotics products administered to the bees was observed. This resulted in an improved health status and bio productive index of the bee colonies studied.

  17. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model

    PubMed Central

    Settele, Josef; Dormann, Carsten F.

    2018-01-01

    Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness), number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies) with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study), for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1) Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2) Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3) Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response to this ratio for all bee sizes. The nest to foraging habitat ratio, a strong habitat proxy incorporating fragmentation could be a promising and practical measure for comparing landscape suitability for pollinators. 4) The number of flower visits was hardly affected by resource allocation, but predominantly by bee size. 5) In landscapes with the highest visitation coverage, bees flew least far, suggesting that these pollination proxies are subject to a trade-off between either longer pollen transport distances or a better pollination coverage, linked to how nests are distributed over the landscape rather than being affected by bee size. PMID:29444076

  18. Fragmentation of nest and foraging habitat affects time budgets of solitary bees, their fitness and pollination services, depending on traits: Results from an individual-based model.

    PubMed

    Everaars, Jeroen; Settele, Josef; Dormann, Carsten F

    2018-01-01

    Solitary bees are important but declining wild pollinators. During daily foraging in agricultural landscapes, they encounter a mosaic of patches with nest and foraging habitat and unsuitable matrix. It is insufficiently clear how spatial allocation of nesting and foraging resources and foraging traits of bees affect their daily foraging performance. We investigated potential brood cell construction (as proxy of fitness), number of visited flowers, foraging habitat visitation and foraging distance (pollination proxies) with the model SOLBEE (simulating pollen transport by solitary bees, tested and validated in an earlier study), for landscapes varying in landscape fragmentation and spatial allocation of nesting and foraging resources. Simulated bees varied in body size and nesting preference. We aimed to understand effects of landscape fragmentation and bee traits on bee fitness and the pollination services bees provide, as well as interactions between them, and the general consequences it has to our understanding of the system. This broad scope gives multiple key results. 1) Body size determines fitness more than landscape fragmentation, with large bees building fewer brood cells. High pollen requirements for large bees and the related high time budgets for visiting many flowers may not compensate for faster flight speeds and short handling times on flowers, giving them overall a disadvantage compared to small bees. 2) Nest preference does affect distribution of bees over the landscape, with cavity-nesting bees being restricted to nesting along field edges, which inevitably leads to performance reductions. Fragmentation mitigates this for cavity-nesting bees through increased edge habitat. 3) Landscape fragmentation alone had a relatively small effect on all responses. Instead, the local ratio of nest to foraging habitat affected bee fitness positively through reduced local competition. The spatial coverage of pollination increases steeply in response to this ratio for all bee sizes. The nest to foraging habitat ratio, a strong habitat proxy incorporating fragmentation could be a promising and practical measure for comparing landscape suitability for pollinators. 4) The number of flower visits was hardly affected by resource allocation, but predominantly by bee size. 5) In landscapes with the highest visitation coverage, bees flew least far, suggesting that these pollination proxies are subject to a trade-off between either longer pollen transport distances or a better pollination coverage, linked to how nests are distributed over the landscape rather than being affected by bee size.

  19. Exploration and design of smart home circuit based on ZigBee

    NASA Astrophysics Data System (ADS)

    Luo, Huirong

    2018-05-01

    To apply ZigBee technique in smart home circuit design, in the hardware design link of ZigBee node, TI Company's ZigBee wireless communication chip CC2530 was used to complete the design of ZigBee RF module circuit and peripheral circuit. In addition, the function demand and the overall scheme of the intelligent system based on smart home furnishing were proposed. Finally, the smart home system was built by combining ZigBee network and intelligent gateway. The function realization, reliability and power consumption of ZigBee network were tested. The results showed that ZigBee technology was applied to smart home system, making it have some advantages in terms of flexibility, scalability, power consumption and indoor aesthetics. To sum up, the system has high application value.

  20. Impact of managed honey bee viruses on wild bees.

    PubMed

    Tehel, Anja; Brown, Mark Jf; Paxton, Robert J

    2016-08-01

    Several viruses found in the Western honey bee (Apis mellifera) have recently been detected in other bee species, raising the possibility of spill-over from managed to wild bee species. Alternatively, these viruses may be shared generalists across flower-visiting insects. Here we explore the former hypothesis, pointing out weaknesses in the current evidence, particularly in relation to deformed wing virus (DWV), and highlighting research areas that may help test it. Data so far suggest that DWV spills over from managed to wild bee species and has the potential to cause population decline. That DWV and other viruses of A. mellifera are found in other bee species needs to be considered for the sustainable management of bee populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Colony Level Prevalence and Intensity of Nosema ceranae in Honey Bees (Apis mellifera L.)

    PubMed Central

    Lucas, Hannah M.; Webster, Thomas C.; Sagili, Ramesh R.

    2016-01-01

    Nosema ceranae is a widely prevalent microsporidian parasite in the western honey bee. There is considerable uncertainty regarding infection dynamics of this important pathogen in honey bee colonies. Understanding the infection dynamics at the colony level may aid in development of a reliable sampling protocol for N. ceranae diagnosis, and provide insights into efficient treatment strategies. The primary objective of this study was to characterize the prevalence (proportion of the sampled bees found infected) and intensity (number of spores per bee) of N. ceranae infection in bees from various age cohorts in a colony. We examined N. ceranae infection in both overwintered colonies that were naturally infected with N. ceranae and in quadruple cohort nucleus colonies that were established and artificially inoculated with N. ceranae. We also examined and quantified effects of N. ceranae infection on hypopharyngeal gland protein content and gut pH. There was no correlation between the prevalence and intensity of N. ceranae infection in composite samples (pooled bee samples used for analysis). Our results indicated that the prevalence and intensity of N. ceranae infection is significantly influenced by honey bee age. The N. ceranae infection prevalence values from composite samples of background bees (unmarked bees collected from four different locations in a colony) were not significantly different from those pertaining to marked-bee age cohorts specific to each sampling date. The foraging-aged bees had a higher prevalence of N. ceranae infection when compared to nurse-aged bees. N. ceranae did not have a significant effect on hypopharyngeal gland protein content. Further, there was no significant difference in mean gut pH of N. ceranae infected bees and non-infected bees. This study provides comprehensive insights into N. ceranae infection dynamics at the colony level, and also demonstrates the effects of N. ceranae infection on hypopharyngeal gland protein content and midgut pH. PMID:27658258

  2. Succession Influences Wild Bees in a Temperate Forest Landscape: The Value of Early Successional Stages in Naturally Regenerated and Planted Forests

    PubMed Central

    Taki, Hisatomo; Okochi, Isamu; Okabe, Kimiko; Inoue, Takenari; Goto, Hideaki; Matsumura, Takeshi; Makino, Shun'ichi

    2013-01-01

    In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional habitats, leading to significant positive effects for bees in general. PMID:23457602

  3. Succession influences wild bees in a temperate forest landscape: the value of early successional stages in naturally regenerated and planted forests.

    PubMed

    Taki, Hisatomo; Okochi, Isamu; Okabe, Kimiko; Inoue, Takenari; Goto, Hideaki; Matsumura, Takeshi; Makino, Shun'ichi

    2013-01-01

    In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional habitats, leading to significant positive effects for bees in general.

  4. Iridovirus and microsporidian linked to honey bee colony decline.

    PubMed

    Bromenshenk, Jerry J; Henderson, Colin B; Wick, Charles H; Stanford, Michael F; Zulich, Alan W; Jabbour, Rabih E; Deshpande, Samir V; McCubbin, Patrick E; Seccomb, Robert A; Welch, Phillip M; Williams, Trevor; Firth, David R; Skowronski, Evan; Lehmann, Margaret M; Bilimoria, Shan L; Gress, Joanna; Wanner, Kevin W; Cramer, Robert A

    2010-10-06

    In 2010 Colony Collapse Disorder (CCD), again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses. We used Mass spectrometry-based proteomics (MSP) to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV) (Iridoviridae) associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1) bees from commercial apiaries sampled across the U.S. in 2006-2007, (2) bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3) bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone. These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey bee losses.

  5. Iridovirus and Microsporidian Linked to Honey Bee Colony Decline

    PubMed Central

    Bromenshenk, Jerry J.; Henderson, Colin B.; Wick, Charles H.; Stanford, Michael F.; Zulich, Alan W.; Jabbour, Rabih E.; Deshpande, Samir V.; McCubbin, Patrick E.; Seccomb, Robert A.; Welch, Phillip M.; Williams, Trevor; Firth, David R.; Skowronski, Evan; Lehmann, Margaret M.; Bilimoria, Shan L.; Gress, Joanna; Wanner, Kevin W.; Cramer, Robert A.

    2010-01-01

    Background In 2010 Colony Collapse Disorder (CCD), again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses. Methodology/Principal Findings We used Mass spectrometry-based proteomics (MSP) to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV) (Iridoviridae) associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1) bees from commercial apiaries sampled across the U.S. in 2006–2007, (2) bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3) bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone. Conclusions/Significance These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey bee losses. PMID:20949138

  6. Safety of methionine, a novel biopesticide, to adult and larval honey bees (Apis mellifera L.).

    PubMed

    Weeks, Emma N I; Schmehl, Daniel R; Baniszewski, Julie; Tomé, Hudson V V; Cuda, James P; Ellis, James D; Stevens, Bruce R

    2018-03-01

    Methionine is an essential/indispensible amino acid nutrient required by adult and larval honey bees (Apis mellifera L. [Hymenoptera: Apidae]). Bees are unable to rear broods on pollen deficient in methionine, and reportedly behaviorally avoid collecting pollen or nectar from florets deficient in methioinine. In contrast, it has been demonstrated that methionine is toxic to certain pest insects; thus it has been proposed as an effective biopesticide. As an ecofriendly integrated pest management agent, methionine boasts a novel mode of action differentiating it from conventional pesticides, while providing non-target safety. Pesticides that minimize collateral effects on bees are desirable, given the economic and ecological concerns about honey bee health. The aim of the present study was to assess the potential impact of the biopesticide methionine on non-target adult and larval honey bees. Acute contact adult toxicology bioassays, oral adult assessments and chronic larval toxicity assessments were performed as per U.S. Environmental Protection Agency (EPA) requirements. Our results demonstrated that methionine fits the U.S. EPA category of practically nontoxic (i.e. lethal dose to 50% mortality or LD 50 > 11µg/bee) to adult honey bees. The contact LD 50 was > 25µg/bee and the oral LD 50 was > 100µg/bee. Mortality was observed in larval bees that ingested DL-methionine (effective concentration to 50% mortality or EC 50 560µg/bee). Therefore, we conclude that methionine poses little threat to the health of the honey bee, due to unlikely exposure at concentrations shown to elicit toxic effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effects of Nosema ceranae and thiametoxam in Apis mellifera: A comparative study in Africanized and Carniolan honey bees.

    PubMed

    Gregorc, Ales; Silva-Zacarin, Elaine C M; Carvalho, Stephan Malfitano; Kramberger, Doris; Teixeira, Erica W; Malaspina, Osmar

    2016-03-01

    Multiple stressors, such as chemicals and pathogens, are likely to be detrimental for the health and lifespan of Apis mellifera, a bee species frequently exposed to both factors in the field and inside hives. The main objective of the present study was to evaluate comparatively the health of Carniolan and Africanized honey bees (AHB) co-exposed to thiamethoxam and Nosema ceranae (N. ceranae) spores. Newly-emerged worker honey bees were exposed solely with different sublethal doses of thiamethoxam (2% and 0.2% of LD50 for AHB), which could be consumed by bees under field conditions. Toxicity tests for the Carniolan bees were performed, and the LD50 of thiamethoxam for Carniolan honey bees was 7.86 ng bee(-1). Immunohistological analyses were also performed to detect cell death in the midgut of thiamethoxam and/or N. ceranae treated bees. Thiamethoxam exposure had no negative impact on Nosema development in experimental conditions, but it clearly inhibited cell death in the midgut of thiamethoxam and Nosema-exposed bees, as demonstrated by immunohistochemical data. Indeed, thiamethoxam exposure only had a minor synergistic toxic effect on midgut tissue when applied as a low dose simultaneously with N. ceranae to AHB and Carniolan honey bees, in comparison with the effect caused by both stressors separately. Our data provides insights into the effects of the neonicotenoid thiamethoxam on the AHB and Carniolan honey bee life span, as well as the effects of simultaneous application of thiamethoxam and N. ceranae spores to honey bees. Copyright © 2016. Published by Elsevier Ltd.

  8. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands.

    PubMed

    Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A; van der Linden, Giel T J; Schaminée, Joop H J; Siepel, Henk; Kleijn, David

    2014-12-09

    Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species.

  9. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands

    PubMed Central

    Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A.; van der Linden, Giel T. J.; Schaminée, Joop H. J.; Siepel, Henk; Kleijn, David

    2014-01-01

    Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species. PMID:25422416

  10. Visitation by wild and managed bees (Hymenoptera: Apoidea) to eastern U.S. native plants for use in conservation programs.

    PubMed

    Tuell, Julianna K; Fiedler, Anna K; Landis, Douglas; Isaacs, Rufus

    2008-06-01

    Addition of floral resources to agricultural field margins has been shown to increase abundance of beneficial insects in crop fields, but most plants recommended for this use are non-native annuals. Native perennial plants with different bloom periods can provide floral resources for bees throughout the growing season for use in pollinator conservation projects. To identify the most suitable plants for this use, we examined the relative attractiveness to wild and managed bees of 43 eastern U.S. native perennial plants, grown in a common garden setting. Floral characteristics were evaluated for their ability to predict bee abundance and taxa richness. Of the wild bees collected, the most common species (62%) was Bombus impatiens Cresson. Five other wild bee species were present between 3 and 6% of the total: Lasioglossum admirandum (Sandhouse), Hylaeus affinis (Smith), Agapostemon virescens (F.), Halictus ligatus Say, and Ceratina calcarata/dupla Robertson/Say. The remaining wild bee species were present at <2% of the total. Abundance of honey bees (Apis mellifera L.) was nearly identical to that of B. impatiens. All plant species were visited at least once by wild bees; 9 were highly attractive, and 20 were moderately attractive. Honey bees visited 24 of the 43 plant species at least once. Floral area was the only measured factor accounting for variation in abundance and richness of wild bees but did not explain variation in honey bee abundance. Results of this study can be used to guide selection of flowering plants to provide season-long forage for conservation of wild bees.

  11. Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)?

    PubMed

    Ramirez-Romero, R; Desneux, N; Decourtye, A; Chaffiol, A; Pham-Delègue, M H

    2008-06-01

    Genetically modified Bt crops are increasingly used worldwide but side effects and especially sublethal effects on beneficial insects remain poorly studied. Honey bees are beneficial insects for natural and cultivated ecosystems through pollination. The goal of the present study was to assess potential effects of two concentrations of Cry1Ab protein (3 and 5000 ppb) on young adult honey bees. Following a complementary bioassay, our experiments evaluated effects of the Cry1Ab on three major life traits of young adult honey bees: (a) survival of honey bees during sub-chronic exposure to Cry1Ab, (b) feeding behaviour, and (c) learning performance at the time that honey bees become foragers. The latter effect was tested using the proboscis extension reflex (PER) procedure. The same effects were also tested using a chemical pesticide, imidacloprid, as positive reference. The tested concentrations of Cry1Ab protein did not cause lethal effects on honey bees. However, honey bee feeding behaviour was affected when exposed to the highest concentration of Cry1Ab protein, with honey bees taking longer to imbibe the contaminated syrup. Moreover, honey bees exposed to 5000 ppb of Cry1Ab had disturbed learning performances. Honey bees continued to respond to a conditioned odour even in the absence of a food reward. Our results show that transgenic crops expressing Cry1Ab protein at 5000 ppb may affect food consumption or learning processes and thereby may impact honey bee foraging efficiency. The implications of these results are discussed in terms of risks of transgenic Bt crops for honey bees.

  12. Synergistic effects of non-Apis bees and honey bees for pollination services

    PubMed Central

    Brittain, Claire; Williams, Neal; Kremen, Claire; Klein, Alexandra-Maria

    2013-01-01

    In diverse pollinator communities, interspecific interactions may modify the behaviour and increase the pollination effectiveness of individual species. Because agricultural production reliant on pollination is growing, improving pollination effectiveness could increase crop yield without any increase in agricultural intensity or area. In California almond, a crop highly dependent on honey bee pollination, we explored the foraging behaviour and pollination effectiveness of honey bees in orchards with simple (honey bee only) and diverse (non-Apis bees present) bee communities. In orchards with non-Apis bees, the foraging behaviour of honey bees changed and the pollination effectiveness of a single honey bee visit was greater than in orchards where non-Apis bees were absent. This change translated to a greater proportion of fruit set in these orchards. Our field experiments show that increased pollinator diversity can synergistically increase pollination service, through species interactions that alter the behaviour and resulting functional quality of a dominant pollinator species. These results of functional synergy between species were supported by an additional controlled cage experiment with Osmia lignaria and Apis mellifera. Our findings highlight a largely unexplored facilitative component of the benefit of biodiversity to ecosystem services, and represent a way to improve pollinator-dependent crop yields in a sustainable manner. PMID:23303545

  13. Bee Venom Phospholipase A2: Yesterday's Enemy Becomes Today's Friend.

    PubMed

    Lee, Gihyun; Bae, Hyunsu

    2016-02-22

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson's disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes.

  14. Bee Venom Phospholipase A2: Yesterday’s Enemy Becomes Today’s Friend

    PubMed Central

    Lee, Gihyun; Bae, Hyunsu

    2016-01-01

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson’s disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes. PMID:26907347

  15. Predictability of bee community composition after floral removals differs by floral trait group.

    PubMed

    Urban-Mead, Katherine R

    2017-11-01

    Plant-bee visitor communities are complex networks. While studies show that deleting nodes alters network topology, predicting these changes in the field remains difficult. Here, a simple trait-based approach is tested for predicting bee community composition following disturbance. I selected six fields with mixed cover of flower species with shallow (open) and deep (tube) nectar access, and removed all flowers or flower heads of species of each trait in different plots paired with controls, then observed bee foraging and composition. I compared the bee community in each manipulated plot with bees on the same flower species in control plots. The bee morphospecies composition in manipulations with only tube flowers remaining was the same as that in the control plots, while the bee morphospecies on only open flowers were dissimilar from those in control plots. However, the proportion of short- and long-tongued bees on focal flowers did not differ between control and manipulated plots for either manipulation. So, bees within some functional groups are more strongly linked to their floral trait partners than others. And, it may be more fruitful to describe expected bee community compositions in terms of relative proportions of relevant ecological traits than species, particularly in species-diverse communities. © 2017 The Author(s).

  16. Biological and therapeutic properties of bee pollen: a review.

    PubMed

    Denisow, Bożena; Denisow-Pietrzyk, Marta

    2016-10-01

    Natural products, including bee products, are particularly appreciated by consumers and are used for therapeutic purposes as alternative drugs. However, it is not known whether treatments with bee products are safe and how to minimise the health risks of such products. Among others, bee pollen is a natural honeybee product promoted as a valuable source of nourishing substances and energy. The health-enhancing value of bee pollen is expected due to the wide range of secondary plant metabolites (tocopherol, niacin, thiamine, biotin and folic acid, polyphenols, carotenoid pigments, phytosterols), besides enzymes and co-enzymes, contained in bee pollen. The promising reports on the antioxidant, anti-inflammatory, anticariogenic antibacterial, antifungicidal, hepatoprotective, anti-atherosclerotic, immune enhancing potential require long-term and large cohort clinical studies. The main difficulty in the application of bee pollen in modern phytomedicine is related to the wide species-specific variation in its composition. Therefore, the variations may differently contribute to bee-pollen properties and biological activity and thus in therapeutic effects. In principle, we can unequivocally recommend bee pollen as a valuable dietary supplement. Although the bee-pollen components have potential bioactive and therapeutic properties, extensive research is required before bee pollen can be used in therapy. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Preparation and characterization of bee venom-loaded PLGA particles for sustained release.

    PubMed

    Park, Min-Ho; Jun, Hye-Suk; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Park, Jeong-Sook; Cho, Cheong-Weon

    2016-12-14

    Bee venom-loaded poly(lactic-co-glycolic acid) (PLGA) particles were prepared by double emulsion-solvent evaporation, and characterized for a sustained-release system. Factors such as the type of organic solvent, the amount of bee venom and PLGA, the type of PLGA, the type of polyvinyl alcohol, and the emulsification method were considered. Physicochemical properties, including the encapsulation efficiency, drug loading, particle size, zeta-potential and surface morphology were examined by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The size of the bee venom-loaded PLGA particles was 500 nm (measured using sonication). Zeta-potentials of the bee venom-loaded PLGA particles were negative owing to the PLGA. FT-IR results demonstrated that the bee venom was completely encapsulated in the PLGA particles, indicated by the disappearance of the amine and amide peaks. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the bee venom in the bee venom-loaded PLGA particles was intact. In vitro release of the bee venom from the bee venom-loaded PLGA particles showed a sustained-release profile over 1 month. Bee venom-loaded PLGA particles can help improve patients' quality of life by reducing the number of injections required.

  18. The sound and the fury--bees hiss when expecting danger.

    PubMed

    Wehmann, Henja-Niniane; Gustav, David; Kirkerud, Nicholas H; Galizia, C Giovanni

    2015-01-01

    Honey bees are important model systems for the investigation of learning and memory and for a better understanding of the neuronal basics of brain function. Honey bees also possess a rich repertoire of tones and sounds, from queen piping and quacking to worker hissing and buzzing. In this study, we tested whether the worker bees' sounds can be used as a measure of learning. We therefore conditioned honey bees aversively to odours in a walking arena and recorded both their sound production and their movement. Bees were presented with two odours, one of which was paired with an electric shock. Initially, the bees did not produce any sound upon odour presentation, but responded to the electric shock with a strong hissing response. After learning, many bees hissed at the presentation of the learned odour, while fewer bees hissed upon presentation of another odour. We also found that hissing and movement away from the conditioned odour are independent behaviours that can co-occur but do not necessarily do so. Our data suggest that hissing can be used as a readout for learning after olfactory conditioning, but that there are large individual differences between bees concerning their hissing reaction. The basis for this variability and the possible ecological relevance of the bees' hissing remain to be investigated.

  19. Negative effects of pesticides on wild bee communities can be buffered by landscape context

    PubMed Central

    Park, Mia G.; Blitzer, E. J.; Gibbs, Jason; Losey, John E.; Danforth, Bryan N.

    2015-01-01

    Wild bee communities provide underappreciated but critical agricultural pollination services. Given predicted global shortages in pollination services, managing agroecosystems to support thriving wild bee communities is, therefore, central to ensuring sustainable food production. Benefits of natural (including semi-natural) habitat for wild bee abundance and diversity on farms are well documented. By contrast, few studies have examined toxicity of pesticides on wild bees, let alone effects of farm-level pesticide exposure on entire bee communities. Whether beneficial natural areas could mediate effects of harmful pesticides on wild bees is also unknown. Here, we assess the effect of conventional pesticide use on the wild bee community visiting apple (Malus domestica) within a gradient of percentage natural area in the landscape. Wild bee community abundance and species richness decreased linearly with increasing pesticide use in orchards one year after application; however, pesticide effects on wild bees were buffered by increasing proportion of natural habitat in the surrounding landscape. A significant contribution of fungicides to observed pesticide effects suggests deleterious properties of a class of pesticides that was, until recently, considered benign to bees. Our results demonstrate extended benefits of natural areas for wild pollinators and highlight the importance of considering the landscape context when weighing up the costs of pest management on crop pollination services. PMID:26041355

  20. Microbial communities of three sympatric Australian stingless bee species.

    PubMed

    Leonhardt, Sara D; Kaltenpoth, Martin

    2014-01-01

    Bacterial symbionts of insects have received increasing attention due to their prominent role in nutrient acquisition and defense. In social bees, symbiotic bacteria can maintain colony homeostasis and fitness, and the loss or alteration of the bacterial community may be associated with the ongoing bee decline observed worldwide. However, analyses of microbiota associated with bees have been largely confined to the social honeybees (Apis mellifera) and bumblebees (Bombus spec.), revealing--among other taxa--host-specific lactic acid bacteria (LAB, genus Lactobacillus) that are not found in solitary bees. Here, we characterized the microbiota of three Australian stingless bee species (Apidae: Meliponini) of two phylogenetically distant genera (Tetragonula and Austroplebeia). Besides common plant bacteria, we find LAB in all three species, showing that LAB are shared by honeybees, bumblebees and stingless bees across geographical regions. However, while LAB of the honeybee-associated Firm4-5 clusters were present in Tetragonula, they were lacking in Austroplebeia. Instead, we found a novel clade of likely host-specific LAB in all three Australian stingless bee species which forms a sister clade to a large cluster of Halictidae-associated lactobacilli. Our findings indicate both a phylogenetic and geographical signal of host-specific LAB in stingless bees and highlight stingless bees as an interesting group to investigate the evolutionary history of the bee-LAB association.

  1. 7 CFR 322.14 - Documentation; applying for a permit to import a restricted organism.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS..., subspecies or strain, and author (if known). (5) Type of organism. Select or write “Bees and/or bee germ...) of approval. Is your facility approved for the species of bees or bee germ plasm for which you are...

  2. 7 CFR 322.14 - Documentation; applying for a permit to import a restricted organism.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS..., subspecies or strain, and author (if known). (5) Type of organism. Select or write “Bees and/or bee germ...) of approval. Is your facility approved for the species of bees or bee germ plasm for which you are...

  3. 7 CFR 322.14 - Documentation; applying for a permit to import a restricted organism.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS..., subspecies or strain, and author (if known). (5) Type of organism. Select or write “Bees and/or bee germ...) of approval. Is your facility approved for the species of bees or bee germ plasm for which you are...

  4. 7 CFR 322.14 - Documentation; applying for a permit to import a restricted organism.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS..., subspecies or strain, and author (if known). (5) Type of organism. Select or write “Bees and/or bee germ...) of approval. Is your facility approved for the species of bees or bee germ plasm for which you are...

  5. 7 CFR 322.14 - Documentation; applying for a permit to import a restricted organism.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS..., subspecies or strain, and author (if known). (5) Type of organism. Select or write “Bees and/or bee germ...) of approval. Is your facility approved for the species of bees or bee germ plasm for which you are...

  6. Toxicology: Bee P450s Take the Sting out of Cyanoamidine Neonicotinoids.

    PubMed

    Feyereisen, René

    2018-05-07

    The neonicotinoid insecticides have raised concerns regarding the health of bee pollinators. New research has identified a P450 enzyme that protects honey bees and bumble bees from the toxicity of two neonicotinoids, thiacloprid and acetamiprid. This P450 enzyme provides a margin of safety to bees. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Parasite infection accelerates age polyethism in young honey bees

    PubMed Central

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C.

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  8. Native bees and plant pollination

    USGS Publications Warehouse

    Ginsberg, H.S.

    2004-01-01

    Bees are important pollinators, but evidence suggests that numbers of some species are declining. Decreases have been documented in the honey bee, Apis mellifera (which was introduced to North America), but there are no monitoring programs for the vast majority of native species, so we cannot be sure about the extent of this problem. Recent efforts to develop standardized protocols for bee sampling will help us collect the data needed to assess trends in bee populations. Unfortunately, diversity of bee life cycles and phenologies, and the large number of rare species, make it difficult to assess trends in bee faunas. Changes in bee populations can affect plant reproduction, which can influence plant population density and cover, thus potentially modifying horizontal and vertical structure of a community, microclimate near the ground, patterns of nitrogen deposition, etc. These potential effects of changes in pollination patterns have not been assessed in natural communities. Effects of management actions on bees and other pollinators should be considered in conservation planning.

  9. Pulsed mass recruitment by a stingless bee, Trigona hyalinata.

    PubMed

    Nieh, James C; Contrera, Felipe A L; Nogueira-Neto, Paulo

    2003-10-22

    Research on bee communication has focused on the ability of the highly social bees, stingless bees (Hymenoptera, Apidae, Meliponini) and honeybees (Apidae, Apini), to communicate food location to nest-mates. Honeybees can communicate food location through the famous waggle dance. Stingless bees are closely related to honeybees and communicate food location through a variety of different mechanisms, many of which are poorly understood. We show that a stingless bee, Trigona hyalinata, uses a pulsed mass-recruitment system that is highly focused in time and space. Foragers produced an ephemeral, polarized, odour trail consisting of mandibular gland secretions. Surprisingly, the odour trail extended only a short distance away from the food source, instead of providing a complete trail between the nest and the food source (as has been described for other stingless bees). This abbreviated trail may represent an intermediate strategy between full-trail marking, found in some stingless bees, and odour marking of the food alone, found in stingless bees and honeybees.

  10. Parasite infection accelerates age polyethism in young honey bees.

    PubMed

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-02-25

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens.

  11. Pulsed mass recruitment by a stingless bee, Trigona hyalinata.

    PubMed Central

    Nieh, James C; Contrera, Felipe A L; Nogueira-Neto, Paulo

    2003-01-01

    Research on bee communication has focused on the ability of the highly social bees, stingless bees (Hymenoptera, Apidae, Meliponini) and honeybees (Apidae, Apini), to communicate food location to nest-mates. Honeybees can communicate food location through the famous waggle dance. Stingless bees are closely related to honeybees and communicate food location through a variety of different mechanisms, many of which are poorly understood. We show that a stingless bee, Trigona hyalinata, uses a pulsed mass-recruitment system that is highly focused in time and space. Foragers produced an ephemeral, polarized, odour trail consisting of mandibular gland secretions. Surprisingly, the odour trail extended only a short distance away from the food source, instead of providing a complete trail between the nest and the food source (as has been described for other stingless bees). This abbreviated trail may represent an intermediate strategy between full-trail marking, found in some stingless bees, and odour marking of the food alone, found in stingless bees and honeybees. PMID:14561284

  12. Do linden trees kill bees? Reviewing the causes of bee deaths on silver linden (Tilia tomentosa).

    PubMed

    Koch, Hauke; Stevenson, Philip C

    2017-09-01

    For decades, linden trees (basswoods or lime trees), and particularly silver linden ( Tilia tomentosa ), have been linked to mass bee deaths. This phenomenon is often attributed to the purported occurrence of the carbohydrate mannose, which is toxic to bees, in Tilia nectar. In this review, however, we conclude that from existing literature there is no experimental evidence for toxicity to bees in linden nectar. Bee deaths on Tilia probably result from starvation, owing to insufficient nectar resources late in the tree's flowering period. We recommend ensuring sufficient alternative food sources in cities during late summer to reduce bee deaths on silver linden. Silver linden metabolites such as floral volatiles, pollen chemistry and nectar secondary compounds remain underexplored, particularly their toxic or behavioural effects on bees. Some evidence for the presence of caffeine in linden nectar may mean that linden trees can chemically deceive foraging bees to make sub-optimal foraging decisions, in some cases leading to their starvation. © 2017 The Author(s).

  13. Tropilaelaps mite: an emerging threat to European honey bee.

    PubMed

    Chantawannakul, Panuwan; Ramsey, Samuel; vanEngelsdorp, Dennis; Khongphinitbunjong, Kitiphong; Phokasem, Patcharin

    2018-04-01

    The risk of transmission of honey bee parasites has increased substantially as a result of trade globalization and technical developments in transportation efficacy. Great concern over honey bee decline has accelerated research on newly emerging bee pests and parasites. These organisms are likely to emerge from Asia as it is the only region where all 10 honey bee species co-occur. Varroa destructor, an ectoparasitic mite, is a classic example of a pest that has shifted from A. cerana, a cavity nesting Asian honey bee to A. mellifera, the European honey bee. In this review, we will describe the potential risks to global apiculture of the global expansion of Tropilaelaps mercedesae, originally a parasite of the open-air nesting Asian giant honey bee, compared to the impact of V. destructor. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Bees brought to their knees: microbes affecting honey bee health.

    PubMed

    Evans, Jay D; Schwarz, Ryan S

    2011-12-01

    The biology and health of the honey bee Apis mellifera has been of interest to human societies for centuries. Research on honey bee health is surging, in part due to new tools and the arrival of colony-collapse disorder (CCD), an unsolved decline in bees from parts of the United States, Europe, and Asia. Although a clear understanding of what causes CCD has yet to emerge, these efforts have led to new microbial discoveries and avenues to improve our understanding of bees and the challenges they face. Here we review the known honey bee microbes and highlight areas of both active and lagging research. Detailed studies of honey bee-pathogen dynamics will help efforts to keep this important pollinator healthy and will give general insights into both beneficial and harmful microbes confronting insect colonies. Copyright © 2011. Published by Elsevier Ltd.

  15. The power and promise of applying genomics to honey bee health.

    PubMed

    Grozinger, Christina M; Robinson, Gene E

    2015-08-01

    New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species.

  16. Nosema ceranae parasitism impacts olfactory learning and memory and neurochemistry in honey bees (Apis mellifera).

    PubMed

    Gage, Stephanie L; Kramer, Catherine; Calle, Samantha; Carroll, Mark; Heien, Michael; DeGrandi-Hoffman, Gloria

    2018-02-19

    Nosema sp. is an internal parasite of the honey bee, Apis mellifera , and one of the leading contributors to colony losses worldwide. This parasite is found in the honey bee midgut and has profound consequences for the host's physiology. Nosema sp. impairs foraging performance in honey bees, yet, it is unclear whether this parasite affects the bee's neurobiology. In this study, we examined whether Nosema sp. affects odor learning and memory and whether the brains of parasitized bees show differences in amino acids and biogenic amines. We took newly emerged bees and fed them with Nosema ceranae At approximate nurse and forager ages, we employed an odor-associative conditioning assay using the proboscis extension reflex and two bioanalytical techniques to measure changes in brain chemistry. We found that nurse-aged bees infected with N. ceranae significantly outperformed controls in odor learning and memory, suggestive of precocious foraging, but by forager age, infected bees showed deficits in learning and memory. We also detected significant differences in amino acid concentrations, some of which were age specific, as well as altered serotonin, octopamine, dopamine and l-dopa concentrations in the brains of parasitized bees. These findings suggest that N. ceranae infection affects honey bee neurobiology and may compromise behavioral tasks. These results yield new insight into the host-parasite dynamic of honey bees and N. ceranae , as well as the neurochemistry of odor learning and memory under normal and parasitic conditions. © 2018. Published by The Company of Biologists Ltd.

  17. Disentangling urban habitat and matrix effects on wild bee species.

    PubMed

    Fischer, Leonie K; Eichfeld, Julia; Kowarik, Ingo; Buchholz, Sascha

    2016-01-01

    In face of a dramatic decline of wild bee species in many rural landscapes, potential conservation functions of urban areas gain importance. Yet effects of urbanization on pollinators, and in particular on wild bees, remain ambiguous and not comprehensively understood. This is especially true for amenity grassland and extensively managed wastelands within large-scale residential housing areas. Using Berlin as a study region, we aimed to investigate (a) if these greenspaces are accepted by wild bee assemblages as foraging habitats; (b) how assemblage structure of bees and individual bee species are affected by different habitat (e.g., management, flower density) and urban matrix variables (e.g., isolation, urbanization); and (c) to what extent grassland restoration can promote bees in urban environments. In summer 2012, we collected 62 bee species belonging to more than 20% of the taxa known for Berlin. Urbanization significantly affected species composition of bees; 18 species were affiliated to different levels of urbanization. Most bee species were not affected by any of the environmental variables tested, and urbanization had a negative effect only for one bee species. Further, we determined that restoration of diverse grasslands positively affected bee species richnesss in urban environments. We conclude that differently structured and managed greenspaces in large-scale housing areas can provide additional foraging habitats and refuges for pollinators. This supports approaches towards a biodiversity friendly management within urban regions and may be of particular importance given that anthropogenic pressure is increasing in many rural landscapes.

  18. Video Tracking Protocol to Screen Deterrent Chemistries for Honey Bees.

    PubMed

    Larson, Nicholas R; Anderson, Troy D

    2017-06-12

    The European honey bee, Apis mellifera L., is an economically and agriculturally important pollinator that generates billions of dollars annually. Honey bee colony numbers have been declining in the United States and many European countries since 1947. A number of factors play a role in this decline, including the unintentional exposure of honey bees to pesticides. The development of new methods and regulations are warranted to reduce pesticide exposures to these pollinators. One approach is the use of repellent chemistries that deter honey bees from a recently pesticide-treated crop. Here, we describe a protocol to discern the deterrence of honey bees exposed to select repellent chemistries. Honey bee foragers are collected and starved overnight in an incubator 15 h prior to testing. Individual honey bees are placed into Petri dishes that have either a sugar-agarose cube (control treatment) or sugar-agarose-compound cube (repellent treatment) placed into the middle of the dish. The Petri dish serves as the arena that is placed under a camera in a light box to record the honey bee locomotor activities using video tracking software. A total of 8 control and 8 repellent treatments were analyzed for a 10 min period with each treatment was duplicated with new honey bees. Here, we demonstrate that honey bees are deterred from the sugar-agarose cubes with a compound treatment whereas honey bees are attracted to the sugar-agarose cubes without an added compound.

  19. Longitudinal Effects of Supplemental Forage on the Honey Bee (Apis mellifera) Microbiota and Inter- and Intra-Colony Variability.

    PubMed

    Rothman, Jason A; Carroll, Mark J; Meikle, William G; Anderson, Kirk E; McFrederick, Quinn S

    2018-02-03

    Honey bees (Apis mellifera) provide vital pollination services for a variety of agricultural crops around the world and are known to host a consistent core bacterial microbiome. This symbiotic microbial community is essential to many facets of bee health, including likely nutrient acquisition, disease prevention and optimal physiological function. Being that the bee microbiome is likely involved in the digestion of nutrients, we either provided or excluded honey bee colonies from supplemental floral forage before being used for almond pollination. We then used 16S rRNA gene sequencing to examine the effects of forage treatment on the bees' microbial gut communities over four months. In agreement with previous studies, we found that the honey bee gut microbiota is quite stable over time. Similarly, we compared the gut communities of bees from separate colonies and sisters sampled from within the same hive over four months. Surprisingly, we found that the gut microbial communities of individual sisters from the same colony can exhibit as much variation as bees from different colonies. Supplemental floral forage had a subtle effect on the composition of the microbiome during the month of March only, with strains of Gilliamella apicola, Lactobacillus, and Bartonella being less proportionally abundant in bees exposed to forage in the winter. Collectively, our findings show that there is unexpected longitudinal variation within the gut microbial communities of sister honey bees and that supplemental floral forage can subtly alter the microbiome of managed honey bees.

  20. Disentangling urban habitat and matrix effects on wild bee species

    PubMed Central

    2016-01-01

    In face of a dramatic decline of wild bee species in many rural landscapes, potential conservation functions of urban areas gain importance. Yet effects of urbanization on pollinators, and in particular on wild bees, remain ambiguous and not comprehensively understood. This is especially true for amenity grassland and extensively managed wastelands within large-scale residential housing areas. Using Berlin as a study region, we aimed to investigate (a) if these greenspaces are accepted by wild bee assemblages as foraging habitats; (b) how assemblage structure of bees and individual bee species are affected by different habitat (e.g., management, flower density) and urban matrix variables (e.g., isolation, urbanization); and (c) to what extent grassland restoration can promote bees in urban environments. In summer 2012, we collected 62 bee species belonging to more than 20% of the taxa known for Berlin. Urbanization significantly affected species composition of bees; 18 species were affiliated to different levels of urbanization. Most bee species were not affected by any of the environmental variables tested, and urbanization had a negative effect only for one bee species. Further, we determined that restoration of diverse grasslands positively affected bee species richnesss in urban environments. We conclude that differently structured and managed greenspaces in large-scale housing areas can provide additional foraging habitats and refuges for pollinators. This supports approaches towards a biodiversity friendly management within urban regions and may be of particular importance given that anthropogenic pressure is increasing in many rural landscapes. PMID:27917318

  1. Fruit Set and Single Visit Stigma Pollen Deposition by Managed Bumble Bees and Wild Bees in Citrullus lanatus (Cucurbitales: Cucurbitaceae).

    PubMed

    Campbell, Joshua W; Daniels, Jaret C; Ellis, James D

    2018-04-02

    Pollinators provide essential services for watermelon, Citrullus lanatus (Thunb.; Cucurbitales: Cucurbitaceae). Managed bumble bees, Bombus impatiens (Cresson; Hymenoptera: Apidae), have been shown to be a useful watermelon pollinator in some areas. However, the exact contribution bumble bees make to watermelon pollination and how their contribution compares to that of other bees is unclear. We used large cages (5.4 × 2.5 × 2.4 m) to confine bumble bee hives to watermelon plants and compared fruit set in those cages to cages containing watermelons but no pollinators, and to open areas of field next to cages (allows all pollinators). We also collected data on single visit pollen deposition onto watermelon stigmas by managed bumble bees, honey bees, and wild bees. Overall, more fruit formed within the open cages than in cages of the other two treatment groups. B. impatiens and Melissodes spp. deposited the most pollen onto watermelon stigmas per visit, but all bee species observed visiting watermelon flowers were capable of depositing ample pollen to watermelon stigmas. Although B. impatiens did deposit large quantities of pollen to stigmas, they were not common within the field (i.e., outside the cages) as they were readily drawn to flowering plants outside of the watermelon field. Overall, bumble bees can successfully pollinate watermelon, but may be useful in greenhouses or high tunnels where watermelon flowers have no competition from other flowering plants that could draw bumble bees away from watermelon.

  2. A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations

    PubMed Central

    Shi, Mang; Buchmann, Gabriele; Blacquière, Tjeerd; Beekman, Madeleine; Ashe, Alyson

    2017-01-01

    ABSTRACT Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees (Apis mellifera) has changed dramatically since the emergence of the parasitic mite Varroa destructor, which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa. This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales. Collapsing Varroa-infected colonies are often overwhelmed with high levels of picornaviruses. To examine the underlying viral diversity in honey bees, we employed viral metatranscriptomics analyses on three geographically diverse Varroa-resistant populations from Europe, Africa, and the Pacific. We describe seven novel viruses from a range of diverse viral families, including two viruses that are present in all three locations. In honey bees, small RNA sequences indicate that these viruses are processed by Dicer and the RNA interference pathway, whereas Varroa mites produce strikingly novel small RNA patterns. This work increases the number and diversity of known honey bee viruses and will ultimately contribute to improved disease management in our most important agricultural pollinator. PMID:28515299

  3. A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations.

    PubMed

    Remnant, Emily J; Shi, Mang; Buchmann, Gabriele; Blacquière, Tjeerd; Holmes, Edward C; Beekman, Madeleine; Ashe, Alyson

    2017-08-15

    Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees ( Apis mellifera ) has changed dramatically since the emergence of the parasitic mite Varroa destructor , which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales Collapsing Varroa -infected colonies are often overwhelmed with high levels of picornaviruses. To examine the underlying viral diversity in honey bees, we employed viral metatranscriptomics analyses on three geographically diverse Varroa- resistant populations from Europe, Africa, and the Pacific. We describe seven novel viruses from a range of diverse viral families, including two viruses that are present in all three locations. In honey bees, small RNA sequences indicate that these viruses are processed by Dicer and the RNA interference pathway, whereas Varroa mites produce strikingly novel small RNA patterns. This work increases the number and diversity of known honey bee viruses and will ultimately contribute to improved disease management in our most important agricultural pollinator. Copyright © 2017 Remnant et al.

  4. Classical conditioning of proboscis extension in harnessed Africanized honey bee queens (Apis mellifera L.).

    PubMed

    Aquino, Italo S; Abramson, Charles I; Soares, Ademilson E E; Fernandes, Andrea Cardoso; Benbassat, Danny

    2004-06-01

    Experiments are reported on learning in virgin Africanized honey bee queens (Apis mellifera L.). Queens restrained in a "Pavlovian harness" received a pairing of hexanal odor with a 1.8-M feeding of sucrose solution. Compared to explicitly unpaired controls, acquisition was rapid in reaching about 90%. Acquisition was also rapid in queens receiving an unconditioned stimulus of "bee candy" or an unconditioned stimulus administered by worker bees. During extinction the conditioned response declines. The steepest decline was observed in queens receiving an unconditioned stimulus of bee candy. These findings extend previous work on learning of Afrianized honey bee workers to a population of queen bees.

  5. Pesticide use within a pollinator-dependent crop has negative effects on the abundance and species richness of sweat bees, Lasioglossum spp., and on bumble bee colony growth.

    USDA-ARS?s Scientific Manuscript database

    Pesticides are implicated in current bee declines. Wild bees that nest or forage within agroecosystems may be exposed to numerous pesticides applied throughout their life cycles, with potential additive or synergistic effects. In pollinator-dependent crops, pesticides may reduce bee populations, cre...

  6. Spore Loads May Not be Used Alone as a Direct Indicator of the Severity of Nosema ceranae Infection in Honey Bees Apis mellifera (Hymenoptera:Apidae).

    PubMed

    Zheng, Huo-Qing; Lin, Zhe-Guang; Huang, Shao-Kang; Sohr, Alex; Wu, Lyman; Chen, Yan Ping

    2014-12-01

    Nosema ceranae Fries et al., 1996, a microsporidian parasite recently transferred from Asian honey bees Apis cerana F., 1793, to European honey bees Apis mellifera L., 1758, has been suspected as one of the major culprits of the worldwide honey bee colony losses. Spore load is a commonly used criterion to describe the intensity of Nosema infection. In this study, by providing Nosema-infected bees with sterilized pollen, we confirmed that pollen feeding increased the spore loads of honey bees by several times either in the presence or absence of a queen. By changing the amount of pollen consumed by bees in cages, we showed that spore loads increased with an increase in pollen consumption. Nosema infections decrease honey bee longevity and transcription of vitellogenin, either with or without pollen feeding. However, the reduction of pollen consumption had a greater impact on honey bee longevity and vitellogenin level than the increase of spore counts caused by pollen feeding. These results indicate that spore loads may not be used alone as a direct indicator of the severity of N. ceranae infection in honey bees. © 2014 Entomological Society of America.

  7. Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies.

    PubMed

    Yoder, Jay A; Jajack, Andrew J; Rosselot, Andrew E; Smith, Terrance J; Yerke, Mary Clare; Sammataro, Diana

    2013-01-01

    Fermentation by fungi converts stored pollen into bee bread that is fed to honey bee larvae, Apis mellifera, so the diversity of fungi in bee bread may be related to its food value. To explore the relationship between fungicide exposure and bee bread fungi, samples of bee bread collected from bee colonies pollinating orchards from 7 locations over 2 years were analyzed for fungicide residues and fungus composition. There were detectable levels of fungicides from regions that were sprayed before bloom. An organic orchard had the highest quantity and variety of fungicides, likely due to the presence of treated orchards within bees' flight range. Aspergillus, Penicillium, Rhizopus, and Cladosporium (beneficial fungi) were the primary fungal isolates found, regardless of habitat differences. There was some variation in fungal components amongst colonies, even within the same apiary. The variable components were Absidia, Alternaria, Aureobasidium, Bipolaris, Fusarium, Geotrichum, Mucor, Nigrospora, Paecilomyces, Scopulariopsis, and Trichoderma. The number of fungal isolates was reduced as an effect of fungicide contamination. Aspergillus abundance was particularly affected by increased fungicide levels, as indicated by Simpson's diversity index. Bee bread showing fungicide contamination originated from colonies, many of which showed chalkbrood symptoms.

  8. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome

    PubMed Central

    Bromenshenk, Jerry J.; Henderson, Colin B.; Seccomb, Robert A.; Welch, Phillip M.; Debnam, Scott E.; Firth, David R.

    2015-01-01

    This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%–80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management. PMID:26529030

  9. Evaluation of cage designs and feeding regimes for honey bee (Hymenoptera: Apidae) laboratory experiments.

    PubMed

    Huang, Shao Kang; Csaki, Tamas; Doublet, Vincent; Dussaubat, Claudia; Evans, Jay D; Gajda, Anna M; Gregorc, Alex; Hamilton, Michele C; Kamler, Martin; Lecocq, Antoine; Muz, Mustafa N; Neumann, Peter; Ozkirim, Asli; Schiesser, Aygün; Sohr, Alex R; Tanner, Gina; Tozkar, Cansu Ozge; Williams, Geoffrey R; Wu, Lyman; Zheng, Huoqing; Chen, Yan Ping

    2014-02-01

    The aim of this study was to improve cage systems for maintaining adult honey bee (Apis mellifera L.) workers under in vitro laboratory conditions. To achieve this goal, we experimentally evaluated the impact of different cages, developed by scientists of the international research network COLOSS (Prevention of honey bee COlony LOSSes), on the physiology and survival of honey bees. We identified three cages that promoted good survival of honey bees. The bees from cages that exhibited greater survival had relatively lower titers of deformed wing virus, suggesting that deformed wing virus is a significant marker reflecting stress level and health status of the host. We also determined that a leak- and drip-proof feeder was an integral part of a cage system and a feeder modified from a 20-ml plastic syringe displayed the best result in providing steady food supply to bees. Finally, we also demonstrated that the addition of protein to the bees' diet could significantly increase the level ofvitellogenin gene expression and improve bees' survival. This international collaborative study represents a critical step toward improvement of cage designs and feeding regimes for honey bee laboratory experiments.

  10. Honey bee hemocyte profiling by flow cytometry.

    PubMed

    Marringa, William J; Krueger, Michael J; Burritt, Nancy L; Burritt, James B

    2014-01-01

    Multiple stress factors in honey bees are causing loss of bee colonies worldwide. Several infectious agents of bees are believed to contribute to this problem. The mechanisms of honey bee immunity are not completely understood, in part due to limited information about the types and abundances of hemocytes that help bees resist disease. Our study utilized flow cytometry and microscopy to examine populations of hemolymph particulates in honey bees. We found bee hemolymph includes permeabilized cells, plasmatocytes, and acellular objects that resemble microparticles, listed in order of increasing abundance. The permeabilized cells and plasmatocytes showed unexpected differences with respect to properties of the plasma membrane and labeling with annexin V. Both permeabilized cells and plasmatocytes failed to show measurable mitochondrial membrane potential by flow cytometry using the JC-1 probe. Our results suggest hemolymph particulate populations are dynamic, revealing significant differences when comparing individual hive members, and when comparing colonies exposed to diverse conditions. Shifts in hemocyte populations in bees likely represent changing conditions or metabolic differences of colony members. A better understanding of hemocyte profiles may provide insight into physiological responses of honey bees to stress factors, some of which may be related to colony failure.

  11. Honey Bee Hemocyte Profiling by Flow Cytometry

    PubMed Central

    Marringa, William J.; Krueger, Michael J.; Burritt, Nancy L.; Burritt, James B.

    2014-01-01

    Multiple stress factors in honey bees are causing loss of bee colonies worldwide. Several infectious agents of bees are believed to contribute to this problem. The mechanisms of honey bee immunity are not completely understood, in part due to limited information about the types and abundances of hemocytes that help bees resist disease. Our study utilized flow cytometry and microscopy to examine populations of hemolymph particulates in honey bees. We found bee hemolymph includes permeabilized cells, plasmatocytes, and acellular objects that resemble microparticles, listed in order of increasing abundance. The permeabilized cells and plasmatocytes showed unexpected differences with respect to properties of the plasma membrane and labeling with annexin V. Both permeabilized cells and plasmatocytes failed to show measurable mitochondrial membrane potential by flow cytometry using the JC-1 probe. Our results suggest hemolymph particulate populations are dynamic, revealing significant differences when comparing individual hive members, and when comparing colonies exposed to diverse conditions. Shifts in hemocyte populations in bees likely represent changing conditions or metabolic differences of colony members. A better understanding of hemocyte profiles may provide insight into physiological responses of honey bees to stress factors, some of which may be related to colony failure. PMID:25285798

  12. A neonicotinoid impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults

    PubMed Central

    Tan, Ken; Chen, Weiwen; Dong, Shihao; Liu, Xiwen; Wang, Yuchong; Nieh, James C.

    2015-01-01

    Xenobiotics such as the neonicotinoid pesticide, imidacloprid, are used globally, but their effects on native bee species are poorly understood. We studied the effects of sublethal doses of imidacloprid on olfactory learning in the native honey bee species, Apis cerana, an important pollinator of agricultural and native plants throughout Asia. We provide the first evidence that imidacloprid can impair learning in A. cerana workers exposed as adults or as larvae. Adults that ingested a single imidacloprid dose as low as 0.1 ng/bee had significantly reduced olfactory learning acquisition, which was 1.6-fold higher in control bees. Longer-term learning (1-17 h after the last learning trial) was also impaired. Bees exposed as larvae to a total dose of 0.24 ng/bee did not have reduced survival to adulthood. However, these larval-treated bees had significantly impaired olfactory learning when tested as adults: control bees exhibited up to 4.8-fold better short-term learning acquisition, though longer-term learning was not affected. Thus, sublethal cognitive deficits elicited by neonicotinoids on a broad range of native bee species deserve further study. PMID:26086769

  13. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome.

    PubMed

    Bromenshenk, Jerry J; Henderson, Colin B; Seccomb, Robert A; Welch, Phillip M; Debnam, Scott E; Firth, David R

    2015-10-30

    This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%-80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management.

  14. Honey bees (Apis mellifera) as explosives detectors: exploring proboscis extension reflex conditioned response to trinitrotolulene (TNT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-mccabe, Kirsten J; Wingo, Robert M; Haarmann, Timothy K

    We examined honey bee's associative learning response to conditioning with trinitrotolulene (TNT) vapor concentrations generated at three temperatures and their ability to be reconditioned after a 24 h period. We used classical conditioning of the proboscis extension (PER) in honey bees using TNT vapors as the conditioned stimulus and sucrose as the unconditioned stimulus. We conducted fifteen experimental trials with an explosives vapor generator set at 43 C, 25 C and 5 C, producing three concentrations of explosives (1070 ppt, 57 ppt, and 11 ppt). Our objective was to test the honey bee's ability to exhibit a conditioned response tomore » TNT vapors at all three concentrations by comparing the mean percentage of honey bees successfully exhibiting a conditioned response within each temperature group. Furthermore, we conducted eight experimental trials to test the honey bee's ability to retain their ability to exhibit a conditioned response to TNT after 24h period by comparing the mean percentage of honey bees with a conditioned response TNT on the first day compared to the percentage of honey bees with a conditioned response to TNT on the second day. Results indicate that there was no significant difference between the mean percentage of honey bees with a conditioned response to TNT vapors between three temperature groups. There was a significant difference between the percentage of honey bees exhibiting conditioned response on the first day of training compared to the percentage of honey bees exhibiting conditioned response 24 h after training. Our experimental results indicate that honey bees can be trained to exhibit a conditioned response to a range of TNT concentrations via PER However, it appears that the honey bee's ability to retain the conditioned response to TNT vapors after 24h significantly decreases.« less

  15. Flight of the bumble bee: Buzzes predict pollination services.

    PubMed

    Miller-Struttmann, Nicole E; Heise, David; Schul, Johannes; Geib, Jennifer C; Galen, Candace

    2017-01-01

    Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30-52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to bee population declines.

  16. Floral traits influencing plant attractiveness to three bee species: Consequences for plant reproductive success.

    PubMed

    Bauer, Austin A; Clayton, Murray K; Brunet, Johanne

    2017-05-01

    The ability to attract pollinators is crucial to plants that rely on insects for pollination. We contrasted the roles of floral display size and flower color in attracting three bee species and determined the relationships between plant attractiveness (number of pollinator visits) and seed set for each bee species. We recorded pollinator visits to plants, measured plant traits, and quantified plant reproductive success. A zero-inflated Poisson regression model indicated plant traits associated with pollinator attraction. It identified traits that increased the number of bee visits and traits that increased the probability of a plant not receiving any visits. Different components of floral display size were examined and two models of flower color contrasted. Relationships between plant attractiveness and seed set were determined using regression analyses. Plants with more racemes received more bee visits from all three bee species. Plants with few racemes were more likely not to receive any bee visits. The role of flower color varied with bee species and was influenced by the choice of the flower color model. Increasing bee visits increased seed set for all three bee species, with the steepest slope for leafcutting bees, followed by bumble bees, and finally honey bees. Floral display size influenced pollinator attraction more consistently than flower color. The same plant traits affected the probability of not being visited and the number of pollinator visits received. The impact of plant attractiveness on female reproductive success varied, together with pollinator effectiveness, by pollinator species. © 2017 Bauer et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons public domain license (CC0 1.0).

  17. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim.

    PubMed

    Ravoet, Jorgen; Schwarz, Ryan S; Descamps, Tine; Yañez, Orlando; Tozkar, Cansu Ozge; Martin-Hernandez, Raquel; Bartolomé, Carolina; De Smet, Lina; Higes, Mariano; Wenseleers, Tom; Schmid-Hempel, Regula; Neumann, Peter; Kadowaki, Tatsuhiko; Evans, Jay D; de Graaf, Dirk C

    2015-09-01

    Trypanosomatids infecting honey bees have been poorly studied with molecular methods until recently. After the description of Crithidia mellificae (Langridge and McGhee, 1967) it took about forty years until molecular data for honey bee trypanosomatids became available and were used to identify and describe a new trypanosomatid species from honey bees, Lotmaria passim (Evans and Schwarz, 2014). However, an easy method to distinguish them without sequencing is not yet available. Research on the related bumble bee parasites Crithidia bombi and Crithidia expoeki revealed a fragment length polymorphism in the internal transcribed spacer 1 (ITS1), which enabled species discrimination. In search of fragment length polymorphisms for differential diagnostics in honey bee trypanosomatids, we studied honey bee trypanosomatid cell cultures of C. mellificae and L. passim. This research resulted in the identification of fragment length polymorphisms in ITS1 and ITS1-2 markers, which enabled us to develop a diagnostic method to differentiate both honey bee trypanosomatid species without the need for sequencing. However, the amplification success of the ITS1 marker depends probably on the trypanosomatid infection level. Further investigation confirmed that L. passim is the dominant species in Belgium, Japan and Switzerland. We found C. mellificae only rarely in Belgian honey bee samples, but not in honey bee samples from other countries. C. mellificae was also detected in mason bees (Osmia bicornis and Osmia cornuta) besides in honey bees. Further, the characterization and comparison of additional markers from L. passim strain SF (published as C. mellificae strain SF) and a Belgian honey bee sample revealed very low divergence in the 18S rRNA, ITS1-2, 28S rRNA and cytochrome b sequences. Nevertheless, a variable stretch was observed in the gp63 virulence factor. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Economic Risk of Bee Pollination in Maine Wild Blueberry, Vaccinium angustifolium.

    PubMed

    Asare, Eric; Hoshide, Aaron K; Drummond, Francis A; Criner, George K; Chen, Xuan

    2017-10-01

    Recent pollinator declines highlight the importance of evaluating economic risk of agricultural systems heavily dependent on rented honey bees or native pollinators. Our study analyzed variability of native bees and honey bees, and the risks these pose to profitability of Maine's wild blueberry industry. We used cross-sectional data from organic, low-, medium-, and high-input wild blueberry producers in 1993, 1997-1998, 2005-2007, and from 2011 to 2015 (n = 162 fields). Data included native and honey bee densities (count/m2/min) and honey bee stocking densities (hives/ha). Blueberry fruit set, yield, and honey bee hive stocking density models were estimated. Fruit set is impacted about 1.6 times more by native bees than honey bees on a per bee basis. Fruit set significantly explained blueberry yield. Honey bee stocking density in fields predicted honey bee foraging densities. These three models were used in enterprise budgets for all four systems from on-farm surveys of 23 conventional and 12 organic producers (2012-2013). These budgets formed the basis of Monte Carlo simulations of production and profit. Stochastic dominance of net farm income (NFI) cumulative distribution functions revealed that if organic yields are high enough (2,345 kg/ha), organic systems are economically preferable to conventional systems. However, if organic yields are lower (724 kg/ha), it is riskier with higher variability of crop yield and NFI. Although medium-input systems are stochastically dominant with lower NFI variability compared with other conventional systems, the high-input system breaks even with the low-input system if honey bee hive rental prices triple in the future. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  19. Allergenicity of Gramineae bee-collected pollen is proportional to its mass but is highly variable and depends on the members of the Gramineae family.

    PubMed

    Nonotte-Varly, C

    2016-01-01

    Gramineae bee-collected pollen is identified as being at the origin of allergic accidents but the biological potency of Gramineae bee-collected pollen is not well known. Cereal grasses (e.g., Zea) and European wild forage grasses (FG) are contained in bee-collected pollen. In this experiment, Zea-mass and FG-mass were identified in bee pollen mass and the proportion of Zea and of FG was calculated using the bee pollen melissopalynology spectrum. Skin reactivity to Zea and to FG were assessed by measuring wheal diameters (W) from skin prick tests using three serial dilutions of bee-collected pollen on 10 allergic patients to Gramineae, in order to calculate the relationship between Zea mass (Masszea) or FG mass (MassFG) in bee pollen and skin reactivity. The linear function Log10(WFG)=0.24(Log10(MassFG))+0.33 (R=0.99) was established using a bee pollen sample with 0.168mg of FG pollen per mg. The linear function Log10(Wzea)=0.23(Log10(Masszea))+0.14 (R=0.99) was established using a bee pollen sample with 0.983mg of Zea pollen per mg. Gramineae allergens seem to be little altered by bee secretions. Gramineae bee pollen retains its allergenic capacity but it depends on the members of the Gramineae family. To our knowledge this is the first time it has been shown that skin reactivity to Gramineae is proportional to the absolute Gramineae mass contained in the bee-collected pollen and that it depends on the members of the Gramineae family. Copyright © 2015 SEICAP. Published by Elsevier Espana. All rights reserved.

  20. Bumble bees regulate their intake of essential protein and lipid pollen macronutrients.

    PubMed

    Vaudo, A D; Stabler, D; Patch, H M; Tooker, J F; Grozinger, C M; Wright, G A

    2016-12-15

    Bee population declines are linked to the reduction of nutritional resources due to land-use intensification, yet we know little about the specific nutritional needs of many bee species. Pollen provides bees with their primary source of protein and lipids, but nutritional quality varies widely among host-plant species. Therefore, bees might have adapted to assess resource quality and adjust their foraging behavior to balance nutrition from multiple food sources. We tested the ability of two bumble bee species, Bombus terrestris and Bombus impatiens, to regulate protein and lipid intake. We restricted B. terrestris adults to single synthetic diets varying in protein:lipid ratios (P:L). The bees over-ate protein on low-fat diets and over-ate lipid on high-fat diets to reach their targets of lipid and protein, respectively. The bees survived best on a 10:1 P:L diet; the risk of dying increased as a function of dietary lipid when bees ate diets with lipid contents greater than 5:1 P:L. Hypothesizing that the P:L intake target of adult worker bumble bees was between 25:1 and 5:1, we presented workers from both species with unbalanced but complementary paired diets to determine whether they self-select their diet to reach a specific intake target. Bees consumed similar amounts of proteins and lipids in each treatment and averaged a 14:1 P:L for B. terrestris and 12:1 P:L for B. impatiens These results demonstrate that adult worker bumble bees likely select foods that provide them with a specific ratio of P:L. These P:L intake targets could affect pollen foraging in the field and help explain patterns of host-plant species choice by bumble bees. © 2016. Published by The Company of Biologists Ltd.

  1. Mixtures of herbicides and metals affect the redox system of honey bees.

    PubMed

    Jumarie, Catherine; Aras, Philippe; Boily, Monique

    2017-02-01

    The increasing loss of bee colonies in many countries has prompted a surge of studies on the factors affecting bee health. In North America, main crops such as maize and soybean are cultivated with extensive use of pesticides that may affect non-target organisms such as bees. Also, biosolids, used as a soil amendment, represent additional sources of metals in agroecosystems; however, there is no information about how these metals could affect the bees. In previous studies we investigated the effects of environmentally relevant doses of herbicides and metals, each individually, on caged honey bees. The present study aimed at investigating the effects of mixtures of herbicides (glyphosate and atrazine) and metals (cadmium and iron), as these mixtures represent more realistic exposure conditions. Levels of metal, vitamin E, carotenoids, retinaldehyde, at-retinol, retinoic acid isomers (9-cis RA, 13-cis RA, at-RA) and the metabolites 13-cis-4-oxo-RA and at-4-oxo-RA were measured in bees fed for 10 days with contaminated syrup. Mixtures of herbicides and cadmium that did not affect bee viability, lowered bee α- and β-carotenoid contents and increased 9-cis-RA as well as 13-cis-4-oxo-RA without modifying the levels of at-retinol. Bee treatment with either glyphosate, a combination of atrazine and cadmium, or mixtures of herbicides promoted lipid peroxidation. Iron was bioconcentrated in bees and led to high levels of lipid peroxidation. Metals also decreased zeaxanthin bee contents. These results show that mixtures of atrazine, glyphosate, cadmium and iron may affect different reactions occurring in the metabolic pathway of vitamin A in the honey bee. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Studies on Bee Venom and Its Medical Uses

    NASA Astrophysics Data System (ADS)

    Ali, Mahmoud Abdu Al-Samie Mohamed

    2012-07-01

    Use of honey and other bee products in human treatments traced back thousands of years and healing properties are included in many religious texts including the Veda, Bible and Quran. Apitherapy is the use of honey bee products for medical purposes, this include bee venom, raw honey, royal jelly, pollen, propolis, and beeswax. Whereas bee venom therapy is the use of live bee stings (or injectable venom) to treat various diseases such as arthritis, rheumatoid arthritis, multiple sclerosis (MS), lupus, sciatica, low back pain, and tennis elbow to name a few. It refers to any use of venom to assist the body in healing itself. Bee venom contains at least 18 pharmacologically active components including various enzymes, peptides and amines. Sulfur is believed to be the main element in inducing the release of cortisol from the adrenal glands and in protecting the body from infections. Contact with bee venom produces a complex cascade of reactions in the human body. The bee venom is safe for human treatments, the median lethal dose (LD50) for an adult human is 2.8 mg of venom per kg of body weight, i.e. a person weighing 60 kg has a 50% chance of surviving injections totaling 168 mg of bee venom. Assuming each bee injects all its venom and no stings are quickly removed at a maximum of 0.3 mg venom per sting, 560 stings could well be lethal for such a person. For a child weighing 10 kg, as little as 93.33 stings could be fatal. However, most human deaths result from one or few bee stings due to allergic reactions, heart failure or suffocation from swelling around the neck or the mouth. As compare with other human diseases, accidents and other unusual cases, the bee venom is very safe for human treatments.

  3. Prochloraz and coumaphos induce different gene expression patterns in three developmental stages of the Carniolan honey bee (Apis mellifera carnica Pollmann).

    PubMed

    Cizelj, Ivanka; Glavan, Gordana; Božič, Janko; Oven, Irena; Mrak, Vesna; Narat, Mojca

    2016-03-01

    The Carniolan honey bee, Apis mellifera carnica, is a Slovenian autochthonous subspecies of honey bee. In recent years, the country has recorded an annual loss of bee colonies through mortality of up to 35%. One possible reason for such high mortality could be the exposure of honey bees to xenobiotic residues that have been found in honey bee and beehive products. Acaricides are applied by beekeepers to control varroosis, while the most abundant common agricultural chemicals found in honey bee and beehive products are fungicides, which may enter the system when applied to nearby flowering crops and fruit plants. Acaricides and fungicides are not intrinsically highly toxic to bees but their action in combination might lead to higher honey bee sensitivity or mortality. In the present study we investigated the molecular immune response of honey bee workers at different developmental stages (prepupa, white-eyed pupa, adult) exposed to the acaricide coumaphos and the fungicide prochloraz individually and in combination. Expression of 17 immune-related genes was examined by quantitative RT-PCR. In treated prepupae downregulation of most immune-related genes was observed in all treatments, while in adults upregulation of most of the genes was recorded. Our study shows for the first time that negative impacts of prochloraz and a combination of coumaphos and prochloraz differ among the different developmental stages of honey bees. The main effect of the xenobiotic combination was found to be upregulation of the antimicrobial peptide genes abaecin and defensin-1 in adult honey bees. Changes in immune-related gene expression could result in depressed immunity of honey bees and their increased susceptibility to various pathogens. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A stingless bee can use visual odometry to estimate both height and distance.

    PubMed

    Eckles, M A; Roubik, D W; Nieh, J C

    2012-09-15

    Bees move and forage within three dimensions and rely heavily on vision for navigation. The use of vision-based odometry has been studied extensively in horizontal distance measurement, but not vertical distance measurement. The honey bee Apis mellifera and the stingless bee Melipona seminigra measure distance visually using optic flow-movement of images as they pass across the retina. The honey bees gauge height using image motion in the ventral visual field. The stingless bees forage at different tropical forest canopy levels, ranging up to 40 m at our site. Thus, estimating height would be advantageous. We provide the first evidence that the stingless bee Melipona panamica utilizes optic flow information to gauge not only distance traveled but also height above ground, by processing information primarily from the lateral visual field. After training bees to forage at a set height in a vertical tunnel lined with black and white stripes, we observed foragers that explored a new tunnel with no feeder. In a new tunnel, bees searched at the same height they were trained to. In a narrower tunnel, bees experienced more image motion and significantly lowered their search height. In a wider tunnel, bees experienced less image motion and searched at significantly greater heights. In a tunnel without optic cues, bees were disoriented and searched at random heights. A horizontal tunnel testing these variables similarly affected foraging, but bees exhibited less precision (greater variance in search positions). Accurately gauging flight height above ground may be crucial for this species and others that compete for resources located at heights ranging from ground level to the high tropical forest canopies.

  5. Unbiased RNA Shotgun Metagenomics in Social and Solitary Wild Bees Detects Associations with Eukaryote Parasites and New Viruses

    PubMed Central

    De Smet, Lina; Smagghe, Guy; Vierstraete, Andy; Braeckman, Bart P.; de Graaf, Dirk C.

    2016-01-01

    The diversity of eukaryote organisms and viruses associated with wild bees remains poorly characterized in contrast to the well-documented pathosphere of the western honey bee, Apis mellifera. Using a deliberate RNA shotgun metagenomic sequencing strategy in combination with a dedicated bioinformatics workflow, we identified the (micro-)organisms and viruses associated with two bumble bee hosts, Bombus terrestris and Bombus pascuorum, and two solitary bee hosts, Osmia cornuta and Andrena vaga. Ion Torrent semiconductor sequencing generated approximately 3.8 million high quality reads. The most significant eukaryote associations were two protozoan, Apicystis bombi and Crithidia bombi, and one nematode parasite Sphaerularia bombi in bumble bees. The trypanosome protozoan C. bombi was also found in the solitary bee O. cornuta. Next to the identification of three honey bee viruses Black queen cell virus, Sacbrood virus and Varroa destructor virus-1 and four plant viruses, we describe two novel RNA viruses Scaldis River bee virus (SRBV) and Ganda bee virus (GABV) based on their partial genomic sequences. The novel viruses belong to the class of negative-sense RNA viruses, SRBV is related to the order Mononegavirales whereas GABV is related to the family Bunyaviridae. The potential biological role of both viruses in bees is discussed in the context of recent advances in the field of arthropod viruses. Further, fragmentary sequence evidence for other undescribed viruses is presented, among which a nudivirus in O. cornuta and an unclassified virus related to Chronic bee paralysis virus in B. terrestris. Our findings extend the current knowledge of wild bee parasites in general and addsto the growing evidence of unexplored arthropod viruses in valuable insects. PMID:28006002

  6. Unbiased RNA Shotgun Metagenomics in Social and Solitary Wild Bees Detects Associations with Eukaryote Parasites and New Viruses.

    PubMed

    Schoonvaere, Karel; De Smet, Lina; Smagghe, Guy; Vierstraete, Andy; Braeckman, Bart P; de Graaf, Dirk C

    2016-01-01

    The diversity of eukaryote organisms and viruses associated with wild bees remains poorly characterized in contrast to the well-documented pathosphere of the western honey bee, Apis mellifera. Using a deliberate RNA shotgun metagenomic sequencing strategy in combination with a dedicated bioinformatics workflow, we identified the (micro-)organisms and viruses associated with two bumble bee hosts, Bombus terrestris and Bombus pascuorum, and two solitary bee hosts, Osmia cornuta and Andrena vaga. Ion Torrent semiconductor sequencing generated approximately 3.8 million high quality reads. The most significant eukaryote associations were two protozoan, Apicystis bombi and Crithidia bombi, and one nematode parasite Sphaerularia bombi in bumble bees. The trypanosome protozoan C. bombi was also found in the solitary bee O. cornuta. Next to the identification of three honey bee viruses Black queen cell virus, Sacbrood virus and Varroa destructor virus-1 and four plant viruses, we describe two novel RNA viruses Scaldis River bee virus (SRBV) and Ganda bee virus (GABV) based on their partial genomic sequences. The novel viruses belong to the class of negative-sense RNA viruses, SRBV is related to the order Mononegavirales whereas GABV is related to the family Bunyaviridae. The potential biological role of both viruses in bees is discussed in the context of recent advances in the field of arthropod viruses. Further, fragmentary sequence evidence for other undescribed viruses is presented, among which a nudivirus in O. cornuta and an unclassified virus related to Chronic bee paralysis virus in B. terrestris. Our findings extend the current knowledge of wild bee parasites in general and addsto the growing evidence of unexplored arthropod viruses in valuable insects.

  7. Bee sting allergy in beekeepers.

    PubMed

    Eich-Wanger, C; Müller, U R

    1998-10-01

    Beekeepers are strongly exposed to honey bee stings and therefore at an increased risk to develop IgE-mediated allergy to bee venom. We wondered whether bee venom-allergic beekeepers were different from normally exposed bee venom-allergic patients with regard to clinical and immunological parameters as well as their response to venom immunotherapy. Among the 459 bee venom-allergic patients seen over the 5 year period 1987-91, 62 (14%) were beekeepers and 44 (10%) family members of beekeepers. These two groups were compared with 101 normally exposed bee venom-allergic patients matched with the allergic beekeepers for age and sex, regarding clinical parameters, skin sensitivity, specific IgE and IgG antibodies to bee venom as well as safety and efficacy of venom immunotherapy. As expected, allergic beekeepers had been stung most frequently before the first allergic reaction. The three groups showed a similar severity of allergic symptoms following bee stings and had an equal incidence of atopic diseases. Allergic beekeepers showed higher levels of bee venom-specific serum IgG, lower skin sensitivity and lower levels of bee venom specific serum IgE than bee venom-allergic control patients. A negative correlation between number of stings and skin sensitivity as well as specific IgE was found in allergic beekeepers and their family members, while the number of stings was positively correlated with specific IgG in these two groups. Venom immunotherapy was equally effective in the three groups, but better tolerated by allergic beekeepers than the two other groups. The majority of allergic beekeepers continued bee-keeping successfully under the protection of venom immunotherapy. The lower level of sensitivity in diagnostic tests and the better tolerance of immunotherapy in allergic beekeepers is most likely related to the high level of specific IgG in this group.

  8. Flight of the bumble bee: Buzzes predict pollination services

    PubMed Central

    Heise, David; Schul, Johannes; Geib, Jennifer C.; Galen, Candace

    2017-01-01

    Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30–52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to bee population declines. PMID:28591213

  9. Hygienic behavior of the honey bee (Apis mellifera) is independent of sucrose responsiveness and foraging ontogeny.

    PubMed

    Goode, Katarzyna; Huber, Zachary; Mesce, Karen A; Spivak, Marla

    2006-03-01

    Hygienic behavior in honey bees is a behavioral mechanism of disease resistance. Bees bred for hygienic behavior exhibit an increased olfactory sensitivity to odors of diseased brood, which is most likely differentially enhanced in the hygienic line by the modulatory effects of octopamine (OA), a noradrenaline-like neuromodulator. Here, we addressed whether the hygienic behavioral state is linked to other behavioral activities known to be modulated by OA. We specifically asked if, during learning trials, bees from hygienic colonies discriminate better between odors of diseased and healthy brood because of differences in sucrose (reward) response thresholds. This determination had to be tested because sucrose response thresholds are susceptible to OA modulation and may have influenced the honey bee's association of the conditioned stimulus (odor) with the unconditioned stimulus (i.e., the sucrose reward). Because the onset of first foraging is also modulated by OA, we also examined whether bees from hygienic colonies differentially forage at an earlier age compared to bees from non-hygienic colonies. Our study revealed that 1-day- and 15- to 20-day-old bees from the hygienic line do not have lower sucrose response thresholds compared to bees from the non-hygienic lines. In addition, hygienic bees did not forage at an earlier age or forage preferentially for pollen as compared to non-hygienic bees. These results support the idea that OA does not function in honey bees simply to enhance the detection of all chemical cues non-selectively or control related behaviors regardless of their environmental milieu. Our results indicate that the behavioral profile of the hygienic bee is sculpted by multiple factors including genetic, neural, social and environmental systems.

  10. Overwintering temperature and body condition shift emergence dates of spring-emerging solitary bees.

    PubMed

    Schenk, Mariela; Mitesser, Oliver; Hovestadt, Thomas; Holzschuh, Andrea

    2018-01-01

    Solitary bees in seasonal environments must align their life-cycles with favorable environmental conditions and resources; the timing of their emergence is highly fitness relevant. In several bee species, overwintering temperature influences both emergence date and body weight at emergence. High variability in emergence dates among specimens overwintering at the same temperatures suggests that the timing of emergence also depends on individual body conditions. However, possible causes for this variability, such as individual differences in body size or weight, have been rarely studied. In a climate chamber experiment using two spring-emerging mason bees ( Osmia cornuta and O. bicornis ), we investigated the relationship between temperature, emergence date, body weight, and body size, the last of which is not affected by overwintering temperature. Our study showed that body weight declined during hibernation more strongly in warm than in cold overwintering temperatures. Although bees emerged earlier in warm than in cold overwintering temperatures, at the time of emergence, bees in warm overwintering temperatures had lower body weights than bees in cold overwintering temperatures (exception of male O. cornuta ). Among specimens that experienced the same overwintering temperatures, small and light bees emerged later than their larger and heavier conspecifics. Using a simple mechanistic model we demonstrated that spring-emerging solitary bees use a strategic approach and emerge at a date that is most promising for their individual fitness expectations. Our results suggest that warmer overwintering temperatures reduce bee fitness by causing a decrease in body weight at emergence. We showed furthermore that in order to adjust their emergence dates, bees use not only temperature but also their individual body condition as triggers. This may explain differing responses to climate warming within and among bee populations and may have consequences for bee-plant interactions as well as for the persistence of bee populations under climate change.

  11. Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps

    PubMed Central

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G.; Fries, Ingemar; Bommarco, Riccardo

    2015-01-01

    It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines. PMID:26313444

  12. Mechanism of biological effects observed in honey bees (Apis mellifera, L. ) hived under extra-high-voltage transmission lines: implications derived from bee exposure to simulated intense electric fields and shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bindokas, V.P.; Gauger, J.R.; Greenberg, B.

    This work explores mechanisms for disturbance of honey bee colonies under a 765 kV, 60-Hz transmission line (electric (E) field = 7 kV/m) observed in previous studies. Proposed mechanisms fell into two categories: direct bee perception of enhanced in-hive E fields and perception of shock from induced currents. The adverse biological effects could be reproduced in simulations where only the worker bees were exposed to shock or to E field in elongated hive entranceways (= tunnels). We now report the results of full-scale experiments using the tunnel exposure scheme, which assesses the contribution of shock and intense E field tomore » colony disturbance. Exposure of worker bees (1400 h) to 60-Hz E fields including 100 kV/m under moisture-free conditions within a nonconductive tunnel causes no deleterious affect on colony behavior. Exposure of bees in conductive (e.g., wet) tunnels produces bee disturbance, increased mortality, abnormal propolization, and possible impairment of colony growth. We propose that this substrate dependence of bee disturbance is the result of perception of shock from coupled body currents and enhanced current densities postulated to exist in the legs and thorax of bees on conductors. Similarly, disturbance occurs when bees are exposed to step-potential-induced currents. At 275-350 nA single bees are disturbed; at 600 nA bees begin abnormal propolization behavior; and stinging occurs at 900 nA. We conclude that biological effects seen in bee colonies under a transmission line are primarily the result of electric shock from induced hive currents. This evaluation is based on the limited effects of E-field exposure in tunnels, the observed disturbance thresholds caused by shocks in tunnels, and the ability of hives exposed under a transmission line to source currents 100-1,000 times the shock thresholds.« less

  13. Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps.

    PubMed

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Fries, Ingemar; Bommarco, Riccardo

    2015-01-01

    It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines.

  14. Learning context modulates aversive taste strength in honey bees.

    PubMed

    de Brito Sanchez, Maria Gabriela; Serre, Marion; Avarguès-Weber, Aurore; Dyer, Adrian G; Giurfa, Martin

    2015-03-01

    The capacity of honey bees (Apis mellifera) to detect bitter substances is controversial because they ingest without reluctance different kinds of bitter solutions in the laboratory, whereas free-flying bees avoid them in visual discrimination tasks. Here, we asked whether the gustatory perception of bees changes with the behavioral context so that tastes that are less effective as negative reinforcements in a given context become more effective in a different context. We trained bees to discriminate an odorant paired with 1 mol l(-1) sucrose solution from another odorant paired with either distilled water, 3 mol l(-1) NaCl or 60 mmol l(-1) quinine. Training was either Pavlovian [olfactory conditioning of the proboscis extension reflex (PER) in harnessed bees], or mainly operant (olfactory conditioning of free-walking bees in a Y-maze). PER-trained and maze-trained bees were subsequently tested both in their original context and in the alternative context. Whereas PER-trained bees transferred their choice to the Y-maze situation, Y-maze-trained bees did not respond with a PER to odors when subsequently harnessed. In both conditioning protocols, NaCl and distilled water were the strongest and the weakest aversive reinforcement, respectively. A significant variation was found for quinine, which had an intermediate aversive effect in PER conditioning but a more powerful effect in the Y-maze, similar to that of NaCl. These results thus show that the aversive strength of quinine varies with the learning context, and reveal the plasticity of the bee's gustatory system. We discuss the experimental constraints of both learning contexts and focus on stress as a key modulator of taste in the honey bee. Further explorations of bee taste are proposed to understand the physiology of taste modulation in bees. © 2015. Published by The Company of Biologists Ltd.

  15. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    PubMed

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  16. Nutritional status influences socially regulated foraging ontogeny in honey bees.

    PubMed

    Toth, Amy L; Kantarovich, Sara; Meisel, Adam F; Robinson, Gene E

    2005-12-01

    In many social insects, including honey bees, worker energy reserve levels are correlated with task performance in the colony. Honey bee nest workers have abundant stored lipid and protein while foragers are depleted of these reserves; this depletion precedes the shift from nest work to foraging. The first objective of this study was to test the hypothesis that lipid depletion has a causal effect on the age at onset of foraging in honey bees (Apis mellifera L.). We found that bees treated with a fatty acid synthesis inhibitor (TOFA) were more likely to forage precociously. The second objective of this study was to determine whether there is a relationship between social interactions, nutritional state and behavioral maturation. Since older bees are known to inhibit the development of young bees into foragers, we asked whether this effect is mediated nutritionally via the passage of food from old to young bees. We found that bees reared in social isolation have low lipid stores, but social inhibition occurs in colonies in the field, whether young bees are starved or fed. These results indicate that although social interactions affect the nutritional status of young bees, social and nutritional factors act independently to influence age at onset of foraging. Our findings suggest that mechanisms linking internal nutritional physiology to foraging in solitary insects have been co-opted to regulate altruistic foraging in a social context.

  17. Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L.

    PubMed Central

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 107 copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive. PMID:24130876

  18. Mechanistic modeling of pesticide exposure: The missing keystone of honey bee toxicology.

    PubMed

    Sponsler, Douglas B; Johnson, Reed M

    2017-04-01

    The role of pesticides in recent honey bee losses is controversial, partly because field studies often fail to detect effects predicted by laboratory studies. This dissonance highlights a critical gap in the field of honey bee toxicology: there exists little mechanistic understanding of the patterns and processes of exposure that link honey bees to pesticides in their environment. The authors submit that 2 key processes underlie honey bee pesticide exposure: 1) the acquisition of pesticide by foraging bees, and 2) the in-hive distribution of pesticide returned by foragers. The acquisition of pesticide by foraging bees must be understood as the spatiotemporal intersection between environmental contamination and honey bee foraging activity. This implies that exposure is distributional, not discrete, and that a subset of foragers may acquire harmful doses of pesticide while the mean colony exposure would appear safe. The in-hive distribution of pesticide is a complex process driven principally by food transfer interactions between colony members, and this process differs importantly between pollen and nectar. High priority should be placed on applying the extensive literature on honey bee biology to the development of more rigorously mechanistic models of honey bee pesticide exposure. In combination with mechanistic effects modeling, mechanistic exposure modeling has the potential to integrate the field of honey bee toxicology, advancing both risk assessment and basic research. Environ Toxicol Chem 2017;36:871-881. © 2016 SETAC. © 2016 SETAC.

  19. Comparative Flight Activities and Pathogen Load of Two Stocks of Honey Bees Reared in Gamma-Irradiated Combs

    PubMed Central

    de Guzman, Lilia I.; Frake, Amanda M.

    2017-01-01

    Gamma irradiation is known to inactivate various pathogens that negatively affect honey bee health. Bee pathogens, such as Deformed wing virus (DWV) and Nosema spp., have a deleterious impact on foraging activities and bee survival, and have been detected in combs. In this study, we assessed the effects of gamma irradiation on the flight activities, pathogen load, and survival of two honey bee stocks that were reared in irradiated and non-irradiated combs. Overall, bee genotype influenced the average number of daily flights, the total number of foraging flights, and total flight duration, in which the Russian honey bees outperformed the Italian honey bees. Exposing combs to gamma irradiation only affected the age at first flight, with worker bees that were reared in non-irradiated combs foraging prematurely compared to those reared in irradiated combs. Precocious foraging may be associated with the higher levels of DWV in bees reared in non-irradiated combs and also with the lower amount of pollen stores in colonies that used non-irradiated combs. These data suggest that gamma irradiation of combs can help minimize the negative impact of DWV in honey bees. Since colonies with irradiated combs stored more pollen than those with non-irradiated combs, crop pollination efficiency may be further improved when mite-resistant stocks are used, since they performed more flights and had longer flight durations. PMID:29186033

  20. Individual perception of bees: Between perceived danger and willingness to protect.

    PubMed

    Schönfelder, Mona Lisa; Bogner, Franz Xaver

    2017-01-01

    The current loss of biodiversity has found its way into the media. Especially the loss of bees as pollinators has recently received much attention aiming to increase public awareness about the consequence of pollinator loss and strategies for protection. However, pollinating insects like bees often prompt considerable anxiety. Negative emotions such as fear and disgust often lead to lack of support for conservation and appropriate initiatives for protection. Our study monitored perceptions of bees in the contexts of conservation and danger bees possibly represent by applying a semantic differential using contrasting adjectives under the heading "I think bees are…". Additionally, open questions were applied to examine individual perceptions of danger and conservation of bees. Respondents were students from primary school, secondary school and university. We compared these novices (n = 499) to experts (beekeepers, n = 153). An exploratory factor analysis of the semantic differential responses yielded three major oblique factors: Interest, Danger and Conservation & Usefulness. The inter-correlations of these factors were significant. Although all subgroups showed an overall high willingness to protect bees, the perception of danger scored medium. The individual experience of bee stings was the most prevalent reason for expressing fear. Educational programs focusing on pollinator conservation may reduce the perceived danger through removing misinformation, and supporting interest in the species. Based on the overall positive attitude toward bees, we suggest introducing bees (e.g., Apis mellifera) as a flagship species for pollinator conservation.

  1. Microbial Communities of Three Sympatric Australian Stingless Bee Species

    PubMed Central

    Leonhardt, Sara D.; Kaltenpoth, Martin

    2014-01-01

    Bacterial symbionts of insects have received increasing attention due to their prominent role in nutrient acquisition and defense. In social bees, symbiotic bacteria can maintain colony homeostasis and fitness, and the loss or alteration of the bacterial community may be associated with the ongoing bee decline observed worldwide. However, analyses of microbiota associated with bees have been largely confined to the social honeybees (Apis mellifera) and bumblebees (Bombus spec.), revealing – among other taxa – host-specific lactic acid bacteria (LAB, genus Lactobacillus) that are not found in solitary bees. Here, we characterized the microbiota of three Australian stingless bee species (Apidae: Meliponini) of two phylogenetically distant genera (Tetragonula and Austroplebeia). Besides common plant bacteria, we find LAB in all three species, showing that LAB are shared by honeybees, bumblebees and stingless bees across geographical regions. However, while LAB of the honeybee-associated Firm4–5 clusters were present in Tetragonula, they were lacking in Austroplebeia. Instead, we found a novel clade of likely host-specific LAB in all three Australian stingless bee species which forms a sister clade to a large cluster of Halictidae-associated lactobacilli. Our findings indicate both a phylogenetic and geographical signal of host-specific LAB in stingless bees and highlight stingless bees as an interesting group to investigate the evolutionary history of the bee-LAB association. PMID:25148082

  2. Repeated evolution of soldier sub-castes suggests parasitism drives social complexity in stingless bees.

    PubMed

    Grüter, Christoph; Segers, Francisca H I D; Menezes, Cristiano; Vollet-Neto, Ayrton; Falcón, Tiago; von Zuben, Lucas; Bitondi, Márcia M G; Nascimento, Fabio S; Almeida, Eduardo A B

    2017-02-23

    The differentiation of workers into morphological castes represents an important evolutionary innovation that is thought to improve division of labor in insect societies. Given the potential benefits of task-related worker differentiation, it is puzzling that physical worker castes, such as soldiers, are extremely rare in social bees and absent in wasps. Following the recent discovery of soldiers in a stingless bee, we studied the occurrence of worker differentiation in 28 stingless bee species from Brazil and found that several species have specialized soldiers for colony defence. Our results reveal that worker differentiation evolved repeatedly during the last ~ 25 million years and coincided with the emergence of parasitic robber bees, a major threat to many stingless bee species. Furthermore, our data suggest that these robbers are a driving force behind the evolution of worker differentiation as targets of robber bees are four times more likely to have nest guards of increased size than non-targets. These findings reveal unexpected diversity in the social organization of stingless bees.Although common in ants and termites, worker differentiation into physical castes is rare in social bees and unknown in wasps. Here, Grüter and colleagues find a guard caste in ten species of stingless bees and show that the evolution of the guard caste is associated with parasitization by robber bees.

  3. Why do leafcutter bees cut leaves? New insights into the early evolution of bees.

    PubMed

    Litman, Jessica R; Danforth, Bryan N; Eardley, Connal D; Praz, Christophe J

    2011-12-07

    Stark contrasts in clade species diversity are reported across the tree of life and are especially conspicuous when observed in closely related lineages. The explanation for such disparity has often been attributed to the evolution of key innovations that facilitate colonization of new ecological niches. The factors underlying diversification in bees remain poorly explored. Bees are thought to have originated from apoid wasps during the Mid-Cretaceous, a period that coincides with the appearance of angiosperm eudicot pollen grains in the fossil record. The reliance of bees on angiosperm pollen and their fundamental role as angiosperm pollinators have contributed to the idea that both groups may have undergone simultaneous radiations. We demonstrate that one key innovation--the inclusion of foreign material in nest construction--underlies both a massive range expansion and a significant increase in the rate of diversification within the second largest bee family, Megachilidae. Basal clades within the family are restricted to deserts and exhibit plesiomorphic features rarely observed among modern bees, but prevalent among apoid wasps. Our results suggest that early bees inherited a suite of behavioural traits that acted as powerful evolutionary constraints. While the transition to pollen as a larval food source opened an enormous ecological niche for the early bees, the exploitation of this niche and the subsequent diversification of bees only became possible after bees had evolved adaptations to overcome these constraints.

  4. Negative effects of pesticides on wild bee communities can be buffered by landscape context.

    PubMed

    Park, Mia G; Blitzer, E J; Gibbs, Jason; Losey, John E; Danforth, Bryan N

    2015-06-22

    Wild bee communities provide underappreciated but critical agricultural pollination services. Given predicted global shortages in pollination services, managing agroecosystems to support thriving wild bee communities is, therefore, central to ensuring sustainable food production. Benefits of natural (including semi-natural) habitat for wild bee abundance and diversity on farms are well documented. By contrast, few studies have examined toxicity of pesticides on wild bees, let alone effects of farm-level pesticide exposure on entire bee communities. Whether beneficial natural areas could mediate effects of harmful pesticides on wild bees is also unknown. Here, we assess the effect of conventional pesticide use on the wild bee community visiting apple (Malus domestica) within a gradient of percentage natural area in the landscape. Wild bee community abundance and species richness decreased linearly with increasing pesticide use in orchards one year after application; however, pesticide effects on wild bees were buffered by increasing proportion of natural habitat in the surrounding landscape. A significant contribution of fungicides to observed pesticide effects suggests deleterious properties of a class of pesticides that was, until recently, considered benign to bees. Our results demonstrate extended benefits of natural areas for wild pollinators and highlight the importance of considering the landscape context when weighing up the costs of pest management on crop pollination services. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells.

    PubMed

    Izuta, Hiroshi; Shimazawa, Masamitsu; Tsuruma, Kazuhiro; Araki, Yoko; Mishima, Satoshi; Hara, Hideaki

    2009-11-17

    Vascular endothelial growth factor (VEGF) is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ), bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs). In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE)]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis > bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.

  6. 7 CFR 322.16 - Packaging of shipments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of...., either “Live Bees,” “Bee Germ Plasm,” or “Live Bee Brood,” and the name of the region of origin. (c) Only...

  7. 7 CFR 322.16 - Packaging of shipments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of...., either “Live Bees,” “Bee Germ Plasm,” or “Live Bee Brood,” and the name of the region of origin. (c) Only...

  8. 7 CFR 322.16 - Packaging of shipments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of...., either “Live Bees,” “Bee Germ Plasm,” or “Live Bee Brood,” and the name of the region of origin. (c) Only...

  9. 7 CFR 322.16 - Packaging of shipments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of...., either “Live Bees,” “Bee Germ Plasm,” or “Live Bee Brood,” and the name of the region of origin. (c) Only...

  10. 7 CFR 322.16 - Packaging of shipments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of...., either “Live Bees,” “Bee Germ Plasm,” or “Live Bee Brood,” and the name of the region of origin. (c) Only...

  11. Polymerized soluble venom--human serum albumin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. /sup 125/I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera againstmore » bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom.« less

  12. Bee venom therapy: Potential mechanisms and therapeutic applications.

    PubMed

    Zhang, Shuai; Liu, Yi; Ye, Yang; Wang, Xue-Rui; Lin, Li-Ting; Xiao, Ling-Yong; Zhou, Ping; Shi, Guang-Xia; Liu, Cun-Zhi

    2018-06-15

    Bee venom is a very complex mixture of natural products extracted from honey bee which contains various pharmaceutical properties such as peptides, enzymes, biologically active amines and nonpeptide components. The use of bee venom into the specific points is so called bee venom therapy, which is widely used as a complementary and alternative therapy for 3000 years. A growing number of evidence has demonstrated the anti-inflammation, the anti-apoptosis, the anti-fibrosis and the anti-arthrosclerosis effects of bee venom therapy. With these pharmaceutical characteristics, bee venom therapy has also been used as the therapeutic method in treating rheumatoid arthritis, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, liver fibrosis, atherosclerosis, pain and others. Although widely used, several cases still reported that bee venom therapy might cause some adverse effects, such as local itching or swelling. In this review, we summarize its potential mechanisms, therapeutic applications, and discuss its existing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Detection of Spiroplasma melliferum in honey bee colonies in the US.

    PubMed

    Zheng, Huo-Qing; Chen, Yan Ping

    2014-06-01

    Spiroplasma infections in honey bees have been reported in Europe and Asia quite recently, due to intensive studies on the epidemiology of honey bee diseases. The situation in the US is less well analyzed. Here, we examined the honey bee colonies in Beltsville, MD, where Spiroplasmamelliferum was originally reported and found S. melliferum infection in honey bees. Our data showed high variation of S. melliferum infection in honey bees with a peak prevalence in May during the course of one-year study period. The colony prevalence increased from 5% in February to 68% in May and then decreased to 25% in June and 22% in July. Despite that pathogenicity of spiroplasmas in honey bee colonies remains to be determined, our results indicated that spiroplasma infections need to be included for the consideration of the impacts on honey bee health. Published by Elsevier Inc.

  14. Field populations of native Indian honey bees from pesticide intensive agricultural landscape show signs of impaired olfaction

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba

    2015-07-01

    Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress.

  15. The power and promise of applying genomics to honey bee health

    PubMed Central

    Robinson, Gene E.

    2015-01-01

    New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species. PMID:26273565

  16. Honey bee (Hymenoptera: Apidae) foraging in response to preconditioning with onion flower scent compounds.

    PubMed

    Silva, Erin M; Dean, Bill B; Hiller, Larry K

    2003-10-01

    Onion (Allium cepa L.) seed production has long been plagued with yield problems because of lack of pollination by the honey bee, Apis mellifera L. To attempt to attract more pollinators to the onion seed production field, honey bees were conditioned to associate onion floral odor components with a reward. Isolated nucleus hives of honey bees were fed 30% sucrose solutions scented with a 0.2% solution of onion floral odor compounds. After feeding on these solutions for 6 wk, bees were not found to prefer onion flowers to two competing food sources, carrot and alfalfa flowers, at the 5% significance level. However, there was an overall trend indicating a change in honey bee behavior, with fewer "trained" bees visiting alfalfa and carrot and more visiting onion. Thus, it may be possible to alter honey bee behavior with preconditioning but probably not to a degree that would be economically significant.

  17. Field populations of native Indian honey bees from pesticide intensive agricultural landscape show signs of impaired olfaction

    PubMed Central

    Chakrabarti, Priyadarshini; Rana, Santanu; Bandopadhyay, Sreejata; Naik, Dattatraya G.; Sarkar, Sagartirtha; Basu, Parthiba

    2015-01-01

    Little information is available regarding the adverse effects of pesticides on natural honey bee populations. This study highlights the detrimental effects of pesticides on honey bee olfaction through behavioural studies, scanning electron microscopic imaging of antennal sensillae and confocal microscopic studies of honey bee brains for calcium ions on Apis cerana, a native Indian honey bee species. There was a significant decrease in proboscis extension response and biologically active free calcium ions and adverse changes in antennal sensillae in pesticide exposed field honey bee populations compared to morphometrically similar honey bees sampled from low/no pesticide sites. Controlled laboratory experiments corroborated these findings. This study reports for the first time the changes in antennal sensillae, expression of Calpain 1(an important calcium binding protein) and resting state free calcium in brains of honey bees exposed to pesticide stress. PMID:26212690

  18. Mycobiota and mycotoxins in bee pollen collected from different areas of Slovakia.

    PubMed

    Kačániová, Miroslava; Juráček, Miroslav; Chlebo, Róbert; Kňazovická, Vladimíra; Kadasi-Horáková, Miriam; Kunová, Simona; Lejková, Jadža; Haščík, Peter; Mareček, Ján; Simko, Milan

    2011-01-01

    Contamination by microscopic fungi and mycotoxins in different bee pollen samples, which were stored under three different ways of storing as freezing, drying and UV radiation, was investigated. During spring 2009, 45 samples of bee-collected pollen were gathered from beekeepers who placed their bee colonies on monocultures of sunflower, rape and poppy fields within their flying distance. Bee pollen was collected from bees' legs by special devices placed at the entrance to hives. Samples were examined for the concentration and identification of microscopic fungi able to grow on Malt and Czapek-Dox agar and mycotoxins content [deoxynivalenol (DON), T-2 toxin (T-2), zearalenone (ZON) and total aflatoxins (AFL), fumonisins (FUM), ochratoxins (OTA)] by direct competitive enzyme-linked immunosorbent assays (ELISA). The total number of microscopic fungi in this study ranged from 2.98 ± 0.02 in frozen sunflower bee pollen to 4.06 ± 0.10 log cfu.g(-1) in sunflower bee pollen after UV radiation. In this study, 449 isolates belonging to 21 fungal species representing 9 genera were found in 45 samples of bee pollen. The total isolates were detected in frozen poppy pollen 29, rape pollen 40, sunflower pollen 80, in dried poppy pollen 12, rape pollen 36, sunflower 78, in poppy pollen after UV radiation treatment 54, rape 59 and sunflower 58. The most frequent isolates of microscopic fungi found in bee pollen samples of all prevalent species were Mucor mucedo (49 isolates), Alternaria alternata (40 isolates), Mucor hiemalis (40 isolates), Aspergillus fumigatus (33 isolates) and Cladosporium cladosporioides (31 isolates). The most frequently found isolates were detected in sunflower bee pollen frozen (80 isolates) and the lowest number of isolates was observed in poppy bee pollen dried (12 isolates). The most prevalent mycotoxin of poppy bee pollen was ZON (361.55 ± 0.26 μg.kg(-1)), in rape bee pollen T-2 toxin (265.40 ± 0.18 μg.kg(-1)) and in sunflower bee pollen T-2 toxin (364.72 ± 0.13 μg.kg(-1)) in all cases in frozen samples.

  19. The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions

    PubMed Central

    Kwong, Waldan K.; McFrederick, Quinn; Anderson, Kirk E.; Barribeau, Seth Michael; Chandler, James Angus; Cornman, R. Scott; Dainat, Jacques; Doublet, Vincent; Emery, Olivier; Evans, Jay D.; Farinelli, Laurent; Flenniken, Michelle L.; Granberg, Fredrik; Grasis, Juris A.; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G.; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J.; Powell, Eli; Sadd, Ben M.; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Schwarz, Ryan S.; vanEngelsdorp, Dennis

    2016-01-01

    ABSTRACT As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health. PMID:27118586

  20. The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions

    USGS Publications Warehouse

    Engel, Philipp; Kwong, Waldan K.; McFrederick, Quinn; Anderson, Kirk E.; Barribeau, Seth Michael; Chandler, James Angus; Cornman, Robert S.; Dainat, Jacques; de Miranda, Joachim R.; Doublet, Vincent; Emery, Olivier; Evans, Jay D.; Farinelli, Laurent; Flenniken, Michelle L.; Granberg, Fredrik; Grasis, Juris A.; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G.; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J.; Powell, Eli; Sadd, Ben M.; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Song, Se Jin; Schwarz, Ryan S.; vanEngelsdorp, Dennis; Dainat, Benjamin

    2016-01-01

    As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.

  1. Acute Exposure to Worst-Case Concentrations of Amitraz Does Not Affect Honey Bee Learning, Short-Term Memory, or Hemolymph Octopamine Levels.

    PubMed

    Rix, Rachel R; Christopher Cutler, G

    2017-02-01

    Amitraz, an acaricide used to treat Varroa destructor Anderson & Trueman, is one of the most commonly detected pesticides in honey bee (Apis mellifera L.) hives. Acaricides sometimes negatively impact honey bee cognition, but potential effects of amitraz on honey bee learning have been rarely studied. We topically exposed foragers to 95th percentile field-relevant levels of amitraz and, 24 h later, tested the ability of bees to associate a sucrose reward with a conditioned odor (learning response) using the proboscis extension response (PER). We then tested the ability of the bees to retain this memory 1 h and 2 h post-conditioning. Because amitraz is thought to affect octopamine metabolism in honey bees, and because octopamine is directly related to honey bee learning and memory, we also examined effects of exposure to amitraz on octopamine levels in honey bee hemolymph. We found that acute exposure to 95th percentile doses of amitraz had no impact on honey bee learning or short-term memory as measured by PER. Concentrations of octopamine in hemolymph from our low amitraz treatment were 1.4-fold higher than control levels, but other treatments had no effect. Our results from worst-case acute exposure experiments with worker bees in the laboratory suggest that typical field-relevant (within hive) exposures to amitraz probably have little effect on honey bee learning and memory. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions.

    PubMed

    Engel, Philipp; Kwong, Waldan K; McFrederick, Quinn; Anderson, Kirk E; Barribeau, Seth Michael; Chandler, James Angus; Cornman, R Scott; Dainat, Jacques; de Miranda, Joachim R; Doublet, Vincent; Emery, Olivier; Evans, Jay D; Farinelli, Laurent; Flenniken, Michelle L; Granberg, Fredrik; Grasis, Juris A; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J; Powell, Eli; Sadd, Ben M; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Song, Se Jin; Schwarz, Ryan S; vanEngelsdorp, Dennis; Dainat, Benjamin

    2016-04-26

    As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health. Copyright © 2016 Engel et al.

  3. [The "language" of bees and its utilization in agriculture. 1946].

    PubMed

    von Frisch, K

    1994-04-15

    If honey-bees find a feeding place, after return they report the discovery by dancing. The species of flowers from which they are coming is indicated by means of the flower-scent adhering to their bodies, and also by the scent of nectar brought into the hive within the honey-stomach. By a long flight the scent adhering to the outer surface is diminished. But the scent within the honey-stomach is still the same. Therefore the scent of nectar (that is the specific flower-scent absorbed by nectar) is especially important if the feeding place is far away from the hive. Bees dance only in case there is plenty of food. Then the informed bees fly out and look for the flowers having the scent indicated by the dancing bees. In this way the number of visiting bees increases, and the nectar becomes scarce. Then honey collecting is still continued, but there is no more dancing in the bee-hive and the number of bees does not increase, so that there always is the correct relation between the amount of nectar and the number of collecting bees. If the feeding place is at a distance of some hundred meters there are many bees seeking for food at that distance but only a few seeking near the hive. By using an observation-hive the matter could be cleared up. Bees collecting at a feeding place nearer than 50 to 100 m make round-dances (Fig. 4, p. 400). Bees coming from a feeding place more distant make tail-wagging dances (Fig. 5, p. 400).(ABSTRACT TRUNCATED AT 250 WORDS)

  4. The effect of dietary neonicotinoid pesticides on non-flight thermogenesis in worker bumble bees (Bombus terrestris).

    PubMed

    Potts, Robert; Clarke, Rebecca M; Oldfield, Sophie E; Wood, Lisa K; Hempel de Ibarra, Natalie; Cresswell, James E

    2018-01-01

    For bumble bees (genus Bombus), the capacity for non-flight thermogenesis is essential for two fundamental processes undertaken by adult workers, namely recovery from torpor after chilling and brood incubation. Farmland bees can be widely exposed to dietary residues of neurotoxic neonicotinoid insecticides that appear in the nectar and pollen of treated bee-attractive crops, which may harm them. An earlier study shows that dietary neonicotinoids cause complex alterations to thermoregulation in honey bees, but their effect on the thermogenic capabilities of individual bumble bees has been untested previously. We therefore conducted laboratory trials involving separate dietary exposures of bumble bees to two neonicotinoids, imidacloprid and thiamethoxam, and we measured their effects on the thoracic temperatures of bees during recovery from chilling. Specifically, we used thermal imaging to measure the rates of rewarming by individual bees after chill-induced torpor and to quantify their equilibrated thoracic temperatures post-recovery. We found that both toxicants caused dose-dependent decreases in the rates of rewarming and in the equilibrated thoracic temperatures. As previously found in honey bees, the dose-response relationship for imidacloprid exhibited a biphasic hormesis with low-dose stimulation and high-dose inhibition, for which we propose a mechanism. Our present study is among the first to detect ecologically relevant effects on bees in neonicotinoid exposures involving dietary concentrations below 5 ppb. If the effects on thoracic temperatures that we observed over a short period were sustained, they could have ecologically significant impacts on farmland bumble bees. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Impacts of Austrian Climate Variability on Honey Bee Mortality

    NASA Astrophysics Data System (ADS)

    Switanek, Matt; Brodschneider, Robert; Crailsheim, Karl; Truhetz, Heimo

    2015-04-01

    Global food production, as it is today, is not possible without pollinators such as the honey bee. It is therefore alarming that honey bee populations across the world have seen increased mortality rates in the last few decades. The challenges facing the honey bee calls into question the future of our food supply. Beside various infectious diseases, Varroa destructor is one of the main culprits leading to increased rates of honey bee mortality. Varroa destructor is a parasitic mite which strongly depends on honey bee brood for reproduction and can wipe out entire colonies. However, climate variability may also importantly influence honey bee breeding cycles and bee mortality rates. Persistent weather events affects vegetation and hence foraging possibilities for honey bees. This study first defines critical statistical relationships between key climate indicators (e.g., precipitation and temperature) and bee mortality rates across Austria, using 6 consecutive years of data. Next, these leading indicators, as they vary in space and time, are used to build a statistical model to predict bee mortality rates and the respective number of colonies affected. Using leave-one-out cross validation, the model reduces the Root Mean Square Error (RMSE) by 21% with respect to predictions made with the mean mortality rate and the number of colonies. Furthermore, a Monte Carlo test is used to establish that the model's predictions are statistically significant at the 99.9% confidence level. These results highlight the influence of climate variables on honey bee populations, although variability in climate, by itself, cannot fully explain colony losses. This study was funded by the Austrian project 'Zukunft Biene'.

  6. Forested landscapes promote richness and abundance of native bees (Hymenoptera: Apoidea: Anthophila) in Wisconsin apple orchards.

    PubMed

    Watson, J C; Wolf, A T; Ascher, J S

    2011-06-01

    Wild bees provide vital pollination services for many native and agricultural plant species, yet the landscape conditions needed to support wild bee populations are not well understood or appreciated. We assessed the influence of landscape composition on bee abundance and species richness in apple (Malus spp.) orchards of northeastern Wisconsin during the spring flowering period. A diverse community of bee species occurs in these apple orchards, dominated by wild bees in the families Andrenidae and Halictidae and the honey bee, Apis mellifera L. Proportion of forest area in the surrounding landscape was a significant positive predictor of wild bee abundance in orchards, with strongest effects at a GIS (Geographic Information Systems) buffer distance of 1,000 m or greater. Forest area also was positively associated with species richness, showing strongest effects at a buffer distance of 2,000 m. Nonagricultural developed land (homes, lawns, etcetera) was significantly negatively associated with species richness at buffer distances >750 m and wild bee abundance in bowl traps at all distances. Other landscape variables statistically associated with species richness or abundance of wild bees included proportion area of pasture (positive) and proportion area of roads (negative). Forest area was not associated with honey bee abundance at any buffer distance. These results provide clear evidence that the landscape surrounding apple orchards, especially the proportion of forest area, affects richness and abundance of wild bees during the spring flowering period and should be a part of sustainable land management strategies in agro-ecosystems of northeastern Wisconsin and other apple growing regions.

  7. Bee species-specific nesting material attracts a generalist parasitoid: implications for co-occurring bees in nest box enhancements.

    PubMed

    Macivor, J Scott; Salehi, Baharak

    2014-08-01

    Artificial nests (e.g., nest boxes) for bees are increasingly being used to contribute to nesting habitat enhancement for bees that use preexisting cavities to provision brood. They usually incorporate additional nesting materials that vary by species. Cavity-nesting bees are susceptible to brood parasitoids that recognize their host(s) using visual and chemical cues. Understanding the range of cues that attract parasitoids to bee nests, including human-made analogues, is important if we wish to control parasitism and increase the potential value of artificial nests as habitat-enhancement strategies. In this study, we investigated the cues associated with the orientation of the generalist brood parasitoid Monodontomerus obscurus Westwood (Hymenoptera: Torymidae) to the nests of a common cavity-nesting resin bee Megachile campanulae (Robertson) (Megachilidae). The parasitoids were reared from previously infested M. campanulae brood cells and placed into choice trials where they were presented with pairs of different nest material cues. Among different materials tested, we found that Mo. obscurus was most attracted to fresh resin collected directly from Pinus strobus trees followed by previously used resin collected from the bee nest. The parasitoid also attacked other bee species in the same nest boxes, including those that do not use resin for nesting. Our findings suggest that M. campanulae could act as a magnet, drawing parasites away from other bee hosts co-occurring in nest boxes, or, as an attractant of Mo. obscurus to nest boxes, increasing attacks on co-occurring host bee species, potentially undermining bee diversity enhancement initiatives.

  8. Nest establishment, pollination efficiency, and reproductive success of Megachile rotundata (Hymenoptera: Megachilidae) in relation to resource availability in field enclosures.

    PubMed

    Pitts-Singer, Theresa L; Bosch, Jordi

    2010-02-01

    The alfalfa leafcutting bee, Megachile rotundata (Fabricius), is used to pollinate alfalfa, Medicago sativa L., for seed production in the United States and Canada. It is difficult to reliably sustain commercial M. rotundata populations in the United States because of problems with disease, parasites, predators, and unexplained mortality. One possible explanation for early immature mortality is that, relative to floral availability, superfluous numbers of bees are released in alfalfa fields where resources quickly become limited. Our objective was to determine how M. rotundata density affects bee nesting, pollination efficiency, and reproductive success. Various numbers of bees were released into enclosures on an alfalfa field, but only 10-90% of released female bees established nests. Therefore, a "bee density index" was derived for each enclosure from the number of established females and number of open flowers over time. As the density index increased, significant reductions occurred in the number of pollinated flowers, number of nests, and number of cells produced per bee, as well as the percentage of cells that produced viable prepupae by summer's end and the percentage that produced adult bees. The percentage of cells resulting in early brood mortality (i.e., pollen balls) significantly increased as the density index increased. We conclude that bee nest establishment, pollination efficiency, and reproductive success are compromised when bee densities are high relative to floral resource availability. Open field studies are needed to determine commercial bee densities that result in sustainable bee populations and adequate pollination for profitable alfalfa seed production.

  9. The protective effect of bee venom on fibrosis causing inflammatory diseases.

    PubMed

    Lee, Woo-Ram; Pak, Sok Cheon; Park, Kwan-Kyu

    2015-11-16

    Bee venom therapy is a treatment modality that may be thousands of years old and involves the application of live bee stings to the patient's skin or, in more recent years, the injection of bee venom into the skin with a hypodermic needle. Studies have proven the effectiveness of bee venom in treating pathological conditions such as arthritis, pain and cancerous tumors. However, there has not been sufficient review to fully elucidate the cellular mechanisms of the anti-inflammatory effects of bee venom and its components. In this respect, the present study reviews current understanding of the mechanisms of the anti-inflammatory properties of bee venom and its components in the treatment of liver fibrosis, atherosclerosis and skin disease.

  10. The ability to cause infection in a pathogenic fungus uncovers a new biological feature of honey bee viruses.

    PubMed

    Li, Zhiguo; Su, Songkun; Hamilton, Michele; Yan, Limin; Chen, Yanping

    2014-07-01

    We demonstrated that honey bee viruses including Deformed wing virus (DWV), Black queen cell virus (BQCV) and Israeli acute paralysis virus (IAPV) could infect and replicate in the fungal pathogen Ascosphaera apis that causes honey bee chalkbrood disease, revealing a novel biological feature of honey bee viruses. The phylogenetic analysis show that viruses of fungal and honey bee origins form two clusters in the phylogenetic trees distinctly and that host range of honey bee viruses is dynamic. Further studies are warranted to investigate the impact of the viruses on the fitness of their fungal host and phenotypic effects the virus-fungus combination has on honey bee hosts. Published by Elsevier Inc.

  11. The Protective Effect of Bee Venom on Fibrosis Causing Inflammatory Diseases

    PubMed Central

    Lee, Woo-Ram; Pak, Sok Cheon; Park, Kwan-Kyu

    2015-01-01

    Bee venom therapy is a treatment modality that may be thousands of years old and involves the application of live bee stings to the patient’s skin or, in more recent years, the injection of bee venom into the skin with a hypodermic needle. Studies have proven the effectiveness of bee venom in treating pathological conditions such as arthritis, pain and cancerous tumors. However, there has not been sufficient review to fully elucidate the cellular mechanisms of the anti-inflammatory effects of bee venom and its components. In this respect, the present study reviews current understanding of the mechanisms of the anti-inflammatory properties of bee venom and its components in the treatment of liver fibrosis, atherosclerosis and skin disease. PMID:26580653

  12. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections

    PubMed Central

    Li, Wenfeng; Evans, Jay D.; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M.; Webster, Thomas C.; Su, Songkun

    2016-01-01

    ABSTRACT Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. IMPORTANCE Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors. Here, we demonstrate that knocking down the honey bee immune repressor-encoding nkd gene can suppress the reproduction of N. ceranae and improve the overall health of honey bees, which highlights the potential role of host-derived and RNAi-based therapeutics in controlling the infections in honey bees. The information obtained from this study will have positive implications for honey bee disease management practices. PMID:27613683

  13. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections.

    PubMed

    Li, Wenfeng; Evans, Jay D; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M; Webster, Thomas C; Su, Songkun; Chen, Yan Ping

    2016-11-15

    Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors. Here, we demonstrate that knocking down the honey bee immune repressor-encoding nkd gene can suppress the reproduction of N. ceranae and improve the overall health of honey bees, which highlights the potential role of host-derived and RNAi-based therapeutics in controlling the infections in honey bees. The information obtained from this study will have positive implications for honey bee disease management practices. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. American black bears and bee yard depredation at Okefenokee Swamp, Georgia

    USGS Publications Warehouse

    Clark, J.D.; Dobey, S.; Masters, D.V.; Scheick, B.K.; Pelton, M.R.; Sunquist, M.E.

    2005-01-01

    We studied American black bears (Ursus americanus), on the northwest periphery of Okefenokee Swamp in southeast Georgia, to assess landowner attitudes toward bears, estimate the extent of damage to commercial honey bee operations by bears, and evaluate methods to reduce bear depredations to apiaries. We collected 8,351 black bear radiolocations and identified 51 bee yards on our study area. Twenty-seven of 43 home ranges contained ≥1 bee yard, averaging 11.3 and 5.1 bee yards/home range of males (n = 7) and females (n = 20), respectively. From 1996 to 1998, we documented 7 instances of bears raiding bee yards within our study area and 6 instances in adjacent areas. All but 1 of the 13 raided yards were enclosed by electric fencing. In the 12 cases of damage to electrically fenced yards, however, the fences were not active because of depleted batteries. Based on compositional analysis, bear use of areas 800–1,400 m from bee yards was disproportionately greater than use 0–800 m from bee yards. Bears disproportionately used bay (red bay: Persea borbonia, loblolly bay: Gordonia lasianthus, and southern magnolia: Magnolia virginia), gum (water tupelo: Nyssa aquatic and black gum: N. sylvatica), and cypress (Taxodium spp.) and loblolly bay habitats, however, compared with slash pine (Pinus elliottii) or pine–oak (Quercus spp.), where bee yards usually were placed. The distribution of bear radiolocations likely reflected the use of those swamp and riparian areas, rather than avoidance of bee yards. Distances to streams from damaged bee yards (x̄ = 1,750 m) were less than from undamaged yards (x̄ = 4,442 m), and damaged bee yards were closer to unimproved roads (x̄ = 134 m) than were undamaged bee yards (x̄ = 802 m). Our analysis suggests that bee yard placement away from bear travel routes (such as streams and unimproved roads) can reduce bear depredation problems. Our results strongly indicate that working electric fences are effective deterrents to bear damage to bee yards, even in areas frequented by bears. A survey of beekeepers indicated that apiarists often relied on more expensive, less effective, and sometimes illegal methods to protect their bee yards from bears. Beekeepers within bear range should be urged to consider electric fencing, which can almost eliminate bear damage to their yards.

  15. Lethal and sublethal effects, and incomplete clearance of ingested imidacloprid in honey bees (Apis mellifera).

    PubMed

    Sánchez-Bayo, Francisco; Belzunces, Luc; Bonmatin, Jean-Marc

    2017-11-01

    A previous study claimed a differential behavioural resilience between spring or summer honey bees (Apis mellifera) and bumble bees (Bombus terrestris) after exposure to syrup contaminated with 125 µg L -1 imidacloprid for 8 days. The authors of that study based their assertion on the lack of body residues and toxic effects in honey bees, whereas bumble bees showed body residues of imidacloprid and impaired locomotion during the exposure. We have reproduced their experiment using winter honey bees subject to the same protocol. After exposure to syrup contaminated with 125 µg L -1 imidacloprid, honey bees experienced high mortality rates (up to 45%), had body residues of imidacloprid in the range 2.7-5.7 ng g -1 and exhibited abnormal behaviours (restless, apathetic, trembling and falling over) that were significantly different from the controls. There was incomplete clearance of the insecticide during the 10-day exposure period. Our results contrast with the findings reported in the previous study for spring or summer honey bees, but are consistent with the results reported for the other bee species.

  16. The spread of pathogens through trade in honey bees and their products (including queen bees and semen): overview and recent developments.

    PubMed

    Mutinelli, F

    2011-04-01

    International trade in bees and bee products is a complex issue, affected bytheir different origins and uses. The trade in bees, which poses the main risk for disease dissemination, is very active and not all transactions may be officially registered by the competent authorities. Globally, bee health continues to deteriorate as pathogens, pests, parasites and diseases are spread internationally through legitimate trade, smuggling and well-intentioned but ill-advised bee introductions by professionals. International trade rules strengthen the ability of many countries to protect bee health while trading but also carry obligations. Countries that are Members of the World Trade Organization (WTO) should only restrict imports to protect against identifiable health risks. If imports are safe, trade should be permitted. The trading rules of the WTO have given greater importance to the international standards applicable to bee health, developed by the World Organisation for Animal Health, which aims to prevent the spread of animal diseases while facilitating international trade in animals and animal products.

  17. RNAi and Antiviral Defense in the Honey Bee.

    PubMed

    Brutscher, Laura M; Flenniken, Michelle L

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.

  18. The first comprehensive molecular detection of six honey bee viruses in Iran in 2015-2016.

    PubMed

    Ghorani, Mohammadreza; Madadgar, Omid; Langeroudi, Arash Ghalyanchi; Rezapanah, Mohammadreza; Nabian, Sedigheh; Akbarein, Hesameddin; Farahani, Reza Kh; Maghsoudloo, Hossein; Abdollahi, Hamed; Forsi, Mohammad

    2017-08-01

    At least 18 viruses have been reported in the honey bee (Apis mellifera L.). However, severe diseases in honey bees are mainly caused by six viruses, and these are the most important in beekeeping. These viruses include: deformed wing virus (DWV), acute bee paralysis virus (ABPV), chronic bee paralysis virus (CBPV), sacbrood virus (SBV), kashmir bee virus (KBV), and black queen cell virus (BQCV). In this study, we evaluated 89 Iranian honey bee apiaries (during the period 2015-2016) suffering from symptoms of depopulation, sudden collapse, paralysis, or dark coloring, by employing reverse transcription-PCR. Samples were collected from four regions (Mazandaran, Hormozgan, Kurdistan, and Khorasan Razavi) of Iran. Of the 89 apiaries examined, 16 (17.97%), three (3.37%), and three (3.37%) were infected by DWV, ABPV, and CBPV, respectively. The study results for the other viruses (SBV, KBV, and BQCV) were negative. The present study evaluated the presence of the six most important honey bee viruses in bee colonies with suspected infections, and identified remarkable differences in the distribution patterns of the viruses in different geographic regions of Iran.

  19. Honey bee pathology: current threats to honey bees and beekeeping.

    PubMed

    Genersch, Elke

    2010-06-01

    Managed honey bees are the most important commercial pollinators of those crops which depend on animal pollination for reproduction and which account for 35% of the global food production. Hence, they are vital for an economic, sustainable agriculture and for food security. In addition, honey bees also pollinate a variety of wild flowers and, therefore, contribute to the biodiversity of many ecosystems. Honey and other hive products are, at least economically and ecologically rather, by-products of beekeeping. Due to this outstanding role of honey bees, severe and inexplicable honey bee colony losses, which have been reported recently to be steadily increasing, have attracted much attention and stimulated many research activities. Although the phenomenon "decline of honey bees" is far from being finally solved, consensus exists that pests and pathogens are the single most important cause of otherwise inexplicable colony losses. This review will focus on selected bee pathogens and parasites which have been demonstrated to be involved in colony losses in different regions of the world and which, therefore, are considered current threats to honey bees and beekeeping.

  20. RNAi and Antiviral Defense in the Honey Bee

    PubMed Central

    Brutscher, Laura M.; Flenniken, Michelle L.

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans. PMID:26798663

  1. Monophyly and extensive extinction of advanced eusocial bees: insights from an unexpected Eocene diversity.

    PubMed

    Engel, M S

    2001-02-13

    Advanced eusociality sometimes is given credit for the ecological success of termites, ants, some wasps, and some bees. Comprehensive study of bees fossilized in Baltic amber has revealed an unsuspected middle Eocene (ca. 45 million years ago) diversity of eusocial bee lineages. Advanced eusociality arose once in the bees with significant post-Eocene losses in diversity, leaving today only two advanced eusocial tribes comprising less than 2% of the total bee diversity, a trend analogous to that of hominid evolution. This pattern of changing diversity contradicts notions concerning the role of eusociality for evolutionary success in insects.

  2. Chemotherapeutic Studies on Schistosomiasis and Clinical Epidemiological and Immunological Studies on Malaria in Amazonas, Brazil, Along the Ituxi River.

    DTIC Science & Technology

    1979-10-01

    River, Amazonas, Brasil . Residue concentrations (ub/bee) for 5 DDT isomers DDT Bee No .1 Bee No .2 Bee No .3 Bee No .4 Bee No .5 o,p° - DDD 2.32 4.59 0.80...Supported by US ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, Maryland 21701 Grant No . DAMDI7-79-G-9450 Universidade de Brasilia D...lWhen Dat. Entered) REPOT DCUMNTATON AGEREAD INSTRUCTIONS REPOT DCUMNTATON AGEBEFORE COMPLETING FORM I. REORT UMBE2. GOVT ACCESSION NO . 3. RECIPIENT’S

  3. Predator-prey coevolution: Australian native bees avoid their spider predators.

    PubMed

    Heiling, A M; Herberstein, M E

    2004-05-07

    Australian crab spiders Thomisus spectabilis manipulate visual flower signals to lure introduced Apis mellifera. We gave Australian native bees, Austroplebia australis, the choice between two white daisies, Chrysanthemum frutescens, one of them occupied by a crab spider. The colour contrast between flowers and spiders affected the behaviour of native bees. Native bees approached spider-occupied flowers more frequently. However, native bees avoided flowers occupied by spiders and landed on vacant flowers more frequently. In contrast to honeybees that did not coevolve with T. spectabilis, Australian native bees show an anti-predatory response to avoid flowers occupied by this predator.

  4. Predator-prey coevolution: Australian native bees avoid their spider predators.

    PubMed Central

    Heiling, A M; Herberstein, M E

    2004-01-01

    Australian crab spiders Thomisus spectabilis manipulate visual flower signals to lure introduced Apis mellifera. We gave Australian native bees, Austroplebia australis, the choice between two white daisies, Chrysanthemum frutescens, one of them occupied by a crab spider. The colour contrast between flowers and spiders affected the behaviour of native bees. Native bees approached spider-occupied flowers more frequently. However, native bees avoided flowers occupied by spiders and landed on vacant flowers more frequently. In contrast to honeybees that did not coevolve with T. spectabilis, Australian native bees show an anti-predatory response to avoid flowers occupied by this predator. PMID:15252982

  5. Honey bee surveillance: a tool for understanding and improving honey bee health.

    PubMed

    Lee, Kathleen; Steinhauer, Nathalie; Travis, Dominic A; Meixner, Marina D; Deen, John; vanEngelsdorp, Dennis

    2015-08-01

    Honey bee surveillance systems are increasingly used to characterize honey bee health and disease burdens of bees in different regions and/or over time. In addition to quantifying disease prevalence, surveillance systems can identify risk factors associated with colony morbidity and mortality. Surveillance systems are often observational, and prove particularly useful when searching for risk factors in real world complex systems. We review recent examples of surveillance systems with particular emphasis on how these efforts have helped increase our understanding of honey bee health. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Differences between the quality of strawberries (Fragaria x ananassa) pollinated by the stingless bees Scaptotrigona aff. depilis and Nannotrigona testaceicornis.

    PubMed

    Roselino, A C; Santos, S B; Hrncir, M; Bego, L R

    2009-05-12

    We investigated the success of two stingless bee species in pollinating strawberries in greenhouses. Three greenhouses and one open field area were used; one greenhouse had only strawberry plants (control), another (G1) had three colonies of Scaptotrigona aff. depilis and another (G2) had three colonies of Nannotrigona testaceicornis. In the open field area, the flowers could be visited by any bee. The total production of fruits was counted and a random sample (N = 100) from each area was used to measure weight, length, circumference, and achenes number (N = 5). The percentages of deformed strawberries were: 23% (no bees); 2% (greenhouses with bees) and 13% (open field). The strawberries from the greenhouse with N. testaceicornis and the open field were heavier than those from the greenhouses with no bees and with S. depilis. The fruit circumference was largest in the greenhouses with bees. The achenes number did not differ among the experimental areas. The strawberries produced in the greenhouses with stingless bees had more quality and greater commercial value than the fruits produced in the open field area and the greenhouse without bees. We conclude that stingless bees are efficient pollinators of strawberry flowers cultivated in greenhouses.

  7. Pheromonal regulation of starvation resistance in honey bee workers ( Apis mellifera)

    NASA Astrophysics Data System (ADS)

    Fischer, Patrick; Grozinger, Christina M.

    2008-08-01

    Most animals can modulate nutrient storage pathways according to changing environmental conditions, but in honey bees nutrient storage is also modulated according to changing behavioral tasks within a colony. Specifically, bees involved in brood care (nurses) have higher lipid stores in their abdominal fat bodies than forager bees. Pheromone communication plays an important role in regulating honey bee behavior and physiology. In particular, queen mandibular pheromone (QMP) slows the transition from nursing to foraging. We tested the effects of QMP exposure on starvation resistance, lipid storage, and gene expression in the fat bodies of worker bees. We found that indeed QMP-treated bees survived much longer compared to control bees when starved and also had higher lipid levels. Expression of vitellogenin RNA, which encodes a yolk protein that is found at higher levels in nurses than foragers, was also higher in the fat bodies of QMP-treated bees. No differences were observed in expression of genes involved in insulin signaling pathways, which are associated with nutrient storage and metabolism in a variety of species; thus, other mechanisms may be involved in increasing the lipid stores. These studies demonstrate that pheromone exposure can modify nutrient storage pathways and fat body gene expression in honey bees and suggest that chemical communication and social interactions play an important role in altering metabolic pathways.

  8. Social Modulation of Stress Reactivity and Learning in Young Worker Honey Bees

    PubMed Central

    Mercer, Alison R.

    2014-01-01

    Alarm pheromone and its major component isopentylacetate induce stress-like responses in forager honey bees, impairing their ability to associate odors with a food reward. We investigated whether isopentylacetate exposure decreases appetitive learning also in young worker bees. While isopentylacetate-induced learning deficits were observed in guards and foragers collected from a queen-right colony, learning impairments resulting from exposure to this pheromone could not be detected in bees cleaning cells. As cell cleaners are generally among the youngest workers in the colony, effects of isopentylacetate on learning behavior were examined further using bees of known age. Adult workers were maintained under laboratory conditions from the time of adult emergence. Fifty percent of the bees were exposed to queen mandibular pheromone during this period, whereas control bees were not exposed to this pheromone. Isopentylacetate-induced learning impairments were apparent in young (less than one week old) controls, but not in bees of the same age exposed to queen mandibular pheromone. This study reveals young worker bees can exhibit a stress-like response to alarm pheromone, but isopentylacetate-induced learning impairments in young bees are suppressed by queen mandibular pheromone. While isopentylacetate exposure reduced responses during associative learning (acquisition), it did not affect one-hour memory retrieval. PMID:25470128

  9. Diverse Microbiota Identified in Whole Intact Nest Chambers of the Red Mason Bee Osmia bicornis (Linnaeus 1758)

    PubMed Central

    Keller, Alexander; Grimmer, Gudrun; Steffan-Dewenter, Ingolf

    2013-01-01

    Microbial activity is known to have profound impact on bee ecology and physiology, both by beneficial and pathogenic effects. Most information about such associations is available for colony-building organisms, and especially the honey bee. There, active manipulations through worker bees result in a restricted diversity of microbes present within the colony environment. Microbial diversity in solitary bee nests remains unstudied, although their larvae face a very different situation compared with social bees by growing up in isolated compartments. Here, we assessed the microbiota present in nests and pre-adults of Osmia bicornis, the red mason bee, by culture-independent pyrosequencing. We found high bacterial diversity not comparable with honey bee colonies. We identified a variety of bacteria potentially with positive or negative interactions for bee larvae. However, most of the other diverse bacteria present in the nests seem to originate from environmental sources through incorporated nest building material and stored pollen. This diversity of microorganisms may cause severe larval mortality and require specific physiological or symbiotic adaptations against microbial threats. They may however also profit from such a diverse environment through gain of mutualistic partners. We conclude that further studies of microbiota interaction in solitary bees will improve the understanding of fitness components and populations dynamics. PMID:24205188

  10. Response diversity of wild bees to overwintering temperatures.

    PubMed

    Fründ, Jochen; Zieger, Sarah L; Tscharntke, Teja

    2013-12-01

    Biodiversity can provide insurance against environmental change, but only if species differ in their response to environmental conditions (response diversity). Wild bees provide pollination services to wild and crop plants, and response diversity might insure this function against changing climate. To experimentally test the hypothesis that bee species differ in their response to increasing winter temperature, we stored cocoons of nine bee species at different temperatures during the winter (1.5-9.5 °C). Bee species differed significantly in their responses (weight loss, weight at emergence and emergence date). The developmental stage during the winter explained some of these differences. Bee species overwintering as adults generally showed decreased weight and earlier emergence with increasing temperature, whereas bee species overwintering in pre-imaginal stages showed weaker or even opposite responses. This means that winter warming will likely affect some bee species negatively by increasing energy expenditure, while others are less sensitive presumably due to different physiology. Likewise, species phenologies will respond differently to winter warming, potentially affecting plant-pollinator interactions. Responses are not independent of current flight periods: bees active in spring will likely show the strongest phenological advances. Taken together, wild bee diversity provides response diversity to climate change, which may be the basis for an insurance effect.

  11. Diverse microbiota identified in whole intact nest chambers of the red mason bee Osmia bicornis (Linnaeus 1758).

    PubMed

    Keller, Alexander; Grimmer, Gudrun; Steffan-Dewenter, Ingolf

    2013-01-01

    Microbial activity is known to have profound impact on bee ecology and physiology, both by beneficial and pathogenic effects. Most information about such associations is available for colony-building organisms, and especially the honey bee. There, active manipulations through worker bees result in a restricted diversity of microbes present within the colony environment. Microbial diversity in solitary bee nests remains unstudied, although their larvae face a very different situation compared with social bees by growing up in isolated compartments. Here, we assessed the microbiota present in nests and pre-adults of Osmia bicornis, the red mason bee, by culture-independent pyrosequencing. We found high bacterial diversity not comparable with honey bee colonies. We identified a variety of bacteria potentially with positive or negative interactions for bee larvae. However, most of the other diverse bacteria present in the nests seem to originate from environmental sources through incorporated nest building material and stored pollen. This diversity of microorganisms may cause severe larval mortality and require specific physiological or symbiotic adaptations against microbial threats. They may however also profit from such a diverse environment through gain of mutualistic partners. We conclude that further studies of microbiota interaction in solitary bees will improve the understanding of fitness components and populations dynamics.

  12. How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera.

    PubMed

    Aronstein, Katherine A; Saldivar, Eduardo; Vega, Rodrigo; Westmiller, Stephanie; Douglas, Angela E

    2012-06-27

    We investigated the effect of the parasitic mite Varroa destructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa‑infested bees displayed elevated titer of Deformed Wing Virus (DWV), suggestive of depressed capacity to limit viral replication. Expression of genes coding three anti-microbial peptides (defensin1, abaecin, hymenoptaecin) was either not significantly different between Varroa-infested and uninfested bees or was significantly elevated in Varroa-infested bees, varying with sampling date and bee developmental age. The effect of Varroa on nutritional indices of the bees was complex, with protein, triglyceride, glycogen and sugar levels strongly influenced by life-stage of the bee and individual colony. Protein content was depressed and free amino acid content elevated in Varroa-infested pupae, suggesting that protein synthesis, and consequently growth, may be limited in these insects. No simple relationship between the values of nutritional and immune-related indices was observed, and colony-scale effects were indicated by the reduced weight of pupae in colonies with high Varroa abundance, irrespective of whether the individual pupa bore Varroa.

  13. How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera

    PubMed Central

    Aronstein, Katherine A.; Saldivar, Eduardo; Vega, Rodrigo; Westmiller, Stephanie; Douglas, Angela E.

    2012-01-01

    We investigated the effect of the parasitic mite Varroadestructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa‑infested bees displayed elevated titer of Deformed Wing Virus (DWV), suggestive of depressed capacity to limit viral replication. Expression of genes coding three anti-microbial peptides (defensin1, abaecin, hymenoptaecin) was either not significantly different between Varroa-infested and uninfested bees or was significantly elevated in Varroa-infested bees, varying with sampling date and bee developmental age. The effect of Varroa on nutritional indices of the bees was complex, with protein, triglyceride, glycogen and sugar levels strongly influenced by life-stage of the bee and individual colony. Protein content was depressed and free amino acid content elevated in Varroa-infested pupae, suggesting that protein synthesis, and consequently growth, may be limited in these insects. No simple relationship between the values of nutritional and immune-related indices was observed, and colony-scale effects were indicated by the reduced weight of pupae in colonies with high Varroa abundance, irrespective of whether the individual pupa bore Varroa. PMID:26466617

  14. Big city Bombus: using natural history and land-use history to find significant environmental drivers in bumble-bee declines in urban development.

    PubMed

    Glaum, Paul; Simao, Maria-Carolina; Vaidya, Chatura; Fitch, Gordon; Iulinao, Benjamin

    2017-05-01

    Native bee populations are critical sources of pollination. Unfortunately, native bees are declining in abundance and diversity. Much of this decline comes from human land-use change. While the effects of large-scale agriculture on native bees are relatively well understood, the effects of urban development are less clear. Understanding urbanity's effect on native bees requires consideration of specific characteristics of both particular bee species and their urban landscape. We surveyed bumble-bee ( Bombus spp.) abundance and diversity in gardens across multiple urban centres in southeastern Michigan. There are significant declines in Bombus abundance and diversity associated with urban development when measured on scales in-line with Bombus flight ability. These declines are entirely driven by declines in females; males showed no response to urbanization. We hypothesize that this is owing to differing foraging strategies between the sexes, and it suggests reduced Bombus colony density in more urban areas. While urbanity reduced Bombus prevalence, results in Detroit imply that 'shrinking cities' potentially offer unique urban paradigms that must be considered when studying wild bee ecology. Results show previously unidentified differences in the effects of urbanity on female and male bumble-bee populations and suggest that urban landscapes can be managed to support native bee conservation.

  15. Big city Bombus: using natural history and land-use history to find significant environmental drivers in bumble-bee declines in urban development

    PubMed Central

    Simao, Maria-Carolina; Vaidya, Chatura; Fitch, Gordon; Iulinao, Benjamin

    2017-01-01

    Native bee populations are critical sources of pollination. Unfortunately, native bees are declining in abundance and diversity. Much of this decline comes from human land-use change. While the effects of large-scale agriculture on native bees are relatively well understood, the effects of urban development are less clear. Understanding urbanity's effect on native bees requires consideration of specific characteristics of both particular bee species and their urban landscape. We surveyed bumble-bee (Bombus spp.) abundance and diversity in gardens across multiple urban centres in southeastern Michigan. There are significant declines in Bombus abundance and diversity associated with urban development when measured on scales in-line with Bombus flight ability. These declines are entirely driven by declines in females; males showed no response to urbanization. We hypothesize that this is owing to differing foraging strategies between the sexes, and it suggests reduced Bombus colony density in more urban areas. While urbanity reduced Bombus prevalence, results in Detroit imply that ‘shrinking cities’ potentially offer unique urban paradigms that must be considered when studying wild bee ecology. Results show previously unidentified differences in the effects of urbanity on female and male bumble-bee populations and suggest that urban landscapes can be managed to support native bee conservation. PMID:28573023

  16. Sucrose acceptance, discrimination and proboscis responses of honey bees (Apis mellifera L.) in the field and the laboratory.

    PubMed

    Mujagic, Samir; Erber, Joachim

    2009-04-01

    Laboratory studies in honey bees have shown positive correlations between sucrose responsiveness, division of labour and learning. We tested the relationships between sucrose acceptance and discrimination in the field and responsiveness in the laboratory. Based on acceptance in the field three groups of bees were differentiated: (1) bees that accept sucrose concentrations >10%, (2) bees that accept some but not all of the sucrose concentrations <10% and water, and (3) bees that accept water and all offered sucrose concentrations. Sucrose acceptance can be described in a model in which sucrose- and water-dependent responses interact additively. Responsiveness to sucrose was tested in the same bees in the laboratory by measuring the proboscis extension response (PER). The experiments demonstrated that PER responsiveness is lower than acceptance in the field and that it is not possible to infer from the PER measurements in the laboratory those concentrations the respective bees accepted in the field. Discrimination between sucrose concentrations was tested in three groups of free-flying bees collecting low, intermediate or high concentrations of sucrose. The experiments demonstrated that bees can discriminate between concentrations differences down to 0.2 relative log units. There exist only partial correlations between discrimination, acceptance and PER responsiveness.

  17. Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food.

    PubMed

    Liao, Ling-Hsiu; Wu, Wen-Yen; Berenbaum, May R

    2017-11-21

    While the natural foods of the western honey bee (Apis mellifera) contain diverse phytochemicals, in contemporary agroecosystems honey bees also encounter pesticides as floral tissue contaminants. Whereas some ubiquitous phytochemicals in bee foods up-regulate detoxification and immunity genes, thereby benefiting nestmates, many agrochemical pesticides adversely affect bee health even at sublethal levels. How honey bees assess xenobiotic risk to nestmates as they forage is poorly understood. Accordingly, we tested nine phytochemicals ubiquitous in nectar, pollen, or propolis, as well as five synthetic xenobiotics that frequently contaminate hives-two herbicides (atrazine and glyphosate) and three fungicides (boscalid, chlorothalonil, and prochloraz). In semi-field free-flight experiments, bees were offered a choice between paired sugar water feeders amended with either a xenobiotic or solvent only (control). Among the phytochemicals, foragers consistently preferred quercetin at all five concentrations tested, as evidenced by both visitation frequency and consumption rates. This preference may reflect the long evolutionary association between honey bees and floral tissues. Of pesticides eliciting a response, bees displayed a preference at specific concentrations for glyphosate and chlorothalonil. This paradoxical preference may account for the frequency with which these pesticides occur as hive contaminants and suggests that they present a greater risk factor for honey bee health than previously suspected.

  18. Individual perception of bees: Between perceived danger and willingness to protect

    PubMed Central

    Bogner, Franz Xaver

    2017-01-01

    The current loss of biodiversity has found its way into the media. Especially the loss of bees as pollinators has recently received much attention aiming to increase public awareness about the consequence of pollinator loss and strategies for protection. However, pollinating insects like bees often prompt considerable anxiety. Negative emotions such as fear and disgust often lead to lack of support for conservation and appropriate initiatives for protection. Our study monitored perceptions of bees in the contexts of conservation and danger bees possibly represent by applying a semantic differential using contrasting adjectives under the heading “I think bees are…”. Additionally, open questions were applied to examine individual perceptions of danger and conservation of bees. Respondents were students from primary school, secondary school and university. We compared these novices (n = 499) to experts (beekeepers, n = 153). An exploratory factor analysis of the semantic differential responses yielded three major oblique factors: Interest, Danger and Conservation & Usefulness. The inter-correlations of these factors were significant. Although all subgroups showed an overall high willingness to protect bees, the perception of danger scored medium. The individual experience of bee stings was the most prevalent reason for expressing fear. Educational programs focusing on pollinator conservation may reduce the perceived danger through removing misinformation, and supporting interest in the species. Based on the overall positive attitude toward bees, we suggest introducing bees (e.g., Apis mellifera) as a flagship species for pollinator conservation. PMID:28662124

  19. Annual dynamics of wild bee densities: attractiveness and productivity effects of oilseed rape.

    PubMed

    Riedinger, Verena; Mitesser, Oliver; Hovestadt, Thomas; Steffan-Dewenter, Ingolf; Holzschuh, Andrea

    2015-05-01

    Mass-flowering crops may affect long-term population dynamics, but effects on pollinators have never been studied across several years. We monitored wild bees in oilseed rape fields in 16 landscapes in Germany in two consecutive years. Effects on bee densities of landscape oilseed rape cover in the years of monitoring and in the previous years were evaluated with landscape data from three consecutive years. We fit empirical data to a mechanistic model to provide estimates for oilseed rape attractiveness and its effect on bee productivity in comparison to the rest of the landscape, and we evaluated consequences for pollinator densities in consecutive years. Our results show that high oilseed rape cover in the previous year enhances current densities of wild bees (except for bumble bees). Moreover, we show a strong attractiveness of and dilution on (i.e., decreasing bee densities with increasing landscape oilseed rape cover) oilseed rape for bees during flowering in the current year, modifying the effect of the previous year's oilseed rape cover in the case of wild bees (excluding Bombus). As long as other factors such as nesting sites or natural enemies do not limit bee reproduction, our findings suggest long-term positive effects of mass-flowering crops on bee populations, at least for non-Bombus generalists, which possibly help to maintain crop pollination services even when crop area increases. Similar effects are conceivable for other organisms providing ecosystem services in annual crops and should be considered in future studies.

  20. Immunogene and viral transcript dynamics during parasitic Varroa destructor mite infection of developing honey bee (Apis mellifera) pupae.

    PubMed

    Kuster, Ryan D; Boncristiani, Humberto F; Rueppell, Olav

    2014-05-15

    The ectoparasitic Varroa destructor mite is a major contributor to the ongoing honey bee health crisis. Varroa interacts with honey bee viruses, exacerbating their pathogenicity. In addition to vectoring viruses, immunosuppression of the developing honey bee hosts by Varroa has been proposed to explain the synergy between viruses and mites. However, the evidence for honey bee immune suppression by V. destructor is contentious. We systematically studied the quantitative effects of experimentally introduced V. destructor mites on immune gene expression at five specific time points during the development of the honey bee hosts. Mites reproduced normally and were associated with increased titers of deformed wing virus in the developing bees. Our data on different immune genes show little evidence for immunosuppression of honey bees by V. destructor. Experimental wounding of developing bees increases relative immune gene expression and deformed wing virus titers. Combined, these results suggest that mite feeding activity itself and not immunosuppression may contribute to the synergy between viruses and mites. However, our results also suggest that increased expression of honey bee immune genes decreases mite reproductive success, which may be explored to enhance mite control strategies. Finally, our expression data for multiple immune genes across developmental time and different experimental treatments indicates co-regulation of several of these genes and thus improves our understanding of the understudied honey bee immune system. © 2014. Published by The Company of Biologists Ltd.

  1. Lack of pollinators limits fruit production in commercial blueberry (Vaccinium corymbosum).

    PubMed

    Benjamin, Faye E; Winfree, Rachael

    2014-12-01

    Modern agriculture relies on domesticated pollinators such as the honey bee (Apis mellifera L.), and to a lesser extent on native pollinators, for the production of animal-pollinated crops. There is growing concern that pollinator availability may not keep pace with increasing agricultural production. However, whether crop production is in fact pollen-limited at the field scale has rarely been studied. Here, we ask whether commercial highbush blueberry (Vaccinium corymbosum L.) production in New Jersey is limited by a lack of pollination even when growers provide honey bees at recommended densities. We studied two varieties of blueberry over 3 yr to determine whether blueberry crop production is pollen-limited and to measure the relative contributions of honey bees and native bees to blueberry pollination. We found two lines of evidence for pollen limitation. First, berries receiving supplemental hand-pollination were generally heavier than berries receiving ambient pollination. Second, mean berry mass increased significantly and nonasymptotically with honey bee flower visitation rate. While honey bees provided 86% of pollination and thus drove the findings reported above, native bees still contributed 14% of total pollination even in our conventionally managed, high-input agricultural system. Honey bees and native bees were also similarly efficient as pollinators on a per-visit basis. Overall, our study shows that pollination can be a limiting factor in commercial fruit production. Yields might increase with increased honey bee stocking rates and improved dispersal of hives within crop fields, and with habitat restoration to increase pollination provided by native bees.

  2. Comparative susceptibility and immune responses of Asian and European honey bees to the American foulbrood pathogen, Paenibacillus larvae.

    PubMed

    Krongdang, Sasiprapa; Evans, Jay D; Chen, Yanping; Mookhploy, Wannapha; Chantawannakul, Panuwan

    2018-03-26

    American foulbrood (AFB) disease is caused by Paenibacillus larvae. Currently, this pathogen is widespread in the European honey bee-Apis mellifera. However, little is known about infectivity and pathogenicity of P. larvae in the Asiatic cavity-nesting honey bees, Apis cerana. Moreover, comparative knowledge of P. larvae infectivity and pathogenicity between both honey bee species is scarce. In this study, we examined susceptibility, larval mortality, survival rate and expression of genes encoding antimicrobial peptides (AMPs) including defensin, apidaecin, abaecin, and hymenoptaecin in A. mellifera and A. cerana when infected with P. larvae. Our results showed similar effects of P. larvae on the survival rate and patterns of AMP gene expression in both honey bee species when bee larvae are infected with spores at the median lethal concentration (LC 50 ) for A. mellifera. All AMPs of infected bee larvae showed significant upregulation compared with noninfected bee larvae in both honey bee species. However, larvae of A. cerana were more susceptible than A. mellifera when the same larval ages and spore concentration of P. larvae were used. It also appears that A. cerana showed higher levels of AMP expression than A. mellifera. This research provides the first evidence of survival rate, LC 50 and immune response profiles of Asian honey bees, A. cerana, when infected by P. larvae in comparison with the European honey bee, A. mellifera. © 2018 Institute of Zoology, Chinese Academy of Sciences.

  3. Historical perspective and human consequences of Africanized bee stings in the Americas.

    PubMed

    Ferreira, R S; Almeida, R A M B; Barraviera, S R C S; Barraviera, B

    2012-01-01

    In 1956, Africanized bees began to spread in the American continent from southern Brazil, where original African bees mated with European bees. A few years later, in 1990, these Africanized bees reached the United States and were found in Texas. Currently, these hybrid bees are found in several North American states and will probably reach the Canadian border in the future. Although the presence of Africanized bees had produced positive effects on Brazilian economy, including improvement in crop pollination and in honey production, turning Brazil into a major exporter, the negative impacts-such as swarming, aggressive behavior, and the ability to mass attack-resulted in serious and fatal envenomation with humans and animals. Victims of bee attacks usually develop a severe envenomation syndrome characterized by the release of a large amount of cytokines [interleukins (IL) IL-1, IL-6, IL-8], and tumor necrosis factor (TNF). Subsequently, such cytokines produce an acute inflammatory response that triggers adverse effects on skeletal muscles; bone marrow; hepatic and renal functions; and cardiovascular, central nervous, and immune systems. Finally, the aim of the present review is to study historical characteristics and current status of Africanized bees' spread, the composition of their venom, the impact of the bees on the Brazilian economy and ecology, and clinical aspects of their stings including immune response, and to suggest a protocol for bee sting management since there is no safe and effective antivenom available.

  4. Ubiquitous health monitoring system for multiple users using a ZigBee and WLAN dual-network.

    PubMed

    Cha, Yong Dae; Yoon, Gilwon

    2009-11-01

    A ubiquitous health monitoring system for multiple users was developed based on a ZigBee and wireless local area network (WLAN) dual-network. A compact biosignal monitoring unit (BMU) for measuring electrocardiogram (ECG), photoplethysmogram (PPG), and temperature was also developed. A single 8-bit microcontroller operated the BMU including most of digital filtering and wireless communication. The BMU with its case was reduced to 55 x 35 x 15 mm and 33 g. In routine use, vital signs of 6 bytes/sec (heart rate, temperature, pulse transit time) per each user were transmitted through a ZigBee module even though all the real-time data were recorded in a secure digital memory of the BMU. In an emergency or when need arises, a channel of a particular user was switched to another ZigBee module, called the emergency module, that sent all ECG and PPG waveforms in real time. Each emergency ZigBee module handled up to a few users. Data from multiple users were wirelessly received by the ZigBee receiver modules in a controller called ZigBee-WLAN gateway, where the ZigBee modules were connected to a WLAN module. This WLAN module sent all data wirelessly to a monitoring center. Operating the dual modes of ZigBee/WLAN utilized an advantage of ZigBee by handling multiple users with minimum power consumption, and overcame the ZigBee limitation of low data rate. This dual-network system for LAN is economically competitive and reliable.

  5. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    PubMed Central

    2009-01-01

    Background Vascular endothelial growth factor (VEGF) is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ), bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs). Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE)]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases. PMID:19917137

  6. Medicinal and cosmetic uses of Bee's Honey - A review.

    PubMed

    Ediriweera, E R H S S; Premarathna, N Y S

    2012-04-01

    Bee's honey is one of the most valued and appreciated natural substances known to mankind since ancient times. There are many types of bee's honey mentioned in Ayurveda. Their effects differ and 'Makshika' is considered medicinally the best. According to modern scientific view, the best bee's honey is made by Apis mellifera (Family: Apidae). In Sri Lanka, the predominant honey-maker bee is Apis cerana. The aim of this survey is to emphasize the importance of bee's honey and its multitude of medicinal, cosmetic and general values. Synonyms, details of formation, constitution, properties, and method of extraction and the usages of bee's honey are gathered from text books, traditional and Ayurvedic physicians of Western and Southern provinces, villagers of 'Kalahe' in Galle district of Sri Lanka and from few search engines. Fresh bee's honey is used in treatment of eye diseases, throat infections, bronchial asthma, tuberculosis, hiccups, thirst, dizziness, fatigue, hepatitis, worm infestation, constipation, piles, eczema, healing of wounds, ulcers and used as a nutritious, easily digestible food for weak people. It promotes semen, mental health and used in cosmetic purposes. Old bee's honey is used to treat vomiting, diarrhea, rheumatoid arthritis, obesity, diabetes mellitus and in preserving meat and fruits. Highly popular in cosmetic treatment, bee's honey is used in preparing facial washes, skin moisturizers, hair conditioners and in treatment of pimples. Bee's honey could be considered as one of the finest products of nature that has a wide range of beneficial uses.

  7. THE BEE AND RADIOACTIVITY (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordau, C.-G.

    A brief resume is given of research done on the bee using radioisotopes. The labeling of the bee with radioactive gold, the radioresistance of the bee, the structure of the hive, and the food exchanges within the hive are the topics discussed. (J.S.R.)

  8. Chalkbrood disease in honey bees

    USDA-ARS?s Scientific Manuscript database

    Chalkbrood is an invasive mycosis in honey bees (Apis mellifera L.) produced by Ascosphaera apis (Maassen ex Claussen) Olive and Spiltoir (Spiltoir, 1955) that exclusively affects bee brood. Although fatal to individual larvae, the disease does not usually destroy an entire bee colony. However, it c...

  9. Interaction effects of different drivers of wild bee decline and their influence on host-pathogen dynamics.

    PubMed

    Meeus, Ivan; Pisman, Matti; Smagghe, Guy; Piot, Niels

    2018-04-01

    Wild bee decline is a multi-factorial problem, yet it is crucial to understand the impact of a single driver. Hereto the interaction effects of wild bee decline with multiple natural and anthropogenic stressors need to be clear. This is also true for the driver 'pathogens', as stressor induced disturbances of natural host-pathogen dynamics can unbalance settled virulence equilibria. Invasive species, bee domestication, habitat loss, climate changes and insecticides are recognized drivers of wild bee decline, but all influence host-pathogen dynamics as well. Many wild bee pathogens have multiple hosts, which relaxes the host-density limitation of virulence evolution. In conclusion, disturbances of bee-pathogen dynamics can be compared to a game of Russian roulette. Copyright © 2018. Published by Elsevier Inc.

  10. Seasonality of honey bee (Apis mellifera) micronutrient supplementation and environmental limitation.

    PubMed

    Bonoan, Rachael E; O'Connor, Luke D; Starks, Philip T

    Honey bees (Apis mellifera) obtain micronutrients from floral resources and "dirty", or turbid, water. Past research suggests that honey bees drink dirty water to supplement the micronutrients in their floral diet, however, there is no research that directly investigates how floral micronutrient content varies with water preferences, or how micronutrients in honey bees themselves vary seasonally. In this study, we used chemical analyses (ICP-OES) to investigate seasonal variation of micronutrients in honey bee workers and floral resources in the field. We found that honey bees likely use mineralized water to supplement their floral diet and may be limited by availability of calcium and potassium. Our results also suggest that honey bees may seasonally seek specific micronutrients, perhaps in preparation for overwintering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Effects of a neonicotinoid pesticide on thermoregulation of African honey bees (Apis mellifera scutellata).

    PubMed

    Tosi, Simone; Démares, Fabien J; Nicolson, Susan W; Medrzycki, Piotr; Pirk, Christian W W; Human, Hannelie

    Thiamethoxam is a widely used neonicotinoid pesticide that, as agonist of the nicotinic acetylcholine receptors, has been shown to elicit a variety of sublethal effects in honey bees. However, information concerning neonicotinoid effects on honey bee thermoregulation is lacking. Thermoregulation is an essential ability for the honey bee that guarantees the success of foraging and many in-hive tasks, especially brood rearing. We tested the effects of acute exposure to thiamethoxam (0.2, 1, 2ng/bee) on the thorax temperatures of foragers exposed to low (22°C) and high (33°C) temperature environments. Thiamethoxam significantly altered honey bee thorax temperature at all doses tested; the effects elicited varied depending on the environmental temperature and pesticide dose to which individuals were exposed. When bees were exposed to the high temperature environment, the high dose of thiamethoxam increased their thorax temperature 1-2h after exposure. When bees were exposed to the low temperature, the higher doses of the neonicotinoid reduced bee thorax temperatures 60-90min after treatment. In both experiments, the neonicotinoid decreased the temperature of bees the day following the exposure. After a cold shock (5min at 4°C), the two higher doses elicited a decrease of the thorax temperature, while the lower dose caused an increase, compared to the control. These alterations in thermoregulation caused by thiamethoxam may affect bee foraging activity and a variety of in-hive tasks, likely leading to negative consequences at the colony level. Our results shed light on sublethal effect of pesticides which our bees have to deal with. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Acute Toxicity of Permethrin, Deltamethrin, and Etofenprox to the Alfalfa Leafcutting Bee.

    PubMed

    Piccolomini, Alyssa M; Whiten, Shavonn R; Flenniken, Michelle L; O'Neill, Kevin M; Peterson, Robert K D

    2018-05-28

    Current regulatory requirements for insecticide toxicity to nontarget insects focus on the honey bee, Apis mellifera (L.; Hymenoptera: Apidae), but this species cannot represent all insect pollinator species in terms of response to insecticides. Therefore, we characterized the toxicity of pyrethroid insecticides used for adult mosquito management (permethrin, deltamethrin, and etofenprox) on a nontarget insect, the adult alfalfa leafcutting bee, Megachile rotundata (F.; Hymenoptera: Megachilidae) in two separate studies. In the first study, the doses causing 50 and 90% mortality (LD50 and LD90, respectively) were used as endpoints and 2-d-old adult females were exposed to eight concentrations ranging from 0.0075 to 0.076 μg/bee for permethrin and etofenprox, and 0.0013-0.0075 μg/bee for deltamethrin. For the second study, respiration rates of female M. rotundata were also recorded for 2 h after bees were dosed at the LD50 values to give an indication of stress response. Results indicated a relatively similar LD50 for permethrin and etofenprox, 0.057 and 0.051 μg/bee, respectively, and a more toxic response, 0.0016 μg/bee for deltamethrin. Comparatively, female A. mellifera workers have a LD50 value of 0.024 μg/bee for permethrin and 0.015 μg/bee for etofenprox indicating that female M. rotundata are less susceptible to topical doses of these insecticides, except for deltamethrin, where both A. mellifera and M. rotundata have an identical LD50 of 0.0016 μg/bee. Respiration rates comparing each active ingredient to control groups, as well as rates between each active ingredient, were statistically different (P < 0.0001). The addition of these results to existing information on A. mellifera may provide more insights on how other economically beneficial and nontarget bees respond to pyrethroids.

  13. Land use in the Northern Great Plains region of the U.S. influences the survival and productivity of honey bee colonies

    USGS Publications Warehouse

    Smart, Matthew; Pettis, Jeff S.; Euliss, Ned H. Jr.; Spivak, Marla S.

    2016-01-01

    The Northern Great Plains region of the US annually hosts a large portion of commercially managed U.S. honey bee colonies each summer. Changing land use patterns over the last several decades have contributed to declines in the availability of bee forage across the region, and the future sustainability of the region to support honey bee colonies is unclear. We examined the influence of varying land use on the survivorship and productivity of honey bee colonies located in six apiaries within the Northern Great Plains state of North Dakota, an area of intensive agriculture and high density of beekeeping operations. Land use surrounding the apiaries was quantified over three years, 2010–2012, and survival and productivity of honey bee colonies were determined in response to the amount of bee forage land within a 3.2-km radius of each apiary. The area of uncultivated forage land (including pasture, USDA conservation program fields, fallow land, flowering woody plants, grassland, hay land, and roadside ditches) exerted a positive impact on annual apiary survival and honey production. Taxonomic diversity of bee-collected pollen and pesticide residues contained therein varied seasonally among apiaries, but overall were not correlated to large-scale land use patterns or survival and honey production. The predominant flowering plants utilized by honey bee colonies for pollen were volunteer species present in unmanaged (for honey bees), and often ephemeral, lands; thus placing honey bee colonies in a precarious situation for acquiring forage and nutrients over the entire growing season. We discuss the implications for land management, conservation, and beekeeper site selection in the Northern Great Plains to adequately support honey bee colonies and insure long term security for pollinator-dependent crops across the entire country.

  14. Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State.

    PubMed

    Dolezal, Adam G; Carrillo-Tripp, Jimena; Miller, W Allen; Bonning, Bryony C; Toth, Amy L

    2016-01-01

    As key pollinators, honey bees are crucial to many natural and agricultural ecosystems. An important factor in the health of honey bees is the availability of diverse floral resources. However, in many parts of the world, high-intensity agriculture could result in a reduction in honey bee forage. Previous studies have investigated how the landscape surrounding honey bee hives affects some aspects of honey bee health, but to our knowledge there have been no investigations of the effects of intensively cultivated landscapes on indicators of individual bee health such as nutritional physiology and pathogen loads. Furthermore, agricultural landscapes in different regions vary greatly in forage and land management, indicating a need for additional information on the relationship between honey bee health and landscape cultivation. Here, we add to this growing body of information by investigating differences in nutritional physiology between honey bees kept in areas of comparatively low and high cultivation in an area generally high agricultural intensity in the Midwestern United States. We focused on bees collected directly before winter, because overwintering stress poses one of the most serious problems for honey bees in temperate climates. We found that honey bees kept in areas of lower cultivation exhibited higher lipid levels than those kept in areas of high cultivation, but this effect was observed only in colonies that were free of Varroa mites. Furthermore, we found that the presence of mites was associated with lower lipid levels and higher titers of deformed wing virus (DWV), as well as a non-significant trend towards higher overwinter losses. Overall, these results show that mite infestation interacts with landscape, obscuring the effects of landscape alone and suggesting that the benefits of improved foraging landscape could be lost without adequate control of mite infestations.

  15. Determinants of Spatial Distribution in a Bee Community: Nesting Resources, Flower Resources, and Body Size

    PubMed Central

    Torné-Noguera, Anna; Rodrigo, Anselm; Arnan, Xavier; Osorio, Sergio; Barril-Graells, Helena; da Rocha-Filho, Léo Correia; Bosch, Jordi

    2014-01-01

    Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500–1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks. PMID:24824445

  16. Context affects nestmate recognition errors in honey bees and stingless bees.

    PubMed

    Couvillon, Margaret J; Segers, Francisca H I D; Cooper-Bowman, Roseanne; Truslove, Gemma; Nascimento, Daniela L; Nascimento, Fabio S; Ratnieks, Francis L W

    2013-08-15

    Nestmate recognition studies, where a discriminator first recognises and then behaviourally discriminates (accepts/rejects) another individual, have used a variety of methodologies and contexts. This is potentially problematic because recognition errors in discrimination behaviour are predicted to be context-dependent. Here we compare the recognition decisions (accept/reject) of discriminators in two eusocial bees, Apis mellifera and Tetragonisca angustula, under different contexts. These contexts include natural guards at the hive entrance (control); natural guards held in plastic test arenas away from the hive entrance that vary either in the presence or absence of colony odour or the presence or absence of an additional nestmate discriminator; and, for the honey bee, the inside of the nest. For both honey bee and stingless bee guards, total recognition errors of behavioural discrimination made by guards (% nestmates rejected + % non-nestmates accepted) are much lower at the colony entrance (honey bee: 30.9%; stingless bee: 33.3%) than in the test arenas (honey bee: 60-86%; stingless bee: 61-81%; P<0.001 for both). Within the test arenas, the presence of colony odour specifically reduced the total recognition errors in honey bees, although this reduction still fell short of bringing error levels down to what was found at the colony entrance. Lastly, in honey bees, the data show that the in-nest collective behavioural discrimination by ca. 30 workers that contact an intruder is insufficient to achieve error-free recognition and is not as effective as the discrimination by guards at the entrance. Overall, these data demonstrate that context is a significant factor in a discriminators' ability to make appropriate recognition decisions, and should be considered when designing recognition study methodologies.

  17. Characterization of the Active Microbiotas Associated with Honey Bees Reveals Healthier and Broader Communities when Colonies are Genetically Diverse

    PubMed Central

    Mattila, Heather R.; Rios, Daniela; Walker-Sperling, Victoria E.; Roeselers, Guus; Newton, Irene L. G.

    2012-01-01

    Recent losses of honey bee colonies have led to increased interest in the microbial communities that are associated with these important pollinators. A critical function that bacteria perform for their honey bee hosts, but one that is poorly understood, is the transformation of worker-collected pollen into bee bread, a nutritious food product that can be stored for long periods in colonies. We used 16S rRNA pyrosequencing to comprehensively characterize in genetically diverse and genetically uniform colonies the active bacterial communities that are found on honey bees, in their digestive tracts, and in bee bread. This method provided insights that have not been revealed by past studies into the content and benefits of honey bee-associated microbial communities. Colony microbiotas differed substantially between sampling environments and were dominated by several anaerobic bacterial genera never before associated with honey bees, but renowned for their use by humans to ferment food. Colonies with genetically diverse populations of workers, a result of the highly promiscuous mating behavior of queens, benefited from greater microbial diversity, reduced pathogen loads, and increased abundance of putatively helpful bacteria, particularly species from the potentially probiotic genus Bifidobacterium. Across all colonies, Bifidobacterium activity was negatively correlated with the activity of genera that include pathogenic microbes; this relationship suggests a possible target for understanding whether microbes provide protective benefits to honey bees. Within-colony diversity shapes microbiotas associated with honey bees in ways that may have important repercussions for colony function and health. Our findings illuminate the importance of honey bee-bacteria symbioses and examine their intersection with nutrition, pathogen load, and genetic diversity, factors that are considered key to understanding honey bee decline. PMID:22427917

  18. Crop Pollination Exposes Honey Bees to Pesticides Which Alters Their Susceptibility to the Gut Pathogen Nosema ceranae

    PubMed Central

    Pettis, Jeffery S.; Lichtenberg, Elinor M.; Andree, Michael; Stitzinger, Jennie; Rose, Robyn; vanEngelsdorp, Dennis

    2013-01-01

    Recent declines in honey bee populations and increasing demand for insect-pollinated crops raise concerns about pollinator shortages. Pesticide exposure and pathogens may interact to have strong negative effects on managed honey bee colonies. Such findings are of great concern given the large numbers and high levels of pesticides found in honey bee colonies. Thus it is crucial to determine how field-relevant combinations and loads of pesticides affect bee health. We collected pollen from bee hives in seven major crops to determine 1) what types of pesticides bees are exposed to when rented for pollination of various crops and 2) how field-relevant pesticide blends affect bees’ susceptibility to the gut parasite Nosema ceranae. Our samples represent pollen collected by foragers for use by the colony, and do not necessarily indicate foragers’ roles as pollinators. In blueberry, cranberry, cucumber, pumpkin and watermelon bees collected pollen almost exclusively from weeds and wildflowers during our sampling. Thus more attention must be paid to how honey bees are exposed to pesticides outside of the field in which they are placed. We detected 35 different pesticides in the sampled pollen, and found high fungicide loads. The insecticides esfenvalerate and phosmet were at a concentration higher than their median lethal dose in at least one pollen sample. While fungicides are typically seen as fairly safe for honey bees, we found an increased probability of Nosema infection in bees that consumed pollen with a higher fungicide load. Our results highlight a need for research on sub-lethal effects of fungicides and other chemicals that bees placed in an agricultural setting are exposed to. PMID:23894612

  19. Determinants of spatial distribution in a bee community: nesting resources, flower resources, and body size.

    PubMed

    Torné-Noguera, Anna; Rodrigo, Anselm; Arnan, Xavier; Osorio, Sergio; Barril-Graells, Helena; da Rocha-Filho, Léo Correia; Bosch, Jordi

    2014-01-01

    Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500-1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks.

  20. Longevity of microwave-treated (2. 45 GHz continuous wave) honey bees in observation hives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary, N.E.; Westerdahl, B.B.

    1981-12-15

    Adult honey bees were exposed for 30 min to 2.45 GHz of continuous wave microwave radiation at power densities ranging from 3 to 50 mW/cm/sup 2/. After exposure, bees were returned to glass-walled observation hives, and their longevity was compared with that of control bees. No significant differences were found between microwave- and sham-treated bees at any of the power densities tested.

  1. Pollution monitoring of puget sound with honey bees.

    PubMed

    Bromenshenk, J J; Carlson, S R; Simpson, J C; Thomas, J M

    1985-02-08

    To show that honey bees are effective biological monitors of environmental contaminants over large geographic areas, beekeepers of Puget Sound, Washington, collected pollen and bees for chemical analysis. From these data, kriging maps of arsenic, cadmium, and fluoride were generated. Results, based on actual concentrations of contaminants in bee tissues, show that the greatest concentrations of contaminants occur close to Commencement Bay and that honey bees are effective as large-scale monitors.

  2. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L).

    PubMed

    Berry, Jennifer A; Hood, W Michael; Pietravalle, Stéphane; Delaplane, Keith S

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  3. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection

    PubMed Central

    Navajas, M; Migeon, A; Alaux, C; Martin-Magniette, ML; Robinson, GE; Evans, JD; Cros-Arteil, S; Crauser, D; Le Conte, Y

    2008-01-01

    Background The parasitic mite, Varroa destructor, is the most serious pest of the western honey bee, Apis mellifera, and has caused the death of millions of colonies worldwide. This mite reproduces in brood cells and parasitizes immature and adult bees. We investigated whether Varroa infestation induces changes in Apis mellifera gene expression, and whether there are genotypic differences that affect gene expression relevant to the bee's tolerance, as first steps toward unravelling mechanisms of host response and differences in susceptibility to Varroa parasitism. Results We explored the transcriptional response to mite parasitism in two genetic stocks of A. mellifera which differ in susceptibility to Varroa, comparing parasitized and non-parasitized full-sister pupae from both stocks. Bee expression profiles were analyzed using microarrays derived from honey bee ESTs whose annotation has recently been enhanced by results from the honey bee genome sequence. We measured differences in gene expression in two colonies of Varroa-susceptible and two colonies of Varroa-tolerant bees. We identified a set of 148 genes with significantly different patterns of expression: 32 varied with the presence of Varroa, 116 varied with bee genotype, and 2 with both. Varroa parasitism caused changes in the expression of genes related to embryonic development, cell metabolism and immunity. Bees tolerant to Varroa were mainly characterized by differences in the expression of genes regulating neuronal development, neuronal sensitivity and olfaction. Differences in olfaction and sensitivity to stimuli are two parameters that could, at least in part, account for bee tolerance to Varroa; differences in olfaction may be related to increased grooming and hygienic behavior, important behaviors known to be involved in Varroa tolerance. Conclusion These results suggest that differences in behavior, rather than in the immune system, underlie Varroa tolerance in honey bees, and give an indication of the specific physiological changes found in parasitized bees. They provide a first step toward better understanding molecular pathways involved in this important host-parasite relationship. PMID:18578863

  4. Trueness and precision of the real-time RT-PCR method for quantifying the chronic bee paralysis virus genome in bee homogenates evaluated by a comparative inter-laboratory study.

    PubMed

    Schurr, Frank; Cougoule, Nicolas; Rivière, Marie-Pierre; Ribière-Chabert, Magali; Achour, Hamid; Ádám, Dán; Castillo, Carlos; de Graaf, Dirk C; Forsgren, Eva; Granato, Anna; Heinikainen, Sirpa; Jurovčíková, Júlia; Kryger, Per; Manson, Christine; Ménard, Marie-Françoise; Perennes, Stéphane; Schäfer, Marc O; Ibañez, Elena San Miguel; Silva, João; Gajger, Ivana Tlak; Tomkies, Victoria; Toplak, Ivan; Viry, Alain; Zdańska, Dagmara; Dubois, Eric

    2017-10-01

    The Chronic bee paralysis virus (CBPV) is the aetiological agent of chronic bee paralysis, a contagious disease associated with nervous disorders in adult honeybees leading to massive mortalities in front of the hives. Some of the clinical signs frequently reported, such as trembling, may be confused with intoxication syndromes. Therefore, laboratory diagnosis using real-time PCR to quantify CBPV loads is used to confirm disease. Clinical signs of chronic paralysis are usually associated with viral loads higher than 10 8 copies of CBPV genome copies per bee (8 log 10 CBPV/bee). This threshold is used by the European Union Reference Laboratory for Bee Health to diagnose the disease. In 2015, the accuracy of measurements of three CBPV loads (5, 8 and 9 log 10 CBPV/bee) was assessed through an inter-laboratory study. Twenty-one participants, including 16 European National Reference Laboratories, received 13 homogenates of CBPV-infected bees adjusted to the three loads. Participants were requested to use the method usually employed for routine diagnosis. The quantitative results (n=270) were analysed according to international standards NF ISO 13528 (2015) and NF ISO 5725-2 (1994). The standard deviations of measurement reproducibility (S R ) were 0.83, 1.06 and 1.16 at viral loads 5, 8 and 9 log 10 CBPV/bee, respectively. The inter-laboratory confidence of viral quantification (+/- 1.96S R ) at the diagnostic threshold (8 log 10 CBPV/bee) was+/- 2.08 log 10 CBPV/bee. These results highlight the need to take into account the confidence of measurements in epidemiological studies using results from different laboratories. Considering this confidence, viral loads over 6 log 10 CBPV/bee may be considered to indicate probable cases of chronic paralysis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Does transgenic Cry1Ac + CpTI cotton pollen affect hypopharyngeal gland development and midgut proteolytic enzyme activity in the honey bee Apis mellifera L. (Hymenoptera, Apidae)?

    PubMed

    Han, Peng; Niu, Chang-Ying; Biondi, Antonio; Desneux, Nicolas

    2012-11-01

    The transgenic Cry1Ac (Bt toxin) + CpTI (Cowpea Trypsin Inhibitor) cotton cultivar CCRI41 is increasingly used in China and potential side effects on the honey bee Apis mellifera L. have been documented recently. Two studies have assessed potential lethal and sublethal effects in young bees fed with CCRI41 cotton pollen but no effect was observed on learning capacities, although lower feeding activity in exposed honey bees was noted (antifeedant effect). The present study aimed at providing further insights into potential side effects of CCRI41 cotton on honey bees. Emerging honey bees were exposed to different pollen diets using no-choice feeding protocols (chronic exposure) in controlled laboratory conditions and we aimed at documenting potential mechanisms underneath the CCRI41 antifeedant effect previously reported. Activity of midgut proteolytic enzyme of young adult honey bees fed on CCRI41 cotton pollen were not significantly affected, i.e. previously observed antifeedant effect was not linked to disturbed activity of the proteolytic enzymes in bees' midgut. Hypopharyngeal gland development was assessed by quantifying total extractable proteins from the glands. Results suggested that CCRI41 cotton pollen carries no risk to hypopharyngeal gland development of young adult honey bees. In the two bioassays, honey bees exposed to 1 % soybean trypsin inhibitor were used as positive controls for both midgut proteolytic enzymes and hypopharyngeal gland proteins quantification, and bees exposed to 48 ppb (part per billion) (i.e. 48 ng g(-1)) imidacloprid were used as controls for exposure to a sublethal concentration of toxic product. The results show that the previously reported antifeedant effect of CCRI41 cotton pollen on honey bees is not linked to effects on their midgut proteolytic enzymes or on the development of their hypopharyngeal glands. The results of the study are discussed in the framework of risk assessment of transgenic crops on honey bees.

  6. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection.

    PubMed

    Navajas, M; Migeon, A; Alaux, C; Martin-Magniette, Ml; Robinson, Ge; Evans, Jd; Cros-Arteil, S; Crauser, D; Le Conte, Y

    2008-06-25

    The parasitic mite, Varroa destructor, is the most serious pest of the western honey bee, Apis mellifera, and has caused the death of millions of colonies worldwide. This mite reproduces in brood cells and parasitizes immature and adult bees. We investigated whether Varroa infestation induces changes in Apis mellifera gene expression, and whether there are genotypic differences that affect gene expression relevant to the bee's tolerance, as first steps toward unravelling mechanisms of host response and differences in susceptibility to Varroa parasitism. We explored the transcriptional response to mite parasitism in two genetic stocks of A. mellifera which differ in susceptibility to Varroa, comparing parasitized and non-parasitized full-sister pupae from both stocks. Bee expression profiles were analyzed using microarrays derived from honey bee ESTs whose annotation has recently been enhanced by results from the honey bee genome sequence. We measured differences in gene expression in two colonies of Varroa-susceptible and two colonies of Varroa-tolerant bees. We identified a set of 148 genes with significantly different patterns of expression: 32 varied with the presence of Varroa, 116 varied with bee genotype, and 2 with both. Varroa parasitism caused changes in the expression of genes related to embryonic development, cell metabolism and immunity. Bees tolerant to Varroa were mainly characterized by differences in the expression of genes regulating neuronal development, neuronal sensitivity and olfaction. Differences in olfaction and sensitivity to stimuli are two parameters that could, at least in part, account for bee tolerance to Varroa; differences in olfaction may be related to increased grooming and hygienic behavior, important behaviors known to be involved in Varroa tolerance. These results suggest that differences in behavior, rather than in the immune system, underlie Varroa tolerance in honey bees, and give an indication of the specific physiological changes found in parasitized bees. They provide a first step toward better understanding molecular pathways involved in this important host-parasite relationship.

  7. Field-Level Sublethal Effects of Approved Bee Hive Chemicals on Honey Bees (Apis mellifera L)

    PubMed Central

    Berry, Jennifer A.; Hood, W. Michael; Pietravalle, Stéphane; Delaplane, Keith S.

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals. PMID:24204638

  8. Aging and body size in solitary bees

    USDA-ARS?s Scientific Manuscript database

    Solitary bees are important pollinators of crops and non-domestic plants. Osmia lignaria is a native, commercially-reared solitary bee used to maximize pollination in orchard crops. In solitary bees, adult body size is extremely variable depending on the nutritional resources available to the develo...

  9. 7 CFR 322.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT General Provisions § 322.1... Plant Health Inspection Service of the United States Department of Agriculture. Bee. Any member of the..., including, but not limited to, beeswax for beekeeping, pollen for bee feed, or honey for bee feed...

  10. 7 CFR 322.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT General Provisions § 322.1... Plant Health Inspection Service of the United States Department of Agriculture. Bee. Any member of the..., including, but not limited to, beeswax for beekeeping, pollen for bee feed, or honey for bee feed...

  11. 7 CFR 322.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT General Provisions § 322.1... Plant Health Inspection Service of the United States Department of Agriculture. Bee. Any member of the..., including, but not limited to, beeswax for beekeeping, pollen for bee feed, or honey for bee feed...

  12. 7 CFR 322.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT General Provisions § 322.1... Plant Health Inspection Service of the United States Department of Agriculture. Bee. Any member of the..., including, but not limited to, beeswax for beekeeping, pollen for bee feed, or honey for bee feed...

  13. 7 CFR 322.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT General Provisions § 322.1... Plant Health Inspection Service of the United States Department of Agriculture. Bee. Any member of the..., including, but not limited to, beeswax for beekeeping, pollen for bee feed, or honey for bee feed...

  14. The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee Euglossa dilemma

    PubMed Central

    Brand, Philipp; Saleh, Nicholas; Pan, Hailin; Li, Cai; Kapheim, Karen M.; Ramírez, Santiago R.

    2017-01-01

    Bees provide indispensable pollination services to both agricultural crops and wild plant populations, and several species of bees have become important models for the study of learning and memory, plant–insect interactions, and social behavior. Orchid bees (Apidae: Euglossini) are especially important to the fields of pollination ecology, evolution, and species conservation. Here we report the nuclear and mitochondrial genome sequences of the orchid bee Euglossa dilemma Bembé & Eltz. E. dilemma was selected because it is widely distributed, highly abundant, and it was recently naturalized in the southeastern United States. We provide a high-quality assembly of the 3.3 Gb genome, and an official gene set of 15,904 gene annotations. We find high conservation of gene synteny with the honey bee throughout 80 MY of divergence time. This genomic resource represents the first draft genome of the orchid bee genus Euglossa, and the first draft orchid bee mitochondrial genome, thus representing a valuable resource to the research community. PMID:28701376

  15. The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee Euglossa dilemma.

    PubMed

    Brand, Philipp; Saleh, Nicholas; Pan, Hailin; Li, Cai; Kapheim, Karen M; Ramírez, Santiago R

    2017-09-07

    Bees provide indispensable pollination services to both agricultural crops and wild plant populations, and several species of bees have become important models for the study of learning and memory, plant-insect interactions, and social behavior. Orchid bees (Apidae: Euglossini) are especially important to the fields of pollination ecology, evolution, and species conservation. Here we report the nuclear and mitochondrial genome sequences of the orchid bee Euglossa dilemma Bembé & Eltz. E. dilemma was selected because it is widely distributed, highly abundant, and it was recently naturalized in the southeastern United States. We provide a high-quality assembly of the 3.3 Gb genome, and an official gene set of 15,904 gene annotations. We find high conservation of gene synteny with the honey bee throughout 80 MY of divergence time. This genomic resource represents the first draft genome of the orchid bee genus Euglossa , and the first draft orchid bee mitochondrial genome, thus representing a valuable resource to the research community. Copyright © 2017 Brand et al.

  16. Agrochemical-induced stress in stingless bees: peculiarities, underlying basis, and challenges.

    PubMed

    Lima, M A P; Martins, G F; Oliveira, E E; Guedes, R N C

    2016-10-01

    The toxicological stress induced by pesticides, particularly neonicotinoid insecticides, and its consequences in bees has been the focus of much recent attention, particularly for honey bees. However, the emphasis on honey bees and neonicotinoids has led to neglect of the relevance of stingless bees, the prevailing pollinators of natural and agricultural tropical ecosystems, and of other agrochemicals, including other pesticides and even leaf fertilizers. Consequently, studies focusing on agrochemical effects on stingless bees are sparse, usually limited to histopathological studies, and lack a holistic assessment of the effects of these compounds on physiology and behavior. Such effects have consequences for individual and colony fitness and are likely to affect both the stingless bee populations and the associated community, thereby producing a hierarchy of consequences thus far overlooked. Herein, we review the current literature on stingless bee-agrochemical interactions and discuss the underlying mechanisms involved in reported stress symptoms, as well as the potential consequences based on the peculiarities of these pollinators.

  17. Leucophora Satellite Flies (Diptera: Anthomyiidae) as Nest Parasites of Sweat Bees (Hymenoptera: Halictidae) in the Neotropics.

    PubMed

    Polidori, C; Michelsen, V; Nieves-Aldrey, J L

    2015-08-01

    The biology of the 10 species of Leucophora (Diptera: Anthomyiidae) recorded in the Neotropics remains unknown. The large majority of the studied species so far are kleptoparasites of bees and wasps. Here, we report the first observations of Leucophora andicola (Bigot) and Leucophora peullae (Malloch) visiting the nests of ground-nesting sweat bees Corynura (Hymenoptera: Halictidae) in Chilean Patagonia. Females of both species perch on small stones or sticks within a dense nest aggregation of the bees and then track pollen-loaded bees in flight with great precision, eventually following them into their nests. The overall behavior closely resembles that observed for many other species of the genus. Excavations of some bee nests returned only two dipteran puparia, possibly of Leucophora, suggesting a low parasitism rate. One male of L. peullae was also collected at the bee aggregation. This is the first report of host association for any Leucophora from the Neotropics and the first report of any anthomyiid fly associated with augochlorine bees.

  18. Evaluating the Effect of Environmental Chemicals on Honey Bee Development from the Individual to Colony Level.

    PubMed

    Ko, Chong-Yu; Chen, Yue-Wen; Nai, Yu-Shin

    2017-04-01

    The presence of pesticides in the beekeeping environment is one of the most serious problems that impacts the life of a honey bee. Pesticides can be brought back to the beehive after the bees have foraged on flowers that have been sprayed with pesticides. Pesticide contaminated food can be exchanged between workers which then feed larvae and therefore can potentially affect the development of honey bees. Thus, residual pesticides in the environment can become a chronic damaging factor to honey bee populations and gradually lead to colony collapse. In the presented protocol, honey bee feeding methods are described and applied to either an individual honey bee or to a colony. Here, the insect growth regulator (IGR) pyriproxyfen (PPN), which is widely used to control pest insects and is harmful to the development of honey bee larvae and pupae, is used as the pesticide. The presenting procedure can be applied to other potentially harmful chemicals or honeybee pathogens for further studies.

  19. A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability.

    PubMed

    Tosi, Simone; Burgio, Giovanni; Nieh, James C

    2017-04-26

    Pesticides can pose environmental risks, and a common neonicotinoid pesticide, thiamethoxam, decreases homing success in honey bees. Neonicotinoids can alter bee navigation, but we present the first evidence that neonicotinoid exposure alone can impair the physical ability of bees to fly. We tested the effects of acute or chronic exposure to thiamethoxam on the flight ability of foragers in flight mills. Within 1 h of consuming a single sublethal dose (1.34 ng/bee), foragers showed excitation and significantly increased flight duration (+78%) and distance (+72%). Chronic exposure significantly decreased flight duration (-54%), distance (-56%), and average velocity (-7%) after either one or two days of continuous exposure that resulted in bees ingesting field-relevant thiamethoxam doses of 1.96-2.90 ng/bee/day. These results provide the first demonstration that acute or chronic exposure to a neonicotinoid alone can significantly alter bee flight. Such exposure may impair foraging and homing, which are vital to normal colony function and ecosystem services.

  20. Pollen Contaminated With Field-Relevant Levels of Cyhalothrin Affects Honey Bee Survival, Nutritional Physiology, and Pollen Consumption Behavior.

    PubMed

    Dolezal, Adam G; Carrillo-Tripp, Jimena; Miller, W Allen; Bonning, Bryony C; Toth, Amy L

    2016-02-01

    Honey bees are exposed to a variety of environmental factors that impact their health, including nutritional stress, pathogens, and pesticides. In particular, there has been increasing evidence that sublethal exposure to pesticides can cause subtle, yet important effects on honey bee health and behavior. Here, we add to this body of knowledge by presenting data on bee-collected pollen containing sublethal levels of cyhalothrin, a pyrethroid insecticide, which, when fed to young honey bees, resulted in significant changes in lifespan, nutritional physiology,and behavior. For the first time, we show that when young, nest-aged bees are presented with pollen containing field-relevant levels of cyhalothrin, they reduce their consumption of contaminated pollen. This indicates that, at least for some chemicals, young bees are able to detect contamination in pollen and change their behavioral response, even if the contamination levels do not prevent foraging honey bees from collecting the contaminated pollen.

  1. Learning performance and brain structure of artificially-reared honey bees fed with different quantities of food

    PubMed Central

    Spaethe, Johannes; Steffan-Dewenter, Ingolf; Härtel, Stephan

    2017-01-01

    Background Artificial rearing of honey bee larvae is an established method which enables to fully standardize the rearing environment and to manipulate the supplied diet to the brood. However, there are no studies which compare learning performance or neuroanatomic differences of artificially-reared (in-lab) bees in comparison with their in-hive reared counterparts. Methods Here we tested how different quantities of food during larval development affect body size, brain morphology and learning ability of adult honey bees. We used in-lab rearing to be able to manipulate the total quantity of food consumed during larval development. After hatching, a subset of the bees was taken for which we made 3D reconstructions of the brains using confocal laser-scanning microscopy. Learning ability and memory formation of the remaining bees was tested in a differential olfactory conditioning experiment. Finally, we evaluated how bees reared with different quantities of artificial diet compared to in-hive reared bees. Results Thorax and head size of in-lab reared honey bees, when fed the standard diet of 160 µl or less, were slightly smaller than hive bees. The brain structure analyses showed that artificially reared bees had smaller mushroom body (MB) lateral calyces than their in-hive counterparts, independently of the quantity of food they received. However, they showed the same total brain size and the same associative learning ability as in-hive reared bees. In terms of mid-term memory, but not early long-term memory, they performed even better than the in-hive control. Discussion We have demonstrated that bees that are reared artificially (according to the Aupinel protocol) and kept in lab-conditions perform the same or even better than their in-hive sisters in an olfactory conditioning experiment even though their lateral calyces were consistently smaller at emergence. The applied combination of experimental manipulation during the larval phase plus subsequent behavioral and neuro-anatomic analyses is a powerful tool for basic and applied honey bee research. PMID:29085743

  2. The bee tree of life: a supermatrix approach to apoid phylogeny and biogeography.

    PubMed

    Hedtke, Shannon M; Patiny, Sébastien; Danforth, Bryan N

    2013-07-03

    Bees are the primary pollinators of angiosperms throughout the world. There are more than 16,000 described species, with broad variation in life history traits such as nesting habitat, diet, and social behavior. Despite their importance as pollinators, the evolution of bee biodiversity is understudied: relationships among the seven families of bees remain controversial, and no empirical global-level reconstruction of historical biogeography has been attempted. Morphological studies have generally suggested that the phylogeny of bees is rooted near the family Colletidae, whereas many molecular studies have suggested a root node near (or within) Melittidae. Previous molecular studies have focused on a relatively small sample of taxa (~150 species) and genes (seven at most). Public databases contain an enormous amount of DNA sequence data that has not been comprehensively analysed in the context of bee evolution. We downloaded, aligned, concatenated, and analysed all available protein-coding nuclear gene DNA sequence data in GenBank as of October, 2011. Our matrix consists of 20 genes, with over 17,000 aligned nucleotide sites, for over 1,300 bee and apoid wasp species, representing over two-thirds of bee genera. Whereas the matrix is large in terms of number of genes and taxa, there is a significant amount of missing data: only ~15% of the matrix is populated with data. The placement of the root as well as relationships between Andrenidae and other bee families remain ambiguous, as several alternative maximum-likelihood estimates fall within the statistically credible set. However, we recover strong bootstrap support for relationships among many families and for their monophyly. Ancestral geographic range reconstruction suggests a likely origin of bees in the southern hemisphere, with Melittidae ancestrally located within Africa, and Halictidae, Colletidae, and Apidae within the New World. Our study affirms the monophyly of each bee family, sister-taxa relationships between Apidae and Megachilidae (the 'long-tongued bees'), between Colletidae and Stenotritidae, and between Colletidae + Stenotritidae and Halictidae. Our analyses reject a Colletidae-basal hypothesis for family-level relationships and instead support Melittidae as sister to the remaining bees. Southern hemisphere vicariance likely played an important role in early diversification within many bee families.

  3. Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees.

    PubMed

    Schenk, Mariela; Krauss, Jochen; Holzschuh, Andrea

    2018-01-01

    Global warming can disrupt mutualistic interactions between solitary bees and plants when increasing temperature differentially changes the timing of interacting partners. One possible scenario is for insect phenology to advance more rapidly than plant phenology. However, empirical evidence for fitness consequences due to temporal mismatches is lacking for pollinators and it remains unknown if bees have developed strategies to mitigate fitness losses following temporal mismatches. We tested the effect of temporal mismatches on the fitness of three spring-emerging solitary bee species, including one pollen specialist. Using flight cages, we simulated (i) a perfect synchronization (from a bee perspective): bees and flowers occur simultaneously, (ii) a mismatch of 3 days and (iii) a mismatch of 6 days, with bees occurring earlier than flowers in the latter two cases. A mismatch of 6 days caused severe fitness losses in all three bee species, as few bees survived without flowers. Females showed strongly reduced activity and reproductive output compared to synchronized bees. Fitness consequences of a 3-day mismatch were species-specific. Both the early-spring species Osmia cornuta and the mid-spring species Osmia bicornis produced the same number of brood cells after a mismatch of 3 days as under perfect synchronization. However, O. cornuta decreased the number of female offspring, whereas O. bicornis spread the brood cells over fewer nests, which may increase offspring mortality, e.g. due to parasitoids. The late-spring specialist Osmia brevicornis produced fewer brood cells even after a mismatch of 3 days. Additionally, our results suggest that fitness losses after temporal mismatches are higher during warm than cold springs, as the naturally occurring temperature variability revealed that warm temperatures during starvation decreased the survival rate of O. bicornis. We conclude that short temporal mismatches can cause clear fitness losses in solitary bees. Although our results suggest that bees have evolved species-specific strategies to mitigate fitness losses after temporal mismatches, the bees were not able to completely compensate for impacts on their fitness after temporal mismatches with their food resources. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  4. Predatory behavior in a necrophagous bee Trigona hypogea (Hymenoptera; Apidae, Meliponini)

    NASA Astrophysics Data System (ADS)

    Mateus, Sidnei; Noll, Fernando B.

    Although most bees feed on nectar and pollen, several exceptions have been reported. The strangest of all is the habit found in some neotropical stingless bees, which have completely replaced pollen-eating by eating animal protein from corpses. For more than 20 years, it was believed that carrion was the only protein source for these bees. We report that these bees feed not only off dead animals, but on the living brood of social wasps and possibly other similar sources. Using well developed prey location and foraging behaviors, necrophagous bees discover recently abandoned wasps' nests and, within a few hours, prey upon all immatures found there.

  5. Visual summation in night-flying sweat bees: a theoretical study.

    PubMed

    Theobald, Jamie Carroll; Greiner, Birgit; Wcislo, William T; Warrant, Eric J

    2006-07-01

    Bees are predominantly diurnal; only a few groups fly at night. An evolutionary limitation that bees must overcome to inhabit dim environments is their eye type: bees possess apposition compound eyes, which are poorly suited to vision in dim light. Here, we theoretically examine how nocturnal bees Megalopta genalis fly at light levels usually reserved for insects bearing more sensitive superposition eyes. We find that neural summation should greatly increase M. genalis's visual reliability. Predicted spatial summation closely matches the morphology of laminal neurons believed to mediate such summation. Improved reliability costs acuity, but dark adapted bees already suffer optical blurring, and summation further degrades vision only slightly.

  6. Behavioural evidence of colour vision in free flying stingless bees.

    PubMed

    Spaethe, J; Streinzer, M; Eckert, J; May, S; Dyer, A G

    2014-06-01

    Colour vision was first demonstrated with behavioural experiments in honeybees 100 years ago. Since that time a wealth of quality physiological data has shown a highly conserved set of trichromatic colour receptors in most bee species. Despite the subsequent wealth of behavioural research on honeybees and bumblebees, there currently is a relative dearth of data on stingless bees, which are the largest tribe of the eusocial bees comprising of more than 600 species. In our first experiment we tested Trigona cf. fuscipennis, a stingless bee species from Costa Rica in a field setting using the von Frisch method and show functional colour vision. In a second experiment with these bees, we use a simultaneous colour discrimination test designed for honeybees to enable a comparative analysis of relative colour discrimination. In a third experiment, we test in laboratory conditions Tetragonula carbonaria, an Australian stingless bee species using a similar simultaneous colour discrimination test. Both stingless bee species show relatively poorer colour discrimination compared to honeybees and bumblebees; and we discuss the value of being able to use these behavioural methods to efficiently extend our current knowledge of colour vision and discrimination in different bee species.

  7. Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees.

    PubMed

    Mondet, Fanny; Alaux, Cédric; Severac, Dany; Rohmer, Marine; Mercer, Alison R; Le Conte, Yves

    2015-05-22

    In honey bees, Varroa sensitive hygiene (VSH) behaviour, which involves the detection and removal of brood parasitised by the mite Varroa destructor, can actively participate in the survival of colonies facing Varroa outbreaks. This study investigated the mechanisms of VSH behaviour, by comparing the antennal transcriptomes of bees that do and do not perform VSH behaviour. Results indicate that antennae likely play a key role in the expression of VSH behaviour. Comparisons with the antennal transcriptome of nurse and forager bees suggest that VSH profile is more similar to that of nurse bees than foragers. Enhanced detection of certain odorants in VSH bees may be predicted from transcriptional patterns, as well as a higher metabolism and antennal motor activity. Interestingly, Deformed wing virus/Varroa destructor virus infections were detected in the antennae, with higher level in non-VSH bees; a putative negative impact of viral infection on bees' ability to display VSH behaviour is proposed. These results bring new perspectives to the understanding of VSH behaviour and the evolution of collective defence by focusing attention on the importance of the peripheral nervous system. In addition, such data might be useful for promoting marker-assisted selection of honey bees that can survive Varroa infestations.

  8. Antennal responses of an oligolectic bee and its cleptoparasite to plant volatiles.

    PubMed

    Dötterl, Stefan

    2008-05-01

    Cleptoparasitic or cuckoo bees lay their eggs in nests of other bees, and the parasitic larvae feed the food that had been provided for the host larvae. Nothing is known about the specific signals used by the cuckoo bees for host nest finding, but previous studies have shown that olfactory cues originating from the host bee alone, or the host bee and the larval provision are essential. Here, I compared by using gas chromatography coupled to electroantennographic detection (GC-EAD) the antennal responses of the oligolectic oil-bee Macropis fulvipes and their cleptoparasite, Epeoloides coecutiens, to dynamic headspace scent samples of Lysimachia punctata, a pollen and oil host of Macropis. Both bee species respond to some scent compounds emitted by L. punctata, and two compounds, which were also found in scent samples collected from a Macropis nest entrance, elicited clear signals in the antennae of both species. These compounds may not only play a role for host plant detection by Macropis, but also for host nest detection by Epeoloides. I hypothesise that oligolectic bees and their cleptoparasites use the same compounds for host plant and host nest detection, respectively.

  9. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees.

    PubMed

    Youngsteadt, Elsa; Appler, R Holden; López-Uribe, Margarita M; Tarpy, David R; Frank, Steven D

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators.

  10. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees

    PubMed Central

    López-Uribe, Margarita M.; Tarpy, David R.; Frank, Steven D.

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators. PMID:26536606

  11. Selection of Apis mellifera workers by the parasitic mite Varroa destructor using host cuticular hydrocarbons.

    PubMed

    Del Piccolo, F; Nazzi, F; Della Vedova, G; Milani, N

    2010-05-01

    The parasitic mite, Varroa destructor, is the most important threat for apiculture in most bee-keeping areas of the world. The mite is carried to the bee brood cell, where it reproduces, by a nurse bee; therefore the selection of the bee stage by the parasite could influence its reproductive success. This study investigates the role of the cuticular hydrocarbons of the European honeybee (Apis mellifera) in host-selection by the mite. Preliminary laboratory bioassays confirmed the preference of the varroa mite for nurse bees over pollen foragers. GC-MS analysis of nurse and pollen bees revealed differences in the cuticular hydrocarbons of the two stages; in particular, it appeared that pollen bees have more (Z)-8-heptadecene than nurse bees. Laboratory experiments showed that treatment of nurse bees with 100 ng of the pure compound makes them repellent to the varroa mite. These results suggest that the mite can exploit the differences in the cuticular composition of its host for a refined selection that allows it to reach a brood cell and start reproduction. The biological activity of the alkene encourages further investigations for the development of novel control techniques based on this compound.

  12. RNA Viruses in Hymenopteran Pollinators: Evidence of Inter-Taxa Virus Transmission via Pollen and Potential Impact on Non-Apis Hymenopteran Species

    PubMed Central

    Rajotte, Edwin G.; Holmes, Edward C.; Ostiguy, Nancy; vanEngelsdorp, Dennis; Lipkin, W. Ian; dePamphilis, Claude W.; Toth, Amy L.; Cox-Foster, Diana L.

    2010-01-01

    Although overall pollinator populations have declined over the last couple of decades, the honey bee (Apis mellifera) malady, colony collapse disorder (CCD), has caused major concern in the agricultural community. Among honey bee pathogens, RNA viruses are emerging as a serious threat and are suspected as major contributors to CCD. Recent detection of these viral species in bumble bees suggests a possible wider environmental spread of these viruses with potential broader impact. It is therefore vital to study the ecology and epidemiology of these viruses in the hymenopteran pollinator community as a whole. We studied the viral distribution in honey bees, in their pollen loads, and in other non-Apis hymenopteran pollinators collected from flowering plants in Pennsylvania, New York, and Illinois in the United States. Viruses in the samples were detected using reverse transcriptase-PCR and confirmed by sequencing. For the first time, we report the molecular detection of picorna-like RNA viruses (deformed wing virus, sacbrood virus and black queen cell virus) in pollen pellets collected directly from forager bees. Pollen pellets from several uninfected forager bees were detected with virus, indicating that pollen itself may harbor viruses. The viruses in the pollen and honey stored in the hive were demonstrated to be infective, with the queen becoming infected and laying infected eggs after these virus-contaminated foods were given to virus-free colonies. These viruses were detected in eleven other non-Apis hymenopteran species, ranging from many solitary bees to bumble bees and wasps. This finding further expands the viral host range and implies a possible deeper impact on the health of our ecosystem. Phylogenetic analyses support that these viruses are disseminating freely among the pollinators via the flower pollen itself. Notably, in cases where honey bee apiaries affected by CCD harbored honey bees with Israeli Acute Paralysis virus (IAPV), nearby non-Apis hymenopteran pollinators also had IAPV, while those near apiaries without IAPV did not. In containment greenhouse experiments, IAPV moved from infected honey bees to bumble bees and from infected bumble bees to honey bees within a week, demonstrating that the viruses could be transmitted from one species to another. This study adds to our present understanding of virus epidemiology and may help explain bee disease patterns and pollinator population decline in general. PMID:21203504

  13. The native bee fauna of the Palouse Prairie (Hymenoptera: Apoidea)

    USDA-ARS?s Scientific Manuscript database

    While the range and general composition of North American bee fauna have been mostly described based on random collections, bee communities associated with specific habitats are largely uncharacterized. This report describes the community of native bees currently found in remnant fragments of the P...

  14. 7 CFR 322.8 - Packaging of shipments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of Adult Honeybees, Honeybee Germ Plasm, and Bees Other Than Honeybees From Approved Regions § 322.8... States under this subpart: (1) Must be packaged to prevent the escape of any bees or bee pests; (2) Must...

  15. 78 FR 24714 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... vegetables. Africanized bees, colony collapse disorder, parasites, diseases, and pesticides threaten the survival of bees. Programs are provided by Federal, State and local governments to assist in the survival of bees and to encourage beekeepers to maintain bee colonies. Need and Use of the Information: NASS...

  16. 7 CFR 322.24 - Packaging of transit shipments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Transit of... clearly marked with the contents of the transit shipment, i.e., either “Live Bees,” “Bee Germ Plasm,” or “Live Bee Brood,” and the name of the exporting region. ...

  17. 7 CFR 322.8 - Packaging of shipments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of Adult Honeybees, Honeybee Germ Plasm, and Bees Other Than Honeybees From Approved Regions § 322.8... States under this subpart: (1) Must be packaged to prevent the escape of any bees or bee pests; (2) Must...

  18. 7 CFR 322.8 - Packaging of shipments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of Adult Honeybees, Honeybee Germ Plasm, and Bees Other Than Honeybees From Approved Regions § 322.8... States under this subpart: (1) Must be packaged to prevent the escape of any bees or bee pests; (2) Must...

  19. 7 CFR 322.8 - Packaging of shipments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of Adult Honeybees, Honeybee Germ Plasm, and Bees Other Than Honeybees From Approved Regions § 322.8... States under this subpart: (1) Must be packaged to prevent the escape of any bees or bee pests; (2) Must...

  20. 7 CFR 322.24 - Packaging of transit shipments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Transit of... clearly marked with the contents of the transit shipment, i.e., either “Live Bees,” “Bee Germ Plasm,” or “Live Bee Brood,” and the name of the exporting region. ...

  1. 7 CFR 322.8 - Packaging of shipments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of Adult Honeybees, Honeybee Germ Plasm, and Bees Other Than Honeybees From Approved Regions § 322.8... States under this subpart: (1) Must be packaged to prevent the escape of any bees or bee pests; (2) Must...

  2. 7 CFR 322.24 - Packaging of transit shipments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Transit of... clearly marked with the contents of the transit shipment, i.e., either “Live Bees,” “Bee Germ Plasm,” or “Live Bee Brood,” and the name of the exporting region. ...

  3. 7 CFR 322.24 - Packaging of transit shipments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Transit of... clearly marked with the contents of the transit shipment, i.e., either “Live Bees,” “Bee Germ Plasm,” or “Live Bee Brood,” and the name of the exporting region. ...

  4. 7 CFR 322.24 - Packaging of transit shipments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Transit of... clearly marked with the contents of the transit shipment, i.e., either “Live Bees,” “Bee Germ Plasm,” or “Live Bee Brood,” and the name of the exporting region. ...

  5. Scale dependent drivers of wild bee diversity in tropical heterogeneous agricultural landscapes.

    PubMed

    Basu, Parthiba; Parui, Arpan Kumar; Chatterjee, Soumik; Dutta, Aditi; Chakraborty, Pushan; Roberts, Stuart; Smith, Barbara

    2016-10-01

    Factors associated with agricultural intensification, for example, loss of seminatural vegetation and pesticide use has been shown to adversely affect the bee community. These factors may impact the bee community differently at different landscape scales. The scale dependency is expected to be more pronounced in heterogeneous landscapes. However, the scale-dependent response of the bee community to drivers of its decline is relatively understudied, especially in the tropics where the agricultural landscape is often heterogeneous. This study looked at effects of agricultural intensification on bee diversity at patch and landscape scales in a tropical agricultural landscape. Wild bees were sampled using 12 permanent pan trap stations. Patch and landscape characteristics were measured within a 100 m (patch scale) and a 500 m (landscape scale) radius of pan trap stations. Information on pesticide input was obtained from farmer surveys. Data on vegetation cover, productivity, and percentage of agricultural and fallow land (FL) were collected using satellite imagery. Intensive areas in a bee-site network were less specialized in terms of resources to attract rare bee species while the less intensive areas, which supported more rare species, were more vulnerable to disturbance. A combination of patch quality and diversity as well as pesticide use regulates species diversity at the landscape scale (500 m), whereas pesticide quantity drove diversity at the patch scale (100 m). At the landscape scale, specialization of each site in terms of resources for bees increased with increasing patch diversity and FL while at the patch scale specialization declined with increased pesticide use. Bee functional groups responded differentially to landscape characteristics as well as pesticide use. Wood nesting bees were negatively affected by the number of pesticides used but other bee functional groups were not sensitive to pesticides. Synthesis and Applications : Different factors affect wild bee diversity at the scale of landscape and patch in heterogeneous tropical agricultural systems. The differential response of bee functional groups to agricultural intensification underpins the need for guild-specific management strategies for wild bee conservation. Less intensively farmed areas support more rare species and are vulnerable to disturbance; consequently, these areas should be prioritized for conservation to maintain heterogeneity in the landscape. It is important to conserve and restore seminatural habitats to maintain complexity in the landscapes through participatory processes and to regulate synthetic chemical pesticides in farm operations to conserve the species and functional diversity of wild bees.

  6. Pollution monitoring of Puget Sound with honey bees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromenshenk, J.J.; Carlson, S.R.; Simpson, J.C.

    To show that honey bees are effective biological monitors of environmental contaminants over large geographic areas, beekeepers of Puget Sound, Washington, collected pollen and bees for chemical analysis. From these data, kriging maps of arsenic, cadmium, and fluoride were generated. Results, based on actual concentrations of contaminants in bee tissues, show that the greatest concentrations of contaminants occur close to Commencement Bay and that honey bees are effective as large-scale monitors. 27 references, 2 figures.

  7. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses.

    PubMed

    Zaluski, Rodrigo; Kadri, Samir Moura; Alonso, Diego Peres; Martins Ribolla, Paulo Eduardo; de Oliveira Orsi, Ricardo

    2015-05-01

    Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies. © 2015 SETAC.

  8. Analyses of avocado (Persea americana) nectar properties and their perception by honey bees (Apis mellifera).

    PubMed

    Afik, O; Dag, A; Kerem, Z; Shafir, S

    2006-09-01

    Honey bees are important avocado pollinators. However, due to the low attractiveness of flowers, pollination is often inadequate. Previous work has revealed that avocado honey is relatively unattractive to honey bees when compared with honey from competing flowers. We characterized avocado honey and nectar with respect to their odor, color, and composition of sugars, phenolic compounds, and minerals. Furthermore, we tested how honey bees perceive these parameters, using the proboscis extension response bioassay and preference experiments with free-flying bees. Naïve bees were indifferent to odors of avocado and citrus flowers and honey. Experienced bees, which were collected in the field during the blooming season, responded preferentially to odor of citrus flowers. The unique sugar composition of avocado nectar, which contains almost exclusively sucrose and a low concentration of the rare carbohydrate perseitol, and the dark brown color of avocado honey, had no negative effects on its attractiveness to the bees. Phenolic compounds extracted from avocado honey were attractive to bees and adding them to a solution of sucrose increased its attractiveness. Compared with citrus nectar and nonavocado honey, avocado nectar and honey were rich in a wide range of minerals, including potassium, phosphorus, magnesium, sulfur, iron, and copper. Potassium and phosphorus, the two major minerals, both had a repellent effect on the bees. Possible explanations for the presence of repellent components in avocado nectar are discussed.

  9. The evolution of floral sonication, a pollen foraging behavior used by bees (Anthophila)

    PubMed Central

    Cardinal, Sophie; Buchmann, Stephen L.; Russell, Avery L.

    2018-01-01

    Abstract Over 22,000 species of biotically pollinated flowering plants, including some major agricultural crops, depend primarily on bees capable of floral sonication for pollination services. The ability to sonicate (“buzz”) flowers is widespread in bees but not ubiquitous. Despite the prevalence of this pollinator behavior and its importance to natural and agricultural systems, the evolutionary history of floral sonication in bees has not been previously studied. Here, we reconstruct the evolutionary history of floral sonication in bees by generating a time‐calibrated phylogeny and reconstructing ancestral states for this pollen extraction behavior. We also test the hypothesis that the ability to sonicate flowers and thereby efficiently access pollen from a diverse assemblage of plant species, led to increased diversification among sonicating bee taxa. We find that floral sonication evolved on average 45 times within bees, possibly first during the Early Cretaceous (100–145 million years ago) in the common ancestor of bees. We find that sonicating lineages are significantly more species rich than nonsonicating sister lineages when comparing sister clades, but a probabilistic structured rate permutation on phylogenies approach failed to support the hypothesis that floral sonication is a key driver of bee diversification. This study provides the evolutionary framework needed to further study how floral sonication by bees may have facilitated the spread and common evolution of angiosperm species with poricidal floral morphology. PMID:29392714

  10. The potential conservation value of unmowed powerline strips for native bees

    USGS Publications Warehouse

    Russell, K.N.; Ikerd, H.; Droege, S.

    2005-01-01

    The land area covered by powerline easements in the United States exceeds the area of almost all national parks, including Yellowstone. In parts of Europe and the US, electric companies have altered their land management practices from periodic mowing to extraction of tall vegetation combined with the use of selective herbicides. To investigate whether this alternate management practice might produce higher quality habitat for native bees, we compared the bee fauna collected in unmowed powerline corridors and in nearby mowed grassy fields at the Patuxent Wildlife Research Center (MD). Powerline sites had more spatially and numerically rare species and a richer bee community than the grassy fields, although the difference was less pronounced than we expected. Powerline sites also had more parasitic species and more cavitynesting bees. Bee communities changed progressively through the season, but differences between the site types were persistent. The surrounding, nongrassland landscape likely has a strong influence on the bee species collected at the grassland sites, as some bees may be foraging in the grasslands but nesting elsewhere. Improving habitat for native bees will help ameliorate the loss of pollination services caused by the collapse of wild and managed honeybee populations. This study suggests that powerline strips have the potential to provide five million acres of bee-friendly habitat in the US if utilities more generally adopt appropriate management practices.

  11. Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes

    PubMed Central

    Salmela, Heli; Amdam, Gro Vang; Münch, Daniel

    2017-01-01

    Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees), and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which—together with confocal microscopy and flow cytometry—allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity. PMID:28877227

  12. Chemical profiles of body surfaces and nests from six Bornean stingless bee species.

    PubMed

    Leonhardt, Sara Diana; Blüthgen, Nico; Schmitt, Thomas

    2011-01-01

    Stingless bees (Apidae: Meliponini) are the most diverse group of Apid bees and represent common pollinators in tropical ecosystems. Like honeybees they live in large eusocial colonies and rely on complex chemical recognition and communication systems. In contrast to honeybees, their ecology and especially their chemical ecology have received only little attention, particularly in the Old World. We previously have analyzed the chemical profiles of six paleotropical stingless bee species from Borneo and revealed the presence of species-specific cuticular terpenes- an environmentally derived compound class so far unique among social insects. Here, we compared the bees' surface profiles to the chemistry of their nest material. Terpenes, alkanes, and alkenes were the dominant compound groups on both body surfaces and nest material. However, bee profiles and nests strongly differed in their chemical composition. Body surfaces thus did not merely mirror nests, rendering a passive compound transfer from nests to bees unlikely. The difference between nests and bees was particularly pronounced when all resin-derived compounds (terpenes) were excluded and only genetically determined compounds were considered. When terpenes were included, bee profiles and nest material still differed, because whole groups of terpenes (e.g., sesquiterpenes) were found in nest material of some species, but missing in their chemical profile, indicating that bees are able to influence the terpene composition both in their nests and on their surfaces.

  13. Measurements of Chlorpyrifos Levels in Forager Bees and Comparison with Levels that Disrupt Honey Bee Odor-Mediated Learning Under Laboratory Conditions.

    PubMed

    Urlacher, Elodie; Monchanin, Coline; Rivière, Coraline; Richard, Freddie-Jeanne; Lombardi, Christie; Michelsen-Heath, Sue; Hageman, Kimberly J; Mercer, Alison R

    2016-02-01

    Chlorpyrifos is an organophosphate pesticide used around the world to protect food crops against insects and mites. Despite guidelines for chlorpyrifos usage, including precautions to protect beneficial insects, such as honeybees from spray drift, this pesticide has been detected in bees in various countries, indicating that exposure still occurs. Here, we examined chlorpyrifos levels in bees collected from 17 locations in Otago, New Zealand, and compared doses of this pesticide that cause sub-lethal effects on learning performance under laboratory conditions with amounts of chlorpyrifos detected in the bees in the field. The pesticide was detected at 17 % of the sites sampled and in 12 % of the colonies examined. Amounts detected ranged from 35 to 286 pg.bee(-1), far below the LD50 of ~100 ng.bee(-1). We detected no adverse effect of chlorpyrifos on aversive learning, but the formation and retrieval of appetitive olfactory memories was severely affected. Chlorpyrifos fed to bees in amounts several orders of magnitude lower than the LD50, and also lower than levels detected in bees, was found to slow appetitive learning and reduce the specificity of memory recall. As learning and memory play a central role in the behavioral ecology and communication of foraging bees, chlorpyrifos, even in sublethal doses, may threaten the success and survival of this important insect pollinator.

  14. Empirical, Metagenomic, and Computational Techniques Illuminate the Mechanisms by which Fungicides Compromise Bee Health.

    PubMed

    Steffan, Shawn A; Dharampal, Prarthana S; Diaz-Garcia, Luis; Currie, Cameron R; Zalapa, Juan; Hittinger, Chris Todd

    2017-10-09

    Growers often use fungicide sprays during bloom to protect crops against disease, which exposes bees to fungicide residues. Although considered "bee-safe," there is mounting evidence that fungicide residues in pollen are associated with bee declines (for both honey and bumble bee species). While the mechanisms remain relatively unknown, researchers have speculated that bee-microbe symbioses are involved. Microbes play a pivotal role in the preservation and/or processing of pollen, which serves as nutrition for larval bees. By altering the microbial community, it is likely that fungicides disrupt these microbe-mediated services, and thereby compromise bee health. This manuscript describes the protocols used to investigate the indirect mechanism(s) by which fungicides may be causing colony decline. Cage experiments exposing bees to fungicide-treated flowers have already provided the first evidence that fungicides cause profound colony losses in a native bumble bee (Bombus impatiens). Using field-relevant doses of fungicides, a series of experiments have been developed to provide a finer description of microbial community dynamics of fungicide-exposed pollen. Shifts in the structural composition of fungal and bacterial assemblages within the pollen microbiome are investigated by next-generation sequencing and metagenomic analysis. Experiments developed herein have been designed to provide a mechanistic understanding of how fungicides affect the microbiome of pollen-provisions. Ultimately, these findings should shed light on the indirect pathway through which fungicides may be causing colony declines.

  15. Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes.

    PubMed

    Hystad, Eva Marit; Salmela, Heli; Amdam, Gro Vang; Münch, Daniel

    2017-01-01

    Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees), and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which-together with confocal microscopy and flow cytometry-allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity.

  16. Sequential generations of honey bee (Apis mellifera) queens produced using cryopreserved semen.

    PubMed

    Hopkins, Brandon K; Herr, Charles; Sheppard, Walter S

    2012-01-01

    Much of the world's food production is dependent on honey bees for pollination, and expanding food production will further increase the demand for managed pollination services. Apiculturists outside the native range of the honey bee, in the Americas, Australia and eastern Asia, have used only a few of the 27 described subspecies of honey bees (Apis mellifera) for beekeeping purposes. Within the endemic ranges of a particular subspecies, hybridisation can threaten native subspecies when local beekeepers import and propagate non-native honey bees. For many threatened species, cryopreserved germplasm can provide a resource for the preservation of diversity and recovery of endangered populations. However, although instrumental insemination of queen honey bees is well established, the absence of an effective means to cryopreserve honey bee semen has limited the success of efforts to preserve genetic diversity within the species or to develop repositories of honey bee germplasm for breeding purposes. Herein we report that some queens inseminated with cryopreserved semen were capable of producing a substantial number of fertilised offspring. These diploid female larvae were used to produce two additional sequential generations of new queens, which were then back-crossed to the same stock of frozen semen. Our results demonstrate the ability to produce queens using cryopreserved honey bee spermatozoa and the potential for the establishment of a honey bee genetic repository.

  17. Summertime blues: August foraging leaves honey bees empty-handed.

    PubMed

    Couvillon, Margaret J; Fensome, Katherine A; Quah, Shaun Kl; Schürch, Roger

    2014-01-01

    A successful honey bee forager tells her nestmates the location of good nectar and pollen with the waggle dance, a symbolic language that communicates a distance and direction. Because bees are adept at scouting out profitable forage and are very sensitive to energetic reward, we can use the distance that bees communicate via waggle dances as a proxy for forage availability, where the further the bees fly, the less forage can be found locally. Previously we demonstrated that bees fly furthest in the summer compared with spring or autumn to bring back forage that is not necessarily of better quality. Here we show that August is also the month when significantly more foragers return with empty crops (P = 7.63e-06). This provides additional support that summer may represent a seasonal foraging challenge for honey bees.

  18. Infectivity and virulence of Nosema ceranae and Nosema apis in commercially available North American honey bees.

    PubMed

    Huang, Wei-Fone; Solter, Leellen; Aronstein, Katherine; Huang, Zachary

    2015-01-01

    Nosema ceranae infection is ubiquitous in western honey bees, Apis mellifera, in the United States and the pathogen has apparently replaced Nosema apis in colonies nationwide. Displacement of N. apis suggests that N. ceranae has competitive advantages but N. ceranae was significantly less infective and less virulent than N. apis in commercially available lineages of honey bees in studies conducted in Illinois and Texas. At 5 days post eclosion, the most susceptible age of adult bees tested, the mean ID50 for N. apis was 359 spores compared to 3217 N. ceranae spores, a nearly 9-fold difference. Infectivity of N. ceranae was also lower than N. apis for 24-h and 14-day worker bees. N. ceranae was less infective than reported in studies using European strains of honey bees, while N. apis infectivity, tested in the same cohort of honey bees, corresponded to results reported globally from 1972 to 2010. Mortality of worker bees was similar for both pathogens at a dosage of 50 spores and was not different from the uninfected controls, but was significantly higher for N. apis than N. ceranae at dosages ⩾500 spores. Our results provide comparisons for evaluating research using different ages of bees and pathogen dosages and clarify some controversies. In addition, comparisons among studies suggest that the mixed lineages of US honey bees may be less susceptible to N. ceranae infections than are European bees or that the US isolates of the pathogen are less infective and less virulent than European isolates. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Effects of Imidacloprid and Varroa destructor on survival and health of European honey bees, Apis mellifera.

    PubMed

    Abbo, Pendo M; Kawasaki, Joshua K; Hamilton, Michele; Cook, Steven C; DeGrandi-Hoffman, Gloria; Li, Wen Feng; Liu, Jie; Chen, Yan Ping

    2017-06-01

    There has been growing concern over declines in populations of honey bees and other pollinators which are a vital part to our food security. It is imperative to identify factors responsible for accelerated declines in bee populations and develop solutions for reversing bee losses. While exact causes of colony losses remain elusive, risk factors thought to play key roles are ectoparasitic mites Varroa destructor and neonicotinoid pesticides. The present study aims to investigate effects of a neonicotinoid pesticide Imidacloprid and Varroa mites individually on survivorship, growth, physiology, virus dynamics and immunity of honey bee workers. Our study provides clear evidence that the exposure to sublethal doses of Imidacloprid could exert a significantly negative effect on health and survival of honey bees. We observed a significant reduction in the titer of vitellogenin (Vg), an egg yolk precursor that regulates the honey bees development and behavior and often are linked to energy homeostasis, in bees exposed to Imidacloprid. This result indicates that sublethal exposure to neonicotinoid could lead to increased energy usage in honey bees as detoxification is a energy-consuming metabolic process and suggests that Vg could be a useful biomarker for measuring levels of energy stress and sublethal effects of pesticides on honey bees. Measurement of the quantitative effects of different levels of Varroa mite infestation on the replication dynamic of Deformed wing virus (DWV), an RNA virus associated with Varroa infestation, and expression level of immune genes yields unique insights into how honey bees respond to stressors under laboratory conditions. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  20. Studies of learned helplessness in honey bees (Apis mellifera ligustica).

    PubMed

    Dinges, Christopher W; Varnon, Christopher A; Cota, Lisa D; Slykerman, Stephen; Abramson, Charles I

    2017-04-01

    The current study reports 2 experiments investigating learned helplessness in the honey bee (Apis mellifera ligustica). In Experiment 1, we used a traditional escape method but found the bees' activity levels too high to observe changes due to treatment conditions. The bees were not able to learn in this traditional escape procedure; thus, such procedures may be inappropriate to study learned helplessness in honey bees. In Experiment 2, we used an alternative punishment, or passive avoidance, method to investigate learned helplessness. Using a master and yoked design where bees were trained as either master or yoked and tested as either master or yoked, we found that prior training with unavoidable and inescapable shock in the yoked condition interfered with avoidance and escape behavior in the later master condition. Unlike control bees, learned helplessness bees failed to restrict their movement to the safe compartment following inescapable shock. Unlike learned helplessness studies in other animals, no decrease in general activity was observed. Furthermore, we did not observe a "freezing" response to inescapable aversive stimuli-a phenomenon, thus far, consistently observed in learned helplessness tests with other species. The bees, instead, continued to move back and forth between compartments despite punishment in the incorrect compartment. These findings suggest that, although traditional escape methods may not be suitable, honey bees display learned helplessness in passive avoidance procedures. Thus, regardless of behavioral differences from other species, honey bees can be a unique invertebrate model organism for the study of learned helplessness. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Hemolymph proteome changes during worker brood development match the biological divergences between western honey bees (Apis mellifera) and eastern honey bees (Apis cerana).

    PubMed

    Feng, Mao; Ramadan, Haitham; Han, Bin; Fang, Yu; Li, Jianke

    2014-07-05

    Hemolymph plays key roles in honey bee molecule transport, immune defense, and in monitoring the physiological condition. There is a lack of knowledge regarding how the proteome achieves these biological missions for both the western and eastern honey bees (Apis mellifera and Apis cerana). A time-resolved proteome was compared using two-dimensional electrophoresis-based proteomics to reveal the mechanistic differences by analysis of hemolymph proteome changes between the worker bees of two bee species during the larval to pupal stages. The brood body weight of Apis mellifera was significantly heavier than that of Apis cerana at each developmental stage. Significantly, different protein expression patterns and metabolic pathways were observed in 74 proteins (166 spots) that were differentially abundant between the two bee species. The function of hemolymph in energy storage, odor communication, and antioxidation is of equal importance for the western and eastern bees, indicated by the enhanced expression of different protein species. However, stronger expression of protein folding, cytoskeletal and developmental proteins, and more highly activated energy producing pathways in western bees suggests that the different bee species have developed unique strategies to match their specific physiology using hemolymph to deliver nutrients and in immune defense. Our disparate findings constitute a proof-of-concept of molecular details that the ecologically shaped different physiological conditions of different bee species match with the hemolymph proteome during the brood stage. This also provides a starting point for future research on the specific hemolymph proteins or pathways related to the differential phenotypes or physiology.

  2. Landscape spatial configuration is a key driver of wild bee demographics.

    PubMed

    Neokosmidis, Lazaros; Tscheulin, Thomas; Devalez, Jelle; Petanidou, Theodora

    2018-02-01

    The majority of studies investigating the effects of landscape composition and configuration on bee populations have been conducted in regions of intensive agricultural production, ignoring regions which are dominated by seminatural habitats, such as the islands of the Aegean Archipelago. In addition, research so far has focused on the landscape impacts on bees sampled in cropped fields while the landscape effects on bees inhabiting seminatural habitats are understudied. Here, we investigate the impact of the landscape on wild bee assemblages in 66 phryganic (low scrubland) communities on 8 Aegean islands. We computed landscape metrics (total area and total perimeter-area ratio) in 4 concentric circles (250, 500, 750, and 1000 m) around the center of each bee sampling site including 3 habitat groups (namely phrygana, cultivated land, and natural forests). We further measured the local flower cover in 25 quadrats distributed randomly at the center of each sampling site. We found that the landscape scale is more important than the local scale in shaping abundance and species richness of bees. Furthermore, habitat configuration was more important than the total area of habitats, probably because it affects bees' movement across the landscape. Phrygana and natural forests had a positive effect on bee demographics, while cultivated land had a negative effect. This demonstrates that phryganic specialists drive bee assemblages in these seminatural landscapes. This finding, together with the shown importance of landscape scale, should be considered for the management of wild bees with special emphasis placed on the spatial configuration of seminatural habitats. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  3. Reduced abundance and earlier collection of bumble bee workers under intensive cultivation of a mass-flowering prairie crop.

    PubMed

    Galpern, Paul; Johnson, Sarah A; Retzlaff, Jennifer L; Chang, Danielle; Swann, John

    2017-04-01

    One of the most commonly seeded crops in Canada is canola, a cultivar of oilseed rape ( Brassica napus ). As a mass-flowering crop grown intensively throughout the Canadian Prairies, canola has the potential to influence pollinator success across tens of thousands of square kilometers of cropland. Bumble bees ( Bombus sp.) are efficient pollinators of many types of native and crop plants. We measured the influence of this mass-flowering crop on the abundance and phenology of bumble bees, and on another species of social bee (a sweat bee; Halictus rubicundus ), by continuously deploying traps at different levels of canola cultivation intensity, spanning the start and end of canola bloom. Queen bumble bees were more abundant in areas with more canola cover, indicating that this crop is attractive to queens. However, bumble bee workers were significantly fewer in these locations later in the season, suggesting reduced colony success. The median collection dates of workers of three bumble bee species were earlier near canola fields, suggesting a dynamic response of colonies to the increased floral resources. Different species experienced this shift to different extents. The sweat bee was not affected by canola cultivation intensity. Our findings suggest that mass-flowering crops such as canola are attractive to bumble bee queens and therefore may lead to higher rates of colony establishment, but also that colonies established near this crop may be less successful. We propose that the effect on bumble bees can be mitigated by spacing the crop more evenly with respect to alternate floral resources.

  4. Honeybees can learn the relationship between the solar ephemeris and a newly experienced landscape: a confirmation.

    PubMed

    Kemfort, Jordan R; Towne, William F

    2013-10-15

    Honeybees learn the spatial relationship between the sun's pattern of movement and the landscape immediately surrounding their nest, which allows bees to locate the sun under overcast skies by reference to the landscape alone. Surprisingly, when bees have been transplanted from their natal landscape to a rotated twin landscape - such as from one treeline to a similar but differently oriented treeline - they fail to learn the relationship between the sun and the second landscape. This raises the question of whether bees can ever learn the relationship between the sun's pattern of movement and a landscape other than their natal one. Here we confirm, with new and necessary controls, that bees can indeed learn the relationship between the sun's pattern of movement and a second (that is, non-natal) landscape, if the second landscape is panoramically different from the bees' natal site. We transplanted bees from their natal site to a panoramically different second site and, 3 days later, tested the bees' knowledge of the relationship between the sun and the second landscape. The test involved observing the bees' communicative dances under overcast skies at a third site that was a rotated twin of the second. These bees oriented their dances using a memory of the sun's course in relation to the second landscape, indicating that they had learned this relationship. Meanwhile, control bees transplanted directly from the natal site to the third site, skipping the second, danced differently, confirming the importance of the experimental bees' experience at the second site.

  5. Genetic stock identification of Russian honey bees.

    PubMed

    Bourgeois, Lelania; Sheppard, Walter S; Sylvester, H Allen; Rinderer, Thomas E

    2010-06-01

    A genetic stock certification assay was developed to distinguish Russian honey bees from other European (Apis mellifera L.) stocks that are commercially produced in the United States. In total, 11 microsatellite and five single-nucleotide polymorphism loci were used. Loci were selected for relatively high levels of homogeneity within each group and for differences in allele frequencies between groups. A baseline sample consisted of the 18 lines of Russian honey bees released to the Russian Bee Breeders Association and bees from 34 queen breeders representing commercially produced European honey bee stocks. Suitability tests of the baseline sample pool showed high levels of accuracy. The probability of correct assignment was 94.2% for non-Russian bees and 93.3% for Russian bees. A neighbor-joining phenogram representing genetic distance data showed clear distinction of Russian and non-Russian honey bee stocks. Furthermore, a test of appropriate sample size showed a sample of eight bees per colony maximizes accuracy and consistency of the results. An additional 34 samples were tested as blind samples (origin unknown to those collecting data) to determine accuracy of individual assignment tests. Only one of these samples was incorrectly assigned. The 18 current breeding lines were represented among the 2009 blind sampling, demonstrating temporal stability of the genetic stock identification assay. The certification assay will be used through services provided by a service laboratory, by the Russian Bee Breeders Association to genetically certify their stock. The genetic certification will be used in conjunction with continued selection for favorable traits, such as honey production and varroa and tracheal mite resistance.

  6. A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera

    PubMed Central

    Zayed, Amro; Whitfield, Charles W.

    2008-01-01

    Apis mellifera originated in Africa and extended its range into Eurasia in two or more ancient expansions. In 1956, honey bees of African origin were introduced into South America, their descendents admixing with previously introduced European bees, giving rise to the highly invasive and economically devastating “Africanized” honey bee. Here we ask whether the honey bee's out-of-Africa expansions, both ancient and recent (invasive), were associated with a genome-wide signature of positive selection, detected by contrasting genetic differentiation estimates (FST) between coding and noncoding SNPs. In native populations, SNPs in protein-coding regions had significantly higher FST estimates than those in noncoding regions, indicating adaptive evolution in the genome driven by positive selection. This signal of selection was associated with the expansion of honey bees from Africa into Western and Northern Europe, perhaps reflecting adaptation to temperate environments. We estimate that positive selection acted on a minimum of 852–1,371 genes or ≈10% of the bee's coding genome. We also detected positive selection associated with the invasion of African-derived honey bees in the New World. We found that introgression of European-derived alleles into Africanized bees was significantly greater for coding than noncoding regions. Our findings demonstrate that Africanized bees exploited the genetic diversity present from preexisting introductions in an adaptive way. Finally, we found a significant negative correlation between FST estimates and the local GC content surrounding coding SNPs, suggesting that AT-rich genes play an important role in adaptive evolution in the honey bee. PMID:18299560

  7. Spore load and immune response of honey bees naturally infected by Nosema ceranae.

    PubMed

    Li, Wenfeng; Evans, Jay D; Li, Jianghong; Su, Songkun; Hamilton, Michele; Chen, Yanping

    2017-12-01

    Nosema ceranae causes widespread infection in adult workers of European honey bees, Apis mellifera, and has often been linked to honey bee colony losses worldwide. Previous investigations of honey bee immune response to N. ceranae infection were largely based on laboratory experiment, however, little is known about the immune response of honey bees that are naturally infected by N. ceranae. Here, we compared the infection levels of N. ceranae in three different categories of adult bees (emergent bees, nurses, and foragers) and detected the host immune response to the N. ceranae infection under natural conditions. Our studies showed that the Nosema spore load and infection prevalence varied among the different types of adult workers, and both of them increased as honey bees aged: No infection was detected in emergent bees, nurses had a medium spore load and prevalence, while foragers were with the highest Nosema infection level and prevalence. Quantification of the mRNA levels of antimicrobial peptides (abaecin, apidaecin, defensin-1, defensin-2, and hymenoptaecin) and microbial recognition proteins (PGRP-S1, PGRP-S2, PGRP-S3, PGRP-LC, GNBP1-1, and GNBP1-2) confirmed the involvement of the Toll and/or Imd immune pathways in the host response to N. ceranae infection, and revealed an activation of host immune response by N. ceranae infection under natural conditions. Additionally, the levels of immune response were positively correlated with the Nosema spore loads in the infected bees. The information gained from this study will be relevant to the predictive modeling of honey bee disease dynamics for Nosema disease prevention and management.

  8. A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera.

    PubMed

    Zayed, Amro; Whitfield, Charles W

    2008-03-04

    Apis mellifera originated in Africa and extended its range into Eurasia in two or more ancient expansions. In 1956, honey bees of African origin were introduced into South America, their descendents admixing with previously introduced European bees, giving rise to the highly invasive and economically devastating "Africanized" honey bee. Here we ask whether the honey bee's out-of-Africa expansions, both ancient and recent (invasive), were associated with a genome-wide signature of positive selection, detected by contrasting genetic differentiation estimates (F(ST)) between coding and noncoding SNPs. In native populations, SNPs in protein-coding regions had significantly higher F(ST) estimates than those in noncoding regions, indicating adaptive evolution in the genome driven by positive selection. This signal of selection was associated with the expansion of honey bees from Africa into Western and Northern Europe, perhaps reflecting adaptation to temperate environments. We estimate that positive selection acted on a minimum of 852-1,371 genes or approximately 10% of the bee's coding genome. We also detected positive selection associated with the invasion of African-derived honey bees in the New World. We found that introgression of European-derived alleles into Africanized bees was significantly greater for coding than noncoding regions. Our findings demonstrate that Africanized bees exploited the genetic diversity present from preexisting introductions in an adaptive way. Finally, we found a significant negative correlation between F(ST) estimates and the local GC content surrounding coding SNPs, suggesting that AT-rich genes play an important role in adaptive evolution in the honey bee.

  9. Modelling food and population dynamics in honey bee colonies.

    PubMed

    Khoury, David S; Barron, Andrew B; Myerscough, Mary R

    2013-01-01

    Honey bees (Apis mellifera) are increasingly in demand as pollinators for various key agricultural food crops, but globally honey bee populations are in decline, and honey bee colony failure rates have increased. This scenario highlights a need to understand the conditions in which colonies flourish and in which colonies fail. To aid this investigation we present a compartment model of bee population dynamics to explore how food availability and bee death rates interact to determine colony growth and development. Our model uses simple differential equations to represent the transitions of eggs laid by the queen to brood, then hive bees and finally forager bees, and the process of social inhibition that regulates the rate at which hive bees begin to forage. We assume that food availability can influence both the number of brood successfully reared to adulthood and the rate at which bees transition from hive duties to foraging. The model predicts complex interactions between food availability and forager death rates in shaping colony fate. Low death rates and high food availability results in stable bee populations at equilibrium (with population size strongly determined by forager death rate) but consistently increasing food reserves. At higher death rates food stores in a colony settle at a finite equilibrium reflecting the balance of food collection and food use. When forager death rates exceed a critical threshold the colony fails but residual food remains. Our model presents a simple mathematical framework for exploring the interactions of food and forager mortality on colony fate, and provides the mathematical basis for more involved simulation models of hive performance.

  10. Crop-emptying rate and the design of pesticide risk assessment schemes in the honey bee and wild bees (Hymenoptera: Apidae).

    PubMed

    Fournier, Alice; Rollin, Orianne; Le Féon, Violette; Decourtye, Axel; Henry, Mickaël

    2014-02-01

    Recent scientific literature and reports from official sanitary agencies have pointed out the deficiency of current pesticide risk assessment processes regarding sublethal effects on pollinators. Sublethal effects include troubles in learning performance, orientation skills, or mobility, with possible contribution to substantial dysfunction at population scale. However, the study of sublethal effects is currently limited by considerable knowledge gaps, particularly for the numerous pollinators other than the honey bee Apis mellifera L.--the traditional model for pesticide risk assessment in pollinators. Here, we propose to use the crop-emptying time as a rule of thumb to guide the design of oral exposure experiments in the honey bee and wild bees. The administration of contaminated sucrose solutions is typically followed by a fasting time lapse to allow complete assimilation before the behavioral tests. The fasting duration should at least encompass the crop-emptying time, because no absorption takes place in the crop. We assessed crop-emptying rate in fasted bees and how it relates 1) with sucrose solution concentration in the honey bee and 2) with body mass in wild bees. Fasting duration required for complete crop emptying in honey bees fed 20 microl of a 50% sucrose solution was nearly 2 h. Actual fasting durations are usually shorter in toxicological studies, suggesting incomplete crop emptying, and therefore partial assimilation of experimental solutions that could imply underestimation of sublethal effects. We also found faster crop-emptying rates in large wild bees compared with smaller wild bees, and suggest operative rules to adapt sublethal assessment schemes accordingly.

  11. Why does bee health matter? The science surrounding honey bee health concerns and what we can do about it

    USGS Publications Warehouse

    Spivak, Marla S; Browning, Zac; Goblirsch, Mike; Lee, Katie; Otto, Clint R.; Smart, Matthew; Wu-Smart, Judy

    2017-01-01

    A colony of honey bees is an amazing organism when it is healthy; it is a superorganism in many senses of the word. As with any organism, maintaining a state of health requires cohesiveness and interplay among cells and tissues and, in the case of a honey bee colony, the bees themselves. The individual bees that make up a honey bee colony deliver to the superorganism what it needs: pollen and nectar collected from flowering plants that contain nutrients necessary for growth and survival. Honey bees with access to better and more complete nutrition exhibit improved immune system function and behavioral defenses for fighting off effects of pathogens and pesticides (Evans and Spivak 2010; Mao, Schuler, and Berenbaum 2013; Wahl and Ulm 1983). Sadly, as this story is often told in the headlines, the focus is rarely about what it means for a honey bee colony to be healthy and is instead primarily focused on colony survival rates. Bee colonies are chronically exposed to parasitic mites, viruses, diseases, miticides, pesticides, and poor nutrition, which weaken and make innate defenses insufficient at overcoming these combined stressors. Colonies that are chronically weakened can be even more susceptible to infections and levels of pesticide exposure that might otherwise be innocuous, further promoting a downward spiral of health. Sick and weakened bees diminish the colony’s resiliency, ultimately leading to a breakdown in the social structure, production, efficiency, immunity, and reproduction of the colony, and eventual or sudden colony death.

  12. Introduction of Non-Native Pollinators Can Lead to Trans-Continental Movement of Bee-Associated Fungi.

    PubMed

    Hedtke, Shannon M; Blitzer, Eleanor J; Montgomery, Graham A; Danforth, Bryan N

    2015-01-01

    Bees are essential pollinators for many flowering plants, including agriculturally important crops such as apple. As geographic ranges of bees or their host plants change as a result of human activities, we need to identify pathogens that could be transmitted among newly sympatric species to evaluate and anticipate their effects on bee communities. We used PCR screening and DNA sequencing to evaluate exposure to potentially disease-causing microorganisms in a pollinator of apple, the horned mason bee (Osmia cornifrons). We did not detect microsporidia, Wolbachia, or trypanosomes, which are common pathogens of bees, in any of the hundreds of mason bees screened. We did detect both pathogenic and apathogenic (saprophytic) fungal species in the genus Ascosphaera (chalkbrood), an unidentified species of Aspergillus fungus, and a strain of bacteria in the genus Paenibacillus that is probably apathogenic. We detected pathogenic fungal strains in asymptomatic adult bees that therefore may be carriers of disease. We demonstrate that fungi from the genus Ascosphaera have been transported to North America along with the bee from its native range in Japan, and that O. cornifrons is exposed to fungi previously only identified from nests of other related bee species. Further study will be required to quantify pathogenicity and health effects of these different microbial species on O. cornifrons and on closely-related native North American mason bees that may now be exposed to novel pathogens. A global perspective is required for pathogen research as geographic ranges of insects and microorganisms shift due to intentional or accidental introductions.

  13. Sudden deaths and colony population decline in Greek honey bee colonies.

    PubMed

    Bacandritsos, N; Granato, A; Budge, G; Papanastasiou, I; Roinioti, E; Caldon, M; Falcaro, C; Gallina, A; Mutinelli, F

    2010-11-01

    During June and July of 2009, sudden deaths, tremulous movements and population declines of adult honey bees were reported by the beekeepers in the region of Peloponnesus (Mt. Mainalo), Greece. A preliminary study was carried out to investigate these unexplained phenomena in this region. In total, 37 bee samples, two brood frames containing honey bee brood of various ages, eight sugar samples and four sugar patties were collected from the affected colonies. The samples were tested for a range of pests, pathogens and pesticides. Symptomatic adult honey bees tested positive for Varroa destructor, Nosema ceranae, Chronic bee paralysis virus (CBPV), Acute paralysis virus (ABPV), Deformed wing virus (DWV), Sacbrood virus (SBV) and Black queen cell virus (BQCV), but negative for Acarapis woodi. American Foulbrood was absent from the brood samples. Chemical analysis revealed that amitraz, thiametoxan, clothianidin and acetamiprid were all absent from symptomatic adult bees, sugar and sugar patty samples. However, some bee samples, were contaminated with imidacloprid in concentrations between 14 ng/g and 39 ng/g tissue. We present: the infection of Greek honey bees by multiple viruses; the presence of N. ceranae in Greek honey bees and the first record of imidacloprid (neonicotonoid) residues in Greek honey bee tissues. The presence of multiple pathogens and pesticides made it difficult to associate a single specific cause to the depopulation phenomena observed in Greece, although we believe that viruses and N. ceranae synergistically played the most important role. A follow-up in-depth survey across all Greek regions is required to provide context to these preliminary findings. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Sucrose acceptance and different forms of associative learning of the honey bee (apis mellifera L.) in the field and laboratory.

    PubMed

    Mujagic, Samir; Sarkander, Jana; Erber, Barbara; Erber, Joachim

    2010-01-01

    The experiments analyze different forms of learning and 24-h retention in the field and in the laboratory in bees that accept sucrose with either low (/=30% or >/=50%) concentrations. In the field we studied color learning at a food site and at the hive entrance. In the laboratory olfactory conditioning of the proboscis extension response (PER) was examined. In the color learning protocol at a feeder, bees with low sucrose acceptance thresholds (/=50%). Retention after 24 h is significantly different between the two groups of bees and the choice reactions converge. Bees with low and high acceptance thresholds in the field show no differences in the sucrose sensitivity PER tests in the laboratory. Acceptance thresholds in the field are thus a more sensitive behavioral measure than PER responsiveness in the laboratory. Bees with low acceptance thresholds show significantly better acquisition and 24-h retention in olfactory learning in the laboratory compared to bees with high thresholds. In the learning protocol at the hive entrance bees learn without sucrose reward that a color cue signals an open entrance. In this experiment, bees with high sucrose acceptance thresholds showed significantly better learning and reversal learning than bees with low thresholds. These results demonstrate that sucrose acceptance thresholds affect only those forms of learning in which sucrose serves as the reward. The results also show that foraging behavior in the field is a good predictor for learning behavior in the field and in the laboratory.

  15. Honeydew feeding in the solitary bee Osmia bicornis as affected by aphid species and nectar availability.

    PubMed

    Konrad, Roger; Wäckers, Felix L; Romeis, Jörg; Babendreier, Dirk

    2009-12-01

    Like honey bees (Apis mellifera), non-Apis bees could exploit honeydew as a carbohydrate source. In addition to providing carbohydrates, this may expose them to potentially harmful plant products secreted in honeydew. However, knowledge on honeydew feeding by solitary bees is very scarce. Here we determine whether the polylectic solitary bee Osmia bicornis (=O. rufa) collects honeydew under semi-field conditions, and whether this is affected by aphid species and presence of floral nectar. Bees were provided with oilseed rape plants containing flowers and/or colonies of either Myzus persicae or Brevicoryne brassicae. We used the total sugar level of the bee crop as a measure of the individual's nutritional state and the oligosaccharide erlose as indicator for honeydew consumption. Erlose was present in honeydews from both aphid species, while absent in oilseed rape nectar, nor being synthesized by O. bicornis. When bees were confined to a single honeydew type as the only carbohydrate source, consumption of M. persicae honeydew was confirmed for 47% of the bees and consumption of B. brassicae honeydew for only 3%. Increased mortality in the latter treatment provided further evidence that B. brassicae honeydew is an unsuitable food source for O. bicornis. All bees that were given the choice between honeydew and floral nectar showed significantly increased total sugar levels. However, the fact that no erlose was detected in these bees indicates that honeydew was not consumed when suitable floral nectar was available. This study demonstrates that honeydew exploitation by O. bicornis is dependent on honeydew type and the presence of floral nectar.

  16. Gardening and landscaping practices for nesting native bees

    USDA-ARS?s Scientific Manuscript database

    Bees have two primary needs in life: pollen and nectar to feed themselves and their offspring, and a suitable place to nest. Guidance is increasingly available about garden flowers to plant for native bees. We know far less about accommodating the nesting needs of our native bees, but there are cer...

  17. Honey bees preferentially consume freshly-stored pollen

    USDA-ARS?s Scientific Manuscript database

    Honey bees collect and store pollen in cells in a preserved form known as stored pollen, or beebread. To preserve pollen, bees add nectar and honey to collected pollen to form stored pollen. Bees eat stored pollen from a wide selection of pollen cells that have been stored for different lengths of...

  18. Bees brought to their knees: Microbes affecting honey bee health

    USDA-ARS?s Scientific Manuscript database

    The biology and health of the honey bee, Apis mellifera, has been of interest to human societies since the advent of beekeeping. Descriptive scientific research on pathogens affecting honey bees have been published for nearly a century, but it wasn’t until the recent outbreak of heavy colony losses...

  19. Ascosphaera subglobosa, a new species from North America associated with the solitary bee Megachile rotundata

    USDA-ARS?s Scientific Manuscript database

    Ascosphaera is a widespread ascomycetous genus of mostly obligate associates of bees. These fungi have diversified to exploit seemingly every possible substrate available in their bee-associated habitat, occurring as pathogens of the bees, or as saprotrophs on honey, cocoons, nesting materials, poll...

  20. 7 CFR 322.26 - Inspection and handling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Transit of...) Transloading—(1) Adult bees. You may transload adult bees from one aircraft to another aircraft at the port of arrival in the United States only under the supervision of an inspector. If the adult bees cannot be...

  1. The Thinker versus a Quilting Bee: Contrasting Images.

    ERIC Educational Resources Information Center

    Thayer-Bacon, Barbara J.

    1999-01-01

    Offers the image of the quilting bee as a contrasting representation of critical thinking (or constructive thinking), comparing the two images, discussing a quilting bee representation of knowledge construction in terms of the tools used by quilters (knowers), and summarizing the transformation of critical thinking theory that a quilting bee image…

  2. 76 FR 8996 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... Service Title: Bees and Related Articles. OMB Control Number: 0579-0207. Summary of Collection: The Plant... individuals who are involved in breeding, exporting, importing, and containing bees and related articles. The... documents that allow importation of bees and related articles or authorizes the release of bees. This...

  3. 7 CFR 322.26 - Inspection and handling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Transit of...) Transloading—(1) Adult bees. You may transload adult bees from one aircraft to another aircraft at the port of arrival in the United States only under the supervision of an inspector. If the adult bees cannot be...

  4. 7 CFR 322.26 - Inspection and handling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Transit of...) Transloading—(1) Adult bees. You may transload adult bees from one aircraft to another aircraft at the port of arrival in the United States only under the supervision of an inspector. If the adult bees cannot be...

  5. 7 CFR 322.26 - Inspection and handling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Transit of...) Transloading—(1) Adult bees. You may transload adult bees from one aircraft to another aircraft at the port of arrival in the United States only under the supervision of an inspector. If the adult bees cannot be...

  6. 75 FR 2475 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ..., especially fruits and vegetables. Africanized bees, parasites, diseases, and pesticides threaten the survival of bees. Programs are provided by Federal, State and local governments to assist in the survival of bees and to encourage beekeepers to maintain bee colonies. Need and Use of the Information: NASS will...

  7. 7 CFR 322.26 - Inspection and handling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Transit of...) Transloading—(1) Adult bees. You may transload adult bees from one aircraft to another aircraft at the port of arrival in the United States only under the supervision of an inspector. If the adult bees cannot be...

  8. Sampling bee communities using pan traps: alternative methods increase sample size

    USDA-ARS?s Scientific Manuscript database

    Monitoring of the status of bee populations and inventories of bee faunas require systematic sampling. Efficiency and ease of implementation has encouraged the use of pan traps to sample bees. Efforts to find an optimal standardized sampling method for pan traps have focused on pan trap color. Th...

  9. Preventing bee mortality with RNA interference

    USDA-ARS?s Scientific Manuscript database

    We present a real world example of the successful use of an RNAi product for disease control. RNAi increased bee health in the presence of the bee viral pathogen, IAPV. The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsib...

  10. Multiyear survey targeting disease incidence in US honey bees

    USDA-ARS?s Scientific Manuscript database

    The US National Honey Bee Disease Survey sampled colony pests and diseases from 2009 to 2014. We verified the absence of Tropilaelaps spp., the Asian honey bee (Apis cerana), and slow bee paralysis virus. Endemic health threats were quantified, including Varroa destructor, Nosema spp., and eight hon...

  11. Cage-Fighting Bees: Can Aggressive Competition Increase Pollination Efficacy for an Oligolectic Native Bee?

    USDA-ARS?s Scientific Manuscript database

    Pollination efficacy of the oligolectic bee Ptilothrix bombiformis was measured as the number of pollen grains delivered to virgin Hibiscus stigmas. Such specialized bee foragers are often assumed to be highly efficient pollinators. Intriguingly, however, we discovered females fight over host blooms...

  12. Status of breeding and use of Russian and VSH bees world-wide

    USDA-ARS?s Scientific Manuscript database

    Research at the USDA Honey Bee Breeding, Genetics and Physiology Laboratory produced two types of honey bees (Apis mellifera) with resistance to Varroa destructor. Colonies of these bees host mite populations that remain small enough to allow beekeepers to eliminate or reduce miticide treatments. S...

  13. Ecology and economics of using native managed bees for almond pollination

    USDA-ARS?s Scientific Manuscript database

    Evidence of the efficacy of using managed native bees, rather than or concurrently with honey bees, in crop pollination is increasing. However, a broader ecological economic framework for evaluating the costs and benefits of using these bees has not been developed. We conducted a cost-benefit analy...

  14. Nosema ceranae induced mortality in honey bees (Apis mellifera) depends on infection methods.

    PubMed

    Milbrath, Meghan O; Xie, Xianbing; Huang, Zachary Y

    2013-09-01

    Nosema ceranae infection can reduce survival of the Western honey bee, Apis mellifera, but experiments examining its virulence have highly variable results. This variation may arise from differences in experimental techniques. We examined survival effects of two techniques: Nosema infection at day 1 without anesthesia and infection at day 5 using CO2 anesthesia. All bees infected with the latter method had poorer survival. Interestingly, these bees also had significantly fewer spores than bees infected without anesthesia. These results indicate that differences in Nosema ceranae-induced mortality in honey bees may be partially due to differences in experimental techniques. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Hemichorea after multiple bee stings.

    PubMed

    An, Jin Young; Kim, Ji Seon; Min, Jin Hong; Han, Kyu Hong; Kang, Jun Ho; Lee, Suk Woo; Kim, Hoon; Park, Jung Soo

    2014-02-01

    Bee sting is one of the most commonly encountered insect bites in the world. Despite the common occurrence of local and systemic allergic reactions, there are few reports of ischemic stroke after bee stings. To the best our knowledge, there have been no reports on involuntary hyperkinetic movement disorders after multiple bee stings. We report the case of a 50-year-old man who developed involuntary movements of the left leg 24 hours after multiple bee stings, and the cause was confirmed to be a right temporal infarction on a diffusion magnetic resonance imaging scan. Thus, we concluded that the involuntary movement disorder was caused by right temporal infarction that occurred after multiple bee stings.

  16. Identifying bacterial predictors of honey bee health.

    PubMed

    Budge, Giles E; Adams, Ian; Thwaites, Richard; Pietravalle, Stéphane; Drew, Georgia C; Hurst, Gregory D D; Tomkies, Victoria; Boonham, Neil; Brown, Mike

    2016-11-01

    Non-targeted approaches are useful tools to identify new or emerging issues in bee health. Here, we utilise next generation sequencing to highlight bacteria associated with healthy and unhealthy honey bee colonies, and then use targeted methods to screen a wider pool of colonies with known health status. Our results provide the first evidence that bacteria from the genus Arsenophonus are associated with poor health in honey bee colonies. We also discovered Lactobacillus and Leuconostoc spp. were associated with healthier honey bee colonies. Our results highlight the importance of understanding how the wider microbial population relates to honey bee colony health. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  17. Antiviral Defense Mechanisms in Honey Bees

    PubMed Central

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  18. Domestication of honey bees was associated with expansion of genetic diversity.

    PubMed

    Oldroyd, Benjamin P

    2012-09-01

    Humans have been keeping honey bees, Apis mellifera, in artificial hives for over 7000 years. Long enough, one might imagine, for some genetic changes to have occurred in domestic bees that would distinguish them from their wild ancestors. Indeed, some have argued that the recent mysterious and widespread losses of commercial bee colonies, are due in part to inbreeding. In this issue of Molecular Ecology, Harpur et al. (2012) show that the domestication of honey bees, rather than reducing genetic variance in the population, has increased it. It seems that the commercial honey bees of Canada are a mongrel lot, with far more variability than their ancestors in Europe. © 2012 Blackwell Publishing Ltd.

  19. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine.

    PubMed

    du Rand, Esther E; Smit, Salome; Beukes, Mervyn; Apostolides, Zeno; Pirk, Christian W W; Nicolson, Susan W

    2015-07-02

    Insecticides are thought to be among the major factors contributing to current declines in bee populations. However, detoxification mechanisms in healthy, unstressed honey bees are poorly characterised. Alkaloids are naturally encountered in pollen and nectar, and we used nicotine as a model compound to identify the mechanisms involved in detoxification processes in honey bees. Nicotine and neonicotinoids have similar modes of action in insects. Our metabolomic and proteomic analyses show active detoxification of nicotine in bees, associated with increased energetic investment and also antioxidant and heat shock responses. The increased energetic investment is significant in view of the interactions of pesticides with diseases such as Nosema spp which cause energetic stress and possible malnutrition. Understanding how healthy honey bees process dietary toxins under unstressed conditions will help clarify how pesticides, alone or in synergy with other stress factors, lead to declines in bee vitality.

  20. Dynamic microbiome evolution in social bees

    PubMed Central

    Kwong, Waldan K.; Medina, Luis A.; Koch, Hauke; Sing, Kong-Wah; Soh, Eunice Jia Yu; Ascher, John S.; Jaffé, Rodolfo; Moran, Nancy A.

    2017-01-01

    The highly social (eusocial) corbiculate bees, comprising the honey bees, bumble bees, and stingless bees, are ubiquitous insect pollinators that fulfill critical roles in ecosystem services and human agriculture. Here, we conduct wide sampling across the phylogeny of these corbiculate bees and reveal a dynamic evolutionary history behind their microbiota, marked by multiple gains and losses of gut associates, the presence of generalist as well as host-specific strains, and patterns of diversification driven, in part, by host ecology (for example, colony size). Across four continents, we found that different host species have distinct gut communities, largely independent of geography or sympatry. Nonetheless, their microbiota has a shared heritage: The emergence of the eusocial corbiculate bees from solitary ancestors appears to coincide with the acquisition of five core gut bacterial lineages, supporting the hypothesis that host sociality facilitates the development and maintenance of specialized microbiomes. PMID:28435856

  1. Special Issue: Honey Bee Viruses

    PubMed Central

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field. PMID:26702462

  2. Recipe for a Busy Bee: MicroRNAs in Honey Bee Caste Determination

    PubMed Central

    Skogerboe, Geir; Dai, Shuanjin; Li, Wenfeng; Li, Zhiguo; Liu, Fang; Ni, Ruifeng; Guo, Yu; Chen, Shenglu; Zhang, Shaowu; Chen, Runsheng

    2013-01-01

    Social caste determination in the honey bee is assumed to be determined by the dietary status of the young larvae and translated into physiological and epigenetic changes through nutrient-sensing pathways. We have employed Illumina/Solexa sequencing to examine the small RNA content in the bee larval food, and show that worker jelly is enriched in miRNA complexity and abundance relative to royal jelly. The miRNA levels in worker jelly were 7–215 fold higher than in royal jelly, and both jellies showed dynamic changes in miRNA content during the 4th to 6th day of larval development. Adding specific miRNAs to royal jelly elicited significant changes in queen larval mRNA expression and morphological characters of the emerging adult queen bee. We propose that miRNAs in the nurse bee secretions constitute an additional element in the regulatory control of caste determination in the honey bee. PMID:24349106

  3. Special Issue: Honey Bee Viruses.

    PubMed

    Gisder, Sebastian; Genersch, Elke

    2015-10-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field.

  4. Bee Pollen Flavonoids as a Therapeutic Agent in Allergic and Immunological Disorders.

    PubMed

    Jannesar, Masoomeh; Sharif Shoushtari, Maryam; Majd, Ahmad; Pourpak, Zahra

    2017-06-01

    Bee pollen grains, as the male reproductive part of seed-bearing plants contain considerable concentrations of various phytochemicals and nutrients. Since antiquity, people throughout the world used pollens to cure colds, flu, ulcers, premature aging, anemia and colitis. It is now well-documented that some bee pollen secondary metabolites (e.g. flavonoid) may have positive health effects. In recent years, the flavonoids have attracted much interest because of their wide range of biological properties and their beneficial effects on human health. The current review, points out potential therapeutic effects of bee pollen flavonoids as one of the main bee pollen bioactive compounds in allergic and immunological diseases. Due to the fact that some types of flavonoid components in bee pollen have anti-allergic, anti-oxidant and anti-inflammatory properties, bee pollen flavonoids can be excellent candidates for future studies including phytotherapy, molecular pharmacology and substitutes for chemicals used in treating allergic and immunological disorders.

  5. A Push-pull Protocol to Reduce Colonization of Bird Nest Boxes by Honey Bees.

    PubMed

    Efstathion, Caroline A; Kern, William H

    2016-09-04

    Introduction of the invasive Africanized honey bee (AHB) into the Neotropics is a serious problem for many cavity nesting birds, specifically parrots. These bees select cavities that are suitable nest sites for birds, resulting in competition. The difficulty of removing bees and their defensive behavior makes a prevention protocol necessary. Here, we describe a push-pull integrated pest management protocol to deter bees from inhabiting bird boxes by applying a bird safe insecticide, permethrin, to repel bees from nest boxes, while simultaneously attracting them to pheromone-baited swarm traps. Shown here is an example experiment using Barn Owl nest boxes. This protocol successfully reduced colonization of Barn Owl nest boxes by Africanized honey bees. This protocol is flexible, allowing adjustments to accommodate a wide range of bird species and habitats. This protocol could benefit conservation efforts where AHB are located.

  6. Magnetic Sensing through the Abdomen of the Honey bee.

    PubMed

    Liang, Chao-Hung; Chuang, Cheng-Long; Jiang, Joe-Air; Yang, En-Cheng

    2016-03-23

    Honey bees have the ability to detect the Earth's magnetic field, and the suspected magnetoreceptors are the iron granules in the abdomens of the bees. To identify the sensing route of honey bee magnetoreception, we conducted a classical conditioning experiment in which the responses of the proboscis extension reflex (PER) were monitored. Honey bees were successfully trained to associate the magnetic stimulus with a sucrose reward after two days of training. When the neural connection of the ventral nerve cord (VNC) between the abdomen and the thorax was cut, the honey bees no longer associated the magnetic stimulus with the sucrose reward but still responded to an olfactory PER task. The neural responses elicited in response to the change of magnetic field were also recorded at the VNC. Our results suggest that the honey bee is a new model animal for the investigation of magnetite-based magnetoreception.

  7. 29 CFR 780.123 - Raising of bees.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Raising of bees. 780.123 Section 780.123 Labor Regulations... Raising of Livestock, Bees, Fur-Bearing Animals, Or Poultry § 780.123 Raising of bees. The term “raising of * * * bees” refers to all of those activities customarily performed in connection with the...

  8. 29 CFR 780.123 - Raising of bees.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Raising of bees. 780.123 Section 780.123 Labor Regulations... Raising of Livestock, Bees, Fur-Bearing Animals, Or Poultry § 780.123 Raising of bees. The term “raising of * * * bees” refers to all of those activities customarily performed in connection with the...

  9. 29 CFR 780.123 - Raising of bees.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Raising of bees. 780.123 Section 780.123 Labor Regulations... Raising of Livestock, Bees, Fur-Bearing Animals, Or Poultry § 780.123 Raising of bees. The term “raising of * * * bees” refers to all of those activities customarily performed in connection with the...

  10. Creating and Evaluating Artificial Domiciles for Bumble Bees

    ERIC Educational Resources Information Center

    Golick, Douglas A.; Ellis, Marion D.; Beecham, Brady

    2006-01-01

    Bumble bees are valuable pollinators of native and cultivated flora. Despite our knowledge of bumble bee nest site selection, most efforts to attract bumble bees to artificial domiciles have been met with limited success. Creating and evaluating artificial domiciles provides students an opportunity to investigate a real problem. In this lesson,…

  11. 29 CFR 780.123 - Raising of bees.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Raising of bees. 780.123 Section 780.123 Labor Regulations... Raising of Livestock, Bees, Fur-Bearing Animals, Or Poultry § 780.123 Raising of bees. The term “raising of * * * bees” refers to all of those activities customarily performed in connection with the...

  12. 29 CFR 780.123 - Raising of bees.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Raising of bees. 780.123 Section 780.123 Labor Regulations... Raising of Livestock, Bees, Fur-Bearing Animals, Or Poultry § 780.123 Raising of bees. The term “raising of * * * bees” refers to all of those activities customarily performed in connection with the...

  13. Colonies of bumble bees (Bombus impatiens) produce fewer workers, less bee biomass, and have smaller mother queens following fungicide exposure

    USDA-ARS?s Scientific Manuscript database

    Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing serious declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possib...

  14. Adult pollen diet essential for egg maturation by a solitary osmia bee

    USDA-ARS?s Scientific Manuscript database

    Reproduction is a nutritionally costly activity for many insects, as their eggs are rich in lipids and proteins. Non-social bees lay especially large eggs. Adult female bees visit flowers to collect pollen and nectar, or sometimes oils, to feed their progeny. For adult bees, benefits of pollen feedi...

  15. Responses of Varroa-resistant honey bees (Apis mellifera L.) to Deformed Wing Virus

    USDA-ARS?s Scientific Manuscript database

    The impact of Deformed wing virus (DWV) on Apis mellifera is magnified by Varroa destructor parasitism. This study compared the responses of two Varroa-resistant honey bee stocks [Russian honey bees (RHB) and an outcross of Varroa Sensitive Hygienic bees (POL)] to DWV infection to that of Italian ho...

  16. Bee Mite ID - an online resource on identification of mites associated with bees of the World

    USDA-ARS?s Scientific Manuscript database

    Parasitic mites are known to be a factor in recent declines in bee pollinator populations. In particular, Varroa destructor, an introduced parasite and disease vector, has decimated colonies of the western honey bee, one of the most important agricultural pollinators in the world. Further, global tr...

  17. Population dynamics of Varroa destructor (Acari: Varroidae) in commercial honey bee colonies and implications for control

    USDA-ARS?s Scientific Manuscript database

    Treatment schedules to maintain low levels of Varroa mites in honey bee colonies were tested in hives started from either package bees or splits of larger colonies. The schedules were developed based on predictions of Varroa population growth generated from a mathematical model of honey bee colony ...

  18. Landscaping pebbles attract nesting by the native ground-nesting bee Halictus rubicundus (Hymenoptera: Halictidae)

    USDA-ARS?s Scientific Manuscript database

    Most species of bees nest underground. Recent interest in pollinator-friendly gardens and landscaping focuses on planting suitable flowering species for bees, but we know little about providing for the ground-nesting needs of bees other than leaving them bare dirt surfaces. In this study, a surfac...

  19. Switchgrass (Panicum virgatum) Intercropping within Managed Loblolly Pine (Pinus taeda) Does Not Affect Wild Bee Communities.

    PubMed

    Campbell, Joshua W; Miller, Darren A; Martin, James A

    2016-11-04

    Intensively-managed pine ( Pinus spp.) have been shown to support diverse vertebrate communities, but their ability to support invertebrate communities, such as wild bees, has not been well-studied. Recently, researchers have examined intercropping switchgrass ( Panicum virgatum ), a native perennial, within intensively managed loblolly pine ( P. taeda ) plantations as a potential source for cellulosic biofuels. To better understand potential effects of intercropping on bee communities, we investigated visitation of bees within three replicates of four treatments of loblolly pine in Mississippi, U.S.A.: 3-4 year old pine plantations and 9-10 year old pine plantations with and without intercropped switchgrass. We used colored pan traps to capture bees during the growing seasons of 2013 and 2014. We captured 2507 bees comprised of 18 different genera during the two-year study, with Lasioglossum and Ceratina being the most common genera captured. Overall, bee abundances were dependent on plantation age and not presence of intercropping. Our data suggests that switchgrass does not negatively impact or promote bee communities within intensively-managed loblolly pine plantations.

  20. Multisensory integration of colors and scents: insights from bees and flowers.

    PubMed

    Leonard, Anne S; Masek, Pavel

    2014-06-01

    Karl von Frisch's studies of bees' color vision and chemical senses opened a window into the perceptual world of a species other than our own. A century of subsequent research on bees' visual and olfactory systems has developed along two productive but independent trajectories, leaving the questions of how and why bees use these two senses in concert largely unexplored. Given current interest in multimodal communication and recently discovered interplay between olfaction and vision in humans and Drosophila, understanding multisensory integration in bees is an opportunity to advance knowledge across fields. Using a classic ethological framework, we formulate proximate and ultimate perspectives on bees' use of multisensory stimuli. We discuss interactions between scent and color in the context of bee cognition and perception, focusing on mechanistic and functional approaches, and we highlight opportunities to further explore the development and evolution of multisensory integration. We argue that although the visual and olfactory worlds of bees are perhaps the best-studied of any non-human species, research focusing on the interactions between these two sensory modalities is vitally needed.

  1. Bt Toxin Cry1Ie Causes No Negative Effects on Survival, Pollen Consumption, or Olfactory Learning in Worker Honey Bees (Hymenoptera: Apidae).

    PubMed

    Dai, Ping-Li; Jia, Hui-Ru; Geng, Li-Li; Diao, Qing-Yun

    2016-04-27

    The honey bee (Apis mellifera L.) is a key nontarget insect in environmental risk assessments of insect-resistant genetically modified crops. In controlled laboratory conditions, we evaluated the potential effects of Cry1Ie toxin on survival, pollen consumption, and olfactory learning of young adult honey bees. We exposed worker bees to syrup containing 20, 200, or 20,000 ng/ml Cry1Ie toxin, and also exposed some bees to 48 ng/ml imidacloprid as a positive control for exposure to a sublethal concentration of a toxic product. Results suggested that Cry1Ie toxin carries no risk to survival, pollen consumption, or learning capabilities of young adult honey bees. However, during oral exposure to the imidacloprid treatments, honey bee learning behavior was affected and bees consumed significantly less pollen than the control and Cry1Ie groups. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies.

    PubMed

    Wcislo, W T; Cane, J H

    1996-01-01

    Bees are phytophagous insects that exhibit recurrent ecological specializations related to factors generally different from those discussed for other phytophagous insects. Pollen specialists have undergone extensive radiations, and specialization is not always a derived state. Floral host associations are conserved in some bee lineages. In others, various species specialize on different host plants that are phenotypically similar in presenting predictably abundant floral resources. The nesting of solitary bees in localized areas influences the intensity of interactions with enemies and competitors. Abiotic factors do not always explain the intraspecific variation in the spatial distribution of solitary bees. Foods stored by bees attract many natural enemies, which may shape diverse facets of nesting and foraging behavior. Parasitism has evolved repeatedly in some, but not all, bee lineages. Available evidence suggests that cleptoparasitic lineages are most speciose in temperate zones. Female parasites frequently have a suite of characters that can be described as a masculinized feminine form. The evolution of resource specialization (including parasitism) in bees presents excellent opportunities to investigate phenotypic mechanisms responsible for evolutionary change.

  3. The Sound and the Fury—Bees Hiss when Expecting Danger

    PubMed Central

    Galizia, C. Giovanni

    2015-01-01

    Honey bees are important model systems for the investigation of learning and memory and for a better understanding of the neuronal basics of brain function. Honey bees also possess a rich repertoire of tones and sounds, from queen piping and quacking to worker hissing and buzzing. In this study, we tested whether the worker bees’ sounds can be used as a measure of learning. We therefore conditioned honey bees aversively to odours in a walking arena and recorded both their sound production and their movement. Bees were presented with two odours, one of which was paired with an electric shock. Initially, the bees did not produce any sound upon odour presentation, but responded to the electric shock with a strong hissing response. After learning, many bees hissed at the presentation of the learned odour, while fewer bees hissed upon presentation of another odour. We also found that hissing and movement away from the conditioned odour are independent behaviours that can co-occur but do not necessarily do so. Our data suggest that hissing can be used as a readout for learning after olfactory conditioning, but that there are large individual differences between bees concerning their hissing reaction. The basis for this variability and the possible ecological relevance of the bees’ hissing remain to be investigated. PMID:25747702

  4. Gonadotropic and Physiological Functions of Juvenile Hormone in Bumblebee (Bombus terrestris) Workers

    PubMed Central

    Shpigler, Hagai; Amsalem, Etya; Huang, Zachary Y.; Cohen, Mira; Siegel, Adam J.; Hefetz, Abraham; Bloch, Guy

    2014-01-01

    The evolution of advanced sociality in bees is associated with apparent modifications in juvenile hormone (JH) signaling. By contrast to most insects in which JH is a gonadotropin regulating female fertility, in the highly eusocial honey bee (Apis mellifera) JH has lost its gonadotrophic function in adult females, and instead regulates age-related division of labor among worker bees. In order to shed light on the evolution of JH signaling in bees we performed allatectomy and replacement therapies to manipulate JH levels in workers of the "primitively eusocial" bumblebee Bombus terrestris. Allatectomized worker bees showed remarkable reduction in ovarian development, egg laying, Vitellogenin and Krüppel homolog 1 fat body transcript levels, hemolymph Vitellogenin protein abundance, wax secretion, and egg-cell construction. These effects were reverted, at least partially, by treating allatectomized bees with JH-III, the natural JH of bees. Allatectomy also affected the amount of ester component in Dufour's gland secretion, which is thought to convey a social signal relating to worker fertility. These findings provide a strong support for the hypothesis that in contrast to honey bees, JH is a gonadotropin in bumblebees and lend credence to the hypothesis that the evolution of advanced eusociality in honey bees was associated with major modifications in JH signaling. PMID:24959888

  5. Bee Community of Commercial Potato Fields in Michigan and Bombus impatiens Visitation to Neonicotinoid-Treated Potato Plants

    PubMed Central

    Buchanan, Amanda L.; Gibbs, Jason; Komondy, Lidia; Szendrei, Zsofia

    2017-01-01

    We conducted a bee survey in neonicotinoid-treated commercial potato fields using bowl and vane traps in the 2016 growing season. Traps were placed outside the fields, at the field edges, and 10 and 30 m into the fields. We collected 756 bees representing 58 species, with Lasioglossum spp. comprising 73% of all captured bees. We found seven Bombus spp., of which B. impatiens was the only known visitor of potato flowers in our region. The majority of the bees (68%) were collected at the field edges and in the field margins. Blue vane traps caught almost four-times as many bees and collected 30% more species compared to bowl traps. Bee communities did not differ across trap locations but they were different among trap types. We tested B. impatiens visitation to neonicotinoid treated and untreated potato flowers in field enclosures. The amount of time bees spent at flowers and the duration of visits were not significantly different between the two treatments. Our results demonstrate that a diverse assemblage of bees is associated with an agroecosystem dominated by potatoes despite the apparent lack of pollinator resources provided by the crop. We found no difference in B. impatiens foraging behavior on neonicotinoid-treated compared to untreated plants. PMID:28282931

  6. Climate change: impact on honey bee populations and diseases.

    PubMed

    Le Conte, Y; Navajas, M

    2008-08-01

    The European honey bee, Apis mellifera, is the most economically valuable pollinator of agricultural crops worldwide. Bees are also crucial in maintaining biodiversity by pollinating numerous plant species whose fertilisation requires an obligatory pollinator. Apis mellifera is a species that has shown great adaptive potential, as it is found almost everywhere in the world and in highly diverse climates. In a context of climate change, the variability of the honey bee's life-history traits as regards temperature and the environment shows that the species possesses such plasticity and genetic variability that this could give rise to the selection of development cycles suited to new environmental conditions. Although we do not know the precise impact of potential environmental changes on honey bees as a result of climate change, there is a large body of data at our disposal indicating that environmental changes have a direct influence on honey bee development. In this article, the authors examine the potential impact of climate change on honey bee behaviour, physiology and distribution, as well as on the evolution of the honey bee's interaction with diseases. Conservation measures will be needed to prevent the loss of this rich genetic diversity of honey bees and to preserve ecotypes that are so valuable for world biodiversity.

  7. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers

    PubMed Central

    Schwarz, Ryan S.; Moran, Nancy A.; Evans, Jay D.

    2016-01-01

    Microbial symbionts living within animal guts are largely composed of resident bacterial species, forming communities that often provide benefits to the host. Gut microbiomes of adult honey bees (Apis mellifera) include core residents such as the betaproteobacterium Snodgrassella alvi, alongside transient parasites such as the protozoan Lotmaria passim. To test how these species affect microbiome composition and host physiology, we administered S. alvi and/or L. passim inocula to newly emerged worker bees from four genetic backgrounds (GH) and reared them in normal (within hives) or stressed (protein-deficient, asocial) conditions. Microbiota acquired by normal bees were abundant but quantitatively differed across treatments, indicating treatment-associated dysbiosis. Pretreatment with S. alvi made normal bees more susceptible to L. passim and altered developmental and detoxification gene expression. Stressed bees were more susceptible to L. passim and were depauperate in core microbiota, yet supplementation with S. alvi did not alter this susceptibility. Microbiomes were generally more variable by GH in stressed bees, which also showed opposing and comparatively reduced modulation of gene expression responses to treatments compared with normal bees. These data provide experimental support for a link between altered gut microbiota and increased parasite and pathogen prevalence, as observed from honey bee colony collapse disorder. PMID:27482088

  8. To be on the safe site - Ungroomed spots on the bee's body and their importance for pollination.

    PubMed

    Koch, Laura; Lunau, Klaus; Wester, Petra

    2017-01-01

    Flower-visiting bees collect large quantities of pollen to feed their offspring. Pollen deposited in the bees' transport organs is lost for the flowers' pollination. It has been hypothesised that specific body areas, bees cannot groom, serve as 'safe sites' for pollen transfer between flowers. For the first time, we experimentally demonstrated the position, area and pollen amount of safe sites at the examples of Apis mellifera and Bombus terrestris by combining artificial contamination of the bees' body with pine or sunflower pollen and the subsequent bees' incomplete grooming. We found safe sites on the forehead, the dorsal thorax and waist, and on the dorsal and ventral abdomen of the bees. These areas were less groomed by the bees' legs. The largest amount of pollen was found on the waist, followed by the dorsal areas of thorax and abdomen. At the example of Salvia pratensis, S. officinalis and Borago officinalis, we experimentally demonstrated with fluorescent dye that the flowers' pollen-sacs and stigma contact identical safe sites. These results confirm that pollen deposition on the bees' safe sites improves pollen transfer to stigmas of conspecific flowers sti. Future research will demonstrate the importance of safe sites for plant pollination under field conditions.

  9. Effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival.

    PubMed

    Frost, Elisabeth H; Shutler, Dave; Hillier, Neil Kirk

    2013-08-01

    Contaminants can affect organisms' behaviour and, as a consequence, survival. Tau-fluvalinate (hereafter fluvalinate) is the active ingredient in a pesticide commonly used in North America to control Varroa destructor mites in honey bee (Apis mellifera) colonies. Fluvalinate's effects on honey bees are not well known. Honey bee cognitive and neural function can be assessed using the proboscis extension reflex (PER), which applies Pavlovian conditioning techniques. This study used PER to evaluate effects of fluvalinate on honey bee acquisition learning, (long-term) memory recall, responsiveness to sucrose, and mortality. We also evaluated how exclusion criteria for honey bees that did not exhibit PER during training and memory trials affected interpretation of results. Fluvalinate was administered both orally and dermally at high and low doses to mimic routes by which honey bees are exposed. We found negative effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival, especially in high oral doses. We also found significant consequences to interpretation of results using different exclusion criteria. For example, almost 50% of individuals that failed to show evidence of learning subsequently showed evidence of memory. The latter results have important implications regarding traditional assessment of PER-based learning and memory; the former results suggest that evaluation of honey bee exposure to fluvalinate and attendant consequences warrants further investigation.

  10. Interaction between visiting bees (Hymenoptera, Apoidea) and flowers of Ludwigia elegans (Camb.) hara (Onagraceae) during the year in two different areas in São Paulo, Brazil.

    PubMed

    Gimenes, M

    2003-11-01

    This study was designed to characterize the interactions between Ludwigia elegans flowers and visiting bees during two years in two areas 200 km apart, at the same latitude (approximately 22 masculine 48'S) but at different altitudes (Alumínio, 600 m, and Campos do Jordão, 1500 m), in the State of São Paulo, Brazil. As these flowers open simultaneously in the morning and lose their petals by sunset, interaction with bees occurs only during the photophase. Flowers of L. elegans were mainly visited by bees, the most frequent species being: Tetraglossula anthracina (Michener, 1989) (Colletidae), Rhophitulus sp. (Andrenidae), and Pseudagapostemon spp. (Halictidae), all considered specialized bees for collecting pollen and nectar from these flowers, as well as the generalist bee Apis mellifera Linnaeus, 1758 (Apidae). The specialist bees were temporally adjusted to the opening schedule of the flower, which occurs primarily in the morning, but shows a circannual variation. T. anthracina appears in both study areas, but only between December and April. The annual activity patterns of these specialist bees are synchronized to the phenology of L. elegans. Photoperiod and temperature cycles are suggested as the main synchronizers of both bees and plants.

  11. Ingestion of Bt rice pollen does not reduce the survival or hypopharyngeal gland development of Apis mellifera adults.

    PubMed

    Wang, Yuanyuan; Dai, Pingli; Chen, Xiuping; Romeis, Jörg; Shi, Jianrong; Peng, Yufa; Li, Yunhe

    2017-05-01

    Because of its ecological and economic importance, the honey bee Apis mellifera is commonly used to assess the environmental risk of insect-resistant, genetically modified plants. In the present study, feeding-exposure experiments were used to determine whether pollen from transgenic rice harms A. mellifera worker bees. In 1 experiment, the survival and mean acinus diameter of hypopharyngeal glands of adult bees were similar when bees were fed on pollen from Bt rice lines or from a non-Bt rice line, but bee survival was significantly reduced when they received pollen that was mixed with potassium arsenate as a positive control. In a second experiment, bee survival and hypopharyngeal gland development were not reduced when adult bees were fed on non-Bt pollen and a sucrose solution supplemented with Cry2A at 400 µg/g, Cry1C at 50 µg/g, or bovine serum albumin (BSA) at 400 µg/g, but bee survival and hypopharyngeal gland development were reduced when the diet was supplemented with soybean trypsin inhibitor as a positive control. In both experiments, the uptake of Cry proteins by adult bees was confirmed. Overall, the results indicate that the planting of Bt rice lines expressing Cry2A or Cry1C protein poses a negligible risk to A. mellifera worker bees. Environ Toxicol Chem 2017;36:1243-1248. © 2016 SETAC. © 2016 SETAC.

  12. Effects of flight activity and age on oxidative damage in the honey bee, Apis mellifera.

    PubMed

    Margotta, Joseph W; Roberts, Stephen P; Elekonich, Michelle M

    2018-05-03

    Frequent and highly aerobic behaviors likely contribute to naturally occurring stress, accelerate senescence, and limit lifespan. To understand how the physiological and cellular mechanisms that determine the onset and duration of senescence are shaped by behavioral development and behavioral duration, we exploited the tractability of the honey bee ( Apis mellifera ) model system. First, we determined if a cause-effect relationship exists between honey bee flight and oxidative stress by comparing oxidative damage accrued from intense flight bouts to damage accrued from D-galactose ingestion, which induces oxidative stress and limit lifespan in other insects. Second, we experimentally manipulated the duration of honey bee flight across a range of ages to determine their effects on reactive oxygen species (ROS) accumulation and associated enzymatic antioxidant protective mechanisms. In bees fed D-galactose, lipid peroxidation (MDA) was higher than in bees fed sucrose and age-matched bees with high and low flight experience collected from a colony. Bees with high amounts of flight experience exhibited elevated 8-OHdG, a marker of oxidative DNA damage, relative to bees with less flight experience. Bees with high amounts of flight experience also showed increased levels of pro-oxidants (superoxide and H 2 O 2 ) and decreased or unchanged levels of antioxidants (SOD and catalase). These data implicate an imbalance of pro- to antioxidants in flight-associated oxidative stress and reveal how behavior can damage a cell and consequently limit lifespan. © 2018. Published by The Company of Biologists Ltd.

  13. Disentangling metabolic functions of bacteria in the honey bee gut

    PubMed Central

    Ellegaard, Kirsten M.; Troilo, Michaël; Sauer, Uwe

    2017-01-01

    It is presently unclear how much individual community members contribute to the overall metabolic output of a gut microbiota. To address this question, we used the honey bee, which harbors a relatively simple and remarkably conserved gut microbiota with striking parallels to the mammalian system and importance for bee health. Using untargeted metabolomics, we profiled metabolic changes in gnotobiotic bees that were colonized with the complete microbiota reconstituted from cultured strains. We then determined the contribution of individual community members in mono-colonized bees and recapitulated our findings using in vitro cultures. Our results show that the honey bee gut microbiota utilizes a wide range of pollen-derived substrates, including flavonoids and outer pollen wall components, suggesting a key role for degradation of recalcitrant secondary plant metabolites and pollen digestion. In turn, multiple species were responsible for the accumulation of organic acids and aromatic compound degradation intermediates. Moreover, a specific gut symbiont, Bifidobacterium asteroides, stimulated the production of host hormones known to impact bee development. While we found evidence for cross-feeding interactions, approximately 80% of the identified metabolic changes were also observed in mono-colonized bees, with Lactobacilli being responsible for the largest share of the metabolic output. These results show that, despite prolonged evolutionary associations, honey bee gut bacteria can independently establish and metabolize a wide range of compounds in the gut. Our study reveals diverse bacterial functions that are likely to contribute to bee health and provide fundamental insights into how metabolic activities are partitioned within gut communities. PMID:29232373

  14. Bee Venom Pharmacopuncture Responses According to Sasang Constitution and Gender

    PubMed Central

    Kim, Chaeweon; Lee, Kwangho

    2013-01-01

    Objectives: The current study was performed to compare the bee venom pharmacopuncture skin test reactions among groups with different sexes and Sasang constitutions. Methods: Between July 2012 and June 2013, all 76 patients who underwent bee venom pharmacopuncture skin tests and Sasang constitution diagnoses at Oriental Medicine Hospital of Sangji University were included in this study. The skin test was performed on the patient’s forearm intracutaneously with 0.05 ml of sweet bee venom (SBV) on their first visit. If the patients showed a positive response, the test was discontinued. On the other hand, if the patient showed a negative response, the test was performed on the opposite forearm intracutaneously with 0.05 ml of bee venom pharmacopuncture 25% on the next day or the next visit. Three groups were made to compare the differences in the bee venom pharmacopuncture skin tests according to sexual difference and Sasang constitution: group A showed a positive response to SBV, group B showed a positive response to bee venom pharmacopuncture 25%, and group C showed a negative response on all bee venom pharmacopuncture skin tests. Fisher’s exact test was performed to evaluate the differences statistically. Results: The results of the bee venom pharmacopuncture skin tests showed no significant differences according to Sasang constitution (P = 0.300) or sexual difference (P = 0.163). Conclusion: No significant differences on the results of bee venom pharmacopuncture skin tests were observed according to two factors, Sasang constitution and the sexual difference. PMID:25780682

  15. Disentangling metabolic functions of bacteria in the honey bee gut.

    PubMed

    Kešnerová, Lucie; Mars, Ruben A T; Ellegaard, Kirsten M; Troilo, Michaël; Sauer, Uwe; Engel, Philipp

    2017-12-01

    It is presently unclear how much individual community members contribute to the overall metabolic output of a gut microbiota. To address this question, we used the honey bee, which harbors a relatively simple and remarkably conserved gut microbiota with striking parallels to the mammalian system and importance for bee health. Using untargeted metabolomics, we profiled metabolic changes in gnotobiotic bees that were colonized with the complete microbiota reconstituted from cultured strains. We then determined the contribution of individual community members in mono-colonized bees and recapitulated our findings using in vitro cultures. Our results show that the honey bee gut microbiota utilizes a wide range of pollen-derived substrates, including flavonoids and outer pollen wall components, suggesting a key role for degradation of recalcitrant secondary plant metabolites and pollen digestion. In turn, multiple species were responsible for the accumulation of organic acids and aromatic compound degradation intermediates. Moreover, a specific gut symbiont, Bifidobacterium asteroides, stimulated the production of host hormones known to impact bee development. While we found evidence for cross-feeding interactions, approximately 80% of the identified metabolic changes were also observed in mono-colonized bees, with Lactobacilli being responsible for the largest share of the metabolic output. These results show that, despite prolonged evolutionary associations, honey bee gut bacteria can independently establish and metabolize a wide range of compounds in the gut. Our study reveals diverse bacterial functions that are likely to contribute to bee health and provide fundamental insights into how metabolic activities are partitioned within gut communities.

  16. Computational and transcriptional evidence for microRNAs in the honey bee genome

    PubMed Central

    Weaver, Daniel B; Anzola, Juan M; Evans, Jay D; Reid, Jeffrey G; Reese, Justin T; Childs, Kevin L; Zdobnov, Evgeny M; Samanta, Manoj P; Miller, Jonathan; Elsik, Christine G

    2007-01-01

    Background Non-coding microRNAs (miRNAs) are key regulators of gene expression in eukaryotes. Insect miRNAs help regulate the levels of proteins involved with development, metabolism, and other life history traits. The recently sequenced honey bee genome provides an opportunity to detect novel miRNAs in both this species and others, and to begin to infer the roles of miRNAs in honey bee development. Results Three independent computational surveys of the assembled honey bee genome identified a total of 65 non-redundant candidate miRNAs, several of which appear to have previously unrecognized orthologs in the Drosophila genome. A subset of these candidate miRNAs were screened for expression by quantitative RT-PCR and/or genome tiling arrays and most predicted miRNAs were confirmed as being expressed in at least one honey bee tissue. Interestingly, the transcript abundance for several known and novel miRNAs displayed caste or age-related differences in honey bees. Genes in proximity to miRNAs in the bee genome are disproportionately associated with the Gene Ontology terms 'physiological process', 'nucleus' and 'response to stress'. Conclusion Computational approaches successfully identified miRNAs in the honey bee and indicated previously unrecognized miRNAs in the well-studied Drosophila melanogaster genome despite the 280 million year distance between these insects. Differentially transcribed miRNAs are likely to be involved in regulating honey bee development, and arguably in the extreme developmental switch between sterile worker bees and highly fertile queens. PMID:17543122

  17. Modeling Pollinator Community Response to Contrasting Bioenergy Scenarios

    PubMed Central

    Bennett, Ashley B.; Meehan, Timothy D.; Gratton, Claudio; Isaacs, Rufus

    2014-01-01

    In the United States, policy initiatives aimed at increasing sources of renewable energy are advancing bioenergy production, especially in the Midwest region, where agricultural landscapes dominate. While policy directives are focused on renewable fuel production, biodiversity and ecosystem services will be impacted by the land-use changes required to meet production targets. Using data from field observations, we developed empirical models for predicting abundance, diversity, and community composition of flower-visiting bees based on land cover. We used these models to explore how bees might respond under two contrasting bioenergy scenarios: annual bioenergy crop production and perennial grassland bioenergy production. In the two scenarios, 600,000 ha of marginal annual crop land or marginal grassland were converted to perennial grassland or annual row crop bioenergy production, respectively. Model projections indicate that expansion of annual bioenergy crop production at this scale will reduce bee abundance by 0 to 71%, and bee diversity by 0 to 28%, depending on location. In contrast, converting annual crops on marginal soil to perennial grasslands could increase bee abundance from 0 to 600% and increase bee diversity between 0 and 53%. Our analysis of bee community composition suggested a similar pattern, with bee communities becoming less diverse under annual bioenergy crop production, whereas bee composition transitioned towards a more diverse community dominated by wild bees under perennial bioenergy crop production. Models, like those employed here, suggest that bioenergy policies have important consequences for pollinator conservation. PMID:25365559

  18. Pathogenesis of varroosis at the level of the honey bee (Apis mellifera) colony.

    PubMed

    Wegener, J; Ruhnke, H; Scheller, K; Mispagel, S; Knollmann, U; Kamp, G; Bienefeld, K

    2016-01-01

    The parasitic mite Varroa destructor, in interaction with different viruses, is the main cause of honey bee colony mortality in most parts of the world. Here we studied how effects of individual-level parasitization are reflected by the bee colony as a whole. We measured disease progression in an apiary of 24 hives with differing degree of mite infestation, and investigated its relationship to 28 biometrical, physiological and biochemical indicators. In early summer, when the most heavily infested colonies already showed reduced growth, an elevated ratio of brood to bees, as well as a strong presence of phenoloxidase/prophenoloxidase in hive bees were found to be predictors of the time of colony collapse. One month later, the learning performance of worker bees as well as the activity of glucose oxidase measured from head extracts were significantly linked to the timing of colony collapse. Colonies at the brink of collapse were characterized by reduced weight of winter bees and a strong increase in their relative body water content. Our data confirm the importance of the immune system, known from studies of individually-infested bees, for the pathogenesis of varroosis at colony level. However, they also show that single-bee effects cannot always be extrapolated to the colony as a whole. This fact, together with the prominent role of colony-level factors like the ratio between brood and bees for disease progression, stress the importance of the superorganismal dimension of Varroa research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Differential gene expression of two extreme honey bee (Apis mellifera) colonies showing varroa tolerance and susceptibility.

    PubMed

    Jiang, S; Robertson, T; Mostajeran, M; Robertson, A J; Qiu, X

    2016-06-01

    Varroa destructor, an ectoparasitic mite of honey bees (Apis mellifera), is the most serious pest threatening the apiculture industry. In our honey bee breeding programme, two honey bee colonies showing extreme phenotypes for varroa tolerance/resistance (S88) and susceptibility (G4) were identified by natural selection from a large gene pool over a 6-year period. To investigate potential defence mechanisms for honey bee tolerance to varroa infestation, we employed DNA microarray and real time quantitative (PCR) analyses to identify differentially expressed genes in the tolerant and susceptible colonies at pupa and adult stages. Our results showed that more differentially expressed genes were identified in the tolerant bees than in bees from the susceptible colony, indicating that the tolerant colony showed an increased genetic capacity to respond to varroa mite infestation. In both colonies, there were more differentially expressed genes identified at the pupa stage than at the adult stage, indicating that pupa bees are more responsive to varroa infestation than adult bees. Genes showing differential expression in the colony phenotypes were categorized into several groups based on their molecular functions, such as olfactory signalling, detoxification processes, exoskeleton formation, protein degradation and long-chain fatty acid metabolism, suggesting that these biological processes play roles in conferring varroa tolerance to naturally selected colonies. Identification of differentially expressed genes between the two colony phenotypes provides potential molecular markers for selecting and breeding varroa-tolerant honey bees. © 2016 The Royal Entomological Society.

  20. Genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations based on ISSR markers.

    PubMed

    Rahimi, A; Mirmoayedi, A; Kahrizi, D; Zarei, L; Jamali, S

    2016-04-30

    Honey bee is one of the most important insects considering its role in agriculture,ecology and economy as a whole. In this study, the genetic diversity of different Iranian honey bee populations was evaluated using inter simple sequence repeat (ISSR) markers. During May to September 2014, 108 young worker honey bees were collected from six different populations in 30 different geoclimatic locations from Golestan, Mazendaran, Guilan, West Azerbaijan, East Azerbaijan, Ardebil provinces of Iran. DNA was extracted from the worker honey bees. The quality and quantity of extracted DNA were measured. A set of ten primers were screened with the laboratory populations of honey bees. The number of fragments produced in the different honey bee populations varied from 3 to 10, varying within 150 to 1500 bp. The used ten ISSR primers generated 40 polymorphic fragments, and the average heterozygosity for each primer was 0.266. Maximum numbers of bands were recorded for primer A1. A dendrogram based on the Unweighted Pair Group Method with Arithmetic mean (UPGMA) method generated two sub-clusters. Honey bee populations of Golestan, Mazendaran, Guilan provinces were located in the first group. The second group included honey bee populations of Ardebil, West Azerbaijan, East Azerbaijan provinces, but this group showed a close relationship with other populations. The results showed obviously the ability of the ISSR marker technique to detect the genetic diversity among the honey bee populations.

  1. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: A double-edged sword

    PubMed Central

    Chen, Jun; Lariviere, William R.

    2010-01-01

    Bee venom injection as a therapy, like many other complementary and alternative medicine approaches, has been used for thousands of years to attempt to alleviate a range of diseases including arthritis. More recently, additional theraupeutic goals have been added to the list of diseases making this a critical time to evaluate the evidence for the beneficial and adverse effects of bee venom injection. Although reports of pain reduction (analgesic and antinociceptive) and anti-inflammatory effects of bee venom injection are accumulating in the literature, it is common knowledge that bee venom stings are painful and produce inflammation. In addition, a significant number of studies have been performed in the past decade highlighting that injection of bee venom and components of bee venom produce significant signs of pain or nociception, inflammation and many effects at multiple levels of immediate, acute and prolonged pain processes. This report reviews the extensive new data regarding the deleterious effects of bee venom injection in people and animals, our current understanding of the responsible underlying mechanisms and critical venom components, and provides a critical evaluation of reports of the beneficial effects of bee venom injection in people and animals and the proposed underlying mechanisms. Although further studies are required to make firm conclusions, therapeutic bee venom injection may be beneficial for some patients, but may also be harmful. This report highlights key patterns of results, critical shortcomings, and essential areas requiring further study. PMID:20558236

  2. Investigating Temporal Patterns of a Native Bee Community in a Remnant North American Bunchgrass Prairie using Blue Vane Traps

    PubMed Central

    Kimoto, Chiho; DeBano, Sandra J.; Thorp, Robbin W.; Rao, Sujaya; Stephen, William P.

    2012-01-01

    Native bees are important ecologically and economically because their role as pollinators fulfills a vital ecosystem service. Pollinators are declining due to various factors, including habitat degradation and destruction. Grasslands, an important habitat for native bees, are particularly vulnerable. One highly imperiled and understudied grassland type in the United States is the Pacific Northwest Bunchgrass Prairie. No studies have examined native bee communities in this prairie type. To fill this gap, the bee fauna of the Zumwalt Prairie, a large, relatively intact remnant of the Pacific Northwest Bunchgrass Prairie, was examined. Native bees were sampled during the summers of 2007 and 2008 in sixteen 40-ha study pastures on a plateau in northeastern Oregon, using a sampling method not previously used in grassland studies—blue vane traps. This grassland habitat contained an abundant and diverse community of native bees that experienced marked seasonal and inter-annual variation, which appears to be related to weather and plant phenology. Temporal variability evident over the entire study area was also reflected at the individual trap level, indicating a consistent response across the spatial scale of the study. These results demonstrate that temporal variability in bee communities can have important implications for long-term monitoring protocols. In addition, the blue vane trap method appears to be well-suited for studies of native bees in large expanses of grasslands or other open habitats, and may be a useful tool for monitoring native bee communities in these systems. PMID:23438086

  3. Investigating temporal patterns of a native bee community in a remnant North American bunchgrass prairie using blue vane traps.

    PubMed

    Kimoto, Chiho; Debano, Sandra J; Thorp, Robbin W; Rao, Sujaya; Stephen, William P

    2012-01-01

    Native bees are important ecologically and economically because their role as pollinators fulfills a vital ecosystem service. Pollinators are declining due to various factors, including habitat degradation and destruction. Grasslands, an important habitat for native bees, are particularly vulnerable. One highly imperiled and understudied grassland type in the United States is the Pacific Northwest Bunchgrass Prairie. No studies have examined native bee communities in this prairie type. To fill this gap, the bee fauna of the Zumwalt Prairie, a large, relatively intact remnant of the Pacific Northwest Bunchgrass Prairie, was examined. Native bees were sampled during the summers of 2007 and 2008 in sixteen 40-ha study pastures on a plateau in northeastern Oregon, using a sampling method not previously used in grassland studies-blue vane traps. This grassland habitat contained an abundant and diverse community of native bees that experienced marked seasonal and inter-annual variation, which appears to be related to weather and plant phenology. Temporal variability evident over the entire study area was also reflected at the individual trap level, indicating a consistent response across the spatial scale of the study. These results demonstrate that temporal variability in bee communities can have important implications for long-term monitoring protocols. In addition, the blue vane trap method appears to be well-suited for studies of native bees in large expanses of grasslands or other open habitats, and may be a useful tool for monitoring native bee communities in these systems.

  4. Emerging and re-emerging viruses of the honey bee (Apis mellifera L.)

    PubMed Central

    Genersch, Elke; Aubert, Michel

    2010-01-01

    Until the late 1980s, specific viral infections of the honey bee were generally considered harmless in all countries. Then, with the worldwide introduction of the ectoparasite mite Varroa destructor, beekeepers encountered increasing difficulties in maintaining their colonies. Epidemiological surveys and laboratory experiments have demonstrated that the newly acquired virulence of several viruses belonging to the family Dicistroviridae (acute bee paralysis virus, Kashmir bee virus and Israeli acute paralysis virus) in Europe and the USA had been observed in relation with V. destructor acting as a disseminator of these viruses between and within bee colonies and as an activator of virus multiplication in the infected individuals: bee larvae and adults. Equal emphasis is given to deformed wing virus (DWV) belonging to the Iflaviridae. Overt outbreaks of DWV infections have been shown to be linked to the ability of V. destructor to act not only as a mechanical vector of DWV but also as a biological vector. Its replication in mites prior to its vectoring into pupae seemed to be necessary and sufficient for the induction of a overt infection in pupae developing in non-viable bees with deformed wings. DWV in V. destructor infested colonies is now considered as one of the key players of the final collapse. Various approaches for combating bee viral diseases are described: they include selection of tolerant bees, RNA interference and prevention of new pathogen introduction. None of these approaches are expected to lead to enhanced bee-health in the short term. PMID:20423694

  5. The evolution of floral sonication, a pollen foraging behavior used by bees (Anthophila).

    PubMed

    Cardinal, Sophie; Buchmann, Stephen L; Russell, Avery L

    2018-03-01

    Over 22,000 species of biotically pollinated flowering plants, including some major agricultural crops, depend primarily on bees capable of floral sonication for pollination services. The ability to sonicate ("buzz") flowers is widespread in bees but not ubiquitous. Despite the prevalence of this pollinator behavior and its importance to natural and agricultural systems, the evolutionary history of floral sonication in bees has not been previously studied. Here, we reconstruct the evolutionary history of floral sonication in bees by generating a time-calibrated phylogeny and reconstructing ancestral states for this pollen extraction behavior. We also test the hypothesis that the ability to sonicate flowers and thereby efficiently access pollen from a diverse assemblage of plant species, led to increased diversification among sonicating bee taxa. We find that floral sonication evolved on average 45 times within bees, possibly first during the Early Cretaceous (100-145 million years ago) in the common ancestor of bees. We find that sonicating lineages are significantly more species rich than nonsonicating sister lineages when comparing sister clades, but a probabilistic structured rate permutation on phylogenies approach failed to support the hypothesis that floral sonication is a key driver of bee diversification. This study provides the evolutionary framework needed to further study how floral sonication by bees may have facilitated the spread and common evolution of angiosperm species with poricidal floral morphology. © 2018 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  6. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees

    PubMed Central

    Robinson, Gene E.; Jakobsson, Eric

    2016-01-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization. PMID:27359102

  7. Multi-Drug Resistance Transporters and a Mechanism-Based Strategy for Assessing Risks of Pesticide Combinations to Honey Bees

    PubMed Central

    Guseman, Alex J.; Miller, Kaliah; Kunkle, Grace; Dively, Galen P.; Pettis, Jeffrey S.; Evans, Jay D.; vanEngelsdorp, Dennis; Hawthorne, David J.

    2016-01-01

    Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporters. We evaluate the use of ivermectin as a model substrate for these transporters. Compounds that increase sensitivity of bees to ivermectin may be inhibiting key transporters. We show that several compounds commonly encountered by honey bees (fumagillin, Pristine, quercetin) significantly increased honey bee mortality due to ivermectin and significantly reduced the LC50 of ivermectin suggesting that they may interfere with transporter function. These inhibitors also significantly increased honey bees sensitivity to the neonicotinoid insecticide acetamiprid. This mechanism-based strategy may dramatically reduce the number of tests needed to assess the possibility of adverse combinations among pesticides. We also demonstrate an in vivo transporter assay that provides physical evidence of transporter inhibition by tracking the dynamics of a fluorescent substrate of these transporters (Rhodamine B) in bee tissues. Significantly more Rhodamine B remains in the head and hemolymph of bees pretreated with higher concentrations of the transporter inhibitor verapamil. Mechanism-based strategies for simplifying the assessment of adverse chemical interactions such as described here could improve our ability to identify those combinations that pose significantly greater risk to bees and perhaps improve the risk assessment protocols for honey bees and similar sensitive species. PMID:26840460

  8. Bee Pollen-Induced Anaphylaxis: A Case Report and Literature Review.

    PubMed

    Choi, Jeong Hee; Jang, Young Sook; Oh, Jae Won; Kim, Cheol Hong; Hyun, In Gyu

    2015-09-01

    Bee pollen is pollen granules packed by honey bees and is widely consumed as natural healthy supplements. Bee pollen-induced anaphylaxis has rarely been reported, and its allergenic components have never been studied. A 40-year-old male came to the emergency room with generalized urticaria, facial edema, dyspnea, nausea, vomiting, abdominal pain, and diarrhea 1 hour after ingesting one tablespoon of bee pollen. Oxygen saturation was 91%. His symptoms resolved after injection of epinephrine, chlorpheniramine, and dexamethasone. He had seasonal allergic rhinitis in autumn. Microscopic examination of the bee pollen revealed Japanese hop, chrysanthemum, ragweed, and dandelion pollens. Skin-prick with bee pollen extracts showed positive reactions at 0.1 mg/mL (A/H ratio > 3+). Serum specific IgE to ragweed was 25.2, chrysanthemum 20.6, and dandelion 11.4 kU/L; however, Japanese hop, honey-bee venom and yellow-jacket venom were negative (UniCAP®, Thermo Fisher Scientific, Uppsala, Sweden). Enzyme-linked immunosorbent assay (ELISA) confirmed serum specific IgE to bee-pollen extracts, and an ELISA inhibition assay for evaluation of cross-allergenicity of bee pollen and other weed pollens showed more than 90% of inhibition with chrysanthemum and dandelion and ~40% inhibition with ragweed at a concentration of 1 μg/mL. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and IgE-immunoblot analysis revealed 9 protein bands (11, 14, 17, 28, 34, 45, 52, 72, and 90 kDa) and strong IgE binding at 28-34 kDa, 45 and 52 kDa. In conclusion, healthcare providers should be aware of the potential risk of severe allergic reactions upon ingestion of bee pollen, especially in patients with pollen allergy.

  9. The Honey Bee Pathosphere of Mongolia: European Viruses in Central Asia.

    PubMed

    Tsevegmid, Khaliunaa; Neumann, Peter; Yañez, Orlando

    2016-01-01

    Parasites and pathogens are apparent key factors for the detrimental health of managed European honey bee subspecies, Apis mellifera. Apicultural trade is arguably the main factor for the almost global distribution of most honey bee diseases, thereby increasing chances for multiple infestations/infections of regions, apiaries, colonies and even individual bees. This imposes difficulties to evaluate the effects of pathogens in isolation, thereby creating demand to survey remote areas. Here, we conducted the first comprehensive survey for 14 honey bee pathogens in Mongolia (N = 3 regions, N = 9 locations, N = 151 colonies), where honey bee colonies depend on humans to overwinter. In Mongolia, honey bees, Apis spp., are not native and colonies of European A. mellifera subspecies have been introduced ~60 years ago. Despite the high detection power and large sample size across Mongolian regions with beekeeping, the mite Acarapis woodi, the bacteria Melissococcus plutonius and Paenibacillus larvae, the microsporidian Nosema apis, Acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus and Lake Sinai virus strain 2 were not detected, suggesting that they are either very rare or absent. The mite Varroa destructor, Nosema ceranae and four viruses (Sacbrood virus, Black queen cell virus, Deformed wing virus (DWV) and Chronic bee paralysis virus) were found with different prevalence. Despite the positive correlation between the prevalence of V. destructor mites and DWV, some areas had only mites, but not DWV, which is most likely due to the exceptional isolation of apiaries (up to 600 km). Phylogenetic analyses of the detected viruses reveal their clustering and European origin, thereby supporting the role of trade for pathogen spread and the isolation of Mongolia from South-Asian countries. In conclusion, this survey reveals the distinctive honey bee pathosphere of Mongolia, which offers opportunities for exciting future research.

  10. Bee Abundance and Nutritional Status in Relation to Grassland Management Practices in an Agricultural Landscape.

    PubMed

    Smith, Griffin W; Debinski, Diane M; Scavo, Nicole A; Lange, Corey J; Delaney, John T; Moranz, Raymond A; Miller, James R; Engle, David M; Toth, Amy L

    2016-04-01

    Grasslands provide important resources for pollinators in agricultural landscapes. Managing grasslands with fire and grazing has the potential to benefit plant and pollinator communities, though there is uncertainty about the ideal approach. We examined the relationships among burning and grazing regimes, plant communities, and Bombus species and Apis mellifera L. abundance and nutritional indicators at the Grand River Grasslands in southern Iowa and northern Missouri. Treatment regimes included burn-only, grazed-and-burned, and patch-burn graze (pastures subdivided into three temporally distinct fire patches with free access by cattle). The premise of the experimental design was that patch-burn grazing would increase habitat heterogeneity, thereby providing more diverse and abundant floral resources for pollinators. We predicted that both bee abundance and individual bee nutritional indicators (bee size and lipid content) would be positively correlated with floral resource abundance. There were no significant differences among treatments with respect to bee abundance. However, some of the specific characteristics of the plant community showed significant relationships with bee response variables. Pastures with greater abundance of floral resources had greater bee abundance but lower bee nutritional indicators. Bee nutritional variables were positively correlated with vegetation height, but, in some cases, negatively correlated with stocking rate. These results suggest grassland site characteristics such as floral resource abundance and stocking rate are of potential importance to bee pollinators and suggest avenues for further research to untangle the complex interactions between grassland management, plant responses, and bee health. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Influences of acephate and mixtures with other commonly used pesticides on honey bee (Apis mellifera) survival and detoxification enzyme activities.

    PubMed

    Yao, Jianxiu; Zhu, Yu Cheng; Adamczyk, John; Luttrell, Randall

    2018-07-01

    Acephate (organophosphate) is frequently used to control piercing/sucking insects in field crops in southern United States, which may pose a risk to honey bees. In this study, toxicity of acephate (formulation Bracket ® 97) was examined in honey bees through feeding treatments with sublethal (pollen residue level: 0.168 mg/L) and median-lethal (LC 50 : 6.97 mg/L) concentrations. Results indicated that adult bees treated with acephate at residue concentration did not show significant increase in mortality, but esterase activity was significantly suppressed. Similarly, bees treated with binary mixtures of acephate with six formulated pesticides (all at residue dose) consistently showed lower esterase activity and body weight. Clothianidin, λ-cyhalothrin, oxamyl, tetraconazole, and chlorpyrifos may interact with acephate significantly to reduce body weight in treated bees. The dose response data (LC50: 6.97 mg/L) revealed a relatively higher tolerance to acephate in Stoneville bee population (USA) than populations elsewhere, although in general the population is still very sensitive to the organophosphate. In addition to killing 50% of the treated bees acephate (6.97 mg/L) inhibited 79.9%, 20.4%, and 29.4% of esterase, Glutathione S-transferase (GST), and acetylcholinesterase (AChE) activities, respectively, in survivors after feeding treatment for 48 h. However, P450 activity was elevated 20% in bees exposed to acephate for 48 h. Even though feeding on sublethal acephate did not kill honey bees directly, chronic toxicity to honey bee was noticeable in body weight loss and esterase suppression, and its potential risk of synergistic interactions with other formulated pesticides should not be ignored. Published by Elsevier Inc.

  12. Efficiency of local Indonesia honey bees (Apis cerana L.) and stingless bee (Trigona iridipennis) on tomato (Lycopersicon esculentum Mill.) pollination.

    PubMed

    Putra, Ramadhani Eka; Kinasih, Ida

    2014-01-01

    Tomato (Lycopersicon esculentum Mill.) is considered as one of major agricultural commodity of Indonesia farming. However, monthly production is unstable due to lack of pollination services. Common pollinator agent of tomatoes is bumblebees which is unsuitable for tropical climate of Indonesia and the possibility of alteration of local wild plant interaction with their pollinator. Indonesia is rich with wild bees and some of the species already domesticated for years with prospect as pollinating agent for tomatoes. This research aimed to assess the efficiency of local honey bee (Apis cerana L.) and stingless bee (Trigona iridipennis), as pollinator of tomato. During this research, total visitation rate and total numbers of pollinated flowers by honey bee and stingless bee were compared between them with bagged flowers as control. Total fruit production, average weight and size also measured in order to correlated pollination efficiency with quantity and quality of fruit produced. Result of this research showed that A. cerana has slightly higher rate of visitation (p>0.05) and significantly shorter handling time (p < 0.05) than T. iridipennis due to their larger colony demand and low reward provide by tomato flowers. However, honey bee pollinated tomato flowers more efficient pollinator than stingless bee (80.3 and 70.2% efficiency, respectively; p < 0.05) even though the average weight and size of tomatoes were similar (p>0.05). Based on the results, it is concluded that the use of Apis cerana and Trigona spp., for pollinating tomatoes in tropical climates could be an alternative to the use of non-native Apis mellifera and bumblebees (Bombus spp.). However, more researches are needed to evaluate the cost/benefit on large-scale farming and greenhouse pollination using both bees against other bee species and pollination methods.

  13. Vanishing honey bees: Is the dying of adult worker bees a consequence of short telomeres and premature aging?

    PubMed

    Stindl, Reinhard; Stindl, Wolfgang

    2010-10-01

    Einstein is often quoted to have said that without the bee, mankind would have but 4years to live. It is highly unlikely that he made this comment, which was even mentioned in a Lancet article on honey bees. However, the current vanishing of the bees can have serious consequences for human health, because 35% of the human diet is thought to benefit from pollination. Colony collapse disorder (CCD) in honey bees is characterized by the rapid decline of the adult bee population, leaving the brood and the queen poorly or completely unattended, with no dead bodies in or around the hive. A large study found no evidence that the presence or amount of any individual pesticide or infectious agent occurred more frequently or abundantly in CCD-affected colonies. The growing consensus is that honey bees are suffering from comprised immune systems, which allow various infectious pathogens to invade. The question remains, what causes immunosuppression in many colonies of Apis mellifera in North America and Europe? Telomeres are protective DNA structures located at eukaryotic chromosome tips that shorten in the somatic tissues of animals with age. Lifelong tissue regeneration takes place in Apis mellifera, and worker bees have been shown to senesce. In humans, a vast amount of literature has accumulated on exhausted telomere reserves causing impaired tissue regeneration and age-associated diseases, specifically cancer and immunosuppression. Therefore, we propose a new causative mechanism for the vanishing of the bees: critically short telomeres in long-lived winter bees. We term this the telomere premature aging syndrome. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Pollination of Campomanesia phaea (Myrtaceae) by night-active bees: a new nocturnal pollination system mediated by floral scent.

    PubMed

    Cordeiro, G D; Pinheiro, M; Dötterl, S; Alves-Dos-Santos, I

    2017-03-01

    Bees are the most important diurnal pollinators of angiosperms. In several groups of bees a nocturnal/crepuscular habit developed, yet little is known about their role in pollination and whether some plants are adapted specifically to these bees. We used a multidisciplinary approach to investigate the reproductive biology and to understand the role of nocturnal/crepuscular bees in pollination of Campomanesia phaea (Myrtaceae), popularly named cambuci. We studied the floral biology and breeding system of C. phaea. We collected the floral visitors and tested the pollinators' effectiveness. We also determined the floral scents released at night and during daytime, and studied behavioural responses of crepuscular/nocturnal bees towards these scents. The flowers of cambuci were self-incompatible and had pollen as the only resource for flower visitors. Anthesis lasted around 14 h, beginning at 04:30 h at night. The flowers released 14 volatile compounds, mainly aliphatic and aromatic compounds. We collected 52 species of floral visitors, mainly bees. Nocturnal and crepuscular bees (four species) were among the most frequent species and the only effective pollinators. In field bioassays performed at night, nocturnal/crepuscular bees were attracted by a synthetic scent blend consisting of the six most abundant compounds. This study describes the first scent-mediated pollination system between a plant and its nocturnal bee pollinators. Further, C. phaea has several floral traits that do not allow classification into other nocturnal pollination syndromes (e.g. pollinator attraction already before sunrise, with pollen as the only reward), instead it is a plant specifically adapted to nocturnal bees. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Multi-Drug Resistance Transporters and a Mechanism-Based Strategy for Assessing Risks of Pesticide Combinations to Honey Bees.

    PubMed

    Guseman, Alex J; Miller, Kaliah; Kunkle, Grace; Dively, Galen P; Pettis, Jeffrey S; Evans, Jay D; vanEngelsdorp, Dennis; Hawthorne, David J

    2016-01-01

    Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporters. We evaluate the use of ivermectin as a model substrate for these transporters. Compounds that increase sensitivity of bees to ivermectin may be inhibiting key transporters. We show that several compounds commonly encountered by honey bees (fumagillin, Pristine, quercetin) significantly increased honey bee mortality due to ivermectin and significantly reduced the LC50 of ivermectin suggesting that they may interfere with transporter function. These inhibitors also significantly increased honey bees sensitivity to the neonicotinoid insecticide acetamiprid. This mechanism-based strategy may dramatically reduce the number of tests needed to assess the possibility of adverse combinations among pesticides. We also demonstrate an in vivo transporter assay that provides physical evidence of transporter inhibition by tracking the dynamics of a fluorescent substrate of these transporters (Rhodamine B) in bee tissues. Significantly more Rhodamine B remains in the head and hemolymph of bees pretreated with higher concentrations of the transporter inhibitor verapamil. Mechanism-based strategies for simplifying the assessment of adverse chemical interactions such as described here could improve our ability to identify those combinations that pose significantly greater risk to bees and perhaps improve the risk assessment protocols for honey bees and similar sensitive species.

  16. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees.

    PubMed

    Liu, Hui; Robinson, Gene E; Jakobsson, Eric

    2016-06-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization.

  17. Metatranscriptomic analyses of honey bee colonies.

    PubMed

    Tozkar, Cansu Ö; Kence, Meral; Kence, Aykut; Huang, Qiang; Evans, Jay D

    2015-01-01

    Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World's most important centers of apiculture, harboring five subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9-10 million reads per library) remained. These were then mapped to a curated set of public sequences containing ca. Sixty megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp.), neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae), Varroa destructor-1 virus, Sacbrood virus, and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus), Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly). We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees.

  18. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards

    PubMed Central

    Russo, Laura; Park, Mia; Gibbs, Jason; Danforth, Bryan

    2015-01-01

    Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness. PMID:26380684

  19. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity.

    PubMed

    Wu, Judy Y; Anelli, Carol M; Sheppard, Walter S

    2011-02-23

    Numerous surveys reveal high levels of pesticide residue contamination in honey bee comb. We conducted studies to examine possible direct and indirect effects of pesticide exposure from contaminated brood comb on developing worker bees and adult worker lifespan. Worker bees were reared in brood comb containing high levels of known pesticide residues (treatment) or in relatively uncontaminated brood comb (control). Delayed development was observed in bees reared in treatment combs containing high levels of pesticides particularly in the early stages (day 4 and 8) of worker bee development. Adult longevity was reduced by 4 days in bees exposed to pesticide residues in contaminated brood comb during development. Pesticide residue migration from comb containing high pesticide residues caused contamination of control comb after multiple brood cycles and provided insight on how quickly residues move through wax. Higher brood mortality and delayed adult emergence occurred after multiple brood cycles in contaminated control combs. In contrast, survivability increased in bees reared in treatment comb after multiple brood cycles when pesticide residues had been reduced in treatment combs due to residue migration into uncontaminated control combs, supporting comb replacement efforts. Chemical analysis after the experiment confirmed the migration of pesticide residues from treatment combs into previously uncontaminated control comb. This study is the first to demonstrate sub-lethal effects on worker honey bees from pesticide residue exposure from contaminated brood comb. Sub-lethal effects, including delayed larval development and adult emergence or shortened adult longevity, can have indirect effects on the colony such as premature shifts in hive roles and foraging activity. In addition, longer development time for bees may provide a reproductive advantage for parasitic Varroa destructor mites. The impact of delayed development in bees on Varroa mite fecundity should be examined further.

  20. Metatranscriptomic analyses of honey bee colonies

    PubMed Central

    Tozkar, Cansu Ö.; Kence, Meral; Kence, Aykut; Huang, Qiang; Evans, Jay D.

    2015-01-01

    Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World's most important centers of apiculture, harboring five subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9–10 million reads per library) remained. These were then mapped to a curated set of public sequences containing ca. Sixty megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp.), neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae), Varroa destructor-1 virus, Sacbrood virus, and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus), Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly). We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees. PMID:25852743

  1. The Honey Bee Pathosphere of Mongolia: European Viruses in Central Asia

    PubMed Central

    Tsevegmid, Khaliunaa; Neumann, Peter; Yañez, Orlando

    2016-01-01

    Parasites and pathogens are apparent key factors for the detrimental health of managed European honey bee subspecies, Apis mellifera. Apicultural trade is arguably the main factor for the almost global distribution of most honey bee diseases, thereby increasing chances for multiple infestations/infections of regions, apiaries, colonies and even individual bees. This imposes difficulties to evaluate the effects of pathogens in isolation, thereby creating demand to survey remote areas. Here, we conducted the first comprehensive survey for 14 honey bee pathogens in Mongolia (N = 3 regions, N = 9 locations, N = 151 colonies), where honey bee colonies depend on humans to overwinter. In Mongolia, honey bees, Apis spp., are not native and colonies of European A. mellifera subspecies have been introduced ~60 years ago. Despite the high detection power and large sample size across Mongolian regions with beekeeping, the mite Acarapis woodi, the bacteria Melissococcus plutonius and Paenibacillus larvae, the microsporidian Nosema apis, Acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus and Lake Sinai virus strain 2 were not detected, suggesting that they are either very rare or absent. The mite Varroa destructor, Nosema ceranae and four viruses (Sacbrood virus, Black queen cell virus, Deformed wing virus (DWV) and Chronic bee paralysis virus) were found with different prevalence. Despite the positive correlation between the prevalence of V. destructor mites and DWV, some areas had only mites, but not DWV, which is most likely due to the exceptional isolation of apiaries (up to 600 km). Phylogenetic analyses of the detected viruses reveal their clustering and European origin, thereby supporting the role of trade for pathogen spread and the isolation of Mongolia from South-Asian countries. In conclusion, this survey reveals the distinctive honey bee pathosphere of Mongolia, which offers opportunities for exciting future research. PMID:26959221

  2. Analysis of lead concentration in forager stingless bees Trigona sp. (hymenoptera: Apidae) and propolis at Cilutung and Maribaya, West Java

    NASA Astrophysics Data System (ADS)

    Safira, Nabila; Anggraeni, Tjandra

    2015-09-01

    Several studies had shown that lead (Pb) in the environment could accumulate in bees, which in turn could affect the quality of the resulting product. In this study, forager stingless bees (Trigona sp.) and its product (propolis) collected from a stingless bees apiculture. This apiculture had two apiary sites which were distinguished by its environmental setting. Apiary site in Cilutung had a forest region environmental setting, while apiary site in Maribaya was located beside the main road. The objective of this study was to determine the extent of lead concentration in propolis originated from both apiary sites and establish the correlation between lead concentration in propolis and lead level in forager stingless bees. Forager bees and propolis samples were originated from 50 bees colonies (Cilutung) and 44 bees colonies (Maribaya). They were analyzed using AAS-GF (Atomic Absorption Spectrometre-Graphite Furnace) to determine the level of lead concentration. The results showed that the average level of lead in propolis originated from Cilutung (298.08±73.71 ppb) was lower than the average level of lead in forager bees which originated from Maribaya (330.64±156.34 ppb). However, these values did not show significant difference (p>0.05). There was no significant difference (p>0.05) between the average level of lead in forager bees which originated from Cilutung (118.08±30.46 ppb) and Maribaya (128.82±39.66 ppb). However, these values did not show significant difference (p>0.05). In conclusion, the average level of lead concentration in propolis in both sites had passed the maximum permission standard of lead for food in Indonesia. There was no correlation between lead concentration in propolis and forager stingless bees.

  3. Beneficial microorganisms for honey bees: problems and progresses.

    PubMed

    Alberoni, Daniele; Gaggìa, Francesca; Baffoni, Loredana; Di Gioia, Diana

    2016-11-01

    Nowadays, honey bees are stressed by a number of biotic and abiotic factors which may compromise to some extent the pollination service and the hive productivity. The EU ban of antibiotics as therapeutic agents against bee pathogens has stimulated the search for natural alternatives. The increasing knowledge on the composition and functions of the bee gut microbiota and the link between a balanced gut microbiota and health status have encouraged the research on the use of gut microorganisms to improve bee health. Somehow, we are assisting to the transfer of the "probiotic concept" into the bee science. In this review, we examine the role of the honey bee gut microbiota in bee health and critically describe the available applications of beneficial microorganisms as pest control agents and health support. Most of the strains, mainly belonging to the genera Lactobacillus, Bifidobacterium and Bacillus, are isolated from honey bee crop or gut, but some applications involve environmental strains or formulation for animal and human consumption. Overall, the obtained results show the favourable effect of applied microbial strains on bee health and productivity, in particular if strains of bee origin are used. However, it is actually not yet possible to conclude whether this strategy will ever work. In particular, many aspects regarding the overall setup of the experiments, the dose, the timing and the duration of the treatment need to be optimized, also considering the microbiological safety of the hive products (i.e. pollen and honey). In addition, a deep investigation about the effect on host immunity and physiology is envisaged. Lastly, the final users of the formulations, i.e. beekeepers, should be taken into account for the achievement of high-quality, cost-effective and easy-to-use products.

  4. Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops.

    PubMed

    David, Arthur; Botías, Cristina; Abdul-Sada, Alaa; Nicholls, Elizabeth; Rotheray, Ellen L; Hill, Elizabeth M; Goulson, Dave

    2016-03-01

    There is considerable and ongoing debate as to the harm inflicted on bees by exposure to agricultural pesticides. In part, the lack of consensus reflects a shortage of information on field-realistic levels of exposure. Here, we quantify concentrations of neonicotinoid insecticides and fungicides in the pollen of oilseed rape, and in pollen of wildflowers growing near arable fields. We then compare this to concentrations of these pesticides found in pollen collected by honey bees and in pollen and adult bees sampled from bumble bee colonies placed on arable farms. We also compared this with levels found in bumble bee colonies placed in urban areas. Pollen of oilseed rape was heavily contaminated with a broad range of pesticides, as was the pollen of wildflowers growing nearby. Consequently, pollen collected by both bee species also contained a wide range of pesticides, notably including the fungicides carbendazim, boscalid, flusilazole, metconazole, tebuconazole and trifloxystrobin and the neonicotinoids thiamethoxam, thiacloprid and imidacloprid. In bumble bees, the fungicides carbendazim, boscalid, tebuconazole, flusilazole and metconazole were present at concentrations up to 73nanogram/gram (ng/g). It is notable that pollen collected by bumble bees in rural areas contained high levels of the neonicotinoids thiamethoxam (mean 18ng/g) and thiacloprid (mean 2.9ng/g), along with a range of fungicides, some of which are known to act synergistically with neonicotinoids. Pesticide exposure of bumble bee colonies in urban areas was much lower than in rural areas. Understanding the effects of simultaneous exposure of bees to complex mixtures of pesticides remains a major challenge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Operant Conditioning in Honey Bees (Apis mellifera L.): The Cap Pushing Response.

    PubMed

    Abramson, Charles I; Dinges, Christopher W; Wells, Harrington

    2016-01-01

    The honey bee has been an important model organism for studying learning and memory. More recently, the honey bee has become a valuable model to understand perception and cognition. However, the techniques used to explore psychological phenomena in honey bees have been limited to only a few primary methodologies such as the proboscis extension reflex, sting extension reflex, and free flying target discrimination-tasks. Methods to explore operant conditioning in bees and other invertebrates are not as varied as with vertebrates. This may be due to the availability of a suitable response requirement. In this manuscript we offer a new method to explore operant conditioning in honey bees: the cap pushing response (CPR). We used the CPR to test for difference in learning curves between novel auto-shaping and more traditional explicit-shaping. The CPR protocol requires bees to exhibit a novel behavior by pushing a cap to uncover a food source. Using the CPR protocol we tested the effects of both explicit-shaping and auto-shaping techniques on operant conditioning. The goodness of fit and lack of fit of these data to the Rescorla-Wagner learning-curve model, widely used in classical conditioning studies, was tested. The model fit well to both control and explicit-shaping results, but only for a limited number of trials. Learning ceased rather than continuing to asymptotically approach the physiological most accurate possible. Rate of learning differed between shaped and control bee treatments. Learning rate was about 3 times faster for shaped bees, but for all measures of proficiency control and shaped bees reached the same level. Auto-shaped bees showed one-trial learning rather than the asymptotic approach to a maximal efficiency. However, in terms of return-time, the auto-shaped bees' learning did not carry over to the covered-well test treatments.

  6. Failure to Find Ethanol-Induced Conditioned Taste Aversion in Honey Bees (Apis mellifera L.).

    PubMed

    Varnon, Christopher A; Dinges, Christopher W; Black, Timothy E; Wells, Harrington; Abramson, Charles I

    2018-04-24

    Conditioned taste aversion (CTA) learning is a highly specialized form of conditioning found across taxa that leads to avoidance of an initially neutral stimulus, such as taste or odor, that is associated with, but is not the cause of, a detrimental health condition. This study examines if honey bees (Apis mellifera L.) develop ethanol (EtOH)-induced CTA. Restrained bees were first administered a sucrose solution that was cinnamon scented, lavender scented, or unscented, and contained either 0, 2.5, 5, 10, or 20% EtOH. Then, 30 minutes later, we used a proboscis extension response (PER) conditioning procedure where the bees were taught to associate either cinnamon odor, lavender odor, or an air-puff with repeated sucrose feedings. For some bees, the odor of the previously consumed EtOH solution was the same as the odor associated with sucrose in the conditioning procedure. If bees are able to learn EtOH-induced CTA, they should show an immediate low level of response to odors previously associated with EtOH. We found that bees did not develop CTA despite the substantial inhibitory and aversive effects EtOH has on behavior. Instead, bees receiving a conditioning odor that was previously associated with EtOH showed an immediate high level of response. While this demonstrates bees are capable of one-trial learning common to CTA experiments, this high level of response is the opposite of what would occur if the bees developed a CTA. Responding on subsequent trials also showed a general inhibitory effect of EtOH. Finally, we found that consumption of cinnamon extract reduced the effects of EtOH. The honey bees' lack of learned avoidance to EtOH mirrors that seen in human alcoholism. These findings demonstrate the usefulness of honey bees as an insect model for EtOH consumption. Copyright © 2018 by the Research Society on Alcoholism.

  7. Lethal and sub-lethal effects of spinosad on bumble bees (Bombus impatiens Cresson).

    PubMed

    Morandin, Lora A; Winston, Mark L; Franklin, Michelle T; Abbott, Virginia A

    2005-07-01

    Recent developments of new families of pesticides and growing awareness of the importance of wild pollinators for crop pollination have stimulated interest in potential effects of novel pesticides on wild bees. Yet pesticide toxicity studies on wild bees remain rare, and few studies have included long-term monitoring of bumble bee colonies or testing of foraging ability after pesticide exposure. Larval bees feeding on exogenous pollen and exposed to pesticides during development may result in lethal or sub-lethal effects during the adult stage. We tested the effects of a naturally derived biopesticide, spinosad, on bumble bee (Bombus impatiens Cresson) colony health, including adult mortality, brood development, weights of emerging bees and foraging efficiency of adults that underwent larval development during exposure to spinosad. We monitored colonies from an early stage, over a 10-week period, and fed spinosad to colonies in pollen at four levels: control, 0.2, 0.8 and 8.0 mg kg(-1), during weeks 2 through 5 of the experiment. At concentrations that bees would likely encounter in pollen in the wild (0.2-0.8 mg kg(-1)) we detected minimal negative effects to bumble bee colonies. Brood and adult mortality was high at 8.0 mg kg(-1) spinosad, about twice the level that bees would be exposed to in a 'worst case' field scenario, resulting in colony death two to four weeks after initial pesticide exposure. At more realistic concentrations there were potentially important sub-lethal effects. Adult worker bees exposed to spinosad during larval development at 0.8 mg kg(-1) were slower foragers on artificial complex flower arrays than bees from low or no spinosad treated colonies. Inclusion of similar sub-lethal assays to detect effects of pesticides on pollinators would aid in development of environmentally responsible pest management strategies. Copyright 2005 Society of Chemical Industry

  8. Ecologically Appropriate Xenobiotics Induce Cytochrome P450s in Apis mellifera

    PubMed Central

    Johnson, Reed M.; Mao, Wenfu; Pollock, Henry S.; Niu, Guodong; Schuler, Mary A.; Berenbaum, May R.

    2012-01-01

    Background Honey bees are exposed to phytochemicals through the nectar, pollen and propolis consumed to sustain the colony. They may also encounter mycotoxins produced by Aspergillus fungi infesting pollen in beebread. Moreover, bees are exposed to agricultural pesticides, particularly in-hive acaricides used against the parasite Varroa destructor. They cope with these and other xenobiotics primarily through enzymatic detoxificative processes, but the regulation of detoxificative enzymes in honey bees remains largely unexplored. Methodology/Principal Findings We used several approaches to ascertain effects of dietary toxins on bee susceptibility to synthetic and natural xenobiotics, including the acaricide tau-fluvalinate, the agricultural pesticide imidacloprid, and the naturally occurring mycotoxin aflatoxin. We administered potential inducers of cytochrome P450 enzymes, the principal biochemical system for Phase 1 detoxification in insects, to investigate how detoxification is regulated. The drug phenobarbital induces P450s in many insects, yet feeding bees with phenobarbital had no effect on the toxicity of tau-fluvalinate, a pesticide known to be detoxified by bee P450s. Similarly, no P450 induction, as measured by tau-fluvalinate tolerance, occurred in bees fed xanthotoxin, salicylic acid, or indole-3-carbinol, all of which induce P450s in other insects. Only quercetin, a common pollen and honey constituent, reduced tau-fluvalinate toxicity. In microarray comparisons no change in detoxificative gene expression was detected in phenobarbital-treated bees. However, northern blot analyses of guts of bees fed extracts of honey, pollen and propolis showed elevated expression of three CYP6AS P450 genes. Diet did not influence tau-fluvalinate or imidacloprid toxicity in bioassays; however, aflatoxin toxicity was higher in bees consuming sucrose or high-fructose corn syrup than in bees consuming honey. Conclusions/Significance These results suggest that regulation of honey bee P450s is tuned to chemicals occurring naturally in the hive environment and that, in terms of toxicological capacity, a diet of sugar is not equivalent to a diet of honey. PMID:22319603

  9. The paratransgenic potential of Lactobacillus kunkeei in the honey bee Apis mellifera.

    PubMed

    Rangberg, A; Mathiesen, G; Amdam, G V; Diep, D B

    2015-01-01

    The honey bee (Apis mellifera) is a domestic insect of high value to human societies, as a crop pollinator in agriculture and a model animal in scientific research. The honey bee, however, has experienced massive mortality worldwide due to the phenomenon Colony Collapse Disorder (CCD), resulting in alarming prospects for crop failure in Europe and the USA. The reasons for CCD are complex and much debated, but several honey bee pathogens are believed to be involved. Paratransgenesis is a Trojan horse strategy, where endogenous microorganisms are used to express effector molecules that antagonise pathogen development. For use in honey bees, paratransgenesis must rely on a set of criteria that the candidate paratransgenic microorganism must fulfil in order to obtain a successful outcome: (1) the candidate must be genetically modifiable to express effector molecules; (2) the modified organism should have no adverse effects on honey bee health upon reintroduction; and (3) it must survive together with other non-pathogenic bee-associated microorganisms. Lactic acid bacteria (LAB) are common gut bacteria in vertebrates and invertebrates, and some have naturally beneficial properties in their host. In the present work we aimed to find a potential paratransgenic candidate within this bacterial group for use in honey bees. Among isolated LAB associated with bee gut microbiota, we found the fructophilic Lactobacillus kunkeei to be the most predominant species during foraging seasons. Four genetically different strains of L. kunkeei were selected for further assessment. We demonstrated (1) that L. kunkeei is transformable; (2) that the transformed cells had no obvious adverse effect on honey bee survival; and (3) that transformed cells survived well in the gut environment of bees upon reintroduction. Our study demonstrates that L. kunkeei fulfils the three criteria for paratransgenesis and can be a suitable candidate for further research on this strategy in honey bees.

  10. Ecto- and endoparasite induce similar chemical and brain neurogenomic responses in the honey bee (Apis mellifera)

    PubMed Central

    2013-01-01

    Background Exclusion from a social group is an effective way to avoid parasite transmission. This type of social removal has also been proposed as a form of collective defense, or social immunity, in eusocial insect groups. If parasitic modification of host behavior is widespread in social insects, the underlying physiological and neuronal mechanisms remain to be investigated. We studied this phenomenon in honey bees parasitized by the mite Varroa destructor or microsporidia Nosema ceranae, which make bees leave the hive precociously. We characterized the chemical, behavioral and neurogenomic changes in parasitized bees, and compared the effects of both parasites. Results Analysis of cuticular hydrocarbon (CHC) profiles by gas chromatography coupled with mass spectrophotometry (GC-MS) showed changes in honey bees parasitized by either Nosema ceranae or Varroa destructor after 5 days of infestation. Levels of 10-HDA, an antiseptic important for social immunity, did not change in response to parasitism. Behavioral analysis of N. ceranae- or V. destructor- parasitized bees revealed no significant differences in their behavioral acts or social interactions with nestmates. Digital gene expression (DGE) analysis of parasitized honey bee brains demonstrated that, despite the difference in developmental stage at which the bee is parasitized, Nosema and Varroa-infested bees shared more gene changes with each other than with honey bee brain expression gene sets for forager or nurse castes. Conclusions Parasitism by Nosema or Varroa induces changes to both the CHC profiles on the surface of the bee and transcriptomic profiles in the brain, but within the social context of the hive, does not result in observable effects on her behavior or behavior towards her. While parasitized bees are reported to leave the hive as foragers, their brain transcription profiles suggest that their behavior is not driven by the same molecular pathways that induce foraging behavior. PMID:23866001

  11. A Pragmatic Approach to Assess the Exposure of the Honey Bee (Apis mellifera) When Subjected to Pesticide Spray

    PubMed Central

    Poquet, Yannick; Bodin, Laurent; Tchamitchian, Marc; Fusellier, Marion; Giroud, Barbara; Lafay, Florent; Buleté, Audrey; Tchamitchian, Sylvie; Cousin, Marianne; Pélissier, Michel; Brunet, Jean-Luc; Belzunces, Luc P.

    2014-01-01

    Plant protection spray treatments may expose non-target organisms to pesticides. In the pesticide registration procedure, the honey bee represents one of the non-target model species for which the risk posed by pesticides must be assessed on the basis of the hazard quotient (HQ). The HQ is defined as the ratio between environmental exposure and toxicity. For the honey bee, the HQ calculation is not consistent because it corresponds to the ratio between the pesticide field rate (in mass of pesticide/ha) and LD50 (in mass of pesticide/bee). Thus, in contrast to all other species, the HQ can only be interpreted empirically because it corresponds to a number of bees/ha. This type of HQ calculation is due to the difficulty in transforming pesticide field rates into doses to which bees are exposed. In this study, we used a pragmatic approach to determine the apparent exposure surface area of honey bees submitted to pesticide treatments by spraying with a Potter-type tower. The doses received by the bees were quantified by very efficient chemical analyses, which enabled us to determine an apparent surface area of 1.05 cm2/bee. The apparent surface area was used to calculate the exposure levels of bees submitted to pesticide sprays and then to revisit the HQ ratios with a calculation mode similar to that used for all other living species. X-tomography was used to assess the physical surface area of a bee, which was 3.27 cm2/bee, and showed that the apparent exposure surface was not overestimated. The control experiments showed that the toxicity induced by doses calculated with the exposure surface area was similar to that induced by treatments according to the European testing procedure. This new approach to measure risk is more accurate and could become a tool to aid the decision-making process in the risk assessment of pesticides. PMID:25412103

  12. Reproduction of Amorpha canescens (Fabaceae) and diversity of its bee community in a fragmented landscape.

    PubMed

    Slagle, Malinda W; Hendrix, Stephen D

    2009-10-01

    Loss of insect pollinators due to habitat fragmentation often results in negative effects on plant reproduction, but few studies have simultaneously examined variation in the bee community, site characteristics and plant community characteristics to evaluate their relative effects on plant reproduction in a fragmented habitat. We examined the reproduction of a common tallgrass prairie forb, Amorpha canescens (Fabaceae), in large (>40 ha) and small (<2 ha) prairie remnants in Iowa and Minnesota in relation to the diversity and abundance of its bee visitors, plant population size, and species density of the forb flowering community. We found significant positive effects of the diversity of bees visiting A. canescens on percent fruit set at a site in both years of the study and in 2002 an additional significant positive effect of plant species density. Abundance of bees visiting A. canescens had a significant positive effect on percent fruit set in 2002, but was only marginally significant in 2003. In 2003 but not 2002, the plant species density at the sites had a significant negative effect on the diversity and abundance of bees visiting A. canescens, indicating community-level characteristics can influence the bee community visiting any one species. Site size, a common predictor of plant reproduction in fragmented habitats did not contribute to any models of fruit set and was only marginally related to bee diversity one year. Andrena quintilis, one of the three oligolectic bee species associated with A. canescens, was abundant at all sites, suggesting it has not been significantly affected by fragmentation. Our results show that the diversity of bees visiting A. canescens is important for maintaining fruit set and that bee visitation is still sufficient for at least some fruit set in all populations, suggesting these small remnants act as floral resource oases for bees in landscapes often dominated by agriculture.

  13. Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-kappaB-dependent mechanisms.

    PubMed

    Cho, Hyun-Ji; Jeong, Yun-Jeong; Park, Kwan-Kyu; Park, Yoon-Yub; Chung, Il-Kyung; Lee, Kwang-Gill; Yeo, Joo-Hong; Han, Sang-Mi; Bae, Young-Seuk; Chang, Young-Chae

    2010-02-17

    Bee venom has been used for the treatment of inflammatory diseases such as rheumatoid arthritis and for the relief of pain in traditional oriental medicine. The purpose of this study is to elucidate the effects of bee venom on MMP-9 expression and determine possible mechanisms by which bee venom relieves or prevents the expression of MMP-9 during invasion and metastasis of breast cancer cells. We examined the expression and activity of MMP-9 and possible signaling pathway affected in PMA-induced MCF-7 cells. Bee venom was obtained from the National Institute of Agricultural Science and Technology of Korea. Matrigel invasion assay, wound-healing assay, zymography assay, western blot assay, electrophoretic mobility shift assay and luciferase gene assay were used for assessment. Bee venom inhibited cell invasion and migration, and also suppressed MMP-9 activity and expression, processes related to tumor invasion and metastasis, in PMA-induced MCF-7 cells. Bee venom specifically suppressed the phosphorylation of p38/JNK and at the same time, suppressed the protein expression, DNA binding and promoter activity of NF-kappaB. The levels of phosphorylated ERK1/2 and c-Jun did not change. We also investigated MMP-9 inhibition by melittin, apamin and PLA(2), representative single component of bee venom. We confirmed that PMA-induced MMP-9 activity was significantly decreased by melittin, but not by apamin and phospholipase A(2). These data demonstrated that the expression of MMP-9 was abolished by melittin, the main component of bee venom. Bee venom inhibits PMA-induced MMP-9 expression and activity by inhibition of NF-kappaB via p38 MAPK and JNK signaling pathways in MCF-7 cells. These results indicate that bee venom can be a potential anti-metastatic and anti-invasive agent. This useful effect may lead to future clinical research on the anti-cancer properties of bee venom. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  14. Microbiome structure influences infection by the parasite Crithidia bombi in bumble bees.

    PubMed

    Mockler, Blair K; Kwong, Waldan K; Moran, Nancy A; Koch, Hauke

    2018-01-26

    Recent declines in bumble bee populations are of great concern, and have prompted critical evaluations of the role of pathogen introductions and host resistance in bee health. One factor that may influence host resilience when facing infection is the gut microbiota. Previous experiments with Bombus terrestris , a European bumble bee, showed that the gut microbiota can protect against Crithidia bombi , a widespread trypanosomatid parasite of bumble bees. However, the particular characteristics of the microbiome responsible for this protective effect have thus far eluded identification. Using wild and commercially-sourced Bombus impatiens , an important North American pollinator, we conducted cross-wise microbiota transplants to naïve hosts of both backgrounds, and challenged them with Crithidia As with B. terrestris , we find that microbiota-dependent protection against Crithidia operates in B. impatiens Lower Crithidia infection loads were experimentally associated with high microbiome diversity, large gut bacterial populations, and the presence of Apibacter , Lactobacillus Firm-5, and Gilliamella in the gut community. These results indicate that even subtle differences between gut community structures can have a significant impact on the microbiome's ability to defend against parasite infections. Importance Many wild bumble bee populations are under threat by human activity, including through introductions of pathogens via commercially-raised bees. Recently, it was found that the bumble bee gut microbiota can help defend against a common parasite, Crithidia bombi , but the particular factors contributing to this protection are unknown. Using both wild and commercially-raised bees, we conduct microbiota transplants to show that microbiome diversity, total gut bacterial load, and the presence of certain core members of the microbiota may all impact bee susceptibility to Crithidia infection. Bee origin (genetic background) was also a factor. Finally, by examining this phenomenon in a previously uninvestigated bee species, our study demonstrates that microbiome-mediated resistance to Crithidia is conserved across multiple bumble bee species. These findings highlight how intricate interactions between hosts, microbiomes, and parasites can have wide-ranging consequences for the health of ecologically important species. Copyright © 2018 American Society for Microbiology.

  15. Quantification of toxins in a Cry1Ac + CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L.

    PubMed

    Han, Peng; Niu, Chang-Ying; Lei, Chao-Liang; Cui, Jin-Jie; Desneux, Nicolas

    2010-11-01

    Transgenic Cry1Ac + CpTI cotton (CCRI41) is increasingly planted throughout China. However, negative effects of this cultivar on the honey bee Apis mellifera L., the most important pollinator for cultivated ecosystem, remained poorly investigated. The objective of our study was to evaluate the potential side effects of transgenic Cry1Ac + CpTI pollen from cotton on young adult honey bees A. mellifera L. Two points emphasized the significance of our study: (1) A higher expression level of insecticidal protein Cry1Ac in pollen tissues was detected (when compared with previous reports). In particular, Cry1Ac protein was detected at 300 ± 4.52 ng g(-1) [part per billion (ppb)] in pollen collected in July, (2) Effects on chronic mortality and feeding behaviour in honey bees were evaluated using a no-choice dietary feeding protocol with treated pollen, which guarantee the highest exposure level to bees potentially occurring in natural conditions (worst case scenario). Tests were also conducted using imidacloprid-treated pollen at a concentration of 48 ppb as positive control for sublethal effect on feeding behaviour. Our results suggested that Cry1Ac + CpTI pollen carried no lethal risk for honey bees. However, during a 7-day oral exposure to the various treatments (transgenic, imidacloprid-treated and control), honey bee feeding behaviour was disturbed and bees consumed significantly less CCRI41 cotton pollen than in the control group in which bees were exposed to conventional cotton pollen. It may indicate an antifeedant effect of CCRI41 pollen on honey bees and thus bees may be at risk because of large areas are planted with transgenic Bt cotton in China. This is the first report suggesting a potential sublethal effect of CCRI41 cotton pollen on honey bees. The implications of the results are discussed in terms of risk assessment for bees as well as for directions of future work involving risk assessment of CCRI41 cotton.

  16. Comparative study of the venoms from three species of bees: effects on heart activity and blood.

    PubMed

    Hussein, A A; Nabil, Z I; Zalat, S M; Rakha, M K

    2001-11-01

    Crude venoms from three highly evolved aculeate species: Apis mellifera (highly social bees), Bombus morrisoni (eusocial bees), and Anthophora pauperata (solitary bees), were used for conducting this study to compare the effects of honey bee, bumble bee, and solitary bee venom on toad cardiac muscle activity. In addition, these venoms were tested on rat whole blood in order to determine their ability to induce red blood cell haemolysis. The main toxic effects on isolated toad heart were monitored by ECG after perfusion with different concentrations of each bee venom, and are represented as a decrease in the heart rate (HR) accompanied by an elongation in the P-R interval. A gradual and progressive increase in R-wave amplitude was also noted. Several electrocardiographic changes were noted 5-30 min after envenomation with any of the bee venoms. The mechanism of action of the three bee venoms was determined by direct application of atropine, nicotine, or verapamil to the isolated toad hearts. Comparison of the three venoms revealed that Anthophora pauperata venom is the most effective venom in inducing bradycardia, and it has the strongest negative dromotropic effect. Apis mellifera venom demonstrates the most positive inotropic effect of the three venoms. The effects of bee venom on the blood indices of erythrocyte osmotic fragility (EOF) and plasma albumin levels were studied after incubation of rat blood with each venom. It was noticed that RBCs decreased while Hb content, HCT, MCV, MCH, and MCHC increased, although this change did fluctuate and was not significant. A nonsignificant decrease in EOF was noted after 60 min with any of the venoms used. Incubation of rat whole blood with 1 microg/ml of any of the bee venom solutions revealed a highly significant decrease in plasma albumin levels. It can be concluded that venoms from the three species of bees we tested have negative chronotropic and dromotropic effects on isolated toad heart, with Anthophora pauperata being the most potent. In addition, the venoms have positive inotropic effects withApis mellifera being the most potent. The nonsignificant effects of venom on blood profiles and erythrocyte osmotic fragility, combined with the significant decrease in plasma albumin level suggest a protective effect of plasma albumin against bee venom induced toxicity to erythrocytes.

  17. Comparative flight activities and pathogen load of two stocks of honey bees reared in gamma-irradiated combs

    USDA-ARS?s Scientific Manuscript database

    Gamma irradiation is known to inactivate various pathogens that negatively affect honey bee health. Bee pathogens such as Deformed wing virus (DWV) and Nosema spp. have deleterious impact on foraging activities and bee survival, and have been detected in combs. In this study, we assessed the effects...

  18. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees

    USDA-ARS?s Scientific Manuscript database

    Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood inside the nest while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydra...

  19. Honeybees Use Pheromone to Delay Behavioral Maturation

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    The GC-MS profiles of whole body extracts from the nurses and foragers of Apis mellifera ligustica bees was compared, which showed that the extracts of foragers (older bees) contained levels of ethyl oleate (EO) almost three times than found in nurses (young bees). The results show that the ethyl oleate plays a key role in the bees' mechanism of…

  20. 75 FR 12171 - Notice of Availability of a Draft Pest Risk Assessment on Honey Bees Imported from Australia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ...] Notice of Availability of a Draft Pest Risk Assessment on Honey Bees Imported from Australia AGENCY... evaluation of the pest risks associated with the importation of honey bees from Australia. The draft pest... States from Australia after concerns that exotic honey bee pathogens or parasites may have been...

  1. Pesticide Exposome: Assessing risks to migratory honey bees from pesticide contamination in the hive environment in the Eastern United States

    USDA-ARS?s Scientific Manuscript database

    To calculate the relative risk associated with exposure to easily quantifiable putative risk factors in honey bee colonies, a cohort study of hives belonging to three migratory beekeepers was previously conducted and reported on. Associated with those studies, live adult bee, wax, and bee bread samp...

  2. Generalist bees pollinate red-flowered Penstemon eatonii: Duality in the hummingbird pollination syndrome

    Treesearch

    James H. Cane; Rick Dunne

    2014-01-01

    The red tubular flowers of Penstemon eatonii (Plantaginaceae) typify the classic pollination syndrome for hummingbirds. Bees are thought to diminish its seed siring potential, but we found that foraging female generalist bees (Apis, Anthophora) deposited substantial amounts of conspecific pollen on P. eatonii stigmas. In the absence of hummingbirds, bee pollination of...

  3. Chalkbrood Transmission in the Alfalfa Leafcutting Bee: The Impact of Disinfecting Bee Cocoons in Loose Cell Management Systems

    USDA-ARS?s Scientific Manuscript database

    A good understanding of pathogen transmission in a host population should illuminate methods for disease prevention and control. A case in point for this is the alfalfa leafcutting bee (Megachile rotundata), a solitary bee which is used extensively for pollination of alfalfa grown for seed. Propaga...

  4. Changes in respiratory structure and function during post-diapause development in the alfalfa leafcutting bee, Megachile rotundata

    USDA-ARS?s Scientific Manuscript database

    Megachile rotundata, the alfalfa leafcutting bee, is a solitary, cavity-nesting bee. M. rotundata develop from eggs laid inside brood cells constructed from leaf pieces and placed in series in an existing cavity. Due to the cavity nesting behavior of M. rotundata, developing bees may experience hyp...

  5. Functional roles and metabolic niches in the honey bee gut microbiota.

    PubMed

    Bonilla-Rosso, Germán; Engel, Philipp

    2018-06-01

    Gut microbiota studies on diverse animals facilitate our understanding of the general principles governing microbiota-host interactions. The honey bee adds a relevant study system due to the simplicity and experimental tractability of its gut microbiota, but also because bees are important pollinators that suffer from population declines worldwide. The use of gnotobiotic bees combined with genetic tools, 'omics' analysis, and experimental microbiology has recently provided important insights about the impact of the microbiota on bee health and the general functioning of gut ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The oldest fossil bee: Apoid history, evolutionary stasis, and antiquity of social behavior

    PubMed Central

    Michener, Charles D.; Grimaldi, David A.

    1988-01-01

    Trigona prisca, a stingless honey bee (Apidae; Meliponinae), is reported from Cretaceous New Jersey amber (96-74 million years before present). This is about twice the age of the oldest previously known fossil bee, although Trigona is one of the most derived bee genera. T. prisca is closely similar to modern neotropical species. Most of bee evolution probably occurred during the ≈50 million years between the beginning of the Cretaceous when flowering plants (on which bees depend) appeared and the time of T. prisca. Since then, in this phyletic line of Meliponinae, there has been almost no morphological evolution. Since the fossil is a worker, social organization had arisen by its time. Images PMID:16593976

  7. Honey bees can perform accurately directed waggle dances based solely on information from a homeward trip.

    PubMed

    Edrich, Wolfgang

    2015-10-01

    Honey bees were displaced several 100 m from their hive to an unfamiliar site and provisioned with honey. After feeding, almost two-thirds of the bees flew home to their hive within a 50 min observation time. About half of these returning, bees signalled the direction of the release site in waggle dances thus demonstrating that the dance can be guided entirely by information gathered on a single homeward trip. The likely reason for the bees' enthusiastic dancing on their initial return from this new site was the highly rewarding honeycomb that they were given there. The attractive nature of the site is confirmed by many of these bees revisiting the site and continuing to forage there.

  8. Immune pathways and defence mechanisms in honey bees Apis mellifera

    PubMed Central

    Evans, J D; Aronstein, K; Chen, Y P; Hetru, C; Imler, J-L; Jiang, H; Kanost, M; Thompson, G J; Zou, Z; Hultmark, D

    2006-01-01

    Social insects are able to mount both group-level and individual defences against pathogens. Here we focus on individual defences, by presenting a genome-wide analysis of immunity in a social insect, the honey bee Apis mellifera. We present honey bee models for each of four signalling pathways associated with immunity, identifying plausible orthologues for nearly all predicted pathway members. When compared to the sequenced Drosophila and Anopheles genomes, honey bees possess roughly one-third as many genes in 17 gene families implicated in insect immunity. We suggest that an implied reduction in immune flexibility in bees reflects either the strength of social barriers to disease, or a tendency for bees to be attacked by a limited set of highly coevolved pathogens. PMID:17069638

  9. Sepsis and Hemocyte Loss in Honey Bees (Apis mellifera) Infected with Serratia marcescens Strain Sicaria.

    PubMed

    Burritt, Nancy L; Foss, Nicole J; Neeno-Eckwall, Eric C; Church, James O; Hilger, Anna M; Hildebrand, Jacob A; Warshauer, David M; Perna, Nicole T; Burritt, James B

    2016-01-01

    Global loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters. In some hives, greater than 90% of the dying bees detached from the winter cluster were found to contain this bacterium in their hemolymph. Throughout the year, the same organism was rarely found in bees engaged in normal hive activities, but was detected in about half of Varroa destructor mites obtained from colonies that housed the septic bees. Flow cytometry of hemolymph from septic bees showed a significant reduction of plasmatocytes and other types of hemocytes. Interpretation of the16S rRNA sequence of the bacterium indicated that it belongs to the Serratia genus of Gram-negative Gammaproteobacteria, which has not previously been implicated as a pathogen of adult honey bees. Complete genome sequence analysis of the bacterium supported its classification as a novel strain of Serratia marcescens, which was designated as S. marcescens strain sicaria (Ss1). When compared with other strains of S. marcescens, Ss1 demonstrated several phenotypic and genetic differences, including 65 genes not previously found in other Serratia genomes. Some of the unique genes we identified in Ss1 were related to those from bacterial insect pathogens and commensals. Recovery of this organism extends a complex pathosphere of agents which may contribute to failure of honey bee colonies.

  10. Parasite pressures on feral honey bees (Apis mellifera sp.).

    PubMed

    Thompson, Catherine E; Biesmeijer, Jacobus C; Allnutt, Theodore R; Pietravalle, Stéphane; Budge, Giles E

    2014-01-01

    Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty in locating and sampling colonies, which often nest in inaccessible locations such as church spires and tree tops. In addition, little is known about the provenance of feral colonies and whether they represent a reservoir of Varroa tolerant material that could be used in apiculture. Samples of forager bees were collected from paired feral and managed honey bee colonies and screened for the presence of ten honey bee pathogens and pests using qPCR. Prevalence and quantity was similar between the two groups for the majority of pathogens, however feral honey bees contained a significantly higher level of deformed wing virus than managed honey bee colonies. An assessment of the honey bee race was completed for each colony using three measures of wing venation. There were no apparent differences in wing morphometry between feral and managed colonies, suggesting feral colonies could simply be escapees from the managed population. Interestingly, managed honey bee colonies not treated for Varroa showed similar, potentially lethal levels of deformed wing virus to that of feral colonies. The potential for such findings to explain the large fall in the feral population and the wider context of the importance of feral colonies as potential pathogen reservoirs is discussed.

  11. Bee pollen: a dangerous food for allergic children. Identification of responsible allergens.

    PubMed

    Martín-Muñoz, M F; Bartolome, B; Caminoa, M; Bobolea, I; Ara, M C Garcia; Quirce, S

    2010-01-01

    Bee pollen has been proposed as a food supplement, but it can be a dangerous food for people with allergy. We study an allergic reaction after ingestion of bee pollen in a 4-year-old boy who had developed rhinitis in the last spring and autumn. We performed a prick-by-prick test with bee pollen and skin prick tests with the most important local pollens, house dust mites, common fungi, and animal danders. The levels of serum tryptase, serum total IgE and specific IgE against bee venom and local pollen extracts were determined. The composition of the bee pollen was analysed and SDS-PAGE immunoblotting and blotting-inhibition were carried out. Prick tests were positive to bee pollen and all local pollens extracts and negative to any other allergen sources. The bee pollen sample contained pollens from Quercus genus, and Asteraceae (Compositae) and Rosaceae families. Total IgE was 435 kU/l. Serum specific IgE to bee pollen was 6 kU/l and greater than 0.35 kU/L against pollens from Artemisia vulgaris, Taraxacum officinalis, Cupressus arizonica, Olea europaea, Platanus acerifolia and Lolium perenne as well as to n Art v 1 and other pollen marker allergens. Tryptase level was 3.5 mcg/mL. SDS-PAGE immunoblotting-inhibition points to Asteraceae pollen as the possible cause of the allergic reaction. Foods derived from bees can be dangerous to people with allergy to pollen. Copyright © 2009 SEICAP. Published by Elsevier Espana. All rights reserved.

  12. Viral epidemiology of the adult Apis Mellifera infested by the Varroa destructor mite.

    PubMed

    Bernardi, Sara; Venturino, Ezio

    2016-05-01

    The ectoparasitic mite Varroa destructor has become one of the major worldwide threats for apiculture. Varroa destructor attacks the honey bee Apis mellifera weakening its host by sucking hemolymph. However, the damage to bee colonies is not strictly related to the parasitic action of the mite but it derives, above all, from its action as vector increasing the transmission of many viral diseases such as acute paralysis (ABPV) and deformed wing viruses (DWV), that are considered among the main causes of CCD (Colony Collapse Disorder). In this work we discuss an [Formula: see text] model that describes how the presence of the mite affects the epidemiology of these viruses on adult bees. The acronym [Formula: see text] means that the disease affects both populations. In fact it accounts for the bee and mite populations, that are each divided among the S (susceptible) and I (infected) states. We characterize the system behavior, establishing that ultimately either only healthy bees survive, or the disease becomes endemic and mites are wiped out. Another dangerous alternative is the Varroa invasion scenario with the extinction of healthy bees. The final possible configuration is the coexistence equilibrium in which honey bees share their infected hive with mites. The analysis is in line with some observed facts in natural honey bee colonies. Namely, these diseases are endemic. Further, if the mite population is present, necessarily the viral infection occurs. The findings of this study indicate that a low horizontal transmission rate of the virus among honey bees in beehives will help in protecting bee colonies from Varroa infestation and viral epidemics.

  13. Sepsis and Hemocyte Loss in Honey Bees (Apis mellifera) Infected with Serratia marcescens Strain Sicaria

    PubMed Central

    Burritt, Nancy L.; Foss, Nicole J.; Neeno-Eckwall, Eric C.; Church, James O.; Hildebrand, Jacob A.; Warshauer, David M.; Perna, Nicole T.; Burritt, James B.

    2016-01-01

    Global loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters. In some hives, greater than 90% of the dying bees detached from the winter cluster were found to contain this bacterium in their hemolymph. Throughout the year, the same organism was rarely found in bees engaged in normal hive activities, but was detected in about half of Varroa destructor mites obtained from colonies that housed the septic bees. Flow cytometry of hemolymph from septic bees showed a significant reduction of plasmatocytes and other types of hemocytes. Interpretation of the16S rRNA sequence of the bacterium indicated that it belongs to the Serratia genus of Gram-negative Gammaproteobacteria, which has not previously been implicated as a pathogen of adult honey bees. Complete genome sequence analysis of the bacterium supported its classification as a novel strain of Serratia marcescens, which was designated as S. marcescens strain sicaria (Ss1). When compared with other strains of S. marcescens, Ss1 demonstrated several phenotypic and genetic differences, including 65 genes not previously found in other Serratia genomes. Some of the unique genes we identified in Ss1 were related to those from bacterial insect pathogens and commensals. Recovery of this organism extends a complex pathosphere of agents which may contribute to failure of honey bee colonies. PMID:28002470

  14. Study of the Metatranscriptome of Eight Social and Solitary Wild Bee Species Reveals Novel Viruses and Bee Parasites

    PubMed Central

    Schoonvaere, Karel; Smagghe, Guy; Francis, Frédéric; de Graaf, Dirk C.

    2018-01-01

    Bees are associated with a remarkable diversity of microorganisms, including unicellular parasites, bacteria, fungi, and viruses. The application of next-generation sequencing approaches enables the identification of this rich species composition as well as the discovery of previously unknown associations. Using high-throughput polyadenylated ribonucleic acid (RNA) sequencing, we investigated the metatranscriptome of eight wild bee species (Andrena cineraria, Andrena fulva, Andrena haemorrhoa, Bombus terrestris, Bombus cryptarum, Bombus pascuorum, Osmia bicornis, and Osmia cornuta) sampled from four different localities in Belgium. Across the RNA sequencing libraries, 88–99% of the taxonomically informative reads were of the host transcriptome. Four viruses with homology to insect pathogens were found including two RNA viruses (belonging to the families Iflaviridae and Tymoviridae that harbor already viruses of honey bees), a double stranded DNA virus (family Nudiviridae) and a single stranded DNA virus (family Parvoviridae). In addition, we found genomic sequences of 11 unclassified arthropod viruses (related to negeviruses, sobemoviruses, totiviruses, rhabdoviruses, and mononegaviruses), seven plant pathogenic viruses, and one fungal virus. Interestingly, nege-like viruses appear to be widespread, host-specific, and capable of attaining high copy numbers inside bees. Next to viruses, three novel parasite associations were discovered in wild bees, including Crithidia pragensis and a tubulinosematid and a neogregarine parasite. Yeasts of the genus Metschnikowia were identified in solitary bees. This study gives a glimpse of the microorganisms and viruses associated with social and solitary wild bees and demonstrates that their diversity exceeds by far the subset of species first discovered in honey bees. PMID:29491849

  15. Emerging and re-emerging viruses of the honey bee (Apis mellifera L.).

    PubMed

    Genersch, Elke; Aubert, Michel

    2010-01-01

    Until the late 1980s, specific viral infections of the honey bee were generally considered harmless in all countries. Then, with the worldwide introduction of the ectoparasite mite Varroa destructor, beekeepers encountered increasing difficulties in maintaining their colonies. Epidemiological surveys and laboratory experiments have demonstrated that the newly acquired virulence of several viruses belonging to the family Dicistroviridae (acute bee paralysis virus, Kashmir bee virus and Israeli acute paralysis virus) in Europe and the USA had been observed in relation with V. destructor acting as a disseminator of these viruses between and within bee colonies and as an activator of virus multiplication in the infected individuals: bee larvae and adults. Equal emphasis is given to deformed wing virus (DWV) belonging to the Iflaviridae. Overt outbreaks of DWV infections have been shown to be linked to the ability of V. destructor to act not only as a mechanical vector of DWV but also as a biological vector. Its replication in mites prior to its vectoring into pupae seemed to be necessary and sufficient for the induction of a overt infection in pupae developing in non-viable bees with deformed wings. DWV in V. destructor infested colonies is now considered as one of the key players of the final collapse. Various approaches for combating bee viral diseases are described: they include selection of tolerant bees, RNA interference and prevention of new pathogen introduction. None of these approaches are expected to lead to enhanced bee-health in the short term. © INRA, EDP Sciences, 2010.

  16. Study of the Metatranscriptome of Eight Social and Solitary Wild Bee Species Reveals Novel Viruses and Bee Parasites.

    PubMed

    Schoonvaere, Karel; Smagghe, Guy; Francis, Frédéric; de Graaf, Dirk C

    2018-01-01

    Bees are associated with a remarkable diversity of microorganisms, including unicellular parasites, bacteria, fungi, and viruses. The application of next-generation sequencing approaches enables the identification of this rich species composition as well as the discovery of previously unknown associations. Using high-throughput polyadenylated ribonucleic acid (RNA) sequencing, we investigated the metatranscriptome of eight wild bee species ( Andrena cineraria, Andrena fulva, Andrena haemorrhoa, Bombus terrestris, Bombus cryptarum, Bombus pascuorum, Osmia bicornis , and Osmia cornuta ) sampled from four different localities in Belgium. Across the RNA sequencing libraries, 88-99% of the taxonomically informative reads were of the host transcriptome. Four viruses with homology to insect pathogens were found including two RNA viruses (belonging to the families Iflaviridae and Tymoviridae that harbor already viruses of honey bees), a double stranded DNA virus (family Nudiviridae ) and a single stranded DNA virus (family Parvoviridae ). In addition, we found genomic sequences of 11 unclassified arthropod viruses (related to negeviruses, sobemoviruses, totiviruses, rhabdoviruses, and mononegaviruses), seven plant pathogenic viruses, and one fungal virus. Interestingly, nege-like viruses appear to be widespread, host-specific, and capable of attaining high copy numbers inside bees. Next to viruses, three novel parasite associations were discovered in wild bees, including Crithidia pragensis and a tubulinosematid and a neogregarine parasite. Yeasts of the genus Metschnikowia were identified in solitary bees. This study gives a glimpse of the microorganisms and viruses associated with social and solitary wild bees and demonstrates that their diversity exceeds by far the subset of species first discovered in honey bees.

  17. Pollinator communities in strawberry crops - variation at multiple spatial scales.

    PubMed

    Ahrenfeldt, E J; Klatt, B K; Arildsen, J; Trandem, N; Andersson, G K S; Tscharntke, T; Smith, H G; Sigsgaard, L

    2015-08-01

    Predicting potential pollination services of wild bees in crops requires knowledge of their spatial distribution within fields. Field margins can serve as nesting and foraging habitats for wild bees and can be a source of pollinators. Regional differences in pollinator community composition may affect this spill-over of bees. We studied how regional and local differences affect the spatial distribution of wild bee species richness, activity-density and body size in crop fields. We sampled bees both from the field centre and at two different types of semi-natural field margins, grass strips and hedges, in 12 strawberry fields. The fields were distributed over four regions in Northern Europe, representing an almost 1100 km long north-south gradient. Even over this gradient, daytime temperatures during sampling did not differ significantly between regions and did therefore probably not impact bee activity. Bee species richness was higher in field margins compared with field centres independent of field size. However, there was no difference between centre and margin in body-size or activity-density. In contrast, bee activity-density increased towards the southern regions, whereas the mean body size increased towards the north. In conclusion, our study revealed a general pattern across European regions of bee diversity, but not activity-density, declining towards the field interior which suggests that the benefits of functional diversity of pollinators may be difficult to achieve through spill-over effects from margins to crop. We also identified dissimilar regional patterns in bee diversity and activity-density, which should be taken into account in conservation management.

  18. Dietary amino acid and vitamin complex protects honey bee from immunosuppression caused by Nosema ceranae.

    PubMed

    Glavinic, Uros; Stankovic, Biljana; Draskovic, Vladimir; Stevanovic, Jevrosima; Petrovic, Tamas; Lakic, Nada; Stanimirovic, Zoran

    2017-01-01

    Microsporidium Nosema ceranae is well known for exerting a negative impact on honey bee health, including down-regulation of immunoregulatory genes. Protein nutrition has been proven to have beneficial effects on bee immunity and other aspects of bee health. Bearing this in mind, the aim of our study was to evaluate the potential of a dietary amino acid and vitamin complex "BEEWELL AminoPlus" to protect honey bees from immunosuppression induced by N. ceranae. In a laboratory experiment bees were infected with N. ceranae and treated with supplement on first, third, sixth and ninth day after emergence. The expression of genes for immune-related peptides (abaecin, apidaecin, hymenoptaecin, defensin and vitellogenin) was compared between groups. The results revealed significantly lower (p<0.01 or p<0.001) numbers of Nosema spores in supplemented groups than in the control especially on day 12 post infection. With the exception of abacein, the expression levels of immune-related peptides were significantly suppressed (p<0.01 or p<0.001) in control group on the 12th day post infection, compared to bees that received the supplement. It was supposed that N. ceranae had a negative impact on bee immunity and that the tested amino acid and vitamin complex modified the expression of immune-related genes in honey bees compromised by infection, suggesting immune-stimulation that reflects in the increase in resistance to diseases and reduced bee mortality. The supplement exerted best efficacy when applied simultaneously with Nosema infection, which can help us to assume the most suitable period for its application in the hive.

  19. Differential Gene Expression Associated with Honey Bee Grooming Behavior in Response to Varroa Mites.

    PubMed

    Hamiduzzaman, Mollah Md; Emsen, Berna; Hunt, Greg J; Subramanyam, Subhashree; Williams, Christie E; Tsuruda, Jennifer M; Guzman-Novoa, Ernesto

    2017-05-01

    Honey bee (Apis mellifera) grooming behavior is an important mechanism of resistance against the parasitic mite Varroa destructor. This research was conducted to study associations between grooming behavior and the expression of selected immune, neural, detoxification, developmental and health-related genes. Individual bees tested in a laboratory assay for various levels of grooming behavior in response to V. destructor were also analyzed for gene expression. Intense groomers (IG) were most efficient in that they needed significantly less time to start grooming and fewer grooming attempts to successfully remove mites from their bodies than did light groomers (LG). In addition, the relative abundance of the neurexin-1 mRNA, was significantly higher in IG than in LG, no groomers (NG) or control (bees without mite). The abundance of poly U binding factor kd 68 and cytochrome p450 mRNAs were significantly higher in IG than in control bees. The abundance of hymenoptaecin mRNA was significantly higher in IG than in NG, but it was not different from that of control bees. The abundance of vitellogenin mRNA was not changed by grooming activity. However, the abundance of blue cheese mRNA was significantly reduced in IG compared to LG or NG, but not to control bees. Efficient removal of mites by IG correlated with different gene expression patterns in bees. These results suggest that the level of grooming behavior may be related to the expression pattern of vital honey bee genes. Neurexin-1, in particular, might be useful as a bio-marker for behavioral traits in bees.

  20. Dietary amino acid and vitamin complex protects honey bee from immunosuppression caused by Nosema ceranae

    PubMed Central

    Stankovic, Biljana; Draskovic, Vladimir; Stevanovic, Jevrosima; Petrovic, Tamas; Lakic, Nada; Stanimirovic, Zoran

    2017-01-01

    Microsporidium Nosema ceranae is well known for exerting a negative impact on honey bee health, including down-regulation of immunoregulatory genes. Protein nutrition has been proven to have beneficial effects on bee immunity and other aspects of bee health. Bearing this in mind, the aim of our study was to evaluate the potential of a dietary amino acid and vitamin complex “BEEWELL AminoPlus” to protect honey bees from immunosuppression induced by N. ceranae. In a laboratory experiment bees were infected with N. ceranae and treated with supplement on first, third, sixth and ninth day after emergence. The expression of genes for immune-related peptides (abaecin, apidaecin, hymenoptaecin, defensin and vitellogenin) was compared between groups. The results revealed significantly lower (p<0.01 or p<0.001) numbers of Nosema spores in supplemented groups than in the control especially on day 12 post infection. With the exception of abacein, the expression levels of immune-related peptides were significantly suppressed (p<0.01 or p<0.001) in control group on the 12th day post infection, compared to bees that received the supplement. It was supposed that N. ceranae had a negative impact on bee immunity and that the tested amino acid and vitamin complex modified the expression of immune-related genes in honey bees compromised by infection, suggesting immune-stimulation that reflects in the increase in resistance to diseases and reduced bee mortality. The supplement exerted best efficacy when applied simultaneously with Nosema infection, which can help us to assume the most suitable period for its application in the hive. PMID:29117233

  1. Parasite Pressures on Feral Honey Bees (Apis mellifera sp.)

    PubMed Central

    Thompson, Catherine E.; Biesmeijer, Jacobus C.; Allnutt, Theodore R.; Pietravalle, Stéphane; Budge, Giles E.

    2014-01-01

    Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty in locating and sampling colonies, which often nest in inaccessible locations such as church spires and tree tops. In addition, little is known about the provenance of feral colonies and whether they represent a reservoir of Varroa tolerant material that could be used in apiculture. Samples of forager bees were collected from paired feral and managed honey bee colonies and screened for the presence of ten honey bee pathogens and pests using qPCR. Prevalence and quantity was similar between the two groups for the majority of pathogens, however feral honey bees contained a significantly higher level of deformed wing virus than managed honey bee colonies. An assessment of the honey bee race was completed for each colony using three measures of wing venation. There were no apparent differences in wing morphometry between feral and managed colonies, suggesting feral colonies could simply be escapees from the managed population. Interestingly, managed honey bee colonies not treated for Varroa showed similar, potentially lethal levels of deformed wing virus to that of feral colonies. The potential for such findings to explain the large fall in the feral population and the wider context of the importance of feral colonies as potential pathogen reservoirs is discussed. PMID:25126840

  2. Wildflower Plantings Do Not Compete With Neighboring Almond Orchards for Pollinator Visits.

    PubMed

    Lundin, Ola; Ward, Kimiora L; Artz, Derek R; Boyle, Natalie K; Pitts-Singer, Theresa L; Williams, Neal M

    2017-06-01

    The engineering of flowering agricultural field borders has emerged as a research and policy priority to mitigate threats to pollinators. Studies have, however, rarely addressed the potential that flowering field borders might compete with neighboring crops for pollinator visits if they both are in bloom at the same time, despite this being a concern expressed by growers. We evaluated how wildflower plantings added to orchard borders in a large (512 ha) commercial almond orchard affected honey bee and wild bee visitation to orchard borders and the crop. The study was conducted over two consecutive seasons using three large (0.48 ha) wildflower plantings paired with control orchard borders in a highly simplified agricultural landscape in California. Honey bee (Apis mellifera L.) and wild bee visitation to wildflower plots were at least an order of magnitude higher than to control plots, but increased honey bee visitation to wildflower plots did not lead to any detectable shifts in honey bee visitation to almond flowers in the neighboring orchard. Wild bees were rarely observed visiting almond flowers irrespective of border treatment, indicating a limited short-term potential for augmenting crop pollination using wild bees in highly simplified agricultural landscapes. Although further studies are warranted on bee visitation and crop yield from spatially independent orchards, this study indicates that growers can support bees with alternative forage in almond orchards without risking competition between the wildflower plantings and the crop. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Managing honey bees (Hymenoptera: Apidae) for greenhouse tomato pollination.

    PubMed

    Sabara, Holly A; Winston, Mark L

    2003-06-01

    Although commercially reared colonies of bumble bees (Bombus sp.) are the primary pollinator world-wide for greenhouse tomatoes (Lycopersicon esculentum Mill.) previous research indicates that honey bees (Apis mellifera L.) might be a feasible alternative or supplement to bumble bee pollination. However, management methods for honey bee greenhouse tomato pollination scarcely have been explored. We 1) tested the effect of initial amounts of brood on colony population size and flight activity in screened greenhouses during the winter, and 2) compared foraging from colonies with brood used within screened and unscreened greenhouses during the summer. Brood rearing was maintained at low levels in both brood and no-brood colonies after 21 d during the winter, and emerging honey bees from both treatments had significantly lower weights than bees from outdoor colonies. Honey bee flight activity throughout the day and over the 21 d in the greenhouse was not influenced by initial brood level. In our summer experiment, brood production in screened greenhouses neared zero after 21 d but higher levels of brood were reared in unscreened greenhouses with access to outside forage. Flower visitation measured throughout the day and over the 21 d the colonies were in the greenhouse was not influenced by screening treatment. An economic analysis indicated that managing honey bees for greenhouse tomato pollination would be financially viable for both beekeepers and growers. We conclude that honey bees can be successfully managed for greenhouse tomato pollination in both screened and unscreened greenhouses if the foraging force is maintained by replacing colonies every 3 wk.

  4. Bees prefer foods containing neonicotinoid pesticides

    NASA Astrophysics Data System (ADS)

    Kessler, Sébastien C.; Tiedeken, Erin Jo; Simcock, Kerry L.; Derveau, Sophie; Mitchell, Jessica; Softley, Samantha; Stout, Jane C.; Wright, Geraldine A.

    2015-05-01

    The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.

  5. First Evidence for a Massive Extinction Event Affecting Bees Close to the K-T Boundary

    PubMed Central

    Rehan, Sandra M.; Leys, Remko; Schwarz, Michael P.

    2013-01-01

    Bees and eudicot plants both arose in the mid-late Cretaceous, and their co-evolutionary relationships have often been assumed as an important element in the rise of flowering plants. Given the near-complete dependence of bees on eudicots we would expect that major extinction events affecting the latter would have also impacted bees. However, given the very patchy distribution of bees in the fossil record, identifying any such extinctions using fossils is very problematic. Here we use molecular phylogenetic analyses to show that one bee group, the Xylocopinae, originated in the mid-Cretaceous, coinciding with the early radiation of the eudicots. Lineage through time analyses for this bee subfamily show very early diversification, followed by a long period of seemingly no radiation and then followed by rapid diversification in each of the four constituent tribes. These patterns are consistent with both a long-fuse model of radiation and a massive extinction event close to the K-T boundary. We argue that massive extinction is much more plausible than a long fuse, given the historical biogeography of these bees and the diversity of ecological niches that they occupy. Our results suggest that events near the K-T boundary would have disrupted many plant-bee relationships, with major consequences for the subsequent evolution of eudicots and their pollinators. PMID:24194843

  6. First evidence for a massive extinction event affecting bees close to the K-T boundary.

    PubMed

    Rehan, Sandra M; Leys, Remko; Schwarz, Michael P

    2013-01-01

    Bees and eudicot plants both arose in the mid-late Cretaceous, and their co-evolutionary relationships have often been assumed as an important element in the rise of flowering plants. Given the near-complete dependence of bees on eudicots we would expect that major extinction events affecting the latter would have also impacted bees. However, given the very patchy distribution of bees in the fossil record, identifying any such extinctions using fossils is very problematic. Here we use molecular phylogenetic analyses to show that one bee group, the Xylocopinae, originated in the mid-Cretaceous, coinciding with the early radiation of the eudicots. Lineage through time analyses for this bee subfamily show very early diversification, followed by a long period of seemingly no radiation and then followed by rapid diversification in each of the four constituent tribes. These patterns are consistent with both a long-fuse model of radiation and a massive extinction event close to the K-T boundary. We argue that massive extinction is much more plausible than a long fuse, given the historical biogeography of these bees and the diversity of ecological niches that they occupy. Our results suggest that events near the K-T boundary would have disrupted many plant-bee relationships, with major consequences for the subsequent evolution of eudicots and their pollinators.

  7. Bee Venom Promotes Hair Growth in Association with Inhibiting 5α-Reductase Expression.

    PubMed

    Park, Seeun; Erdogan, Sedef; Hwang, Dahyun; Hwang, Seonwook; Han, Eun Hye; Lim, Young-Hee

    2016-06-01

    Alopecia is an important issue that can occur in people of all ages. Recent studies show that bee venom can be used to treat certain diseases including rheumatoid arthritis, neuralgia, and multiple sclerosis. In this study, we investigated the preventive effect of bee venom on alopecia, which was measured by applying bee venom (0.001, 0.005, 0.01%) or minoxidil (2%) as a positive control to the dorsal skin of female C57BL/6 mice for 19 d. Growth factors responsible for hair growth were analyzed by quantitative real-time PCR and Western blot analysis using mice skins and human dermal papilla cells (hDPCs). Bee venom promoted hair growth and inhibited transition from the anagen to catagen phase. In both anagen phase mice and dexamethasone-induced catagen phase mice, hair growth was increased dose dependently compared with controls. Bee venom inhibited the expression of SRD5A2, which encodes a type II 5α-reductase that plays a major role in the conversion of testosterone into dihydrotestosterone. Moreover, bee venom stimulated proliferation of hDPCs and several growth factors (insulin-like growth factor 1 receptor (IGF-1R), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)2 and 7) in bee venom-treated hDPCs dose dependently compared with the control group. In conclusion, bee venom is a potentially potent 5α-reductase inhibitor and hair growth promoter.

  8. Wild bees visiting cucumber on midwestern U.S. organic farms benefit from near-farm semi-natural areas.

    PubMed

    Smith, A A; Bentley, M; Reynolds, H L

    2013-02-01

    Wild bees that provide pollination services to vegetable crops depend on forage resources, nesting sites, and overwintering sites in the agricultural landscape. The scale at which crop-visiting bees use resources in the landscape can vary regionally, and has not been characterized in the Midwestern United States. We investigated the effects of seminatural land cover on wild bee visitation frequency to cucumber (Cucumis sativus L.) and on wild bee species richness on 10 organic farms in Indiana. We estimated the spatial scale at which the effects of land cover were strongest, and also examined the effects of nonlandscape factors on wild bees. The visitation frequency of wild bees to cucumber was positively related to the proportion of seminatural land in the surrounding landscape, and this relationship was strongest within 250 m of the cucumber patch. The species richness of wild cucumber visitors was not affected by land cover at any spatial scale, nor by any of the nonlandscape factors we considered. Our results indicate that wild, crop visiting bees benefit from seminatural areas in the agricultural landscape, and benefit most strongly from seminatural areas within 250 m of the crop field. This suggests that setting aside natural areas in the near vicinity of vegetable fields may be an effective way to support wild, crop-visiting bees and secure their pollination services.

  9. Temporal Analysis of the Honey Bee Microbiome Reveals Four Novel Viruses and Seasonal Prevalence of Known Viruses, Nosema, and Crithidia

    PubMed Central

    Engel, Juan C.; Ruby, J. Graham; Ganem, Donald; Andino, Raul; DeRisi, Joseph L.

    2011-01-01

    Honey bees (Apis mellifera) play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD). Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼1011 viruses per honey bee). Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January. PMID:21687739

  10. Nest initiation in three North American bumble bees (Bombus): gyne number and presence of honey bee workers influence establishment success and colony size.

    PubMed

    Strange, James P

    2010-01-01

    Three species of bumble bees, Bombus appositus Cresson, Bombus bifarius, Cresson and Bombus centralis Cresson (Hymenoptera: Apidae) were evaluated for nest initiation success under three sets of initial conditions. In the spring, gynes of each species were caught in the wild and introduced to nest boxes in one of three ways. Gynes were either introduced in conspecific pairs, singly with two honey bees, Apis mellifera L. (Hymenoptera: Apidae) workers, or alone. Nesting success and colony growth parameters were measured to understand the effects of the various treatments on nest establishment. Colonies initiated from pairs of conspecific gynes were most successful in producing worker bees (59.1%), less successful were colonies initiated with honey bee workers (33.3%), and least successful were bumble bee gynes initiating colonies alone (16.7%). There was a negative correlation between the numbers of days to the emergence of the first worker in a colony to the attainment of ultimate colony size, indicating that gynes that have not commenced oviposition in 21 days are unlikely to result in colonies exceeding 50 workers. B. appositus had the highest rate of nest establishment followed by B. bifarius and B. centralis. Nest establishment rates in three western bumble bee species can be increased dramatically by the addition of either honey bee workers or a second gyne to nesting boxes at colony initiation.

  11. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia.

    PubMed

    Runckel, Charles; Flenniken, Michelle L; Engel, Juan C; Ruby, J Graham; Ganem, Donald; Andino, Raul; DeRisi, Joseph L

    2011-01-01

    Honey bees (Apis mellifera) play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD). Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼10(11) viruses per honey bee). Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January.

  12. Effects of brood pheromone (SuperBoost) on consumption of protein supplement and growth of honey bee (Hymenoptera: Apidae) colonies during fall in a northern temperate climate.

    PubMed

    Sagili, Ramesh R; Breece, Carolyn R

    2012-08-01

    Honey bee, Apis mellifera L. (Hymenoptera: Apidae), nutrition is vital for colony growth and maintenance of a robust immune system. Brood rearing in honey bee colonies is highly dependent on protein availability. Beekeepers in general provide protein supplement to colonies during periods of pollen dearth. Honey bee brood pheromone is a blend of methyl and ethyl fatty acid esters extractable from cuticle of honey bee larvae that communicates the presence of larvae in a colony. Honey bee brood pheromone has been shown to increase protein supplement consumption and growth of honey bee colonies in a subtropical winter climate. Here, we tested the hypothesis that synthetic brood pheromone (SuperBoost) has the potential to increase protein supplement consumption during fall in a temperate climate and thus increase colony growth. The experiments were conducted in two locations in Oregon during September and October 2009. In both the experiments, colonies receiving brood pheromone treatment consumed significantly higher protein supplement and had greater brood area and adult bees than controls. Results from this study suggest that synthetic brood pheromone may be used to stimulate honey bee colony growth by stimulating protein supplement consumption during fall in a northern temperate climate, when majority of the beekeepers feed protein supplement to their colonies.

  13. Bees prefer foods containing neonicotinoid pesticides.

    PubMed

    Kessler, Sébastien; Tiedeken, Erin Jo; Simcock, Kerry L; Derveau, Sophie; Mitchell, Jessica; Softley, Samantha; Stout, Jane C; Wright, Geraldine A

    2015-05-07

    The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.

  14. Variations in the Availability of Pollen Resources Affect Honey Bee Health

    PubMed Central

    Di Pasquale, Garance; Alaux, Cédric; Le Conte, Yves; Odoux, Jean-François; Pioz, Maryline; Vaissière, Bernard E.; Belzunces, Luc P.; Decourtye, Axel

    2016-01-01

    Intensive agricultural systems often expose honey bees (Apis mellifera L.) to large temporal variations in the availability (quantity, quality and diversity) of nutritional resources. Such nutritional irregularity is expected to affect honey bee health. We therefore tested under laboratory conditions the effect of such variation in pollen availability on honey bee health (survival and nursing physiology—hypopharyngeal gland development and vitellogenin expression). We fed honey bees with different diets composed of pollen pellets collected by honey bees in an agricultural landscape of western France. Slight drops (5–10%) in the availability of oilseed rape (Brassica napus L.) pollen resulted in significant reductions of all tested variables. Despite some variations in taxonomic diversity and nutritional quality, the pollen mixes harvested over the season had a similar positive influence on honey bee health, except for the one collected in late July that induced poor survival and nursing physiology. This period coincided with the mass-flowering of maize (Zea mays L.), an anemophilous crop which produces poor-quality pollen. Therefore, changes in bee health were not connected to variations in pollen diversity but rather to variations in pollen depletion and quality, such as can be encountered in an intensive agricultural system of western France. Finally, even though pollen can be available ad libitum during the mass-flowering of some crops (e.g. maize), it can fail to provide bees with diet adequate for their development. PMID:27631605

  15. Response of wild bees (Hymenoptera: Apoidea: Anthophila) to surrounding land cover in Wisconsin pickling cucumber.

    PubMed

    Lowenstein, D M; Huseth, A S; Groves, R L

    2012-06-01

    Cucumber (Cucumis sativus L.) is among the plants highly dependent on insect-mediated pollination, but little is known about its unmanaged pollinators. Both domestic and wild bee populations in central Wisconsin pickling cucumber fields were assessed using a combination of pan trapping and floral observations before and during bloom. Together with land cover analyses extending 2,000 m from field centers, the relationship of land cover components and bee abundance and diversity were examined. Over a 2-yr sample interval distributed among 18 experimental sites, 3,185 wild bees were collected representing >60 species. A positive association was found between both noncrop and herbaceous areas with bee abundance and diversity only during bloom. Response of bee abundance and diversity to land cover was strongest at larger buffers presumably because of the heterogeneous nature of the landscape and connectivity between crop and noncrop areas. These results are consistent with previous research that has found a weak response of wild bees to surrounding vegetation in moderately fragmented areas. A diverse community of wild bees is present within the fields of a commercial cucumber system, and there is evidence of floral visitation by unmanaged bees. This evidence emphasizes the importance of wild pollinators in fragmented landscapes and the need for additional research to investigate the effectiveness of individual species in pollen deposition.

  16. An Insider's Perspective on the National Spelling Bee: An Interview with James Maguire

    ERIC Educational Resources Information Center

    Henkin, Roxanne; Harmon, Janis; Pate, Elizabeth; Moorman, Honor

    2008-01-01

    In this article, the coeditors of "Voices from the Middle" present an interview with James Maguire, author of "The American Bee: The National Spelling Bee and the Culture of Word Nerds." During the interview, Maguire talked about his experiences with the National Spelling Bee to provide some insight to middle-level teachers and students. Maguire…

  17. 75 FR 12560 - Certificate of Alternative Compliance for the Offshore Supply Vessel BUMBLE BEE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... Compliance for the Offshore Supply Vessel BUMBLE BEE AGENCY: Coast Guard, DHS. ACTION: Notice. SUMMARY: The... vessel BUMBLE BEE as required by 33 U.S.C. 1605(c) and 33 CFR 81.18. DATES: The Certificate of... issued for the offshore supply vessel BUMBLE BEE, O.N. 1218416. Full compliance with 72 COLREGS and the...

  18. Honey bee recruitment to food sources: olfaction or language?

    PubMed

    Wenner, A M; Wells, P H; Johnson, D L

    1969-04-04

    Honey bee recruits locate food sources by olfaction and not by use of distance and direction information contained in the recruitment dance. Recruitment efficiency increases as odor of the food source accumulates in the hive, from hour to hour and from day to day. Flight patterns, landing patterns, bee odor, and Nassanoff secretion apparently do not aid in recruitment of bees.

  19. A scientific note on the comparison of airborne volatiles produced by commercial bumble bee (Bombus impatiens) and honey bee (Apis mellifera) colonies

    USDA-ARS?s Scientific Manuscript database

    Small hive beetles have been documented as being able to successfully invade commercial bumble bee colonies and find the hives through odors produced by the colonies. We tested the hypothesis that volatiles emanating from Bumble bee and Honeybee colonies were similar by collecting volatiles from wo...

  20. A Whole Day of Bees? Buzz Off!

    ERIC Educational Resources Information Center

    Church, David

    2017-01-01

    In March 2016, the school that the author teaches at held its annual science day and the theme was "bees." Each class was given a different question relating to bees to investigate. The children in the authors' year 2 class (ages 6-7) were challenged to investigate the life cycle of a bee. The whole day was focused around the life cycle…

Top