Science.gov

Sample records for beetle midgut epithelium

  1. The midgut of the silkmoth Bombyx mori is able to recycle molecules derived from degeneration of the larval midgut epithelium.

    PubMed

    Franzetti, Eleonora; Romanelli, Davide; Caccia, Silvia; Cappellozza, Silvia; Congiu, Terenzio; Rajagopalan, Muthukumaran; Grimaldi, Annalisa; de Eguileor, Magda; Casartelli, Morena; Tettamanti, Gianluca

    2015-08-01

    The midgut represents the middle part of the alimentary canal and is responsible for nutrient digestion and absorption in insect larva. Despite the growing interest in this organ for different purposes, such as studies on morphogenesis and differentiation, stem cell biology, cell death processes and transport mechanisms, basic information on midgut development is still lacking for a large proportion of insect species. Undoubtedly, this lack of data could hinder the full exploitation of practical applications that involve midgut as their primary target. This may represent in particular a significant problem for Lepidoptera, an insect order that includes some of the most important species of high economic importance. With the aim of overcoming this fragmentation of knowledge, we performed a detailed morphofunctional analysis of the midgut of the silkworm, Bombyx mori, a representative model among Lepidoptera, during its development from the larval up to the adult stage, focusing attention on stem cells. Our data demonstrate stem cell proliferation and differentiation, not only in the larval midgut but also in the pupal and adult midgut epithelium. Moreover, we present evidence for a complex trophic relationship between the dying larval epithelium and the new adult one, which is established during metamorphosis. This study, besides representing the first morphological and functional characterization of the changes that occur in the midgut of a lepidopteron during the transition from the larva to the moth, provides a detailed analysis of the midgut of the adult insect, a stage that has been neglected up to now.

  2. Ultrastructural changes of the midgut epithelium in Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada: Eutardigrada) during oogenesis.

    PubMed

    Rost-Roszkowska, Magdalena M; Poprawa, Izabela; Wójtowicz, Maria; Kaczmarek, Lukasz

    2011-04-01

    The midgut epithelium of Isohypsibius granulifer granulifer (Eutardigrada) is composed of columnar digestive cells. At its anterior end, a group of cells with cytoplasm which differs from the cytoplasm of digestive cells is present. Probably, those cells respond to crescent-like cells (midgut regenerative cells) described for some tardigrade species. Their mitotic divisions have not been observed. We analyzed the ultrastructure of midgut digestive cells in relation to five different stages of oogenesis (previtellogenesis, beginning of the vitellogenesis, vitellogenesis--early choriogenesis, vitellogenesis--middle choriogenesis, late choriogenesis). In the midgut epithelium cells, the gradual accumulation of glycogen granules, lipid droplets and structures of varying electron density occurs. During vitellogenesis and choriogenesis, in the cytoplasm of midgut cells we observed the increasing number of organelles which are responsible for the intensive synthesis of lipids, proteins and saccharides such as cisterns of endoplasmic reticulum and Golgi complexes. At the end of oogenesis, autophagy also intensifies in midgut epithelial cells, which is probably caused by the great amount of reserve material. Midgut epithelium of analyzed species takes part in the yolk precursor synthesis.

  3. The midgut epithelium of aquatic arthropods: a critical target organ in environmental toxicology.

    PubMed Central

    Beaty, Barry J; Mackie, Ryan S; Mattingly, Kimberly S; Carlson, Jonathan O; Rayms-Keller, Alfredo

    2002-01-01

    The midgut epithelium of aquatic arthropods is emerging as an important and toxicologically relevant organ system for monitoring environmental pollution. The peritrophic matrix of aquatic arthropods, which is secreted by the midgut epithelium cells, is perturbed by copper or cadmium. Molecular biological studies have identified and characterized two midgut genes induced by heavy metals in the midgut epithelium. Many other metal-responsive genes (MRGs) await characterization. One of the MRGs codes for an intestinal mucin, which is critical for protecting the midgut from toxins and pathogens. Another codes for a tubulin gene, which is critical for structure and function of the midgut epithelial cells. Perturbation of expression of either gene could condition aquatic arthropod survivorship. Induction of these MRGs is a more sensitive and rapid indicator of heavy-metal pollution than biological assays. Characterization of genes induced by pollutants could provide mechanistic understanding of fundamental cellular responses to pollutants and insight into determinants of aquatic arthropod population genetic structure and survivorship in nature. PMID:12634118

  4. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus

    PubMed Central

    Lan, Hanhong; Chen, Hongyan; Liu, Yuyan; Jiang, Chaoyang; Mao, Qianzhuo; Jia, Dongsheng; Chen, Qian

    2015-01-01

    ABSTRACT Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 109 copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. IMPORTANCE Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the

  5. Midgut epithelium in molting silkworm: A fine balance among cell growth, differentiation, and survival.

    PubMed

    Franzetti, Eleonora; Casartelli, Morena; D'Antona, Paola; Montali, Aurora; Romanelli, Davide; Cappellozza, Silvia; Caccia, Silvia; Grimaldi, Annalisa; de Eguileor, Magda; Tettamanti, Gianluca

    2016-07-01

    The midgut of insects has attracted great attention as a system for studying intestinal stem cells (ISCs) as well as cell death-related processes, such as apoptosis and autophagy. Among insects, Lepidoptera represent a good model to analyze these cells and processes. In particular, larva-larva molting is an interesting developmental phase since the larva must deal with nutrient starvation and its organs are subjected to rearrangements due to proliferation and differentiation events. Several studies have analyzed ISCs in vitro and characterized key factors involved in their division and differentiation during molt. However, in vivo studies performed during larva-larva transition on these cells, and on the whole midgut epithelium, are fragmentary. In the present study, we analyzed the larval midgut epithelium of the silkworm, Bombyx mori, during larva-larva molting, focusing our attention on ISCs. Moreover, we investigated the metabolic changes that occur in the epithelium and evaluated the intervention of autophagy. Our data on ISCs proliferation and differentiation, autophagy activation, and metabolic and functional activities of the midgut cells shed light on the complexity of this organ during the molting phase.

  6. Variant vicilins from a resistant Vigna unguiculata lineage (IT81D-1053) accumulate inside Callosobruchus maculatus larval midgut epithelium.

    PubMed

    Oliveira, Gabriel B; Kunz, Daniele; Peres, Tanara V; Leal, Rodrigo B; Uchôa, Adriana F; Samuels, Richard I; Macedo, Maria Lígia R; Carlini, Célia R; Ribeiro, Alberto F; Grangeiro, Thalles B; Terra, Walter R; Xavier-Filho, José; Silva, Carlos P

    2014-02-01

    It has been demonstrated that variant vicilins are the main resistance factor of cowpea seeds (Vigna unguiculata) against attack by the cowpea beetle Callosobruchus maculatus. There is evidence that the toxic properties of these storage proteins may be related to their interaction with glycoproteins and other microvillar membrane constituents along the digestive tract of the larvae. New findings have shown that following interaction with the microvilli, the vicilins are absorbed across the intestinal epithelium and thus reach the internal environment of the larvae. In the present paper we studied the insecticidal activity of the variant vicilins purified from a resistant cowpea variety (IT81D-1053). Bioassays showed that the seeds of this genotype affected larval growth, causing developmental retardation and 100% mortality. By feeding C. maculatus larvae on susceptible and IT81D-1053 derived vicilins (FITC labelled or unlabelled), followed by fluorescence and immunogold cytolocalization, we were able to demonstrate that both susceptible and variant forms are internalized in the midgut cells and migrate inside vesicular structures from the apex to the basal portion of the enterocytes. However, when larvae were fed with the labelled vicilins for 24h and then returned to a control diet, the concentration of the variant form remained relatively high, suggesting that variant vicilins are not removed from the cells at the same rate as the non-variant vicilins. We suggest that the toxic effects of variant vicilins on midgut cells involve the binding of these proteins to the cell surface followed by internalization and interference with the normal physiology of the enterocytes, thereby affecting larval development in vivo.

  7. The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects.

    PubMed

    Yu, C G; Mullins, M A; Warren, G W; Koziel, M G; Estruch, J J

    1997-02-01

    The Vip3A protein is a member of a newly discovered class of vegetative insecticidal proteins with activity against a broad spectrum of lepidopteran insects. Histopathological observations indicate that Vip3A ingestion by susceptible insects such as the black cutworm (Agrotis ipsilon) and fall armyworm (Spodoptera frugiperda) causes gut paralysis at concentrations as low as 4 ng/cm2 of diet and complete lysis of gut epithelium cells resulting in larval death at concentrations above 40 ng/cm2. The European corn borer (Ostrinia nubilalis), a nonsusceptible insect, does not develop any pathology upon ingesting Vip3A. While proteolytic processing of the Vip3A protein by midgut fluids obtained from susceptible and nonsusceptible insects is comparable, in vivo immunolocalization studies show that Vip3a binding is restricted to gut cells of susceptible insects. Therefore, the insect host range for Vip3A seems to be determined by its ability to bind gut cells. These results indicate that midgut epithelium cells of susceptible insects are the primary target for the Vip3A insecticidal protein and that their subsequent lysis is the primary mechanism of lethality. Disruption of gut cells appears to be the strategy adopted by the most effective insecticidal proteins.

  8. Avoidance of antinutritive plant defense: Role of midgut pH in Colorado potato beetle.

    PubMed

    Felton, G W; Workman, J; Duffey, S S

    1992-04-01

    The fate of the tomato foliar phenolic, chlorogenic acid, in the digestive systems of Colorado potato beetleLeptinotarsa decemlineata (Coleoptera: Chrysomelidae) andHelicoverpa tea (Lepidoptera: Noctuidae) is compared. In larvalH. zea and other lepidopteran species previously examined, approximately 35-50% of the ingested chlorogenic acid was oxidized in the digestive system by foliar phenolic oxidases (i.e., polyphenol oxidase and peroxidase) from the tomato plant. The oxidized form of chlorogenic acid, chlorogenoquinone, is a potent alkylator of dietary protein and can exert a strong antinutritive effect upon larvae through chemical degradation of essential amino acids. In contrast, inL. decemlineata less than 4% of the ingested dose of chlorogenic acid was bound to protein. In vitro experiments to determine the influence of pH on covalent binding of chlorogenic acid to protein showed that 30-45% less chlorogenic acid bound to protein at pHs representative of the beetle midgut (pH 5.5-6.5) than at a pH representing the lepidopteran midgut (pH 8.5). At an acidic pH, considerably more of the alkylatable functional groups of amino acids (-NH2, -SH) are in the nonreactive, protonated state. Hence, polyphenol oxidases are unlikely to have significant antinutritive effects against the Colorado potato beetle and may not be a useful biochemical source of resistance against this insect. The influence of feeding by larval Colorado potato beetle on foliar polyphenol oxidase activity in tomato foliage and its possible significance to interspecific competition is also considered.

  9. The fine structure of the midgut epithelium in a centipede, Scolopendra cingulata (Chilopoda, Scolopendridae), with the special emphasis on epithelial regeneration.

    PubMed

    Chajec, Lukasz; Sonakowska, Lidia; Rost-Roszkowska, Magdalena M

    2014-01-01

    Scolopendra cingulata has a tube-shaped digestive system that is divided into three distinct regions: fore-, mid- and hindgut. The midgut is lined with a pseudostratified columnar epithelium which is composed of digestive, secretory and regenerative cells. Hemocytes also appear between the digestive cells of the midgut epithelium. The ultrastructure of three types of epithelial cells and hemocytes of the midgut has been described with the special emphasis on the role of regenerative cells in the protection of midgut epithelium. The process of midgut epithelium regeneration proceeds due to the ability of regenerative cells to proliferate and differentiate according to a circadian rhythm. The regenerative cells serve as unipotent stem cells that divide in an asymmetric manner. Additionally, two types of hemocytes have been distinguished among midgut epithelial cells. They enter the midgut epithelium from the body cavity. Because of the fact that numerous microorganisms occur in the cytoplasm of midgut epithelial cells, we discuss the role of hemocytes in elimination of pathogens from the midgut epithelium. The studies were conducted with the use of transmission electron microscope and immunofluorescent methods.

  10. Live imaging of baculovirus infection of midgut epithelium cells: a functional assay of per os infectivity factors.

    PubMed

    Mu, Jingfang; van Lent, Jan W M; Smagghe, Guy; Wang, Yun; Chen, Xinwen; Vlak, Just M; van Oers, Monique M

    2014-11-01

    The occlusion-derived viruses (ODVs) of baculoviruses are responsible for oral infection of insect hosts, whereas budded viruses (BVs) are responsible for systemic infection within the host. The ODV membrane proteins play crucial roles in mediating virus entry into midgut epithelium cells to initiate infection and are important factors in host-range determination. For Autographa californica multiple nucleopolyhedrovirus (AcMNPV), seven conserved ODV membrane proteins have been shown to be essential for oral infectivity and are called per os infectivity factors (PIFs). Information on the function of the individual PIF proteins in virus entry is limited, partly due to the lack of a good in vitro system for monitoring ODV entry. Here, we constructed a baculovirus with EGFP fused to the nucleocapsid to monitor virus entry into primary midgut epithelium cells ex vivo using confocal fluorescence microscopy. The EGFP-labelled virus showed similar BV virulence and ODV infectivity as WT virus. The ability to bind and enter host cells was then visualized for WT AcMNPV and viruses with mutations in P74 (PIF0), PIF1 or PIF2, showing that P74 is required for ODV binding, whilst PIF1 and PIF2 play important roles in the entry of ODV after binding to midgut cells. This is the first live imaging of ODV entry into midgut cells and complements the genetic and biochemical evidence for the role of PIFs in the oral infection process.

  11. Roles and regulation of autophagy and apoptosis in the remodelling of the lepidopteran midgut epithelium during metamorphosis

    PubMed Central

    Romanelli, Davide; Casartelli, Morena; Cappellozza, Silvia; de Eguileor, Magda; Tettamanti, Gianluca

    2016-01-01

    We previously showed that autophagy and apoptosis occur in the removal of the lepidopteran larval midgut during metamorphosis. However, their roles in this context and the molecular pathways underlying their activation and regulation were only hypothesized. The results of the present study better clarify the timing of the activation of these two processes: autophagic and apoptotic genes are transcribed at the beginning of metamorphosis, but apoptosis intervenes after autophagy. To investigate the mechanisms that promote the activation of autophagy and apoptosis, we designed a set of experiments based on injections of 20-hydroxyecdysone (20E). Our data demonstrate that autophagy is induced at the end of the last larval stage by the 20E commitment peak, while the onset of apoptosis occurs concomitantly with the 20E metamorphic peak. By impairing autophagic flux, the midgut epithelium degenerated faster, and higher caspase activity was observed compared to controls, whereas inhibiting caspase activation caused a severe delay in epithelial degeneration. Our data demonstrate that autophagy plays a pro-survival function in the silkworm midgut during metamorphosis, while apoptosis is the major process that drives the demise of the epithelium. The evidence collected in this study seems to exclude the occurrence of autophagic cell death in this setting. PMID:27609527

  12. Roles and regulation of autophagy and apoptosis in the remodelling of the lepidopteran midgut epithelium during metamorphosis.

    PubMed

    Romanelli, Davide; Casartelli, Morena; Cappellozza, Silvia; de Eguileor, Magda; Tettamanti, Gianluca

    2016-09-09

    We previously showed that autophagy and apoptosis occur in the removal of the lepidopteran larval midgut during metamorphosis. However, their roles in this context and the molecular pathways underlying their activation and regulation were only hypothesized. The results of the present study better clarify the timing of the activation of these two processes: autophagic and apoptotic genes are transcribed at the beginning of metamorphosis, but apoptosis intervenes after autophagy. To investigate the mechanisms that promote the activation of autophagy and apoptosis, we designed a set of experiments based on injections of 20-hydroxyecdysone (20E). Our data demonstrate that autophagy is induced at the end of the last larval stage by the 20E commitment peak, while the onset of apoptosis occurs concomitantly with the 20E metamorphic peak. By impairing autophagic flux, the midgut epithelium degenerated faster, and higher caspase activity was observed compared to controls, whereas inhibiting caspase activation caused a severe delay in epithelial degeneration. Our data demonstrate that autophagy plays a pro-survival function in the silkworm midgut during metamorphosis, while apoptosis is the major process that drives the demise of the epithelium. The evidence collected in this study seems to exclude the occurrence of autophagic cell death in this setting.

  13. Anopheles Midgut Epithelium Evades Human Complement Activity by Capturing Factor H from the Blood Meal

    PubMed Central

    Khattab, Ayman; Barroso, Marta; Miettinen, Tiera; Meri, Seppo

    2015-01-01

    Hematophagous vectors strictly require ingesting blood from their hosts to complete their life cycles. Exposure of the alimentary canal of these vectors to the host immune effectors necessitates efficient counteractive measures by hematophagous vectors. The Anopheles mosquito transmitting the malaria parasite is an example of hematophagous vectors that within seconds can ingest human blood double its weight. The innate immune defense mechanisms, like the complement system, in the human blood should thereby immediately react against foreign cells in the mosquito midgut. A prerequisite for complement activation is that the target cells lack complement regulators on their surfaces. In this work, we analyzed whether human complement is active in the mosquito midgut, and how the mosquito midgut cells protect themselves against complement attack. We found that complement remained active for a considerable time and was able to kill microbes within the mosquito midgut. However, the Anopheles mosquito midgut cells were not injured. These cells were found to protect themselves by capturing factor H, the main soluble inhibitor of the alternative complement pathway. Factor H inhibited complement on the midgut cells by promoting inactivation of C3b to iC3b and preventing the activity of the alternative pathway amplification C3 convertase enzyme. An interference of the FH regulatory activity by monoclonal antibodies, carried to the midgut via blood, resulted in increased mosquito mortality and reduced fecundity. By using a ligand blotting assay, a putative mosquito midgut FH receptor could be detected. Thereby, we have identified a novel mechanism whereby mosquitoes can tolerate human blood. PMID:25679788

  14. Effects of neem oil (Azadirachta indica A. Juss) on the replacement of the midgut epithelium in the lacewing Ceraeochrysa claveri during larval-pupal metamorphosis.

    PubMed

    Scudeler, Elton Luiz; Padovani, Carlos Roberto; Santos, Daniela Carvalho Dos

    2014-06-01

    Larvae of the lacewing Ceraeochrysa claveri were fed on eggs of Diatraeasaccharalis treated with neem oil at concentrations of 0.5%, 1% and 2% throughout the larval period. Pupae obtained from treated larvae were used in the study at five days after the completion of cocoon spinning to investigate the effects of neem oil on the replacement of the midgut epithelium during the larval-pupal transition. We observed that the old larval epithelium was shed into the midgut lumen and transformed into the yellow body. Old cells from the yellow body were destroyed by apoptosis and autophagy and were not affected by neem oil. However, neem oil did affect the new pupal epithelium. Cells from treated pupae showed cellular injuries such as a loss of microvilli, cytoplasmic vacuolization, an increase of glycogen stores, deformation of the rough endoplasmic reticulum and dilation of the perinuclear space. Additionally, the neem oil treatment resulted in the release of cytoplasmic protrusions, rupture of the plasma membrane and leakage of cellular debris into the midgut lumen, characteristics of cell death by necrosis. The results indicate that neem oil ingestion affects the replacement of midgut epithelium, causing cytotoxic effects that can alter the organism's physiology due to extensive cellular injuries.

  15. Midgut transcriptome profiling of Anoplophora glabripennis, a lignocellulose degrading Cerambycid beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Wood-feeding insects often work in collaboration with microbial symbionts to degrade lignin biopolymers and release glucose and other fermentable sugars from recalcitrant plant cell wall carbohydrates, including cellulose and hemicellulose. Here, we present the midgut transcriptome of la...

  16. Epithelium

    MedlinePlus

    The term "epithelium" refers to layers of cells that line hollow organs and glands. It is also those cells that make ... Epithelium. In: Kierszenbaum AL, Tres LL. Histology and Cell Biology - An Introduction to Pathology , 3rd ed. Philadelphia, ...

  17. Genome Sequence of Fusarium Isolate MYA-4552 from the Midgut of Anoplophora glabripennis, an Invasive, Wood-Boring Beetle

    PubMed Central

    Scully, Erin D.; Geib, Scott M.; Hoover, Kelli; Carlson, John E.

    2016-01-01

    The Fusarium solani species complex (FSSC) is a clade of environmentally ubiquitous fungi that includes plant, animal, and insect associates. Here, we report the draft genome sequence of the undescribed species FSSC 6 (isolate MYA-4552), housed in the gut of the wood-boring cerambycid beetle Anoplophora glabripennis. PMID:27445364

  18. Genome sequence of Fusarium isolate MYA-4552 from the midgut of Anoplophora glabripennis, an invasive, wood-boring beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Fusarium solani species complex (FSSC) is a clade of environmentally ubiquitous fungi that includes plant, animal and insect associates. Here we report the draft genome sequence of the undescribed species FSSC 6 (isolate MYA-4552), housed in the gut of the wood-boring cerambycid beetle Anoplopho...

  19. Genome Sequence of Fusarium Isolate MYA-4552 from the Midgut of Anoplophora glabripennis, an Invasive, Wood-Boring Beetle.

    PubMed

    Herr, Joshua R; Scully, Erin D; Geib, Scott M; Hoover, Kelli; Carlson, John E; Geiser, David M

    2016-07-21

    The Fusarium solani species complex (FSSC) is a clade of environmentally ubiquitous fungi that includes plant, animal, and insect associates. Here, we report the draft genome sequence of the undescribed species FSSC 6 (isolate MYA-4552), housed in the gut of the wood-boring cerambycid beetle Anoplophora glabripennis.

  20. Affinity purification and characterization of a biodegradable plastic-degrading enzyme from a yeast isolated from the larval midgut of a stag beetle, Aegus laevicollis.

    PubMed

    Suzuki, Ken; Sakamoto, Hironori; Shinozaki, Yukiko; Tabata, Jun; Watanabe, Takashi; Mochizuki, Atsushi; Koitabashi, Motoo; Fujii, Takeshi; Tsushima, Seiya; Kitamoto, Hiroko K

    2013-09-01

    Two yeast strains, which have the ability to degrade biodegradable plastic films, were isolated from the larval midgut of a stag beetle, Aegus laevicollis. Both of them are most closely related to Cryptococcus magnus and could degrade biodegradable plastic (BP) films made of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA) effectively. A BP-degrading enzyme was purified from the culture broth of one of the isolated strains employing a newly developed affinity purification method based on the binding action of the enzyme to the substrate (emulsified PBSA) and its subsequent degradative action toward the substrate. Partial amino acid sequences of this enzyme suggested that it belongs to the cutinase family, and thus, the enzyme was named CmCut1. It has a molecular mass of 21 kDa and a degradative activity for emulsified PBSA which was significantly enhanced by the simultaneous presence of Ca(2+) or Mg(2+) at a concentration of about 2.5 mM. Its optimal pH was 7.5, and the optimal temperature was 40 °C. It showed a broad substrate specificity for p-nitrophenyl (pNP)-fatty acid esters ranging from pNP-acetate (C2) to pNP-stearate (C18) and films of PBSA, PBS, poly(ε-caprolactone), and poly(lactic acid).

  1. A unique midgut-associated bacterial community hosted by the cave beetle Cansiliella servadeii (Coleoptera: Leptodirini) reveals parallel phylogenetic divergences from universal gut-specific ancestors

    PubMed Central

    2013-01-01

    Background Cansiliella servadeii (Coleoptera) is an endemic troglobite living in deep carbonate caves in North-Eastern Italy. The beetle constantly moves and browses in its preferred habitat (consisting in flowing water and moonmilk, a soft speleothem colonized by microorganisms) self-preens to convey material from elytra, legs, and antennae towards the mouth. We investigated its inner and outer microbiota using microscopy and DNA-based approaches. Results Abundant microbial cell masses were observed on the external appendages. Cansiliella’s midgut is fully colonized by live microbes and culture-independent analyses yielded nearly 30 different 16S phylotypes that have no overlap with the community composition of the moonmilk. Many of the lineages, dominated by Gram positive groups, share very low similarity to database sequences. However for most cases, notwithstanding their very limited relatedness with existing records, phylotypes could be assigned to bacterial clades that had been retrieved from insect or other animals’ digestive traits. Conclusions Results suggest a history of remote separation from a common ancestor that harboured a set of gut-specific bacteria whose functions are supposedly critical for host physiology. The phylogenetic and coevolutionary implications of the parallel occurrences of these prokaryotic guilds appear to apply throughout a broad spectrum of animal diversity. Their persistence and conservation underlies a possibly critical role of precise bacterial assemblages in animal-bacteria interactions. PMID:23758657

  2. Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut.

    PubMed

    Agrawal, Sinu; Kelkenberg, Marco; Begum, Khurshida; Steinfeld, Lea; Williams, Clay E; Kramer, Karl J; Beeman, Richard W; Park, Yoonseong; Muthukrishnan, Subbaratnam; Merzendorfer, Hans

    2014-06-01

    The peritrophic matrix (PM) in the midgut of insects consists primarily of chitin and proteins and is thought to support digestion and provide protection from abrasive food particles and enteric pathogens. We examined the physiological roles of 11 putative peritrophic matrix protein (PMP) genes of the red flour beetle, Tribolium castaneum (TcPMPs). TcPMP genes are differentially expressed along the length of the midgut epithelium of feeding larvae. RNAi of individual PMP genes revealed no abnormal developmental phenotypes for 9 of the 11 TcPMPs. However, RNAi for two PMP genes, TcPMP3 and TcPMP5-B, resulted in depletion of the fat body, growth arrest, molting defects and mortality. In situ permeability assays after oral administration of different-sized FITC-dextran beads demonstrated that the exclusion size of the larval peritrophic matrix (PM) decreases progressively from >2 MDa to <4 kDa from the anterior to the most posterior regions of the midgut. In the median midguts of control larvae, 2 MDa dextrans were completely retained within the PM lumen, whereas after RNAi for TcPMP3 and TcPMP5-B, these dextrans penetrated the epithelium of the median midgut, indicating loss of structural integrity and barrier function of the larval PM. In contrast, RNAi for TcPMP5-B, but not RNAi for TcPMP3, resulted in breakdown of impermeability to 4 and 40 kDa dextrans in the PM of the posterior midgut. These results suggest that specific PMPs are involved in the regulation of PM permeability, and that a gradient of barrier function is essential for survival and fat body maintenance.

  3. Characterization of an Obligate Intracellular Bacterium in the Midgut Epithelium of the Bulrush Bug Chilacis typhae (Heteroptera, Lygaeidae, Artheneinae)▿

    PubMed Central

    Kuechler, Stefan Martin; Dettner, Konrad; Kehl, Siegfried

    2011-01-01

    Many members of the suborder Heteroptera have symbiotic bacteria, which are usually found extracellularly in specific sacs or tubular outgrowths of the midgut or intracellularly in mycetomes. In this study, we describe the second molecular characterization of a symbiotic bacterium in a monophagous, seed-sucking stink bug of the family Lygaeidae (sensu stricto). Chilacis typhae possesses at the end of the first section of the midgut a structure which is composed of circularly arranged, strongly enlarged midgut epithelial cells. It is filled with an intracellular endosymbiont. This “mycetocytic belt” might represent an evolutionarily intermediate stage of the usual symbiotic structures found in stink bugs. Phylogenetic analysis based on the 16S rRNA and the groEL genes showed that the bacterium belongs to the Gammaproteobacteria, and it revealed a phylogenetic relationship with a secondary bacterial endosymbiont of Cimex lectularius and free-living plant pathogens such as Pectobacterium and Dickeya. The distribution and ultrastructure of the rod-shaped Chilacis endosymbiont were studied in adults and nymph stages using fluorescence in situ hybridization (FISH) and electron microscopy. The detection of symbionts at the anterior poles of developing eggs indicates that endosymbionts are transmitted vertically. A new genus and species name, “Candidatus Rohrkolberia cinguli,” is proposed for this newly characterized clade of symbiotic bacteria. PMID:21378044

  4. Anopheles Midgut FREP1 Mediates Plasmodium Invasion*

    PubMed Central

    Zhang, Genwei; Niu, Guodong; Franca, Caio M.; Dong, Yuemei; Wang, Xiaohong; Butler, Noah S.; Dimopoulos, George; Li, Jun

    2015-01-01

    Malaria transmission depends on sexual stage Plasmodium parasites successfully invading Anopheline mosquito midguts following a blood meal. However, the molecular mechanisms of Plasmodium invasion of mosquito midguts have not been fully elucidated. Previously, we showed that genetic polymorphisms in the fibrinogen-related protein 1 (FREP1) gene are significantly associated with Plasmodium falciparum infection in Anopheles gambiae, and FREP1 is important for Plasmodium berghei infection of mosquitoes. Here we identify that the FREP1 protein is secreted from the mosquito midgut epithelium and integrated as tetramers into the peritrophic matrix, a chitinous matrix formed inside the midgut lumen after a blood meal feeding. Moreover, we show that the FREP1 can directly bind Plasmodia sexual stage gametocytes and ookinetes. Notably, ablating FREP1 expression or targeting FREP1 with antibodies significantly decreases P. falciparum infection in mosquito midguts. Our data support that the mosquito-expressed FREP1 mediates mosquito midgut invasion by multiple species of Plasmodium parasites via anchoring ookinetes to the peritrophic matrix and enabling parasites to penetrate the peritrophic matrix and the epithelium. Thus, targeting FREP1 can limit malaria transmission. PMID:25991725

  5. Chitin is a component of the Rhodnius prolixus midgut.

    PubMed

    Alvarenga, Evelyn S L; Mansur, Juliana F; Justi, Silvia A; Figueira-Mansur, Janaina; Dos Santos, Vivian M; Lopez, Sheila G; Masuda, Hatisaburo; Lara, Flavio A; Melo, Ana C A; Moreira, Monica F

    2016-02-01

    Chitin is an essential component of the peritrophic matrix (PM), which is a structure that lines the insect's gut and protects against mechanical damage and pathogens. Rhodnius prolixus (Hemiptera: Reduviidae) does not have a PM, but it has an analogous structure, the perimicrovillar membrane (PMM); chitin has not been described in this structure. Here, we show that chitin is present in the R. prolixus midgut using several techniques. The FTIR spectrum of the KOH-resistant putative chitin-material extracted from the midgut bolus showed peaks characteristic of the chitin molecule at 3500, 1675 and 1085 cm(1). Both the midgut bolus material and the standard chitin NMR spectra showed a peak at 1.88 ppm, which is certainly due to methyl protons in the acetamide a group. The percentages of radioactive N-acetylglucosamine (CPM) incorporated were 2 and 4% for the entire intestine and bolus, respectively. The KOH-resistant putative chitin-material was also extracted and purified from the N-acetylglucosamine radioactive bolus, and the radioactivity was estimated through liquid scintillation. The intestinal CHS cDNA translated sequence was the same as previously described for the R. prolixus cuticle and ovaries. Phenotypic alterations were observed in the midgut of females with a silenced CHS gene after a blood meal, such as retarded blood meal digestion; the presence of fresh blood that remained red nine days after the blood meal; and reduced trachea and hemozoin content compared with the control. Wheat germ agglutinin (a specific probe that detects chitin) labeling proximal to the intestine (crop and midgut) was much lower in females with a silenced CHS gene, especially in the midgut region, where almost no fluorescence signal was detected compared with the control groups. Midguts from females with a CHS gene silenced by dsRNA-CHS and control midguts pre-treated with chitinase showed that the chitin-derived fluorescence signal decreased in the region around the epithelium

  6. The development of malaria parasites in the mosquito midgut

    PubMed Central

    Bennink, Sandra; Kiesow, Meike J.

    2016-01-01

    Summary The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take‐up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co‐adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote‐to‐ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage. PMID:27111866

  7. Temporal and spatial expression of caudal-type homeobox proteins in the midgut of human embryos

    PubMed Central

    Tang, Xiao-Bing; Zhang, Jin; Wang, Wei-Lin; Yuan, Zheng-Wei; Bai, Yu-Zuo

    2015-01-01

    Background: This study aimed to determine the spatiotemporal expression of caudal-type homeobox genes (CDX1, CDX2 and CDX4) during development of the midgut in human embryos and to explore the possible roles of CDX genes during the morphogenesis of human midgut. Human embryos (n=28) were sectioned serially and sagittally and CDX1, CDX2 and CDX4 proteins were detected on the midline from the 5th to 9th weeks of gestation by immunohistochemical staining. Results: CDX1, CDX2 and CDX4 proteins were weakly expressed in epithelium and mesenchyme of the midgut in the 6th and 7th weeks of gestation and reached estimated optimal level on the 8th and 9th weeks of gestation. In the 9th week of gestation, immunoreactivities specific to CDX1, CDX2 and CDX4 were restricted in epithelium of the midgut. Conclusions: CDX1, CDX2 and CDX4 proteins began to express in human midgut in the 6th week of gestation. From the 6th to 9th week of gastation, the expression of CDX1, CDX2 and CDX4 proteins gradually increase and exhibited overlapping expression patterns, suggesting that CDX genes may be involved in early development of the epithelium of human midgut. Cross-regulatory interactions may exist among CDX genes with respect to human midgut development. PMID:26884902

  8. Laminin and the malaria parasite's journey through the mosquito midgut.

    PubMed

    Arrighi, Romanico B G; Lycett, Gareth; Mahairaki, Vassiliki; Siden-Kiamos, Inga; Louis, Christos

    2005-07-01

    During the invasion of the mosquito midgut epithelium, Plasmodium ookinetes come to rest on the basal lamina, where they transform into the sporozoite-producing oocysts. Laminin, one of the basal lamina's major components, has previously been shown to bind several surface proteins of Plasmodium ookinetes. Here, using the recently developed RNAi technique in mosquitoes, we used a specific dsRNA construct targeted against the LANB2 gene (laminin gamma1) of Anopheles gambiae to reduce its mRNA levels, leading to a substantial reduction in the number of successfully developed oocysts in the mosquito midgut. Moreover, this molecular relationship is corroborated by the intimate association of developing P. berghei parasites and laminin in the gut, as observed using confocal microscopy. Our data support the notion of laminin playing a functional role in the development of the malaria parasite within the mosquito midgut.

  9. Midgut morphological changes and autophagy during metamorphosis in sand flies.

    PubMed

    Malta, Juliana; Heerman, Matthew; Weng, Ju Lin; Fernandes, Kenner M; Martins, Gustavo Ferreira; Ramalho-Ortigão, Marcelo

    2017-03-11

    During metamorphosis, holometabolous insects undergo significant remodeling of their midgut and become able to cope with changes in dietary requirements between larval and adult stages. At this stage, insects must be able to manage and recycle available food resources in order to develop fully into adults, especially when no nutrients are acquired from the environment. Autophagy has been previously suggested to play a crucial role during metamorphosis of the mosquito. Here, we investigate the overall morphological changes of the midgut of the sand fly during metamorphosis and assess the expression profiles of the autophagy-related genes ATG1, ATG6, and ATG8, which are associated with various steps of the autophagic process. Morphological changes in the midgut start during the fourth larval instar, with epithelial degeneration followed by remodeling via the differentiation of regenerative cells in pre-pupal and pupal stages. The changes in the midgut epithelium are paired with the up-regulation of ATG1, ATG6 and ATG8 during the larva-adult transition. Vein, a putative epidermal growth factor involved in regulating epithelial midgut regeneration, is also up-regulated. Autophagy has further been confirmed in sand flies via the presence of autophagosomes residing within the cytoplasmic compartment of the pupal stages. An understanding of the underlying mechanisms of this process should aid the future management of this neglected tropical vector.

  10. Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut

    PubMed Central

    Ghosh, Anil K.; Coppens, Isabelle; Gårdsvoll, Henrik; Ploug, Michael; Jacobs-Lorena, Marcelo

    2011-01-01

    Ookinete invasion of the mosquito midgut is an essential step for the development of the malaria parasite in the mosquito. Invasion involves recognition between a presumed mosquito midgut receptor and an ookinete ligand. Here, we show that enolase lines the ookinete surface. An antienolase antibody inhibits oocyst development of both Plasmodium berghei and Plasmodium falciparum, suggesting that enolase may act as an invasion ligand. Importantly, we demonstrate that surface enolase captures plasminogen from the mammalian blood meal via its lysine motif (DKSLVK) and that this interaction is essential for midgut invasion, because plasminogen depletion leads to a strong inhibition of oocyst formation. Although addition of recombinant WT plasminogen to depleted serum rescues oocyst formation, recombinant inactive plasminogen does not, thus emphasizing the importance of plasmin proteolytic activity for ookinete invasion. The results support the hypothesis that enolase on the surface of Plasmodium ookinetes plays a dual role in midgut invasion: by acting as a ligand that interacts with the midgut epithelium and, further, by capturing plasminogen, whose conversion to active plasmin promotes the invasion process. PMID:21949403

  11. Degeneration and cell regeneration in the midgut of Podisus nigrispinus (Heteroptera: Pentatomidae) during post-embryonic development.

    PubMed

    Teixeira, Aparecida das Dores; Fialho, Maria do Carmo Queiroz; Zanuncio, José Cola; Ramalho, Francisco de Souza; Serrão, José Eduardo

    2013-05-01

    Cell death, proliferation, and differentiation in some developmental stages of insects have been studied in the midgut of ametabolous, which undergo only continuous growth, and holometabolous, which undergo complete metamorphosis. However, in hemimetabolous insects, evolutionarily intermediate between ametabolous and holometabolous, midgut reorganization during the post-embryonic development has been poorly studied. The present study evaluates the post-embryonic development of the midgut of a hemimetabolous insect, Podisus nigrispinus, to test the hypothesis that these insects have programmed cell death and proliferation followed by differentiation of regenerative cells during midgut growth from nymphs to adult. The morphometrical data showed a 6-fold increase in midgut length from the first instar nymph to the adult, which did not result from an increase in the size of the midgut cells, suggesting that the growth of the midgut occurs by an increase in cell number. Cell death was rarely found in the midgut, whereas proliferation of regenerative cells occurred quite frequently. The growth of the midgut of P. nigrispinus appears to result from the proliferation of regenerative cells present in the epithelium; unlike ametabolous and holometabolous insects, the midgut of P. nigrispinus does not undergo extensive remodeling, as shown by the low frequency of digestive cell death.

  12. Functional morphology of the midgut of a sandfly as compared to other hematophagous nematocera.

    PubMed

    Rudin, W; Hecker, H

    1982-01-01

    The midgut epithelium of female Lutzomyia longipalpis was investigated by means of electron microscopic morphometry before and during blood digestion. Ultrastructure and cytological changes of the stomach cells upon blood feeding were generally similar to the ones described for Phlebotomus longipes (Gemetchu, 1974) and for mosquitoes (Hecker, 1977). In addition, the quantitative composition of the cells resembled the one of mosquitoes in many respects. Despite some morphological differences in the functional gut cytology, it can be admitted that, in general, digestive processes may run similarly in the midguts of sandflies and mosquitoes.

  13. Intestinal stem cells in the adult Drosophila midgut

    SciTech Connect

    Jiang, Huaqi; Edgar, Bruce A.

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  14. Silencing of Anopheles stephensi Heme Peroxidase HPX15 Activates Diverse Immune Pathways to Regulate the Growth of Midgut Bacteria

    PubMed Central

    Kajla, Mithilesh; Choudhury, Tania P.; Kakani, Parik; Gupta, Kuldeep; Dhawan, Rini; Gupta, Lalita; Kumar, Sanjeev

    2016-01-01

    Anopheles mosquito midgut harbors a diverse group of endogenous bacteria that grow extensively after the blood feeding and help in food digestion and nutrition in many ways. Although, the growth of endogenous bacteria is regulated by various factors, however, the robust antibacterial immune reactions are generally suppressed in this body compartment by a heme peroxidase HPX15 crosslinked mucins barrier. This barrier is formed on the luminal side of the midgut and blocks the direct interactions and recognition of bacteria or their elicitors by the immune reactive midgut epithelium. We hypothesized that in the absence of HPX15, an increased load of exogenous bacteria will enormously induce the mosquito midgut immunity and this situation in turn, can easily regulate mosquito-pathogen interactions. In this study, we found that the blood feeding induced AsHPX15 gene in Anopheles stephensi midgut and promoted the growth of endogenous as well as exogenous fed bacteria. In addition, the mosquito midgut also efficiently regulated the number of these bacteria through the induction of classical Toll and Imd immune pathways. In case of AsHPX15 silenced midguts, the growth of midgut bacteria was largely reduced through the induction of nitric oxide synthase (NOS) gene, a downstream effector molecule of the JAK/STAT pathway. Interestingly, no significant induction of the classical immune pathways was observed in these midguts. Importantly, the NOS is a well known negative regulator of Plasmodium development, thus, we proposed that the induction of diverged immune pathways in the absence of HPX15 mediated midgut barrier might be one of the strategies to manipulate the vectorial capacity of Anopheles mosquito. PMID:27630620

  15. Brain-midgut short neuropeptide F mechanism that inhibits digestive activity of the American cockroach, Periplaneta americana upon starvation.

    PubMed

    Mikani, Azam; Wang, Qiu-Shi; Takeda, Makio

    2012-03-01

    Immunohistochemical reactivity against short neuropeptide F (sNPF) was observed in the brain-corpus cardiacum and midgut paraneurons of the American cockroach, Periplaneta americana. Four weeks of starvation increased the number of sNPF-ir cells in the midgut epithelium but the refeeding decreased the number in 3h. Dramatic rises in sNPF contents in the midgut epithelium and hemolymph of roaches starved for 4 weeks were confirmed by ELISA. Starvation for 4 weeks reduced α-amylase, protease and lipase activities in the midgut of P. americana but refeeding restored these to high levels. Co-incubation of dissected midgut with sNPF at physiological concentrations inhibited α-amylase, protease and lipase activities. sNPF injection into the hemocoel led to a decrease in α-amylase, protease and lipase activities, whereas PBS injection had no effects. The injection of d-(+)-trehalose and l-proline into the hemocoel of decapitated adult male cockroaches that had been starved for 4 weeks had no effect on these digestive enzymes. However, injection into the hemocoel of head-intact starved cockroaches stimulated digestive activity. Injection of d-(+)-trehalose and l-proline into the lumen of decapitated cockroaches that had been starved for 4 weeks increased enzymes activities and suppressed sNPF in the midgut. Our data indicate that sNPF from the midgut paraneurons suppresses α-amylase, protease and lipase activities during starvation. Injection of d-(+)-trehalose/l-proline into the hemocoel of head-intact starved cockroach decreased the hemolymph sNPF content, which suggests that sNPF could be one of the brain factors, demonstrating brain-midgut interplay in the regulation of digestive activities and possibly nutrition-associated behavioral modifications.

  16. Apoptosis and necrosis during the circadian cycle in the centipede midgut.

    PubMed

    Rost-Roszkowska, M M; Chajec, Ł; Vilimova, J; Tajovský, K

    2016-07-01

    Three types of cells have been distinguished in the midgut epithelium of two centipedes, Lithobius forficatus and Scolopendra cingulata: digestive, secretory, and regenerative cells. According to the results of our previous studies, we decided to analyze the relationship between apoptosis and necrosis in their midgut epithelium and circadian rhythms. Ultrastructural analysis showed that these processes proceed in a continuous manner that is independent of the circadian rhythm in L. forficatus, while in S. cingulata necrosis is activated at midnight. Additionally, the description of apoptosis and necrosis showed no differences between males and females of both species analyzed. At the beginning of apoptosis, the cell cytoplasm becomes electron-dense, apparently in response to shrinkage of the cell. Organelles such as the mitochondria, cisterns of endoplasmic reticulum transform and degenerate. Nuclei gradually assume lobular shapes before the apoptotic cell is discharged into the midgut lumen. During necrosis, however, the cytoplasm of the cell becomes electron-lucent, and the number of organelles decreases. While the digestive cells of about 10 % of L. forficatus contain rickettsia-like pathogens, the corresponding cells in S. cingulata are free of rickettsia. As a result, we can state that apoptosis in L. forficatus is presumably responsible for protecting the organism against infections, while in S. cingulata apoptosis is not associated with the elimination of pathogens. Necrosis is attributed to mechanical damage, and the activation of this process coincides with proliferation of the midgut regenerative cells at midnight in S. cingulata.

  17. Toxoneuron nigriceps parasitization delays midgut replacement in fifth-instar Heliothis virescens larvae.

    PubMed

    Tettamanti, Gianluca; Grimaldi, Annalisa; Pennacchio, Francesco; de Eguileor, Magda

    2008-05-01

    We have analyzed the effects of Toxoneuron nigriceps parasitization on the midgut development of its host Heliothis virescens. In parasitized H. virescens larvae, the midgut epithelium undergoes a complete replacement, which is qualitatively not different to that observed in synchronous unparasitized larvae, with similar temporal profiles of cell death and metabolic activity. However, the whole gut replacement process is significantly delayed in parasitized larvae, with complete differentiation of the new gut epithelium being observed 4 days later than in unparasitized controls. The administration of juvenile hormone before commitment and of 20-hydroxyecdysone (20E) after commitment delays and fosters, respectively, the replacement process of the midgut epithelium; moreover, the injection of 20E into developmentally arrested and 20E-deficient host last-instar larvae parasitized by T. nigriceps immediately triggers regular gut development. These hormone-based experiments suggest that endocrine alterations in the larval host, induced by T. nigriceps parasitism, are responsible for the temporal alterations in the gut replacement process. The role of this parasitoid-induced developmental change in the host regulation process is discussed.

  18. Fine structure of the midgut and Malpighian papillae in Campodea (Monocampa) quilisi Silvestri, 1932 (Hexapoda, Diplura) with special reference to the metal composition and physiological significance of midgut intracellular electron-dense granules.

    PubMed

    Pigino, G; Migliorini, M; Paccagnini, E; Bernini, F; Leonzio, C

    2005-06-01

    The fine structure of the midgut and the Malpighian papillae in Campodea (Monocampa) quilisi Silvestri, 1932 (Hexapoda, Diplura) specimens was described. We observed the presence of electron-dense granules (EDGs) in the midgut epithelial cells, similar in genesis, structure and aspect to the type A spherocrystals described in the midgut epithelium of Collembola and Diplopoda. Energy-dispersive X-ray microanalysis was used to detect the chemical composition of the granules and to relate it to the concentrations of some potential toxic heavy metals (Pb, Cu, Zn) in soil and litter. Chemical composition of the granules seems strongly influenced by the presence and bioavailability of heavy metals in the external environment. Specimens from a contaminated abandoned mining and smelting area (Colline Metallifere, southern Tuscany) were able to accumulate Fe, Mn, Zn, Pb and Cu in their midgut EDGs. In addition, we observed that C. (M.) quilisi was able to excrete the metal-containing granules into the external medium by the moulting of the intestinal epithelium. This confirms that the process of ionic retention of midgut cells is particularly significant in animals lacking Malpighian tubules.

  19. Intestinal peptides as circulating hormones: release of tachykinin-related peptide from the locust and cockroach midgut.

    PubMed

    Winther, A M; Nässel, D R

    2001-04-01

    Tachykinin-related peptides (TRPs) in the locust Locusta migratoria and the cockroach Leucophaea maderae have stimulatory effects on some muscles that are not innervated by TRP-containing neurons. Thus, these tissues may be affected by circulating TRPs. Here, we have investigated whether the midgut is the source of circulating TRPs. TRP-immunoreactive material in the locust midgut is found only in the endocrine cells of the gut epithelium. In both species of insect, the endocrine cells contain several isoforms of TRPs, as determined by immunocytochemistry and a combination of chromatography (HPLC) and enzyme immunoassay (ELISA). The release of TRPs was investigated by ELISA using isolated midguts of the locust and cockroach. Elevated levels of K(+) in the bathing saline induced the release of TRP from the midgut of both species. To examine the release of TRPs into the circulation in vivo, we measured haemolymph levels of TRPs in fed and starved locusts. The concentration of TRP-immunoreactive material in fed locusts was estimated to be 0.15 nmol l(-1), and this increased approximately fourfold in insects starved for 24 h. In accordance with this observation, the content of TRP-immunoreactive material in the midgut was lower in starved locusts than in fed locusts. Although part of the increased blood concentration of TRPs may be due to reduced blood volume, our data suggest that TRPs are released as hormones from the midgut of the locust and cockroach and that this release may be linked to nutritional status.

  20. Pheromone production in bark beetles.

    PubMed

    Blomquist, Gary J; Figueroa-Teran, Rubi; Aw, Mory; Song, Minmin; Gorzalski, Andrew; Abbott, Nicole L; Chang, Eric; Tittiger, Claus

    2010-10-01

    The first aggregation pheromone components from bark beetles were identified in 1966 as a mixture of ipsdienol, ipsenol and verbenol. Since then, a number of additional components have been identified as both aggregation and anti-aggregation pheromones, with many of them being monoterpenoids or derived from monoterpenoids. The structural similarity between the major pheromone components of bark beetles and the monoterpenes found in the host trees, along with the association of monoterpenoid production with plant tissue, led to the paradigm that most if not all bark beetle pheromone components were derived from host tree precursors, often with a simple hydroxylation producing the pheromone. In the 1990 s there was a paradigm shift as evidence for de novo biosynthesis of pheromone components began to accumulate, and it is now recognized that most bark beetle monoterpenoid aggregation pheromone components are biosynthesized de novo. The bark beetle aggregation pheromones are released from the frass, which is consistent with the isoprenoid aggregation pheromones, including ipsdienol, ipsenol and frontalin, being produced in midgut tissue. It appears that exo-brevocomin is produced de novo in fat body tissue, and that verbenol, verbenone and verbenene are produced from dietary α-pinene in fat body tissue. Combined biochemical, molecular and functional genomics studies in Ips pini yielded the discovery and characterization of the enzymes that convert mevalonate pathway intermediates to pheromone components, including a novel bifunctional geranyl diphosphate synthase/myrcene synthase, a cytochrome P450 that hydroxylates myrcene to ipsdienol, and an oxidoreductase that interconverts ipsdienol and ipsdienone to achieve the appropriate stereochemistry of ipsdienol for pheromonal activity. Furthermore, the regulation of these genes and their corresponding enzymes proved complex and diverse in different species. Mevalonate pathway genes in pheromone producing male I. pini

  1. Synergistic mitotoxicity of chloromethanes and fullerene C60 nanoaggregates in Daphnia magna midgut epithelial cells.

    PubMed

    Seke, Mariana; Markelic, Milica; Morina, Arian; Jovic, Danica; Korac, Aleksandra; Milicic, Dragana; Djordjevic, Aleksandar

    2016-12-03

    Adsorption of non-polar compounds by suspended fullerene nanoaggregates (nC60) may enhance their toxicity and affect the fate, transformation, and transport of non-polar compounds in the environment. The potential of stable fullerene nanoaggregates as contaminant carriers in aqueous systems and the influence of chloromethanes (trichloromethane and dichloromethane) were studied on the midgut epithelial cells of Daphnia magna by light and electron microscopy. The size and shape of fullerene nanoaggregates were observed and measured using dynamic light scattering, transmission electron microscopy, and low vacuum scanning electron microscopy. The nC60 in suspension appeared as a bulk of aggregates of irregular shape with a surface consisting of small clumps 20-30 nm in diameter. The presence of nC60 aggregates was confirmed in midgut lumen and epithelial cells of D. magna. After in vivo acute exposure to chloromethane, light and electron microscopy revealed an extensive cytoplasmic vacuolization with disruption and loss of specific structures of D. magna midgut epithelium (mitochondria, endoplasmic reticulum, microvilli, peritrophic membrane) and increased appearance of necrotic cells. The degree of observed changes depended on the type of treatment: trichloromethane (TCM) induced the most notable changes, whereas fullerene nanoaggregates alone had no negative effects. Transmission electron microscopy also indicated increased lysosomal degradation and severe peroxidative damages of enterocyte mitochondria following combined exposure to chloromethane and fullerene nanoaggregates. In conclusion, the adsorption of chloromethane by fullerene nanoaggregates enhances their toxicity and induces peroxidative mitochondrial damage in midgut enterocytes.

  2. RNA-seq analyses of the midgut from blood- and serum-fed Ixodes ricinus ticks

    PubMed Central

    Perner, Jan; Provazník, Jan; Schrenková, Jana; Urbanová, Veronika; Ribeiro, José M. C.; Kopáček, Petr

    2016-01-01

    Adult females of the genus Ixodes imbibe blood meals exceeding about 100 times their own weight within 7‒9 days. During this period, ticks internalise components of host blood by endocytic digest cells that line the tick midgut epithelium. Using RNA-seq, we aimed to characterise the midgut transcriptome composition in adult Ixodes ricinus females during early and late phase of engorgement. To address specific adaptations to the haemoglobin-rich diet, we compared the midgut transcriptomes of genetically homogenous female siblings fed either bovine blood or haemoglobin-depleted serum. We noted that tick gut transcriptomes are subject to substantial temporal-dependent expression changes between day 3 and day 8 of feeding. In contrast, the number of transcripts significantly affected by the presence or absence of host red blood cells was low. Transcripts relevant to the processes associated with blood-meal digestion were analysed and involvement of selected encoded proteins in the tick midgut physiology discussed. A total of 7215 novel sequences from I. ricinus were deposited in public databases as an additional outcome of this study. Our results broaden the current knowledge of tick digestive system and may lead to the discovery of potential molecular targets for efficient tick control. PMID:27824139

  3. Molecular characterization and RNA interference of three midgut aminopeptidase N isozymes from bacillus thuringiensis-susceptible and -resistant strains of sugarcane borer diatraea saccharalis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminopeptidase N (APN) proteins located at the midgut epithelium of some lepidopterous species have been implicated as receptors for insecticidal proteins from Bacillus thuringiensis. cDNAs of three APN isoforms, DsAPN1, DsAPN2, and DsAPN3, from Cry1Ab-susceptible (Cry1Ab-SS) and -resistant (Cry1Ab-...

  4. Identification of Midgut and Salivary Glands as Specific and Distinct Barriers to Efficient Tick-Borne Transmission of Anaplasma marginale▿

    PubMed Central

    Ueti, Massaro W.; Reagan, James O.; Knowles, Donald P.; Scoles, Glen A.; Shkap, Varda; Palmer, Guy H.

    2007-01-01

    Understanding the determinants of efficient tick-borne microbial transmission is needed to better predict the emergence of highly transmissible pathogen strains and disease outbreaks. Although the basic developmental cycle of Anaplasma and Ehrlichia spp. within the tick has been delineated, there are marked differences in the ability of specific strains to be efficiently tick transmitted. Using the highly transmissible St. Maries strain of Anaplasma marginale in Dermacentor andersoni as a positive control and two unrelated nontransmissible strains, we identified distinct barriers to efficient transmission within the tick. The Mississippi strain was unable to establish infection at the level of the midgut epithelium despite successful ingestion of infected blood following acquisition feeding on a bacteremic animal host. This inability to colonize the midgut epithelium prevented subsequent development within the salivary glands and transmission. In contrast, A. marginale subsp. centrale colonized the midgut and then the salivary glands, replicating to a titer indistinguishable from that of the highly transmissible St. Maries strain and at least 100 times greater than that previously associated with successful transmission. Nonetheless, A. marginale subsp. centrale was not transmitted, even when a large number of infected ticks was used for transmission feeding. These results establish that there are at least two specific barriers to efficient tick-borne transmission, the midgut and salivary glands, and highlight the complexity of the pathogen-tick interaction. PMID:17420231

  5. Hindsight/RREB-1 functions in both the specification and differentiation of stem cells in the adult midgut of Drosophila

    PubMed Central

    Baechler, Brittany L.; McKnight, Cameron; Pruchnicki, Porsha C.; Biro, Nicole A.; Reed, Bruce H.

    2016-01-01

    ABSTRACT The adult Drosophila midgut is established during the larval/pupal transition from undifferentiated cells known as adult midgut precursors (AMPs). Four fundamental cell types are found in the adult midgut epithelium: undifferentiated intestinal stem cells (ISCs) and their committed daughter cells, enteroblasts (EBs), plus enterocytes (ECs) and enteroendocrine cells (EEs). Using the Drosophila posterior midgut as a model, we have studied the function of the transcription factor Hindsight (Hnt)/RREB-1 and its relationship to the Notch and Egfr signaling pathways. We show that hnt is required for EC differentiation in the context of ISC-to-EC differentiation, but not in the context of AMP-to-EC differentiation. In addition, we show that hnt is required for the establishment of viable or functional ISCs. Overall, our studies introduce hnt as a key factor in the regulation of both the developing and the mature adult midgut. We suggest that the nature of these contextual differences can be explained through the interaction of hnt with multiple signaling pathways. PMID:26658272

  6. Appendiceal mucocoele with midgut malrotation

    PubMed Central

    Hassall, J; Williams, GL; McKain, ES

    2016-01-01

    Introduction Malrotation of the midgut and appendiceal mucocoele are both extremely rare pathological conditions in adults. To our knowledge, there are only two reported cases in the English literature with a combination of both conditions. Case History A 65-year-old man presented with a 10-day history of upper abdominal pain associated with abdominal bloating and weight loss. He was otherwise fit and healthy with no significant past medical history. On examination, his abdomen was soft with tenderness and palpable fullness over the left upper quadrant. The initial blood test, chest x-ray and abdominal x-ray demonstrated no significant abnormality. Computed tomography showed a 17cm x 8cm x 6cm elongated cystic mass with possible malrotation of the intestines. Histopathology showed a low grade mucinous tumour of the appendix. At 12 months following surgery, there was no evidence of recurrence or postoperative complications and the patient was discharged from the care of the colorectal team. Conclusions We report a patient with a combination of two rare conditions. This case illustrates how a combination of pathologies can present a challenge to the unwary general surgeon. PMID:27269433

  7. Intestinal obstruction from midgut volvulus after laparoscopic appendectomy.

    PubMed

    Cuadra, S A; Khalife, M E; Char, D J; Wax, M R; Halpern, D

    2002-01-01

    We present the case of a 30-year-old man who developed a small bowel obstruction from an acute midgut volvulus 8 days after undergoing a laparoscopic appendectomy. There was no evidence of congenital malrotation or midgut volvulus on the initial computed tomography (CT) scan or at laparoscopy. Subsequently, a midgut volvulus developed in the absence of congenital malrotation.

  8. A Lectin from Dioclea violacea Interacts with Midgut Surface of Lutzomyia migonei, Unlike Its Homologues, Cratylia floribunda Lectin and Canavalia gladiata Lectin

    PubMed Central

    Monteiro Tínel, Juliana Montezuma Barbosa; Benevides, Melina Fechine Costa; Frutuoso, Mércia Sindeaux; Rocha, Camila Farias; Arruda, Francisco Vassiliepe Sousa; Vasconcelos, Mayron Alves; Pereira-Junior, Francisco Nascimento; Cajazeiras, João Batista; do Nascimento, Kyria Santiago; Martins, Jorge Luiz; Teixeira, Edson Holanda; Cavada, Benildo Sousa; dos Santos, Ricardo Pires; Lima Pompeu, Margarida Maria

    2014-01-01

    Leishmaniasis is a vector-borne disease transmitted by phlebotomine sand fly. Susceptibility and refractoriness to Leishmania depend on the outcome of multiple interactions that take place within the sand fly gut. Promastigote attachment to sand fly midgut epithelium is essential to avoid being excreted together with the digested blood meal. Promastigote and gut sand fly surface glycans are important ligands in this attachment. The purpose of the present study was to evaluate the interaction of three lectins isolated from leguminous seeds (Diocleinae subtribe), D-glucose and D-mannose-binding, with glycans on Lutzomyia migonei midgut. To study this interaction the lectins were labeled with FITC and a fluorescence assay was performed. The results showed that only Dioclea violacea lectin (DVL) was able to interact with midgut glycans, unlike Cratylia floribunda lectin (CFL) and Canavalia gladiata lectin (CGL). Furthermore, when DVL was blocked with D-mannose the interaction was inhibited. Differences of spatial arrangement of residues and volume of carbohydrate recognition domain (CRD) may be the cause of the fine specificity of DVL for glycans in the surface on Lu. migonei midgut. The findings in this study showed the presence of glycans in the midgut with glucose/mannose residues in its composition and these residues may be important in interaction between Lu. migonei midgut and Leishmania. PMID:25431778

  9. Multiple Modes of Action of the Squamocin in the Midgut Cells of Aedes aegypti Larvae

    PubMed Central

    de Paula, Sérgio Oliveira; Martins, Gustavo Ferreira; Zanuncio, José Cola

    2016-01-01

    Annonaceous acetogenins are botanical compounds with good potential for use as insecticides. In the vector, Aedes aegypti (L.) (Diptera: Culicidae), squamocin (acetogenin) has been reported to be a larvicide and cytotoxic, but the modes of action of this molecule are still poorly understood. This study evaluated the changes in the cell morphology, and in the expression of genes, for autophagy (Atg1 and Atg8), for membrane ion transporter V-ATPase, and for water channel aquaporin-4 (Aqp4) in the midgut of A. aegypti larvae exposed to squamocin from Annona mucosa Jacq. (Annonaceae). Squamocin showed cytotoxic action with changes in the midgut epithelium and digestive cells of A. aegypti larvae, increase in the expression for autophagy gene Atg1 and Atg8, decrease in the expression of V-ATPase, decrease in the expression of Aqp4 gene in LC20 and inhibition of Apq4 genes in the midgut of this vector in LC50. These multiple modes of action for squamocin are described for the first time in insects, and they are important because different sites of action of squamocin from A. mucosa may reduce the possibility of resistance of A. aegypti to this molecule. PMID:27532504

  10. Discovery of midgut genes for the RNA interference control of corn rootworm

    PubMed Central

    Hu, Xu; Richtman, Nina M.; Zhao, Jian-Zhou; Duncan, Keith E.; Niu, Xiping; Procyk, Lisa A.; Oneal, Meghan A.; Kernodle, Bliss M.; Steimel, Joseph P.; Crane, Virginia C.; Sandahl, Gary; Ritland, Julie L.; Howard, Richard J.; Presnail, James K.; Lu, Albert L.; Wu, Gusui

    2016-01-01

    RNA interference (RNAi) is a promising new technology for corn rootworm control. This paper presents the discovery of new gene targets - dvssj1 and dvssj2, in western corn rootworm (WCR). Dvssj1 and dvssj2 are orthologs of the Drosophila genes snakeskin (ssk) and mesh, respectively. These genes encode membrane proteins associated with smooth septate junctions (SSJ) which are required for intestinal barrier function. Based on bioinformatics analysis, dvssj1 appears to be an arthropod-specific gene. Diet based insect feeding assays using double-stranded RNA (dsRNA) targeting dvssj1 and dvssj2 demonstrate targeted mRNA suppression, larval growth inhibition, and mortality. In RNAi treated WCR, injury to the midgut was manifested by “blebbing” of the midgut epithelium into the gut lumen. Ultrastructural examination of midgut epithelial cells revealed apoptosis and regenerative activities. Transgenic plants expressing dsRNA targeting dvssj1 show insecticidal activity and significant plant protection from WCR damage. The data indicate that dvssj1 and dvssj2 are effective gene targets for the control of WCR using RNAi technology, by apparent suppression of production of their respective smooth septate junction membrane proteins located within the intestinal lining, leading to growth inhibition and mortality. PMID:27464714

  11. Observations on house fly larvae midgut ultrastructure after Brevibacillus laterosporus ingestion.

    PubMed

    Ruiu, Luca; Satta, Alberto; Floris, Ignazio

    2012-11-01

    The pathological and histopathological course caused by Brevibacillus laterosporus on house fly larvae has been investigated conducting observations on insect behavior and midgut ultrastructure. After dissection and fixation, gut tissues were analyzed under transmission electron microscopy (TEM) in order to compare in vivo-treated and non-treated (control) fly specimens. Treated larvae showed extensively reduced feeding and growth rate, then became sluggish and died within 72 h. A progressive midgut epithelium deterioration was observed in treated larvae, compared to the control. Ultrastructural changes consisted of microvilli disruption, cytoplasm vacuolization and general disorganization, endoplasmic reticulum deformation, mitochondria alteration. Deterioration became progressively more dramatic until the infected cells released their content into the gut lumen. Disruption was associated also with midgut muscular sheath and connective tissue. These ultrastructural changes are similar to those widely described for other entomopathogenic bacteria, such as Bacillus thuringiensis, against different insect species. The rapid disruption of cellular fine structure supports a hypothesis based on an interaction of toxins with the epithelial cell membranes reminiscent of the specific B. thuringiensis δ-endotoxins mechanism of action on other insect targets.

  12. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    PubMed

    Fernandes, K M; Gonzaga, W G; Pascini, T V; Miranda, F R; Tomé, H V V; Serrão, J E; Martins, G F

    2015-09-01

    The mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) is a vector for the dengue and yellow fever viruses. As blood digestion occurs in the midgut, this organ constitutes the route of entry of many pathogens. The effects of the insecticide imidacloprid on the survival of St. aegypti were investigated and the sub-lethal effects of the insecticide on midgut development were determined. Third instar larvae were exposed to different concentrations of imidacloprid (0.15, 1.5, 3.0, 6.0 and 15.0 p.p.m.) and survival was monitored every 24 h for 10 days. Midguts from imidacloprid-treated insects at different stages of development were dissected and processed for analyses by transmission electron microscopy, immunofluorescence microscopy and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assays. Imidacloprid concentrations of 3.0 and 15.0 p.p.m. were found to affect midgut development similarly. Digestive cells of the fourth instar larvae (L4) midgut exposed to imidacloprid had more multilamellar bodies, abundantly found in the cell apex, and more electron-lucent vacuoles in the basal region compared with those from untreated insects. Moreover, imidacloprid interfered with the differentiation of regenerative cells, dramatically reducing the number of digestive and endocrine cells and leading to malformation of the midgut epithelium in adults. The data demonstrate that imidacloprid can reduce the survival of mosquitoes and thus indicate its potentially high efficacy in the control of St. aegypti populations.

  13. Genomic Regions Required for Morphogenesis of the Drosophila Embryonic Midgut

    PubMed Central

    Bilder, D.; Scott, M. P.

    1995-01-01

    The Drosophila midgut is an excellent system for studying the cell migration, cell-cell communication, and morphogenetic events that occur in organ formation. Genes representative of regulatory gene families common to all animals, including homeotic, TGFβ, and Wnt genes, play roles in midgut development. To find additional regulators of midgut morphogenesis, we screened a set of genomic deficiencies for midgut phenotypes. Fifteen genomic intervals necessary for proper midgut morphogenesis were identified; three contain genes already known to act in the midgut. Three other genomic regions are required for formation of the endoderm or visceral mesoderm components of the midgut. Nine regions are required for proper formation of the midgut constrictions. The E75 ecdysone-induced gene, which encodes a nuclear receptor superfamily member, is the relevant gene in one region and is essential for proper formation of midgut constrictions. E75 acts downstream of the previously known constriction regulators or in parallel. Temporal hormonal control may therefore work in conjunction with spatial regulation by the homeotic genes in midgut development. Another genomic region is required to activate transcription of the homeotic genes Antp and Scr specifically in visceral mesoderm. The genomic regions identified by this screen provide a map to novel midgut development regulators. PMID:8582615

  14. Ookinete destruction within the mosquito midgut lumen explains Anopheles albimanus refractoriness to Plasmodium falciparum (3D7A) oocyst infection.

    PubMed

    Baton, Luke A; Ranford-Cartwright, Lisa C

    2012-01-01

    Previous studies have shown that the central American mosquito vector, Anopheles albimanus, is generally refractory to oocyst infection with allopatric isolates of the human malaria parasite Plasmodium falciparum. However, the reasons for the refractoriness of A. albimanus to infection with such isolates of P. falciparum are unknown. In the current study, we investigated the infectivity of the P. falciparum clone 3D7A to laboratory-reared A. albimanus and another natural vector of human malaria, Anopheles stephensi. Plasmodium falciparum gametocytes grown in vitro were simultaneously fed to both mosquito species and the progress of malaria infection compared. In 22 independent paired experimental feeds, no mature oocysts were observed on the midguts of A. albimanus 10days after bloodfeeding. In contrast, high levels of oocyst infection were found on the midguts of simultaneously fed A. stephensi. Direct immunofluorescence microscopy and light microscopical examination of Giemsa-stained histological sections were used to identify when the P. falciparum clone 3D7A failed to establish mature oocyst infections in A. albimanus. Similar densities of macrogametes/zygotes, and immature retort-form and mature ookinetes were found within the bloodmeals of both mosquito species. However, in A. albimanus, ookinetes were seldom associated with the peritrophic matrix, and were neither observed in the ectoperitrophic space nor the midgut epithelium. In contrast, ookinetes were frequently observed in these midgut compartments in A. stephensi. Additionally, young oocysts were observed on the midguts of A. stephensi but not A. albimanus 2days after bloodfeeding. Vital staining of the immature retort-form and mature ookinetes found within the luminal bloodmeal, demonstrated that a significantly greater proportion of these malaria parasite stages were non-viable in A. albimanus compared with A. stephensi. Overall, our observations indicate that ookinetes of the P. falciparum clone 3D7

  15. Effects of periplocoside X on midgut cells and digestive enzymes activity of the soldiers of red imported fire ant.

    PubMed

    Li, Yan; Zeng, Xin-Nian

    2013-07-01

    The pathological effects of ingested periplocoside X, an insecticidal component isolated from the root of Periploca sepium Bunge, on the midgut epithelial cells of the soldiers of red imported fire ant were studied and the symptom was described. The results showed that periplocoside X could induce a severe, time-dependent cytotoxicity in the midgut epithelial cells. An optical microscopy showed that epithelial cells swelled firstly and then lysed. Transmission electron microscopy (TEM) showed that numerous swollen lysosomes were appeared, microvilli were disrupted and sloughed off, and the numbers of the rough endoplasmic reticulum and the mitochondria decreased sharply in earlier stage. Numerous vacuoles were observed in the later stage. Finally, periplocoside X resulted in cell death by cytolysis. Assay of main three digestive enzymes activity indicated that amylase activity was significantly inhibited, but no significant changes were seen for lipase activity and total protease activity. So it is suggested that periplocoside X induced mainly to organic damage of midgut epithelium cells of insect. In all, insect midgut is one of targets for periplocoside X.

  16. Implications for the functions of the four known midgut differentiation factors: An immunohistologic study of Heliothis virescens midgut.

    PubMed

    Loeb, Marcia J; Coronel, Nicholas; Natsukawa, Dai; Takeda, Makio

    2004-05-01

    Antibodies to the peptides that induce differentiation of midgut larval stem cells, the midgut differentiating factors MDF-2, MDF-3, and MDF-4, bind to columnar cells in midgut cultures and in intact midgut of Heliothis virescens, in manners similar to the binding of anti- MDF-1 to those tissues. Antibodies to MDF-2 and MDF-3 also stained droplets in the midgut lumen, suggesting that columnar cells may also release MDF-2- and MDF-3-like cytokines to the lumen. Antibody to MDF-4 exhibited similar staining patterns but also recognized stem and differentiating cells, the presumed targets of peptides that regulate stem cell differentiation. Antibody to MDF-4 also bound to one type of endocrine cell in midgut cultures and in sections of midgut, as well as to the endocrine secretion released both to the midgut lumen and the hemolymph. Antibodies to the MDFs 1, 2, and 3, incubated with cultures of midgut cells, did not appear to prevent differentiation of the stem cells in the cultures but affected viability of mature cells, reflected in increased apoptosis and doubling of the number of differentiating cells compared to controls. Only antibody to MDF-4 induced temporary necrosis and inhibition of population recovery, indicating that MDF4 may be the true differentiation factor. The other MDFs may have additional functions beyond regulation of midgut stem cell differentiation in vivo.

  17. Side Effects of Neem Oil on the Midgut Endocrine Cells of the Green Lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, E L; Santos, D C

    2014-04-01

    We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function.

  18. Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae)

    NASA Astrophysics Data System (ADS)

    Keeling, Christopher I.; Blomquist, Gary J.; Tittiger, Claus

    In several pine bark beetle species, phloem feeding induces aggregation pheromone production to coordinate a mass attack on the host tree. Male pine engraver beetles, Ips pini (Say) (Coleoptera: Scolytidae), produce the monoterpenoid pheromone component ipsdienol de novo via the mevalonate pathway in the anterior midgut upon feeding. To understand how pheromone production is regulated in this tissue, we used quantitative real-time PCR to examine feeding-induced changes in gene expression of seven mevalonate pathway genes: acetoacetyl-coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate 5-diphosphate decarboxylase, isopentenyl-diphosphate isomerase, geranyl-diphosphate synthase (GPPS), and farnesyl-diphosphate synthase (FPPS). In males, expression of all these genes significantly increased upon feeding. In females, the expression of the early mevalonate pathway genes (up to and including the isomerase) increased significantly, but the expression of the later genes (GPPS and FPPS) was unaffected or decreased upon feeding. Thus, feeding coordinately regulates expression of the mevalonate pathway genes necessary for pheromone biosynthesis in male, but not female, midguts. Furthermore, basal mRNA levels were 5- to 41-fold more abundant in male midguts compared to female midguts. This is the first report of coordinated regulation of mevalonate pathway genes in an invertebrate model consistent with their sex-specific role in de novo pheromone biosynthesis.

  19. A Lepidopteran-Specific Gene Family Encoding Valine-Rich Midgut Proteins

    PubMed Central

    Odman-Naresh, Jothini; Duevel, Margret; Muthukrishnan, Subbaratnam; Merzendorfer, Hans

    2013-01-01

    Many lepidopteran larvae are serious agricultural pests due to their feeding activity. Digestion of the plant diet occurs mainly in the midgut and is facilitated by the peritrophic matrix (PM), an extracellular sac-like structure, which lines the midgut epithelium and creates different digestive compartments. The PM is attracting increasing attention to control lepidopteran pests by interfering with this vital function. To identify novel PM components and thus potential targets for insecticides, we performed an immunoscreening with anti-PM antibodies using an expression library representing the larval midgut transcriptome of the tobacco hornworm, Manduca sexta. We identified three cDNAs encoding valine-rich midgut proteins of M. sexta (MsVmps), which appear to be loosely associated with the PM. They are members of a lepidopteran-specific family of nine VMP genes, which are exclusively expressed in larval stages in M. sexta. Most of the MsVMP transcripts are detected in the posterior midgut, with the highest levels observed for MsVMP1. To obtain further insight into Vmp function, we expressed MsVMP1 in insect cells and purified the recombinant protein. Lectin staining and glycosidase treatment indicated that MsVmp1 is highly O-glycosylated. In line with results from qPCR, immunoblots revealed that MsVmp1 amounts are highest in feeding larvae, while MsVmp1 is undetectable in starving and molting larvae. Finally using immunocytochemistry, we demonstrated that MsVmp1 localizes to the cytosol of columnar cells, which secrete MsVmp1 into the ectoperitrophic space in feeding larvae. In starving and molting larvae, MsVmp1 is found in the gut lumen, suggesting that the PM has increased its permeability. The present study demonstrates that lepidopteran species including many agricultural pests have evolved a set of unique proteins that are not found in any other taxon and thus may reflect an important adaptation in the highly specialized lepidopteran digestive tract facing

  20. Midgut malrotation causing intermittent intestinal obstruction in a young adult.

    PubMed

    Bektasoglu, Huseyin Kazim; Idiz, Ufuk Oguz; Hasbahceci, Mustafa; Yardimci, Erkan; Firat, Yurdakul Deniz; Karatepe, Oguzhan; Muslumanoglu, Mahmut

    2014-01-01

    Midgut malrotation is a congenital anomaly of intestinal rotation and fixation that is generally seen in neonatal population. Adult cases are rarely reported. Early diagnosis is crucial to avoid life threatening complications. Here, we present an adulthood case of midgut volvulus as a rare cause of acute abdomen.

  1. Laparoscopic Ileocolic Resection for Crohn's Disease Associated With Midgut Malrotation

    PubMed Central

    Biancone, Livia; Tema, Giorgia; Porokhnavets, Kristina; Tesauro, Manfredi; Gaspari, Achille L.; Sica, Giuseppe S.

    2014-01-01

    Midgut malrotation is an anomaly of fetal intestinal rotation. Its incidence in adults is rare. A case of midgut malrotation in a 51-year-old man with complicated Crohn's disease of the terminal ileum is presented. Symptoms, diagnosis, and treatment are reviewed. Preoperative workup led to correct surgical planning that ultimately allowed a successful laparoscopic resection. PMID:25419109

  2. Schinus terebinthifolius Leaf Extract Causes Midgut Damage, Interfering with Survival and Development of Aedes aegypti Larvae

    PubMed Central

    Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique

    2015-01-01

    In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3–1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution

  3. Damage-Induced Cell Regeneration in the Midgut of Aedes albopictus Mosquitoes

    PubMed Central

    Janeh, Maria; Osman, Dani; Kambris, Zakaria

    2017-01-01

    Mosquito-transmitted diseases cause over one million deaths every year. A better characterization of the vector’s physiology and immunity should provide valuable knowledge for the elaboration of control strategies. Mosquitoes depend on their innate immunity to defend themselves against pathogens. These pathogens are acquired mainly through the oral route, which places the insects’ gut at the front line of the battle. Indeed, the epithelium of the mosquito gut plays important roles against invading pathogens acting as a physical barrier, activating local defenses and triggering the systemic immune response. Therefore, the gut is constantly confronted to stress and often suffers cellular damage. In this study, we show that dividing cells exist in the digestive tract of adult A. albopictus and that these cells proliferate in the midgut after bacterial or chemical damage. An increased transcription of signaling molecules that regulate the EGFR and JAK/STAT pathways was also observed, suggesting a possible involvement of these pathways in the regeneration of damaged guts. This work provides evidence for the presence of regenerative cells in the mosquito guts, and paves the way towards a molecular and cellular characterization of the processes required to maintain mosquito’s midgut homeostasis in both normal and infectious conditions. PMID:28300181

  4. Anopheles gambiae collagen IV genes: cloning, phylogeny and midgut expression associated with blood feeding and Plasmodium infection.

    PubMed

    Gare, D C; Piertney, S B; Billingsley, P F

    2003-07-01

    A prerequisite for understanding the role that mosquito midgut extracellular matrix molecules play in malaria parasite development is proper isolation and characterisation of the genes coding for components of the basal lamina. Here we have identified genes coding for alpha1 and alpha2 chains of collagen IV from the major malaria vector, Anopheles gambiae. Conserved sequences in the terminal NC1 domain were used to obtain partial gene sequences of this functional region, and full sequence was isolated from a pupal cDNA library. In a DNA-derived phylogeny, the alpha1 and alpha2 chains cluster with dipteran orthologs, and the alpha2 is ancestral. The expression of collagen alpha1(IV) peaked during the pupal stage of mosquito development, and was expressed continuously in the adult female following a blood meal with a further rise detected in older mosquitoes. Collagen alpha1(IV) is also upregulated when the early oocyst of Plasmodium yoelii was developing within the mosquito midgut and may contribute to a larger wound healing response. A model describing the expression of basal lamina proteins during oocyst development is presented, and we hypothesise that the development of new basal lamina between the oocyst and midgut epithelium is akin to a wound healing process.

  5. Starvation suppresses cell proliferation that rebounds after refeeding in the midgut of the American cockroach, Periplaneta americana.

    PubMed

    Park, Moon Soo; Takeda, Makio

    2008-02-01

    Starvation affects behavior, development, metabolism, reproduction, and longevity in almost all animals including insects. In the American cockroach, Periplaneta americana, we investigated the effect of starvation on organ size and cell proliferation activity of the midgut, over a period of one month, using anti-bromodeoxyuridine (BrdU), and anti-phospho-histone H3 antibodies. Under starvation conditions, the midgut became clear and fragile while its length and diameter were reduced. Both the rate of BrdU-uptake in the nucleus and the mitotic activity shown by anti-phospho-histone H3 antibody decreased under long starvation up to half that of the continuously fed control. Refeeding restored BrdU-uptake and mitosis that overshot the fed control. When casein, starch, or cooking oil was fed as representative nutrient sources to the starved cockroaches, all restored BrdU-uptake, but non-nutrient, talc, did not. This study supports the hypothesis that P. americana has a homeostatic mechanism to regulate the cell population of the midgut epithelium according to changes in the nutritional environment.

  6. The Classroom Animal: Flour Beetles.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1988-01-01

    Describes the flour beetle, "Tribolium confusum," and its life cycle, habitat, culturing requirements, and some possible uses of this beetle as a classroom animal. Discusses what children could learn from flour beetles. Explains how to get rid of beetles found in foods at home. (CW)

  7. Carabid Beetles as Parasitoids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The parasitoid habit is uncommon in beetles; only 11 beetle families include parasitoid species. Three tribes of 76 in the Carabidae are known to have species in which larvae are pupal ectoparasitoids: Brachinini, Peleciini, and Lebiini. The first larval instar is the free-living, host-finding stage...

  8. Mesenchymal to epithelial transition during tissue homeostasis and regeneration: Patching up the Drosophila midgut epithelium.

    PubMed

    Antonello, Zeus A; Reiff, Tobias; Dominguez, Maria

    2015-01-01

    Stem cells are responsible for preserving morphology and function of adult tissues. Stem cells divide to self-renew and to generate progenitor cells to sustain cell demand from the tissue throughout the organism's life. Unlike stem cells, the progenitor cells have limited proliferation potential but have the capacity to terminally differentiate and thereby to substitute older or damaged mature cells. Recent findings indicate that adult stem cells can adapt their division kinetics dynamically to match changes in tissue demand during homeostasis and regeneration. However, cell turnover not only requires stem cell division but also needs timed differentiation of the progenitor cells, which has been much less explored. In this Extra View article, we discuss the ability of progenitor cells to actively postpone terminal differentiation in the absence of a local demand and how tissue demand activates terminal differentiation via a conserved mesenchymal-epithelial transition program revealed in our recent EMBO J paper and other published and unpublished data. The extent of the significance of these results is discussed for models of tissue dynamics during both homeostasis and regeneration.

  9. Update on management of midgut neuroendocrine tumors

    PubMed Central

    Mehrvarz Sarshekeh, Amir; Halperin, Daniel M; Dasari, Arvind

    2016-01-01

    Midgut neuroendocrine tumors are typically indolent but can be fatal when advanced. They can also cause significant morbidity due to the characteristic carcinoid syndrome. Somatostatin analogs continue to be the mainstay of treatment given their antiproliferative properties, as well as inhibitory effects on hormones that cause carcinoid syndrome. There have been several recent advances in the systemic therapy of these tumors including consolidation of somatostatin analogs as the cornerstone of therapy, completion of pivotal trials with mTOR inhibitors, and the establishment of novel approaches including peptide receptor radionuclide therapy and oral inhibitors of peripheral tryptophan hydroxylase in tumor and symptom control, respectively. In this review article, the recent advances are summarized and an updated approach to management is proposed. PMID:27347369

  10. Morphology of the midgut of Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) adult ticks in different feeding stages.

    PubMed

    Remedio, R N; Sampieri, B R; Vendramini, M C R; Souza, N M; Anholeto, L A; Denardo, T A G B; Camargo-Mathias, M I

    2013-01-01

    The intestinal epithelial cells of ticks are fundamental for their full feeding and reproductive success, besides being considered important sites for the development of pathogens. Rhipicephalus sanguineus ticks are known for their great medical and veterinary importance, and for this reason, the knowledge of their intestinal morphology may provide relevant subsidies for the control of these animals, either by direct acaricidal action over these cells or by the production of vaccines. Therefore, this study aimed to describe the midgut morphology of male and female R. sanguineus ticks in different feeding stages, by means of histological analysis. Significant differences were observed between the genders, and such alterations may refer mainly to the distinct demands for nutrients, much higher in females, which need to develop and carry out the egg-laying process. In general, the midgut is coated by a thin muscle layer and presents a pseudostratified epithelium, in which two basic types of cells can be observed, connected to a basal membrane-generative or stem and digestive cells. The latter was classified as follows: residual, deriving from the phase anterior to ecdysis; pinocytic, with vesicles containing liquid or pre-digested components of blood; phagocytic, with entire cells or remnants of nuclear material inside cytoplasmic vesicles; and mature, free in the lumen. Digestion is presumably intracellular and asynchronous and corresponds to a process which starts with the differentiation of generative cells into pinocytic digestive cells, which subsequently start to phagocytize intact blood cells and finally detach from the epithelium, being eliminated with feces.

  11. A peptide with similarity to baculovirus ODV-E66 binds the gut epithelium of Heliothis virescens and impedes infection with Autographa californica multiple nucleopolyhedrovirus.

    PubMed

    Sparks, Wendy O; Rohlfing, Amy; Bonning, Bryony C

    2011-05-01

    Baculoviruses infect their lepidopteran hosts via the midgut epithelium through binding of occlusion-derived virus (ODV) and fusion between the virus envelope and microvillar membranes. To identify genes and sequences that are involved in this process, a random phage display library was screened for peptides that bound to brush border membrane vesicles (BBMV) derived from the midgut epithelium of Heliothis virescens. Seventeen peptides that bound to BBMV were recovered. Two of these, HV1 and HV2, had sequence similarity to the ODV envelope protein ODV-E66 that is found in five species of alphabaculoviruses. Chemically synthesized versions of HV1 and HV2, and two peptides (AcE66A and AcE66B) derived from similar sequences of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ODV-E66, bound to unfixed cryosections of whole midgut tissues. AcE66A, but not HV1, bound to H. virescens gut BBMV proteins on a far-Western blot. Competition assays with HV1 and purified AcMNPV ODV resulted in decreased mortality of H. virescens larvae at a dose of 1 LD(50), and a significant increase in survival time at higher virus concentrations. These results suggest a role for ODV-E66 in baculovirus infection of lepidopteran larval midgut epithelium.

  12. Autographa californica multiple nucleopolyhedrovirus ODV-E56 is a per os infectivity factor, but is not essential for binding and fusion of occlusion-derived virus to the host midgut.

    PubMed

    Sparks, Wendy O; Harrison, Robert L; Bonning, Bryony C

    2011-01-05

    The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) occlusion-derived virus (ODV) envelope protein ODV-E56 is essential for oral infection of larvae of Heliothis virescens. Bioassays with recombinant clones of AcMNPV lacking a functional odv-e56 gene showed that ODV-E56 was required for infectivity of both polyhedra and to a lesser extent, purified ODV. However, binding and fusion assays showed that ODV lacking ODV-E56 bound and fused to midgut cells at levels similar to ODV of wild-type virus. Fluorescence microscopy of midguts from larvae inoculated with ODV-E56-positive and -negative viruses that express GFP indicated that ODV-E56 was required for infection of the midgut epithelium. Purified ODV-E56 bound to several proteins in midgut-derived brush border membrane vesicles, but failed to rescue infectivity of ODV-E56-negative viruses in trans. These results indicate that ODV-E56 is a per os infectivity factor (pif-5) required for primary midgut infection at a point before or after virion binding and fusion.

  13. Autographa californica multiple nucleopolyhedrovirus ODV-E56 is a per os infectivity factor, but is not essential for binding and fusion of occlusion-derived virus to the host midgut

    SciTech Connect

    Sparks, Wendy O.; Harrison, Robert L.; Bonning, Bryony C.

    2011-01-05

    The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) occlusion-derived virus (ODV) envelope protein ODV-E56 is essential for oral infection of larvae of Heliothis virescens. Bioassays with recombinant clones of AcMNPV lacking a functional odv-e56 gene showed that ODV-E56 was required for infectivity of both polyhedra and to a lesser extent, purified ODV. However, binding and fusion assays showed that ODV lacking ODV-E56 bound and fused to midgut cells at levels similar to ODV of wild-type virus. Fluorescence microscopy of midguts from larvae inoculated with ODV-E56-positive and -negative viruses that express GFP indicated that ODV-E56 was required for infection of the midgut epithelium. Purified ODV-E56 bound to several proteins in midgut-derived brush border membrane vesicles, but failed to rescue infectivity of ODV-E56-negative viruses in trans. These results indicate that ODV-E56 is a per os infectivity factor (pif-5) required for primary midgut infection at a point before or after virion binding and fusion.

  14. Morpho-functional characterization and esterase patterns of the midgut of Tribolium castaneum Herbst, 1797 (Coleoptera: Tenebrionidae) parasitized by Gregarina cuneata (Apicomplexa: Eugregarinidae).

    PubMed

    Gigliolli, Adriana A Sinópolis; Lapenta, Ana Silva; Ruvolo-Takasusuki, Maria Claudia Colla; Abrahão, Josielle; Conte, Hélio

    2015-09-01

    Tribolium castaneum (Coleoptera: Tenebrionidae) is a common pest of stored grains and byproducts and is normally infected by Gregarina cuneata (Apicomplexa: Eugregarinidae). The life cycle of this parasite includes the sporozoite, trophozoite, gamont, gametocyte, and oocyst stages, which occur between the epithelium and lumen of the host's midgut. This study aims to describe the morphofunctional alterations in the midgut and determine the esterase patterns in T. castaneum when parasitized by gregarines. To achieve this purpose, midguts of adult insects were isolated, processed, and analysed using light and electron microscopy. We determined total protein content, amylase activity, and the expression and related activities of the esterases by using polyacrylamide gel electrophoresis (PAGE). The midgut of T. castaneum is formed by digestive, regenerative, and endocrine cells. The effects of parasitism on the digestive cells are severe, because the gregarines remain attached to these cells to absorb all the nutrients they need throughout their development. In these cells, the most common alterations observed include expansion and fragmentation of the rough endoplasmic reticulum, development of the smooth endoplasmic reticulum, changes in mitochondrial cristae, cytoplasmic vacuolization, formation of myelin structures, spherites, large intercellular spaces, autophagic vesicles, expansion of the basal labyrinth, and cytoplasmic protrusions. Deposits of glycogen granules were also observed. Amylase activity was reduced in parasitized insects. Regenerative cells were found in disorganized crypts and did not differentiate into new cells, thus, compromising the restoration of the damaged epithelium. Though few morphological alterations were observed in the endocrine cells, results suggest that the synthesis and/or release of hormones might be impaired. Nine esterases (EST-1 to 9) were identified in the midgut of T. castaneum and were expressed in varying levels in response

  15. Lady beetles of South Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lady beetles are one of the most familiar groups of beneficial insects. Farmers and gardeners appreciate them for devouring insect pests. Both adult lady beetles and caterpillar-like juveniles eat pests. Lady beetles are recognizable by their red and orange colors that contrast with black spots and...

  16. Isolating intestinal stem cells from adult Drosophila midguts by FACS to study stem cell behavior during aging.

    PubMed

    Tauc, Helen M; Tasdogan, Alpaslan; Pandur, Petra

    2014-12-16

    Aging tissue is characterized by a continuous decline in functional ability. Adult stem cells are crucial in maintaining tissue homeostasis particularly in tissues that have a high turnover rate such as the intestinal epithelium. However, adult stem cells are also subject to aging processes and the concomitant decline in function. The Drosophila midgut has emerged as an ideal model system to study molecular mechanisms that interfere with the intestinal stem cells' (ISCs) ability to function in tissue homeostasis. Although adult ISCs can be easily identified and isolated from midguts of young flies, it has been a major challenge to study endogenous molecular changes of ISCs during aging. This is due to the lack of a combination of molecular markers suitable to isolate ISCs from aged intestines. Here we propose a method that allows for successful dissociation of midgut tissue into living cells that can subsequently be separated into distinct populations by FACS. By using dissociated cells from the esg-Gal4, UAS-GFP fly line, in which both ISCs and the enteroblast (EB) progenitor cells express GFP, two populations of cells are distinguished based on different GFP intensities. These differences in GFP expression correlate with differences in cell size and granularity and represent enriched populations of ISCs and EBs. Intriguingly, the two GFP-positive cell populations remain distinctly separated during aging, presenting a novel technique for identifying and isolating cell populations enriched for either ISCs or EBs at any time point during aging. The further analysis, for example transcriptome analysis, of these particular cell populations at various time points during aging is now possible and this will facilitate the examination of endogenous molecular changes that occur in these cells during aging.

  17. Fz2 and Cdc42 Mediate Melanization and Actin Polymerization but Are Dispensable for Plasmodium Killing in the Mosquito Midgut

    PubMed Central

    Zachary, Daniel; Hoffmann, Jules A; Levashina, Elena A

    2006-01-01

    The midgut epithelium of the mosquito malaria vector Anopheles is a hostile environment for Plasmodium, with most parasites succumbing to host defenses. This study addresses morphological and ultrastructural features associated with Plasmodium berghei ookinete invasion in Anopheles gambiae midguts to define the sites and possible mechanisms of parasite killing. We show by transmission electron microscopy and immunofluorescence that the majority of ookinetes are killed in the extracellular space. Dead or dying ookinetes are surrounded by a polymerized actin zone formed within the basal cytoplasm of adjacent host epithelial cells. In refractory strain mosquitoes, we found that formation of this zone is strongly linked to prophenoloxidase activation leading to melanization. Furthermore, we identify two factors controlling both phenomena: the transmembrane receptor frizzled-2 and the guanosine triphosphate–binding protein cell division cycle 42. However, the disruption of actin polymerization and melanization by double-stranded RNA inhibition did not affect ookinete survival. Our results separate the mechanisms of parasite killing from subsequent reactions manifested by actin polymerization and prophenoloxidase activation in the A. gambiae–P. berghei model. These latter processes are reminiscent of wound healing in other organisms, and we propose that they represent a form of wound-healing response directed towards a moribund ookinete, which is perceived as damaged tissue. PMID:17196037

  18. Pine Beetle Detection

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Earth Systems Science Office scientists worked with officials in St. Tammany Parish, La., to detect and battle pine beetle infestation in Fontainebleu State Park. The scientists used a new method of detecting plant stress by using special lenses and modified sensors to detect a change in light levels given off by the plant before the stress is visible to the naked eye.

  19. Beetles, Biofuel, and Coffee

    ScienceCinema

    Ceja-Navarro, Javier

    2016-07-12

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  20. Waves and Water Beetles

    ERIC Educational Resources Information Center

    Tucker, Vance A.

    1971-01-01

    Capillary and gravity water waves are related to the position, wavelength, and velocity of an object in flowing water. Water patterns are presented for ships and the whirling beetle with an explanation of how the design affects the objects velocity and the observed water wavelengths. (DS)

  1. Beetles, Biofuel, and Coffee

    SciTech Connect

    Ceja-Navarro, Javier

    2015-05-06

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  2. Mitochondria in the midgut epithelial cells of sugarcane borer parasitized by Cotesia flavipes (Cameron, 1891).

    PubMed

    Pinheiro, D O; Silva, M D; Gregório, E A

    2010-02-01

    The sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae) has been controlled by Cotesia flavipes (Hymenoptera: Braconidae); however, very little is known about the effect of the parasitism in the host organs, including the midgut. This work aims to verify mitochondrial alteration in the different midgut epithelial cells of D. saccharalis parasitized by C. flavipes. Midgut fragments (anterior and posterior region) of both non-parasitized and parasitized larvae were processed for transmission electron microscopy. The mitochondria of midgut epithelial cell in the parasitized larvae exhibit morphological alteration, represented by matrix rarefaction and vacuolisation. These mitochondrial alterations are more pronounced in the anterior midgut region during the parasitism process, mainly in the columnar cell.

  3. Role of cathepsins D in the midgut of Dysdercus peruvianus.

    PubMed

    Pimentel, André C; Fuzita, Felipe J; Palmisano, Giuseppe; Ferreira, Clélia; Terra, Walter R

    2017-02-01

    Hemipteran ancestors probably lost their digestive serine peptidases on adapting to a plant sap diet. On returning to protein ingestion, these insects start using cathepsin (lysosomal) peptidases as digestive enzymes, from which the less known is cathepsin D. Nine of the ten cathepsin D transcribing genes found in Dysdercus peruvianus midgut are expressed exclusively in this tissue and only DpCatD10 is also expressed in other tissues. The main action of cathepsins D is in the first (V1) (from three, V1-3) midgut regions, where 40% of the total proteolytic activity was assigned to aspartic peptidases with an optimum pH of 3.5. The most expressed cathepsins D were identified in the midgut luminal contents by proteomics. The data indicate that D. peruvianus have kept a lysosomal gene expressed in all tissues and evolved another set of genes with a digestive function restricted to midgut. Digestive cathepsins D apparently complement the action of digestive cathepsin L and they are arguably responsible for the hydrolysis of cysteine peptidase inhibitors known to be present in the cotton seeds eaten by the insect, before they meet cathepsin L.

  4. A regulatory network controls nephrocan expression and midgut patterning

    PubMed Central

    Hou, Juan; Wei, Wei; Saund, Ranajeet S.; Xiang, Ping; Cunningham, Thomas J.; Yi, Yuyin; Alder, Olivia; Lu, Daphne Y. D.; Savory, Joanne G. A.; Krentz, Nicole A. J.; Montpetit, Rachel; Cullum, Rebecca; Hofs, Nicole; Lohnes, David; Humphries, R. Keith; Yamanaka, Yojiro; Duester, Gregg; Saijoh, Yukio; Hoodless, Pamela A.

    2014-01-01

    Although many regulatory networks involved in defining definitive endoderm have been identified, the mechanisms through which these networks interact to pattern the endoderm are less well understood. To explore the mechanisms involved in midgut patterning, we dissected the transcriptional regulatory elements of nephrocan (Nepn), the earliest known midgut specific gene in mice. We observed that Nepn expression is dramatically reduced in Sox17−/− and Raldh2−/− embryos compared with wild-type embryos. We further show that Nepn is directly regulated by Sox17 and the retinoic acid (RA) receptor via two enhancer elements located upstream of the gene. Moreover, Nepn expression is modulated by Activin signaling, with high levels inhibiting and low levels enhancing RA-dependent expression. In Foxh1−/− embryos in which Nodal signaling is reduced, the Nepn expression domain is expanded into the anterior gut region, confirming that Nodal signaling can modulate its expression in vivo. Together, Sox17 is required for Nepn expression in the definitive endoderm, while RA signaling restricts expression to the midgut region. A balance of Nodal/Activin signaling regulates the anterior boundary of the midgut expression domain. PMID:25209250

  5. Adult midgut malrotation presented with acute bowel obstruction and ischemia

    PubMed Central

    Zengin, Akile; Uçar, Bercis İmge; Düzgün, Şükrü Aydın; Bayhan, Zülfü; Zeren, Sezgin; Yaylak, Faik; Şanal, Bekir; Bayhan, Nilüfer Araz

    2016-01-01

    Introduction Intestinal malrotation refers to the partial or complete failure of rotation of midgut around the superior mesenteric vessels in embryonic life. Arrested midgut rotation results due to narrow-based mesentery and increases the risk of twisting midgut and subsequent obstruction and necrosis. Presentation of case 40 years old female patient admitted to emergency service with acute abdomen and computerized tomography scan showed dilated large and small intestine segments with air-fluid levels and twisted mesentery around superior mesenteric artery and vein indicating “whirpool sign”. Discussion Malrotation in adults is a rare cause of midgut volvulus as though it should be considered in differential diagnosis in patients presented with acute abdomen and intestinal ischemia. Even though clinical symptoms are obscure, adult patients usually present with vomiting and recurrent abdominal pain due to chronic partial obstruction. Contrast enhanced radiograph has been shown to be the most accurate method. Typical radiological signs are corkscrew sign, which is caused by the dilatation of various duodenal segments at different levels and the relocation of duodenojejunal junction due to jejunum folding. As malrotation commonly causes intestinal obstruction, patients deserve an elective laparotomy. Conclusion Malrotation should be considered in differential diagnosis in patients presented with acute abdomen and intestinal ischemia. Surgical intervention should be prompt to limit morbidity and mortality. PMID:27015011

  6. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

    PubMed Central

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Pennacchio, Francesco

    2016-01-01

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host. PMID:27506800

  7. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism.

    PubMed

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Ercolini, Danilo; Pennacchio, Francesco

    2016-08-23

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host.

  8. Aarskog's syndrome with Hirschsprung's disease, midgut malrotation, and dental anomalies.

    PubMed Central

    Hassinger, D D; Mulvihill, J J; Chandler, J B

    1980-01-01

    A 23-year-old man with Aarskog's syndrome had Hirschspring's disease, midgut malrotation, a renal cyst, a cartilaginous projection of the pinna, geographic tongue, and dental anomalies. The family history, negative for these features, including several malignancies. Any or all of these features could be considered part of Aarskog's syndrome and may represent anomalies of neural crest development. Images PMID:7401138

  9. Mamestra configurata nucleopolyhedrovirus-A transcriptome from infected host midgut.

    PubMed

    Donly, B Cameron; Theilmann, David A; Hegedus, Dwayne D; Baldwin, Douglas; Erlandson, Martin A

    2014-02-01

    Infection of an insect by a baculovirus occurs in two distinct phases, an initial infection of host midgut by occlusion-derived virions (ODVs) and subsequent systemic infection of other tissues by budded virions (BV). A vast majority of investigations of the infection process have been restricted to cell culture studies using BV that emulate the systemic phase of infection. This is one of the first studies to investigate baculovirus gene expression in ODV infected midgut cells. We have focused on the critical first phase of in vivo infection by Mamestra configurata nucleopolyhedrovirus-A in M. configurata larvae, using qPCR and RNAseq mass sequencing to measure virus gene expression in midgut cells. The earliest genes detected by each method had significant overlap, including known early genes as well as genes unique to MacoNPV-A and genes of unknown function. The RNAseq data also revealed a large range of expression levels across all ORFs, which could not be measured using qPCR. This dataset provides a first whole genome transcriptomic analysis of viral genes required for virus infection in vivo and will provide the basis for functionally analyzing specific genes that may be critical elements in baculovirus midgut infectivity and host range.

  10. Midgut Microbial Community of Culex quinquefasciatus Mosquito Populations from India

    PubMed Central

    Chandel, Kshitij; Mendki, Murlidhar J.; Parikh, Rasesh Y.; Kulkarni, Girish; Tikar, Sachin N.; Sukumaran, Devanathan; Prakash, Shri; Parashar, Brahma D.; Shouche, Yogesh S.; Veer, Vijay

    2013-01-01

    The mosquito Culex quinquefasciatus is a ubiquitous species that serves as a major vector for west nile virus and lymphatic filariasis. Ingestion of bloodmeal by females triggers a series of physiological processes in the midgut and also exposes them to infection by these pathogens. The bacteria normally harbored in the midgut are known to influence physiology and can also alter the response to various pathogens. The midgut bacteria in female Cx. quinquefasciatus mosquitoes collected over a large geographical area from India was studied. Examination of 16S ribosomal DNA amplicons from culturable microflora revealed the presence of 83 bacterial species belonging to 31 bacterial genera. All of these species belong to three phyla i.e. Proteobacteria, Firmicutes and Actinobacteria. Phylum Proteobacteria was the most dominant phylum (37 species), followed by Firmicutes (33 species) and Actinobacteria (13 species). Phylum Proteobacteria, was dominated by members of γ-proteobacteria class. The genus Staphylococcus was the largest genus represented by 11 species whereas Enterobacter was the most prevalent genus and recovered from all the field stations except Leh. Highest bacterial prevalence was observed from Bhuj (22 species) followed by Nagrota (18 species), Masimpur (18 species) and Hathigarh (16 species). Whereas, least species were observed from Leh (8 species). It has been observed that individual mosquito harbor extremely diverse gut bacteria and have very small overlap bacterial taxa in their gut. This variation in midgut microbiota may be one of the factors responsible for variation in disease transmission rates or vector competence within mosquito population. The present data strongly encourage further investigations to verify the potential role of the detected bacteria in mosquito for the transmission of lymphatic filariasis and west nile virus. To the best of our knowledge this is the first study on midgut microbiota of wild Cx. quinquefasciatus from over a

  11. Volatile Hydrocarbon Pheromones from Beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews literature about hydrocarbons from beetles that serve as long-range pheromones. The most thoroughly studied beetles that use volatile hydrocarbon pheromones belong to the family Nitidulidae in the genera Carpophilus and Colopterus. Published pheromone research deals with behav...

  12. Heme crystallization in the midgut of triatomine insects.

    PubMed

    Oliveira, Marcus F; Gandara, Ana Caroline P; Braga, Cláudia M S; Silva, José R; Mury, Flavia B; Dansa-Petretski, Marílvia; Menezes, Diego; Vannier-Santos, Marcos A; Oliveira, Pedro L

    2007-01-01

    Hemozoin (Hz) is a heme crystal produced by several blood-feeding organisms in order to detoxify free heme released upon hemoglobin (Hb) digestion. Here we show that heme crystallization also occurs in three species of triatomine insects. Ultraviolet-visible and infrared light absorption spectra of insoluble pigments isolated from the midgut of three triatomine species Triatoma infestans, Dipetalogaster maximus and Panstrongylus megistus indicated that all produce Hz. Morphological analysis of T. infestans and D. maximus midguts revealed the close association of Hz crystals to perimicrovillar membranes and also as multicrystalline assemblies, forming nearly spherical structures. Heme crystallization was promoted by isolated perimicrovillar membranes from all three species of triatomine bugs in vitro in heat-sensitive reactions. In conclusion, the data presented here indicate that Hz formation is an ancestral adaptation of Triatominae to a blood-sucking habit and that the presence of perimicrovillar membranes plays a central role in this process.

  13. Chitin is a necessary component to maintain the barrier function of the peritrophic matrix in the insect midgut.

    PubMed

    Kelkenberg, Marco; Odman-Naresh, Jothini; Muthukrishnan, Subbaratnam; Merzendorfer, Hans

    2015-01-01

    In most insects, the peritrophic matrix (PM) partitions the midgut into different digestive compartments, and functions as a protective barrier against abrasive particles and microbial infections. In a previous study we demonstrated that certain PM proteins are essential in maintaining the PM's barrier function and establishing a gradient of PM permeability from the anterior to the posterior part of the midgut which facilitates digestion (Agrawal et al., 2014). In this study, we focused on the effects of a reduction in chitin content on PM permeability in larvae of the red flour beetle, Tribolium castaneum. Oral administration of the chitin synthesis inhibitor diflubenzuron (DFB) only partially reduced chitin content of the larval PM even at high concentrations. We observed no nutritional effects, as larval growth was unaffected and neutral lipids were not depleted from the fat body. However, the metamorphic molt was disrupted and the insects died at the pharate pupal stage, presumably due to DFB's effect on cuticle formation. RNAi to knock-down expression of the gene encoding chitin synthase 2 in T. castaneum (TcCHS-2) caused a complete loss of chitin in the PM. Larval growth was significantly reduced, and the fat body was depleted of neutral lipids. In situ PM permeability assays monitoring the distribution of FITC dextrans after DFB exposure or RNAi for TcCHS-2 revealed that PM permeability was increased in both cases. RNAi for TcCHS-2, however, led to a higher permeation of the PM by FITC dextrans than DFB treatment even at high doses. Similar effects were observed when the chitin content was reduced by feeding DFB to adult yellow fever mosquitos, Aedes aegypti. We demonstrate that the presence of chitin is necessary for maintaining the PM's barrier function in insects. It seems that the insecticidal effects of DFB are mediated by the disruption of cuticle synthesis during the metamorphic molt rather than by interfering with larval nutrition. However, as DFB

  14. Differential expression of chemosensory-protein genes in midguts in response to diet of Spodoptera litura.

    PubMed

    Yi, Xin; Qi, Jiangwei; Zhou, Xiaofan; Hu, Mei Ying; Zhong, Guo Hua

    2017-03-22

    While it has been well characterized that chemosensory receptors in guts of mammals have great influence on food preference, much remains elusive in insects. Insect chemosensory proteins (CSPs) are soluble proteins that could deliver chemicals to olfactory and gustatory receptors. Recent studies have identified a number of CSPs expressed in midgut in Lepidoptera insects, which started to reveal their roles in chemical recognition and stimulating appetite in midgut. In this study, we examined expression patterns in midgut of 21 Spodoptera litura CSPs (SlitCSPs) characterized from a previously reported transcriptome, and three CSPs were identified to be expressed highly in midgut. The orthologous relationships between midgut expressed CSPs in S. litura and those in Bombyx mori and Plutella xylostella also suggest a conserved pattern of CSP expression in midgut. We further demonstrated that the expression of midgut-CSPs may change in response to different host plants, and SlitCSPs could bind typical chemicals from host plant in vitro. Overall, our results suggested midgut expressed SlitCSPs may have functional roles, likely contributing to specialization and adaption to different ecosystems. Better knowledge of this critical component of the chemsensation signaling pathways in midguts may improve our understanding of food preference processes in a new perspective.

  15. Tri-trophic effects of transgenic insect-resistant tobacco expressing a protease inhibitor or a biotin-binding protein on adults of the predatory carabid beetle Ctenognathus novaezelandiae.

    PubMed

    Burgess, E P J; Philip, B A; Christeller, J T; Page, N E M; Marshall, R K; Wohlers, M W

    2008-02-01

    Tri-trophic impacts on adult predatory carabid beetles, Ctenognathus novaezelandiae, of insect-resistant transgenic tobacco plants expressing a serine protease inhibitor, bovine spleen trypsin inhibitor (BSTI), or a biotin-binding protein, avidin, were investigated. Both proteins could potentially affect this beetle, since avidin is known to be insecticidal to many beetle species and C. novaezelandiae midguts were shown to contain high levels of trypsin, a protease powerfully inhibited by bovine pancreatic trypsin inhibitor (a BSTI homologue) in vitro. Newly emerged field-collected adult C. novaezelandiae were fed exclusively for 280 days on Spodoptera litura larvae raised either on non-transgenic control, transgenic avidin (55 ppm) or transgenic BSTI (68 ppm) tobacco. Despite this long-term exclusive diet, there was no treatment effect on survival or fecundity and only minor and transient effects on beetles were observed. Data pooled across time and genders showed control-prey-fed beetles weighed 3% more than BSTI-prey-fed beetles and avidin-prey-fed beetles consumed 3-4% fewer prey than control- or BSTI-prey-fed individuals. Females in all treatments gained more mass and survived longer than males. Low exposure to the proteins because of dilution and deactivation within the prey is the most likely explanation for the lack of tri-trophic effects observed. Aditionally, the presence of a digestive chymotrypsin only partially inhibited by BSTI may provide an alternative path for proteolysis.

  16. Apoptosis and the Airway Epithelium

    PubMed Central

    White, Steven R.

    2011-01-01

    The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases. PMID:22203854

  17. exo-Brevicomin biosynthesis in the fat body of the mountain pine beetle, Dendroctonus ponderosae.

    PubMed

    Song, Minmin; Gorzalski, Andrew; Nguyen, Trang T; Liu, Xibei; Jeffrey, Christopher; Blomquist, Gary J; Tittiger, Claus

    2014-02-01

    exo-Brevicomin (exo-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]octane) is an important semiochemical for a number of beetle species, including the highly destructive mountain pine beetle, Dendroctonus ponderosae. It also has been found in other insects and even in the African elephant. Despite its significance, little is known about its biosynthesis. In order to fill this gap and to identify new molecular targets for potential pest management methods, we performed gas chromatography-mass spectrometry analyses of cell cultures and in vitro assays of various D. ponderosae tissues with exo-brevicomin intermediates, analogs, and inhibitors. We confirmed that exo-brevicomin was synthesized by "unfed" males after emerging from the brood tree. Furthermore, in contrast to the paradigm established for biosynthesis of monoterpenoid pheromone components in bark beetles, exo-brevicomin was produced in the fat body, and not in the anterior midgut. The first committed step involves decarboxylation or decarbonylation of ω-3-decenoic acid, which is derived from a longer-chain precursor via β-oxidation, to (Z)-6-nonen-2-ol. This secondary alcohol is converted to the known precursor, (Z)-6-nonen-2-one, and further epoxidized by a cytochrome P450 to 6,7-epoxynonan-2-one. The keto-epoxide is stable at physiological pH, suggesting that its final cyclization to form exo-brevicomin is enzyme-catalyzed. exo-Brevicomin production is unusual in that tissue not derived from ectoderm apparently is involved.

  18. Beetle wings are inflatable origami

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  19. Transcriptional Signatures in Response to Wheat Germ Agglutinin and Starvation in Drosophila melanogaster Larval Midgut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One function of plant lectins such as wheat germ agglutinin (WGA) is to serve as defenses against herbivorous insects. The midgut is one critical site affected by dietary lectins. We observed marked cellular, structural, and gene expression changes in the midguts of Drosophila melanogaster third-i...

  20. Charles Darwin, beetles and phylogenetics.

    PubMed

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    Here, we review Charles Darwin's relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in "The Descent of Man". During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig's new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has

  1. Charles Darwin, beetles and phylogenetics

    NASA Astrophysics Data System (ADS)

    Beutel, Rolf G.; Friedrich, Frank; Leschen, Richard A. B.

    2009-11-01

    Here, we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data

  2. Brugia malayi microfilariae transport alphaviruses across the mosquito midgut.

    PubMed

    Vaughan, Jefferson A; Turell, Michael J

    2017-01-01

    Concurrent ingestion of microfilariae (MF) and arboviruses by mosquitoes can enhance mosquito transmission of virus compared to when virus is ingested alone. Within hours of being ingested, MF penetrate the mosquito midgut and introduce virus into mosquito hemocoel, creating a disseminated viral infection much sooner than normal. How virus is actually introduced is not known. In this report, we present experimental evidence that suggests that certain alphaviruses may adhere or otherwise associate with sheathed Brugia malayi MF in the blood of a dually-infected host and that the virus is carried into the mosquito hemocoel by the MF during their penetration of the mosquito midgut. The mechanism of MF enhancement may be more complex than simple leakage of viremic blood into the hemocoel during MF penetration. The affinity of arboviruses to adhere to or otherwise associate with MF may depend on the specific combination of the virus and MF involved in a dual host infection. This in turn may determine the relative importance that MF enhancement has within an arbovirus transmission system.

  3. Brugia malayi microfilariae transport alphaviruses across the mosquito midgut

    PubMed Central

    Turell, Michael J.

    2017-01-01

    Concurrent ingestion of microfilariae (MF) and arboviruses by mosquitoes can enhance mosquito transmission of virus compared to when virus is ingested alone. Within hours of being ingested, MF penetrate the mosquito midgut and introduce virus into mosquito hemocoel, creating a disseminated viral infection much sooner than normal. How virus is actually introduced is not known. In this report, we present experimental evidence that suggests that certain alphaviruses may adhere or otherwise associate with sheathed Brugia malayi MF in the blood of a dually-infected host and that the virus is carried into the mosquito hemocoel by the MF during their penetration of the mosquito midgut. The mechanism of MF enhancement may be more complex than simple leakage of viremic blood into the hemocoel during MF penetration. The affinity of arboviruses to adhere to or otherwise associate with MF may depend on the specific combination of the virus and MF involved in a dual host infection. This in turn may determine the relative importance that MF enhancement has within an arbovirus transmission system. PMID:28222120

  4. A dynamical model for bark beetle outbreaks.

    PubMed

    Křivan, Vlastimil; Lewis, Mark; Bentz, Barbara J; Bewick, Sharon; Lenhart, Suzanne M; Liebhold, Andrew

    2016-10-21

    Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees are highly nonlinear, due to complex aggregation behaviors exhibited by beetles attacking trees. Models have a role to play in helping unravel the effects of variable tree resistance and beetle aggregation on bark beetle outbreaks. In this article we develop a new mathematical model for bark beetle outbreaks using an analogy with epidemiological models. Because the model operates on several distinct time scales, singular perturbation methods are used to simplify the model. The result is a dynamical system that tracks populations of uninfested and infested trees. A limiting case of the model is a discontinuous function of state variables, leading to solutions in the Filippov sense. The model assumes an extensive seed-bank so that tree recruitment is possible even if trees go extinct. Two scenarios are considered for immigration of new beetles. The first is a single tree stand with beetles immigrating from outside while the second considers two forest stands with beetle dispersal between them. For the seed-bank driven recruitment rate, when beetle immigration is low, the forest stand recovers to a beetle-free state. At high beetle immigration rates beetle populations approach an endemic equilibrium state. At intermediate immigration rates, the model predicts bistability as the forest can be in either of the two equilibrium states: a healthy forest, or a forest with an endemic beetle population. The model bistability leads to hysteresis. Interactions between two stands show how a less resistant stand of trees may provide an initial toe-hold for the invasion, which later leads to a regional beetle outbreak in the

  5. Elongated hindguts in desert-living dung beetles (Scarabaeidae: Scarabaeinae) feeding on dry dung pellets or plant litter.

    PubMed

    Holter, Peter; Scholtz, Clarke H

    2013-06-01

    Most adult dung beetles (Scarabaeidae: Scarabaeinae) feed on fresh, wet dung of larger herbivorous or omnivorous mammals. As refractory plant fragments are selected out before ingestion, the food is presumed easily digestible. However, members of the desert-living scarabaeine genus Pachysoma (probably evolved from an ancestor closely related to the wet-dung feeding genus Scarabaeus) select dry dung pellets and/or plant litter. Thus, they ingest a much higher proportion of structural plant material, which nevertheless appears to be digested rather efficiently. This study investigates morphological modifications of the gut for this digestion in adults of eight Pachysoma species, both pellet and litter feeders. To ascertain hypothesized ancestral conditions, four fresh-dung feeding Scarabaeus species were also examined. The latter have the usual dung beetle gut consisting of a long, simple midgut, followed by an equally simple, much shorter hindgut of the same width. Lengths of midguts (M) and hindguts (H) divided by body length (B) for comparison between species of different size are: 4.9-6.3 (M/B) and 0.7-0.8 (H/B), which is normal for dung feeders. In Pachysoma, lengths are 6.3-6.5 (M/B) and 1.0-1.4 (H/B) in pellet feeders, and 4.4-5.0 (M/B) and 2.0-2.5 (H/B) for litter feeders. Hindguts are still morphologically undifferentiated and of midgut width, but clearly longer, particularly in litter feeders. Presumably, plant fragments in the food are digested, at least partly, in the hindgut. If so, the morphological adaptation is unusual: simple elongation rather than the expansion of part of the hindgut, as found in several other plant- or detritus-feeding scarabaeids.

  6. Ultrastructure of the gut epithelium in Acheta domesticus after long-term exposure to nanodiamonds supplied with food.

    PubMed

    Karpeta-Kaczmarek, Julia; Augustyniak, Maria; Rost-Roszkowska, Magdalena

    2016-05-01

    The biosafety of nanoparticles and the potential toxicity of nanopollutants and/or nanowastes are all currently burning issues. The increased use of nanoparticles, including nanodiamonds (ND), entails the real risk of their penetration into food chains, which may result in the contamination of animal and, as a result, human food. Knowledge about changes in the ultrastructure of tissues in organisms that have been exposed to ND is still very limited. The aim of the study was to describe the ultrastructure of the gut epithelium in Acheta domesticus after exposure to different concentrations of ND (0, 20 or 200 μg g(-1) - control, ND20 and ND200 groups, respectively) administered with food over a five-week period. The ultrastructure of the foregut, midgut and hindgut was assessed using Transmission Electron Microscopy (TEM). A number of changes in the structure of the gut in crickets that had consumed nanodiamond-contaminated food were observed. The epithelium of the midgut and hindgut were clearly damaged by ND, although the foregut was not affected. A positive relationship between the ND concentration in food and the degree of damage to the structure of epithelial cells was observed. Autophagy, especially mitophagy and reticulophagy, was activated in relation to the appearance of ND particles. A putative ND toxicity mechanizm is proposed. Extreme caution should be maintained when using nanodiamonds on a large scale.

  7. Anopheles stephensi Heme Peroxidase HPX15 Suppresses Midgut Immunity to Support Plasmodium Development

    PubMed Central

    Kajla, Mithilesh; Kakani, Parik; Choudhury, Tania Pal; Kumar, Vikas; Gupta, Kuldeep; Dhawan, Rini; Gupta, Lalita; Kumar, Sanjeev

    2017-01-01

    The heme peroxidase HPX15 is an evolutionary conserved anopheline lineage-specific gene. Previously, we found that this gene is present in the genome of 19 worldwide distributed different species of Anopheles mosquito and its orthologs are absent in other mosquitoes, insects, or human. In addition, 65–99% amino acid identity among these 19 orthologs permitted us to hypothesize that the functional aspects of this gene might be also conserved in different anophelines. In this study, we found that Anopheles stephensi AsHPX15 gene is mainly expressed in the midgut and highly induced after uninfected or Plasmodium berghei-infected blood feeding. RNA interference-mediated silencing of midgut AsHPX15 gene drastically reduced the number of developing P. berghei oocysts. An antiplasmodial gene nitric oxide synthase was induced 13-fold in silenced midguts when compared to the unsilenced controls. Interestingly, the induction of antiplasmodial immunity in AsHPX15-silenced midguts is in absolute agreement with Anopheles gambiae. In A. gambiae, AgHPX15 catalyzes the formation of a dityrosine network at luminal side of the midgut that suppresses the activation of mosquito immunity against the bolus bacteria. Thus, a low-immunity zone created by this mechanism indirectly supports Plasmodium development inside the midgut lumen. These indistinguishable functional behaviors and conserved homology indicates that HPX15 might be a potent target to manipulate the antiplasmodial immunity of the anopheline midgut, and it will open new frontiers in the field of malaria control. PMID:28352267

  8. Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut.

    PubMed

    Elpidina, E N; Vinokurov, K S; Gromenko, V A; Rudenskaya, Y A; Dunaevsky, Y E; Zhuzhikov, D P

    2001-12-01

    Compartmentalization of proteinases, amylases, and pH in the midgut of Nauphoeta cinerea Oliv. (Blattoptera:Blaberidae) was studied in order to understand the organization of protein and starch digestion. Total proteolytic activity measured with azocasein was maximal at pH 11.5 both in anterior (AM) and posterior (PM) halves of the midgut, but the bulk of activity (67%) was found in PM. Total AM and PM preparations were fractionated on a Sephadex G-50 column and further analysed by means of activity electrophoresis and specific inhibitors and activators. The major activity in PM was classified as an unusual SH-dependent proteinase with M(r) 24,000 and pH optimum with synthetic substrate BApNA at 10.0. The enzyme was 43-fold activated in the presence of 1 mM DTT, insensitive to synthetic inhibitors of serine (PMSF, TLCK, TPCK) and cysteine (IAA, E-64) proteinases, strongly inhibited by STI, and displayed four active bands on zymograms. In PM, activities of trypsin-like, chymotrypsin-like, subtilisin-like, and cysteine proteinases were observed. Aspartic and metalloproteinases were not detected. In AM, activity of unusual SH-dependent proteinase also dominated and activity of chymotrypsin-like proteinase was observed, but their levels were much lower than in PM. Distribution of amylase activity, exhibiting an optimum at pH 6.0, was quite the opposite. The major part of it (67%) was located in AM. Treatment of amylase preparation with proteinases from AM and PM reduced amylase activity twofold. pH of the midgut contents was 6.0-7.2 in AM, 6.4-7.6 in the first and 8.8-9.3 in the second halves of PM. Thus, pH in AM is in good agreement with the optimal pH of amylase, located in this compartment, but the activity of proteinases, including the ability to degrade amylase, in such an environment is low. Active proteolysis takes place in the second half of PM, where pH of the gut is close to the optimal pH of proteinases.

  9. Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen.

    PubMed

    Barbehenn, R V; Bumgarner, S L; Roosen, E F; Martin, M M

    2001-04-01

    This study demonstrates that an ascorbate-recycling system in the midgut lumen can act as an effective antioxidant defense in caterpillars that feed on prooxidant-rich foods. In tannin-sensitive larvae of the forest tent caterpillar, Malacosoma disstria (Lasiocampidae), ingested tannic acid is oxidized in the midgut lumen, generating significant quantities of peroxides, including hydrogen peroxide, which readily diffuses across cell membranes and is a powerful cytotoxin. By contrast, in the tannin-tolerant larvae of the white-marked tussock moth, Orgyia leucostigma (Lymantriidae), tannic acid oxidation and the generation of peroxides are suppressed. The superior defense of O. leucostigma against oxidative stress imposed by the oxidation of ingested polyphenols can be explained by the presence of higher concentrations of ascorbate and glutathione in the midgut lumen. In O. leucostigma at least 50% of the ingested ascorbate present in the anterior midgut is still present in the posterior midgut, whereas in M. disstria, only 10% of the ascorbate is present in the posterior half of the midgut. We propose that the maintenance of higher levels of ascorbate in the midgut lumen of O. leucostigma than in M. disstria is explained by the secretion of glutathione into the midgut lumen by O. leucostigma, thereby forming a complete ascorbate-recycling system. The concentration of glutathione in the midgut lumen of O. leucostigma is 3.5-fold higher than in M. disstria and more than double the concentration in the diet. Our results emphasize the importance of a defensive strategy in herbivorous insects based on the maintenance of conditions in the gut lumen that reduce or eliminate the potential prooxidant behavior of ingested phenols.

  10. Beetle Kill Wall at NREL

    ScienceCinema

    None

    2016-07-12

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  11. Beetle Kill Wall at NREL

    SciTech Connect

    2010-01-01

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  12. Are stag beetles fungivorous?

    PubMed

    Tanahashi, Masahiko; Matsushita, Norihisa; Togashi, Katsumi

    2009-11-01

    Stag beetle larvae generally feed on decaying wood; however, it was unknown whether they can use wood-rotting fungi alone as food. Here, to clarify this, newly hatched larvae of Dorcus rectus (Motschulsky) (Coleoptera: Lucanidae) were reared for 14 days on artificial diets containing a fixed amount of freeze-dried mycelia of the following fungi: Bjerkandera adusta, Trametes versicolor, Pleurotus ostreatus, and Fomitopsis pinicola. The mean incremental gain in larval body mass was greatest on diets containing B. adusta, followed by T. versicolor, P. ostreatus, and F. pinicola. The growth rate of body mass correlated positively with mycelial nitrogen content of the different fungi. It also correlated positively with the mycelial content of B. adusta in the diet. Addition of antibiotics to diets with mycelia nearly halved larval growth, indicating that larvae were able to use fungal mycelia as food without the assistance of associated microbes although the microbes positively affected larval growth. Four newly hatched larvae reared on artificial diets containing B. adusta mycelia developed to the second instar in 21-34 days; and one developed to the third (=final) instar. This study provides evidence that fungi may constitute the bulk of the diet of D. rectus larvae.

  13. Utility of the CT Scan in Diagnosing Midgut Volvulus in Patients with Chronic Abdominal Pain

    PubMed Central

    Morshedi, Mehdi; Baradaran Jamili, Mohammad; Shafizadeh Barmi, Fatemeh

    2017-01-01

    Symptomatic intestinal malrotation first presenting in the adults is rare. Midgut volvulus is the most common complication of malrotation in the adults. Because of more differential diagnosis, Computed Tomography (CT) scan can play an important role in the evaluation of patients with this abnormality. The whirl pattern around the superior mesenteric artery found on CT scan in patients with midgut volvulus is pathognomonic and diagnostic. We describe a case of intestinal malrotation complicated by midgut volvulus in an adult patient. The preoperative CT findings were pathognomonic. PMID:28182093

  14. Calcium tartrate crystals in the midgut of the grape leafhopper.

    PubMed

    Böll, S; Schmitt, T; Burschka, C; Schreier, P; Schwappach, P; Herrmann, J V

    2005-12-01

    Calcium tartrate crystals were observed in the midgut of grape leafhoppers. This unique compound was found for the first time in insects. The size of the crystals varied strongly between and within individuals with a mean length of 153 +/- 87 microm and a mean width of 71 +/- 46 microm. In addition, the number of crystals per individual showed a broad variation and ranged from 1 to 150 crystals/individual. The occurrence of calcium tartrate crystals as well as the number of crystals per individual followed the same seasonal pattern as seasonal vine leaf concentrations of tartaric acid found in a previous study, indicating that calcium tartrate is formed to neutralize the tartaric acid in the gut system. It further implies that the grape leafhopper, rather than being a pure phloem sucker, employs a mixed feeding strategy to satisfy its demands for calcium uptake.

  15. The fine structural morphology of the midgut of adult Drosophila: A morphometric analysis.

    PubMed

    Gartner, L P

    1985-01-01

    The midgut of one day old Drosophilia was examined morphometrically at the electron microscopic level. Results suggest that parenchymal cells, with the exception of basal cells, possess identical functions. Drosophilia midgut cells are smaller than those of other insects studied, and the surface densities of the rER was less, indicating that its protein synthetic activity is also less than that of other insects.

  16. Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets.

    PubMed

    Pinto-Tomás, Adrián A; Sittenfeld, Ana; Uribe-Lorío, Lorena; Chavarría, Felipe; Mora, Marielos; Janzen, Daniel H; Goodman, Robert M; Simon, Holly M

    2011-10-01

    As primary consumers of foliage, caterpillars play essential roles in shaping the trophic structure of tropical forests. The caterpillar midgut is specialized in plant tissue processing; its pH is exceptionally alkaline and contains high concentrations of toxic compounds derived from the ingested plant material (secondary compounds or allelochemicals) and from the insect itself. The midgut, therefore, represents an extreme environment for microbial life. Isolates from different bacterial taxa have been recovered from caterpillar midguts, but little is known about the impact of these microorganisms on caterpillar biology. Our long-term goals are to identify midgut symbionts and to investigate their functions. As a first step, different diet formulations were evaluated for rearing two species of tropical saturniid caterpillars. Using the polymerase chain reaction (PCR) with primers hybridizing broadly to sequences from the bacterial domain, 16S rRNA gene libraries were constructed with midgut DNA extracted from caterpillars reared on different diets. Amplified rDNA restriction analysis indicated that bacterial sequences recovered from the midguts of caterpillars fed on foliage were more diverse than those from caterpillars fed on artificial diet. Sequences related to Methylobacterium sp., Bradyrhizobium sp., and Propionibacterium sp. were detected in all caterpillar libraries regardless of diet, but were not detected in a library constructed from the diet itself. Furthermore, libraries constructed with DNA recovered from surface-sterilized eggs indicated potential for vertical transmission of midgut symbionts. Taken together, these results suggest that microorganisms associated with the tropical caterpillar midgut may engage in symbiotic interactions with these ecologically important insects.

  17. Raising Beetles in a Classroom.

    ERIC Educational Resources Information Center

    Hackett, Erla

    This guide is designed to provide elementary school teachers with a harmless, inexpensive, clean, odorless, and easy-to-care-for insect-rearing project for the classroom. The following topics are included: (1) instructions for the care and feeding of the beetle larvae; (2) student activities for observing larval characteristics and behavior…

  18. [Blister beetle dermatitis: Dermatitis linearis].

    PubMed

    Dieterle, R; Faulde, M; Erkens, K

    2015-05-01

    Several families of beetles cause toxic reactions on exposed human skin. Cantharidin provokes nearly asymptomatic vesicles and blisters, while pederin leads to itching and burning erythema with vesicles and small pustules, later crusts. Paederi are attracted by fluorescent light especially after rain showers and cause outbreaks in regions with moderate climate. Clinical findings and patient history lead to the diagnosis: dermatitis linearis.

  19. The Dung Beetle Dance: An Orientation Behaviour?

    PubMed Central

    Baird, Emily; Byrne, Marcus J.; Smolka, Jochen; Warrant, Eric J.; Dacke, Marie

    2012-01-01

    An interesting feature of dung beetle behaviour is that once they have formed a piece of dung into a ball, they roll it along a straight path away from the dung pile. This straight-line orientation ensures that the beetles depart along the most direct route, guaranteeing that they will not return to the intense competition (from other beetles) that occurs near the dung pile. Before rolling a new ball away from the dung pile, dung beetles perform a characteristic “dance,” in which they climb on top of the ball and rotate about their vertical axis. This dance behaviour can also be observed during the beetles' straight-line departure from the dung pile. The aim of the present study is to investigate the purpose of the dung beetle dance. To do this, we explored the circumstances that elicit dance behaviour in the diurnal ball-rolling dung beetle, Scarabaeus (Kheper) nigroaeneus. Our results reveal that dances are elicited when the beetles lose control of their ball or lose contact with it altogether. We also find that dances can be elicited by both active and passive deviations of course and by changes in visual cues alone. In light of these results, we hypothesise that the dung beetle dance is a visually mediated mechanism that facilitates straight-line orientation in ball-rolling dung beetles by allowing them to 1) establish a roll bearing and 2) return to this chosen bearing after experiencing a disturbance to the roll path. PMID:22279572

  20. The dung beetle dance: an orientation behaviour?

    PubMed

    Baird, Emily; Byrne, Marcus J; Smolka, Jochen; Warrant, Eric J; Dacke, Marie

    2012-01-01

    An interesting feature of dung beetle behaviour is that once they have formed a piece of dung into a ball, they roll it along a straight path away from the dung pile. This straight-line orientation ensures that the beetles depart along the most direct route, guaranteeing that they will not return to the intense competition (from other beetles) that occurs near the dung pile. Before rolling a new ball away from the dung pile, dung beetles perform a characteristic "dance," in which they climb on top of the ball and rotate about their vertical axis. This dance behaviour can also be observed during the beetles' straight-line departure from the dung pile. The aim of the present study is to investigate the purpose of the dung beetle dance. To do this, we explored the circumstances that elicit dance behaviour in the diurnal ball-rolling dung beetle, Scarabaeus (Kheper) nigroaeneus. Our results reveal that dances are elicited when the beetles lose control of their ball or lose contact with it altogether. We also find that dances can be elicited by both active and passive deviations of course and by changes in visual cues alone. In light of these results, we hypothesise that the dung beetle dance is a visually mediated mechanism that facilitates straight-line orientation in ball-rolling dung beetles by allowing them to 1) establish a roll bearing and 2) return to this chosen bearing after experiencing a disturbance to the roll path.

  1. Midgut of the non-hematophagous mosquito Toxorhynchites theobaldi (Diptera, Culicidae).

    PubMed

    Godoy, Raquel S M; Fernandes, Kenner M; Martins, Gustavo F

    2015-10-30

    In most mosquito species, the females require a blood-feeding for complete egg development. However, in Toxorhynchites mosquitoes, the eggs develop without blood-feeding, and both females and males exclusively feed on sugary diets. The midgut is a well-understood organ in blood-feeding mosquitoes, but little is known about it in non-blood-feeding ones. In the present study, the detailed morphology of the midgut of Toxorhynchites theobaldi were investigated using histochemical and ultrastructural methods. The midgut of female and male T. theobaldi adults consists of a long, slender anterior midgut (AMG), and a short, dilated posterior midgut (PMG). The AMG is subdivided into AMG1 (short, with folds) and AMG2 (long, without folds). Nerve branches and enteroendocrine cells are present in AMG and PMG, respectively. Compared with the PMG of blood-feeding female mosquitoes, the PMG of T. theobaldi is smaller; however, in both mosquitoes, PMG seems be the main region of food digestion and absorption, and protein secretion. The epithelial folds present in the AMG of T. theobaldi have not been reported in other mosquitoes; however, the midgut muscle organization and endocrine control of the digestion process are conserved in both T. theobaldi and blood-feeding mosquitoes.

  2. Serratia odorifera a Midgut Inhabitant of Aedes aegypti Mosquito Enhances Its Susceptibility to Dengue-2 Virus

    PubMed Central

    Apte-Deshpande, Anjali; Paingankar, Mandar; Gokhale, Mangesh D.; Deobagkar, Dileep N.

    2012-01-01

    Mosquito midgut plays a crucial role in its vector susceptibility and pathogen interaction. Identification of the sustainable microflora of the midgut environment can therefore help in evaluating its contribution in mosquito-pathogen interaction and in turn vector competence. To understand the bacterial diversity in the midgut of Aedes aegypti mosquitoes, we conducted a screening study of the gut microbes of these mosquitoes which were either collected from fields or reared in the laboratory “culture-dependent” approach. This work demonstrated that the microbial flora of larvae and adult Ae. aegypti midgut is complex and is dominated by Gram negative proteobacteria. Serratia odorifera was found to be stably associated in the midguts of field collected and laboratory reared larvae and adult females. The potential influence of this sustainable gut microbe on DENV-2 susceptibility of this vector was evaluated by co-feeding S. odorifera with DENV-2 to adult Ae. aegypti females (free of gut flora). The observations revealed that the viral susceptibility of these Aedes females enhanced significantly as compared to solely dengue-2 fed and another gut inhabitant, Microbacterium oxydans co-fed females. Based on the results of this study we proposed that the enhancement in the DENV-2 susceptibility of Ae. aegypti females was due to blocking of prohibitin molecule present on the midgut surface of these females by the polypeptide of gut inhabitant S. odorifera. PMID:22848375

  3. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus

    PubMed Central

    Li-Byarlay, Hongmei; Pittendrigh, Barry R.; Murdock, Larry L.

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant–insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology. PMID:27594789

  4. Midgut of the non-hematophagous mosquito Toxorhynchites theobaldi (Diptera, Culicidae)

    PubMed Central

    Godoy, Raquel S. M.; Fernandes, Kenner M.; Martins, Gustavo F.

    2015-01-01

    In most mosquito species, the females require a blood-feeding for complete egg development. However, in Toxorhynchites mosquitoes, the eggs develop without blood-feeding, and both females and males exclusively feed on sugary diets. The midgut is a well-understood organ in blood-feeding mosquitoes, but little is known about it in non-blood-feeding ones. In the present study, the detailed morphology of the midgut of Toxorhynchites theobaldi were investigated using histochemical and ultrastructural methods. The midgut of female and male T. theobaldi adults consists of a long, slender anterior midgut (AMG), and a short, dilated posterior midgut (PMG). The AMG is subdivided into AMG1 (short, with folds) and AMG2 (long, without folds). Nerve branches and enteroendocrine cells are present in AMG and PMG, respectively. Compared with the PMG of blood-feeding female mosquitoes, the PMG of T. theobaldi is smaller; however, in both mosquitoes, PMG seems be the main region of food digestion and absorption, and protein secretion. The epithelial folds present in the AMG of T. theobaldi have not been reported in other mosquitoes; however, the midgut muscle organization and endocrine control of the digestion process are conserved in both T. theobaldi and blood-feeding mosquitoes. PMID:26514271

  5. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus.

    PubMed

    Li-Byarlay, Hongmei; Pittendrigh, Barry R; Murdock, Larry L

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant-insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology.

  6. Host suitability and diet mixing influence activities of detoxification enzymes in adult Japanese beetles.

    PubMed

    Adesanya, Adekunle; Liu, Nannan; Held, David W

    2016-05-01

    Induction of cytochrome P450, glutathione S transferase (GST), and carboxylesterase (CoE) activity was measured in guts of the scarab Popillia japonica Newman, after consumption of single or mixed plant diets of previously ranked preferred (rose, Virginia creeper, crape myrtle and sassafras) or non-preferred hosts (boxelder, riverbirch and red oak). The goal of this study was to quantify activities of P450, GST and CoE enzymes in the midgut of adult P. japonica using multiple substrates in response to host plant suitability (preferred host vs non-preferred hosts), and single and mixed diets. Non-preferred hosts were only sparingly fed upon, and as a group induced higher activities of P450, GST and CoE than did preferred hosts. However, enzyme activities for some individual plant species were similar across categories of host suitability. Similarly, beetles tended to have greater enzyme activities after feeding on a mixture of plants compared to a single plant type, but mixing per se does not seem as important as the species represented in the mix. Induction of detoxification enzymes on non-preferred hosts, or when switching between hosts, may explain, in part, the perceived feeding preferences of this polyphagous insect. The potential consequences of induced enzyme activities on the ecology of adult Japanese beetles are discussed.

  7. Early Cretaceous angiosperms and beetle evolution.

    PubMed

    Wang, Bo; Zhang, Haichun; Jarzembowski, Edmund A

    2013-09-12

    The Coleoptera (beetles) constitute almost one-fourth of all known life-forms on earth. They are also among the most important pollinators of flowering plants, especially basal angiosperms. Beetle fossils are abundant, almost spanning the entire Early Cretaceous, and thus provide important clues to explore the co-evolutionary processes between beetles and angiosperms. We review the fossil record of some Early Cretaceous polyphagan beetles including Tenebrionoidea, Scarabaeoidea, Curculionoidea, and Chrysomeloidea. Both the fossil record and molecular analyses reveal that these four groups had already diversified during or before the Early Cretaceous, clearly before the initial rise of angiosperms to widespread floristic dominance. These four beetle groups are important pollinators of basal angiosperms today, suggesting that their ecological association with angiosperms probably formed as early as in the Early Cretaceous. With the description of additional well-preserved fossils and improvements in phylogenetic analyses, our knowledge of Mesozoic beetle-angiosperm mutualisms will greatly increase during the near future.

  8. Oedemerid blister beetle dermatosis: a review.

    PubMed

    Nicholls, D S; Christmas, T I; Greig, D E

    1990-05-01

    Blister beetle dermatosis is a distinctive vesiculobullous eruption that occurs after contact with three major groups of beetles (Order: Coleoptera). It is caused by a vesicant chemical contained in the body fluids of the beetles. The smallest and least known family is the Oedemeridae. Although there are few references in the medical literature, blister beetle dermatosis caused by oedemerids may be more common and widespread than currently recognized. The best known family is the Meloidae with numerous species worldwide causing blistering. The vesicant chemical in both Oedemeridae and Meloidae is cantharidin. The third group of blister beetles includes species of the genus Paederus (Family: Staphylinidae). The clinicopathologic picture differs because this genus contains a different vesicant agent, pederin. The clinicopathologic features of oedemerid blister beetle dermatosis are described. The world medical and relevant entomologic literature is reviewed.

  9. The Oryctes virus: its detection, identification, and implementation in biological control of the coconut palm rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae).

    PubMed

    Huger, Alois M

    2005-05-01

    In view of the increasing and devastating damage by rhinoceros beetle (Oryctes rhinoceros) to coconut palms in the middle of last century, many efforts were made to find an efficient natural control factor against this pest, which could not be controlled by pesticides. The basic procedures of these monitoring programmes are outlined together with the final detection of a virus disease in oil palm estates in Malaysia in 1963. In extensive laboratory studies, the virus was isolated and identified as the first non-occluded, rod-shaped insect virus, morphologically resembling the baculoviruses. Infection experiments clarified the pathology, histopathology, and virulence of the virus and demonstrated that the virus was extremely virulent to larvae after peroral application. These findings encouraged the first pilot release of virus in 1967 in coconut plantations of Western Samoa where breeding sites were contaminated with virus. Surprisingly, the virus became established in the Samoan rhinoceros beetle populations and spread autonomously throughout the Western Samoan islands. As a consequence, there was a drastic decline of the beetle populations followed by a conspicuous recovery of the badly damaged coconut stands. This unexpected phenomenon could only be explained after it was shown that the adult beetle itself is a very active virus vector and thus was responsible for the efficient autodissemination of the virus. The functioning of the beetle as a 'flying virus factory' is due to the unique cytopathic process developing in the midgut after peroral virus infection. Pathological details of this process are presented. Because of the long-term persistence of the virus in the populations, rhinoceros beetle control is maintained. Incorporation of virus into integrated control measures and successful virus releases in many other countries are recorded.

  10. Ductal barriers in mammary epithelium

    PubMed Central

    Owens, Mark B; Hill, Arnold DK; Hopkins, Ann M

    2013-01-01

    Tissue barriers play an integral role in the biology and pathobiology of mammary ductal epithelium. In normal breast physiology, tight and adherens junctions undergo dynamic changes in permeability in response to hormonal and other stimuli, while several of their proteins are directly involved in mammary tumorigenesis. This review describes first the structure of mammary ductal epithelial barriers and their role in normal mammary development, examining the cyclical changes in response to puberty, pregnancy, lactation and involution. It then examines the role of adherens and tight junctions and the participation of their constituent proteins in mammary tumorigenic functions such as migration, invasion and metastasis. Finally, it discusses the potential of these adhesion proteins as both prognostic biomarkers and potential therapeutic targets in breast cancer. PMID:24665412

  11. Regenerative Inflammation: Lessons from Drosophila Intestinal Epithelium in Health and Disease

    PubMed Central

    Panayidou, Stavria; Apidianakis, Yiorgos

    2013-01-01

    Intestinal inflammation is widely recognized as a pivotal player in health and disease. Defined cytologically as the infiltration of leukocytes in the lamina propria layer of the intestine, it can damage the epithelium and, on a chronic basis, induce inflammatory bowel disease and potentially cancer. The current view thus dictates that blood cell infiltration is the instigator of intestinal inflammation and tumor-promoting inflammation. This is based partially on work in humans and mice showing that intestinal damage during microbially mediated inflammation activates phagocytic cells and lymphocytes that secrete inflammatory signals promoting tissue damage and tumorigenesis. Nevertheless, extensive parallel work in the Drosophila midgut shows that intestinal epithelium damage induces inflammatory signals and growth factors acting mainly in a paracrine manner to induce intestinal stem cell proliferation and tumor formation when genetically predisposed. This is accomplished without any apparent need to involve Drosophila hemocytes. Therefore, recent work on Drosophila host defense to infection by expanding its main focus on systemic immunity signaling pathways to include the study of organ homeostasis in health and disease shapes a new notion that epithelially emanating cytokines and growth factors can directly act on the intestinal stem cell niche to promote “regenerative inflammation” and potentially cancer. PMID:25437036

  12. Midgut Barrier Imparts Selective Resistance to Filarial Worm Infection in Culex pipiens pipiens

    PubMed Central

    Michalski, Michelle L.; Erickson, Sara M.; Bartholomay, Lyric C.; Christensen, Bruce M.

    2010-01-01

    Mosquitoes in the Culex pipiens complex thrive in temperate and tropical regions worldwide, and serve as efficient vectors of Bancroftian lymphatic filariasis (LF) caused by Wuchereria bancrofti in Asia, Africa, the West Indies, South America, and Micronesia. However, members of this mosquito complex do not act as natural vectors for Brugian LF caused by Brugia malayi, or for the cat parasite B. pahangi, despite their presence in South Asia where these parasites are endemic. Previous work with the Iowa strain of Culex pipiens pipiens demonstrates that it is equally susceptible to W. bancrofti as is the natural Cx. p. pipiens vector in the Nile Delta, however it is refractory to infection with Brugia spp. Here we report that the infectivity barrier for Brugia spp. in Cx. p. pipiens is the mosquito midgut, which inflicts internal and lethal damage to ingested microfilariae. Following per os Brugia exposures, the prevalence of infection is significantly lower in Cx. p. pipiens compared to susceptible mosquito controls, and differs between parasite species with <50% and <5% of Cx. p. pipiens becoming infected with B. pahangi and B. malayi, respectively. When Brugia spp. mf were inoculated intrathoracically to bypass the midgut, larvae developed equally well as in controls, indicating that, beyond the midgut, Cx. p. pipiens is physiologically compatible with Brugia spp. Mf isolated from Cx. p. pipiens midguts exhibited compromised motility, and unlike mf derived from blood or isolated from the midguts of Ae. aegypti, failed to develop when inoculated intrathoracically into susceptible mosquitoes. Together these data strongly support the role of the midgut as the primary infection barrier for Brugia spp. in Cx. p. pipiens. Examination of parasites recovered from the Cx. p. pipiens midgut by vital staining, and those exsheathed with papain, suggest that the damage inflicted by the midgut is subcuticular and disrupts internal tissues. Microscopic studies of these worms

  13. Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae : Morphological alterations in the midgut of A. mellifera.

    PubMed

    da Silva Cruz, Aline; da Silva-Zacarin, Elaine C M; Bueno, Odair C; Malaspina, Osmar

    2010-04-01

    Morphological alterations, by means of histological and ultrastructural analysis, have been used to determine the effects of boric acid and fipronil on midgut tissues of honeybee worker, Apis mellifera L. larvae. In order to observe possible morphological alterations in the midgut, two groups of bioassays were performed. In the first one, the larvae were chronically treated with different concentrations of boric acid added to the food (1.0, 2.5 and 7.5 mg/g). In the second group, the larvae were fed with diets containing different concentrations of fipronil (0.1 and 1 microg/g) and compared with control groups without these chemical compounds. In the first bioassay, the larvae were collected on day 3 and in the second bioassay on day 4, when the mortality rate obtained in the toxicological bioassay was not very high. The larval midguts were removed and processed for morphological analyses using a light and transmission electron microscopy. We observed cytoplasmic vacuolizations, with the absence of autophagic vacuoles, and chromatinic compacting in most of the cells in the groups treated with pesticides. The morphological alterations were far greater in the larvae treated with boric acid than in the larvae treated with fipronil. Our data suggest that the midgut cell death observed was in response to boric acid and fipronil action. This study significantly improves the understanding of the toxicological effect of these insecticides from the ecotoxicological perspective.

  14. Regulation of chitin synthesis in the larval midgut of Manduca sexta.

    PubMed

    Zimoch, L; Hogenkamp, D G; Kramer, K J; Muthukrishnan, S; Merzendorfer, H

    2005-06-01

    In insects, chitin is not only synthesized by ectodermal cells that form chitinous cuticles, but also by endodermal cells of the midgut that secrete a chitinous peritrophic matrix. Using anti-chitin synthase (CHS) antibodies, we previously demonstrated that in the midgut of Manduca sexta, CHS is expressed by two cell types, tracheal cells forming a basal tracheal network and columnar cells forming the apical brush border [Zimoch and Merzendorfer, 2002, Cell Tissue Res. 308, 287-297]. Now, we show that two different genes, MsCHS1 and MsCHS2, encode CHSs of midgut tracheae and columnar cells, respectively. To investigate MsCHS2 expression and activity in the course of the larval development, we monitored chitin synthesis, enzyme levels as well as mRNA amounts. All of the tested parameters were significantly reduced during molting and in the wandering stage when compared to the values obtained from intermolt feeding larvae. By contrast, MsCHS1 appeared to be inversely regulated because its mRNA was detectable only during the molt at the time when tracheal growth occurs at the basal site of the midgut. To further examine midgut chitin synthesis, we measured enzyme activity in crude midgut extracts and different membrane fractions. When we analysed trypsin-mediated proteolytic activation, a phenomenon previously reported for insect and fungal systems, we recognized that midgut chitin synthesis was only activated in crude extracts, but not in the 12,000 g membrane fraction. However, proteolytic activation by trypsin in the 12,000 g membrane fraction could be reconstituted by re-adding a soluble fraction, indicating that limited proteolysis affects an unknown soluble factor, a process that in turn activates chitin synthesis.

  15. Lunar orientation in a beetle.

    PubMed

    Dacke, Marie; Byrne, Marcus J; Scholtz, Clarke H; Warrant, Eric J

    2004-02-22

    Many animals use the sun's polarization pattern to orientate, but the dung beetle Scarabaeus zambesianus is the only animal so far known to orientate using the million times dimmer polarization pattern of the moonlit sky. We demonstrate the relative roles of the moon and the nocturnal polarized-light pattern for orientation. We find that artificially changing the position of the moon, or hiding the moon's disc from the beetle's field of view, generally did not influence its orientation performance. We thus conclude that the moon does not serve as the primary cue for orientation. The effective cue is the polarization pattern formed around the moon, which is more reliable for orientation. Polarization sensitivity ratios in two photoreceptors in the dorsal eye were found to be 7.7 and 12.9, similar to values recorded in diurnal navigators. These results agree with earlier results suggesting that the detection and analysis of polarized skylight is similar in diurnal and nocturnal insects.

  16. Unusual coloration in scarabaeid beetles

    NASA Astrophysics Data System (ADS)

    Brink, D. J.; van der Berg, N. G.; Prinsloo, L. C.; Hodgkinson, I. J.

    2007-04-01

    In this paper we investigate the reflection of circularly polarized light from the exocuticle of the scarabaeid beetle Gymnopleurus virens. Reflection spectra are deeply modulated, exhibiting a number of relatively narrow well-defined peaks, which differ from previously studied specimens. By comparing model calculations and electron microscopy work with the recorded spectra, we can propose the presence of specific structural defects responsible for the unusual spectra.

  17. Effects of Periplocoside P from Periploca sepium on the Midgut Transmembrane Potential of Mythimna separata Larvae

    PubMed Central

    Wang, YingYing; Qi, Zhijun; Qi, Meng; Hu, Zhaonong; Wu, Wenjun

    2016-01-01

    Periplocoside P (PSP) isolated from the root bark of Periploca sepium contains a pregnane glycoside skeleton and possesses high insecticidal properties. Preliminary studies indicated that PSP disrupts epithelial functions in the midgut of lepidopteran larvae. In the present study, we examined the effects of PSP on the apical and basolateral membrane voltages, Va and Vbl, respectively, of cells from (1) midguts isolated from the larvae of the oriental armyworm Mythimna separata that were in vitro incubated with toxins and (2) midguts isolated from M. separata larvae force-fed with PSP. We compared the effects of PSP with the effects of the Bacillus thuringiensis toxin Cry1Ab and inactive periplocoside E (PSE) on the midgut epithelial cells. The results showed that Va rapidly decreased in the presence of PSP in a time- and dose-dependent manner, similar to the effects of Cry1Ab. By contrast, PSE did not affect the Va and Vbl. Additionally, PSP did not influence the Vbl. Given these results, we speculate that PSP may modulate transport mechanisms at the apical membrane of the midgut epithelial cells by inhibiting the V-type H+ ATPase. PMID:27833169

  18. Mod(mdg4) participates in hormonally regulated midgut programmed cell death during metamorphosis.

    PubMed

    Cai, Mei-Juan; Liu, Wen; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2012-12-01

    The insect midgut undergoes programmed cell death (PCD) during metamorphosis, but the molecular basis for this phenomenon has not been demonstrated. We report a mod(mdg4) protein [designated as mod(mdg4)1A] that is involved in hormonally regulated insect midgut PCD, from the lepidopteran Helicoverpa armigera. Mod(mdg4)1A is localized in the larval midgut and is highly expressed during metamorphosis. Knockdown of mod(mdg4)1a by feeding dsRNA to the larvae suppressed midgut PCD and delayed metamorphosis. The mechanism is that mod(mdg4)1a knockdown decreased the transcript levels of genes involved in PCD and metamorphosis, but increased the transcript level of inhibitor of apoptosis survivin. The transcript level of mod(mdg4)1a is independently upregulated by 20-hydroxyecdysone (20E) or juvenile hormone (JH) analog methoprene. Overlapped 20E and methoprene counteractively regulate the transcript level of mod(mdg4)1a. 20E upregulates the mod(mdg4)1a transcript level not through its nuclear receptor EcRB1. Methoprene upregulates the mod(mdg4)1a transcript level through the juvenile hormone candidate receptor Met. These findings indicate that mod(mdg4)1a participates in midgut PCD and metamorphosis by regulating the transcript levels of a network of genes via different pathways under 20E and JH regulation.

  19. Exploring the midgut proteome of partially fed female cattle tick (Rhipicephalus (Boophilus) microplus).

    PubMed

    Kongsuwan, Kritaya; Josh, Peter; Zhu, Ying; Pearson, Roger; Gough, Joanne; Colgrave, Michelle L

    2010-02-01

    The continued development of effective anti-tick vaccines remains the most promising prospect for the control of the cattle tick, Rhipicephalus (Boophilus) microplus. A vaccine based on midgut proteins could interfere with successful tick feeding and additionally interfere with midgut developmental stages of Babesia parasites, providing opportunities for the control of both the tick and the pathogens it transmits. Midgut proteins from partially fed adult female cattle ticks were analysed using a combination of 2-DE and gel-free LC-MS/MS. Analysis of the urea-soluble protein fraction resulted in the confident identification of 105 gut proteins, while the PBS-soluble fraction yielded an additional 37 R. microplus proteins. The results show an abundance of proteins involved in mitochondrial ATP synthesis, electron transport chain, protein synthesis, chaperone, antioxidant and protein folding and transport activities in midgut tissues of adult female ticks. Among the novel products identified were clathrin-adaptor protein, which is involved in the assembly of clathrin-coated vesicles, and membrane-associated trafficking proteins such as syntaxin 6 and surfeit 4. The observations allow the formulation of hypotheses regarding midgut physiology and will serve as a basis for future vaccine development and tick-host interaction research.

  20. Alterations in the Helicoverpa armigera midgut digestive physiology after ingestion of pigeon pea inducible leucine aminopeptidase.

    PubMed

    Lomate, Purushottam R; Jadhav, Bhakti R; Giri, Ashok P; Hivrale, Vandana K

    2013-01-01

    Jasmonate inducible plant leucine aminopeptidase (LAP) is proposed to serve as direct defense in the insect midgut. However, exact functions of inducible plant LAPs in the insect midgut remain to be estimated. In the present investigation, we report the direct defensive role of pigeon pea inducible LAP in the midgut of Helicoverpa armigera (Lepidoptera: Noctuidae) and responses of midgut soluble aminopeptidases and serine proteinases upon LAP ingestion. Larval growth and survival was significantly reduced on the diets supplemented with pigeon pea LAP. Aminopeptidase activities in larvae remain unaltered in presence or absence of inducible LAP in the diet. On the contrary, serine proteinase activities were significantly decreased in the larvae reared on pigeon pea LAP containing diet as compared to larvae fed on diet without LAP. Our data suggest that pigeon pea inducible LAP is responsible for the degradation of midgut serine proteinases upon ingestion. Reduction in the aminopeptidase activity with LpNA in the H. armigera larvae was compensated with an induction of aminopeptidase activity with ApNA. Our findings could be helpful to further dissect the roles of plant inducible LAPs in the direct plant defense against herbivory.

  1. Investigation of the midgut structure and ultrastructure in Cimex lectularius and Cimex pipistrelli (Hemiptera: Cimicidae).

    PubMed

    Rost-Roszkowska, M M; Vilimova, J; Włodarczyk, A; Sonakowska, L; Kamińska, K; Kaszuba, F; Marchewka, A; Sadílek, D

    2017-02-01

    Cimicidae are temporary ectoparasites, which means that they cannot obtain food continuously. Both Cimex species examined here, Cimex lectularius (Linnaeus 1758) and Cimex pipistrelli (Jenyns 1839), can feed on a non-natal host, C. lectularius from humans on bats, C. pipistrelli on humans, but never naturally. The midgut of C. lectularius and C. pipistrelli is composed of three distinct regions-the anterior midgut (AMG), which has a sack-like shape, the long tube-shaped middle midgut (MMG), and the posterior midgut (PMG). The different ultrastructures of the AMG, MMG, and PMG in both of the species examined suggest that these regions must fulfill different functions in the digestive system. Ultrastructural analysis showed that the AMG fulfills the role of storing food and synthesizing and secreting enzymes, while the MMG is the main organ for the synthesis of enzymes, secretion, and the storage of the reserve material. Additionally, both regions, the AMG and MMG, are involved in water absorption in the digestive system of both Cimex species. The PMG is the part of the midgut in which spherites accumulate. The results of our studies confirm the suggestion of former authors that the structure of the digestive tract of insects is not attributed solely to diet but to the basic adaptation of an ancestor.

  2. Acoustic characteristics of rhinoceros beetle stridulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stridulation behavior has been reported for adults and larvae of many dynastids. This report describes acoustic recordings and analyses of stridulations by larvae of two Southeastern Asia rhinoceros beetle species and by adults of the coconut rhinoceros beetle. The behavioral context of the strid...

  3. Ground beetle (Coleoptera: Carabidae) feeding ecology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article reviews some general and applied aspects of the feeding ecology of carabid beetles. General aspects included feeding preferences, prey searching, prey capture, and digestion. Applied aspects included evidence of impact, such as predation of aphids, leafhoppers, flies, beetles and moth...

  4. Ground beetle (Coleoptera: Carabidae) feeding ecology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The article reviews some general and applied aspects of the feeding ecology of carabid beetles. General aspects included feeding preferences, prey searching, prey capture, and digestion. Applied aspects included evidence of impact, such as predation of aphids, leafhoppers, flies, beetles and moths...

  5. Book review: Methods for catching beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beetles are the most speciose animal group and found in virtually all habitats on Earth. Methods for Catching Beetles is a comprehensive general sourcebook about where and how to collect members of this diverse group. The book makes a compelling case in its Introduction about the value of scientif...

  6. Standard methods for small hive beetle research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small hive beetles, Aethina tumida, are parasites and scavengers of honey bee and other social bee colonies native to sub-Saharan Africa, where they are a minor pest only. In contrast, the beetles can be harmful parasites of European honey bee subspecies. Very rapidly after A. tumida established pop...

  7. Targeting red-headed flea beetle larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red-headed flea beetle (RHFB), Systena frontalis, is an emerging pest of cranberry that requires significant grower investment in monitoring and repeated applications of insecticides to reduce adult populations. The adult beetles are highly mobile and consume a broad range of host plants whereas t...

  8. Early Cretaceous angiosperms and beetle evolution

    PubMed Central

    Wang, Bo; Zhang, Haichun; Jarzembowski, Edmund A.

    2013-01-01

    The Coleoptera (beetles) constitute almost one–fourth of all known life-forms on earth. They are also among the most important pollinators of flowering plants, especially basal angiosperms. Beetle fossils are abundant, almost spanning the entire Early Cretaceous, and thus provide important clues to explore the co-evolutionary processes between beetles and angiosperms. We review the fossil record of some Early Cretaceous polyphagan beetles including Tenebrionoidea, Scarabaeoidea, Curculionoidea, and Chrysomeloidea. Both the fossil record and molecular analyses reveal that these four groups had already diversified during or before the Early Cretaceous, clearly before the initial rise of angiosperms to widespread floristic dominance. These four beetle groups are important pollinators of basal angiosperms today, suggesting that their ecological association with angiosperms probably formed as early as in the Early Cretaceous. With the description of additional well-preserved fossils and improvements in phylogenetic analyses, our knowledge of Mesozoic beetle–angiosperm mutualisms will greatly increase during the near future. PMID:24062759

  9. Anemomenotatic orientation in beetles and scorpions

    NASA Technical Reports Server (NTRS)

    Linsenmair, K. E.

    1972-01-01

    Orientation, by beetles and scorpions, according to wind direction and force are analyzed. Major efforts were made to determine: (1) which physical qualities of the air current influence anemomenotaxis, (2) which physiological mechanism is responsible for such orientation, (3) which sense organs do beetles and scorpions use to perceive wind directions, and (4) what the biological significance of anemomenotaxis in the beetle and scorpion is. Experimental results show that the trichobothria in scorpions perceives wind direction; in the beetle it is perceived by sense organs excited by pendicellus-flagellum joint movements. A compensation mechanism is suggested as the basis for anemomenotactic orientation. It was also suggested that the biological significance of anemomenotaxis in scorpions is space orientation; while in beetles it was found to be part of the appetitive behavior used to search for olfactory sign stimuli.

  10. Different Effects of Bacillus thuringiensis Toxin Cry1Ab on Midgut Cell Transmembrane Potential of Mythimna separata and Agrotis ipsilon Larvae

    PubMed Central

    Wang, Yingying; Hu, Zhaonong; Wu, Wenjun

    2015-01-01

    Bacillus thuringiensis (Bt) Cry toxins from the Cry1A family demonstrate significantly different toxicities against members of the family Noctuidae for unknown reasons. In this study, membrane potential was measured and analyzed in freshly isolated midgut samples from Mythimna separata and Agrotis ipsilon larvae under oral administration and in vitro incubation with Bt toxin Cry1Ab to elucidate the mechanism of action for further control of these pests. Bioassay results showed that the larvae of M. separata achieved a LD50 of 258.84 ng/larva at 24 h after ingestion; M. separata larvae were at least eightfold more sensitive than A. ipsilon larvae to Cry1Ab. Force-feeding showed that the observed midgut apical-membrane potential (Vam) of M. separata larvae was significantly depolarized from −82.9 ± 6.6 mV to −19.9 ± 7.2 mV at 8 h after ingestion of 1 μg activated Cry1Ab, whereas no obvious changes were detected in A. ipsilon larvae with dosage of 5 μg Cry1Ab. The activated Cry1Ab caused a distinct concentration-dependent depolarization of the apical membrane; Vam was reduced by 50% after 14.7 ± 0.2, 9.8 ± 0.4, and 7.6 ± 0.6 min of treatment with 1, 5, and 10 μg/mL Cry1Ab, respectively. Cry1Ab showed a minimal effect on A. ipsilon larvae even at 20 μg/mL, and Vam decreased by 26.3% ± 2.3% after 15 min. The concentrations of Cry1Ab displayed no significant effect on the basolateral side of the epithelium. The Vam of A. ipsilon (−33.19 ± 6.29 mV, n = 51) was only half that of M. separata (−80.94 ± 6.95 mV, n = 75). The different degrees of sensitivity to Cry1Ab were speculatively associated with various habits, as well as the diverse physiological or biochemical characteristics of the midgut cell membranes. PMID:26694463

  11. The junctional epithelium originates from the odontogenic epithelium of an erupted tooth.

    PubMed

    Yajima-Himuro, Sara; Oshima, Masamitsu; Yamamoto, Gou; Ogawa, Miho; Furuya, Madoka; Tanaka, Junichi; Nishii, Kousuke; Mishima, Kenji; Tachikawa, Tetsuhiko; Tsuji, Takashi; Yamamoto, Matsuo

    2014-05-02

    The junctional epithelium (JE) is an epithelial component that is directly attached to the tooth surface and has a protective function against periodontal diseases. In this study, we determined the origin of the JE using a bioengineered tooth technique. We transplanted the bioengineered tooth germ into the alveolar bone with an epithelial component that expressed green fluorescence protein. The reduced enamel epithelium from the bioengineered tooth fused with the oral epithelium, and the JE was apparently formed around the bioengineered tooth 50 days after transplantation. Importantly, the JE exhibited green fluorescence for at least 140 days after transplantation, suggesting that the JE was not replaced by oral epithelium. Therefore, our results demonstrated that the origin of the JE was the odontogenic epithelium, and odontogenic epithelium-derived JE was maintained for a relatively long period.

  12. An unexpected cause of small bowel obstruction in an adult patient: midgut volvulus

    PubMed Central

    Söker, Gökhan; Yılmaz, Cengiz; Karateke, Faruk; Gülek, Bozkurt

    2014-01-01

    The most important complication of intestinal malrotation is midgut volvulus because it may lead to intestinal ischaemia and necrosis. A 29-year-old male patient was admitted to the emergency department with abdominal pain. Ultrasonography (US), colour Doppler ultrasonography (CDUS), CT and barium studies were carried out. On US and CDUS, twisting of intestinal segments around the superior mesenteric artery (SMA) and superior mesenteric vein (SMV) and alteration of the SMA–SMV relationship were detected. CT demonstrated that the small intestine was making a rotation around the SMA and SMV, which amounted to more than 360°. The upper gastrointestinal barium series revealed a corkscrew appearance of the duodenum and proximal jejunum, which is a pathognomonic finding of midgut volvulus. Prior knowledge of characteristic imaging findings of midgut volvulus is essential in order to reach proper diagnosis and establish proper treatment before the development of intestinal ischaemia and necrosis. PMID:24811563

  13. Comparative cytokeratin distribution patterns in cholesteatoma epithelium.

    PubMed

    Olszewska, E; Sudhoff, H

    2007-01-01

    Cytokeratins (CKs) are known as the intermediate filament proteins of epithelial origin. Their distribution in human epithelia is different according to the type of epithelium, state of growth and differentiation. We used monoclonal mouse antibodies against cytokeratins to study CK expression in the following human tissues: cholesteatoma, middle ear mucosa, glandular epithelium, and meatal ear canal epithelium. Immunohistochemical processing was performed using the labeled steptavidin peroxidase method to demonstrate the presence of CKs in cells of human epidermis. Positive reaction was obtained for CK4, CK34betaE12, CK10, CK14 in skin and cholesteatoma epithelium. However, a more extensive positive reaction with those CKs was observed in cholesteatoma epithelium. Positive immunoreactivity was seen with anti- CK19 in the glandular epithelium. Middle ear mucosa specimens revealed positive immunoreactivity with the antibodies against CK4. The expression of CK4 was definitely positive within the basal layers of the epidermis. The glandular epithelium showed no positive reaction with anti- CK4, anti- CK34betaE12, anti- CK14 and anti-CK10. Immunohistochemistry for CK18 showed no reaction in all examined tissues. Cholesteatoma is known as a proliferative disease in the middle ear which pathogenesis is not completely understood. Keratinocytes express hyperproliferation- associated CKs and after reaching the suprabasal layers they finally undergo apoptosis creating keratinous debris. Cytokeratin expression observed in the epithelium explains proliferative behavior of cholesteatoma which is associated with increased keratinocyte migration. Cytokeratins can be used as potential proliferative markers. It can also allow for searching the usefulness of inhibiting regulators in the treatment of hyperproliferative diseases.

  14. Prey digestion in the midgut of the predatory bug Podisus nigrispinus (Hemiptera: Pentatomidae).

    PubMed

    Fialho, Maria C Q; Moreira, Nathalia R; Zanuncio, José C; Ribeiro, Alberto F; Terra, Walter R; Serrão, José E

    2012-06-01

    Pre-oral digestion is described as the liquefaction of the solid tissues of the prey by secretions of the predator. It is uncertain if pre-oral digestion means pre-oral dispersion of food or true digestion in the sense of the stepwise bond breaking of food polymers to release monomers to be absorbed. Collagenase is the only salivary proteinase, which activity is significant (10%) in relation to Podisus nigrispinus midgut activities. This suggests that pre-oral digestion in P. nigrispinus consists in prey tissue dispersion. This was confirmed by the finding of prey muscles fibers inside P. nigrispinus midguts. Soluble midgut hydrolases from P. nigrispinus were partially purified by ion-exchange chromatography, followed by gel filtration. Two cathepsin L-like proteinases (CAL1 and CAL2) were isolated with the properties: CAL1 (14.7 kDa, pH optimum (pHo) 5.5, km with carbobenzoxy-Phe-Arg-methylcoumarin, Z-FR-MCA, 32 μM); CAL2 (17 kDa, pHo 5.5, km 11 μM Z-FR-MCA). Only a single molecular species was found for the other enzymes with the following properties are: amylase (43 kDa, pHo 5.5, km 0.1% starch), aminopeptidase (125 kDa, pHo 5.5, km 0.11 mM l-Leucine-p-nitroanilide), α-glucosidase (90 kDa, pHo 5.0, km 5mM with p-nitrophenyl α-d-glucoside). CAL molecular masses are probably underestimated due to interaction with the column. Taking into account the distribution of hydrolases along P. nigrispinus midguts, carbohydrate digestion takes place mainly at the anterior midgut, whereas protein digestion occurs mostly in middle and posterior midgut, as previously described in seed- sucker and blood-feeder hemipterans.

  15. Increased centrosome amplification in aged stem cells of the Drosophila midgut

    SciTech Connect

    Park, Joung-Sun; Pyo, Jung-Hoon; Na, Hyun-Jin; Jeon, Ho-Jun; Kim, Young-Shin; Arking, Robert; Yoo, Mi-Ae

    2014-07-25

    Highlights: • Increased centrosome amplification in ISCs of aged Drosophila midguts. • Increased centrosome amplification in ISCs of oxidative stressed Drosophila midguts. • Increased centrosome amplification in ISCs by overexpression of PVR, EGFR, and AKT. • Supernumerary centrosomes can be responsible for abnormal ISC polyploid cells. • Supernumerary centrosomes can be a useful marker for aging stem cells. - Abstract: Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo.

  16. Osmotic regulation of airway reactivity by epithelium.

    PubMed

    Fedan, J S; Yuan, L X; Chang, V C; Viola, J O; Cutler, D; Pettit, L L

    1999-05-01

    Inhalation of nonisotonic solutions can elicit pulmonary obstruction in asthmatic airways. We evaluated the hypothesis that the respiratory epithelium is involved in responses of the airways to nonisotonic solutions using the guinea pig isolated, perfused trachea preparation to restrict applied agents to the mucosal (intraluminal) or serosal (extraluminal) surface of the airway. In methacholine-contracted tracheae, intraluminally applied NaCl or KCl equipotently caused relaxation that was unaffected by the cyclo-oxygenase inhibitor, indomethacin, but was attenuated by removal of the epithelium and Na+ and Cl- channel blockers. Na+-K+-2Cl- cotransporter and nitric oxide synthase blockers caused a slight inhibition of relaxation, whereas Na+,K+-pump inhibition produced a small potentiation. Intraluminal hyperosmolar KCl and NaCl inhibited contractions in response to intra- or extraluminally applied methacholine, as well as neurogenic cholinergic contractions elicited with electric field stimulation (+/- indomethacin). Extraluminally applied NaCl and KCl elicited epithelium-dependent relaxation (which for KCl was followed by contraction). In contrast to the effects of hyperosmolarity, intraluminal hypo-osmolarity caused papaverine-inhibitable contractions (+/- epithelium). These findings suggest that the epithelium is an osmotic sensor which, through the release of epithelium-derived relaxing factor, can regulate airway diameter by modulating smooth muscle responsiveness and excitatory neurotransmission.

  17. Detection of heparin in the salivary gland and midgut of Aedes togoi.

    PubMed

    Ha, Young-Ran; Oh, So-Ra; Seo, Eun-Seok; Kim, Bo-Heum; Lee, Dong-Kyu; Lee, Sang-Joon

    2014-04-01

    Mosquitoes secrete saliva that contains biological substances, including anticoagulants that counteract a host's hemostatic response and prevent blood clotting during blood feeding. This study aimed to detect heparin, an anticoagulant in Aedes togoi using an immunohistochemical detection method, in the salivary canal, salivary gland, and midgut of male and female mosquitoes. Comparisons showed that female mosquitoes contained higher concentrations of heparin than male mosquitoes. On average, the level of heparin was higher in blood-fed female mosquitoes than in non-blood-fed female mosquitoes. Heparin concentrations were higher in the midgut than in the salivary gland. This indicates presence of heparin in tissues of A. togoi.

  18. Sequencing, De Novo Assembly and Annotation of the Colorado Potato Beetle, Leptinotarsa decemlineata, Transcriptome

    PubMed Central

    Kumar, Abhishek; Congiu, Leonardo; Lindström, Leena; Piiroinen, Saija; Vidotto, Michele; Grapputo, Alessandro

    2014-01-01

    Background The Colorado potato beetle (Leptinotarsa decemlineata) is a major pest and a serious threat to potato cultivation throughout the northern hemisphere. Despite its high importance for invasion biology, phenology and pest management, little is known about L. decemlineata from a genomic perspective. We subjected European L. decemlineata adult and larval transcriptome samples to 454-FLX massively-parallel DNA sequencing to characterize a basal set of genes from this species. We created a combined assembly of the adult and larval datasets including the publicly available midgut larval Roche 454 reads and provided basic annotation. We were particularly interested in diapause-specific genes and genes involved in pesticide and Bacillus thuringiensis (Bt) resistance. Results Using 454-FLX pyrosequencing, we obtained a total of 898,048 reads which, together with the publicly available 804,056 midgut larval reads, were assembled into 121,912 contigs. We established a repository of genes of interest, with 101 out of the 108 diapause-specific genes described in Drosophila montana; and 621 contigs involved in insecticide resistance, including 221 CYP450, 45 GSTs, 13 catalases, 15 superoxide dismutases, 22 glutathione peroxidases, 194 esterases, 3 ADAM metalloproteases, 10 cadherins and 98 calmodulins. We found 460 putative miRNAs and we predicted a significant number of single nucleotide polymorphisms (29,205) and microsatellite loci (17,284). Conclusions This report of the assembly and annotation of the transcriptome of L. decemlineata offers new insights into diapause-associated and insecticide-resistance-associated genes in this species and provides a foundation for comparative studies with other species of insects. The data will also open new avenues for researchers using L. decemlineata as a model species, and for pest management research. Our results provide the basis for performing future gene expression and functional analysis in L. decemlineata and improve our

  19. A Multi-omics Approach to Understand the Microbial Transformation of Lignocellulosic Materials in the Digestive System of the Wood-Feeding Beetle Odontotaenius disjunctus

    NASA Astrophysics Data System (ADS)

    Ceja Navarro, J. A.; Karaoz, U.; White, R. A., III; Lipton, M. S.; Adkins, J.; Mayali, X.; Blackwell, M.; Pett-Ridge, J.; Brodie, E.; Hao, Z.

    2015-12-01

    Odontotaenius disjuctus is a wood feeding beetle that processes large amounts of hardwoods and plays an important role in forest carbon cycling. In its gut, plant material is transformed into simple molecules by sequential processing during passage through the insect's digestive system. In this study, we used multiple 'omics approaches to analyze the distribution of microbial communities and their specific functions in lignocellulose deconstruction within the insect's gut. Fosmid clones were selected and sequenced from a pool of clones based on their expression of plant polymer degrading enzymes, allowing the identification of a wide range of carbohydrate degrading enzymes. Comparison of metagenomes of all gut regions demonstrated the distribution of genes across the beetle gut. Cellulose, starch, and xylan degradation genes were particularly abundant in the midgut and posterior hindgut. Genes involved in hydrogenotrophic production of methane and nitrogenases were more abundant in the anterior hindgut. Assembled contigs were binned into 127 putative genomes representing Bacteria, Archaea, Fungi and Nematodes. Eleven complete genomes were reconstructed allowing to identify linked functions/traits, including organisms with cellulosomes, and a combined potential for cellulose, xylan and starch hydrolysis and nitrogen fixation. A metaproteomic study was conducted to test the expression of the pathways identified in the metagenomic study. Preliminary analyses suggest enrichment of pathways related to hemicellulosic degradation. A complete xylan degradation pathway was reconstructed and GC-MS/MS based metabolomics identified xylobiose and xylose as major metabolite pools. To relate microbial identify to function in the beetle gut, Chip-SIP isotope tracing was conducted with RNA extracted from beetles fed 13C-cellulose. Multiple 13C enriched bacterial groups were detected, mainly in the midgut. Our multi-omics approach has allowed us to characterize the contribution of

  20. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    PubMed Central

    Sigle, Leah Theresa; Ramalho-Ortigão, Marcelo

    2013-01-01

    Sandflies (Diptera: Psychodidae) are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2). Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells) that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania. PMID:24037187

  1. Determination of pH in regions of the midguts of acaridid mites.

    PubMed

    Erban, Tomas; Hubert, Jan

    2010-01-01

    The pH of the guts of mites strongly affects their digestive processes. This study was carried out to determine the pH in the guts of 12 species of stored product and house dust mites. Eighteen pH indicators were chosen and offered to the mites in the feeding biotest. Based on the color changes of the indicators, the gut contents of acaridid mites were determined to be within a pH range of 4 to neutral. The gut contents showed a gradient in pH from the anterior to the posterior part. The anterior midgut (ventriculus and caeca) of most species had a pH ranging from 4.5 to 5, or slightly more alkaline for most of the species, while the middle midgut (intercolon/colon) had a pH of 5 to 6. Finally, the pH of the posterior midgut (postcolon) was between 5.5 and 7. Except for Dermatophagoides spp., no remarkable differences in the pH of the gut were observed among the tested species. Dermatophagoides spp. had a more acidic anterior midgut (a pH of 4 to 5) and colon (a pH of 5) with postcolon (a pH of below 6). The results characterizing in vivo conditions in the mite gut offer useful information to study the activity of mite digestive enzymes including their inhibitors and gut microflora.

  2. Localization of two post-proline cleaving peptidases in the midgut of Tenebrio molitor larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two soluble post-proline cleaving peptidase activities, PPCP1 and PPCP2, were demonstrated in the midgut of Tenebrio molitor larvae with the substrate benzyloxycarbonyl-L-alanyl-L-proline p-nitroanilide. Both activities were serine peptidases. PPCP1 was active in acidic buffers, with maximum activit...

  3. Variation in Vector Competence for Dengue Viruses Does Not Depend on Mosquito Midgut Binding Affinity

    PubMed Central

    Cox, Jonathan; Brown, Heidi E.; Rico-Hesse, Rebeca

    2011-01-01

    Background Dengue virus genotypes of Southeast Asian origin have been associated with higher virulence and transmission compared to other genotypes of serotype 2 (DEN-2). We tested the hypothesis that genetic differences in dengue viruses may result in differential binding to the midgut of the primary vector, Aedes aegypti, resulting in increased transmission or vectorial capacity. Methodology/Principal Finding Two strains of each of the four DEN-2 genotypes (Southeast Asian, American, Indian, and West African) were tested to determine their binding affinity for mosquito midguts from two distinct populations (Tapachula, Chiapas, Mexico and McAllen, Texas, USA). Our previous studies demonstrated that Southeast Asian viruses disseminated up to 65-fold more rapidly in Ae. aegypti from Texas and were therefore more likely to be transmitted to humans. Results shown here demonstrate that viruses from all four genotypes bind to midguts at the same rate, in a titer-dependent manner. In addition, we show population differences when comparing binding affinity for DEN-2 between the Tapachula and McAllen mosquito colonies. Conclusions If midgut binding potential is the same for all DEN-2 viruses, then viral replication differences in these tissues and throughout the mosquito can thus probably explain the significant differences in dissemination and vector competence. These conclusions differ from the established paradigms to explain mosquito barriers to infection, dissemination, and transmission. PMID:21610852

  4. Barber Pole Sign in CT Angiography, Adult Presentation of Midgut Malrotation: A Case Report

    PubMed Central

    Garcelan-Trigo, Juan Arsenio; Tello-Moreno, Manuel; Rabaza-Espigares, Manuel Jesus; Talavera-Martinez, Ildefonso

    2015-01-01

    Adult midgut volvulus is a challenging diagnosis because of its low incidence and nonspecific symptoms. Diagnostic delay and long-term complaints are frequent in this clinical scenario. We reported a patient referred to our diagnostic imaging unit with intermittent abdominal pain, bloating and episodic vomiting for several years. He underwent barium gastrointestinal transit and abdominal ultrasound, which revealed severe gastric dilatation, food retention and slow transit until a depressed duodenojejunal flexure, with malrotation of the midgut and jejunal loops being located in the right upper quadrant. Computed tomography angiography was performed, showing rotation of the small intestine around the mesentery root, suggestive of midgut malrotation. In addition, an abnormal twisted disposition of superior mesenteric artery with corkscrew appearance was seen, shaping the pole-barber sign which was evident in volume rendering three-dimensional reconstructions. The patient underwent scheduled surgical treatment without any complication and had good outcome after hospital discharge and follow-up. Computed tomography plays an important role in evaluation of adult midgut volvulus. In addition, angiographic reconstructions can help us to assess the anatomic disposition of mesenteric vascular supply. Both of these assessments are useful in preoperative management. PMID:26557278

  5. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana

    PubMed Central

    Gendrin, Mathilde; Pels, Nana Adjoa P.; Yeboah-Manu, Dorothy; Christophides, George K.; Wilson, Michael D.

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  6. Olfactory epithelium changes in germfree mice

    PubMed Central

    François, Adrien; Grebert, Denise; Rhimi, Moez; Mariadassou, Mahendra; Naudon, Laurent; Rabot, Sylvie; Meunier, Nicolas

    2016-01-01

    Intestinal epithelium development is dramatically impaired in germfree rodents, but the consequences of the absence of microbiota have been overlooked in other epithelia. In the present study, we present the first description of the bacterial communities associated with the olfactory epithelium and explored differences in olfactory epithelium characteristics between germfree and conventional, specific pathogen-free, mice. While the anatomy of the olfactory epithelium was not significantly different, we observed a thinner olfactory cilia layer along with a decreased cellular turn-over in germfree mice. Using electro-olfactogram, we recorded the responses of olfactory sensitive neuronal populations to various odorant stimulations. We observed a global increase in the amplitude of responses to odorants in germfree mice as well as altered responses kinetics. These changes were associated with a decreased transcription of most olfactory transduction actors and of olfactory xenobiotic metabolising enzymes. Overall, we present here the first evidence that the microbiota modulates the physiology of olfactory epithelium. As olfaction is a major sensory modality for most animal species, the microbiota may have an important impact on animal physiology and behaviour through olfaction alteration. PMID:27089944

  7. Characterization of proteinases from the midgut of Rhipicephalus (Boophilus) microplus involved in the generation of antimicrobial peptides

    PubMed Central

    2010-01-01

    Background Hemoglobin is a rich source of biologically active peptides, some of which are potent antimicrobials (hemocidins). A few hemocidins have been purified from the midgut contents of ticks. Nonetheless, how antimicrobials are generated in the tick midgut and their role in immunity is still poorly understood. Here we report, for the first time, the contribution of two midgut proteinases to the generation of hemocidins. Results An aspartic proteinase, designated BmAP, was isolated from the midgut of Rhipicephalus (Boophilus) microplus using three chromatographic steps. Reverse transcription-quantitative polymerase chain reaction revealed that BmAP is restricted to the midgut. The other enzyme is a previously characterized midgut cathepsin L-like cysteine proteinase designated BmCL1. Substrate specificities of native BmAP and recombinant BmCL1 were mapped using a synthetic combinatorial peptide library and bovine hemoglobin. BmCL1 preferred substrates containing non-polar residues at P2 subsite and polar residues at P1, whereas BmAP hydrolysed substrates containing non-polar amino acids at P1 and P1'. Conclusions BmAP and BmCL1 generate hemocidins from hemoglobin alpha and beta chains in vitro. We postulate that hemocidins may be important for the control of tick pathogens and midgut flora. PMID:20663211

  8. A P-Glycoprotein Is Linked to Resistance to the Bacillus thuringiensis Cry3Aa Toxin in a Leaf Beetle

    PubMed Central

    Pauchet, Yannick; Bretschneider, Anne; Augustin, Sylvie; Heckel, David G.

    2016-01-01

    Chrysomela tremula is a polyvoltine oligophagous leaf beetle responsible for massive attacks on poplar trees. This beetle is an important model for understanding mechanisms of resistance to Bacillus thuringiensis (Bt) insecticidal toxins, because a resistant C. tremula strain has been found that can survive and reproduce on transgenic poplar trees expressing high levels of the Cry3Aa Bt toxin. Resistance to Cry3Aa in this strain is recessive and is controlled by a single autosomal locus. We used a larval midgut transcriptome for C. tremula to search for candidate resistance genes. We discovered a mutation in an ABC protein, member of the B subfamily homologous to P-glycoprotein, which is genetically linked to Cry3Aa resistance in C. tremula. Cultured insect cells heterologously expressing this ABC protein swell and lyse when incubated with Cry3Aa toxin. In light of previous findings in Lepidoptera implicating A subfamily ABC proteins as receptors for Cry2A toxins and C subfamily proteins as receptors for Cry1A and Cry1C toxins, this result suggests that ABC proteins may be targets of insecticidal three-domain Bt toxins in Coleoptera as well. PMID:27929397

  9. A P-Glycoprotein Is Linked to Resistance to the Bacillus thuringiensis Cry3Aa Toxin in a Leaf Beetle.

    PubMed

    Pauchet, Yannick; Bretschneider, Anne; Augustin, Sylvie; Heckel, David G

    2016-12-05

    Chrysomela tremula is a polyvoltine oligophagous leaf beetle responsible for massive attacks on poplar trees. This beetle is an important model for understanding mechanisms of resistance to Bacillus thuringiensis (Bt) insecticidal toxins, because a resistant C. tremula strain has been found that can survive and reproduce on transgenic poplar trees expressing high levels of the Cry3Aa Bt toxin. Resistance to Cry3Aa in this strain is recessive and is controlled by a single autosomal locus. We used a larval midgut transcriptome for C. tremula to search for candidate resistance genes. We discovered a mutation in an ABC protein, member of the B subfamily homologous to P-glycoprotein, which is genetically linked to Cry3Aa resistance in C. tremula. Cultured insect cells heterologously expressing this ABC protein swell and lyse when incubated with Cry3Aa toxin. In light of previous findings in Lepidoptera implicating A subfamily ABC proteins as receptors for Cry2A toxins and C subfamily proteins as receptors for Cry1A and Cry1C toxins, this result suggests that ABC proteins may be targets of insecticidal three-domain Bt toxins in Coleoptera as well.

  10. Polarisation vision: beetles see circularly polarised light.

    PubMed

    Warrant, Eric J

    2010-07-27

    It has long been known that the iridescent cuticle of many scarab beetles reflects circularly polarised light. It now turns out that scarabs can also see this light, potentially using it as a covert visual signal.

  11. Midgut and salivary gland transcriptomes of the arbovirus vector Culicoides sonorensis (Diptera: Ceratopogonidae).

    PubMed

    Campbell, C L; Vandyke, K A; Letchworth, G J; Drolet, B S; Hanekamp, T; Wilson, W C

    2005-04-01

    Numerous Culicoides spp. are important vectors of livestock or human disease pathogens. Transcriptome information from midguts and salivary glands of adult female Culicoides sonorensis provides new insight into vector biology. Of 1719 expressed sequence tags (ESTs) from adult serum-fed female midguts harvested within 5 h of feeding, twenty-eight clusters of serine proteases were derived. Four clusters encode putative iron binding proteins (FER1, FERL, PXDL1, PXDL2), and two clusters encode metalloendopeptidases (MDP6C, MDP6D) that probably function in bloodmeal catabolism. In addition, a diverse variety of housekeeping cDNAs were identified. Selected midgut protease transcripts were analysed by quantitative real-time PCR (q-PCR): TRY1_115 and MDP6C mRNAs were induced in adult female midguts upon feeding, whereas TRY1_156 and CHYM1 were abundant in midguts both before and immediately after feeding. Of 708 salivary gland ESTs analysed, clusters representing two new classes of protein families were identified: a new class of D7 proteins and a new class of Kunitz-type protease inhibitors. Additional cDNAs representing putative immunomodulatory proteins were also identified: 5' nucleotidases, antigen 5-related proteins, a hyaluronidase, a platelet-activating factor acetylhydrolase, mucins and several immune response cDNAs. Analysis by q-PCR showed that all D7 and Kunitz domain transcripts tested were highly enriched in female heads compared with other tissues and were generally absent from males. The mRNAs of two additional protease inhibitors, TFPI1 and TFPI2, were detected in salivary glands of paraffin-embedded females by in situ hybridization.

  12. Midgut Transcriptome of the Cockroach Periplaneta americana and Its Microbiota: Digestion, Detoxification and Oxidative Stress Response

    PubMed Central

    Zhang, Jianhua; Zhang, Yixi; Li, Jingjing; Liu, Meiling; Liu, Zewen

    2016-01-01

    The cockroach, Periplaneta americana, is an obnoxious and notorious pest of the world, with a strong ability to adapt to a variety of complex environments. However, the molecular mechanism of this adaptability is mostly unknown. In this study, the genes and microbiota composition associated with the adaptation mechanism were studied by analyzing the transcriptome and 16S rDNA pyrosequencing of the P. americana midgut, respectively. Midgut transcriptome analysis identified 82,905 unigenes, among which 64 genes putatively involved in digestion (11 genes), detoxification (37 genes) and oxidative stress response (16 genes) were found. Evaluation of gene expression following treatment with cycloxaprid further revealed that the selected genes (CYP6J1, CYP4C1, CYP6K1, Delta GST, alpha-amylase, beta-glucosidase and aminopeptidase) were upregulated at least 2.0-fold at the transcriptional level, and four genes were upregulated more than 10.0-fold. An interesting finding was that three digestive enzymes positively responded to cycloxaprid application. Tissue expression profiles further showed that most of the selected genes were midgut-biased, with the exception of CYP6K1. The midgut microbiota composition was obtained via 16S rDNA pyrosequencing and was found to be mainly dominated by organisms from the Firmicutes phylum, among which Clostridiales, Lactobacillales and Burkholderiales were the main orders which might assist the host in the food digestion or detoxification of noxious compounds. The preponderant species, Clostridium cellulovorans, was previously reported to degrade lignocellulose efficiently in insects. The abundance of genes involved in digestion, detoxification and response to oxidative stress, and the diversity of microbiota in the midgut might provide P. americana high capacity to adapt to complex environments. PMID:27153200

  13. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells

    PubMed Central

    Ramphul, Urvashi N.; Garver, Lindsey S.; Molina-Cruz, Alvaro; Canepa, Gaspar E.; Barillas-Mury, Carolina

    2015-01-01

    The malaria parasite, Plasmodium, must survive and develop in the mosquito vector to be successfully transmitted to a new host. The Plasmodium falciparum Pfs47 gene is critical for malaria transmission. Parasites that express Pfs47 (NF54 WT) evade mosquito immunity and survive, whereas Pfs47 knockouts (KO) are efficiently eliminated by the complement-like system. Two alternative approaches were used to investigate the mechanism of action of Pfs47 on immune evasion. First, we examined whether Pfs47 affected signal transduction pathways mediating mosquito immune responses, and show that the Jun-N-terminal kinase (JNK) pathway is a key mediator of Anopheles gambiae antiplasmodial responses to P. falciparum infection and that Pfs47 disrupts JNK signaling. Second, we used microarrays to compare the global transcriptional responses of A. gambiae midguts to infection with WT and KO parasites. The presence of Pfs47 results in broad and profound changes in gene expression in response to infection that are already evident 12 h postfeeding, but become most prominent at 26 h postfeeding, the time when ookinetes invade the mosquito midgut. Silencing of 15 differentially expressed candidate genes identified caspase-S2 as a key effector of Plasmodium elimination in parasites lacking Pfs47. We provide experimental evidence that JNK pathway regulates activation of caspases in Plasmodium-invaded midgut cells, and that caspase activation is required to trigger midgut epithelial nitration. Pfs47 alters the cell death pathway of invaded midgut cells by disrupting JNK signaling and prevents the activation of several caspases, resulting in an ineffective nitration response that makes the parasite undetectable by the mosquito complement-like system. PMID:25552553

  14. Midgut Transcriptome of the Cockroach Periplaneta americana and Its Microbiota: Digestion, Detoxification and Oxidative Stress Response.

    PubMed

    Zhang, Jianhua; Zhang, Yixi; Li, Jingjing; Liu, Meiling; Liu, Zewen

    2016-01-01

    The cockroach, Periplaneta americana, is an obnoxious and notorious pest of the world, with a strong ability to adapt to a variety of complex environments. However, the molecular mechanism of this adaptability is mostly unknown. In this study, the genes and microbiota composition associated with the adaptation mechanism were studied by analyzing the transcriptome and 16S rDNA pyrosequencing of the P. americana midgut, respectively. Midgut transcriptome analysis identified 82,905 unigenes, among which 64 genes putatively involved in digestion (11 genes), detoxification (37 genes) and oxidative stress response (16 genes) were found. Evaluation of gene expression following treatment with cycloxaprid further revealed that the selected genes (CYP6J1, CYP4C1, CYP6K1, Delta GST, alpha-amylase, beta-glucosidase and aminopeptidase) were upregulated at least 2.0-fold at the transcriptional level, and four genes were upregulated more than 10.0-fold. An interesting finding was that three digestive enzymes positively responded to cycloxaprid application. Tissue expression profiles further showed that most of the selected genes were midgut-biased, with the exception of CYP6K1. The midgut microbiota composition was obtained via 16S rDNA pyrosequencing and was found to be mainly dominated by organisms from the Firmicutes phylum, among which Clostridiales, Lactobacillales and Burkholderiales were the main orders which might assist the host in the food digestion or detoxification of noxious compounds. The preponderant species, Clostridium cellulovorans, was previously reported to degrade lignocellulose efficiently in insects. The abundance of genes involved in digestion, detoxification and response to oxidative stress, and the diversity of microbiota in the midgut might provide P. americana high capacity to adapt to complex environments.

  15. Composition of the Spruce Budworm (Choristoneura fumiferana) Midgut Microbiota as Affected by Rearing Conditions.

    PubMed

    Landry, Mathieu; Comeau, André M; Derome, Nicolas; Cusson, Michel; Levesque, Roger C

    2015-01-01

    The eastern spruce budworm (Choristoneura fumiferana) is one of the most destructive forest insect pests in Canada. Little is known about its intestinal microbiota, which could play a role in digestion, immune protection, communication and/or development. The present study was designed to provide a first characterization of the effects of rearing conditions on the taxonomic diversity and structure of the C. fumiferana midgut microbiota, using a culture-independent approach. Three diets and insect sources were examined: larvae from a laboratory colony reared on a synthetic diet and field-collected larvae reared on balsam fir or black spruce foliage. Bacterial DNA from the larval midguts was extracted to amplify and sequence the V6-V8 region of the 16S rRNA gene, using the Roche 454 GS-FLX technology. Our results showed a dominance of Proteobacteria, mainly Pseudomonas spp., in the spruce budworm midgut, irrespective of treatment group. Taxonomic diversity of the midgut microbiota was greater for larvae reared on synthetic diet than for those collected and reared on host plants, a difference that is likely accounted for by several factors. A greater proportion of bacteria from the phylum Bacteroidetes in insects fed artificial diet constituted the main difference between this group and those reared on foliage; within the phylum Proteobacteria, the presence of the genus Bradyrhizobium was also unique to insects reared on artificial diet. Strikingly, a Bray-Curtis analysis showed important differences in microbial diversity among the treatment groups, pointing to the importance of diet and environment in defining the spruce budworm midgut microbiota.

  16. Composition of the Spruce Budworm (Choristoneura fumiferana) Midgut Microbiota as Affected by Rearing Conditions

    PubMed Central

    Landry, Mathieu; Comeau, André M.; Derome, Nicolas; Cusson, Michel; Levesque, Roger C.

    2015-01-01

    The eastern spruce budworm (Choristoneura fumiferana) is one of the most destructive forest insect pests in Canada. Little is known about its intestinal microbiota, which could play a role in digestion, immune protection, communication and/or development. The present study was designed to provide a first characterization of the effects of rearing conditions on the taxonomic diversity and structure of the C. fumiferana midgut microbiota, using a culture-independent approach. Three diets and insect sources were examined: larvae from a laboratory colony reared on a synthetic diet and field-collected larvae reared on balsam fir or black spruce foliage. Bacterial DNA from the larval midguts was extracted to amplify and sequence the V6-V8 region of the 16S rRNA gene, using the Roche 454 GS-FLX technology. Our results showed a dominance of Proteobacteria, mainly Pseudomonas spp., in the spruce budworm midgut, irrespective of treatment group. Taxonomic diversity of the midgut microbiota was greater for larvae reared on synthetic diet than for those collected and reared on host plants, a difference that is likely accounted for by several factors. A greater proportion of bacteria from the phylum Bacteroidetes in insects fed artificial diet constituted the main difference between this group and those reared on foliage; within the phylum Proteobacteria, the presence of the genus Bradyrhizobium was also unique to insects reared on artificial diet. Strikingly, a Bray-Curtis analysis showed important differences in microbial diversity among the treatment groups, pointing to the importance of diet and environment in defining the spruce budworm midgut microbiota. PMID:26636571

  17. Transporters involved in glucose and water absorption in the Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) anterior midgut.

    PubMed

    Bifano, Thaís D; Alegria, Thiago G P; Terra, Walter R

    2010-09-01

    Little is known about insect intestinal sugar absorption, in spite of the recent findings, and even less has been published regarding water absorption. The aim of this study was to shed light on putative transporters of water and glucose in the insect midgut. Glucose and water absorptions by the anterior ventriculus of Dysdercus peruvianus midgut were determined by feeding the insects with a glucose and a non-absorbable dye solution, followed by periodical dissection of insects and analysis of ventricular contents. Glucose absorption decreases glucose/dye ratios and water absorption increases dye concentrations. Water and glucose transports are activated (water 50%, glucose 33%) by 50 mM K(2)SO(4) and are inhibited (water 46%, glucose 82%) by 0.2 mM phloretin, the inhibitor of the facilitative hexose transporter (GLUT) or are inhibited (water 45%, glucose 35%) by 0.1 mM phlorizin, the inhibitor of the Na(+)-glucose cotransporter (SGLT). The results also showed that the putative SGLT transports about two times more water relative to glucose than the putative GLUT. These results mean that D. peruvianus uses a GLUT-like transporter and an SGLT-like transporter (with K(+) instead of Na(+)) to absorb dietary glucose and water. A cDNA library from D. peruvianus midgut was screened and we found one sequence homologous to GLUT1, named DpGLUT, and another to a sodium/solute symporter, named DpSGLT. Semi-quantitative RT-PCR studies revealed that DpGLUT and DpSGLTs mRNA were expressed in the anterior midgut, where glucose and water are absorbed, but not in fat body, salivary gland and Malpighian tubules. This is the first report showing the involvement of putative GLUT and SGLT in both water and glucose midgut absorption in insects.

  18. Creosote production from beetle infested timber

    SciTech Connect

    Allen, J.F.; Maxwell, T.T.

    1982-01-01

    Wood-tar creosote accumulation in stove pipes and chimneys following burning of beetle-killed southern pine, green pine, seasoned hardwood totalled 6.21, 3.21, 4.27 and 3.73 lb/ton DM respectively. Tests showed that accumulation depends more on air supply to the stove than type or moisture content of wood burned. It is suggested that beetle-killed pine should not be rejected as a fuelwood on the basis of creosote production.

  19. Symbiont diversification in ambrosia beetles: Diversity of fungi associated with exotic scolytine beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In virtually every forest habitat, ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae) plant and maintain symbiotic fungus gardens inside dead or dying wood. Some introduced ambrosia beetles aggressively attack live trees and can damage tree crops, lumber, and native woody plant t...

  20. Do Pine Beetles Fan the Flames in Western Forests?

    NASA Video Gallery

    As mountain pine beetles damage whole regions of Western forests, some worry that the dead trees left behind have created a tinderbox ready to burn. But do pine beetles really increase fire risk? I...

  1. Research note: the effects of darkling beetles on broiler performance.

    PubMed

    Skewes, P A; Monroe, J L

    1991-04-01

    Six polyvinylchlorine pipe darkling beetle traps were placed in 20 commercial broiler production facilities, and the relative level of beetle infestation was determined from weekly sampling during 4 wk of the growout period. The average number of beetles found at each facility was compared with the following production parameters: mortality, feed conversion, condemnation rate, and production cost. In the 20 commercial broiler flocks evaluated, the level of darkling beetles within the facility was not related to any of the production parameters measured.

  2. Experimental evidence of bark beetle adaptation to a fungal symbiont.

    PubMed

    Bracewell, Ryan R; Six, Diana L

    2015-11-01

    The importance of symbiotic microbes to insects cannot be overstated; however, we have a poor understanding of the evolutionary processes that shape most insect-microbe interactions. Many bark beetle (Coleoptera: Curculionidae, Scolytinae) species are involved in what have been described as obligate mutualisms with symbiotic fungi. Beetles benefit through supplementing their nutrient-poor diet with fungi and the fungi benefit through gaining transportation to resources. However, only a few beetle-fungal symbioses have been experimentally manipulated to test whether the relationship is obligate. Furthermore, none have tested for adaptation of beetles to their specific symbionts, one of the requirements for coevolution. We experimentally manipulated the western pine beetle-fungus symbiosis to determine whether the beetle is obligately dependent upon fungi and to test for fine-scale adaptation of the beetle to one of its symbiotic fungi, Entomocorticium sp. B. We reared beetles from a single population with either a natal isolate of E. sp. B (isolated from the same population from which the beetles originated), a non-natal isolate (a genetically divergent isolate from a geographically distant beetle population), or with no fungi. We found that fungi were crucial for the successful development of western pine beetles. We also found no significant difference in the effects of the natal and non-natal isolate on beetle fitness parameters. However, brood adult beetles failed to incorporate the non-natal fungus into their fungal transport structure (mycangium) indicating adaption by the beetle to particular genotypes of symbiotic fungi. Our results suggest that beetle-fungus mutualisms and symbiont fidelity may be maintained via an undescribed recognition mechanism of the beetles for particular symbionts that may promote particular associations through time.

  3. [Estimation of the biological age in males of the taiga tick (Ixodes persulcatus: Ixodinae) by fat reserves in the midgut].

    PubMed

    Grigor'eva, L A

    2012-01-01

    Some criteria for the estimation of the biological and calendar age by the fat storage in midgut cells of Ixodes persulcatus males were established on the basis of examination of ticks from the laboratory culture.

  4. The extraembryonic serosa is a frontier epithelium providing the insect egg with a full-range innate immune response.

    PubMed

    Jacobs, Chris G C; Spaink, Herman P; van der Zee, Maurijn

    2014-12-09

    Drosophila larvae and adults possess a potent innate immune response, but the response of Drosophila eggs is poor. In contrast to Drosophila, eggs of the beetle Tribolium are protected by a serosa, an extraembryonic epithelium that is present in all insects except higher flies. In this study, we test a possible immune function of this frontier epithelium using Tc-zen1 RNAi-mediated deletion. First, we show that bacteria propagate twice as fast in serosa-less eggs. Then, we compare the complete transcriptomes of wild-type, control RNAi, and Tc-zen1 RNAi eggs before and after sterile or septic injury. Infection induces genes involved in Toll and IMD-signaling, melanisation, production of reactive oxygen species and antimicrobial peptides in wild-type eggs but not in serosa-less eggs. Finally, we demonstrate constitutive and induced immune gene expression in the serosal epithelium using in situ hybridization. We conclude that the serosa provides insect eggs with a full-range innate immune response.

  5. New data on flea beetle management in cranberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Report of two trials conducted this summer for flea beetle management. The first one, conducted in the greenhouse, compares efficacy of native WI nematodes to chemical insecticides for flea beetle control. In this trial, nematodes provided similar control for flea beetles as both insecticides (Belay...

  6. Dosage response mortality of Japanese beetle, masked chafer, and June beetle (Coleoptera: Scarabaeidae) adults when exposed to experimental and commercially available granules containing Metarhizium brunneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult beetles of three different white grub species, Japanese beetle, Popillia japonica, June beetle, Phyllophaga spp., and masked chafer, Cyclocephala spp. were exposed to experimental and commercially available granules containing Metarhizium brunneum (Petch) strain F52, to determine susceptibilit...

  7. Blocking of malaria parasite development in mosquito and fecundity reduction by midgut antibodies in Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Suneja, Amita; Gulia, Monika; Gakhar, S K

    2003-02-01

    Rabbits were immunized three times with extracts of Anopheles stephensi midgut. Immunized rabbits showed a high titer of antibodies when characterized by ELISA. We investigated the effect of anti-mosquito midgut antibodies on mosquito fecundity, longevity, mortality, engorgement, and the development of the malaria parasite in mosquitoes. Fecundity was reduced significantly (38%) and similarly hatchability by about 43.5%. There was no statistically significant effect on mortality, longevity, and engorgement. When the mosquito blood meal contained anti-midgut antibodies, fewer oocysts of Plasmodium vivax developed in the mosquito midgut and the proportion of mosquitoes becoming infected was significantly reduced. We also found that the midgut antibodies inhibit the development and/or translocation of the sporozoites. Antisera raised against midgut of A. stephensi recognized eight polypeptides (110, 92, 70, 45, 38, 29, 15, 13 kDa) by Western blotting. Cross-reactive antigens/epitopes present in other tissues of A. stephensi were also examined both by Western blotting and in vivo ELISA. Together, these observations open an avenue for research toward the development of a vector-based malaria parasite transmission blocking vaccine and/or anti-mosquito vaccine.

  8. Molecular cloning and characterization of neutral ceramidase homologue from the red flour beetle, Tribolium castaneum.

    PubMed

    Zhou, Ying; Lin, Xian-Wen; Yang, Qiong; Zhang, Yan-Ru; Yuan, Jing-Qun; Lin, Xin-Da; Xu, Ruijuan; Cheng, Jiaan; Mao, Cungui; Zhu, Zeng-Rong

    2011-07-01

    Ceramidase plays an important role in regulating the metabolism of sphingolipids, such as ceramide, sphingosine (SPH), and sphingosine-1-phosphate (S1P), by controlling the hydrolysis of ceramide. Here we report the cloning and biochemical characterization of a neutral ceramidase from the red flour beetle Tribolium castaneum which is an important storage pest. The Tribolium castaneum neutral ceramidase (Tncer) is a protein of 696 amino acids. It shares a high degree of similarity in protein sequence to neutral ceramidases from various species. Tncer mRNA levels are higher in the adult stage than in pre-adult stages, and they are higher in the reproductive organs than in head, thorax, and midgut. The mature ovary has higher mRNA levels than the immature ovary. Tncer is localized to the plasma membrane. It uses various ceramides (D-erythro-C(6), C(12), C(16), C(18:1), and C(24:1)-ceramide) as substrates and has an abroad pH optimum for its in vitro activity. Tncer has an optimal temperature of 37 °C for its in vitro activity. Its activity is inhibited by Fe(2+). These results suggest that Tncer has distinct biochemical properties from neutral ceramidases from other species.

  9. Contrasting diets reveal metabolic plasticity in the tree-killing beetle, Anoplophora glabripennis (Cerambycidae: Lamiinae)

    NASA Astrophysics Data System (ADS)

    Mason, Charles J.; Scully, Erin D.; Geib, Scott M.; Hoover, Kelli

    2016-09-01

    Wood-feeding insects encounter challenging diets containing low protein quantities, recalcitrant carbohydrate sources, and plant defensive compounds. The Asian longhorned beetle (Anoplophora glabripennis) is a wood-feeding insect that attacks and kills a diversity of hardwood tree species. We compared gene expression of midguts collected from larvae feeding in a preferred tree, sugar maple, to those consuming a nutrient-rich artificial diet, to identify genes putatively involved in host plant utilization. Anoplophora glabripennis larvae exhibited differential expression of ~3600 genes in response to different diets. Genes with predicted capacity for plant and microbial carbohydrate usage, detoxification, nutrient recycling, and immune-related genes relevant for facilitating interactions with microbial symbionts were upregulated in wood-feeding larvae compared to larvae feeding in artificial diet. Upregulation of genes involved in protein degradation and synthesis was also observed, suggesting that proteins incur more rapid turnover in insects consuming wood. Additionally, wood-feeding individuals exhibited elevated expression of several mitochondrial cytochrome C oxidase genes, suggesting increased aerobic respiration compared to diet-fed larvae. These results indicate that A. glabripennis modulates digestive and basal gene expression when larvae are feeding in a nutrient-poor, yet suitable host plant compared to a tractable and nutrient-rich diet that is free of plant defensive compounds.

  10. Contrasting diets reveal metabolic plasticity in the tree-killing beetle, Anoplophora glabripennis (Cerambycidae: Lamiinae).

    PubMed

    Mason, Charles J; Scully, Erin D; Geib, Scott M; Hoover, Kelli

    2016-09-22

    Wood-feeding insects encounter challenging diets containing low protein quantities, recalcitrant carbohydrate sources, and plant defensive compounds. The Asian longhorned beetle (Anoplophora glabripennis) is a wood-feeding insect that attacks and kills a diversity of hardwood tree species. We compared gene expression of midguts collected from larvae feeding in a preferred tree, sugar maple, to those consuming a nutrient-rich artificial diet, to identify genes putatively involved in host plant utilization. Anoplophora glabripennis larvae exhibited differential expression of ~3600 genes in response to different diets. Genes with predicted capacity for plant and microbial carbohydrate usage, detoxification, nutrient recycling, and immune-related genes relevant for facilitating interactions with microbial symbionts were upregulated in wood-feeding larvae compared to larvae feeding in artificial diet. Upregulation of genes involved in protein degradation and synthesis was also observed, suggesting that proteins incur more rapid turnover in insects consuming wood. Additionally, wood-feeding individuals exhibited elevated expression of several mitochondrial cytochrome C oxidase genes, suggesting increased aerobic respiration compared to diet-fed larvae. These results indicate that A. glabripennis modulates digestive and basal gene expression when larvae are feeding in a nutrient-poor, yet suitable host plant compared to a tractable and nutrient-rich diet that is free of plant defensive compounds.

  11. Contrasting diets reveal metabolic plasticity in the tree-killing beetle, Anoplophora glabripennis (Cerambycidae: Lamiinae)

    PubMed Central

    Mason, Charles J.; Scully, Erin D.; Geib, Scott M.; Hoover, Kelli

    2016-01-01

    Wood-feeding insects encounter challenging diets containing low protein quantities, recalcitrant carbohydrate sources, and plant defensive compounds. The Asian longhorned beetle (Anoplophora glabripennis) is a wood-feeding insect that attacks and kills a diversity of hardwood tree species. We compared gene expression of midguts collected from larvae feeding in a preferred tree, sugar maple, to those consuming a nutrient-rich artificial diet, to identify genes putatively involved in host plant utilization. Anoplophora glabripennis larvae exhibited differential expression of ~3600 genes in response to different diets. Genes with predicted capacity for plant and microbial carbohydrate usage, detoxification, nutrient recycling, and immune-related genes relevant for facilitating interactions with microbial symbionts were upregulated in wood-feeding larvae compared to larvae feeding in artificial diet. Upregulation of genes involved in protein degradation and synthesis was also observed, suggesting that proteins incur more rapid turnover in insects consuming wood. Additionally, wood-feeding individuals exhibited elevated expression of several mitochondrial cytochrome C oxidase genes, suggesting increased aerobic respiration compared to diet-fed larvae. These results indicate that A. glabripennis modulates digestive and basal gene expression when larvae are feeding in a nutrient-poor, yet suitable host plant compared to a tractable and nutrient-rich diet that is free of plant defensive compounds. PMID:27654346

  12. Fine-structural changes in the midgut of old Drosophila melanogaster

    NASA Technical Reports Server (NTRS)

    Anton-Erxleben, F.; Miquel, J.; Philpott, D. E.

    1983-01-01

    Senescent fine-structural changes in the midgut of Drosophila melanogaster are investigated. A large number of midgut mitochondria in old flies exhibit nodular cristae and a tubular system located perpendicular to the normal cristae orientation. Anterior intestinal cells show a senescent accumulation of age pigment, either with a surrounding two-unit membrane or without any membrane. The predominant localization of enlarged mitochondria and pigment in the luminal gut region may be related to the polarized metabolism of the intestinal cells. Findings concur with previous observations of dense-body accumulations and support the theory that mitochondria are involved in the aging of fixed post-mitotic cells. Demonstrated by statistical analyses is that mitochondrial size increase is related to mitochondrial variation increase.

  13. Disruption by conophthorin of the kairomonal response of sawyer beetles to bark beetle pheromones.

    PubMed

    Morewood, W D; Simmonds, K E; Gries, R; Allison, J D; Borden, J H

    2003-09-01

    Antennally active nonhost angiosperm bark volatiles were tested for their ability to reduce the response of three common species of coniferophagous wood-boring Cerambycidae to attractant-baited multiple funnel traps in the southern interior of British Columbia. Of the nonhost volatiles tested, only conophthorin was behaviorally active, disrupting the attraction of sawyer beetles, Monochamus spp., to traps baited with the host volatiles alpha-pinene and ethanol and the bark beetle pheromones ipsenol and ipsdienol. Conophthorin did not affect the attraction of sawyer beetles to the host kairomones alpha-pinene and ethanol in the absence of bark beetle pheromones, nor did it have any behavioral effect on adults of Xylotrechus longitarsis, which were not attracted to bark beetle pheromones. These results indicate that conophthorin does not act as a general repellent for coniferophagous Cerambycidae, as it seems to do for many species of Scolytidae, but has the specific activity of disrupting the kairomonal response of sawyer beetles to bark beetle pheromones.

  14. Thermal and water relations of desert beetles

    NASA Astrophysics Data System (ADS)

    Cloudsley-Thompson, J.

    2001-11-01

    The physical problems that living organisms have to contend with in hot deserts are primarily extremes of temperature, low humidity, shortage or absence of free water, and the environmental factors that accentuate these - such as strong winds, sand-storms, lack of shade, rocky and impenetrable soils. Climatic factors are particularly important to smaller animals such as arthropods on account of their relatively enormous surface to volume ratios. Nevertheless, beetles (especially Tenebrionidae and, to a lesser extent, Chrysomelidae) are among the most successful animals of the desert, and are often the only ones to be seen abroad during the day. Similar physical problems are experienced by insects in all terrestrial biomes, but they are much enhanced in the desert. Although climatic extremes are often avoided by burrowing habits coupled with circadian and seasonal activity rhythms, as well as reproductive phenology, several species of desert beetle are nevertheless able to withstand thermal extremes that would rapidly cause the death of most other arthropods including insects. The reactions of desert beetles to heat are largely behavioural whilst their responses to water shortage are primarily physiological. The effects of coloration are not discussed. In addition to markedly low rates of transpiration, desert beetles can also withstand a considerable reduction in the water content of their tissues. The study of desert beetles is important because it illustrates many of the solutions evolved by arthropods to the problems engendered, in an extreme form, by life in all terrestrial environments.

  15. Thermal and water relations of desert beetles.

    PubMed

    Cloudsley-Thompson, J L

    2001-11-01

    The physical problems that living organisms have to contend with in hot deserts are primarily extremes of temperature, low humidity, shortage or absence of free water, and the environmental factors that accentuate these--such as strong winds, sand-storms, lack of shade, rocky and impenetrable soils. Climatic factors are particularly important to smaller animals such as arthropods on account of their relatively enormous surface to volume ratios. Nevertheless, beetles (especially Tenebrionidae and, to a lesser extent, Chrysomelidae) are among the most successful animals of the desert, and are often the only ones to be seen abroad during the day. Similar physical problems are experienced by insects in all terrestrial biomes, but they are much enhanced in the desert. Although climatic extremes are often avoided by burrowing habits coupled with circadian and seasonal activity rhythms, as well as reproductive phenology, several species of desert beetle are nevertheless able to withstand thermal extremes that would rapidly cause the death of most other arthropods including insects. The reactions of desert beetles to heat are largely behavioural whilst their responses to water shortage are primarily physiological. The effects of coloration are not discussed. In addition to markedly low rates of transpiration, desert beetles can also withstand a considerable reduction in the water content of their tissues. The study of desert beetles is important because it illustrates many of the solutions evolved by arthropods to the problems engendered, in an extreme form, by life in all terrestrial environments.

  16. Aggregation of Bacillus thuringiensis Cry1A Toxins upon Binding to Target Insect Larval Midgut Vesicles

    PubMed Central

    Aronson, Arthur I.; Geng, Chaoxian; Wu, Lan

    1999-01-01

    During sporulation, Bacillus thuringiensis produces crystalline inclusions comprised of a mixture of δ-endotoxins. Following ingestion by insect larvae, these inclusion proteins are solubilized, and the protoxins are converted to toxins. These bind specifically to receptors on the surfaces of midgut apical cells and are then incorporated into the membrane to form ion channels. The steps required for toxin insertion into the membrane and possible oligomerization to form a channel have been examined. When bound to vesicles from the midguts of Manduca sexta larvae, the Cry1Ac toxin was largely resistant to digestion with protease K. Only about 60 amino acids were removed from the Cry1Ac amino terminus, which included primarily helix α1. Following incubation of the Cry1Ab or Cry1Ac toxins with vesicles, the preparations were solubilized by relatively mild conditions, and the toxin antigens were analyzed by immunoblotting. In both cases, most of the toxin formed a large, antigenic aggregate of ca. 200 kDa. These toxin aggregates did not include the toxin receptor aminopeptidase N, but interactions with other vesicle components were not excluded. No oligomerization occurred when inactive toxins with mutations in amphipathic helices (α5) and known to insert into the membrane were tested. Active toxins with other mutations in this helix did form oligomers. There was one exception; a very active helix α5 mutant toxin bound very well to membranes, but no oligomers were detected. Toxins with mutations in the loop connecting helices α2 and α3, which affected the irreversible binding to vesicles, also did not oligomerize. There was a greater extent of oligomerization of the Cry1Ac toxin with vesicles from the Heliothis virescens midgut than with those from the M. sexta midgut, which correlated with observed differences in toxicity. Tight binding of virtually the entire toxin molecule to the membrane and the subsequent oligomerization are both important steps in toxicity

  17. Cytotoxic effects of neem oil in the midgut of the predator Ceraeochrysa claveri.

    PubMed

    Scudeler, Elton Luiz; Garcia, Ana Silvia Gimenes; Padovani, Carlos Roberto; Pinheiro, Patricia Fernanda Felipe; dos Santos, Daniela Carvalho

    2016-01-01

    Studies of morphological and ultrastructural alterations in target organs have been useful for evaluating the sublethal effects of biopesticides regarded as safe for non-target organisms in ecotoxicological analyses. One of the most widely used biopesticides is neem oil, and its safety and compatibility with natural enemies have been further clarified through bioassays performed to analyze the effects of indirect exposure by the intake of poisoned prey. Thus, this study examined the cellular response of midgut epithelial cells of the adult lacewing, Ceraeochrysa claveri, to neem oil exposure via intake of neem oil-contaminated prey during the larval stage. C. claveri larvae were fed Diatraea saccharalis eggs treated with neem oil at concentrations of 0.5%, 1% and 2% throughout the larval stage. The adult females obtained from these treatments were used at two ages (newly emerged and at the start of oviposition) in morphological and ultrastructural analyses. Neem oil was found to cause pronounced cytotoxic effects in the adult midgut, such as cell dilation, emission of cytoplasmic protrusions, cell lysis, loss of integrity of the cell cortex, dilation of cisternae of the rough endoplasmic reticulum, swollen mitochondria, vesiculated appearance of the Golgi complex and dilated invaginations of the basal labyrinth. Epithelial cells responded to those injuries with various cytoprotective and detoxification mechanisms, including increases in cell proliferation, the number of calcium-containing cytoplasmic granules, and HSP 70 expression, autophagic processes and the development of smooth endoplasmic reticulum, but these mechanisms were insufficient for recovery from all of the cellular damage to the midgut. This study demonstrates that neem oil exposure impairs the midgut by causing sublethal effects that may affect the physiological functions of this organ, indicating the importance of studies of different life stages of this species and similar species to evaluate the

  18. Histochemical analysis of the goblet cell matrix in the larval midgut of Manduca sexta

    SciTech Connect

    Schultz, T.W.; Lozano, G.; Cajina-Quezada, M.

    1981-01-01

    Experimental analyses were made to histochemically determine the composition of the goblet cell matrix material in the larval midgut of the tobacco hornworm, Manduca sexta. Techniques employed following fixation in Carnoy fluid were the periodic acid-Schiff reaction and the alcian blue stain at pH 1.0 and pH 2.5 and following methylation and subsequent saponification. The cumulative evidence suggests that the plug material is an acid mucosubstance.

  19. Shifts in the Midgut/Pyloric Microbiota Composition within a Honey Bee Apiary throughout a Season.

    PubMed

    Ludvigsen, Jane; Rangberg, Anbjørg; Avershina, Ekaterina; Sekelja, Monika; Kreibich, Claus; Amdam, Gro; Rudi, Knut

    2015-01-01

    Honey bees (Apis mellifera) are prominent crop pollinators and are, thus, important for effective food production. The honey bee gut microbiota is mainly host specific, with only a few species being shared with other insects. It currently remains unclear how environmental/dietary conditions affect the microbiota within a honey bee population over time. Therefore, the aim of the present study was to characterize the composition of the midgut/pyloric microbiota of a honey bee apiary throughout a season. The rationale for investigating the midgut/pyloric microbiota is its dynamic nature. Monthly sampling of a demographic homogenous population of bees was performed between May and October, with concordant recording of the honey bee diet. Mixed Sanger-and Illumina 16S rRNA gene sequencing in combination with a quantitative PCR analysis were used to determine the bacterial composition. A marked increase in α-diversity was detected between May and June. Furthermore, we found that four distinct phylotypes belonging to the Proteobacteria dominated the microbiota, and these displayed major shifts throughout the season. Gilliamella apicola dominated the composition early on, and Snodgrassella alvi began to dominate when the other bacteria declined to an absolute low in October. In vitro co-culturing revealed that G. apicola suppressed S. alvi. No shift was detected in the composition of the microbiota under stable environment/dietary conditions between November and February. Therefore, environmental/dietary changes may trigger the shifts observed in the honey bee midgut/pyloric microbiota throughout a season.

  20. Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection

    PubMed Central

    Boissière, Anne; Tchioffo, Majoline T.; Bachar, Dipankar; Abate, Luc; Marie, Alexandra; Nsango, Sandrine E.; Shahbazkia, Hamid R.; Awono-Ambene, Parfait H.; Levashina, Elena A.; Christen, Richard; Morlais, Isabelle

    2012-01-01

    The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission. PMID:22693451

  1. Production and characterization of monoclonal antibodies against midgut of ixodid tick, Haemaphysalis longicornis.

    PubMed

    Nakajima, Mie; Kodama, Michi; Yanase, Haruko; Iwanaga, Toshihiko; Mulenga, Albert; Ohashi, Kazuhiko; Onuma, Misao

    2003-08-14

    There are concerted efforts toward development of tick vaccines to replace current chemical control strategies that have serious limitations [Parasitologia 32 (1990) 145; Infectious Disease Clinics of North America (1999) 209-226]. In this study, monoclonal antibodies (mAbs) specific to Haemaphysalis longicornis midgut proteins were produced and characterized. Eight antibody-secreting hybridomas were cloned and the mAbs typed as IgG1, IgG2a and IgG2b. On immunoblots, all mAbs reacted with a midgut protein band of about 76 kDa. All mAbs uniformly immunogold-stained the surface or epithelial layers of H. longicornis midgut and endosomes. Adult ticks (50%) that fed on an ascitic mouse producing the IgGs developed a red coloration and did not oviposit. As such, the 76 kDa protein that reacted with the mAbs could, therefore, be a potential candidate for tick vaccine development.

  2. Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants.

    PubMed

    Kotkar, Hemlata M; Sarate, Priya J; Tamhane, Vaijayanti A; Gupta, Vidya S; Giri, Ashok P

    2009-08-01

    Midgut digestive amylases and proteinases of Helicoverpa armigera, a polyphagous and devastating insect pest of economic importance have been studied. We also identified the potential of a sorghum amylase inhibitor against H. armigera midgut amylase. Amylase activities were detected in all the larval instars, pupae, moths and eggs; early instars had lower amylase levels which steadily increased up to the sixth larval instar. Qualitative and quantitative differences in midgut amylases of H. armigera upon feeding on natural and artificial diets were evident. Natural diets were categorized as one or more members of legumes, vegetables, flowers and cereals belonging to different plant families. Amylase activity and isoform patterns varied depending on host plant and/or artificial diet. Artificial diet-fed H. armigera larvae had comparatively high amylase activity and several unique amylase isoforms. Correlation of amylase and proteinase activities of H. armigera with the protein and carbohydrate content of various diets suggested that H. armigera regulates the levels of these digestive enzymes in response to macromolecular composition of the diet. These adjustments in the digestive enzymes of H. armigera may be to obtain better nourishment from the diet and avoid toxicity due to nutritional imbalance. H. armigera, a generalist feeder experiences a great degree of nutritional heterogeneity in its diet. An investigation of the differences in enzyme levels in response to macronutrient balance and imbalance highlight their importance in insect nutrition.

  3. Cytotoxic effects of thiamethoxam in the midgut and malpighian tubules of Africanized Apis mellifera (Hymenoptera: Apidae).

    PubMed

    Catae, Aline Fernanda; Roat, Thaisa Cristina; De Oliveira, Regiane Alves; Nocelli, Roberta Cornélio Ferreira; Malaspina, Osmar

    2014-04-01

    Due to its expansion, agriculture has become increasingly dependent on the use of pesticides. However, the indiscriminate use of insecticides has had additional effects on the environment. These products have a broad spectrum of action, and therefore the insecticide affects not only the pests but also non-target insects such as bees, which are important pollinators of agricultural crops and natural environments. Among the most used pesticides, the neonicotinoids are particularly harmful. One of the neonicotinoids of specific concern is thiamethoxam, which is used on a wide variety of crops and is toxic to bees. Thus, this study aimed to analyze the effects of this insecticide in the midgut and Malpighian tubule cells of Africanized Apis mellifera. Newly emerged workers were exposed until 8 days to a diet containing a sublethal dose of thiamethoxam equal to 1/10 of LC₅₀ (0.0428 ng a.i./l L of diet). The bees were dissected and the organs were processed for transmission electron microscopy. The results showed that thiamethoxam is cytotoxic to midgut and Malpighian tubules. In the midgut, the damage was more evident in bees exposed to the insecticide on the first day. On the eighth day, the cells were ultrastructurally intact suggesting a recovery of this organ. The Malpighian tubules showed pronounced alterations on the eighth day of exposure of bees to the insecticide. This study demonstrates that the continuous exposure to a sublethal dose of thiamethoxam can impair organs that are used during the metabolism of the insecticide.

  4. Shifts in the Midgut/Pyloric Microbiota Composition within a Honey Bee Apiary throughout a Season

    PubMed Central

    Ludvigsen, Jane; Rangberg, Anbjørg; Avershina, Ekaterina; Sekelja, Monika; Kreibich, Claus; Amdam, Gro; Rudi, Knut

    2015-01-01

    Honey bees (Apis mellifera) are prominent crop pollinators and are, thus, important for effective food production. The honey bee gut microbiota is mainly host specific, with only a few species being shared with other insects. It currently remains unclear how environmental/dietary conditions affect the microbiota within a honey bee population over time. Therefore, the aim of the present study was to characterize the composition of the midgut/pyloric microbiota of a honey bee apiary throughout a season. The rationale for investigating the midgut/pyloric microbiota is its dynamic nature. Monthly sampling of a demographic homogenous population of bees was performed between May and October, with concordant recording of the honey bee diet. Mixed Sanger-and Illumina 16S rRNA gene sequencing in combination with a quantitative PCR analysis were used to determine the bacterial composition. A marked increase in α-diversity was detected between May and June. Furthermore, we found that four distinct phylotypes belonging to the Proteobacteria dominated the microbiota, and these displayed major shifts throughout the season. Gilliamella apicola dominated the composition early on, and Snodgrassella alvi began to dominate when the other bacteria declined to an absolute low in October. In vitro co-culturing revealed that G. apicola suppressed S. alvi. No shift was detected in the composition of the microbiota under stable environment/dietary conditions between November and February. Therefore, environmental/dietary changes may trigger the shifts observed in the honey bee midgut/pyloric microbiota throughout a season. PMID:26330094

  5. Dynamics of Midgut Microflora and Dengue Virus Impact on Life History Traits in Aedes aegypti

    PubMed Central

    Hill, Casey L.; Sharma, Avinash; Shouche, Yogesh; Severson, David W.

    2014-01-01

    Significant morbidity and potential mortality following dengue virus infection is a re-emerging global health problem. Due to the limited effectiveness of current disease control methods, mosquito biologists have been searching for new methods of controlling dengue transmission. While much effort has concentrated on determining genetic aspects to vector competence, paratransgenetic approaches could also uncover novel vector control strategies. The interactions of mosquito midgut microflora and pathogens may play significant roles in vector biology. However, little work has been done to see how the microbiome influences the host's fitness and ultimately vector competence. Here we investigated the effects of the midgut microbial environment and dengue infection on several fitness characteristics among three strains of the primary dengue virus vector mosquito Aedes aegypti. This included comparisons of dengue infection rates of females with and without their normal midgut flora. According to our findings, few effects on fitness characteristics were evident following microbial clearance or with dengue virus infection. Adult survivorship significantly varied due to strain and in one strain varied due to antibiotic treatment. Fecundity varied in one strain due to microbial clearance by antibiotics but no variation was observed in fertility due to either treatment. We show here that fitness characteristics of Ae. aegypti vary largely between strains, including varying response to microflora presence or absence, but did not vary in response to dengue virus infection. PMID:25193134

  6. Small hive beetles survive in honeybee prisons by behavioural mimicry

    NASA Astrophysics Data System (ADS)

    Ellis, J. D.; Pirk, C. W. W.; Hepburn, H. R.; Kastberger, G.; Elzen, P. J.

    2002-05-01

    We report the results of a simple experiment to determine whether honeybees feed their small hive beetle nest parasites. Honeybees incarcerate the beetles in cells constructed of plant resins and continually guard them. The longevity of incarcerated beetles greatly exceeds their metabolic reserves. We show that survival of small hive beetles derives from behavioural mimicry by which the beetles induce the bees to feed them trophallactically. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at htpp://dx.doi.org/10.1007/s00114-002-0326-y.

  7. Lung alveolar epithelium and interstitial lung disease.

    PubMed

    Corvol, Harriet; Flamein, Florence; Epaud, Ralph; Clement, Annick; Guillot, Loic

    2009-01-01

    Interstitial lung diseases (ILDs) comprise a group of lung disorders characterized by various levels of inflammation and fibrosis. The current understanding of the mechanisms underlying the development and progression of ILD strongly suggests a central role of the alveolar epithelium. Following injury, alveolar epithelial cells (AECs) may actively participate in the restoration of a normal alveolar architecture through a coordinated process of re-epithelialization, or in the development of fibrosis through a process known as epithelial-mesenchymal transition (EMT). Complex networks orchestrate EMT leading to changes in cell architecture and behaviour, loss of epithelial characteristics and gain of mesenchymal properties. In the lung, AECs themselves may serve as a source of fibroblasts and myofibroblasts by acquiring a mesenchymal phenotype. This review covers recent knowledge on the role of alveolar epithelium in the pathogenesis of ILD. The mechanisms underlying disease progression are discussed, with a main focus on the apoptotic pathway, the endoplasmic reticulum stress response and the developmental pathway.

  8. Mechanically patterning the embryonic airway epithelium.

    PubMed

    Varner, Victor D; Gleghorn, Jason P; Miller, Erin; Radisky, Derek C; Nelson, Celeste M

    2015-07-28

    Collections of cells must be patterned spatially during embryonic development to generate the intricate architectures of mature tissues. In several cases, including the formation of the branched airways of the lung, reciprocal signaling between an epithelium and its surrounding mesenchyme helps generate these spatial patterns. Several molecular signals are thought to interact via reaction-diffusion kinetics to create distinct biochemical patterns, which act as molecular precursors to actual, physical patterns of biological structure and function. Here, however, we show that purely physical mechanisms can drive spatial patterning within embryonic epithelia. Specifically, we find that a growth-induced physical instability defines the relative locations of branches within the developing murine airway epithelium in the absence of mesenchyme. The dominant wavelength of this instability determines the branching pattern and is controlled by epithelial growth rates. These data suggest that physical mechanisms can create the biological patterns that underlie tissue morphogenesis in the embryo.

  9. Odors Discrimination by Olfactory Epithelium Biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Qingjun; Hu, Ning; Ye, Weiwei; Zhang, Fenni; Wang, Hua; Wang, Ping

    2011-09-01

    Humans are exploring the bionic biological olfaction to sense the various trace components of gas or liquid in many fields. For achieving the goal, we endeavor to establish a bioelectronic nose system for odor detection by combining intact bioactive function units with sensors. The bioelectronic nose is based on the olfactory epithelium of rat and microelectrode array (MEA). The olfactory epithelium biosensor generates extracellular potentials in presence of odor, and presents obvious specificity under different odors condition. The odor response signals can be distinguished with each other effectively by signal sorting. On basis of bioactive MEA hybrid system and the improved signal processing analysis, the bioelectronic nose will realize odor discrimination by the specific feature of signals response to various odors.

  10. [Neutrophils and monocytes in gingival epithelium

    PubMed

    Meng, H X; Zheng, L P

    1994-06-01

    Neutrophils and monocytes of gingival epithellium in health gingiva(H),marginal gingivitis(MG),juvenile periodontitis(JP),adult periodontitis(AP) and subgingival bacteria were quantitated and analyzed,The results showed that the numbers of PMN within either pocket epithelium or oral gingival epithelium in JP were significantly lower than in AP and G.The amounts of PMN in AP were much larger than other three groups.Positive correlation between the number of PMN in sulcular pocket epitelium and the motile bacteri of subgingival plaque was demonstrated by correlation analysis.Monocytes mainly presented in deep pocket and junctional epithelum which were stained by NAE method,however very few Langhans cells were seen in these areas.

  11. Mechanically patterning the embryonic airway epithelium

    PubMed Central

    Varner, Victor D.; Gleghorn, Jason P.; Miller, Erin; Radisky, Derek C.; Nelson, Celeste M.

    2015-01-01

    Collections of cells must be patterned spatially during embryonic development to generate the intricate architectures of mature tissues. In several cases, including the formation of the branched airways of the lung, reciprocal signaling between an epithelium and its surrounding mesenchyme helps generate these spatial patterns. Several molecular signals are thought to interact via reaction-diffusion kinetics to create distinct biochemical patterns, which act as molecular precursors to actual, physical patterns of biological structure and function. Here, however, we show that purely physical mechanisms can drive spatial patterning within embryonic epithelia. Specifically, we find that a growth-induced physical instability defines the relative locations of branches within the developing murine airway epithelium in the absence of mesenchyme. The dominant wavelength of this instability determines the branching pattern and is controlled by epithelial growth rates. These data suggest that physical mechanisms can create the biological patterns that underlie tissue morphogenesis in the embryo. PMID:26170292

  12. Ground beetles of the Ukraine (Coleoptera, Carabidae).

    PubMed

    Putchkov, Alexander

    2011-01-01

    A review of the ground beetles of the Ukrainian fauna is given. Almost 750 species from 117 genera of Carabidae are known to occur in the Ukraine. Approximately 450 species of ground beetles are registered in the Carpathian region. No less than 300 species of ground beetles are found in the forest zone. Approximately 400 species of Carabidae present in the forest-steppe zone are relatively similar in species composition to those in the forest territories. Some 450 species of Carabidae are inhabitants of the steppe zone. Representatives of many other regions of heterogeneous biotopes such as forest, semi desert, intrazonal, etc. can be found in the steppe areas. The fauna of Carabidae (ca. 100 species) of the lowlands of southern Ukraine (sandy biotopes), situated mostly in the Kherson region, is very peculiar. The fauna of the Crimean mountains contains about 300 species. Conservation measures for the Carabidae are discussed.

  13. Ground beetles of the Ukraine (Coleoptera, Carabidae)

    PubMed Central

    Putchkov, Alexander

    2011-01-01

    Abstract A review of the ground beetles of the Ukrainian fauna is given. Almost 750 species from 117 genera of Carabidae are known to occur in the Ukraine. Approximately 450 species of ground beetles are registered in the Carpathian region. No less than 300 species of ground beetles are found in the forest zone. Approximately 400 species of Carabidae present in the forest-steppe zone are relatively similar in species composition to those in the forest territories. Some 450 species of Carabidae are inhabitants of the steppe zone. Representatives of many other regions of heterogeneous biotopes such as forest, semi desert, intrazonal, etc. can be found in the steppe areas. The fauna of Carabidae (ca. 100 species) of the lowlands of southern Ukraine (sandy biotopes), situated mostly in the Kherson region, is very peculiar. The fauna of the Crimean mountains contains about 300 species. Conservation measures for the Carabidae are discussed. PMID:21738430

  14. Airway epithelium stimulates smooth muscle proliferation.

    PubMed

    Malavia, Nikita K; Raub, Christopher B; Mahon, Sari B; Brenner, Matthew; Panettieri, Reynold A; George, Steven C

    2009-09-01

    Communication between the airway epithelium and stroma is evident during embryogenesis, and both epithelial shedding and increased smooth muscle proliferation are features of airway remodeling. Hence, we hypothesized that after injury the airway epithelium could modulate airway smooth muscle proliferation. Fully differentiated primary normal human bronchial epithelial (NHBE) cells at an air-liquid interface were co-cultured with serum-deprived normal primary human airway smooth muscle cells (HASM) using commercially available Transwells. In some co-cultures, the NHBE were repeatedly (x4) scrape-injured. An in vivo model of tracheal injury consisted of gently denuding the tracheal epithelium (x3) of a rabbit over 5 days and then examining the trachea by histology 3 days after the last injury. Our results show that HASM cell number increases 2.5-fold in the presence of NHBE, and 4.3-fold in the presence of injured NHBE compared with HASM alone after 8 days of in vitro co-culture. In addition, IL-6, IL-8, monocyte chemotactic protein (MCP)-1 and, more markedly, matrix metalloproteinase (MMP)-9 concentration increased in co-culture correlating with enhanced HASM growth. Inhibiting MMP-9 release significantly attenuated the NHBE-dependent HASM proliferation in co-culture. In vivo, the injured rabbit trachea demonstrated proliferation in the smooth muscle (trachealis) region and significant MMP-9 staining, which was absent in the uninjured control. The airway epithelium modulates smooth muscle cell proliferation via a mechanism that involves secretion of soluble mediators including potential smooth muscle mitogens such as IL-6, IL-8, and MCP-1, but also through a novel MMP-9-dependent mechanism.

  15. Dung beetles and fecal helminth transmission: patterns, mechanisms and questions.

    PubMed

    Nichols, Elizabeth; Gómez, Andrés

    2014-04-01

    Dung beetles are detrivorous insects that feed on and reproduce in the fecal material of vertebrates. This dependency on vertebrate feces implies frequent contact between dung beetles and parasitic helminths with a fecal component to their life-cycle. Interactions between dung beetles and helminths carry both positive and negative consequences for successful parasite transmission, however to date there has been no systematic review of dung beetle-helminth interactions, their epidemiological importance, or their underlying mechanisms. Here we review the observational evidence of beetle biodiversity-helminth transmission relationships, propose five mechanisms by which dung beetles influence helminth survival and transmission, and highlight areas for future research. Efforts to understand how anthropogenic impacts on biodiversity may influence parasite transmission must include the development of detailed, mechanistic understanding of the multiple interactions between free-living and parasitic species within ecological communities. The dung beetle-helminth system may be a promising future model system with which to understand these complex relationships.

  16. Dispersal of the spruce beetle, `dendroctonus rufipennis`, and the engraver beetle, `ips perturbatus`, in Alaska. Forest Service research paper

    SciTech Connect

    Werner, R.A.; Holsten, E.H.

    1997-09-01

    Mark-release-recapture experiments were performed with spruce beetles (Dendroctonus rufipennis (Kirby)) and Ips engraver beetles (Ips perturbatus (Eichhoff)) to determine distance and direction of dispersal. The recapture rate of beetles marked with fluorescent powder was extremely low. Most I. perturbatus beetles dispersed up to 30 m from their overwintering sites compared to most D. rufipennis, which dispersed from 90 to 300 m. Ips perturbatus beetles were caught up to 90 m and D. rufipennis up to 600 m from the point of release.

  17. Study on Fungal Flora in the Midgut of the Larva and Adult of the Different Populations of the Malaria Vector Anopheles stephensi

    PubMed Central

    Tajedin, L; Hashemi, J; Abaei, MR; Hosseinpour, L; Rafei, F; Basseri, HR

    2009-01-01

    Background Many microorganisms in midgut of mosquito challenge with their host and also other pathogens present in midgut. The aim of this study was presence of non-pathogens microorganisms like fungal flora which may be crucial on interaction between vectors and pathogens. Methods: Different populations of Anopheles stephensi were reared in insectary and objected to determine fungal flora in their midguts. The midgut paunch of mosquito adults and larvae as well as breading water and larval food samples transferred on Subaru-dextrose agar, in order to detect the environment fungus. Results: Although four fungi, Aspergillus, Rhizopus, Geotrichum and Sacharomyces were found in the food and water, but only Aspiragilus observed in the midgut of larvae. No fungus was found in the midgut of adults. This is the first report on fungal flora in the midgut of the adults and larvae of An. stephensi and possible stadial transmission of fungi from immature stages to adults. Conclusion: The midgut environment of adults is not compatible for survivorship of fungi but the larval midgut may contain few fungi as a host or even pathogen. PMID:22808370

  18. Volatile Organic Compounds Emitted by Fungal Associates of Conifer Bark Beetles and their Potential in Bark Beetle Control.

    PubMed

    Kandasamy, Dineshkumar; Gershenzon, Jonathan; Hammerbacher, Almuth

    2016-09-01

    Conifer bark beetles attack and kill mature spruce and pine trees, especially during hot and dry conditions. These beetles are closely associated with ophiostomatoid fungi of the Ascomycetes, including the genera Ophiostoma, Grosmannia, and Endoconidiophora, which enhance beetle success by improving nutrition and modifying their substrate, but also have negative impacts on beetles by attracting predators and parasites. A survey of the literature and our own data revealed that ophiostomatoid fungi emit a variety of volatile organic compounds under laboratory conditions including fusel alcohols, terpenoids, aromatic compounds, and aliphatic alcohols. Many of these compounds already have been shown to elicit behavioral responses from bark beetles, functioning as attractants or repellents, often as synergists to compounds currently used in bark beetle control. Thus, these compounds could serve as valuable new agents for bark beetle management. However, bark beetle associations with fungi are very complex. Beetle behavior varies with the species of fungus, the stage of the beetle life cycle, the host tree quality, and probably with changes in the emission rate of fungal volatiles. Additional research on bark beetles and their symbiotic associates is necessary before the basic significance of ophiostomatoid fungal volatiles can be understood and their applied potential realized.

  19. Beetle and plant density as cues initiating dispersal in two species of adult predaceous diving beetles.

    PubMed

    Yee, Donald A; Taylor, Stacy; Vamosi, Steven M

    2009-05-01

    Dispersal can influence population dynamics, species distributions, and community assembly, but few studies have attempted to determine the factors that affect dispersal of insects in natural populations. Consequently, little is known about how proximate factors affect the dispersal behavior of individuals or populations, or how an organism's behavior may change in light of such factors. Adult predaceous diving beetles are active dispersers and are important predators in isolated aquatic habitats. We conducted interrelated studies to determine how several factors affected dispersal in two common pond-inhabiting species in southern Alberta, Canada: Graphoderus occidentalis and Rhantus sericans. Specifically, we (1) experimentally tested the effect of plant and beetle densities on dispersal probabilities in ponds; (2) surveyed ponds and determined the relationships among beetle densities and plant densities and water depth; and (3) conducted laboratory trials to determine how beetle behavior changed in response to variation in plant densities, conspecific densities, food, and water depth. Our field experiment determined that both species exhibited density dependence, with higher beetle densities leading to higher dispersal probabilities. Low plant density also appeared to increase beetle dispersal. Consistent with our experimental results, densities of R. sericans in ponds were significantly related to plant density and varied also with water depth; G. occidentalis densities did not vary with either factor. In the laboratory, behavior varied with plant density only for R. sericans, which swam at low density but were sedentary at high density. Both species responded to depth, with high beetle densities eliciting beetles to spend more time in deeper water. The presence of food caused opposite responses for G. occidentalis between experiments. Behavioral changes in response to patch-level heterogeneity likely influence dispersal in natural populations and are expected

  20. A catalogue of Lithuanian beetles (Insecta, Coleoptera)

    PubMed Central

    Tamutis, Vytautas; Tamutė, Brigita; Ferenca, Romas

    2011-01-01

    Abstract This paper presents the first complete and updated list of all 3597 species of beetles (Insecta: Coleoptera) belonging to 92 familiesfound and published in Lithuania until 2011, with comments also provided on the main systematic and nomenclatural changes since the last monographic treatment in two volumes (Pileckis and Monsevičius 1995, 1997). The introductory section provides a general overview of the main features of the territory of Lithuania, the origins and formation of the beetle fauna and their conservation, the faunistic investigations in Lithuania to date revealing the most important stages of the faunistic research process with reference to the most prominent scientists, an overview of their work, and their contribution to Lithuanian coleopteran faunal research. Species recorded in Lithuania by some authors without reliable evidence and requiring further confirmation with new data are presented in a separate list, consisting of 183 species. For the first time, analysis of errors in works of Lithuanian authors concerning data on coleopteran fauna has been conducted and these errors have been corrected. All available published and Internet sources on beetles found in Lithuania have been considered in the current study. Over 630 literature sources on species composition of beetles, their distribution in Lithuania and neighbouring countries, and taxonomic revisions and changes are reviewed and cited. An alphabetical list of these literature sources is presented. After revision of public beetle collections in Lithuania, the authors propose to remove 43 species from the beetle species list of the country on the grounds, that they have been wrongly identified or published by mistake. For reasons of clarity, 19 previously noted but later excluded species are included in the current checklist with comments. Based on faunal data from neighbouring countries, species expected to occur in Lithuania are matnioned. In total 1390 species are attributed to this

  1. Lgr5 regulates the regeneration of lesioned nasal respiratory epithelium.

    PubMed

    Zhang, Yan-Qiang; Li, Peng; Zhang, Feng-Qin; Sun, Shao-Jun; Cao, Yin-Guang

    2016-12-09

    Nasal respiratory epithelium is a ciliated pseudostratified columnar epithelium. The cellular components of nasal respiratory epithelium include ciliated cells, goblet cells, and basal cells. Until now, our knowledge in the development of nasal respiratory epithelium is still limited and the cellular mechanism of regeneration is still elusive. In this study, we found that adult stem cell marker leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) is expressed in the mice nasal respiratory epithelium. Both immunostaining and lineage tracing analysis indicated Lgr5 positive cells in the nasal respiratory epithelium are proliferative stem/progenitor cells. Using the Rosa-Tdtomato and Rosa26-DTR mice, we elucidated that Lgr5(+) cells participate in the regeneration of lesioned nasal respiratory epithelium, and this group of cells is necessary in the process of epithelium recovery. Using the in vitro culture system, we observed the formation of spheres from Lgr5(+) cells and these spheres have the capacity to generate other types of cells. Above all, this study reported a group of previously unidentified progenitor/stem cells in nasal respiratory epithelium, unveiling the potential cellular mechanism in nasal respiratory epithelium regeneration.

  2. Discordant phylogenies suggest repeated host shifts in the Fusarium–Euwallacea ambrosia beetle mutualism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mutualism between xyleborine beetles in the genus Euwallacea (Coleoptera: Curculionidae: Scolytinae) and members of the Ambrosia Fusarium Clade (AFC) represents one of 11 known independent evolutionary origins of fungiculture by ambrosia beetles. Female Euwallacea beetles transport fusarial symb...

  3. Cuticle formation and pigmentation in beetles.

    PubMed

    Noh, Mi Young; Muthukrishnan, Subbaratnam; Kramer, Karl J; Arakane, Yasuyuki

    2016-10-01

    Adult beetles (Coleoptera) are covered primarily by a hard exoskeleton or cuticle. For example, the beetle elytron is a cuticle-rich highly modified forewing structure that shields the underlying hindwing and dorsal body surface from a variety of harmful environmental factors by acting as an armor plate. The elytron comes in a variety of colors and shapes depending on the coleopteran species. As in many other insect species, the cuticular tanning pathway begins with tyrosine and is responsible for production of a variety of melanin-like and other types of pigments. Tanning metabolism involves quinones and quinone methides, which also act as protein cross-linking agents for cuticle sclerotization. Electron microscopic analyses of rigid cuticles of the red flour beetle, Tribolium castaneum, have revealed not only numerous horizontal chitin-protein laminae but also vertically oriented columnar structures called pore canal fibers. This structural architecture together with tyrosine metabolism for cuticle tanning is likely to contribute to the rigidity and coloration of the beetle exoskeleton.

  4. Systematics of Fusaria associated with Ambrosia beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here, I summarize research efforts directed at characterizing ambrosia beetle-associated fusaria, including the species responsible for avocado wilt in Israel (Mendel et al., Phytoparasitica 2012) and branch dieback in California (Eskalen et al., Pl. Dis. 2012). Our multilocus molecular phylogenetic...

  5. Rove beetle blistering--(Nairobi Eye).

    PubMed

    Williams, A N

    1993-02-01

    'Nairobi Eye' is a condition caused by a blister beetle, Paederus eximius, found in Northern Kenya. It has not previously been described as a hazard for troops exercising in this area. Four cases are described. Recommended management is to wash the contact area initially with soap and water, and to treat subsequent lesions with flamazine.

  6. Chirality determines pheromone activity for flour beetles

    NASA Astrophysics Data System (ADS)

    Levinson, H. Z.; Mori, K.

    1983-04-01

    Olfactory perception and orientation behaviour of female and male flour beetles ( Tribolium castaneum, T. confusum) to single stereoisomers of their aggregation pheromone revealed maximal receptor potentials and optimal attraction in response to 4R,8R-(-)-dimethyldecanal, whereas its optical antipode 4S,8S-(+)-dimethyldecanal was found to be inactive in this respect. Female flour beetles of both species were ≈ 103 times less attracted to 4R,8S-(+)- and 4S,8R-(-)-dimethyldecanal than to 4R,8R-(-)-dimethyldecanal, while male flour beetles failed to respond to the R,S-(+)- and S,R-(-)-stereoisomers. Pheromone extracts of prothoracic femora from unmated male flour beetles elicited higher receptor potentials in the antennae of females than in those of males. The results suggest that the aggregation pheromone emitted by male T. castaneum as well as male T. confusum has the stereochemical structure of 4R,8R-(-)-dimethyl-decanal, which acts as sex attractant for the females and as aggregant for the males of both species.

  7. The fossil record and macroevolutionary history of the beetles

    PubMed Central

    Smith, Dena M.; Marcot, Jonathan D.

    2015-01-01

    Coleoptera (beetles) is the most species-rich metazoan order, with approximately 380 000 species. To understand how they came to be such a diverse group, we compile a database of global fossil beetle occurrences to study their macroevolutionary history. Our database includes 5553 beetle occurrences from 221 fossil localities. Amber and lacustrine deposits preserve most of the beetle diversity and abundance. All four extant suborders are found in the fossil record, with 69% of all beetle families and 63% of extant beetle families preserved. Considerable focus has been placed on beetle diversification overall, however, for much of their evolutionary history it is the clade Polyphaga that is most responsible for their taxonomic richness. Polyphaga had an increase in diversification rate in the Early Cretaceous, but instead of being due to the radiation of the angiosperms, this was probably due to the first occurrences of beetle-bearing amber deposits in the record. Perhaps, most significant is that polyphagan beetles had a family-level extinction rate of zero for most of their evolutionary history, including across the Cretaceous–Palaeogene boundary. Therefore, focusing on the factors that have inhibited beetle extinction, as opposed to solely studying mechanisms that may promote speciation, should be examined as important determinants of their great diversity today. PMID:25788597

  8. Tiger beetle's pursuit of prey depends on distance

    NASA Astrophysics Data System (ADS)

    Noest, Robert; Wang, Jane

    2015-03-01

    Tiger beetles are fast predators capable of chasing prey under closed-loop visual guidance. We investigated their control system using high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Analysis reveals that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The system gain is shown to depend on the beetle-prey distance in a pattern indicating three hunting phases over the observed distance domain. We show that to explain this behavior the tiger beetle must be capable of visually determining the distance to its target and using that to adapt the gain in its proportional control law. We will end with a discussion on the possible methods for distance detection by the tiger beetle and focus on two of them. Motion parallax, using the natural head sway induced by the walking gait of the tiger beetle, is shown to have insufficient distance range. However elevation in the field of vision, using the angle with respect to the horizon at which a target is observed, has a much larger distance range and is a prime candidate for the mechanism of visual distance detection in the tiger beetle.

  9. The fossil record and macroevolutionary history of the beetles.

    PubMed

    Smith, Dena M; Marcot, Jonathan D

    2015-04-22

    Coleoptera (beetles) is the most species-rich metazoan order, with approximately 380 000 species. To understand how they came to be such a diverse group, we compile a database of global fossil beetle occurrences to study their macroevolutionary history. Our database includes 5553 beetle occurrences from 221 fossil localities. Amber and lacustrine deposits preserve most of the beetle diversity and abundance. All four extant suborders are found in the fossil record, with 69% of all beetle families and 63% of extant beetle families preserved. Considerable focus has been placed on beetle diversification overall, however, for much of their evolutionary history it is the clade Polyphaga that is most responsible for their taxonomic richness. Polyphaga had an increase in diversification rate in the Early Cretaceous, but instead of being due to the radiation of the angiosperms, this was probably due to the first occurrences of beetle-bearing amber deposits in the record. Perhaps, most significant is that polyphagan beetles had a family-level extinction rate of zero for most of their evolutionary history, including across the Cretaceous-Palaeogene boundary. Therefore, focusing on the factors that have inhibited beetle extinction, as opposed to solely studying mechanisms that may promote speciation, should be examined as important determinants of their great diversity today.

  10. Diversity of Cultivable Midgut Microbiota at Different Stages of the Asian Tiger Mosquito, Aedes albopictus from Tezpur, India.

    PubMed

    Yadav, Kamlesh K; Datta, Sibnarayan; Naglot, Ashok; Bora, Ajitabh; Hmuaka, Vanlal; Bhagyawant, Sameer; Gogoi, Hemanta K; Veer, Vijay; Raju, P Srinivas

    2016-01-01

    Aedes aegypti and Ae. albopictus are among the most important vectors of arboviral diseases, worldwide. Recent studies indicate that diverse midgut microbiota of mosquitoes significantly affect development, digestion, metabolism, and immunity of their hosts. Midgut microbiota has also been suggested to modulate the competency of mosquitoes to transmit arboviruses, malaria parasites etc. Interestingly, the midgut microbial flora is dynamic and the diversity changes with the development of vectors, in addition to other factors such as species, sex, life-stage, feeding behavior and geographical origin. The aim of the present study was to investigate the midgut bacterial diversity among larva, adult male, sugar fed female and blood fed female Ae. albopictus collected from Tezpur, Northeastern India. Based on colony morphological characteristics, we selected 113 cultivable bacterial isolates for 16S rRNA gene sequence based molecular identification. Of the 113 isolates, we could identify 35 bacterial species belonging to 18 distinct genera under four major phyla, namely Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Phyla Proteobacteria and Firmicutes accounted for majority (80%) of the species, while phylum Actinobacteria constituted 17% of the species. Bacteroidetes was the least represented phylum, characterized by a single species- Chryseobacterium rhizoplanae, isolated from blood fed individuals. Dissection of midgut microbiota diversity at different developmental stages of Ae. albopictus will be helpful in better understanding mosquito-borne diseases, and for designing effective strategies to manage mosquito-borne diseases.

  11. Diversity of Cultivable Midgut Microbiota at Different Stages of the Asian Tiger Mosquito, Aedes albopictus from Tezpur, India

    PubMed Central

    Datta, Sibnarayan; Naglot, Ashok; Bora, Ajitabh; Hmuaka, Vanlal; Bhagyawant, Sameer; Gogoi, Hemanta K.; Veer, Vijay; Raju, P. Srinivas

    2016-01-01

    Aedes aegypti and Ae. albopictus are among the most important vectors of arboviral diseases, worldwide. Recent studies indicate that diverse midgut microbiota of mosquitoes significantly affect development, digestion, metabolism, and immunity of their hosts. Midgut microbiota has also been suggested to modulate the competency of mosquitoes to transmit arboviruses, malaria parasites etc. Interestingly, the midgut microbial flora is dynamic and the diversity changes with the development of vectors, in addition to other factors such as species, sex, life-stage, feeding behavior and geographical origin. The aim of the present study was to investigate the midgut bacterial diversity among larva, adult male, sugar fed female and blood fed female Ae. albopictus collected from Tezpur, Northeastern India. Based on colony morphological characteristics, we selected 113 cultivable bacterial isolates for 16S rRNA gene sequence based molecular identification. Of the 113 isolates, we could identify 35 bacterial species belonging to 18 distinct genera under four major phyla, namely Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Phyla Proteobacteria and Firmicutes accounted for majority (80%) of the species, while phylum Actinobacteria constituted 17% of the species. Bacteroidetes was the least represented phylum, characterized by a single species- Chryseobacterium rhizoplanae, isolated from blood fed individuals. Dissection of midgut microbiota diversity at different developmental stages of Ae. albopictus will be helpful in better understanding mosquito-borne diseases, and for designing effective strategies to manage mosquito-borne diseases. PMID:27941985

  12. Floral associations of cyclocephaline scarab beetles.

    PubMed

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: (1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, (2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and (3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  13. Floral Associations of Cyclocephaline Scarab Beetles

    PubMed Central

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: 1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, 2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and 3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses

  14. Tigutcystatin, a cysteine protease inhibitor from Triatoma infestans midgut expressed in response to Trypanosoma cruzi

    SciTech Connect

    Buarque, Diego S.; Spindola, Leticia M.N.; Martins, Rafael M.; Braz, Gloria R.C.; Tanaka, Aparecida S.

    2011-09-23

    Highlights: {yields} Tigutcystatin inhibits Trypanosoma cruzi cysteine proteases with high specificity. {yields} Tigutcystatin expression is up-regulated in response to T. cruzi infection. {yields} It is the first cysteine proteases inhibitor characterized from a triatomine insect. -- Abstract: The insect Triatoma infestans is a vector of Trypanosoma cruzi, the etiological agent of Chagas disease. A cDNA library was constructed from T. infestans anterior midgut, and 244 clones were sequenced. Among the EST sequences, an open reading frame (ORF) with homology to a cystatin type 2 precursor was identified. Then, a 288-bp cDNA fragment encoding mature cystatin (lacking signal peptide) named Tigutcystatin was cloned fused to a N-terminal His tag in pET-14b vector, and the protein expressed in Escherichia coli strain Rosetta gami. Tigutcystatin purified and cleaved by thrombin to remove His tag presented molecular mass of 11 kDa and 10,137 Da by SDS-PAGE and MALDI-TOF mass spectrometry, respectively. Purified Tigutcystatin was shown to be a tight inhibitor towards cruzain, a T. cruzi cathepsin L-like enzyme (K{sub i} = 3.29 nM) and human cathepsin L (K{sub i} = 3.78 nM). Tissue specific expression analysis showed that Tigutcystatin was mostly expressed in anterior midgut, although amplification in small intestine was also detected by semi quantitative RT-PCR. qReal time PCR confirmed that Tigutcystatin mRNA is significantly up-regulated in anterior midgut when T. infestans is infected with T. cruzi. Together, these results indicate that Tigutcystatin may be involved in modulation of T. cruzi in intestinal tract by inhibiting parasite cysteine proteases, which represent the virulence factors of this protozoan.

  15. Requirement of matrix metalloproteinase-1 for intestinal homeostasis in the adult Drosophila midgut

    SciTech Connect

    Lee, Shin-Hae; Park, Joung-Sun; Kim, Young-Shin; Chung, Hae-Young; Yoo, Mi-Ae

    2012-03-10

    Stem cells are tightly regulated by both intrinsic and extrinsic signals as well as the extracellular matrix (ECM) for tissue homeostasis and regenerative capacity. Matrix metalloproteinases (MMPs), proteolytic enzymes, modulate the turnover of numerous substrates, including cytokine precursors, growth factors, and ECM molecules. However, the roles of MMPs in the regulation of adult stem cells are poorly understood. In the present study, we utilize the Drosophila midgut, which is an excellent model system for studying stem cell biology, to show that Mmp1 is involved in the regulation of intestinal stem cells (ISCs). The results showed that Mmp1 is expressed in the adult midgut and that its expression increases with age and with exposure to oxidative stress. Mmp1 knockdown or Timp-overexpressing flies and flies heterozygous for a viable, hypomorphic Mmp1 allele increased ISC proliferation in the gut, as shown by staining with an anti-phospho-histone H3 antibody and BrdU incorporation assays. Reduced Mmp1 levels induced intestinal hyperplasia, and the Mmp1depletion-induced ISC proliferation was rescued by the suppression of the EGFR signaling pathway, suggesting that Mmp1 regulates ISC proliferation through the EGFR signaling pathway. Furthermore, adult gut-specific knockdown and whole-animal heterozygotes of Mmp1 increased additively sensitivity to paraquat-induced oxidative stress and shortened lifespan. Our data suggest that Drosophila Mmp1 is involved in the regulation of ISC proliferation for maintenance of gut homeostasis. -- Highlights: Black-Right-Pointing-Pointer Mmp1 is expressed in the adult midgut. Black-Right-Pointing-Pointer Mmp1 is involved in the regulation of ISC proliferation activity. Black-Right-Pointing-Pointer Mmp1-related ISC proliferation is associated with EGFR signaling. Black-Right-Pointing-Pointer Mmp1 in the gut is required for the intestinal homeostasis and longevity.

  16. Ability of transplanted cultured epithelium to respond to dermal papillae.

    PubMed

    Xing, L; Kobayashi, K

    2001-10-01

    Cultured epithelium has been used successfully in the treatment of extensive burns. Regenerated epidermis, however, lacks such as hair follicles and sweat glands that are common in mammalian skin. We attempted to determine whether cultured epithelium could be induced to form hair follicles by dermal papillae, which are most important for the morphogenesis and growth of hair follicles. We cultivated adult rat sole keratinocytes, obtained the cultured epithelium, and prepared recombinants consisting of cultured epithelium and fresh dermal papillae with or without the sole dermis. These recombinants were then transplanted underneath the dermis of the dorsal skin of syngeneic rats or athymic mice. Histologic examination revealed that the transplanted cultured epithelium formed the follicular structures with sebaceous gland-like structure following induction of the dermal papillae, especially when supported by the dermis. We concluded that transplanted cultured epithelium of adult rat sole keratinocytes can respond to growth signals from adult dermal papillae.

  17. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors.

    PubMed

    Strosberg, Jonathan; El-Haddad, Ghassan; Wolin, Edward; Hendifar, Andrew; Yao, James; Chasen, Beth; Mittra, Erik; Kunz, Pamela L; Kulke, Matthew H; Jacene, Heather; Bushnell, David; O'Dorisio, Thomas M; Baum, Richard P; Kulkarni, Harshad R; Caplin, Martyn; Lebtahi, Rachida; Hobday, Timothy; Delpassand, Ebrahim; Van Cutsem, Eric; Benson, Al; Srirajaskanthan, Rajaventhan; Pavel, Marianne; Mora, Jaime; Berlin, Jordan; Grande, Enrique; Reed, Nicholas; Seregni, Ettore; Öberg, Kjell; Lopera Sierra, Maribel; Santoro, Paola; Thevenet, Thomas; Erion, Jack L; Ruszniewski, Philippe; Kwekkeboom, Dik; Krenning, Eric

    2017-01-12

    Background Patients with advanced midgut neuroendocrine tumors who have had disease progression during first-line somatostatin analogue therapy have limited therapeutic options. This randomized, controlled trial evaluated the efficacy and safety of lutetium-177 ((177)Lu)-Dotatate in patients with advanced, progressive, somatostatin-receptor-positive midgut neuroendocrine tumors. Methods We randomly assigned 229 patients who had well-differentiated, metastatic midgut neuroendocrine tumors to receive either (177)Lu-Dotatate (116 patients) at a dose of 7.4 GBq every 8 weeks (four intravenous infusions, plus best supportive care including octreotide long-acting repeatable [LAR] administered intramuscularly at a dose of 30 mg) ((177)Lu-Dotatate group) or octreotide LAR alone (113 patients) administered intramuscularly at a dose of 60 mg every 4 weeks (control group). The primary end point was progression-free survival. Secondary end points included the objective response rate, overall survival, safety, and the side-effect profile. The final analysis of overall survival will be conducted in the future as specified in the protocol; a prespecified interim analysis of overall survival was conducted and is reported here. Results At the data-cutoff date for the primary analysis, the estimated rate of progression-free survival at month 20 was 65.2% (95% confidence interval [CI], 50.0 to 76.8) in the (177)Lu-Dotatate group and 10.8% (95% CI, 3.5 to 23.0) in the control group. The response rate was 18% in the (177)Lu-Dotatate group versus 3% in the control group (P<0.001). In the planned interim analysis of overall survival, 14 deaths occurred in the (177)Lu-Dotatate group and 26 in the control group (P=0.004). Grade 3 or 4 neutropenia, thrombocytopenia, and lymphopenia occurred in 1%, 2%, and 9%, respectively, of patients in the (177)Lu-Dotatate group as compared with no patients in the control group, with no evidence of renal toxic effects during the observed time frame

  18. Protein expression in the midgut of sugar-fed Aedes albopictus females

    PubMed Central

    2012-01-01

    Background Aedes albopictus is a vector for several fatal arboviruses in tropical and sub-tropical regions of the world. The midgut of the mosquito is the first barrier that pathogens must overcome to establish infection and represents one of the main immunologically active sites of the insect. Nevertheless, little is known about the proteins involved in the defense against pathogens, and even in the processing of food, and the detoxification of metabolites. The identification of proteins exclusively expressed in the midgut is the first step in understanding the complex physiology of this tissue and can provide insight into the mechanisms of pathogen-vector interaction. However, identification of the locally expressed proteins presents a challenge because the Ae. albopictus genome has not been sequenced. Methods In this study, two-dimensional electrophoresis (2DE) was combined with liquid chromatography in line with tandem mass spectrometry (LC-MS/MS) and data mining to identify the major proteins in the midgut of sugar-fed Ae. albopictus females. Results Fifty-six proteins were identified by sequence similarity to entries from the Ae. aegypti genome. In addition, two hypothetical proteins were experimentally confirmed. According to the gene ontology analysis, the identified proteins were classified into 16 clusters of biological processes. Use of the STRING database to investigate protein functional associations revealed five functional networks among the identified proteins, including a network for carbohydrate and amino acid metabolism, a group associated with ATP production and a network of proteins that interact during detoxification of toxic free radicals, among others. This analysis allowed the assignment of a potential role for proteins with unknown function based on their functional association with other characterized proteins. Conclusion Our findings represent the first proteome map of the Ae. albopictus midgut and denotes the first steps towards the

  19. Preduodenal portal vein in association with midgut malrotation and duodenal web-triple anomaly?

    PubMed

    Singal, Arbinder Kumar; Ramu, Chithra; Paul, Sarah; Matthai, John

    2009-02-01

    Preduodenal portal vein (PDPV) is a rare anomaly in which the portal vein passes anterior to the duodenum rather than posteriorly. Generally asymptomatic, PDPV may rarely cause duodenal obstruction or may coexist with other anomalies. We report a neonate who presented with duodenal obstruction and was found out to have 3 coexisting anomalies, each of which can lead to duodenal obstruction independently-PDPV, midgut malrotation, and duodenal web. A duodenoduodenostomy and a Ladd procedure were done, and the child recovered uneventfully. The mechanism of obstruction, interesting metabolic aberrations observed, outcome, and relevant literature are presented.

  20. Total management of short gut secondary to midgut volvulus without prolonged total parenteral alimentation.

    PubMed

    Tepas, J J; MacLean, W C; Kolbach, S; Shermeta, D W

    1978-12-01

    Absorption studies in rats have shown that intestinal adaptation after catastrophic injury can be stimulated by early enteral feeding. Using this concept, we have devised a technique of early initiation and advancement of oral feedings that begins with Cho-Free and Polycose and gradually adds sucrose and MCT in increasing proportions. The increasing complexity and caloric density of this diet provide sufficient nutrition to allow weaning from total parenteral alimentation within 2--3 wk. Our preliminary experience in babies with midgut volvulus, necrotizing enterocolitis, and gastroschisis has been successful and uncomplicated. These patients have demonstrated consistent weight gain and have been spared the complications associated with prolonged parenteral alimentation.

  1. Acute exposure of mercury chloride stimulates the tissue regeneration program and reactive oxygen species production in the Drosophila midgut.

    PubMed

    Chen, Zhi; Wu, Xiaochun; Luo, Hongjie; Zhao, Lingling; Ji, Xin; Qiao, Xianfeng; Jin, Yaping; Liu, Wei

    2016-01-01

    We used Drosophila as an animal model to study the digestive tract in response to the exposure of inorganic mercury (HgCl2). We found that after oral administration, mercury was mainly sequestered within the midgut. This resulted in increased cell death, which in turn stimulated the tissue regeneration program, including accelerated proliferation and differentiation of the intestinal stem cells (ISCs). We further demonstrated that these injuries correlate closely with the excessive production of the reactive oxygen species (ROS), as vitamin E, an antioxidant reagent, efficiently suppressed the HgCl2-induced phenotypes of midgut and improved the viability. We propose that the Drosophila midgut could serve as a suitable model to study the treatment of acute hydrargyrism on the digestive systems.

  2. Epigenetic Regulation of the Intestinal Epithelium

    PubMed Central

    Elliott, Ellen N.; Kaestner, Klaus H.

    2015-01-01

    The intestinal epithelium is an ideal model system for the study of normal and pathological differentiation processes. The mammalian intestinal epithelium is a single cell layer comprised of proliferative crypts and differentiated villi. The crypts contain both proliferating and quiescent stem cell populations that self-renew and produce all the differentiated cell types, which are replaced every 3 to 5 days. The genetics of intestinal development, homeostasis, and disease are well defined, but less is known about the contribution of epigenetics in modulating these processes. Epigenetics refers to heritable phenotypic traits, including gene expression, which are independent of mutations in the DNA sequence. We have known for several decades that human colorectal cancers contain hypomethylated DNA, but the causes and consequences of this phenomenon are not fully understood. In contrast, tumor suppressor gene promoters are often hypermethylated in colorectal cancer, resulting in decreased expression of the associated gene. In this review, we describe the role that epigenetics plays in intestinal homeostasis and disease, with an emphasis on results from mouse models. We highlight the importance of producing and analyzing next-generation sequencing data detailing the epigenome from intestinal stem cell to differentiated intestinal villus cell. PMID:26220502

  3. Effluxing ABC Transporters in Human Corneal Epithelium

    PubMed Central

    Vellonen, Kati-Sisko; Mannermaa, Eliisa; Turner, Helen; Häkli, Marika; Wolosin, J. Mario; Tervo, Timo; Honkakoski, Paavo; Urtti, Arto

    2010-01-01

    ATP-binding cassette (ABC) transporters are able to efflux their substrate drugs from the cells. We compared expression of efflux proteins in normal human corneal epithelial tissue, primary human corneal epithelial cells (HCEpiC), and corneal epithelial cell culture model (HCE model) based on human immortal cell line. Expression of multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1–6 (MRP1–6) and breast cancer resistance protein (BCRP) was studied using quantitative RT-PCR, Western blot, and immunohistochemistry. Only MRP1, MRP5, and BCRP were expressed in the freshly excised human corneal epithelial tissue. Expression of MRP1 and MRP5 was localized predominantly in the basal cells of the central cornea and limbus. Functional efflux activity was shown in the cell models, but they showed over-expression of most efflux transporters compared to that of normal corneal epithelium. In conclusion, MRP1, MRP5, and BCRP are expressed in the corneal epithelium, but MDR1, MRP2, MRP3, MRP4, and MRP6 are not significantly expressed. HCE cell model and commercially available primary cells deviate from this expression profile. PMID:19623615

  4. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium.

    PubMed

    Vasavada, A R; Thampi, P; Yadav, S; Rawal, U M

    1993-12-01

    The anterior lens epithelial cells undergo a variety of degenerative and proliferative changes during cataract formation. Acid phosphatase is primarily responsible for tissue regeneration and tissue repair. The lipid hydroperoxides that are obtained by lipid peroxidation of polysaturated or unsaturated fatty acids bring about deterioration of biological membranes at cellular and tissue levels. Acid phosphatase and lipid peroxidation activities were studied on the lens epithelial cells of nuclear cataract, posterior subcapsular cataract, mature cataract, and mixed cataract. Of these, mature cataractous lens epithelium showed maximum activity for acid phosphatase (516.83 moles of p-nitrophenol released/g lens epithelium) and maximum levels of lipid peroxidation (86.29 O.D./min/g lens epithelium). In contrast, mixed cataractous lens epithelium showed minimum activity of acid phosphatase (222.61 moles of p-nitrophenol released/g lens epithelium) and minimum levels of lipid peroxidation (54.23 O.D./min/g lens epithelium). From our study, we correlated the maximum activity of acid phosphatase in mature cataractous lens epithelium with the increased areas of superimposed cells associated with the formation of mature cataract. Likewise, the maximum levels of lipid peroxidation in mature cataractous lens epithelium was correlated with increased permeability of the plasma membrane. Conversely, the minimum levels of lipid peroxidation in mixed cataractous lens epithelium makes us presume that factors other than lipid peroxidation may also account for the formation of mixed type of cataract.

  5. iTRAQ-based quantitative proteomic analysis of midgut in silkworm infected with Bombyx mori cytoplasmic polyhedrosis virus.

    PubMed

    Gao, Kun; Deng, Xiang-Yuan; Shang, Meng-Ke; Qin, Guang-Xing; Hou, Cheng-Xiang; Guo, Xi-Jie

    2017-01-30

    Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) specifically infects the epithelial cells in the midgut of silkworm and causes them to death, which negatively affects the sericulture industry. In order to determine the midgut response at the protein levels to the virus infection, differential proteomes of the silkworm midgut responsive to BmCPV infection were identified with isobaric tags for relative and absolute quantitation (iTRAQ) labeling followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). 193, 408, 189 differentially expressed proteins (DEPs) were reliably quantified by iTRAQ analysis in the midgut of BmCPV-infected and control larvae at 24, 48, 72h post infection (hpi) respectively. KEGG enrichment analysis showed that Oxidative phosphorylation, amyotrophic lateral sclerosis, Toll-like receptor signaling pathway, steroid hormone biosynthesis were the significant pathways (Q value≤0.05) both at 24 and 48hpi. qRT-PCR was used to further verify gene transcription of 30 DEPs from iTRAQ, showing that the regulations of 24 genes at the transcript level were consistent with those at the proteomic level. Moreover, the cluster analysis of the three time groups showed that there were seven co-regulated DEPs including BGIBMGA002620-PA, which was a putative p62/sequestosome-1 protein in silkworm. It was upregulated at both the mRNA level and the proteomic level and may play an important role in regulating the autophagy and apoptosis (especially apoptosis) induced by BmCPV infection. This was the first report using an iTRAQ approach to analyze proteomes of the silkworm midgut against BmCPV infection, which contributes to understanding the defense mechanisms of silkworm midgut to virus infection.

  6. A midgut lysate of the Riptortus pedestris has antibacterial activity against LPS O-antigen-deficient Burkholderia mutants.

    PubMed

    Jang, Ho Am; Seo, Eun Sil; Seong, Min Young; Lee, Bok Luel

    2017-02-01

    Riptortus pedestris, a common pest in soybean fields, harbors a symbiont Burkholderia in a specialized posterior midgut region of insects. Every generation of second nymphs acquires new Burkholderia cells from the environment. We compared in vitro cultured Burkholderia with newly in vivo colonized Burkholderia in the host midgut using biochemical approaches. The bacterial cell envelope of in vitro cultured and in vivo Burkholderia differed in structure, as in vivo bacteria lacked lipopolysaccharide (LPS) O-antigen. The LPS O-antigen deficient bacteria had a reduced colonization rate in the host midgut compared with that of the wild-type Burkholderia. To determine why LPS O-antigen-deficient bacteria are less able to colonize the host midgut, we examined in vitro survival rates of three LPS O-antigen-deficient Burkholderia mutants and lysates of five different midgut regions. The LPS O-antigen-deficient mutants were highly susceptible when cultured with the lysate of a specific first midgut region (M1), indicating that the M1 lysate contains unidentified substance(s) capable of killing LPS O-antigen-deficient mutants. We identified a 17 kDa protein from the M1 lysate, which was enriched in the active fractions. The N-terminal sequence of the protein was determined to be a soybean Kunitz-type trypsin inhibitor. These data suggest that the 17 kDa protein, which was originated from a main soybean source of the R. pedestris host, has antibacterial activity against the LPS O-antigen deficient (rough-type) Burkholderia.

  7. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus.

    PubMed

    Crava, Cristina M; Jakubowska, Agata K; Escriche, Baltasar; Herrero, Salvador; Bel, Yolanda

    2015-01-01

    Antimicrobial peptides (AMPs) and lysozymes are the main effectors of the insect immune system, and they are involved in both local and systemic responses. Among local responses, midgut immune reaction plays an important role in fighting pathogens that reach the insect body through the oral route, as do many microorganisms used in pest control. Under this point of view, understanding how insects defend themselves locally during the first phases of infections caused by food-borne pathogens is important to further improve microbial control strategies. In the present study, we analyzed the transcriptional response of AMPs and lysozymes in the midgut of Spodoptera exigua (Lepidoptera: Noctuidae), a polyphagous pest that is commonly controlled by products based on Bacillus thuringiensis (Bt) or baculovirus. First, we comprehensively characterized the transcripts encoding AMPs and lysozymes expressed in S. exigua larval midgut, identifying 35 transcripts that represent the S. exigua arsenal against microbial infection. Secondly, we analyzed their expression in the midgut after ingestion of sub-lethal doses of two different pore-forming B. thuringiensis toxins, Cry1Ca and Vip3Aa, and the S. exigua nucleopolyhedrovirus (SeMNPV). We observed that both Bt toxins triggered a similar, wide and in some cases high transcriptional activation of genes encoding AMPs and lysozymes, which was not reflected in the activation of the classical systemic immune-marker phenoloxidase in hemolymph. Baculovirus ingestion resulted in the opposed reaction: Almost all transcripts coding for AMPs and lysozymes were down-regulated or not induced 96 hours post infection. Our results shed light on midgut response to different virulence factors or pathogens used nowadays as microbial control agents and point out the importance of the midgut immune response contribution to the larval immunity.

  8. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae

    PubMed Central

    Fernandez, Luisa E.; Aimanova, Karlygash G.; Gill, Sarjeet S.; Bravo, Alejandra; Soberón, Mario

    2005-01-01

    A 65 kDa GPI (glycosylphosphatidyl-inositol)-anchored ALP (alkaline phosphatase) was characterized as a functional receptor of the Bacillus thuringiensis subsp. israelensis Cry11Aa toxin in Aedes aegypti midgut cells. Two (a 100 kDa and a 65 kDa) GPI-anchored proteins that bound Cry11Aa toxin were preferentially extracted after treatment of BBMV (brush boder membrane vesicles) from Ae. aegypti midgut epithelia with phospholipase C. The 65 kDa protein was further purified by toxin affinity chromatography. The 65 kDa protein showed ALP activity. The peptide-displaying phages (P1.BBMV and P8.BBMV) that bound to the 65 kDa GPI–ALP (GPI-anchored ALP) and competed with the Cry11Aa toxin to bind to BBMV were isolated by selecting BBMV-binding peptide-phages by biopanning. GPI–ALP was shown to be preferentially distributed in Ae. aegypti in the posterior part of the midgut and in the caeca, by using P1.BBMV binding to fixed midgut tissue sections to determine the location of GPI–ALP. Cry11Aa binds to the same regions of the midgut and competed with P1.BBMV and P8.BBMV to bind to BBMV. The importance of this interaction was demonstrated by the in vivo attenuation of Cry11Aa toxicity in the presence of these phages. Our results shows that GPI–ALP is an important receptor molecule involved in Cry11Aa interaction with midgut cells and toxicity to Ae. aegypti larvae. PMID:16255715

  9. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus

    PubMed Central

    Crava, Cristina M.; Jakubowska, Agata K.; Escriche, Baltasar; Herrero, Salvador; Bel, Yolanda

    2015-01-01

    Antimicrobial peptides (AMPs) and lysozymes are the main effectors of the insect immune system, and they are involved in both local and systemic responses. Among local responses, midgut immune reaction plays an important role in fighting pathogens that reach the insect body through the oral route, as do many microorganisms used in pest control. Under this point of view, understanding how insects defend themselves locally during the first phases of infections caused by food-borne pathogens is important to further improve microbial control strategies. In the present study, we analyzed the transcriptional response of AMPs and lysozymes in the midgut of Spodoptera exigua (Lepidoptera: Noctuidae), a polyphagous pest that is commonly controlled by products based on Bacillus thuringiensis (Bt) or baculovirus. First, we comprehensively characterized the transcripts encoding AMPs and lysozymes expressed in S. exigua larval midgut, identifying 35 transcripts that represent the S. exigua arsenal against microbial infection. Secondly, we analyzed their expression in the midgut after ingestion of sub-lethal doses of two different pore-forming B. thuringiensis toxins, Cry1Ca and Vip3Aa, and the S. exigua nucleopolyhedrovirus (SeMNPV). We observed that both Bt toxins triggered a similar, wide and in some cases high transcriptional activation of genes encoding AMPs and lysozymes, which was not reflected in the activation of the classical systemic immune-marker phenoloxidase in hemolymph. Baculovirus ingestion resulted in the opposed reaction: Almost all transcripts coding for AMPs and lysozymes were down-regulated or not induced 96 hours post infection. Our results shed light on midgut response to different virulence factors or pathogens used nowadays as microbial control agents and point out the importance of the midgut immune response contribution to the larval immunity. PMID:25993013

  10. Endozoochory by beetles: a novel seed dispersal mechanism

    PubMed Central

    de Vega, Clara; Arista, Montserrat; Ortiz, Pedro L.; Herrera, Carlos M.; Talavera, Salvador

    2011-01-01

    Background and Aims Due in part to biophysical sized-related constraints, insects unlike vertebrates are seldom expected to act as primary seed dispersers via ingestion of fruits and seeds (endozoochory). The Mediterranean parasitic plant Cytinus hypocistis, however, possesses some characteristics that may facilitate endozoochory by beetles. By combining a long-term field study with experimental manipulation, we tested whether C. hypocistis seeds are endozoochorously dispersed by beetles. Methods Field studies were carried out over 4 years on six populations in southern Spain. We recorded the rate of natural fruit consumption by beetles, the extent of beetle movement, beetle behaviour and the relative importance of C. hypocistis fruits in beetle diet. Key Results The tenebrionid beetle Pimelia costata was an important disperser of C. hypocistis seeds, consuming up to 17·5 % of fruits per population. Forty-six per cent of beetles captured in the field consumed C. hypocistis fruits, with up to 31 seeds found in individual beetle frass. An assessment of seeds following passage through the gut of beetles indicated that seeds remained intact and viable and that the proportion of viable seeds from beetle frass was not significantly different from that of seeds collected directly from fruits. Conclusions A novel plant–animal interaction is revealed; endozoochory by beetles may facilitate the dispersal of viable seeds after passage through the gut away from the parent plant to potentially favourable underground sites offering a high probability of germination and establishment success. Such an ecological role has until now been attributed only to vertebrates. Future studies should consider more widely the putative role of fruit and seed ingestion by invertebrates as a dispersal mechanism, particularly for those plant species that possess small seeds. PMID:21303784

  11. Restriction of viral dissemination from the midgut determines incompetence of small brown planthopper as a vector of Southern rice black-streaked dwarf virus.

    PubMed

    Jia, Dongsheng; Chen, Hongyan; Mao, Qianzhuo; Liu, Qifei; Wei, Taiyun

    2012-08-01

    Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus, is transmitted by the white-backed planthopper in a persistent-propagative manner. In this study, we found that another planthopper species, the small brown planthopper (SBPH), could acquire SRBSDV but not transmit it. To identify the transmission barrier for SRBSDV in SBPHs, sequential infection by SRBSDV in the organs of SBPHs was studied with immunofluorescence for viral antigens. SRBSDV initially entered the epithelial cells of the midgut, then viroplasms, the sites for viral replication, formed in the midgut of viruliferous SBPHs. Furthermore, SRBSDV spread within the midgut, but failed to disseminate from the midgut into the hemocoel or into the salivary glands. All these results indicated that the inability of SBPH to transmit SRBSDV could be due to the restriction of viral dissemination from the midgut of SBPH, which led to the failure of viral spread to the salivary glands for virus transmission.

  12. Glutathione S-transferase in the midgut tissue of gypsy moth (Lymantria dispar) caterpillars exposed to dietary cadmium.

    PubMed

    Vlahović, Milena; Ilijin, Larisa; Mrdaković, Marija; Todorović, Dajana; Matić, Dragana; Lazarević, Jelica; Mataruga, Vesna Perić

    2016-06-01

    Activity of glutathione S-transferase (GST) in midgut of gypsy moth caterpillars exposed to 10 and 30μg Cd/g dry food was examined. Based on the enzyme reaction through conjugation with glutathione, overall activity remained unaltered after acute and chronic treatment. No-observed-effect-concentration (10μg Cd/g dry food) significantly increased activity only after 3-day recovery following cadmium administration. Almost all comparisons of the indices of phenotypic plasticity revealed statistically significant differences. Despite the facts that GST has important role in xenobiotic biotransformation, our results indicate that this enzyme in insect midgut does not represent the key factor in cadmium detoxification.

  13. What is Next in Bark Beetle Phylogeography?

    PubMed

    Avtzis, Dimitrios N; Bertheau, Coralie; Stauffer, Christian

    2012-05-07

    Bark beetle species within the scolytid genera Dendroctonus, Ips, Pityogenes and Tomicus are known to cause extensive ecological and economical damage in spruce and pine forests during epidemic outbreaks all around the world. Dendroctonus ponderosae poses the most recent example having destroyed almost 100,000 km² of conifer forests in North America. The success and effectiveness of scolytid species lies mostly in strategies developed over the course of time. Among these, a complex system of semiochemicals promotes the communication and aggregation on the spot of infestation facilitating an en masse attack against a host tree's defenses; or an association with fungi that evolved either in the form of nutrition (ambrosia fungi) or even by reducing the resistance of host trees (blue-stain fungi). Although often specific to a tree genus or species, some bark beetles are polyphagous and have the ability to switch on to new hosts and extend their host range (i.e., between conifer genera such as Pityogenes chalcographus or even from conifer to deciduous trees as Polygraphus grandiclava). A combination of these capabilities in concert with life history or ecological traits explains why bark beetles are considered interesting subjects in evolutionary studies. Several bark beetle species appear in phylogeographic investigations, in an effort to improve our understanding of their ecology, epidemiology and evolution. In this paper investigations that unveil the phylogeographic history of bark beetles are reviewed. A close association between refugial areas and postglacial migration routes that insects and host trees have followed in the last 15,000 BP has been suggested in many studies. Finally, a future perspective of how next generation sequencing will influence the resolution of phylogeographic patterns in the coming years is presented. Utilization of such novel techniques will provide a more detailed insight into the genome of scolytids facilitating at the same time the

  14. What is Next in Bark Beetle Phylogeography?

    PubMed Central

    Avtzis, Dimitrios N.; Bertheau, Coralie; Stauffer, Christian

    2012-01-01

    Bark beetle species within the scolytid genera Dendroctonus, Ips, Pityogenes and Tomicus are known to cause extensive ecological and economical damage in spruce and pine forests during epidemic outbreaks all around the world. Dendroctonus ponderosae poses the most recent example having destroyed almost 100,000 km2 of conifer forests in North America. The success and effectiveness of scolytid species lies mostly in strategies developed over the course of time. Among these, a complex system of semiochemicals promotes the communication and aggregation on the spot of infestation facilitating an en masse attack against a host tree’s defenses; or an association with fungi that evolved either in the form of nutrition (ambrosia fungi) or even by reducing the resistance of host trees (blue-stain fungi). Although often specific to a tree genus or species, some bark beetles are polyphagous and have the ability to switch on to new hosts and extend their host range (i.e., between conifer genera such as Pityogenes chalcographus or even from conifer to deciduous trees as Polygraphus grandiclava). A combination of these capabilities in concert with life history or ecological traits explains why bark beetles are considered interesting subjects in evolutionary studies. Several bark beetle species appear in phylogeographic investigations, in an effort to improve our understanding of their ecology, epidemiology and evolution. In this paper investigations that unveil the phylogeographic history of bark beetles are reviewed. A close association between refugial areas and postglacial migration routes that insects and host trees have followed in the last 15,000 BP has been suggested in many studies. Finally, a future perspective of how next generation sequencing will influence the resolution of phylogeographic patterns in the coming years is presented. Utilization of such novel techniques will provide a more detailed insight into the genome of scolytids facilitating at the same time the

  15. Colorado potato beetle toxins revisited: evidence the beetle does not sequester host plant glycoalkaloids.

    PubMed

    Armer, Christine A

    2004-04-01

    The Colorado potato beetle feeds only on glycoalkaloid-laden solanaceous plants, appears to be toxic to predators, and has aposematic coloration, suggesting the beetle may sequester alkaloids from its host plants. This study tested 4th instars and adults, as well as isolated hemolymph and excrement, to determine if the beetles sequester, metabolize, or excrete alkaloids ingested from their host plants. HPLC analysis showed: that neither the larvae nor the adults sequestered either solanine or chaconine from potato foliage; that any alkaloids in the beetles were at concentrations well below 1 ppm; and that alkaloids were found in the excrement of larvae at approximately the same concentrations as in foliage. Analysis of alkaloids in the remains of fed-upon leaflet halves plus excreta during 24 hr feeding by 4th instars, as compared to alkaloids in the uneaten halves of the leaflets, showed that equal amounts of alkaloids were excreted as were ingested. The aposematic coloration probably warns of a previously-identified toxic dipeptide instead of a plant-derived alkaloid, as the Colorado potato beetle appears to excrete, rather than sequester or metabolize, the alkaloids from its host plants.

  16. iBeetle-Base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum.

    PubMed

    Dönitz, Jürgen; Schmitt-Engel, Christian; Grossmann, Daniela; Gerischer, Lizzy; Tech, Maike; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-01-01

    The iBeetle-Base (http://ibeetle-base.uni-goettingen.de) makes available annotations of RNAi phenotypes, which were gathered in a large scale RNAi screen in the red flour beetle Tribolium castaneum (iBeetle screen). In addition, it provides access to sequence information and links for all Tribolium castaneum genes. The iBeetle-Base contains the annotations of phenotypes of several thousands of genes knocked down during embryonic and metamorphic epidermis and muscle development in addition to phenotypes linked to oogenesis and stink gland biology. The phenotypes are described according to the EQM (entity, quality, modifier) system using controlled vocabularies and the Tribolium morphological ontology (TrOn). Furthermore, images linked to the respective annotations are provided. The data are searchable either for specific phenotypes using a complex 'search for morphological defects' or a 'quick search' for gene names and IDs. The red flour beetle Tribolium castaneum has become an important model system for insect functional genetics and is a representative of the most species rich taxon, the Coleoptera, which comprise several devastating pests. It is used for studying insect typical development, the evolution of development and for research on metabolism and pest control. Besides Drosophila, Tribolium is the first insect model organism where large scale unbiased screens have been performed.

  17. Allozyme gene diversities in some leaf beetles (Coleoptera: Chrysomelidae).

    PubMed

    Krafsur, E S

    1999-08-01

    Gene diversity at allozyme loci was investigated in the bean leaf beetle, Ceratoma trifurcata Forster; the elm leaf beetle, Xanthogaleruca luteola (Muller); the cottonwood leaf beetle, Chrysomela scripta Fabricus; the western corn rootworm, Diabrotica virgifera virgifera LeConte; the southern corn rootworm, also called the spotted cucumber beetle, D. undecimpunctata howardi Baker; the northern corn rootworm, D. barberi Smith and Lawrence; and the Colorado potato beetle, Leptinotarsa decemlineata (Say). Six of these species are economically important pests of crops and display adaptive traits that may correlate with genetic diversity. Gene diversity H(E) in bean leaf beetles was 17.7 +/- 4.0% among 32 loci. In western corn rootworms, H(E) = 4.8 +/- 2.0% among 36 loci, and in spotted cucumber beetles, H(E) = 11.9 +/- 2.7% among 39 loci. Diversity among 27 loci was 10.5 +/- 4.3% in the Colorado potato beetle. The data were compared with gene diversity estimates from other leaf beetle species in which heterozygosities varied from 0.3 to 21% and no correlation was detected among heterozygosities, geographic ranges, or population densities. Distributions of single-locus heterozygosities were consistent with selective neutrality of alleles.

  18. Metagenomic Profiling Reveals Lignocellulose Degrading System in a Microbial Community Associated with a Wood-Feeding Beetle

    PubMed Central

    Scully, Erin D.; Geib, Scott M.; Hoover, Kelli; Tien, Ming; Tringe, Susannah G.; Barry, Kerrie W.; Glavina del Rio, Tijana; Chovatia, Mansi; Herr, Joshua R.; Carlson, John E.

    2013-01-01

    The Asian longhorned beetle (Anoplophoraglabripennis) is an invasive, wood-boring pest that thrives in the heartwood of deciduous tree species. A large impediment faced by A. glabripennis as it feeds on woody tissue is lignin, a highly recalcitrant biopolymer that reduces access to sugars and other nutrients locked in cellulose and hemicellulose. We previously demonstrated that lignin, cellulose, and hemicellulose are actively deconstructed in the beetle gut and that the gut harbors an assemblage of microbes hypothesized to make significant contributions to these processes. While lignin degrading mechanisms have been well characterized in pure cultures of white rot basidiomycetes, little is known about such processes in microbial communities associated with wood-feeding insects. The goals of this study were to develop a taxonomic and functional profile of a gut community derived from an invasive population of larval A. glabripennis collected from infested host trees and to identify genes that could be relevant for the digestion of woody tissue and nutrient acquisition. To accomplish this goal, we taxonomically and functionally characterized the A. glabripennis midgut microbiota through amplicon and shotgun metagenome sequencing and conducted a large-scale comparison with the metagenomes from a variety of other herbivore-associated communities. This analysis distinguished the A. glabripennis larval gut metagenome from the gut communities of other herbivores, including previously sequenced termite hindgut metagenomes. Genes encoding enzymes were identified in the A. glabripennis gut metagenome that could have key roles in woody tissue digestion including candidate lignin degrading genes (laccases, dye-decolorizing peroxidases, novel peroxidases and β-etherases), 36 families of glycoside hydrolases (such as cellulases and xylanases), and genes that could facilitate nutrient recovery, essential nutrient synthesis, and detoxification. This community could serve as a

  19. Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelii

    PubMed Central

    Vaughan, Jefferson A.; Pumpuni, Charles B.; Beier, John C.

    2011-01-01

    The mosquito midgut is a site of complex interactions between the mosquito, the malaria parasite and the resident bacterial flora. In laboratory experiments, we observed significant enhancement of Plasmodium falciparum oocyst production when Anopheles gambiae (Diptera: Culicidae) mosquitoes were membrane-fed on infected blood containing gametocytes from in vitro cultures mixed with sera from rabbits immunized with A. gambiae midguts. To identify specific mechanisms, we evaluated whether the immune sera was interfering with the usual limiting activity of gram-negative bacteria in An. gambiae midguts. Enhancement of P. falciparum infection rates occurred at some stage between the ookinete and oocyst stage and was associated with greater numbers of oocysts in mosquitoes fed on immune sera. The same immune sera did not affect the sporogonic development of P. yoelii, a rodent malaria parasite. Not only did antibodies in the immune sera recognize several types of midgut-derived gram-negative bacteria (Pseudomonas spp. and Cedecea spp.), but gentamicin provided in the sugar meal 3 days before an infectious P. falciparum blood meal mixed with immune sera eliminated the enhancing effect. These results suggest that gram-negative bacteria, which normally impair P. falciparum development between the ookinete and oocyst stage, were altered by specific anti-bacterial antibodies produced by immunizing rabbits with non-antibiotic-treated midgut lysates. Because of the differences in developmental kinetics between human and rodent malaria species, the anti-bacterial antibodies had no effect on P. yoelii because their ookinetes leave the midgut much earlier than P. falciparum and so are not influenced as strongly by resident midgut bacteria. While this study highlights the complex interactions occurring between the parasite, mosquito, and midgut microbiota, the ultimate goal is to determine the influence of midgut microbiota on Plasmodium development in anopheline midguts in malaria

  20. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development.

    PubMed

    Gonzalez-Ceron, Lilia; Santillan, Frida; Rodriguez, Mario H; Mendez, Domingo; Hernandez-Avila, Juan E

    2003-05-01

    Bacterial infections were investigated in midguts of insectary and field-collected Anopheles albimanus Weidemann from southern Mexico. Serratia marcescens, Enterobacter cloacae and Enterobacter amnigenus 2, Enterobacter sp., and Serratia sp. were isolated in field samples obtained in 1998, but only Enterobacter sp. was recovered in field samples of 1997 and no bacteria were isolated from insectary specimens. These bacteria were offered along with Plasmodium vivax infected blood to aseptic insectary An. albimanus, and the number of infected mosquitoes as well as the oocyst densities assessed after 7d. Plasmodium vivax infections in mosquitoes co-infected with En. amnigenus 2, En. cloacae, and S. marcensces were 53, 17, and 210 times, respectively, lower than in control mosquitoes, and the mean oocyst density in mosquitoes co-infected with En. cloacae was 2.5 times lower than in controls. Mortality was 13 times higher in S. marcensces-infected mosquitoes compared with controls. The overall midgut bacterial infection in mosquito field populations may influence P. vivax transmission, and could contribute to explain the annual variations in malaria incidence observed in the area.

  1. Modulation of Malaria Infection in Anopheles gambiae Mosquitoes Exposed to Natural Midgut Bacteria

    PubMed Central

    Tchioffo, Majoline T.; Boissière, Anne; Churcher, Thomas S.; Abate, Luc; Gimonneau, Geoffrey; Nsango, Sandrine E.; Awono-Ambéné, Parfait H.; Christen, Richard; Berry, Antoine; Morlais, Isabelle

    2013-01-01

    The development of Plasmodium falciparum within the Anopheles gambiae mosquito relies on complex vector-parasite interactions, however the resident midgut microbiota also plays an important role in mediating parasite infection. In natural conditions, the mosquito microbial flora is diverse, composed of commensal and symbiotic bacteria. We report here the isolation of culturable midgut bacteria from mosquitoes collected in the field in Cameroon and their identification based on the 16S rRNA gene sequencing. We next measured the effect of selected natural bacterial isolates on Plasmodium falciparum infection prevalence and intensity over multiple infectious feedings and found that the bacteria significantly reduced the prevalence and intensity of infection. These results contrast with our previous study where the abundance of Enterobacteriaceae positively correlated with P. falciparum infection (Boissière et al. 2012). The oral infection of bacteria probably led to the disruption of the gut homeostasis and activated immune responses, and this pinpoints the importance of studying microbe-parasite interactions in natural conditions. Our results indicate that the effect of bacterial exposure on P. falciparum infection varies with factors from the parasite and the human host and calls for deeper dissection of these parameters for accurate interpretation of bacterial exposure results in laboratory settings. PMID:24324714

  2. Exosome Secretion by the Parasitic Protozoan Leishmania within the Sand Fly Midgut.

    PubMed

    Atayde, Vanessa Diniz; Aslan, Hamide; Townsend, Shannon; Hassani, Kasra; Kamhawi, Shaden; Olivier, Martin

    2015-11-03

    Despite several studies describing the secretion of exosomes by Leishmania in vitro, observation of their formation and release in vivo has remained a major challenge. Herein, we show that Leishmania constitutively secretes exosomes within the lumen of the sand fly midgut through a mechanism homologous to the mammalian pathway. Through egestion experiments, we demonstrate that Leishmania exosomes are part of the sand fly inoculum and are co-egested with the parasite during the insect's bite, possibly influencing the host infectious process. Indeed, co-inoculation of mice footpads with L. major plus midgut-isolated or in-vitro-isolated L. major exosomes resulted in a significant increase in footpad swelling. Notably, co-injections produced exacerbated lesions through overinduction of inflammatory cytokines, in particular IL-17a. Our data indicate that Leishmania exosomes are an integral part of the parasite's infectious life cycle, and we propose to add these vesicles to the repertoire of virulence factors associated with vector-transmitted infections.

  3. West Nile Virus Infection Alters Midgut Gene Expression in Culex pipiens quinquefasciatus Say (Diptera: Culicidae)

    PubMed Central

    Smartt, Chelsea T.; Richards, Stephanie L.; Anderson, Sheri L.; Erickson, Jennifer S.

    2009-01-01

    Alterations in gene expression in the midgut of female Culex pipiens quinquefasciatus exposed to blood meals containing 6.8 logs plaque-forming units/mL of West Nile virus (WNV) were studied by fluorescent differential display. Twenty-six different cDNAs exhibited reproducible differences after feeding on infected blood. Of these, 21 cDNAs showed an increase in expression, and 5 showed a decrease in expression as a result of WNV presence in the blood meal. GenBank database searches showed that one clone with increased expression, CQ G12A2, shares 94% identity with a leucine-rich repeat-containing protein from Cx. p. quinquefasciatus and 32% identity to Toll-like receptors from Aedes aegypti. We present the first cDNA clone isolated from female Cx. p. quinquefasciatus midgut tissue whose expression changes on exposure to WNV. This cDNA represents a mosquito gene that is an excellent candidate for interacting with WNV in Cx. p. quinquefasciatus and may play a role in disease transmission. PMID:19635880

  4. Exosome secretion by the parasitic protozoan Leishmania within the sand fly midgut

    PubMed Central

    Atayde, Vanessa Diniz; Suau, Hamide Aslan; Townsend, Shannon; Hassani, Kasra; Kamhawi, Shaden; Olivier, Martin

    2015-01-01

    SUMMARY Despite several studies describing the secretion of exosomes by Leishmania in vitro, observation of their formation and release in vivo has remained a major challenge. Herein, we show that Leishmania constitutively secretes exosomes within the lumen of the sand fly midgut through a mechanism homologous to the mammalian pathway. Through egestion experiments, we demonstrate that Leishmania exosomes are part of the sand fly inoculum and are co-egested with the parasite during the insect’s bite possibly influencing the host infectious process. Indeed, co-inoculation of mice footpads with L. major plus midgut-isolated or in vitro-isolated L. major exosomes resulted in a significant increase in footpad swelling. Notably, co-injections produced exacerbated lesions through overinduction of inflammatory cytokines, in particular IL-17a. Our data indicate that Leishmania exosomes are an integral part of the parasite’s infectious life cycle and propose to add these vesicles to the repertoire of virulence factors associated to vector-transmitted infections. PMID:26565909

  5. Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut.

    PubMed

    Rupp, Ingrid; Sologub, Ludmilla; Williamson, Kim C; Scheuermayer, Matthias; Reininger, Luc; Doerig, Christian; Eksi, Saliha; Kombila, Davy U; Frank, Matthias; Pradel, Gabriele

    2011-04-01

    Physical contact is important for the interaction between animal cells, but it can represent a major challenge for protists like malaria parasites. Recently, novel filamentous cell-cell contacts have been identified in different types of eukaryotic cells and termed nanotubes due to their morphological appearance. Nanotubes represent small dynamic membranous extensions that consist of F-actin and are considered an ancient feature evolved by eukaryotic cells to establish contact for communication. We here describe similar tubular structures in the malaria pathogen Plasmodium falciparum, which emerge from the surfaces of the forming gametes upon gametocyte activation in the mosquito midgut. The filaments can exhibit a length of > 100 μm and contain the F-actin isoform actin 2. They actively form within a few minutes after gametocyte activation and persist until the zygote transforms into the ookinete. The filaments originate from the parasite plasma membrane, are close ended and express adhesion proteins on their surfaces that are typically found in gametes, like Pfs230, Pfs48/45 or Pfs25, but not the zygote surface protein Pfs28. We show that these tubular structures represent long-distance cell-to-cell connections between sexual stage parasites and demonstrate that they meet the characteristics of nanotubes. We propose that malaria parasites utilize these adhesive "nanotubes" in order to facilitate intercellular contact between gametes during reproduction in the mosquito midgut.

  6. Cadmium-binding proteins in midgut gland of freshwater crayfish Procambarus clarkii

    SciTech Connect

    Del Ramo, J.; Pastor, A.; Torreblanca, A.; Medina, J.; Diza-Mayans, J.

    1989-02-01

    Metallothioneins, metal binding proteins, were originally isolated and characterized by Margoshes and Vallee. These proteins have a high affinity for various heavy metals, particularly cadmium and mercury and have extensively been studied in mammals. Metal binding proteins have been observed in a variety of marine invertebrates; however, there is very little information available on metal binding proteins in freshwater invertebrates, and particularly in freshwater crustaceans. Cadmium is an ubiquitous non essential element which possesses high toxicity to aquatic organisms. Cadmium binding proteins observed in invertebrates have similar characteristics to mammalian metallothioneins. In 1978, the American red crayfish appeared in Albufera Lake and the surrounding rice fields (Valencia, Spain). Albufera Lake and the surrounding rice fields waters are subjected to very heavy loads of sewage and toxic industrial residues (including heavy metals) from the many urban and wastewaters in this area. In previous reports the authors studied the toxicity and accumulation of cadmium on Procambarus clarkii of Albufera Lake. This crayfish shows a high resistance to cadmium and a great accumulation rate of this metal in several tissues, including midgut gland. Since Procambarus clarkii shows a high resistance to cadmium, the presence of cadmium binding proteins (Cd-BP) in midgut gland of these crayfish would be expected. This report describes results on the characterization of Cd-BPs obtained from cadmium exposed crayfish Procambarus clarkii, demonstrating their presence in this freshwater crayfish.

  7. Lehr's fields of campaniform sensilla in beetles (Coleoptera): functional morphology. III. Modification of elytral mobility or shape in flying beetles.

    PubMed

    Frantsevich, Leonid; Gorb, Stanislav; Radchenko, Vladimir; Gladun, Dmytro

    2015-03-01

    Some flying beetles have peculiar functional properties of their elytra, if compared with the vast majority of beetles. A "typical" beetle covers its pterothorax and the abdomen from above with closed elytra and links closed elytra together along the sutural edges. In the open state during flight, the sutural edges diverge much more than by 90°. Several beetles of unrelated taxa spread wings through lateral incisions on the elytra and turn the elytron during opening about 10-12° (Cetoniini, Scarabaeus, Gymnopleurus) or elevate their elytra without partition (Sisyphus, Tragocerus). The number of campaniform sensilla in their elytral sensory field is diminished in comparison with beetles of closely related taxa lacking that incision. Elytra are very short in rove beetles and in long-horn beetles Necydalini. The abundance of sensilla in brachyelytrous long-horn beetles Necydalini does not decrease in comparison with macroelytrous Cerambycinae. Strong reduction of the sensory field was found in brachyelytrous Staphylinidae. Lastly, there are beetles lacking the linkage of the elytra down the sutural edge (stenoelytry). Effects of stenoelytry were also not uniform: Oedemera and flying Meloidae have the normal amount of sensilla with respect to their body size, whereas the sensory field in the stenoelytrous Eulosia bombyliformis is 5-6 times less than in chafers of the same size but with normally linking broad elytra.

  8. Fungal Symbionts of the Spruce Bark Beetle Synthesize the Beetle Aggregation Pheromone 2-Methyl-3-buten-2-ol.

    PubMed

    Zhao, Tao; Axelsson, Karolin; Krokene, Paal; Borg-Karlson, Anna-Karin

    2015-09-01

    Tree-killing bark beetles depend on aggregation pheromones to mass-attack their host trees and overwhelm their resistance. The beetles are always associated with phytopathogenic ophiostomatoid fungi that probably assist in breaking down tree resistance, but little is known about if or how much these fungal symbionts contribute to the beetles' aggregation behavior. In this study, we determined the ability of four major fungal symbionts of the spruce bark beetle Ips typographus to produce beetle aggregation pheromones. The fungi were incubated on Norway spruce Picea abies bark, malt agar, or malt agar amended with 0.5% (13)C glucose. Volatiles present in the headspace of each fungus were analyzed for 7 days after incubation using a SPME autosampler coupled to a GC/MS. Two Grosmannia species (G. penicillata and G. europhioides) produced large amounts of 2-methyl-3-buten-2-ol (MB), the major component in the beetles' aggregation pheromone blend, when growing on spruce bark or malt agar. Grosmannia europhioides also incorporated (13)C glucose into MB, demonstrating that the fungi can synthesize MB de novo using glucose as a carbon source. This is the first clear evidence that fungal symbionts of bark beetles can produce components in the aggregation pheromone blend of their beetle vectors. This provides new insight into the possible ecological roles of fungal symbionts in bark beetle systems and may deepen our understanding of species interactions and coevolution in these important biological systems.

  9. Atlas of Iberian water beetles (ESACIB database).

    PubMed

    Sánchez-Fernández, David; Millán, Andrés; Abellán, Pedro; Picazo, Félix; Carbonell, José A; Ribera, Ignacio

    2015-01-01

    The ESACIB ('EScarabajos ACuáticos IBéricos') database is provided, including all available distributional data of Iberian and Balearic water beetles from the literature up to 2013, as well as from museum and private collections, PhD theses, and other unpublished sources. The database contains 62,015 records with associated geographic data (10×10 km UTM squares) for 488 species and subspecies of water beetles, 120 of them endemic to the Iberian Peninsula and eight to the Balearic Islands. This database was used for the elaboration of the "Atlas de los Coleópteros Acuáticos de España Peninsular". In this dataset data of 15 additional species has been added: 11 that occur in the Balearic Islands or mainland Portugal but not in peninsular Spain and an other four with mainly terrestrial habits within the genus Helophorus (for taxonomic coherence). The complete dataset is provided in Darwin Core Archive format.

  10. Beetle horns and horned beetles: emerging models in developmental evolution and ecology

    PubMed Central

    Kijimoto, Teiya; Pespeni, Melissa; Beckers, Oliver; Moczek, Armin P.

    2013-01-01

    Many important questions in developmental biology increasingly interface with related questions in other biological disciplines such as evolutionary biology and ecology. In this article, we review and summarize recent progress in the development of horned beetles and beetle horns as study systems amenable to the integration of a wide range of approaches, from gene function analysis in the laboratory to population ecological and behavioral studies in the field. Specifically, we focus on three key questions at the current interface of developmental biology, evolutionary biology and ecology: (1) the developmental mechanisms underlying the origin and diversification of novel, complex traits, (2) the relationship between phenotypic diversification and the diversification of genes and transcriptomes, and (3) the role of behavior as a leader or follower in developmental evolution. For each question we discuss how work on horned beetles is contributing to our current understanding of key issues, as well as highlight challenges and opportunities for future studies. PMID:23799584

  11. Identification of Holotrichia oblita midgut proteins that bind to Cry8-like toxin from Bacillus thuringiensis and assembling of H. oblita midgut tissue transcriptome.

    PubMed

    Jiang, Jian; Huang, Ying; Shu, Changlong; Soberón, Mario; Bravo, Alejandra; Liu, Chunqing; Song, Fuping; Lai, Jinsheng; Zhang, Jie

    2017-04-07

    The Bacillus thuringiensis strain HBF-18 (CGMCC2070), containing two cry genes (cry8-like and cry8Ga), is toxic to Holotrichia oblita larvae. Both Cry8-like and Cry8Ga proteins are active against this insect pest, while Cry8-like is the more toxic protein. To analyze the binding characteristics of Cry8-like and Cry8Ga proteins to brush border membrane vesicles (BBMV) in H. oblita larvae, binding assays were conducted with a fluorescent DyLight488-labeled Cry8-like toxin. Results of binding saturation assays demonstrated that Cry8-like binds specifically to binding sites on BBMV from H. oblita and heterologous competition assays revealed that Cry8Ga shared binding sites with Cry8-like. Furthermore, Cry8-like-binding proteins in midgut from H. oblita larvae were identified by pull-down assays, and by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, the H. oblita midgut transcriptome was assembled by high-throughput RNA sequencing and used for identification of Cry8-like binding proteins. Eight Cry8-like-binding proteins were obtained from pull-down assays conducted with BBMV. The LC-MS/MS data of these proteins successfully matched with the H. oblita transcriptome, and the BLASTX results identified five proteins as serine protease, transferrin-like, ATPase catalytic subunit, and actin. These identified Cry8-like-binding proteins were different with those previously confirmed as receptors for Cry1A proteins in lepidopteran insect species such as aminopeptidase, alkaline phosphatase and cadherin.Importance:Holotrichia oblita is one of main soil-dwelling pests in China. The larvae damage the roots of crops, and resulted in significant yield reduction and economic losses. It is difficult to control principally due to its soil living habits. In recent years, some Cry8 toxins from Bacillus thuringiensis were shown to be active against this pest. The study of the mechanism of action of these Cry8 toxins is needed for their effective use in the control

  12. Water capture by a desert beetle.

    PubMed

    Parker, A R; Lawrence, C R

    2001-11-01

    Some beetles in the Namib Desert collect drinking water from fog-laden wind on their backs. We show here that these large droplets form by virtue of the insect's bumpy surface, which consists of alternating hydrophobic, wax-coated and hydrophilic, non-waxy regions. The design of this fog-collecting structure can be reproduced cheaply on a commercial scale and may find application in water-trapping tent and building coverings, for example, or in water condensers and engines.

  13. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae).

    PubMed

    Farrell, B D; Sequeira, A S; O'Meara, B C; Normark, B B; Chung, J H; Jordal, B H

    2001-10-01

    Beetles in the weevil subfamilies Scolytinae and Platypodinae are unusual in that they burrow as adults inside trees for feeding and oviposition. Some of these beetles are known as ambrosia beetles for their obligate mutualisms with asexual fungi--known as ambrosia fungi--that are derived from plant pathogens in the ascomycete group known as the ophiostomatoid fungi. Other beetles in these subfamilies are known as bark beetles and are associated with free-living, pathogenic ophiostomatoid fungi that facilitate beetle attack of phloem of trees with resin defenses. Using DNA sequences from six genes, including both copies of the nuclear gene encoding enolase, we performed a molecular phylogenetic study of bark and ambrosia beetles across these two subfamilies to establish the rate and direction of changes in life histories and their consequences for diversification. The ambrosia beetle habits have evolved repeatedly and are unreversed. The subfamily Platypodinae is derived from within the Scolytinae, near the tribe Scolytini. Comparison of the molecular branch lengths of ambrosia beetles and ambrosia fungi reveals a strong correlation, which a fungal molecular clock suggests spans 60 to 21 million years. Bark beetles have shifted from ancestral association with conifers to angiosperms and back again several times. Each shift to angiosperms is associated with elevated diversity, whereas the reverse shifts to conifers are associated with lowered diversity. The unusual habit of adult burrowing likely facilitated the diversification of these beetle-fungus associations, enabling them to use the biomass-rich resource that trees represent and set the stage for at least one origin of eusociality.

  14. Persistent disruption of ciliated epithelium following paediatric lung transplantation.

    PubMed

    Thomas, Biju; Aurora, Paul; Spencer, Helen; Elliott, Martin; Rutman, Andrew; Hirst, Robert A; O'Callaghan, Christopher

    2012-11-01

    It is unclear whether ciliary function following lung transplantation is normal or not. Our aim was to study the ciliary function and ultrastructure of epithelium above and below the airway anastomosis and the peripheral airway of children following lung transplantation. We studied the ciliary beat frequency (CBF) and beat pattern, using high speed digital video imaging and ultrastructure by transmission electron microscopy, of bronchial epithelium from above and below the airway anastomosis and the peripheral airway of 10 cystic fibrosis (CF) and 10 non-suppurative lung disease (NSLD) paediatric lung transplant recipients. Compared to epithelium below the anastomosis, the epithelium above the anastomosis in the CF group showed reduced CBF (median (interquartile range): 10.5 (9.0-11.4) Hz versus 7.4 (6.4-9.2) Hz; p<0.01) and increased dyskinesia (median (IQR): 16.5 (12.9-28.2)% versus 42.2 (32.6-56.4)%; p<0.01). In both CF and NSLD groups, compared with epithelium above the anastomosis, the epithelium below the anastomosis showed marked ultrastructural abnormalities (median duration post-transplant 7-12 months). Ciliary dysfunction is a feature of native airway epithelium in paediatric CF lung transplant recipients. The epithelium below the airway anastomosis shows profound ultrastructural abnormalities in both CF and NSLD lung transplant recipients, many months after transplantation.

  15. Challenges and opportunities for tissue-engineering polarized epithelium.

    PubMed

    Paz, Ana C; Soleas, John; Poon, James C H; Trieu, Dennis; Waddell, Thomas K; McGuigan, Alison P

    2014-02-01

    The epithelium is one of the most important tissue types in the body and the specific organization of the epithelial cells in these tissues is important for achieving appropriate function. Since many tissues contain an epithelial component, engineering functional epithelium and understanding the factors that control epithelial maturation and organization are important for generating whole artificial organ replacements. Furthermore, disruption of the cellular organization leads to tissue malfunction and disease; therefore, engineered epithelium could provide a valuable in vitro model to study disease phenotypes. Despite the importance of epithelial tissues, a surprisingly limited amount of effort has been focused on organizing epithelial cells into artificial polarized epithelium with an appropriate structure that resembles that seen in vivo. In this review, we provide an overview of epithelial tissue organization and highlight the importance of cell polarization to achieve appropriate epithelium function. We next describe the in vitro models that exist to create polarized epithelium and summarize attempts to engineer artificial epithelium for clinical use. Finally, we highlight the opportunities that exist to translate strategies from tissue engineering other tissues to generate polarized epithelium with a functional structure.

  16. Tenebrio beetles use magnetic inclination compass

    NASA Astrophysics Data System (ADS)

    Vácha, Martin; Drštková, Dana; Půžová, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180°. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use—in contrast to another previously researched Arthropod, spiny lobster—the inclination compass.

  17. Asymmetric hindwing foldings in rove beetles.

    PubMed

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  18. Innate olfactory preferences in dung beetles.

    PubMed

    Dormont, Laurent; Jay-Robert, Pierre; Bessière, Jean-Marie; Rapior, Sylvie; Lumaret, Jean-Pierre

    2010-09-15

    The effects of insect larval diet on adult olfactory responses to host-plant or food volatiles are still debated. The induction of adult host preferences has been studied in insects with diverse ecologies, including parasitoids, flower-visitors and phytophagous species. We investigated this question for the first time in a coprophagous insect species. Larvae of the French scarab dung beetle Agrilinus constans were reared on four different artificial substrates containing dung from cattle, horse, sheep or wild boar, and responses of imagos to dung volatiles were then behaviourally tested in an olfactometer. We also reported the first analysis of the composition of different mammal dung volatiles. We showed that adult beetles were more attracted to cattle and sheep dung odours, and that larval feeding experience had no effect on the adult olfactory responses to dung volatiles. A second experiment showed that the presence of other insects inside the dung resource affects the process of dung selection by adults. We identified 64 chemical compounds from dung emissions, and showed that dung volatiles clearly differed among different mammal species, allowing olfactory discrimination by dung beetles. Our results suggest that resource selection in coprophagous insects may be based on innate olfactory preferences. Further experiments should examine whether Agrilinus adults can learn new dung odours, and whether larval diet may influence the behaviour of adults in other coprophagous species.

  19. Bronchial epithelium in children: a key player in asthma.

    PubMed

    Carsin, Ania; Mazenq, Julie; Ilstad, Alexandra; Dubus, Jean-Christophe; Chanez, Pascal; Gras, Delphine

    2016-06-01

    Bronchial epithelium is a key element of the respiratory airways. It constitutes the interface between the environment and the host. It is a physical barrier with many chemical and immunological properties. The bronchial epithelium is abnormal in asthma, even in children. It represents a key component promoting airway inflammation and remodelling that can lead to chronic symptoms. In this review, we present an overview of bronchial epithelium and how to study it, with a specific focus on children. We report physical, chemical and immunological properties from ex vivo and in vitro studies. The responses to various deleterious agents, such as viruses or allergens, may lead to persistent abnormalities orchestrated by bronchial epithelial cells. As epithelium dysfunctions occur early in asthma, reprogramming the epithelium may represent an ambitious goal to induce asthma remission in children.

  20. [The new era of epithelium-targeted drug development].

    PubMed

    Shimizu, Yoshimi; Nagase, Shotaro; Yagi, Kiyohito; Kondoh, Masuo

    2014-01-01

    Epithelium plays pivotal roles in biological barrier separating the inside of body and the outside environment. Ninety percent of malignant tumors are derived from epithelium. Most pathological microorganisms invade into the body from mucosal epithelium. Thus, epithelium is potential targets for drug development. Claudins (CLs), a family of tetra-transmembrane protein consisting of over 20 members, are structural and functional components of tight junction-seals in epithelium. Modulation of CL-seals enhanced mucosal absorption of drugs. CLs are often over-expressed in malignant tumors. CL-4 expression is increased in the epithelial cells covering the mucosal immune tissues. Very recently, CLs are also expected to be targets for traumatic brain injury and regenerative therapy. In this review, we overview the past, the present and the future of CLs-targeted drug development.

  1. Nutritional Physiology of the Khapra Beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) Fed on Various Barley Cultivars.

    PubMed

    Seifi, S; Naseri, B; Razmjou, J

    2016-02-01

    The Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is known as one of the mostserious pests of grains in many parts of the world. In this study, the effect of nine barley cultivars (‘Bahman’,‘CB-84-10’, ‘Fajr 30’, ‘Makuyi’, ‘Nosrat’, ‘Yousof’, ‘13A1’, ‘18A1’, and ‘19 A1’) and a wheat cultivar (‘MV17’, as a control) was determined on the nutritional indices and digestive enzymatic activity of T. granarium at 33 6 1C,relative humidity of 6565%, and a photoperiod of 14:10 (L:D) h. The highest and lowest values of larval weight gain of sixth instar were detected on wheat (0.757±0.068 mg) and cultivar Bahman (0.342±0.071 mg). Also, T. granarium larvae fed on cultivar Bahman had the lowest value of efficiency of conversion of ingested food(10.90±2.09%) as compared with wheat and other barley cultivars. Also, the highest midgut amylolytic and proteolytic activities of sixth instar were on cultivar Bahman (0.364±0.024 mU/mg and 80.54±1.73 U/mg, respectively)and the lowest activities were on cultivar Nosrat (0.043±0.004 mU/mg and 7.15±0.01 U/mg, respectively).It is concluded that barley cultivar Bahman was the most unsuitable host for feeding of T. granarium.

  2. Hemalin, a thrombin inhibitor isolated from a midgut cDNA library from the hard tick Haemaphysalis longicornis.

    PubMed

    Liao, Min; Zhou, Jinlin; Gong, Haiyan; Boldbaatar, Damdinsuren; Shirafuji, Rika; Battur, Banzragch; Nishikawa, Yoshifumi; Fujisaki, Kozo

    2009-02-01

    A full-length sequence of a thrombin inhibitor (designated as hemalin) from the midgut of parthenogenetic Haemaphysalis longicornis has been identified. Sequence analysis shows that this gene belongs to the Kunitz-type family, containing two Kunitz domains with high homology to boophilin, the thrombin inhibitor from Rhipicephalus (Boophilus) microplus. The recombinant protein expressed in insect cells delayed bovine plasma clotting time and inhibited both thrombin-induced fibrinogen clotting and platelet aggregation. A 20-kDa protein was detected from the midgut lysate with antiserum against recombinant hemalin. The gene is expressed at all stages of the tick except for the egg stage, and hemalin mRNA mainly in the midgut of the female adult tick. Real-time PCR analysis shows that this gene has a distinctly high expression level in the rapid bloodsucking period of the larvae, nymphs, and adults. Disruption of the hemalin gene by RNA interference led to a 2-day extension of the tick blood feeding period, and 27.7% of the RNA-treated ticks did not successfully complete the blood feeding. These findings indicate that the newly identified thrombin inhibitor from the midgut of H. longicornis might play an important role in tick blood feeding.

  3. The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells

    PubMed Central

    Mercado-Curiel, Ricardo F; Esquinca-Avilés, Héctor Armando; Tovar, Rosalinda; Díaz-Badillo, Álvaro; Camacho-Nuez, Minerva; Muñoz, María de Lourdes

    2006-01-01

    Background Dengue viruses (DENV) attach to the host cell surface and subsequently enter the cell by receptor-mediated endocytosis. Several primary and low affinity co-receptors for this flavivirus have been identified. However, the presence of these binding molecules on the cell surface does not necessarily render the cell susceptible to infection. Determination of which of them serve as bona fide receptors for this virus in the vector may be relevant to treating DENV infection and in designing control strategies. Results (1) Overlay protein binding assay showed two proteins with molecular masses of 80 and 67 kDa (R80 and R67). (2) Specific antibodies against these two proteins inhibited cell binding and infection. (3) Both proteins were bound by all four serotypes of dengue virus. (4) R80 and R67 were purified by affinity chromatography from Ae. aegypti mosquito midguts and from Ae albopictus C6/36 cells. (5) In addition, a protein with molecular mass of 57 kDa was purified by affinity chromatography from the midgut extracts. (6) R80 and R67 from radiolabeled surface membrane proteins of C6/36 cells were immunoprecipitated by antibodies against Ae. aegypti midgut. Conclusion Our results strongly suggest that R67 and R80 are receptors for the four serotypes of dengue virus in the midgut cells of Ae. aegypti and in C6/36 Ae. albopictus cells. PMID:17014723

  4. Draft Genome Sequences of Two Strains of Serratia spp. from the Midgut of the Malaria Mosquito Anopheles gambiae

    PubMed Central

    Pei, Dong; Hill-Clemons, Casey; Carissimo, Guillaume; Yu, Wanqin; Vernick, Kenneth D.

    2015-01-01

    Here, we report the annotated draft genome sequences of two strains of Serratia spp., Ag1 and Ag2, isolated from the midgut of two different strains of Anopheles gambiae. The genomes of these two strains are almost identical. PMID:25767231

  5. Morphological abnormalities and cell death in the Asian citrus psyllid (Diaphorina citri) midgut associated with Candidatus Liberibacter asiaticus

    PubMed Central

    Ghanim, Murad; Fattah-Hosseini, Somayeh; Levy, Amit; Cilia, Michelle

    2016-01-01

    Candidatus Liberibacter asiaticus (CLas) is a phloem-limited, gram-negative, fastidious bacterium that is associated with the development of citrus greening disease, also known as Huanglongbing (HLB). CLas is transmitted by the Asian citrus psyllid (ACP) Diaphorina citri, in a circulative manner. Two major barriers to transmission within the insect are the midgut and the salivary glands. We performed a thorough microscopic analysis within the insect midgut following exposure to CLas-infected citrus trees. We observed changes in nuclear architecture, including pyknosis and karyorrhexis as well as changes to the actin cytoskeleton in CLas-exposed midgut cells. Further analyses showed that the changes are likely due to the activation of programmed cell death as assessed by Annexin V staining and DNA fragmentation assays. These results suggest that exposure to CLas-infected trees induces apoptotic responses in the psyllid midgut that should be further investigated. Understanding the adaptive significance of the apoptotic response has the potential to create new approaches for controlling HLB. PMID:27630042

  6. The effects of Bt Cry1Ie toxin on bacterial diversity in the midgut of Apis mellifera ligustica (Hymenoptera: Apidae)

    PubMed Central

    Jia, Hui-Ru; Geng, Li-Li; Li, Yun-He; Wang, Qiang; Diao, Qing-Yun; Zhou, Ting; Dai, Ping-Li

    2016-01-01

    The honey bee has been regarded as a key species in the environmental risk assessment of biotech crops. Here, the potential adverse effects of Cry1Ie toxin on the midgut bacteria of the worker bees (Apis mellifera ligustica) were investigated under laboratory conditions. Newly emerged bees were fed with different concentrations of Cry1Ie toxin syrups (20 ng/mL, 200 ng/mL, and 20 μg/mL), pure sugar syrup, and 48 ppb of imidacloprid syrups, then sampled after 15 and 30 d. We characterized the dominant midgut bacteria and compared the composition and structure of the midgut bacterial community in all samples using the Illumina MiSeq platform targeting the V3–V4 regions of 16S rDNA. No significant differences in the diversity of the midgut bacteria were observed between the five treatments. This work was the first to show the effects of Cry1Ie toxin on honey bees, and our study provided a theoretical basis for the biosafety assessment of transgenic Cry1Ie maize. PMID:27090812

  7. Amino acids trigger down-regulation of superoxide via TORC pathway in the midgut of Rhodnius prolixus

    PubMed Central

    Gandara, Ana Caroline P.; Oliveira, José Henrique M.; Nunes, Rodrigo D.; Goncalves, Renata L.S.; Dias, Felipe A.; Hecht, Fabio; Fernandes, Denise C.; Genta, Fernando A.; Laurindo, Francisco R.M.; Oliveira, Marcus F.; Oliveira, Pedro L.

    2016-01-01

    Sensing incoming nutrients is an important and critical event for intestinal cells to sustain life of the whole organism. The TORC is a major protein complex involved in monitoring the nutritional status and is activated by elevated amino acid concentrations. An important feature of haematophagy is that huge amounts of blood are ingested in a single meal, which results in the release of large quantities of amino acids, together with the haemoglobin prosthetic group, haem, which decomposes hydroperoxides and propagates oxygen-derived free radicals. Our previous studies demonstrated that reactive oxygen species (ROS) levels were diminished in the mitochondria and midgut of the Dengue fever mosquito, Aedes aegypti, immediately after a blood meal. We proposed that this mechanism serves to avoid oxidative damage that would otherwise be induced by haem following a blood meal. Studies also performed in mosquitoes have shown that blood or amino acids controls protein synthesis through TORC activation. It was already proposed, in different models, a link between ROS and TOR, however, little is known about TOR signalling in insect midgut nor about the involvement of ROS in this pathway. Here, we studied the effect of a blood meal on ROS production in the midgut of Rhodnius prolixus. We observed that blood meal amino acids decreased ROS levels in the R. prolixus midgut immediately after feeding, via lowering mitochondrial superoxide production and involving the amino acid-sensing TORC pathway. PMID:26945025

  8. Ecdysone-Induced Receptor Tyrosine Phosphatase PTP52F Regulates Drosophila Midgut Histolysis by Enhancement of Autophagy and Apoptosis

    PubMed Central

    Santhanam, Abirami; Peng, Wen-Hsin; Yu, Ya-Ting; Sang, Tzu-Kang

    2014-01-01

    The rapid removal of larval midgut is a critical developmental process directed by molting hormone ecdysone during Drosophila metamorphosis. To date, it remains unclear how the stepwise events can link the onset of ecdysone signaling to the destruction of larval midgut. This study investigated whether ecdysone-induced expression of receptor protein tyrosine phosphatase PTP52F regulates this process. The mutation of the Ptp52F gene caused significant delay in larval midgut degradation. Transitional endoplasmic reticulum ATPase (TER94), a regulator of ubiquitin proteasome system, was identified as a substrate and downstream effector of PTP52F in the ecdysone signaling. The inducible expression of PTP52F at the puparium formation stage resulted in dephosphorylation of TER94 on its Y800 residue, ensuring the rapid degradation of ubiquitylated proteins. One of the proteins targeted by dephosphorylated TER94 was found to be Drosophila inhibitor of apoptosis 1 (DIAP1), which was rapidly proteolyzed in cells with significant expression of PTP52F. Importantly, the reduced level of DIAP1 in response to inducible PTP52F was essential not only for the onset of apoptosis but also for the initiation of autophagy. This study demonstrates a novel function of PTP52F in regulating ecdysone-directed metamorphosis via enhancement of autophagic and apoptotic cell death in doomed Drosophila midguts. PMID:24550005

  9. Biochemical and histological biomarkers in the midgut of Apis mellifera from polluted environment at Beheira Governorate, Egypt.

    PubMed

    El-Saad, Ahmed M Abu; Kheirallah, Dalia A; El-Samad, Lamia M

    2017-01-01

    The aim of this study was to analyze the impact of organophosphorus (OP) pollutants on oxidative stress and ultrastructural biomarkers in the midgut of the honeybee Apis mellifera collected from three locations that differ in their extent of spraying load with OP insecticides: a weakly anthropised rural site, Bolin which is considered as a reference site; moderately spraying site, El Kaza; and a strongly anthropised urban site, Tiba with a long history of pesticide use. Results showed that high concentrations of chlorpyrifos, malathion, diazinon, chlorpyrifos-methyl, and pirimiphos-methyl were detected in midgut at locations with extensive pesticide spraying. Reduced glutathione content, superoxide dismutase, catalase, and glutathione peroxidase displayed lowest activities in the heavily sprayed location (Tiba). Lipid peroxidation level in the midgut of honeybees in the sprayed locations was found to be significantly higher compared to the reference values. Meanwhile, various ultrastructural abnormalities were observed in the epithelial cells of midgut of honeybees collected from El Kaza and Tiba, included confluent and disorganized microvilli and destruction of their brush border, the cytoplasm with large vacuoles and alteration of cytoplasmic organelles including the presence of swollen mitochondria with lysis of matrices, disruption of limiting membranes, and disintegration of cristae. The nuclei with indented nuclear envelope and disorganized chromatin were observed. These investigated biomarkers indicated that the surveyed honeybees are being under stressful environmental conditions. So, we suggest using those biomarkers in the assessment of environmental quality using honeybees in future monitoring of ecotoxicological studies.

  10. FGF control of E-cadherin targeting in the Drosophila midgut impacts on primordial germ cell motility.

    PubMed

    Parés, Guillem; Ricardo, Sara

    2016-01-15

    Embryo formation requires tight regulation and coordination of adhesion in multiple cell types. By undertaking imaging, three-dimensional (3D) reconstructions and genetic analysis during posterior midgut morphogenesis in Drosophila, we find a new requirement for the conserved fibroblast growth factor (FGF) signaling pathway in the maintenance of epithelial cell adhesion through FGF modulation of zygotic E-cadherin. During Drosophila gastrulation, primordial germ cells (PGCs) are transported with the posterior midgut while it undergoes dynamic cell shape changes. In embryos mutant for the FGF signaling pathway components Branchless and Breathless, zygotic E-cadherin is not targeted to adherens junctions, causing midgut pocket collapse, which impacts on PGC movement. We find that the ventral midline also requires FGF signaling to maintain cell-cell adhesion. We show that FGF signaling regulates the distribution of zygotic E-cadherin during early embryonic development to maintain cell-cell adhesion in the posterior midgut and the ventral midline, a role that is likely crucial in other tissues undergoing active cell shape changes with higher adhesive needs.

  11. Trachea Epithelium as a “Canary” for Cigarette Smoking-induced Biologic Phenotype of the Small Airway Epithelium*

    PubMed Central

    Turetz, Meredith L.; O’Connor, Timothy P.; Tilley, Ann E.; Strulovici-Barel, Yael; Salit, Jacqueline; Dang, David; Teater, Matthew; Mezey, Jason; Clark, Andrew G.; Crystal, Ronald G.

    2013-01-01

    The initial site of smoking-induced lung disease is the small airway epithelium, which is difficult and time consuming to sample by fiberoptic bronchoscopy. We developed a rapid, office-based procedure to obtain trachea epithelium without conscious sedation from healthy nonsmokers (n=26) and healthy smokers (n=19, 27 ± 15 pack-yr). Gene expression differences (fold-change >1.5, p<0.01, Benjamini-Hochberg correction) were assessed with Affymetrix microarrays. 1,057 probe sets were differentially expressed in healthy smokers vs nonsmokers, representing >500 genes. Trachea gene expression was compared to an independent group of small airway epithelial samples (n=23 healthy nonsmokers, n=19 healthy smokers, 25 ± 12 pack-yr). The trachea epithelium is more sensitive to smoking, responding with 3-fold more differentially-expressed genes than small airway epithelium. The trachea transcriptome paralleled the small airway epithelium, with 156 of 167 (93%) genes that are significantly upand down-regulated by smoking in the small airway epithelium showing similar direction and magnitude of response to smoking in the trachea. Trachea epithelium can be obtained without conscious sedation, representing a less invasive surrogate “canary” for smoking-induced changes in the small airway epithelium. This should prove useful in epidemiologic studies correlating gene expression with clinical outcome in assessing smoking-induced lung disease. PMID:20443905

  12. Method for continuously rearing Coccinella lady beetles (Coleoptera: Coccinellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coccinella novemnotata L., the ninespotted lady beetle, and Coccinella transversoguttata richardsoni Brown, the transverse lady beetle, are predatory species whose abundance has declined significantly over the last few decades in North America. An ex situ system for continuously rearing these two b...

  13. A culture method for darkling beetles, Blapstinus spp. (Coleoptera: Tenebrionidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Darkling beetles, Blapstinus spp., have become a serious pest of Cucurbitaceae crops, especially in California. A culture method was sought to provide large numbers (> 500) of adult beetles of known age and sex that could be used for laboratory testing when needed. A method previously developed for ...

  14. Turing model for the patterns of lady beetles

    NASA Astrophysics Data System (ADS)

    Liaw, S. S.; Yang, C. C.; Liu, R. T.; Hong, J. T.

    2001-10-01

    We simulate the patterns on the hard wings of lady beetles using a reaction-diffusion equation based on the Turing model. A part of a spherical surface is used to approximate the geometry of the hard wings. Various patterns common to lady beetles in Taiwan can be produced on this curved surface by adjusting the parameters of the model.

  15. Chemical ecology and lure development for redbay ambrosia beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff, has become a serious invasive pest in the U.S., currently established in nine southeastern states. Female beetles are the primary vectors of a pathogenic fungus (Raffaelea lauricola) that causes laurel wilt. This lethal vascular dise...

  16. Cantharidin Poisoning due to Blister Beetle Ingestion in Children

    PubMed Central

    Al-Binali, Ali M.; Shabana, Medhat; Al-Fifi, Suliman; Dawood, Sami; Shehri, Amer A.; Al-Barki, Ahmed

    2010-01-01

    Cantharidin is an intoxicant found in beetles in the Meloidae (Coleoptera) family. Ingestion may result in haematemesis, impaired level of consciousness, electrolyte disturbance, haematurea and renal impairment. Here, we report two paediatric cases of meloid beetle ingestion resulting in cantharidin poisoning and the clinical presentation of the ensuing intoxication. PMID:21509239

  17. Ecological interactions of bark beetles with host trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain species of bark beetles in the insect order Coleoptera, family Curculionidae (formerly Scolytidae) are keystone species in forest ecosystems. However, the tree-killing and woodboring bark and ambrosia beetles are also among the most damaging insects of forest products including lumber, paper...

  18. Endocrine control of exaggerated traits in rhinoceros beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juvenile hormone (JH) is a key insect growth regulator involved in modulating phenotypically plastic traits in insects such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetle. Male stag beetles have sexually-dimorphic, condition-dependent expre...

  19. Bark beetle outbreaks in western North America: causes and consequences

    USGS Publications Warehouse

    Bentz, Barbara; Logan, Jesse; MacMahon, James A.; Allen, Craig D.; Ayres, Matt; Berg, Edward E; Carroll, Allan; Hansen, Matt; Hicke, Jeff H.; Joyce, Linda A.; Macfarlane, Wallace; Munson, Steve; Negron, Jose; Paine, Tim; Powell, Jim; Raffa, Kenneth; Regniere, Jacques; Reid, Mary; Romme, Bill; Seybold, Steven J.; Six, Diana; Vandygriff, Jim; Veblen, Tom; White, Mike; Witcosky, Jeff; Wood, David

    2005-01-01

    Since 1990, native bark beetles have killed billions of trees across millions of acres of forest from Alaska to northern Mexico. Although bark beetle infestations are a regular force of natural change in forested ecosystems, several of the current outbreaks, which are occurring simultaneously across western North America, are the largest and most severe in recorded history.

  20. The management of fluid and wave resistances by whirligig beetles.

    PubMed

    Voise, Jonathan; Casas, Jérôme

    2010-02-06

    Whirligig beetles (Coleoptera: Gyrinidae) are semi-aquatic insects with a morphology and propulsion system highly adapted to their life at the air-water interface. When swimming on the water surface, beetles are subject to both fluid resistance and wave resistance. The purpose of this study was to analyse swimming speed, leg kinematics and the capillarity waves produced by whirligig beetles on the water surface in a simple environment. Whirligig beetles of the species Gyrinus substriatus were filmed in a large container, with a high-speed camera. Resistance forces were also estimated. These beetles used three types of leg kinematics, differing in the sequence of leg strokes: two for swimming at low speed and one for swimming at high speed. Four main speed patterns were produced by different combinations of these types of leg kinematics, and the minimum speed for the production of surface waves (23 cm s(-1)) corresponded to an upper limit when beetles used low-speed leg kinematics. Each type of leg kinematics produced characteristic capillarity waves, even if the beetles moved at a speed below 23 cm s(-1). Our results indicate that whirligig beetles use low- and high-speed leg kinematics to avoid maximum drag and swim at speed corresponding to low resistances.

  1. Formulating entompathogens for control of boring beetles in avocado orchards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  2. Male-specific sesquiterpenes from Phyllotreta flea beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flea beetles in several genera are known to possess male-specific sesquiterpenes, at least some of which serve as aggregation pheromones that attract both sexes. In continuing research on the chemical ecology of Phyllotreta flea beetles, six new male-specific sesquiterpenes were identified, one fro...

  3. Callosobruchus maculatus: A Seed Beetle with a Future in Schools.

    ERIC Educational Resources Information Center

    Dockery, Michael

    1997-01-01

    Recommends the use of seed beetles for studying animal behavior and provides suggestions for practical and project assignments. Sources for obtaining the beetles and a list of the equipment needed for their study and maintenance are provided. Answers to common concerns are addressed. (DDR)

  4. Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae)

    PubMed Central

    Anderson, Jennifer M; Sonenshine, Daniel E; Valenzuela, Jesus G

    2008-01-01

    Background Ticks are obligate blood feeders. The midgut is the first major region of the body where blood and microbes ingested with the blood meal come in contact with the tick's internal tissues. Little is known about protein expression in the digestive tract of ticks. In this study, for analysis of global gene expression during tick attachment and feeding, we generated and sequenced 1,679 random transcripts (ESTs) from cDNA libraries from the midguts of female ticks at varying stages of feeding. Results Sequence analysis of the 1,679 ESTs resulted in the identification of 835 distinct transcripts, from these, a total of 82 transcripts were identified as proteins putatively directly involved in blood meal digestion, including enzymes involved in oxidative stress reduction/antimicrobial activity/detoxification, peptidase inhibitors, protein digestion (cysteine-, aspartic-, serine-, and metallo-peptidases), cell, protein and lipid binding including mucins and iron/heme metabolism and transport. A lectin-like protein with a high match to lectins in other tick species, allergen-like proteins and surface antigens important in pathogen recognition and/or antimicrobial activity were also found. Furthermore, midguts collected from the 6-day-fed ticks expressed twice as many transcripts involved in bloodmeal processing as midguts from unfed/2-day-fed ticks. Conclusion This tissue-specific transcriptome analysis provides an opportunity to examine the global expression of transcripts in the tick midgut and to compare the gut response to host attachment versus blood feeding and digestion. In contrast to those in salivary glands of other Ixodid ticks, most proteins in the D. variabilis midgut cDNA library were intracellular. Of the total ESTs associated with a function, an unusually large number of transcripts were associated with peptidases, cell, lipid and protein binding, and oxidative stress or detoxification. Presumably, this is consistent with their role in

  5. Fluorescence Localization and Comparative Ultrastructural Study of Periplocoside NW from Periploca sepium Bunge in the Midgut of the Oriental Amyworm, Mythimna separata Walker (Lepidoptera: Noctuidae)

    PubMed Central

    Feng, Mingxing; Zhao, Juan; Zhang, Jiwen; Hu, Zhaonong; Wu, Wenjun

    2014-01-01

    Periplocoside NW (PSNW) is a novel insecticidal compound isolated from the root bark of Periploca sepium Bunge and has potent stomach toxicity against some insect pests. Previous studies showed that the Mythimna separata larva is sensitive to PSNW, but the Agrotis ispilon larva is insensitive. In this study, preliminary target localization on the midgut of M. separata larvae was conducted via a fluorescence labeling technique. A comparative ultrastructural study on the effects of PSNW on the midguts of M. separata and A. ispilon larvae was performed. Symptom observation results showed that typical stomach toxicity was induced by PSNW in M. separata larvae. Fluorescence localization results showed that PSNW binds to the midgut cells of M. separata larvae. Ultrastructure observations showed destruction of the microvilli, organelle, and cytomembrane in the midgut cells of M. separata larvae, whereas no obvious changes were observed in midgut cells of A. ispilon larvae. These results were consistent with the insecticidal activity of PSNW. Therefore, PSNW might act on the midgut tissues of the insects, and one or more binding sites of PSNW may exist in M. separata larvae midgut cell cytomembranes. PMID:24831268

  6. Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut

    PubMed Central

    2014-01-01

    Background The triatomine, Rhodnius prolixus, is a major vector of Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. It has a strictly blood-sucking habit in all life stages, ingesting large amounts of blood from vertebrate hosts from which it can acquire pathogenic microorganisms. In this context, the production of antimicrobial peptides (AMPs) in the midgut of the insect is vital to control possible infection, and to maintain the microbiota already present in the digestive tract. Methods In the present work, we studied the antimicrobial activity of the Rhodnius prolixus midgut in vitro against the Gram-negative and Gram-positive bacteria Escherichia coli and Staphylococcus aureus, respectively. We also analysed the abundance of mRNAs encoding for defensins, prolixicin and lysozymes in the midgut of insects orally infected by these bacteria at 1 and 7 days after feeding. Results Our results showed that the anterior midgut contents contain a higher inducible antibacterial activity than those of the posterior midgut. We observed that the main AMP encoding mRNAs in the anterior midgut, 7 days after a blood meal, were for lysozyme A, B, defensin C and prolixicin while in the posterior midgut lysozyme B and prolixicin transcripts predominated. Conclusion Our findings suggest that R. prolixus modulates AMP gene expression upon ingestion of bacteria with patterns that are distinct and dependent upon the species of bacteria responsible for infection. PMID:24885969

  7. Curcurbita pepo subspecies delineates striped cucumber beetle (Acalymma vittatum) preference

    PubMed Central

    Brzozowski, L; Leckie, B M; Gardner, J; Hoffmann, M P; Mazourek, M

    2016-01-01

    The striped cucumber beetle (Acalymma vittatum (F.)) is a destructive pest of cucurbit crops, and management could be improved by host plant resistance, especially in organic farming systems. However, despite the variation in striped cucumber beetle preference observed within the economically important species, Cucurbita pepo L., plant breeders and entomologists lacked a simple framework to classify and exploit these differences. This study used recent phylogenetic evidence and bioassays to organize striped cucumber beetle preference within C. pepo. Our results indicate preference contrasts between the two agriculturally relevant subspecies: C. pepo subsp. texana and C. pepo subsp. pepo. Plants of C. pepo subsp. pepo were more strongly preferred than C. pepo subsp. texana plants. This structure of beetle preference in C. pepo will allow plant breeders and entomologists to better focus research efforts on host plant non-preference to control striped cucumber beetles. PMID:27347423

  8. Substrate discrimination in burying beetles, Nicrophorus orbicollis (Coleoptera: Silphidae)

    USGS Publications Warehouse

    Muths, Erin Louise

    1991-01-01

    Burying beetles Nicrophorus orbicollis (Coleoptera: Silphidae) secure and bury small vertebrate carcasses as a food resource for their offspring and themselves. Burial may take place at the point of carcass discovery or at some distance from that site. Burying beetles were tested to determine if they discriminate between different substrates when burying a carcass. Three substrates were presented simultaneously. Substrate one contained soil from typical beetle habitat; substrates two and three contained 2:1 and 5:1 ratios, respectively, of soil and a senescent prairie grass (Panicum virgatum), which added a bulk structural component to the soil. Beetles generally moved and buried the carcass within 24 hours. Results for both paired and individual trials suggest that burying beetles discriminate between substrates, preferring substrates with added bulk over those without.

  9. Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus

    PubMed Central

    Hanley, Kathryn A.; Sundararajan, Anitha; Devitt, Nicholas P.; Schilkey, Faye D.; Hansen, Immo A.

    2017-01-01

    Background The Asian tiger mosquito, Aedes albopictus is currently an important vector for dengue, chikungunya and Zika virus, and its role in transmission of arthropod-borne viruses (arboviruses) may increase in the future due to its ability to colonize temperate regions. In contrast to Aedes aegypti, the dominant vector of dengue, chikungunya and Zika virus, genetic responses of Ae. albopictus upon infection with an arbovirus are not well characterized. Here we present a study of the changes in transcript expression in Ae. albopictus exposed to dengue virus serotype 2 via feeding on an artificial bloodmeal. Methodology/Principal findings We isolated midguts and midgut-free carcasses of Ae. albopictus fed on bloodmeals containing dengue virus as well as controls fed on virus-free control meals at day 1 and day 5 post-feeding. We confirmed infection of midguts from mosquitoes sampled on day 5 post-feeding via RT-PCR. RNAseq analysis revealed dynamic modulation of the expression of several putative immunity and dengue virus-responsive genes, some of whose expression was verified by qRT-PCR. For example, a serine protease gene was up-regulated in the midgut at 1 day post infection, which may potentially enhance mosquito susceptibility to dengue infection, while 14 leucine-rich repeat genes, previously shown to be involved in mosquito antiviral defenses, were down-regulated in the carcass at 5 days post infection. The number of significantly modulated genes decreased over time in midguts and increased in carcasses. Conclusion/Significance Dengue virus exposure results in the modulation of genes in a time- and site-specific manner. Previous literature on the interaction between mosquitoes and mosquito-borne pathogens suggests that most of the changes that occurred in Ae. albopictus exposed to DENV would favor virus infection. Many genes identified in this study warrant further characterization to understand their role in viral manipulation of and antiviral response of

  10. A Kazal-type inhibitor is modulated by Trypanosoma cruzi to control microbiota inside the anterior midgut of Rhodnius prolixus.

    PubMed

    Soares, Tatiane S; Buarque, Diego S; Queiroz, Bruna R; Gomes, Cícera M; Braz, Glória R C; Araújo, Ricardo N; Pereira, Marcos H; Guarneri, Alessandra A; Tanaka, Aparecida S

    2015-05-01

    The triatomine insect, Rhodnius prolixus, is a vector of Trypanosoma cruzi, a protozoan parasite that causes Chagas disease. The parasite must overcome immune response and microbiota to develop inside the midgut of triatomines. In this study, we expressed, purified and characterized a Kazal-type inhibitor from the midgut of R. prolixus, named RpTI, which may be involved in microbiota - T. cruzi interactions. The qPCR showed that the RpTI transcript was primarily expressed in tissues from the intestinal tract and that it was upregulated in the anterior midgut after T. cruzi infection. A 315-bp cDNA fragment encoding the mature protein was cloned into the pPIC9 vector and expressed in Pichia pastoris system. Recombinant RpTI (rRpTI) was purified on a trypsin-Sepharose column and had a molecular mass of 11.5 kDa as determined by SDS-PAGE analysis. This protein inhibited trypsin (Ki = 0.42 nM), whereas serine proteases from the coagulation cascade were not inhibited. Moreover, trypanocidal assays revealed that rRpTI did not interfere in the viability of T. cruzi trypomastigotes. The RpTI transcript was also knocked down by RNA interference prior to infection of R. prolixus with T. cruzi. The amount of T. cruzi in the anterior midgut was significantly lower in RpTI knockdown insects compared to the non-silenced groups. We also verified that the bacterial load is higher in the anterior midgut of silenced and infected R. prolixus compared to non-silenced and infected insects. Our results suggest that T. cruzi infection increases the expression of RpTI to mediate microbiota modulation and is important for parasite immediately after infection with R. prolixus.

  11. Female-specific specialization of a posterior end region of the midgut symbiotic organ in Plautia splendens and allied stinkbugs.

    PubMed

    Hayashi, Toshinari; Hosokawa, Takahiro; Meng, Xian-Ying; Koga, Ryuichi; Fukatsu, Takema

    2015-04-01

    Many stinkbugs (Insecta: Hemiptera: Heteroptera) are associated with bacterial symbionts in a posterior region of the midgut. In these stinkbugs, adult females excrete symbiont-containing materials from the anus for transmission of the beneficial symbionts to their offspring. For ensuring the vertical symbiont transmission, a variety of female-specific elaborate traits at the cellular, morphological, developmental, and behavioral levels have been reported from diverse stinkbugs of the families Plataspidae, Urostylididae, Parastrachiidae, etc. Meanwhile, such elaborate female-specific traits for vertical symbiont transmission have been poorly characterized for the largest and economically important stinkbug family Pentatomidae. Here, we investigated the midgut symbiotic system of a pentatomid stinkbug, Plautia splendens. A specific gammaproteobacterial symbiont was consistently present extracellularly in the cavity of numerous crypts arranged in four rows on the midgut fourth section. The symbiont was smeared on the egg surface upon oviposition by adult females, orally acquired by newborn nymphs, and thereby transmitted vertically to the next generation and important for growth and survival of the host insects. We found that, specifically in adult females, several rows of crypts at the posterior end region of the symbiotic midgut were morphologically differentiated and conspicuously enlarged, often discharging the symbiotic bacteria from the crypt cavity to the main tract of the symbiotic midgut. The female-specific enlarged end crypts were also found in other pentatomid stinkbugs Plautia stali and Carbula crassiventris. These results suggest that the enlarged end crypts represent a female-specific specialized morphological trait for vertical symbiont transmission commonly found among stinkbugs of the family Pentatomidae.

  12. Salinity alters snakeskin and mesh transcript abundance and permeability in midgut and Malpighian tubules of larval mosquito, Aedes aegypti.

    PubMed

    Jonusaite, Sima; Donini, Andrew; Kelly, Scott P

    2017-03-01

    This study examined the distribution and localization of the septate junction (SJ) proteins snakeskin (Ssk) and mesh in osmoregulatory organs of larval mosquito (Aedes aegypti), as well as their response to altered environmental salt levels. Ssk and mesh transcripts and immunoreactivity were detected in tissues of endodermal origin such as the midgut and Malpighian tubules of A. aegypti larvae, but not in ectodermally derived hindgut and anal papillae. Immunolocalization of Ssk and mesh in the midgut and Malpighian tubules indicated that both proteins are concentrated at regions of cell-cell contact between epithelial cells. Transcript abundance of ssk and mesh was higher in the midgut and Malpighian tubules of brackish water (BW, 30% SW) reared A. aegypti larvae when compared with freshwater (FW) reared animals. Therefore, [(3)H]polyethylene glycol (MW 400Da, PEG-400) flux was examined across isolated midgut and Malpighian tubule preparations as a measure of their paracellular permeability. It was found that PEG-400 flux was greater across the midgut of BW versus FW larvae while the Malpighian tubules of BW-reared larvae had reduced PEG-400 permeability in conjunction with increased Cl(-) secretion compared to FW animals. Taken together, data suggest that Ssk and mesh are found in smooth SJs (sSJs) of larval A. aegypti and that their abundance alters in association with changes in epithelial permeability when larvae reside in water of differing salt content. This latter observation suggests that Ssk and mesh play a role in the homeostatic control of salt and water balance in larval A. aegypti.

  13. Bacterial Communities and Midgut Microbiota Associated with Mosquito Populations from Waste Tires in East-Central Illinois.

    PubMed

    Kim, Chang-Hyun; Lampman, Richard L; Muturi, Ephantus J

    2015-01-01

    Mosquito-microbe interactions tend to influence larval nutrition, immunity, and development, as well as fitness and vectorial capacity of adults. Understanding the role of different bacterial species not only improves our knowledge of the physiological and ecological consequences of these interactions, but also provides the basis for developing novel strategies for controlling mosquito-borne diseases. We used culture-dependent and culture-independent techniques to characterize the bacterial composition and abundance in water and midgut samples of larval and adult females of Aedes japonicus (Theobald), Aedes triseriatus (Say), and Culex restuans (Theobald) collected from waste tires at two wooded study sites in Urbana, IL. The phylum-specific real-time quantitative polymerase chain reaction assay revealed a higher proportion of Actinobacteria and a lower proportion of gamma-Proteobacteria and Bacteroidetes in water samples and larval midguts compared to adult female midguts. Only 15 of the 57 bacterial species isolated in this study occurred in both study sites. The number of bacterial species was highest in water samples (28 species from Trelease Woods; 25 species from South Farms), intermediate in larval midguts (13 species from Ae. japonicus; 12 species from Ae. triseriatus; 8 species from Cx. restuans), and lowest in adult female midguts (2 species from Ae. japonicus; 3 species from Ae. triseriatus). These findings suggest that the composition and richness of bacterial communities varies both between habitats and among mosquito species and that the reduction in bacteria diversity during metamorphosis is more evident among bacteria detected using the culture-dependent method.

  14. Female-Specific Specialization of a Posterior End Region of the Midgut Symbiotic Organ in Plautia splendens and Allied Stinkbugs

    PubMed Central

    Hayashi, Toshinari; Hosokawa, Takahiro; Meng, Xian-Ying; Koga, Ryuichi

    2015-01-01

    Many stinkbugs (Insecta: Hemiptera: Heteroptera) are associated with bacterial symbionts in a posterior region of the midgut. In these stinkbugs, adult females excrete symbiont-containing materials from the anus for transmission of the beneficial symbionts to their offspring. For ensuring the vertical symbiont transmission, a variety of female-specific elaborate traits at the cellular, morphological, developmental, and behavioral levels have been reported from diverse stinkbugs of the families Plataspidae, Urostylididae, Parastrachiidae, etc. Meanwhile, such elaborate female-specific traits for vertical symbiont transmission have been poorly characterized for the largest and economically important stinkbug family Pentatomidae. Here, we investigated the midgut symbiotic system of a pentatomid stinkbug, Plautia splendens. A specific gammaproteobacterial symbiont was consistently present extracellularly in the cavity of numerous crypts arranged in four rows on the midgut fourth section. The symbiont was smeared on the egg surface upon oviposition by adult females, orally acquired by newborn nymphs, and thereby transmitted vertically to the next generation and important for growth and survival of the host insects. We found that, specifically in adult females, several rows of crypts at the posterior end region of the symbiotic midgut were morphologically differentiated and conspicuously enlarged, often discharging the symbiotic bacteria from the crypt cavity to the main tract of the symbiotic midgut. The female-specific enlarged end crypts were also found in other pentatomid stinkbugs Plautia stali and Carbula crassiventris. These results suggest that the enlarged end crypts represent a female-specific specialized morphological trait for vertical symbiont transmission commonly found among stinkbugs of the family Pentatomidae. PMID:25636847

  15. Genetic identification of mammalian meal source in dung beetle gut contents.

    PubMed

    Gómez, Andrés; Kolokotronis, Sergios-Orestis

    2016-03-12

    Coprophagous dung beetles are a numerically and functionally important group. Their obligatory use of mammalian dung has broad ecological implications, including providing economically and epidemiologically relevant ecosystem services. Beetle-mammal ecological networks are critically important in determining the resilience of dung beetle communities and the supply of beetle-mediated ecosystem functions. However, our understanding of dung beetle trophic networks remains incomplete. Here we report on a pilot study to evaluate the effectiveness of DNA-based analyses in identifying the source of dung beetle meals. Using beetles collected from dung piles of known provenance, we hypothesized that molecular analysis of gut content would correctly identify the mammal host, and that beetle body size would increase the odds of successful detection of mammalian DNA. We analyzed 90 specimens belonging to six beetle species. Most samples yielded mtDNA sequences from the expected mammalian species, suggesting that these methods can be an efficient tool for the investigation of dung beetle diet.

  16. Defensive Chemistry of Lycid Beetles and of Mimetic Cerambycid Beetles that Feed on Them

    PubMed Central

    Eisner, Thomas; Schroeder, Frank C.; Snyder, Noel; Grant, Jacqualine B.; Aneshansley, Daniel J.; Utterback, David; Meinwald, Jerrold; Eisner, Maria

    2008-01-01

    Summary Beetles of the family Lycidae have long been known to be chemically protected. We present evidence that North American species of the lycid genera Calopteron and Lycus are rejected by thrushes, wolf spiders, and orb-weaving spiders, and that they contain a systemic compound that could account, at least in part, for this unacceptability. This compound, a novel acetylenic acid that we named lycidic acid, proved actively deterrent in feeding tests with wolf spiders and coccinellid beetles. Species of Lycus commonly figure as models of mimetic associations. Among their mimics are species of the cerambycid beetle genus Elytroleptus, remarkable because they prey upon the model lycids. We postulated that by doing so Elytroleptus might incorporate the lycidic acid from their prey for their own defense. However, judging from analytical data, the beetles practice no such sequestration, explaining why they remain relatively palatable (in tests with wolf spiders) even after having fed on lycids. Chemical analyses also showed the lycids to contain pyrazines, such as were already known from other Lycidae, potent odorants that could serve in an aposematic capacity to forestall predatory attacks. PMID:18698369

  17. The ultrastructure of the midgut glands in Ligia italica (Isopoda) under different nutritional conditions

    NASA Astrophysics Data System (ADS)

    Štrus, J.; Burkhardt, P.; Storch, V.

    1985-12-01

    After a period of food deprivation, Ligia italica were refed for 2 days with different diets and their midgut glands were examined under the electron microscope with special reference to the large cells. The predominant features are the following: extended glycogen fields after sucrose-diet; numerous lipid droplets and peroxisome-like vesicles after lipid-diet (butter); swollen mitochondria and a great number of pinocytotic vesicles after protein diet (curds); electron dense vesicles and myelin bodies after the uptake of Escherichia coli. In contrast to amphipods, the intertidal isopod L. italica is not able to digest cellulose, as the cell ultrastructure exhibits all features of starved animals, as well as that following feeding with lignin.

  18. Debra-mediated Ci degradation controls tissue homeostasis in Drosophila adult midgut.

    PubMed

    Li, Zhouhua; Guo, Yueqin; Han, Lili; Zhang, Yan; Shi, Lai; Huang, Xudong; Lin, Xinhua

    2014-02-11

    Adult tissue homeostasis is maintained by resident stem cells and their progeny. However, the underlying mechanisms that control tissue homeostasis are not fully understood. Here, we demonstrate that Debra-mediated Ci degradation is important for intestinal stem cell (ISC) proliferation in Drosophila adult midgut. Debra inhibition leads to increased ISC activity and tissue homeostasis loss, phenocopying defects observed in aging flies. These defects can be suppressed by depleting Ci, suggesting that increased Hedgehog (Hh) signaling contributes to ISC proliferation and tissue homeostasis loss. Consistently, Hh signaling activation causes the same defects, whereas depletion of Hh signaling suppresses these defects. Furthermore, the Hh ligand from multiple sources is involved in ISC proliferation and tissue homeostasis. Finally, we show that the JNK pathway acts downstream of Hh signaling to regulate ISC proliferation. Together, our results provide insights into the mechanisms of stem cell proliferation and tissue homeostasis control.

  19. A chymotrypsin-like proteinase from the midgut of Tenebrio molitor larvae.

    PubMed

    Elpidina, E N; Tsybina, T A; Dunaevsky, Y E; Belozersky, M A; Zhuzhikov, D P; Oppert, B

    2005-08-01

    A chymotrypsin-like proteinase was isolated from the posterior midgut of larvae of the yellow mealworm, Tenebrio molitor, by ion-exchange and gel filtration chromatography. The enzyme, TmC1, was purified to homogeneity as determined by SDS-PAGE and postelectrophoretic activity detection. TmC1 had a molecular mass of 23.0 kDa, pI of 8.4, a pH optimum of 9.5, and the optimal temperature for activity was 51 degrees C. The proteinase displayed high stability at temperatures below 43 degrees C and in the pH range 6.5-11.2, which is inclusive of the pH of the posterior and middle midgut. The enzyme hydrolyzed long chymotrypsin peptide substrates SucAAPFpNA, SucAAPLpNA and GlpAALpNA and did not hydrolyze short chymotrypsin substrates. Kinetic parameters of the enzymatic reaction demonstrated that the best substrate was SucAAPFpNA, with k(cat app) 36.5 s(-1) and K(m) 1.59 mM. However, the enzyme had a lower K(m) for SucAAPLpNA, 0.5 mM. Phenylmethylsulfonyl fluoride (PMSF) was an effective inhibitor of TmC1, and the proteinase was not inhibited by either tosyl-l-phenylalanine chloromethyl ketone (TPCK) or N(alpha)-tosyl-l-lysine chloromethyl ketone (TLCK). However, the activity of TmC1 was reduced with sulfhydryl reagents. Several plant and insect proteinaceous proteinase inhibitors were active against the purified enzyme, the most effective being Kunitz soybean trypsin inhibitor (STI). The N-terminal sequence of the enzyme was IISGSAASKGQFPWQ, which was up to 67% similar to other insect chymotrypsin-like proteinases and 47% similar to mammalian chymotrypsin A. The amino acid composition of TmC1 differed significantly from previously isolated T. molitor enzymes.

  20. Alkalinization in the Isolated and Perfused Anterior Midgut of the Larval Mosquito, Aedes aegypti

    PubMed Central

    Onken, Horst; Moffett, Stacia B.; Moffett, David F.

    2008-01-01

    In the present study, isolated midguts of larval Aedes aegypti L. (Diptera: Culicidae) were mounted on perfusion pipettes and bathed in high buffer mosquito saline. With low buffer perfusion saline, containing m-cresol purple, transepithelial voltage was monitored and luminal alkalinization became visible through color changes of m-cresol purple after perfusion stop. Lumen negative voltage and alkalinization depended on metabolic energy and were stimulated in the presence of serotonin (0.2 µmol l-1). In some experiments a pH microelectrode in the lumen recorded pH values up to 10 within minutes after perfusion stop. The V-ATPase inhibitor concanamycin (50 µmol l-1) on the hemolymph side almost abolished Vte and inhibited luminal alkalinization. The carbonic anhydrase inhibitor, methazolamide (50 µmol l-1), on either the luminal or hemolymph-side, or the inhibitor of anion transport, DIDS (1 mmol l-1) on the luminal side, had no effect on Vte or alkalinization. Cl- substitution in the lumen or on both sides of the tissue affected Vte, but the color change of m-cresol purple was unchanged from control conditions. Hemolymph-side Na+ substitution or addition of the Na+/H+ exchange inhibitor, amiloride (200 µmol l-1), reduced Vte and luminal alkalinization. Luminal amiloride (200 µmol l-1) was without effects on Vte or alkalinization. High K+ (60 mmol l-1) in the lumen reduced Vte without affecting alkalinization. These results indicate that strong luminal alkalinization in isolated and perfused anterior midgut of larval A. aegypti depends on basolateral V-ATPase, but is apparently independent of carbonic anhydrase, apical Cl-/HCO3- exchange or apical K+/2H+ antiport. PMID:20307229

  1. Interaction between Host Complement and Mosquito-Midgut-Stage Plasmodium berghei

    PubMed Central

    Margos, Gabriele; Navarette, Sandra; Butcher, Geoff; Davies, Alex; Willers, Christine; Sinden, Robert E.; Lachmann, Peter J.

    2001-01-01

    After ingestion by mosquitoes, gametocytes of malaria parasites become activated and form extracellular gametes that are no longer protected by the red blood cell membrane against immune effectors of host blood. We have studied the action of complement on Plasmodium developmental stages in the mosquito blood meal using the rodent malaria parasite Plasmodium berghei and rat complement as a model. We have shown that in the mosquito midgut, rat complement components necessary to initiate the alternative pathway (factor B, factor D, and C3) as well as C5 are present for several hours following ingestion of P. berghei-infected rat blood. In culture, 30 to 50% of mosquito midgut stages of P. berghei survived complement exposure during the first 3 h of development. Subsequently, parasites became increasingly sensitive to complement lysis. To investigate the mechanisms involved in their protection, we tested for C3 deposition on parasite surfaces and whether host CD59 (a potent inhibitor of the complement membrane attack complex present on red blood cells) was taken up by gametes while emerging from the host cell. Between 0.5 and 22 h, 90% of Pbs21-positive parasites were positive for C3. While rat red and white blood cells stained positive for CD59, Pbs21-positive parasites were negative for CD59. In addition, exposure of parasites to rat complement in the presence of anti-rat CD59 antibodies did not increase lysis. These data suggest that parasite or host molecules other than CD59 are responsible for the protection of malaria parasites against complement-mediated lysis. Ongoing research aims to identify these molecules. PMID:11447187

  2. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells

    PubMed Central

    Lara, Flavio Alves; Pohl, Paula C.; Gandara, Ana Caroline; Ferreira, Jessica da Silva; Nascimento-Silva, Maria Clara; Bechara, Gervásio Henrique; Sorgine, Marcos H. F.; Almeida, Igor C.; Vaz, Itabajara da Silva; Oliveira, Pedro L.

    2015-01-01

    In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus) microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA), a well-known inhibitor of ATP binding cassette (ABC) transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may represent a new

  3. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells.

    PubMed

    Lara, Flavio Alves; Pohl, Paula C; Gandara, Ana Caroline; Ferreira, Jessica da Silva; Nascimento-Silva, Maria Clara; Bechara, Gervásio Henrique; Sorgine, Marcos H F; Almeida, Igor C; Vaz, Itabajara da Silva; Oliveira, Pedro L

    2015-01-01

    In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus) microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA), a well-known inhibitor of ATP binding cassette (ABC) transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may represent a new

  4. A Hypothetical Model of Crossing Bombyx mori Nucleopolyhedrovirus through Its Host Midgut Physical Barrier

    PubMed Central

    Cheng, Yang; Wang, Xue-Yang; Hu, Hao; Killiny, Nabil; Xu, Jia-Ping

    2014-01-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a primary pathogen of silkworm (B. mori) that causes severe economic losses each year. However, the molecular mechanisms of silkworm-BmNPV interactions, especially the silkworm proteins that can interact with the virus, are still largely unknown. In this study, the total and membrane proteins of silkworm midguts were displayed using one- and two-dimensional electrophoresis. A virus overlay assay was used to detect B. mori proteins that specifically bind to BmNPV particles. Twelve proteins were located and identified using mass spectrometry, and the different expression of the corresponding genes in BmNPV susceptible and resistant silkworm strains also indicated their involvement in BmNPV infection. The 12 proteins are grouped based on their potential roles in viral infection, for example, endocytosis, intracellular transportation, and host responses. Based on these results, we hypothesize the following: I) vacuolar ATP synthase catalytic subunit A and subunit B may be implicated in the process of the membrane fusion of virus and the release of the nucleocapsid into cytoplasm; II) actin, enolase and phosphoglycerate kinase are cytoskeleton associated proteins and may play an important role in BmNPV intracellular transportation; III) mitochondrial prohibitin complex protein 2, ganglioside-induced differentiation-associated protein, calreticulin, regucalcin-like isoform X1 and 60 kDa heat shock protein are involved in cell apoptosis regulation during BmNPV infection in larvae midguts; IV) ribosomal P0 may be associated with BmNPV infection by regulating gene expression of BmNPV; V) arginine kinase has a role in the antiviral activities against BmNPV. Our work should prove informative by providing multiple protein targets and a novel direction to investigate the molecular mechanisms of the interactions between silkworms and BmNPV. PMID:25502928

  5. Negative feedbacks on bark beetle outbreaks: widespread and severe spruce beetle infestation restricts subsequent infestation.

    PubMed

    Hart, Sarah J; Veblen, Thomas T; Mietkiewicz, Nathan; Kulakowski, Dominik

    2015-01-01

    Understanding disturbance interactions and their ecological consequences remains a major challenge for research on the response of forests to a changing climate. When, where, and how one disturbance may alter the severity, extent, or occurrence probability of a subsequent disturbance is encapsulated by the concept of linked disturbances. Here, we evaluated 1) how climate and forest habitat variables, including disturbance history, interact to drive 2000s spruce beetle (Dendroctonus rufipennis) infestation of Engelmann spruce (Picea engelmannii) across the Southern Rocky Mountains; and 2) how previous spruce beetle infestation affects subsequent infestation across the Flat Tops Wilderness in northwestern Colorado, which experienced a severe landscape-scale spruce beetle infestation in the 1940s. We hypothesized that drought and warm temperatures would promote infestation, whereas small diameter and non-host trees, which may reflect past disturbance by spruce beetles, would inhibit infestation. Across the Southern Rocky Mountains, we found that climate and forest structure interacted to drive the 2000s infestation. Within the Flat Tops study area we found that stands infested in the 1940s were composed of higher proportions of small diameter and non-host trees ca. 60 years later. In this area, the 2000s infestation was constrained by a paucity of large diameter host trees (> 23 cm at diameter breast height), not climate. This suggests that there has not been sufficient time for trees to grow large enough to become susceptible to infestation. Concordantly, we found no overlap between areas affected by the 1940s infestation and the current infestation. These results show a severe spruce beetle infestation, which results in the depletion of susceptible hosts, can create a landscape template reducing the potential for future infestations.

  6. Glucose metabolism in rat retinal pigment epithelium.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2006-01-01

    The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO(2) production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO(2) yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO(2) production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress.

  7. Biochemical studies of the tracheobronchial epithelium

    SciTech Connect

    Mass, M.J.; Kaufman, D.G.

    1984-06-01

    Tracheobronchial epithelium has been a focus of intense investigation in the field of chemical carcinogenesis. We have reviewed some biochemical investigations that have evolved through linkage with carcinogenesis research. These areas of investigation have included kinetics of carcinogen metabolism, identification of carcinogen metabolites, levels of carcinogen binding to DNA, and analysis of carcinogen-DNA adducts. Such studies appear to have provided a reasonable explanation for the susceptibilities of the respiratory tracts of rats and hamsters to carcinogenesis by benzo(a)pyrene. Coinciding with the attempts to understand the initiation of carcinogenesis in the respiratory tract has also been a major thrust aimed at effecting its prevention both in humans and in animal models for human bronchogenic carcinoma. These studies have concerned the effects of derivatives of vitamin A (retinoids) and their influence on normal cell biology and biochemistry of this tissue. Recent investigations have included the effects of retinoid deficiency on the synthesis of RNA and the identification of RNA species associated with this biological state, and also have included the effects of retinoids on the synthesis of mucus-related glycoproteins. Tracheal organ cultures from retinoid-deficient hamsters have been used successfully to indicate the potency of synthetic retinoids by monitoring the reversal of squamous metaplasia. Techniques applied to this tissue have also served to elucidate features of the metabolism of retinoic acid using high pressure liquid chromatography. 94 references, 9 figures, 2 tables.

  8. Human vomeronasal epithelium development: An immunohistochemical overview.

    PubMed

    Dénes, Lóránd; Pap, Zsuzsanna; Szántó, Annamária; Gergely, István; Pop, Tudor Sorin

    2015-06-01

    The vomeronasal organ (VNO) is the receptor structure of the vomeronasal system (VNS) in vertebrates. It is found bilaterally in the submucosa of the inferior part of the nasal septum. There are ongoing controversies regarding the functionality of this organ in humans. In this study we propose the immunohistochemical evaluation of changes in components of the human vomeronasal epithelium during foetal development. We used 45 foetuses of different age, which were included in three age groups. After VNO identification immunohistochemical reactions were performed using primary antibodies against the following: neuron specific enolase, calretinin, neurofilament, chromogranin, synaptophysin, cytokeratin 7, pan-cytokeratin and S100 protein. Digital slides were obtained and following colorimetric segmentation, surface area measurements were performed. The VNO was found in less than half of the studied specimens (42.2%). Neuron specific enolase and calretinin immunoexpression showed a decreasing trend with foetal age, while the other neural/neuroendocrine markers were negative in all specimens. Cytokeratin 7 expression increased with age, while Pan-Ctk had no significant variations. S100 protein immunoexpression also decreased around the VNO. The results of the present work uphold the theory of regression of the neuroepithelium that is present during initial stages of foetal development.

  9. Stem cells of the skin epithelium

    PubMed Central

    Alonso, Laura; Fuchs, Elaine

    2003-01-01

    Tissue stem cells form the cellular base for organ homeostasis and repair. Stem cells have the unusual ability to renew themselves over the lifetime of the organ while producing daughter cells that differentiate into one or multiple lineages. Difficult to identify and characterize in any tissue, these cells are nonetheless hotly pursued because they hold the potential promise of therapeutic reprogramming to grow human tissue in vitro, for the treatment of human disease. The mammalian skin epithelium exhibits remarkable turnover, punctuated by periods of even more rapid production after injury due to burn or wounding. The stem cells responsible for supplying this tissue with cellular substrate are not yet easily distinguishable from neighboring cells. However, in recent years a significant body of work has begun to characterize the skin epithelial stem cells, both in tissue culture and in mouse and human skin. Some epithelial cells cultured from skin exhibit prodigious proliferative potential; in fact, for >20 years now, cultured human skin has been used as a source of new skin to engraft onto damaged areas of burn patients, representing one of the first therapeutic uses of stem cells. Cell fate choices, including both self-renewal and differentiation, are crucial biological features of stem cells that are still poorly understood. Skin epithelial stem cells represent a ripe target for research into the fundamental mechanisms underlying these important processes. PMID:12913119

  10. STUDIES ON SMALL INTESTINAL CRYPT EPITHELIUM

    PubMed Central

    Trier, Jerry S.

    1963-01-01

    Small intestinal crypt epithelium obtained from normal fasting humans by peroral biopsy of the mucosa was studied with the electron microscope. Paneth cells were identified at the base of the crypts by their elaborate highly organized endoplasmic reticulum, large secretory granules, and small lysosome-like dense bodies within the cytoplasm. Undifferentiated cells were characterized by smaller cytoplasmic membrane-bounded granules which were presumed to be secretory in nature, a less elaborate endoplasmic reticulum, many unattached ribosomes and, in some cells, the presence of glycogen. Some undifferentiated cells at the base of the crypts contained lobulated nuclei and striking paranuclear accumulations of mitochondria. Membrane-bounded cytoplasmic fragments, probably originating from undifferentiated and Paneth cells, were frequently apparent within crypt lumina. Of the goblet cells, some were seen actively secreting mucus. In these, apical mucus appeared to exude into the crypt lumen between gaps in the microvilli. The membrane formerly surrounding the apical mucus appeared to fuse with and become part of the plasma membrane of the cell, suggesting a merocrine secretory mechanism. Enterochromaffin cells were identified by their location between the basal regions of other crypt cells and by their unique intracytoplasmic granules. PMID:14064112

  11. Building and maintaining the epithelium of the lung.

    PubMed

    Rackley, Craig R; Stripp, Barry R

    2012-08-01

    Airspaces of the lung are lined by an epithelium whose cellular composition changes along the proximal-to-distal axis to meet local functional needs for mucociliary clearance, hydration, host defense, and gas exchange. Advances in cell isolation, in vitro culture techniques, and genetic manipulation of animal models have increased our understanding of the development and maintenance of the pulmonary epithelium. This review discusses basic cellular mechanisms that regulate establishment of the conducting airway and gas exchange systems as well as the functional maintenance of the epithelium during postnatal life.

  12. Predatory aquatic beetles, suitable trace elements bioindicators.

    PubMed

    Burghelea, Carmen I; Zaharescu, Dragos G; Hooda, Peter S; Palanca-Soler, Antonio

    2011-05-01

    Predatory aquatic beetles are common colonizers of natural and managed aquatic environments. While as important components of the aquatic food webs they are prone to accumulate trace elements, they have been largely neglected from metal uptake studies. We aim to test the suitability of three dytiscid species, i.e.Hydroglyphus pusillus, Laccophilus minutus and Rhantus suturalis, as trace elements (Al, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Se and Zn) bioindicators. The work was carried out in a case area representing rice paddies and control sites (reservoirs) from an arid region known for its land degradation (Monegros, NE Spain). Categorical principal component analysis (CATPCA) was tested as a nonlinear approach to identify significant relationships between metals, species and habitat conditions so as to examine the ability of these species to reflect differences in metal uptake. Except Se and As, the average concentrations of all other elements in the beetles were higher in the rice fields than in the control habitats. The CATPCA determined that H. pusillus had high capacity to accumulate Fe, Ni and Mn regardless of the habitat type, and hence may not be capable of distinguishing habitat conditions with regards to these metals. On the other hand, L. minutus was found less sensitive for Se in non-managed habitats (i.e. reservoirs), while R. suturalis was good in accumulating Al, Mo and Pb in rice fields. The latter seems to be a promising bioindicator of metal enrichment in rice fields. We conclude that predatory aquatic beetles are good candidates for trace elements bioindication in impacted and non-impacted environments and can be used in environmental monitoring studies. CATPCA proved to be a reliable approach to unveil trends in metal accumulation in aquatic invertebrates according to their habitat status.

  13. Whiplash rove beetle dermatitis in central Queensland.

    PubMed

    Banney, L A; Wood, D J; Francis, G D

    2000-08-01

    Vesicular dermatitis due to contact with Coleoptera (beetles) is common worldwide, although the condition has been infrequently described in Australia. We document the largest outbreak recognized so far in Australia with a conservative estimate of 250 cases. This occurred in central coastal Queensland over several weeks in late 1998. A survey of the medical practitioners in this district is presented, along with clinical and histopathological illustrations. Our research found that knowledge of the condition was limited even in this region where cases occur each year. This condition is an important differential diagnosis in acute blistering disorders.

  14. A Multiplex PCR Assay for Differentiating Coconut Rhinoceros Beetle (Coleoptera: Scarabaeidae) From Oriental Flower Beetle (Coleoptera: Scarabaeidae) in Early Life Stages and Excrement.

    PubMed

    Watanabe, S; Melzer, M J

    2017-01-23

    The coconut rhinoceros beetle, Oryctes rhinoceros (L.), is a major pest of coconut and other palm trees. An incipient coconut rhinoceros beetle population was recently discovered on the island of Oahu, Hawaii and is currently the target of a large, mutiagency eradication program. Confounding this program is the widespread presence of another scarab beetle on Oahu, the oriental flower beetle, Protaetia orientalis (Gory and Percheron 1833). Eggs, early life stages, and fecal excrement of coconut rhinoceros beetle and oriental flower beetle are morphologically indistinguishable, thereby creating uncertainty when such specimens are discovered in the field. Here, we report the development of a multiplex PCR assay targeting cytochrome oxidase I of coconut rhinoceros beetle and oriental flower beetle that can rapidly detect and distinguish between these insects. This assay also features an internal positive control to ensure DNA of sufficient quantity and quality is used in the assay, increasing its reliability and reducing the chances of false negative results.

  15. Metabarcoding of fungal communities associated with bark beetles.

    PubMed

    Miller, Kirsten E; Hopkins, Kevin; Inward, Daegan J G; Vogler, Alfried P

    2016-03-01

    Many species of fungi are closely allied with bark beetles, including many tree pathogens, but their species richness and patterns of distribution remain largely unknown. We established a protocol for metabarcoding of fungal communities directly from total genomic DNA extracted from individual beetles, showing that the ITS3/4 primer pair selectively amplifies the fungal ITS. Using three specimens of bark beetle from different species, we assess the fungal diversity associated with these specimens and the repeatability of these estimates in PCRs conducted with different primer tags. The combined replicates produced 727 fungal Operational Taxonomic Units (OTUs) for the specimen of Hylastes ater, 435 OTUs for Tomicus piniperda, and 294 OTUs for Trypodendron lineatum, while individual PCR reactions produced on average only 229, 54, and 31 OTUs for the three specimens, respectively. Yet, communities from PCR replicates were very similar in pairwise comparisons, in particular when considering species abundance, but differed greatly among the three beetle specimens. Different primer tags or the inclusion of amplicons in separate libraries did not impact the species composition. The ITS2 sequences were identified with the Lowest Common Ancestor approach and correspond to diverse lineages of fungi, including Ophiostomaceae and Leotiomycetes widely found to be tree pathogens. We conclude that Illumina MiSeq metabarcoding reliably captures fungal diversity associated with bark beetles, although numerous PCR replicates are recommended for an exhaustive sample. Direct PCR from beetle DNA extractions provides a rapid method for future surveys of fungal species diversity and their associations with bark beetles and environmental variables.

  16. Dung beetles ignore landmarks for straight-line orientation.

    PubMed

    Dacke, Marie; Byrne, Marcus; Smolka, Jochen; Warrant, Eric; Baird, Emily

    2013-01-01

    Upon locating a suitable dung pile, ball-rolling dung beetles shape a piece of dung into a ball and roll it away in a straight line. This guarantees that they will not return to the dung pile, where they risk having their ball stolen by other beetles. Dung beetles are known to use celestial compass cues such as the sun, the moon and the pattern of polarised light formed around these light sources to roll their balls of dung along straight paths. Here, we investigate whether terrestrial landmarks have any influence on straight-line orientation in dung beetles. We find that the removal or re-arrangement of landmarks has no effect on the beetle's orientation precision. Celestial compass cues dominate straight-line orientation in dung beetles so strongly that, under heavily overcast conditions or when prevented from seeing the sky, the beetles can no longer orient along straight paths. To our knowledge, this is the only animal with a visual compass system that ignores the extra orientation precision that landmarks can offer.

  17. Quantifying dispersal of a non-aggressive saprophytic bark beetle.

    PubMed

    Meurisse, Nicolas; Pawson, Stephen

    2017-01-01

    Long distance dispersal to locate suitable breeding sites is recognized as a key trait influencing the population dynamics and distribution of bark beetles and other saprophytic insects. While dispersal behavior has been studied for a range of aggressive 'tree killing' bark beetles, few have considered the dispersal behaviour of non-aggressive saprophytic bark beetles that utilize kairomones (host volatiles). We present the results of a mark-recapture experiment that examined adult dispersal patterns of the saprophytic bark beetle Hylurgus ligniperda. Releases took place in summer and autumn 2014, in a clearcut pine forest in the central North Island, New Zealand. Both flight-experienced and flight-naïve adults were marked and released in the center of a circular trap grid that extended to 960 m with 170 or 200 panel traps baited with a kairomone blend of alpha-pinene and ethanol. Of the 18,464 released H. ligniperda, 9,209 (49.9%) of the beetles flew, and 96 (1.04%) of the beetles that flew were recaptured. Individuals were recaptured at all distances. The recapture of flight-experienced beetles declined with dispersal distance, and a diffusion model showed heterogeneous dispersal tendencies within the population. Our best model estimated that 46% of flight-experienced beetles disperse > 1 km, and 1.6% > 5 km. Conversely, no declining pattern was shown in the recapture of flight-naïve beetles, suggesting that emerging H. ligniperda may require a period of flight to initiate chemotropic orientation behavior and subsequent attraction to traps. We discuss the implications of these findings for the management of phytosanitary risks. For instance, combining landscape knowledge of source populations with dispersal processes facilitates estimation of pest pressure at economically sensitive areas such as harvest and timber storage sites. Quantitative dispersal estimates also inform pest risk assessments by predicting spread rates for H. ligniperda that has proven

  18. Detachments of the retinal pigment epithelium at the posterior pole.

    PubMed

    Noble, K G; Levitzky, M J; Carr, R E

    1976-08-01

    Multiple vitelliform cysts of the retina, a disorder of unknown cause in which there are multiple detachments of the retinal pigment epithelium at the posterior pole, occurred in five patients. In four patients all lesions were located outside the parafoveal area while one patient showed bilateral foveal elevations associated with more eccentric detachments. Several patients showed slow resolution of some of the detachments with mild disturbances of the pigment epithelium.

  19. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin's stag beetle.

    PubMed

    Kim, Sang Il; Farrell, Brian D

    2015-05-01

    Stag beetles (family Lucanidae Latreille, 1804) are one of the earliest branching lineages of scarab beetles that are characterized by the striking development of the male mandibles. Despite stag beetles' popularity among traditional taxonomists and amateur collectors, there has been almost no study of lucanid relationships and evolution. Entomologists, including Jeannel (1942), have long recognized resemblance between the austral stag beetles of the tribes Chiasognathini, Colophonini, Lamprimini, Pholidotini, Rhyssonotini, and Streptocerini, but this hypothesis of their close relationship across the continents has never been tested. To gain further insight into lucanid phylogeny and biogeography, we reconstructed the first molecular phylogeny of world stag beetles using DNA sequences from mitochondrial 16S rDNA, nuclear 18S and 28S rDNA, and the nuclear protein-coding (NPC) gene wingless for 93 lucanid species representing all extant subfamilies and 24 out of the 27 tribes, together with 14 representative samples of other early branching scarabaeoid families and two staphyliniform beetle families as outgroups. Both Bayesian inference (BI) and maximum likelihood inference (MLI) strongly supported the monophyly of Lucanidae sensu lato that includes Diphyllostomatidae. Within Lucanidae sensu stricto, the subfamilies Lucaninae and Lampriminae appeared monophyletic under both methods of phylogenetic inferences; however, Aesalinae and Syndesinae were found to be polyphyletic. A time-calibrated phylogeny based on five fossil data estimated the origin of crown group Lucanidae as circa 160 million years ago (MYA). Divergence between the Neotropical and Australasian groups of the Chiasognathini was estimated to be circa 47MYA, with the South African Colophonini branching off from the ancient Chiasognathini lineage around 87MYA. Another Gondwanan relationship was recovered between the Australasian Eucarteria and the Neotropical Casignetus, which diverged circa 58MYA. Lastly

  20. Toxicity of Monoterpene Structure, Diversity and Concentration to Mountain Pine Beetles, Dendroctonus ponderosae: Beetle Traits Matter More.

    PubMed

    Reid, Mary L; Sekhon, Jagdeep K; LaFramboise, Lanielle M

    2017-03-03

    A high diversity of plant defenses may be a response to herbivore diversity or may be collectively more toxic than single compounds, either of which may be important for understanding insect-plant associations. Monoterpenes in conifers are particularly diverse. We tested the fumigant toxicity of four monoterpenes, alone and in combination, to mountain pine beetles, Dendroctonus ponderosae, in the context of the beetles' individual body traits. Chemical structures of tested monoterpene hydrocarbons had modest effects on beetle survival, mass loss, water content and fat content, with (R)-(+)-limonene tending to be more toxic than (-)-α-pinene, (-)-β-pinene, and (+)-3-carene. Monoterpene diversity (all qualitative combinations of one to four monoterpenes) did not affect toxicity. Concentration (0 to 1200 ppm) of individual monoterpenes was a strong determinant of toxicity. Beetle body size and body condition index strongly and positively affected survival during monoterpene treatments. Larger beetles in better condition lost proportionally less mass during exposure, where proportion mass loss negatively affected survivorship. Toxicity was much more associated with water loss than with fat loss, suggesting that a main cost of detoxification is excretion, a process that has received little attention. These results provide insight into the determinants of beetle success in historic and novel hosts that differ in monoterpene composition and concentration. We also suggest that water availability will affect beetle success directly through their ability to tolerate detoxification as well as indirectly through host responses to drought.

  1. Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese beetle (Popillia japonica Newman).

    PubMed

    Loughrin, J H; Potter, D A; Hamilton-Kemp, T R

    1995-10-01

    The Japanese beetle is a polyphagous insect that typically aggregates on preferred host plants in the field. We studied the response of Japanese beetles to artificial damage, fresh feeding damage, and overnight feeding damage to test the hypothesis that beetles are attracted to feeding-induced volatiles. Crabapple leaves that had been damaged overnight by Japanese beetles or fall webworms attracted significantly more Japanese beetles than did undamaged leaves. Artificially damaged leaves or leaves freshly damaged by Japanese beetles, however, were not significantly more attractive than undamaged leaves. Leaves that had been damaged overnight by Japanese beetles or fall webworms produced a complex mixture of aliphatic compounds, phenylpropanoid-derived compounds, and terpenoids. In comparison, artificially damaged leaves or leaves with fresh Japanese beetle feeding damage generated a less complex blend of volatiles, mainly consisting of green-leaf odors. Feeding-induced odors may facilitate host location and/or mate finding by the Japanese beetle.

  2. Atlas of Iberian water beetles (ESACIB database)

    PubMed Central

    Sánchez-Fernández, David; Millán, Andrés; Abellán, Pedro; Picazo, Félix; Carbonell, José A.; Ribera, Ignacio

    2015-01-01

    Abstract The ESACIB (‘EScarabajos ACuáticos IBéricos’) database is provided, including all available distributional data of Iberian and Balearic water beetles from the literature up to 2013, as well as from museum and private collections, PhD theses, and other unpublished sources. The database contains 62,015 records with associated geographic data (10×10 km UTM squares) for 488 species and subspecies of water beetles, 120 of them endemic to the Iberian Peninsula and eight to the Balearic Islands. This database was used for the elaboration of the “Atlas de los Coleópteros Acuáticos de España Peninsular”. In this dataset data of 15 additional species has been added: 11 that occur in the Balearic Islands or mainland Portugal but not in peninsular Spain and an other four with mainly terrestrial habits within the genus Helophorus (for taxonomic coherence). The complete dataset is provided in Darwin Core Archive format. PMID:26448717

  3. "Excess Water" Following Deforestation by Beetle Kill?

    NASA Astrophysics Data System (ADS)

    Hyde, K.; Miller, S. N.; Anderson-Sprecher, R.; Ewers, B. E.; Speckman, H.

    2014-12-01

    Deforestation resulting from tree mortality by insects and disease may reduce transpiration demand and increase available water in mountain environments throughout. We tested this hypothesis using three large catchments (97-407 km2) located in the Snowy Mountains of Wyoming where hydrology is snowmelt dominated. An epidemic of spruce bark beetle and associated tree mortality emerged in 2006 and has since impacted 60 to 80% of basal area of the spruce-fir and mixed conifer forests. A 25-year continuous record (1998-2013) of daily snowfall, temperature, and stream discharge data between 1 April and 30 September of each year were available for each catchment. We used quantile regression and multivariate time series analysis first to control for the effects of temperature and snow water equivalent on the timing and magnitude of discharge and then to test for changes in discharge trends since 2006. We found no compelling evidence of changes in discharge trends associated with the onset of the beetle epidemic independent of snowmelt trends. Several factors could explain this apparent lack of "excess water" following tree mortality by insects and disease. Any increases in water may be scale dependent, a local phenomenon that does not transfer through large catchments. Other vegetation including young cohorts of affected tree species, shrubs, and herbaceous cover may respond robustly to the open canopy and utilize soil water previously consumed by the infected trees.

  4. The bark beetle holobiont: why microbes matter.

    PubMed

    Six, Diana L

    2013-07-01

    All higher organisms are involved in symbioses with microbes. The importance of these partnerships has led to the concept of the holobiont, defined as the animal or plant with all its associated microbes. Indeed, the interactions between insects and symbionts form much of the basis for the success and diversity of this group of arthropods. Insects rely on microbes to perform basic life functions and to exploit resources and habitats. By "partnering" with microbes, insects access new genomic variation instantaneously allowing the exploitation of new adaptive zones, influencing not only outcomes in ecological time, but the degree of innovation and change that occurs over evolutionary time. In this review, I present a brief overview of the importance of insect-microbe holobionts to illustrate how critical an understanding of the holobiont is to understanding the insect host and it interactions with its environment. I then review what is known about the most influential insect holobionts in many forest ecosystems-bark beetles and their microbes-and how new approaches and technologies are allowing us to illuminate how these symbioses function. Finally, I discuss why it will be critical to study bark beetles as a holobiont to understand the ramifications and extent of anthropogenic change in forest ecosystems.

  5. Dew condensation on desert beetle skin.

    PubMed

    Guadarrama-Cetina, J; Mongruel, A; Medici, M-G; Baquero, E; Parker, A R; Milimouk-Melnytchuk, I; González-Viñas, W; Beysens, D

    2014-11-01

    Some tenebrionind beetles inhabiting the Namib desert are known for using their body to collect water droplets from wind-blown fogs. We aim to determine whether dew water collection is also possible for desert insects. For this purpose, we investigated the infra-red emissivity, and the wetting and structural properties, of the surface of the elytra of a preserved specimen of Physasterna cribripes (Tenebrionidæ) beetle, where the macro-structure appears as a series of "bumps", with "valleys" between them. Dew formation experiments were carried out in a condensation chamber. The surface properties (infra-red emissivity, wetting properties) were dominated by the wax at the elytra surface and, to a lower extent, its micro-structure. We performed scanning electron microscope on histological sections and determined the infra-red emissivity using a scanning pyrometer. The emissivity measured (0.95±0.07 between 8-14 μm) was close to the black body value. Dew formation occurred on the insect's elytra, which can be explained by these surface properties. From the surface coverage of the condensed drops it was found that dew forms primarily in the valleys between the bumps. The difference in droplet nucleation rate between bumps and valleys can be attributed to the hexagonal microstructure on the surface of the valleys, whereas the surface of the bumps is smooth. The drops can slide when they reach a critical size, and be collected at the insect's mouth.

  6. Judas Beetles: Discovering Cryptic Breeding Sites by Radio-Tracking Coconut Rhinoceros Beetles, Oryctes rhinoceros (Coleoptera: Scarabaeidae).

    PubMed

    Moore, Aubrey; Barahona, Diego C; Lehman, Katherine A; Skabeikis, Dominick D; Iriarte, Ian R; Jang, Eric B; Siderhurst, Matthew S

    2016-12-19

    The coconut rhinoceros beetle, Oryctes rhinoceros L., is a serious pest of coconut and other palms throughout Southeast Asia and on several Pacific Islands. Adults damage and sometimes kill palms when they bore into the crown to feed. In contrast, larvae feed only on dead plant material at breeding sites. Typically, coconut rhinoceros beetle populations are controlled with a combination of biocontrol, pheromone traps, and breeding site removal. A field trial was performed at two locations on Guam to test the feasibility of using the Judas technique, releasing radio-tagged adults to discover cryptic breeding sites, for potential coconut rhinoceros beetle control. Of 33 radio-tagged beetles that were released, 19 were successfully tracked to landing sites, 11 of which were considered to be active or potential breeding sites, in five different microhabitats. The remaining 14 beetles were lost when they flew beyond the range of receivers. Only one of the radio-tagged beetles was caught in the numerous pheromone traps present at the release sites. Percent emergence weight (%EW, ratio of current/emergence weight) varied significantly by the microhabitat to which coconut rhinoceros beetles were tracked. When microhabitats were further grouped, the difference in mean %EW between the arboreal (74 ± 2%) and the soil-associated (82 ± 3%) groups were found to be highly significant. The %EW for coconut rhinoceros beetles that were successfully located (78 ± 2%) and those that were lost (72 ± 2%) also differed significantly. Radio-tracking coconut rhinoceros beetles shows promise as a method to identify cryptic breeding sites, which could then be treated, removed, or destroyed.

  7. Impact of food source on survival of red flour beetles and confused flour beetles (Coleoptera: Tenebrionidae) exposed to diatomaceous earth.

    PubMed

    Arthur, F H

    2000-08-01

    A series of experiments was conducted to determine the effect of a flour food source on survival of red flour beetle, Tribolium castaneum (Herbst), and confused flour beetle, Tribolium confusum (DuVal), exposed to the labeled rate (0.5 mg/cm2) of Protect-It, a marine formulation of diatomaceous earth. Beetles were exposed at 27 degrees C, and 40, 57, and 75% RH in 62-cm2 petri dishes. When beetles were exposed for 1 or 2 d in dishes with the labeled rate (0.5 mg/cm2, or 31 mg per dish) of diatomaceous earth or in dishes containing flour at varying levels from 0 to 200 mg mixed with the labeled rate of diatomaceous earth, survival of both species increased as the amount of flour increased, and quickly plateaued at levels approaching 100%. In a second set of experiments, beetles were transferred to dishes containing flour at varying levels from 0 to 200 mg after they were exposed for 1 or 2 d in dishes with the labeled rate of diatomaceous earth alone. There were no significant differences in beetle survival among the levels of flour, however, survival in dishes with flour was usually greater than survival in dishes with diatomaceous earth alone. In a third test, beetles were exposed for 1, 2, and 3 d in dishes with either the labeled rate of diatomaceous earth alone (clean dishes), dishes with diatomaceous earth and empty straws, or dishes with diatomaceous earth and approximately 300 mg of flour packed in the straws. Survival was not significantly different between clean dishes or dishes with straws, but survival in dishes containing the straws with flour was usually 100%, regardless of exposure interval. In all experiments, confused flour beetles were less susceptible to diatomaceous earth than red flour beetles. In addition, survival was negatively related to exposure interval and positively related to relative humidity.

  8. Effect of anti-mosquito midgut antibodies on development of malaria parasite, Plasmodium vivax and fecundity in vector mosquito Anopheles culicifacies (Diptera: culicidae).

    PubMed

    Chugh, Manoj; Adak, T; Sehrawat, Neelam; Gakhar, S K

    2011-04-01

    The effect of anti-mosquito-midgut antibodies on the development of the malaria parasite, P. vivax was studied by feeding the vector mosquito, An. culicifacies with infected blood supplemented with serum from immunized rabbits. In order to get antisera, rabbits were immunized with midgut proteins of three siblings species of Anopheles culicifacies, reported to exhibit differential vectorial capacity. The mosquitoes that ingested anti-midgut antibodies along with infectious parasites had significantly fewer oocysts compared to the control group of mosquitoes. The immunized rabbits generated high titer of antibodies. Their cross reactivity amongst various tissues of the same species and with other sibling species was also determined. Immunogenic polypeptides expressed in the midgut of glucose or blood fed An. culicifacies sibling species were identified by Western blotting. One immunogenic polypeptide of 62 kDa was exclusively present in the midgut of species A. Similarly, three polypeptides of 97, 94 and 58 kDa and one polypeptide of 23 kDa were present exclusively in species B and C respectively. Immunoelectron microscopy revealed the localization of these antigens on baso-lateral membrane and microvilli. The effects of anti-mosquito midgut antibodies on fecundity, longevity, mortality and engorgement of mosquitoes were studied. Fecundity was also reduced significantly. These observations open an avenue for research toward the development of a vector-based malaria parasite transmission-blocking vaccine.

  9. Scanning electron microscopic studies of the surface morphology of the vomeronasal epithelium and olfactory epithelium of garter snakes.

    PubMed

    Wang, R T; Halpern, M

    1980-04-01

    Fixed vomeronasal and olfactory epithelia from normal adult garter snakes were microdissected, fractured, and examined with a scanning electron microscope. The method permits a detailed comparative study of the structural organization and morphological characteristics of the constituent cells of the vomeronasal and olfactory epithelia. Despite similarities in the nomenclature of the constituent cells in both epithelia, significant differences exist in their surface morphology. A unique columnar structure composed of non-neuronal elements is present in the vomeronasal epithelium. These columns house the bioplar neurons and undifferentiated cells. Such a columnar organization is absent in the olfactory epithelium. In vomeronasal epithelium the bipolar neurons possess microvillous terminals at their dendritic tips, while the dendritic tips of the bipolar neurons of the olfactory epithelium possess cilia. Vomeronasal supporting cells are covered with microvilli, while olfactory supporting cells are covered with cytoplasmic protuberances in addition to the microvilli. In the vomeronasal epithelium the pear-shaped neurons have a grossly smooth surface and are organized into clusters, while in the olfactory epithelium the elliptical bipolar neurons are spinous, aligned side-by-side and interdigitate. The basal (undifferentiated) cell layer in the vomeronasal epithelium has a high packing density and is composed of several layers of irregularly shaped cells. In the olfactory epithelium the basal cell layer is loosely organized and composed of a single layer of oval cells. This information on the three-dimensional cell structure of both epithelia provides a basis for experimental observations on changes in morphology of the bipolar neurons during genesis, development, maturation, degeneration, and regeneration in postnatal, adult animals.

  10. Injury-stimulated and self-restrained BMP signaling dynamically regulates stem cell pool size during Drosophila midgut regeneration.

    PubMed

    Tian, Aiguo; Wang, Bing; Jiang, Jin

    2017-03-13

    Many adult organs rely on resident stem cells to maintain homeostasis. Upon injury, stem cells increase proliferation, followed by lineage differentiation to replenish damaged cells. Whether stem cells also change division mode to transiently increase their population size as part of a regenerative program and, if so, what the underlying mechanism is have remained largely unexplored. Here we show that injury stimulates the production of two bone morphogenetic protein (BMP) ligands, Dpp and Gbb, which drive an expansion of intestinal stem cells (ISCs) by promoting their symmetric self-renewing division in Drosophila adult midgut. We find that BMP production in enterocytes is inhibited by BMP signaling itself, and that BMP autoinhibition is required for resetting ISC pool size to the homeostatic level after tissue repair. Our study suggests that dynamic BMP signaling controls ISC population size during midgut regeneration and reveals mechanisms that precisely control stem cell number in response to tissue needs.

  11. Genotoxic effects of starvation and dimethoate in haemocytes and midgut gland cells of wolf spider Xerolycosa nemoralis (Lycosidae).

    PubMed

    Wilczek, Grażyna; Mędrzak, Monika; Augustyniak, Maria; Wilczek, Piotr; Stalmach, Monika

    2016-06-01

    The aim of this study was to assess the genotoxic effects of starvation and dimethoate (organophosphate insecticide) in female and male wolf spiders Xerolycosa nemoralis (Lycosidae) exposed to the stressors under laboratory conditions. DNA damage was measured in haemocytes and midgut gland cells using the comet assay. In response to the two stressing factors, both cell types showed %TDNA, tail length (TL) and OTM values higher in males than in females. Level of DNA damage in haemocytes was greater than in midgut gland cells. In both sexes, the strongest genotoxicity was recorded at single application of dimethoate. After five-time exposure to the pesticide, genotoxic effects of a single dose were sustained in males and reduced to the control level in females. Starvation stress was well tolerated by the females, in which neither cell type was affected by DNA damage. However, in male haemocytes food deprivation induced severe DNA damage, what suggests suppression of the defence potential at prolonged starvation periods.

  12. Micro-structure and frictional characteristics of beetle?s joint

    NASA Astrophysics Data System (ADS)

    Dai, Zhendong; Gorb, Stanislav N.

    2004-01-01

    Geometric and micro-structure design, tribology properties of beetle joints were experimentally studied, which aimed to enlighten ideas for the joint design of MEMS. The observation by using SEM and microscopy suggested that beetle’s joints consist of a concave surface matched with a convex surface. The heads of the beetles, rubbing with flat glass, were tested in fresh and dried statuses and compared with sapphire ball with flat glass. Frictional coefficient of the joint material on glass was significantly lower than that of the sapphire sphere on glass. The material of the joint cuticle for convex surface is rather stiff (the elastic modulus 4.5 Gpa) and smooth. The surface is hydrophobic (the contact angle of distilled water was 88.3°). It is suggested here that the high stiffness of the joint material and hydrophobicity of the joint surface are parts of the mechanism minimizing friction in insect joints.

  13. Alteration of carbohydrates metabolism and midgut glucose absorption in Gromphadorhina portentosa after subchronic exposure to imidacloprid and fenitrothion.

    PubMed

    Sawczyn, Tomasz; Dolezych, Bogdan; Klosok, Marcin; Augustyniak, Maria; Stygar, Dominika; Buldak, Rafal J; Kukla, Michal; Michalczyk, Katarzyna; Karcz-Socha, Iwona; Zwirska-Korczala, Krystyna

    2012-01-01

    This study was undertaken to test the hypothesis that following exposure to insecticides, changes take place in the metabolism of carbohydrates and absorption in the midgut of insects. The Madagascar hissing cockroach (Gromphadorhina portentosa) was chosen for the experiment as a model organism, due to it being easy to breed and its relatively large alimentary tract, which was important when preparing the microperfusion midgut bioassay. In each group of cockroaches treated with imidacloprid and fenitrothion, absorption of glucose, expressed as the area under the curve (AUC), was elevated compared to the control group. Glucose in the hemolymph of the examined insects was present in a vestigial amount, often below the threshold of determination, so the determinable carbohydrate indices were: hemolymph trehalose concentration and fat body glycogen content. The level of trehalose found in the hemolymph of insects when exposed to fenitrothion, and irrespective of the level of concentration mixed into food, were significantly lower when comparing to the control samples. Imidacloprid acted analogically with one exception at the concentration of 10 mg·kg(-1) dry food where trehalose concentration did not differ from the control values. Coupling with fat body glycogen concentration was less visible and appeared only at the concentrations of 5 and 10 mg imidacloprid·kg(-1) dry food. As described in this study changes in the sugar distribution and midgut glucose absorption indicate that insects cover the increased energy needs induced by insecticides; also at the gastrointestinal tract level. The result indicates that the midgut glucose absorption parameters could be considered as a non-specific biomarker of insecticide toxicity.

  14. Big dung beetles dig deeper: trait-based consequences for faecal parasite transmission.

    PubMed

    Gregory, Nichar; Gómez, Andrés; Oliveira, Trícia Maria F de S; Nichols, Elizabeth

    2015-02-01

    Observational evidence suggests that burial of faeces by dung beetles negatively influences the transmission of directly transmitted gastrointestinal helminths. However, the mechanistic basis for these interactions is poorly characterised, limiting our ability to understand relationships between beetle community composition and helminth transmission. We demonstrate that beetle body size and sex significantly impact tunnel depth, a key variable affecting parasite survival. Additionally, high parasite loads reduce the depth of beetle faeces burial, suggesting that the local prevalence of parasites infecting beetles may impact beetle ecosystem function. Our study represents a first step towards a mechanistic understanding of a potentially epidemiologically relevant ecosystem function.

  15. Characterization of a Digestive α-Amylase in the Midgut of Pieris brassicae L. (Lepidoptera: Pieridae)

    PubMed Central

    Sharifloo, Ali; Zibaee, Arash; Sendi, Jalal J.; Jahroumi, Khalil Talebi

    2016-01-01

    The current study deals with a digestive α-amylase in the larvae of Pieris brassicae L. through purification, enzymatic characterization, gene expression, and in vivo effect of a specific inhibitor, Acarbose. Although α-amylase activity was the highest in the whole gut homogenate of larvae but compartmentalization of amylolytic activity showed an equal activity in posterior midgut (PM) and anterior midgut (AM). A three step purification using ammonium sulfate, Sepharyl G-100 and DEAE-Cellulose Fast flow revealed an enzyme with a specific activity of 5.18 U/mg, recovery of 13.20, purification fold of 19.25 and molecular weight of 88 kDa. The purified α-amylase had the highest activity at optimal pH and temperature of 8 and 35°C. Also, the enzyme had Vmax values of 4.64 and 3.02 U/mg protein and Km values of 1.37 and 1.74% using starch and glycogen as substrates, respectively. Different concentrations of acarbose, ethylenediamine tetraacetic acid, and ethylene glycol-bis (β-aminoethylether) N, N, N′, N′-tetraacetic acid significantly decreased activity of the purified α-amylase. The 4th instar larvae of P. brassicae were fed on the treated leaves of Raphanus sativus L. with 0.22 mM of Acarbose to find in vivo effects on nutritional indices, α-amylase activity, and gene expression. The significant differences were only found in conversion efficiency of digested food, relative growth rate, and metabolic cost of control and fed larvae on Acarbose. Also, amylolytic activity significantly decreased in the treated larvae by both biochemical and native-PAGE experiments. Results of RT-PCR revealed a gene with 621 bp length responsible for α-amylase expression that had 75% identity with Papilio xuthus and P. polytes. Finally, qRT-PCR revealed higher expression of α-amylase in control larvae compared to acarbose-fed ones. PMID:27014094

  16. The artificial beetle, or a brief manifesto for engineered biomimicry

    NASA Astrophysics Data System (ADS)

    Bartl, Michael H.; Lakhtakia, Akhlesh

    2015-03-01

    The artificial beetle is possibly the Holy Grail for practitioners of engineered biomimicry. An artificial beetle could gather and relay data and images from compromised environments on earth and other planets to decision makers. It could also be used for surveillance of foes and friends alike, and will require ethical foresight and oversight. What would it take to develop an artificial beetle? Several biotemplating techniques can be harnessed for the replication of external structural features of beetle bodies, and thus preserve functionalities such as coloration of the exoskeleton and the hydrophobicity of wings. The body cavity must host a power supply, motors to move the wings for flight, sensors to capture ambient conditions and images, and data transmitters and receivers to communicate with a remote command center. All of these devices must be very small and reliable.

  17. Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two species of dynastine scarab beetles are reported for the first time on the island of Hawaii: the Pasadena masked chafer, Cyclocephala pasadenae (Casey)(Scarabaeidae: Dynastinae: Cyclocephalini) and the Temnorhynchus retusus (Fabricius)(Scarabaeidae: Dynastinae: Pentodontini). The Pasadena mask...

  18. Pheromone Chemistry of the Smaller European Elm Bark Beetle.

    ERIC Educational Resources Information Center

    Beck, Keith

    1978-01-01

    Discusses the aggregation pheromone of the smaller European elm bark beetle, Scolytus multistriatus (Marsham), with emphasis on information that could be used in the classroom as a practical application of organic chemistry. (Author/GA)

  19. Physiological benefits of nectar-feeding by a predatory beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrafloral nectar is an important food source for many animals, including predatory lady beetles (Coleoptera: Coccinellidae), although the physiological benefits of nectar consumption are poorly understood for most consumers. Under laboratory conditions, we confined new females of Coleomegilla macu...

  20. Mechanical properties of the beetle elytron, a biological composite material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  1. Host plant preference in Colorado potato beetle (Coleoptera: Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field and laboratory-choice tests were conducted to better understand host plant preference by the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), in Virginia. In laboratory olfactometer studies, L. decemlineata preferred potato over both tomato and eggplant foli...

  2. The effect of starvation and re-feeding on mitochondrial potential in the midgut of Neocaridina davidi (Crustacea, Malacostraca)

    PubMed Central

    Włodarczyk, Agnieszka; Sonakowska, Lidia; Kamińska, Karolina; Marchewka, Angelika; Wilczek, Grażyna; Wilczek, Piotr; Student, Sebastian; Rost-Roszkowska, Magdalena

    2017-01-01

    The midgut in the freshwater shrimp Neocaridina davidi (previously named N. heteropoda) (Crustacea, Malacostraca) is composed of a tube-shaped intestine and a large hepatopancreas that is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous papers, while here we focused on the ultrastructural changes that occurred in the midgut epithelial cells (D-cells in the intestine, B- and F- cells in the hepatopancreas) after long-term starvation and re-feeding. We used transmission electron microscopy, light and confocal microscopes and flow cytometry to describe all of the changes that occurred due to the stressor with special emphasis on mitochondrial alterations. A quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is a relationship between starvation, re-feeding and the inactivation/activation of mitochondria. The results of our studies showed that in the freshwater shrimp N. davidi that were analyzed, long-term starvation activates the degeneration of epithelial cells at the ultrastructural level and causes an increase of cells with depolarized (non-active) mitochondria. The process of re-feeding leads to the gradual regeneration of the cytoplasm of the midgut epithelial cells; however, these changes were observed at the ultrastructural level. Additionally, re-feeding causes the regeneration of mitochondrial ultrastructure. Therefore, we can state that the increase in the number of cells with polarized mitochondria occurs slowly and does not depend on ultrastructural alterations. PMID:28282457

  3. Phoxim-induced damages of Bombyx mori larval midgut and titanium dioxide nanoparticles protective role under phoxim-induced toxicity.

    PubMed

    Su, Junju; Li, Bing; Cheng, Shen; Zhu, Zhou; Sang, Xuezi; Gui, Suxin; Xie, Yi; Sun, Qingqing; Cheng, Zhe; Cheng, Jie; Hu, Rengping; Shen, Weide; Xia, Qingyou; Zhao, Ping; Hong, Fashui

    2014-12-01

    Phoxim (O,O-diethyl O-(alpha-cyanobenzylideneamino) phosphorothioate) is a powerful organophosphorus pesticide with high potential for Bombyx mori larvae of silkworm exposure. However, it is possible that during the phoxim metabolism, there is generation of reactive oxygen species (ROS) and phoxim may produce oxidative stress and neurotoxicity in an intoxicated silkworm. Titanium dioxide nanoparticles (TiO2 NPs) pretreatment has been demonstrated to increase antioxidant capacity and acetylcholinesterase (AChE) activity in organisms. This study was, therefore, undertaken to determine phoxim-induced oxidative stress and neurotoxicity to determine whether phoxim intoxication alters the antioxidant system and AChE activity in the B. mori larval midgut, and to determine whether TiO2 NPs pretreatment attenuates phoxim-induced toxicity. The findings suggested that phoxim exposure decreased survival of B. mori larvae, increased malondialdehyde (MDA), carbonyl and 8-OHdG levels, and ROS accumulation in the midgut. Furthermore, phoxim significantly decreased the activities of AChE, superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), glutathione-S-transferase (GST), and levels of ascorbic acid (AsA), reduced glutathione (GSH), and thiol in the midgut. TiO2 pretreatment, however, could increase AChE activity, and remove ROS via activating SOD, CAT, APX, GR, and GST, and accelerating AsA-GSH cycle, thus attenuated lipid, protein, and DNA peroxidation and improve B. mori larval survival under phoxim-induced toxicity. Moreover, this experimental system would help nanomaterials to be applied in the sericulture.

  4. Dynamics and regulation of glycolysis-tricarboxylic acid metabolism in the midgut of Spodoptera litura during metamorphosis.

    PubMed

    Hu, D; Luo, W; Fan, L F; Liu, F L; Gu, J; Deng, H M; Zhang, C; Huang, L H; Feng, Q L

    2016-04-01

    Significant changes usually take place in the internal metabolism of insects during metamorphosis. The glycolysis-tricarboxylic acid (glycolysis-TCA) pathway is important for energy metabolism. To elucidate its dynamics, the mRNA levels of genes involved in this pathway were examined in the midgut of Spodoptera litura during metamorphosis, and the pyruvate content was quantified. The expression patterns of these genes in response to starvation were examined, and the interaction between protein phosphatase 1 (PP1) and phosphofructokinase (PFK) was studied. The results revealed that the expression or activities of most glycolytic enzymes was down-regulated in prepupae and then recovered in some degree in pupae, and all TCA-related genes were remarkably suppressed in both the prepupae and pupae. Pyruvate was enriched in the pupal midgut. Taken together, these results suggest that insects decrease both glycolysis and TCA in prepupae to save energy and then up-regulate glycolysis but down-regulate TCA in pupae to increase the supply of intermediates for construction of new organs. The expression of all these genes were down-regulated by starvation, indicating that non-feeding during metamorphosis may be a regulator of glycolysis-TCA pathway in the midgut. Importantly, interaction between PP1 and PFK was identified and is suggested to be involved in the regulation of glycolysis.

  5. Differential proteomic analysis of midguts from Nosema ceranae-infected honeybees reveals manipulation of key host functions.

    PubMed

    Vidau, Cyril; Panek, Johan; Texier, Catherine; Biron, David G; Belzunces, Luc P; Le Gall, Morgane; Broussard, Cédric; Delbac, Frédéric; El Alaoui, Hicham

    2014-09-01

    Many invasive pathogens effectively bypass the insect defenses to ensure the completion of their life cycle. Among those, an invasive microsporidian species, Nosema ceranae, can cause nosemosis in honeybees. N. ceranae was first described in the Asian honeybee Apis cerana and is suspected to be involved in Western honeybee (Apis mellifera) declines worldwide. The midgut of honeybees is the first barrier against N. ceranae attacks. To bring proteomics data on honeybee/N. ceranae crosstalk and more precisely to decipher the worker honeybee midgut response after an oral inoculation of N. ceranae (10days post-infection), we used 2D-DIGE (2-Dimensional Differential In-Gel Electrophoresis) combined with mass spectrometry. Forty-five protein spots produced by the infected worker honeybee group were shown to be differentially expressed when compared to the uninfected group; 14 were subsequently identified by mass spectrometry. N. ceranae mainly caused a modulation of proteins involved in three key host biological functions: (i) energy production, (ii) innate immunity (reactive oxygen stress) and (iii) protein regulation. The modulation of these host biological functions suggests that N. ceranae creates a zone of "metabolic habitat modification" in the honeybee midgut favoring its development by enhancing availability of nutrients and reducing the worker honeybee defense.

  6. Ubx dynamically regulates Dpp signaling by repressing Dad expression during copper cell regeneration in the adult Drosophila midgut.

    PubMed

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2016-11-15

    The gastrointestinal (GI) tract of metazoans is lined by a series of regionally distinct epithelia. To maintain structure and function of the GI tract, regionally diversified differentiation of somatic stem cell (SC) lineages is critical. The adult Drosophila midgut provides an accessible model to study SC regulation and specification in a regionally defined manner. SCs of the posterior midgut (PM) have been studied extensively, but the control of SCs in the middle midgut (MM) is less well understood. The MM contains a stomach-like copper cell region (CCR) that is regenerated by gastric stem cells (GSSCs) and contains acid-secreting copper cells (CCs). Bmp-like Decapentaplegic (Dpp) signaling determines the identity of GSSCs, and is required for CC regeneration, yet the precise control of Dpp signaling activity in this lineage remains to be fully established. Here, we show that Dad, a negative feedback regulator of Dpp signaling, is dynamically regulated in the GSSC lineage to allow CC differentiation. Dad is highly expressed in GSSCs and their first daughter cells, the gastroblasts (GBs), but has to be repressed in differentiating CCs to allow Dpp-mediated differentiation into CCs. We find that the Hox gene ultrabithorax (Ubx) is required for this regulation. Loss of Ubx prevents Dad repression in the CCR, resulting in defective CC regeneration. Our study highlights the need for dynamic control of Dpp signaling activity in the differentiation of the GSSC lineage and identifies Ubx as a critical regulator of this process.

  7. Large accumulations of maize streak virus in the filter chamber and midgut cells of the leafhopper vector Cicadulina mbila.

    PubMed

    Ammar, El-Desouky; Gargani, Daniel; Lett, Jean M; Peterschmitt, Michel

    2009-01-01

    Maize streak virus (MSV, Mastrevirus, Geminiviridae) is persistently transmitted by Cicadulina mbila, apparently without propagation in its leafhopper vector. MSV was shown earlier by quantitative PCR to accumulate in the alimentary canal of C. mbila. We examined the alimentary canals of C. mbila leafhoppers that acquired MSV from diseased plants for various acquisition access periods (AAP) by immunofluorescence confocal laser scanning microscopy (iCLSM) and by immunogold labelling transmission electron microscopy (iTEM). Following a 7-day AAP and a 7-day inoculation period (IP) on healthy seedlings, MSV was detected by iCLSM mainly in the filter chamber and anterior midgut. Using iTEM, large accumulations of MSV particles, usually enclosed in membranous vesicles, were detected only in cells of the midgut, inside and outside the filter chamber, following 14- or 30-day AAPs, and also following 7-day AAP and 7-day IP on healthy plants. No virus was detected in the control non-vector species C. chinaï. Coated pits or vesicles, typical of clathrin-mediated endocytosis, were not observed. We discuss an alternative endocytosis pathway and suggest that the MSV accumulations are stored in endosomes in the midgut epithelial cells.

  8. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan

    PubMed Central

    Nunes, Rodrigo Dutra; Ventura-Martins, Guilherme; Moretti, Débora Monteiro; Medeiros-Castro, Priscilla; Rocha-Santos, Carlucio; Daumas-Filho, Carlos Renato de Oliveira; Bittencourt-Cunha, Paula Rego Barros; Martins-Cardoso, Karina; Cudischevitch, Cecília Oliveira; Menna-Barreto, Rubem Figueiredo Sadok; Oliveira, José Henrique Maia; Gusmão, Desiely Silva; Alves Lemos, Francisco José; Alviano, Daniela Sales; Oliveira, Pedro Lagerblad; Lowenberger, Carl; Majerowicz, David; Oliveira, Ricardo Melo; Mesquita, Rafael Dias; Atella, Georgia Correa

    2016-01-01

    Background Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols. Results Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK). AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus. Conclusion The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses. PMID:27732590

  9. Recognition and binding of the PF2 lectin to α-amylase from Zabrotes subfasciatus (Coleoptera:Bruchidae) larval midgut.

    PubMed

    Lagarda-Diaz, I; Geiser, D; Guzman-Partida, A M; Winzerling, J; Vazquez-Moreno, L

    2014-01-01

    Amylases are an important family of enzymes involved in insect carbohydrate metabolism that are required for the survival of insect larvae. For this reason, enzymes from starch-dependent insects are targets for insecticidal control. PF2 (Olneya tesota) is a lectin that is toxic to Zabrotes subfasciatus (Coleoptera: Bruchidae) larvae. In this study, we evaluated recognition of the PF2 lectin to α-amylases from Z. subfasciatus midgut and the effect of PF2 on α-amylase activity. PF2 caused a decrease of total amylase activity in vitro. Subsequently, several α-amylase isoforms were isolated from insect midgut tissues using ion exchange chromatography. Three enzyme isoforms were verified by an in-gel assay for amylase activity; however, only one isoform was recognized by antiamylase serum and PF2. The identity of this Z. subfasciatus α-amylase was confirmed by liquid chromatography-tandem mass spectrometry. The findings strongly suggest that a glycosylated α-amylase isoform from larval Z. subfasciatus midgut interacts with PF2, which interferes with starch digestion.

  10. Baculoviral mid-gut gland necrosis (BMN) of kuruma shrimp (Penaeus japonicus) larvae in Japanese intensive culture systems

    NASA Astrophysics Data System (ADS)

    Sano, T.; Nishimura, T.; Fukuda, H.; Hayashida, T.; Momoyama, K.

    1984-03-01

    In many shrimp farms in the Kyushu and Chugoku areas of Japan, the so-called mid-gut gland cloudy disease of kuruma shrimp larvae (Penaeus japonicus) has occurred since 1971. The pathological changes associated with this baculoviral mid-gut gland necrosis (BMN) are extensive cellular necrosis, collapse of mid-gut gland cells, nuclear hypertrophy and finally karyorrhexis. Electron microscopic examination revealed the presence of virions and virogenic stages in the affected nuclei. Average length and diameter of the virions detected was 310 and 72 nm, respectively; nucleocapsids were 250 nm in size. Virions enclosing 2 nucleocapsids within a single envelope were rarely found. The spirally arranged capsomeres were at an angle of 37 to 38° to a horizontal line meeting at right angles with the long axis of the virion. Infectivity trials resulted in high mortality of healthy mysis and juveniles (2nd post-larval stage). Juveniles at the 9th post-larval stage showed no mortality, although they could be infected easily by the agent. Hypertrophied nuclei in squashed and stained preparations of the affected gland cells can be considered to be of reliable presumptive diagnostic character, and fluorescent antibody staining can be employed to confirm the diagnosis of BMN.

  11. Detection of human cytomegalovirus in normal and neoplastic breast epithelium

    PubMed Central

    2010-01-01

    Introduction Human cytomegalovirus (HCMV) establishes a persistent life-long infection, and can cause severe pathology in the fetus and the immunocompromised host[1]. Breast milk is the primary route of transmission in humans worldwide, and breast epithelium is thus a likely site of persistent infection and/or reactivation, though this phenomenon has not previously been demonstrated. Increasing evidence indicates HCMV infection can modulate signaling pathways associated with oncogenesis. We hypothesized that persistent HCMV infection occurs in normal adult breast epithelium and that persistent viral expression might be associated with normal and neoplastic ductal epithelium. Methods Surgical biopsy specimens of normal breast (n = 38) breast carcinoma (n = 39) and paired normal breast from breast cancer patients (n = 21) were obtained. Specimens were evaluated by immunohistochemistry, in situ hybridization, PCR and DNA sequencing for evidence of HCMV antigens and nucleic acids. Results We detected HCMV expression specifically in glandular epithelium in 17/27 (63%) of normal adult breast cases evaluated. In contrast, HCMV expression was evident in the neoplastic epithelium of 31/32 (97%) patients with ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDC) cases evaluated (p = 0.0009). Conclusions These findings are the first to demonstrate that persistent HCMV infection occurs in breast epithelium in a significant percentage of normal adult females. HCMV expression was also evident in neoplastic breast epithelium in a high percentage of normal and neoplastic breast tissues obtained from breast cancer patients, raising the possibility that viral infection may be involved in the neoplastic process. PMID:21429243

  12. Effects of formaldehyde on normal xenotransplanted human tracheobronchial epithelium.

    PubMed Central

    Ura, H.; Nowak, P.; Litwin, S.; Watts, P.; Bonfil, R. D.; Klein-Szanto, A. J.

    1989-01-01

    Epithelial cells obtained from autopsies of full-term fetuses or infants less than 1 year old were isolated, amplified in primary cultures and inoculated in deepithelialized rat tracheas. These tracheas were then sealed and transplanted subcutaneously into irradiated athymic nude mice. Four weeks after transplantation the tracheal lumen was completely covered by epithelium, most of which was of mucociliary respiratory type. At this stage, tracheal transplants containing tracheobronchial epithelium from 20 different donors were exposed to silastic devices containing 0, 0.5, 1 and 2 mg paraformaldehyde. The tracheal transplants were examined histologically at 2, 4, 8, and 16 weeks after transplantation. Before sacrifice, all animals were injected with a single pulse of tritiated thymidine. Important epithelial alterations could be seen in the formaldehyde treated transplants with a maximum effect visible at 2 weeks after exposure. The highest dose of 2 mg produced, in most cases, numerous areas of epithelial erosion and inflammation whereas this effect was not as evident with the lower doses. All doses produced areas of hyperplastic epithelium alternating with areas of pleomorphic-atrophic epithelium. Although the differences in predominance of different types of epithelium was not clearly dose-dependent, the labeling index (LI) showed dose dependence between 2 and 4 weeks after initiation of exposure. The maximum mean LI was three to four times higher than normal, although in some focal hyperplastic-metaplastic lesions the LI was increased up to 20 times. These studies show that formaldehyde, although toxic at higher doses, is able to elicit at lower doses a proliferative response of the human respiratory epithelium that is not preceded by a massive toxic effect. This response is similar, although less intense than that of the rat respiratory epithelium in which formaldehyde proved to be a carcinogen. Images Figure 2 Figure 5 PMID:2913828

  13. Signature microRNAs in human cornea limbal epithelium.

    PubMed

    Teng, Yufei; Wong, Hoi Kin; Jhanji, Vishal; Chen, Jian Huan; Young, Alvin Lerrmann; Zhang, Mingzhi; Choy, Kwong Wai; Mehta, Jodhbir Singh; Pang, Chi Pui; Yam, Gary Hin-Fai

    2015-05-01

    This study was aimed to identify the signature microRNAs, which regulate the biological processes of corneal epithelial progenitor cell (CEPC) homeostasis and regulation through characterizing the differential expression profile of microRNAs in human limbal epithelium containing adult CEPC versus central corneal epithelium without CEPC. MicroRNA microarray had identified 37 microRNAs enriched in human corneal epithelium. Among them, nine were significantly upregulated in limbal epithelium and one in central corneal epithelium after validation by TaqMan® real-time polymerase chain reaction. In addition to our previous finding of miR-143 and 145, the expression of miR-10b, 126, and 155 was localized in limbal epithelium (LE) (predominantly basal layers) by using locked nucleic acid-based in situ hybridization. Potential target genes were predicted by TargetScan Human v6.0 and compared to the reported human cornea epithelial gene profile GSE5543. Analyzed by web-based Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and DAVID Functional Annotation Bioinformatics Resources v6.7, the downregulated genes were involved in pathways of immune response and cellular protection, apoptosis, and cell movement whereas upregulated genes with cell survival, cell-matrix interaction, and cell-cell adhesion. We found a constant occurrence of miR-143, 145, and 155 in all KEGG pathways regulating limbal epithelial events. By Ingenuity Systems (IPA®) analysis, these microRNAs could cooperatively regulate cell growth and apoptosis via tumor necrosis factor activation and MYC repression. Our findings thus suggest a unique microRNA signature existing in human limbal epithelium and participating in CEPC homeostasis.

  14. Untwisting the polarization properties of light reflected by scarab beetles

    NASA Astrophysics Data System (ADS)

    McDonald, Luke T.; Finlayson, Ewan D.; Vukusic, Peter

    2015-03-01

    The spectral and angle-dependent optical properties of two scarab beetle species belonging to the genus Chrysina are presented. The species display broadband reflectivity and selectively reflect left-circularly polarized light. We use electron microscopy to detail the left-handed, twisted lamellar structure present in these biological systems and imaging scatterometry to characterize their bidirectional reflectance distribution function. We show that the broadband nature of the beetles' reflectance originates due to the range of pitch dimensions found in the structure.

  15. Pulpability of beetle-killed spruce. Forest Service research paper

    SciTech Connect

    Scott, G.M.; Bormett, D.W.; Sutherland, N.R.; Abubakr, S.; Lowell, E.

    1996-08-01

    Infestation of the Dendroctonus rufipennis beetle has resulted in large stands of dead and dying timber on the Kenai Peninsula in Alaska. Tests were conducted to evaluate the value of beetle-killed spruce as pulpwood. The results showed that live and dead spruce wood can be pulped effectively. The two least deteriorated classes and the most deteriorated class of logs had similar characteristics when pulped; the remaining class had somewhat poorer pulpability.

  16. Defensive spray of the bombardier beetle: a biological pulse jet.

    PubMed

    Dean, J; Aneshansley, D J; Edgerton, H E; Eisner, T

    1990-06-08

    The defensive spray of the bombardier beetle Stenaptinus insignis is ejected in quick pulses (at about 500 pulses per second) rather than as a continuous stream. The pulsation may be a consequence of intermittency in the explosive chemical process that generates the spray. The ejection system of the beetle shows basic similarity to the pulse jet propulsion mechanism of the German V-1 "buzz" bomb of World War II.

  17. Competitive Interactions among Symbiotic Fungi of the Southern Pine Beetle

    PubMed Central

    Klepzig, K. D.; Wilkens, R. T.

    1997-01-01

    The southern pine beetle, a damaging pest of conifers, is intimately linked to three symbiotic fungi. Two fungi, Ceratocystiopsis ranaculosus and Entomocorticium sp. A, are transported within specialized structures (mycangia) in the beetle exoskeleton and are mutualists of the beetle. A third fungus, Ophiostoma minus, is transported externally on the beetle exoskeleton (phoretically) and is an antagonist of the beetle. This study examined competitive interactions among these three fungi. The results of de Wit replacement series and primary and secondary resource capture assays with these fungi provide strong evidence for differential competition between the phoretic and mycangial fungi. O. minus was the most able to capture both uncolonized and colonized resources. Entomocorticium sp. A and C. ranaculosus, although equal to one another in competitive abilities, differed in their ability to compete with O. minus. Entomocorticium sp. A was able to maintain space free of O. minus to a much greater degree than was C. ranaculosus. The outcome of such competitive interactions may have significant impacts on the biology of this ecologically and economically important beetle. PMID:16535518

  18. Spectral information as an orientation cue in dung beetles

    PubMed Central

    el Jundi, Basil; Foster, James J.; Byrne, Marcus J.; Baird, Emily; Dacke, Marie

    2015-01-01

    During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue, green or UV, or when presented with both light cues set 180° apart. When either the UV or the green light was turned off after the beetles had set their bearing in the presence of both cues, they were still able to maintain their original bearing to the remaining light. However, if the beetles were presented with two identical green light spots set 180° apart, their ability to maintain their original bearing was impaired. In summary, our data show that ball-rolling beetles could potentially use the celestial chromatic gradient as a reference for orientation. PMID:26538537

  19. Spectral information as an orientation cue in dung beetles.

    PubMed

    El Jundi, Basil; Foster, James J; Byrne, Marcus J; Baird, Emily; Dacke, Marie

    2015-11-01

    During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue, green or UV, or when presented with both light cues set 180° apart. When either the UV or the green light was turned off after the beetles had set their bearing in the presence of both cues, they were still able to maintain their original bearing to the remaining light. However, if the beetles were presented with two identical green light spots set 180° apart, their ability to maintain their original bearing was impaired. In summary, our data show that ball-rolling beetles could potentially use the celestial chromatic gradient as a reference for orientation.

  20. Broadscale specificity in a bark beetle-fungal symbiosis: a spatio-temporal analysis of the mycangial fungi of the western pine beetle.

    PubMed

    Bracewell, Ryan R; Six, Diana L

    2014-11-01

    Whether and how mutualisms are maintained through ecological and evolutionary time is a seldom studied aspect of bark beetle-fungal symbioses. All bark beetles are associated with fungi and some species have evolved structures for transporting their symbiotic partners. However, the fungal assemblages and specificity in these symbioses are not well known. To determine the distribution of fungi associated with the mycangia of the western pine beetle (Dendroctonus brevicomis), we collected beetles from across the insect's geographic range including multiple genetically distinct populations. Two fungi, Entomocorticium sp. B and Ceratocystiopsis brevicomi, were isolated from the mycangia of beetles from all locations. Repeated sampling at two sites in Montana found that Entomocorticium sp. B was the most prevalent fungus throughout the beetle's flight season, and that females carrying that fungus were on average larger than females carrying C. brevicomi. We present evidence that throughout the flight season, over broad geographic distances, and among genetically distinct populations of beetle, the western pine beetle is associated with the same two species of fungi. In addition, we provide evidence that one fungal species is associated with larger adult beetles and therefore might provide greater benefit during beetle development. The importance and maintenance of this bark beetle-fungus interaction is discussed.

  1. Developmental origin of the posterior pigmented epithelium of iris.

    PubMed

    Wang, Xiaobing; Xiong, Kai; Lu, Lei; Gu, Dandan; Wang, Songtao; Chen, Jing; Xiao, Honglei; Zhou, Guomin

    2015-03-01

    Iris epithelium is a double-layered pigmented cuboidal epithelium. According to the current model, the neural retina and the posterior iris pigment epithelium (IPE) are derived from the inner wall of the optic cup, while the retinal pigment epithelium (RPE) and the anterior IPE are derived from the outer wall of the optic cup during development. Our current study shows evidence, contradicting this model of fetal iris development. We demonstrate that human fetal iris expression patterns of Otx2 and Mitf transcription factors are similar, while the expressions of Otx2 and Sox2 are complementary. Furthermore, IPE and RPE exhibit identical morphologic development during the early embryonic period. Our results suggest that the outer layer of the optic cup forms two layers of the iris epithelium, and the posterior IPE is the inward-curling anterior rim of the outer layer of the optic cup. These findings provide a reasonable explanation of how IPE cells can be used as an appropriate substitute for RPE cells.

  2. Isolation and characterization of bacteria from midgut of the rice water weevil (Coleoptera: Curculionidae).

    PubMed

    Lu, Fang; Kang, Xiaoying; Jiang, Cong; Lou, Binggan; Jiang, Mingxing; Way, Michael O

    2013-10-01

    Gut bacteria are known to play important and often essential roles in the biology of insects. Theoretically, they can be genetically manipulated, then reintroduced into insects to negatively modify specific biological features. The weevil superfamily Curculionoidea is one of the most species-rich and successful animal groups on earth, but currently the overall knowledge of the bacterial communities in weevils and their associations with hosts is still limited. In this study, we isolated and characterized the bacteria in the midgut of an invasive weevil, Lissorhoptrus oryzophilus Kuschel, by culturing methods. Female adults of this weevil were collected from four different geographic regions of the United States and mainland China. Sequencing of the bacterial 16S rRNA amplicons demonstrated that the major culturable gut bacteria of rice water weevil are γ-proteobacteria and Bacilli. The gut bacterial composition differs among regions, with many of the bacteria isolated from only a single region while several were detected from more than one region. Overall, the diversity of gut bacteria in rice water weevil is relatively low. The possible origins of certain bacteria are discussed in relation to the weevil, rice plant, and bacteria.

  3. Purification and Characterization of Midgut α-Amylase in a Predatory Bug, Andralus spinidens

    PubMed Central

    Sorkhabi-Abdolmaleki, Sahar; Zibaee, Arash; Hoda, Hassan; Fazeli-Dinan, Mahmoud

    2014-01-01

    α-Amylases are widespread enzymes that catalyze endohydrolysis of long α-1,4-glucan chains such as starch and glycogen. The highest amylolytic activity was found in 5th instar nymphs and midgut of the predatory bug, Andrallus spinidens F. (Hemiptera: Pentatomidae). The α-amylase was purified following a three-step procedure. The purified α-amylase had a specific activity of 13.46 U/mg protein, recovery of 4.21, purification fold of 13.87, and molecular weight of 21.3 kDa. The enzyme had optimal pH and temperature of 7 and 45°C, respectively. Na+, Mn+, Mg2+, and Zn2+ significantly decreased activity of the purified α-amylase, but some concentrations of K+, Ca2+, and Cu2+ had the opposite effect. EDTA, EGTA, and DTC significantly decreased enzymatic activity, showing the presence of metal ions in the catalytic site of the enzyme. Kinetic parameters of the purified α-amylase showed a Km of 3.71% in starch and 4.96% for glycogen, suggesting that the enzyme had a higher affinity for starch. PMID:25373212

  4. In vitro lipid transfer between lipoproteins and midgut-diverticula in the spider Polybetes pythagoricus.

    PubMed

    Laino, Aldana; Cunningham, Mónica L; Heras, Horacio; Garcia, Fernando

    2011-12-01

    It has been already reported that most hemolymphatic lipids in the spider Polybetes pythagoricus are transported by HDL1 and VHDL lipoproteins. We studied in vitro the lipid transfer among midgut-diverticula (M-diverticula), and either hemolymph or purified lipoproteins as well as between hemolymphatic lipoproteins. M-diverticula and hemolymph were labeled by in vivo (14)C-palmitic acid injection. In vitro incubations were performed between M-diverticula and either hemolymph or isolated lipoproteins. Hemolymph lipid uptake was associated to HDL1 (67%) and VHDL (32%). Release from hemolymph towards M-diverticula showed the opposite trend, VHDL 75% and HDL1 45%. Isolated lipoproteins showed a similar behavior to that observed with whole hemolymph. Lipid transfer between lipoproteins showed that HDL1 transfer more (14)C-lipids to VHDL than vice versa. Only 38% FFA and 18% TAG were transferred from M-diverticula to lipoproteins, while on the contrary 75% and 73% of these lipids, respectively, were taken up from hemolymph. A similar trend was observed regarding lipoprotein phospholipids. This study supports the hypothesis that HDL1 and hemocyanin-containing VHDL are involved in the uptake and release of FFA, phospholipids and triacylglycerols in the spider P. pythagoricus. The data support a directional flow of lipids from HDL1 and VHDL suggesting a mode of lipid transport between lipoproteins and M-diverticula.

  5. Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites

    PubMed Central

    Dong, Yuemei; Manfredini, Fabio; Dimopoulos, George

    2009-01-01

    Malaria-transmitting mosquitoes are continuously exposed to microbes, including their midgut microbiota. This naturally acquired microbial flora can modulate the mosquito's vectorial capacity by inhibiting the development of Plasmodium and other human pathogens through an unknown mechanism. We have undertaken a comprehensive functional genomic approach to elucidate the molecular interplay between the bacterial co-infection and the development of the human malaria parasite Plasmodium falciparum in its natural vector Anopheles gambiae. Global transcription profiling of septic and aseptic mosquitoes identified a significant subset of immune genes that were mostly up-regulated by the mosquito's microbial flora, including several anti-Plasmodium factors. Microbe-free aseptic mosquitoes displayed an increased susceptibility to Plasmodium infection while co-feeding mosquitoes with bacteria and P. falciparum gametocytes resulted in lower than normal infection levels. Infection analyses suggest the bacteria-mediated anti-Plasmodium effect is mediated by the mosquitoes' antimicrobial immune responses, plausibly through activation of basal immunity. We show that the microbiota can modulate the anti-Plasmodium effects of some immune genes. In sum, the microbiota plays an essential role in modulating the mosquito's capacity to sustain Plasmodium infection. PMID:19424427

  6. Triterpene acids from apple peel inhibit lepidopteran larval midgut lipases and larval growth.

    PubMed

    Christeller, John T; McGhie, Tony K; Poulton, Joanne; Markwick, Ngaire P

    2014-07-01

    Fruit extracts from apple, kiwifruit, feijoa, boysenberry, and blueberry were screened for the presence of lipase inhibitory compounds against lepidopteran larval midgut crude extracts. From 120 extracts, six showed significant inhibition with an extract from the peel of Malus × domestica cv. "Big Red" showing highest levels of inhibition. Because this sample was the only apple peel sample in the initial screen, a survey of peels from seven apple cultivars was undertaken and showed that, despite considerable variation, all had inhibitory activity. Successive solvent fractionation and LC-MS of cv. "Big Red" apple peel extract identified triterpene acids as the most important inhibitory compounds, of which ursolic acid and oleanolic acid were the major components and oxo- and hydroxyl-triterpene acids were minor components. When ursolic acid was incorporated into artificial diet and fed to Epiphyas postvittana Walker (Tortricidae: Lepidoptera) larvae at 0.16% w/v, a significant decrease in larval weight was observed after 21 days. This concentration of ursolic acid is less than half the concentration reported in the skin of some apple cultivars.

  7. Starvation induces apoptosis in the midgut nidi of Periplaneta americana: a histochemical and ultrastructural study.

    PubMed

    Park, Moon Soo; Park, Pyoyun; Takeda, Makio

    2009-03-01

    The effects of starvation on cell death in the midgut of Periplaneta americana were studied histochemically and ultrastructurally. TUNEL assays showed that cell death began to increase in the columnar cells and nidi, the nests of stem cells and newborn cells from 2 weeks of starvation. A significant increase in cell death occurred in the nidi after 4 weeks of starvation. Cockroaches starved for 4 weeks showed active-caspase-3-like immuno-reactivity both in the columnar cells and nidi, whereas control cockroaches that were fed for 4 weeks showed this reactivity only in the apical cytoplasm of columnar cells. Electron microscopy revealed no chromatin condensation in the nucleus of columnar cells of cockroaches, whether fed or starved for 4 weeks. Starved cockroaches exhibited many small vacuoles in the cytoplasm of some columnar cells and "floating" organelles including nuclei in the lumen. A 4-week starvation induced the appearance of cytoplasmic fragmentation and secondary lysosomes in the nidi. Each fragment contained nuclear derivatives with condensed chromatin, i.e. apoptotic bodies. Mitotic cells were found in some, but not all nidi, even within the same starved sample. Fragmentation was not observed in the nidi of control cockroaches. Thus, starvation increases cell death not only in the columnar cells, but also in the nidi. The cell death in the nidi is presumably apoptosis executed by caspase 3.

  8. Rhynchophorus ferrugineus midgut cell line to evaluate insecticidal potency of different plant essential oils.

    PubMed

    Rizwan-ul-Haq, Muhammad; Aljabr, Ahmed Mohammed

    2015-03-01

    Cell cultures can be a potent and strong tool to evaluate the insecticidal efficiency of natural products. Plant essential oils have long been used as the fragrance or curative products around the world which means that they are safer to be used in close proximity of humans and mammals. In this study, a midgut cell line, developed from Rhynchophorus ferrugineus (RPW-1), was used for screening essential oils from nine different plants. Assays revealed that higher cell mortality was observed at 500 ppm which reached to 86, 65, 60, 59, 56, 54, 54, 53, and 53%, whereas lowest cell mortality at 1 ppm remained at 41, 23, 20, 17, 16, 15, 14, 13, and 10%, for Azadirachta indica, Piper nigrum, Mentha spicata, Cammiphora myrrha, Elettaria cardamomum, Zingiber officinale, Curcuma longa, Schinus molle, and Rosmarinus officinalis, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay revealed the percentage of cell growth inhibition was highest at 500 ppm and remained at 48, 45, 42, 37, 34, 29, 24, 22, and 18% against A. indica, P. nigrum, M. spicata, C. myrrha, E. cardamomum, Z. officinale, C. longa, S. molle, and R. officinalis, respectively. Lowest LC50 value (7.98 ppm) was found for A. indica, whereas the highest LC50 (483.11 ppm) was against R. officinalis. Thus, in this study, essential oils of A. indica exhibited the highest levels of toxicity, whereas those from R. officinalis exhibited the lowest levels of toxicity toward RPW-1 cells.

  9. Bacterial Infection and Immune Responses in Lutzomyia longipalpis Sand Fly Larvae Midgut

    PubMed Central

    Heerman, Matthew; Weng, Ju-Lin; Hurwitz, Ivy; Durvasula, Ravi; Ramalho-Ortigao, Marcelo

    2015-01-01

    The midgut microbial community in insect vectors of disease is crucial for an effective immune response against infection with various human and animal pathogens. Depending on the aspects of their development, insects can acquire microbes present in soil, water, and plants. Sand flies are major vectors of leishmaniasis, and shown to harbor a wide variety of Gram-negative and Gram-positive bacteria. Sand fly larval stages acquire microorganisms from the soil, and the abundance and distribution of these microorganisms may vary depending on the sand fly species or the breeding site. Here, we assess the distribution of two bacteria commonly found within the gut of sand flies, Pantoea agglomerans and Bacillus subtilis. We demonstrate that these bacteria are able to differentially infect the larval digestive tract, and regulate the immune response in sand fly larvae. Moreover, bacterial distribution, and likely the ability to colonize the gut, is driven, at least in part, by a gradient of pH present in the gut. PMID:26154607

  10. Screening and Molecular Cloning of a Protective Antigen from the Midgut of Haemaphysalis longicornis

    PubMed Central

    Hu, Yonghong; Zhang, Jincheng; Yang, Shujie; Wang, Hui; Zeng, Hua; Zhang, Tiantian

    2013-01-01

    Vaccination is considered a promising alternative for controlling tick infestations. Haemaphysalis longicornis midgut proteins separated by SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) membrane were screened for protective value against bites. The western blot demonstrated the immunogenicity of 92 kDa protein (P92). The analysis of the P92 amino acid sequence by LC-MS/MS indicated that it was a H. longicornis paramyosin (Hl-Pmy). The full lenghth cDNA of Hl-Pmy was obtained by rapid amplification of cDNA ends (RACE) which consisted of 2,783 bp with a 161 bp 3' untranslated region. Sequence alignment of tick paramyosin (Pmy) showed that Hl-Pmy shared a high level of conservation among ticks. Comparison with the protective epitope sequence of other invertebrate Pmy, it was calculated that the protective epitope of Hl-Pmy was a peptide (LEEAEGSSETVVEMNKKRDTE) named LEE, which was close to the N-terminal of Hl-Pmy protein. The secondary structure analysis suggested that LEE had non-helical segments within an α-helical structure. These results provide the basis for developing a vaccine against biting H. longicornis ticks. PMID:23864744

  11. Ookinete-induced midgut peroxidases detonate the time bomb in anopheline mosquitoes.

    PubMed

    Kumar, Sanjeev; Barillas-Mury, Carolina

    2005-07-01

    Previous analysis of the temporal-spatial relationship between ookinete migration and the cellular localization of genes mediating midgut immune defense responses suggested that, in order to survive, parasites must complete invasion before toxic chemicals ("a bomb") are generated by the invaded cell. Recent studies indicate that ookinete invasion induces tyrosine nitration as a two-step reaction, in which NOS induction is followed by a localized increase in peroxidase activity. Peroxidases utilize nitrite and hydrogen peroxide as substrates, and detonate the time bomb by generating reactive nitrogen intermediates, such as nitrogen dioxide, which mediate nitration. There is evidence that peroxidases also mediate antimicrobial responses to bacteria, fungi and parasites in a broad range of biological systems including humans and plants. Defense reactions that generate toxic chemicals are also potentially harmful to the host mounting the response and often results in apoptosis. The two-step nitration pathway is probably an ancient response, as it has also been described in vertebrate leukocytes and probably evolved as a mechanism to circumscribe the toxic products generated during defense responses involving protein nitration.

  12. The function of resilin in beetle wings.

    PubMed Central

    Haas, F; Gorb, S; Blickhan, R

    2000-01-01

    This account shows the distribution of elastic elements in hind wings in the scarabaeid Pachnoda marginata and coccinellid Coccinella septempunctata (both Coleoptera). Occurrence of resilin, a rubber-like protein, in some mobile joints together with data on wing unfolding and flight kinematics suggest that resilin in the beetle wing has multiple functions. First, the distribution pattern of resilin in the wing correlates with the particular folding pattern of the wing. Second, our data show that resilin occurs at the places where extra elasticity is needed, for example in wing folds, to prevent material damage during repeated folding and unfolding. Third, resilin provides the wing with elasticity in order to be deformable by aerodynamic forces. This may result in elastic energy storage in the wing. PMID:10983820

  13. Evolution of the carabid ground beetles.

    PubMed

    Osawa, S; Su, Z H; Kim, C G; Okamoto, M; Tominaga, O; Imura, Y

    1999-01-01

    The phylogenetic relationships of the carabid ground beetles have been estimated by analysing a large part of the ND5 gene sequences of more than 1,000 specimens consisting of the representative species and geographic races covering most of the genera and subgenera known in the world. From the phylogenetic analyses in conjunction with the mtDNA-based dating, a scenario of the establishment of the present habitats of the respective Japanese carabids has been constructed. The carabid diversification took place ca. 40 MYA as an explosive radiation of the major genera. During evolution, occasional small or single bangs also took place, sometimes accompanied by parallel morphological evolution in phylogenetically remote as well as close lineages. The existence of silent periods, in which few morphological changes took place, has been recognized during evolution. Thus, the carabid evolution is discontinuous, alternatively having a phase of rapid morphological change and a silent phase.

  14. Intraguild Predation and Native Lady Beetle Decline

    PubMed Central

    Gardiner, Mary M.; O'Neal, Matthew E.; Landis, Douglas A.

    2011-01-01

    Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows that intraguild

  15. The physiology of the midgut of Lutzomyia longipalpis (Lutz and Neiva 1912): pH in different physiological conditions and mechanisms involved in its control.

    PubMed

    Santos, Vânia C; Araujo, Ricardo N; Machado, Luciane A D; Pereira, Marcos H; Gontijo, Nelder F

    2008-09-01

    Nutrient digestion and absorption after blood feeding are important events for Lutzomyia longipalpis, which uses these nutrients to produce eggs. In this context, the pH inside the digestive tract is an important physiological feature as it can markedly influence the digestive process as well as interfere with Leishmania development in infected phlebotomines. It was described previously that unfed females have an acidic midgut (pH 6). In this study, the pH inside the midgut of blood-fed females was measured. The abdominal midgut (AM) pH varied from 8.15+/-0.31 in the first 10 h post-blood meal to 7.7+/-0.17 after 24 h. While the AM was alkaline during blood digestion, the pH in the thoracic midgut (TM) remained acidic (5.5-6.0). In agreement with these findings, the enzyme alpha-glucosidase, which has an optimum pH of 5.8, is mainly encountered in the acidic TM. The capacity of unfed females to maintain the acidic intestinal pH was also evaluated. Our results showed the presence of an efficient mechanism that maintains the pH almost constant at about 6 in the midgut, but not in the crop. This mechanism is promptly interrupted in the AM by blood ingestion. RT-PCR results indicated the presence of carbonic anhydrase in the midgut cells, which apparently is required to maintain the pH at 6 in the midgut of unfed females. Investigations on the phenomenon of alkalization observed after blood ingestion indicated that two mechanisms are involved: in addition to the alkalization promoted by CO2 volatilization there is a minor contribution from a second mechanism not yet characterized. Some inferences concerning Leishmania development and pH in the digestive tube are presented.

  16. Do birds and beetles show similar responses to urbanization?

    PubMed

    Gagné, Sara A; Fahrig, Lenore

    2011-09-01

    To date, the vast majority of studies in urban areas have been carried out on birds, yet it is not known whether the responses of birds to urbanization are congruent with those of other taxa. In this paper, we compared the responses of breeding birds and carabid beetles to urbanization, specifically asking whether the emerging generalizations of the effects of extreme levels of urbanization on birds (declines in total species richness and the richness of specialist species, increases in total abundance and the abundances of native generalist and introduced species, and community simplification, including increasing similarity) could also be applied to ground beetles. We also directly tested for congruence between birds and ground beetles using correlations between variables describing bird and beetle community structure and correlations between bird and beetle distance matrices describing community dissimilarity between pairs of sampling locations. Breeding bird and carabid beetle community data were collected in Ottawa, Ontario, and Gatineau, Quebec, Canada, in two groups of sites: developed sites representing the predictor variable within-site housing density, and forested sites adjacent to development representing the predictor variable neighboring housing density (each site was 0.25 km2). Breeding birds and carabid beetles do not respond similarly to increasing within-site housing density but do exhibit some similar responses to increasing neighboring housing density. Birds displayed strong declines in diversity, compositional changes, and community simplification in response to increasing within-site housing density. Forest and introduced species of birds and beetles responded similarly to increasing housing density within a site, but responses of overall diversity and open-habitat species richness and patterns of community simplification differed between birds and beetles. Increasing neighboring housing density resulted in increases in the abundances of

  17. How-To-Do-It. A Beetle, a Bur, and the Potato: An Introduction to Ecology.

    ERIC Educational Resources Information Center

    Jantzen, Paul G.

    1983-01-01

    Describes how the interrelation of the potato beetle, the buffalo-bur, and the potato is used as an introduction to ecology. Methods of controlling the beetle and ecological principles illustrated in the interrelationship are discussed. (JN)

  18. New records of predaceous diving beetles (Coleoptera:Dytiscidae) in Maine

    USGS Publications Warehouse

    Boobar, L.R.; Gibbs, K.E.; Longcore, J.R.; Perillo, A.M.

    1996-01-01

    Locations, habitat descriptions, and collection dates are listed for new records of 4 genera and 12 species of predaceous diving beetles (Coleoptera: Dytiscidae) in Maine. Previously, 17 genera and 53 species of the aquatic beetle were reported from Maine.

  19. Biology, Behavior, and Management of Ambrosia Beetles Attacking Ornamental Nursery Stock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ambrosia beetles are being increasingly recognized as significant pests of field-grown ornamental nursery stock. Two species are especially problematic in ornamental nurseries, namely the black stem borer, Xylosandrus germanus, and the granulate ambrosia beetle, Xylosandrus crassiusculus. Ambrosia b...

  20. Limited transmission of the ectoparasitic fungus Hesperomyces virescens between lady beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ectoparasitic fungus Hesperomyces virescens Thaxter (Ascomycota: Laboulbeniales) commonly infects the invasive lady beetle Harmonia axyridis (Pallas) and several other aphidophagous lady beetles in North America and Europe. We tested the hypothesis that bodily contact between adults of differen...

  1. First record of a Mermithidae (Nematoda) from the meloid beetle Meloe violaceus Marsham, 1802 (Coleoptera: Meloidae).

    PubMed

    Lückmann, Johannes; Poinar, George O

    2003-05-01

    A new record of nematode parasitism of meloid beetles is reported and all earlier records are summarised. Rates of parasitism could be influenced by the toxic compound cantharidin that these beetles possess.

  2. Morphology of the epithelium of the lower rectum and the anal canal in the adult human.

    PubMed

    Tanaka, Eiichi; Noguchi, Tsuyoshi; Nagai, Kaoruko; Akashi, Yuichi; Kawahara, Katsunobu; Shimada, Tatsuo

    2012-06-01

    The anal canal is an important body part clinically. However, there is no agreement about the epithelium of the anal canal, the anal transitional zone (ATZ) epithelium in particular. The aim of this study is to clarify the structure of the epithelium of the human lower rectum and anal canal. Intact rectum and anus obtained from patients who underwent surgery for rectal carcinoma were examined by light and scanning electron microscopy (LM and SEM). By LM, three types of epithelium were observed in the anal canal: simple columnar epithelium, stratified squamous epithelium, and stratified columnar epithelium. The lower rectum was composed of simple columnar epithelium. SEM findings showed stratified squamous epithelium that consisted of squamous cells with microridges, changing to simple columnar epithelium consisting of columnar cells with short microvilli at the anorectal line. LM and SEM observations in a one-to-one ratio revealed that the area of stratified columnar epithelium based on LM corresponded to the anal crypt and sinus. In conclusion, the epithelium of the human anal canal was fundamentally composed of simple columnar epithelium and stratified squamous epithelium. We found no evidence of the ATZ.

  3. Identification of sound-producing hydrophilid beetles in underwater recordings using digital signal processing

    NASA Astrophysics Data System (ADS)

    Rudh, Nissa E.

    For this study, a classification program capable of identifying four hydrophilid beetle species from vocalizations in under water hydrophone recordings was created. Within single-species recordings, classification accuracy ranged from 81-98%. Mathematical features, based on the frequency content of exemplar beetle vocalizations, were used to compare hydrophilid vocalizations with new sound data in Matlab(TM) and classify sounds as a beetle species, beetle distress call, or noise.

  4. Abnormal Ion Permeation through Cystic Fibrosis Respiratory Epithelium

    NASA Astrophysics Data System (ADS)

    Knowles, M. R.; Stutts, M. J.; Spock, A.; Fischer, N.; Gatzy, J. T.; Boucher, R. C.

    1983-09-01

    The epithelium of nasal tissue excised from subjects with cystic fibrosis exhibited higher voltage and lower conductance than tissue from control subjects. Basal sodium ion absorption by cystic fibrosis and normal nasal epithelia equaled the short-circuit current and was amiloride-sensitive. Amiloride induced chloride ion secretion in normal but not cystic fibrosis tissue and consequently was more effective in inhibiting the short-circuit current in cystic fibrosis epithelia. Chloride ion-free solution induced a smaller hyperpolarization of cystic fibrosis tissue. The increased voltage and amiloride efficacy in cystic fibrosis reflect absorption of sodium ions across an epithelium that is relatively impermeable to chloride ions.

  5. Structural changes in rabbit oral epithelium caused by zinc deficiency.

    PubMed

    Joseph, C E; Ashrafi, S H; Waterhouse, J P

    1981-01-01

    We report the successful establishment of zinc deficiency in rabbits by dietary means. The soybean protein of a standard rabbit diet was replaced by egg albumin. Weanling, New Zealand white rabbits, were fed a low zinc diet containing 1.5 microgram Zn/g of diet. Zinc-deficient rabbits showed stunted growth, weight loss, altered posture, partial alopecia and crusting of skin. Structural alterations in oral epithelium of the zinc-deficient rabbits included in the tongue flattened filiform papillae showing parakeratosis, in the cheek parakeratosis of the normally nonkeratinized epithelium and hyperplasia of the lip epidermis.

  6. Endocrine Control of Exaggerated Trait Growth in Rhinoceros Beetles.

    PubMed

    Zinna, R; Gotoh, H; Brent, C S; Dolezal, A; Kraus, A; Niimi, T; Emlen, D; Lavine, L C

    2016-08-01

    Juvenile hormone (JH) is a key insect growth regulator frequently involved in modulating phenotypically plastic traits such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetles. The jaw morphology of stag beetles is sexually-dimorphic and condition-dependent; males have larger jaws than females and those developing under optimum conditions are larger in overall body size and have disproportionately larger jaws than males raised under poor conditions. We have previously shown that large males have higher JH titers than small males during development, and ectopic application of fenoxycarb (JH analog) to small males can induce mandibular growth similar to that of larger males. What remains unknown is whether JH regulates condition-dependent trait growth in other insects with extreme sexually selected structures. In this study, we tested the hypothesis that JH mediates the condition-dependent expression of the elaborate horns of the Asian rhinoceros beetle, Trypoxylus dichotomus. The sexually dimorphic head horn of this beetle is sensitive to nutritional state during larval development. Like stag beetles, male rhinoceros beetles receiving copious food produce disproportionately large horns for their body size compared with males under restricted diets. We show that JH titers are correlated with body size during the late feeding and early prepupal periods, but this correlation disappears by the late prepupal period, the period of maximum horn growth. While ectopic application of fenoxycarb during the third larval instar significantly delayed pupation, it had no effect on adult horn size relative to body size. Fenoxycarb application to late prepupae also had at most a marginal effect on relative horn size. We discuss our results in context of other endocrine signals of condition-dependent trait exaggeration and suggest that different beetle lineages may have co-opted different physiological signaling mechanisms to

  7. Inexpensive trap for monitoring the green June beetle.

    PubMed

    Cowell, Brian; Reut, Michal; Johnson, Donn T; Czokajlo, Darek; Kim, Soo-Hoon Samuel; Lewis, Barbara A; Pszczolkowski, Maciej A

    2012-12-01

    Green June beetle, Cotinis nitida (L.), is an important pest of grapes, peaches, blackberries, blueberries, apples, and pears. Currently, there is no inexpensive, commercially available lure or trap that could serve monitoring green June beetle adults. The objective of this study was to develop and optimize an inexpensive bottle trap baited with isopropanol to attract and capture green June beetle adults. Bottle traps baited with 8 mm diameter cotton wicked dispensers emitted from 9 to 43 ml isopropanol in 48 h and maintained that alcohol at a fairly constant concentration compared with the prototypical bottle trap with large surface evaporation of isopropanol poured into the bottom of the trap. Over 5 d, the isopropanol in the wicked dispensers remained at the same stable concentration of 45-44.5%, whereas isopropanol concentration in the bottom of prototypical traps dropped from 45% to approximately 11% after 24 h and to 0.2% by 48 h. Bottle traps with isopropanol dispensers and cotton wicks of 4, 6, or 8 mm in diameter caught significantly more green June beetles than did prototypical bottle traps with no dispensers. Isopropanol concentrations of 45.5, 66, and 91% attracted more green June beetle adults than the lower concentrations. Significantly more green June beetle adults were attracted to traps with dispensers set at 1.3 m height than those at lower heights, and traps topped with a blue, orange, or white band captured more green June beetle adults than those with bands of other colors. The optimized bottle trap is made from recycled transparent polyethylene terephthalate beverage bottle (710-ml; 24 oz.) with a blue, orange, or white band, baited with an 8 mm cotton wick dispenser of 45.5% isopropanol and hung at a height of 1.3 m. Cost and uses for this trap are discussed.

  8. Distance and Sex Determine Host Plant Choice by Herbivorous Beetles

    PubMed Central

    Ballhorn, Daniel J.; Kautz, Stefanie; Heil, Martin

    2013-01-01

    Background Plants respond to herbivore damage with the release of volatile organic compounds (VOCs). This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores? Methodology We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis) when facing lima bean plants (Fabaceae: Phaseolus lunatus) with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials. Conclusion Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores, whereas the presence of a

  9. Salmonella recovery from broilers and litter following gavage with Salmonella colonized darkling beetles and larvae.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transmission of Salmonella to broiler chicks with Salmonella colonized darkling beetles or larvae was evaluated by sampling litter and ceca during growout. In two trials, 1 or 2 day-of-hatch broiler chicks (in a pen of 40) were gavaged with either 4 darkling beetles, 4 beetle larvae, or 0.1 mL pept...

  10. Monoterpenes influence response of ambrosia beetles (Coleoptera: Curculionidae) to attractant-baited traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wood-boring ambrosia beetles have become increasingly problematic in nursery-grown ornamentals. Reports from Ohio have documented ambrosia beetle attacks on deciduous trees, while anecdotal evidence suggests attacks are not occurring on coniferous evergreens. Since colonization by ambrosia beetles...

  11. 78 FR 4812 - Endangered and Threatened Wildlife and Plants; Removal of the Valley Elderberry Longhorn Beetle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ...; Removal of the Valley Elderberry Longhorn Beetle From the Federal List of Endangered and Threatened... elderberry longhorn beetle (Desmocerus californicus dimorphus) from the List of Endangered and Threatened... remove the valley elderberry longhorn beetle from the List of Endangered and Threatened Wildlife, and...

  12. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and...

  13. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and...

  14. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and...

  15. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and...

  16. Effects of an increase in population of sika deer on beetle communities in deciduous forests.

    PubMed

    Iida, Taichi; Soga, Masashi; Koike, Shinsuke

    2016-01-01

    The overabundance of large herbivores is now recognized as a serious ecological problem. However, the resulting ecological consequences remain poorly understood. The ecological effects of an increase in sika deer, Cervus nippon Temminck (Cervidae), on three insect groups of beetles was investigated: ground beetles (Carabidae), carrion beetles (Silphidae), and dung beetles (Scarabaeidae and Geotrupidae) on Nakanoshima Island, Hokkaido, northern Japan. We collected beetles on Nakanoshima Island (experimental site) and lakeshore areas (control site) and compared the species richness, abundance, diversity index, and community composition of beetles between the sites. Results showed that although both species diversity and abundance of carabid beetles were significantly higher at the lakeshore site, those of dung and carrion beetles were higher at the island site. It was additionally observed that abundance of larger carabid beetles was higher at the lakeshore site, whereas that of small-sized carabid beetles did not differ between the lakeshore and island sites. For dung beetles, abundance of smaller species was higher at the island site, whereas that of large species did not differ between the lakeshore and island sites. Abundance of two body sizes (small and large) of carrion beetles were both higher at the island site. Overall, the findings of this study demonstrated that an increase in deer population altered the insect assemblages at an island scale, suggesting further changes in ecosystem functions and services in this region.

  17. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and...

  18. Effects of an increase in population of sika deer on beetle communities in deciduous forests

    PubMed Central

    Iida, Taichi; Soga, Masashi; Koike, Shinsuke

    2016-01-01

    Abstract The overabundance of large herbivores is now recognized as a serious ecological problem. However, the resulting ecological consequences remain poorly understood. The ecological effects of an increase in sika deer, Cervus nippon Temminck (Cervidae), on three insect groups of beetles was investigated: ground beetles (Carabidae), carrion beetles (Silphidae), and dung beetles (Scarabaeidae and Geotrupidae) on Nakanoshima Island, Hokkaido, northern Japan. We collected beetles on Nakanoshima Island (experimental site) and lakeshore areas (control site) and compared the species richness, abundance, diversity index, and community composition of beetles between the sites. Results showed that although both species diversity and abundance of carabid beetles were significantly higher at the lakeshore site, those of dung and carrion beetles were higher at the island site. It was additionally observed that abundance of larger carabid beetles was higher at the lakeshore site, whereas that of small-sized carabid beetles did not differ between the lakeshore and island sites. For dung beetles, abundance of smaller species was higher at the island site, whereas that of large species did not differ between the lakeshore and island sites. Abundance of two body sizes (small and large) of carrion beetles were both higher at the island site. Overall, the findings of this study demonstrated that an increase in deer population altered the insect assemblages at an island scale, suggesting further changes in ecosystem functions and services in this region. PMID:27833427

  19. Spatial distribution of digestive proteinases in the midgut of the Pacific white shrimp (Litopenaeus vannamei) indicates the existence of endo-ectoperitrophic circulation in Crustacea.

    PubMed

    Alexandre, Daniel; Ozório, Renata A; Derner, Roberto B; Fracalossi, Débora M; Oliveira, Gabriel B; Samuels, Richard I; Terra, Walter R; Silva, Carlos P

    2014-01-01

    The effect of dietary protein concentration on the spatial distribution of digestive proteinases in the shrimp Litopenaeus vannamei indicates the existence of endo-ectoperitrophic enzyme circulation in this species. Samples recovered from the midgut gland tissues, stomach contents, three different portions of the midgut and feces were used for quantitative and qualitative analyses of the composition and distribution of the digestive proteinases. Animals were divided into three different groups: (1) animals (controls) fed with a commercial 35% protein diet, (2) animals fed with a commercial diet supplemented with ovalbumin to a final protein concentration of 60%; (3) animals fed with an 80% protein diet. Quantitative determinations using different substrates and zymograms showed that increasing protein concentration in the diet alters the distribution of proteinases along the digestive tract. Composition of proteinases in the midgut gland, stomach contents, midgut sections and feces were similar, but not identical. Chymotrypsin and trypsin paralogues were identified in all enzyme sources in a concentration gradient along the midgut in the control shrimp, the expected distribution supporting the existence of a recycling mechanism. The occurrence of a peritrophic membrane in other Decapoda suggests that endo-ectoperitrophic circulation of digestive enzymes and nutrients may also occur in other crustaceans and also extends beyond the Insecta.

  20. Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates.

    PubMed

    Chavshin, Ali Reza; Oshaghi, Mohammad Ali; Vatandoost, Hasan; Pourmand, Mohammad Reza; Raeisi, Ahmad; Enayati, Ahmad Ali; Mardani, Nadia; Ghoorchian, Sadigheh

    2012-02-01

    To describe the midgut microbial diversity and to find the candidate bacteria for the genetic manipulation for the generation of paratransgenic Anopheline mosquitoes refractory to transmission of malaria, the microbiota of wild larvae and adult Anopheles stephensi mosquito midgut from southern Iran was studied using a conventional cell-free culture technique and analysis of a 16S ribosomal RNA (rRNA) gene sequence library. Forty species in 12 genera including seven Gram-negative Myroides, Chryseobacterium, Aeromonas, Pseudomonas, Klebsiella, Enterobacter and Shewanella and five Gram-positive Exiguobacterium, Enterococcus, Kocuria, Microbacterium and Rhodococcus bacteria were identified in the microbiota of the larvae midgut. Analysis of the adult midgut microbiota revealed presence of 25 Gram-negative species in five genera including Pseudomonas, Alcaligenes, Bordetella, Myroides and Aeromonas. Pseudomonas and Exiguobacterium with a frequency of 51% and 14% at the larval stage and Pseudomonas and Aeromonas with a frequency of 54% and 20% at the adult stage were the most common midgut symbionts. Pseudomonas, Aeromonas and Myroides genera have been isolated from both larvae and adult stages indicating possible trans-stadial transmission from larva to adult stage. Fast growth in cheap media, Gram negative, and being dominantly found in both larvae and adult stages, and presence in other malaria vectors makes Pseudomonas as a proper candidate for paratransgenesis of An. stephensi and other malaria vectors.

  1. Direction of interaction between mountain pine beetle (Dendroctonus ponderosae) and resource-sharing wood-boring beetles depends on plant parasite infection.

    PubMed

    Klutsch, Jennifer G; Najar, Ahmed; Cale, Jonathan A; Erbilgin, Nadir

    2016-09-01

    Plant pathogens can have cascading consequences on insect herbivores, though whether they alter competition among resource-sharing insect herbivores is unknown. We experimentally tested whether the infection of a plant pathogen, the parasitic plant dwarf mistletoe (Arceuthobium americanum), on jack pine (Pinus banksiana) altered the competitive interactions among two groups of beetles sharing the same resources: wood-boring beetles (Coleoptera: Cerambycidae) and the invasive mountain pine beetle (Dendroctonus ponderosae) (Coleoptera: Curculionidae). We were particularly interested in identifying potential mechanisms governing the direction of interactions (from competition to facilitation) between the two beetle groups. At the lowest and highest disease severity, wood-boring beetles increased their consumption rate relative to feeding levels at moderate severity. The performance (brood production and feeding) of mountain pine beetle was negatively associated with wood-boring beetle feeding and disease severity when they were reared separately. However, when both wood-boring beetles and high severity of plant pathogen infection occurred together, mountain pine beetle escaped from competition and improved its performance (increased brood production and feeding). Species-specific responses to changes in tree defense compounds and quality of resources (available phloem) were likely mechanisms driving this change of interactions between the two beetle groups. This is the first study demonstrating that a parasitic plant can be an important force in mediating competition among resource-sharing subcortical insect herbivores.

  2. Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae.

    PubMed

    Kämpfer, Peter; Matthews, Holly; Glaeser, Stefanie P; Martin, Karin; Lodders, Nicole; Faye, Ingrid

    2011-11-01

    The taxonomic position, growth characteristics and antibiotic resistance properties of a slightly yellow-pigmented bacterial strain, designated R26(T), isolated from the midgut of the mosquito Anopheles gambiae, were studied. The isolate produced rod-shaped cells, which stained Gram-negative. The bacterium had two growth optima at 30-31 °C and 37 °C. Strain R26(T) demonstrated natural antibiotic resistance to ampicillin, chloramphenicol, kanamycin, streptomycin and tetracycline. 16S rRNA gene sequence analysis revealed that the isolate showed 98.6 % sequence similarity to that of Elizabethkingia meningoseptica ATCC 13253(T) and 98.2 % similarity to that of Elizabethkingia miricola GTC 862(T). The major fatty acids of strain R26(T) were iso-C(15 : 0), iso-C(17 : 0) 3-OH and summed feature 4 (iso-C(15 : 0) 2-OH and/or C(16 : 1)ω7c/t). Strain R26(T) contained only menaquinone MK-6 and showed a complex polar lipid profile consisting of diphosphatidylglycerol, phosphatidylinositol, an unknown phospholipid and unknown polar lipids and glycolipids. DNA-DNA hybridization experiments with E. meningoseptica CCUG 214(T) ( = ATCC 13253(T)) and E. miricola KCTC 12492(T) ( = GTC 862(T)) gave relatedness values of 34.5 % (reciprocal 41.5 %) and 35.0 % (reciprocal 25.7 %), respectively. DNA-DNA hybridization results and some differentiating biochemical properties indicate that strain R26(T) represents a novel species, for which the name Elizabethkingia anophelis sp. nov. is proposed. The type strain is R26(T) ( = CCUG 60038(T) = CCM 7804(T)).

  3. AACE/ACE DISEASE STATE CLINICAL REVIEW: DIAGNOSIS AND MANAGEMENT OF MIDGUT CARCINOIDS

    PubMed Central

    Katznelson, Laurence; Vinik, Aaron I.; Wong, Richard; Randolph, Gregory

    2016-01-01

    Objective Neuroendocrine tumors (NETs) are a collection of complex tumors that arise from the diffuse endocrine system, primarily from the digestive tract. Carcinoid tumors most commonly originate from the small intestine. These tumors are either referred to as small intestinal neuroendocrine tumors or midgut carcinoids (MGCs). The purpose of this review article is to survey the diagnostic and therapeutic pathways for patients with MGC and provide an overview of the complex multidisciplinary care involved in improving their quality of life, treatment outcomes, and survival. Methods The current literature regarding the diagnosis and management of MGCs was reviewed. Results Dry flushing and secretory diarrhea are the hallmarks of the clinical syndrome of MGC. Managing MGC requires attention to the overall symptom complex, including the physical effects of the tumor and biomarker levels. The somatostatin analogs (SAs) octreotide and lanreotide are highly efficacious for symptomatic improvement. MGCs require resection to encompass the primary tumor and mesenteric lymph node metastases and should include cholecystectomy if the patient is likely to receive SA therapy. Debulking of liver metastasis by resection in combination with ablative therapies and other liver-directed modalities may help palliate symptoms and hormonal overproduction in carefully selected patients. Quality of life is an important measure of patients’ perception of the burden of their disease and impact of treatment modalities and may be a useful guide in deciding changes in therapy to alter apparent health status. Conclusion MGC is a challenging malignancy that requires the input of a multidisciplinary team to develop the best treatment plan. Consultation with expert centers that specialize in NETs may also be indicated for complex cases. With expert care, patients can be cured or live with the disease and enjoy good quality of life. PMID:25962092

  4. Closed gastroschisis, vanishing midgut and extreme short bowel syndrome: Case report and review of the literature.

    PubMed

    Dennison, F A

    2016-08-01

    Gastroschisis alone has excellent survival rates. Occasionally reported is closed gastroschisis, leading to vanishing small bowel and extreme short bowel syndrome. It is believed that the abdominal wall defect can contract or close in utero, which leads to strangulation of the eviscerated bowel and the rare "vanishing gut syndrome." This has a very poor prognosis with mortality as high as 70%. An 18-year-old primigravid patient's 13 week scan diagnosed a large gastroschisis affecting the fetus. After counselling, she decided to continue with the pregnancy. Between 20 and 22 weeks, the gastroschisis disappeared, and the bowel within the abdomen became markedly dilated. Spontaneous labour occurred at 33 + 3 weeks gestation. There was no abdominal wall defect seen at delivery. Imaging and an exploratory laparotomy demonstrated absence of most of the midgut. Because available options for treatment would be very aggressive and risky, palliative care was thought to be the most feasible and practical option. He died at home on day 29 after birth. Extreme short gut syndrome (less than 25 cm of remaining small bowel) is rare. There are 13 reported cases in the literature from year 2000 to 2013. Treatment is aggressive and involves a bowel lengthening procedure or small bowel transplant. All require total parenteral nutrition and liver failure, and liver transplant is a common complication. Of these cases, 12 were born alive and 7 had aggressive treatment. Only two cases were confirmed to still be alive in infancy. If gastroschisis is seen to be reducing and "disappearing" antenatally, parents should be made aware of this rare complication so that they might be prepared if a poor outcome is anticipated.

  5. Cyt1Aa Protein of Bacillus thuringiensis Is Toxic to the Cottonwood Leaf Beetle, Chrysomela scripta, and Suppresses High Levels of Resistance to Cry3Aa

    PubMed Central

    Federici, Brian A.; Bauer, Leah S.

    1998-01-01

    The insecticidal activity of Bacillus thuringiensis is due primarily to Cry and Cyt proteins. Cry proteins are typically toxic to lepidopterous, coleopterous, or dipterous insects, whereas the known toxicity of Cyt proteins is limited to dipterans. We report here that a Cyt protein, Cyt1Aa, is also highly toxic to the cottonwood leaf beetle, Chrysomela scripta, with a median lethal concentration of 2.5 ng/mm2 of leaf surface for second-instar larvae. Additionally, we show that Cyt1Aa suppresses resistance to Cry3Aa greater than 5,000-fold in C. scripta, a level only partially overcome by Cry1Ba due to cross-resistance. Studies of the histopathology of C. scripta larvae treated with Cyt1Aa revealed disruption and sloughing of midgut epithelial cells, indicating that its mechanism of action against C. scripta is similar to that observed in mosquito and blackfly larvae. These novel properties suggest that Cyt proteins may have an even broader spectrum of activity against insects and, owing to their different mechanism of action in comparison to Cry proteins, might be useful in managing resistance to Cry3 and possibly other Cry toxins used in microbial insecticides and transgenic plants. PMID:9797292

  6. Origin and Diversification of Dung Beetles in Madagascar

    PubMed Central

    Miraldo, Andreia; Wirta, Helena; Hanski, Ilkka

    2011-01-01

    Madagascar has a rich fauna of dung beetles (Scarabaeinae and Aphodiinae) with almost 300 species described to date. Like most other taxa in Madagascar, dung beetles exhibit an exceptionally high level of endemism (96% of the species). Here, we review the current knowledge of the origin and diversification of Malagasy dung beetles. Based on molecular phylogenies, the extant dung beetles originate from eight colonizations, of which four have given rise to extensive radiations. These radiations have occurred in wet forests, while the few extant species in the less successful radiations occur in open and semi-open habitats. We discuss the likely mechanisms of speciation and the ecological characteristics of the extant communities, emphasizing the role of adaptation along environmental gradients and allopatric speciation in generating the exceptionally high beta diversity in Malagasy dung beetles. Phylogeographic analyses of selected species reveal complex patterns with evidence for genetic introgression between old taxa. The introduction of cattle to Madagascar 1500 years ago created a new abundant resource, onto which a few species have shifted and thereby been able to greatly expand their geographical ranges. PMID:26467617

  7. Dung beetles use the Milky Way for orientation.

    PubMed

    Dacke, Marie; Baird, Emily; Byrne, Marcus; Scholtz, Clarke H; Warrant, Eric J

    2013-02-18

    When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds, seals, and humans are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile. Even on clear moonless nights, many beetles still manage to orientate along straight paths. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates, spiders, and insects, but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom.

  8. Defense by foot adhesion in a beetle (Hemisphaerota cyanea)

    PubMed Central

    Eisner, Thomas; Aneshansley, Daniel J.

    2000-01-01

    The beetle Hemisphaerota cyanea (Chrysomelidae; Cassidinae) responds to disturbance by activating a tarsal adhesion mechanism by which it secures a hold on the substrate. Its tarsi are oversized and collectively bear some 60,000 adhesive bristles, each with two terminal pads. While walking, the beetle commits but a small fraction of the bristles to contact with the substrate. But when assaulted, it presses its tarsi flatly down, thereby touching ground with all or nearly all of the bristles. Once so adhered, it can withstand pulling forces of up to 0.8 g (≈60 times its body mass) for 2 min, and of higher magnitudes, up to >3 g, for shorter periods. Adhesion is secured by a liquid, most probably an oil. By adhering, the beetle is able to thwart attacking ants, given that it is able to cling more persistently than the ant persists in its assault. One predator, the reduviid Arilus cristatus, is able to feed on the beetle, possibly because by injecting venom it prevents the beetle from maintaining its tarsal hold. PMID:10841556

  9. Defense by foot adhesion in a beetle (Hemisphaerota cyanea)

    NASA Astrophysics Data System (ADS)

    Eisner, Thomas; Aneshansley, Daniel J.

    2000-06-01

    Departments of * Neurobiology and Behavior and Agricultural and Biological Engineering, Cornell University, Ithaca, NY 14853 Contributed by Thomas Eisner, April 12, 2000 The beetle Hemisphaerota cyanea (Chrysomelidae; Cassidinae) responds to disturbance by activating a tarsal adhesion mechanism by which it secures a hold on the substrate. Its tarsi are oversized and collectively bear some 60,000 adhesive bristles, each with two terminal pads. While walking, the beetle commits but a small fraction of the bristles to contact with the substrate. But when assaulted, it presses its tarsi flatly down, thereby touching ground with all or nearly all of the bristles. Once so adhered, it can withstand pulling forces of up to 0.8 g (≈60 times its body mass) for 2 min, and of higher magnitudes, up to >3 g, for shorter periods. Adhesion is secured by a liquid, most probably an oil. By adhering, the beetle is able to thwart attacking ants, given that it is able to cling more persistently than the ant persists in its assault. One predator, the reduviid Arilus cristatus, is able to feed on the beetle, possibly because by injecting venom it prevents the beetle from maintaining its tarsal hold.

  10. Defense by foot adhesion in a beetle (Hemisphaerota cyanea).

    PubMed

    Eisner, T; Aneshansley, D J

    2000-06-06

    The beetle Hemisphaerota cyanea (Chrysomelidae; Cassidinae) responds to disturbance by activating a tarsal adhesion mechanism by which it secures a hold on the substrate. Its tarsi are oversized and collectively bear some 60,000 adhesive bristles, each with two terminal pads. While walking, the beetle commits but a small fraction of the bristles to contact with the substrate. But when assaulted, it presses its tarsi flatly down, thereby touching ground with all or nearly all of the bristles. Once so adhered, it can withstand pulling forces of up to 0.8 g ( approximately 60 times its body mass) for 2 min, and of higher magnitudes, up to >3 g, for shorter periods. Adhesion is secured by a liquid, most probably an oil. By adhering, the beetle is able to thwart attacking ants, given that it is able to cling more persistently than the ant persists in its assault. One predator, the reduviid Arilus cristatus, is able to feed on the beetle, possibly because by injecting venom it prevents the beetle from maintaining its tarsal hold.

  11. Quantum Dot Distribution in the Olfactory Epithelium After Nasal Delivery

    NASA Astrophysics Data System (ADS)

    Garzotto, D.; De Marchis, S.

    2010-10-01

    Nanoparticles are used in a wide range of human applications from industrial to bio-medical fields. However, the unique characteristics of nanoparticles, such as the small size, large surface area per mass and high reactivity raises great concern on the adverse effects of these particles on ecological systems and human health. There are several pioneer studies reporting translocation of inhaled particulates to the brain through a potential neuronal uptake mediated by the olfactory nerve (1, 2, 3). However, no direct evidences have been presented up to now on the pathway followed by the nanoparticles from the nose to the brain. In addition to a neuronal pathway, nanoparticles could gain access to the central nervous system through extracellular pathways (perineuronal, perivascular and cerebrospinal fluid paths). In the present study we investigate the localization of intranasally delivered fluorescent nanoparticles in the olfactory epithelium. To this purpose we used quantum dots (QDs), a model of innovative fluorescent semiconductor nanocrystals commonly used in cell and animal biology (4). Intranasal treatments with QDs were performed acutely on adult CD1 mice. The olfactory epithelium was collected and analysed by confocal microscopy at different survival time after treatment. Data obtained indicate that the neuronal components of the olfactory epithelium are not preferentially involved in QDs uptake, thus suggesting nanoparticles can cross the olfactory epithelium through extracellular pathways.

  12. Cigarette smoke inhibition of ion transport in canine tracheal epithelium

    SciTech Connect

    Welsh, M.J.

    1983-06-01

    To determine the effect of cigarette smoke on airway epithelial ion transport, the electrical properties and transepithelial Na and Cl fluxes were measured in canine tracheal epithelium. In vivo, the inhalation of the smoke from one cigarette acutely and reversibly decreased the electrical potential difference across the tracheal epithelium. In vitro, exposure of the mucosal surface of the epithelium to cigarette smoke decreased the short circuit current and transepithelial resistance. The decrease in short circuit current was due to an inhibition of the rate of Cl secretion with minimal effect on the rate of Na absorption. The effect of cigarette smoke was reversible, was not observed upon exposure of the submucosal surface to smoke, and was most pronounced when secretion was stimulated. The particulate phase of smoke was largely responsible for the inhibitory effect, since filtering the smoke minimized the effect. The effect of cigarette smoke was not prevented by addition of antioxidants to the bathing solutions, suggesting that the inhibition of Cl secretion cannot be entirely attributed to an oxidant mechanism. These results indicate that cigarette smoke acutely inhibits active ion transport by tracheal epithelium, both in vivo and in vitro. This effect may explain, in part, both the abnormal mucociliary clearance and the airway disease observed in cigarette smokers.

  13. Examination of the reticular epithelium of the bovine pharyngeal tonsil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nasopharyngeal tonsil (adenoid), located at the posterior of the nasopharynx is ideally positioned to sample antigens entering through the nasal cavity or oral cavity. Entering antigens will first contact tonsilar epithelium. To better understand the cellular composition of this important epithe...

  14. Coelomic epithelium-derived cells in visceral morphogenesis.

    PubMed

    Ariza, Laura; Carmona, Rita; Cañete, Ana; Cano, Elena; Muñoz-Chápuli, Ramón

    2016-03-01

    Coelomic cavities of vertebrates are lined by a mesothelium which develops from the lateral plate mesoderm. During development, the coelomic epithelium is a highly active cell layer, which locally is able to supply mesenchymal cells that contribute to the mesodermal elements of many organs and provide signals which are necessary for their development. The relevance of this process of mesenchymal cell supply to the developing organs is becoming clearer because genetic lineage tracing techniques have been developed in recent years. Body wall, heart, liver, lungs, gonads, and gastrointestinal tract are populated by cells derived from the coelomic epithelium which contribute to their connective and vascular tissues, and sometimes to specialized cell types such as the stellate cells of the liver, the Cajal interstitial cells of the gut or the Sertoli cells of the testicle. In this review we collect information about the contribution of coelomic epithelium derived cells to visceral development, their developmental fates and signaling functions. The common features displayed by all these processes suggest that the epithelial-mesenchymal transition of the embryonic coelomic epithelium is an underestimated but key event of vertebrate development, and probably it is shared by all the coelomate metazoans.

  15. The multi-tasking gut epithelium of insects.

    PubMed

    Huang, Jia-Hsin; Jing, Xiangfeng; Douglas, Angela E

    2015-12-01

    The insect gut epithelium plays a vital role in multiple processes, including nutrition, immunity and osmoregulation. Recent research is revealing the molecular and biochemical basis of these functions. For example, the pattern of nutrient acquisition by the gut epithelium is integrated into the overall regulation of nutrient allocation, as illustrated by evidence for systemic controls over expression of key genes coding digestive enzymes and transporters in carbohydrate acquisition; and the abundance and diversity of microorganisms in the gut lumen is regulated by multiple molecular properties of the gut epithelial cells, including the synthesis of enzymes that produce reactive oxygen species and anti-microbial peptides. These traits are underpinned by the function of the gut epithelium as a selective barrier which mediates the controlled movement of water, ions, metabolites and macromolecules between the gut lumen and insect tissues. Breakdown of the gut epithelial barrier has been implicated in muscle paralysis of insects at low temperatures (chill coma) and in aging. The key challenge for future research is to understand how the multiple functions of the insect gut epithelium are integrated by signaling interactions among epithelial cells, the gut microbiota and other insect organs.

  16. Increased expression of nestin in human pterygial epithelium

    PubMed Central

    Wen, Dan; Wang, Hua; Heng, Boon Chin; Liu, Hua

    2013-01-01

    AIM To investigate the distribution of nestin-positive cells in pterygium, as well as the relationship between nestin-positive cells and proliferative cells in the pathogenesis of pterygium. METHODS Nine pterygium specimens and 5 normal conjunctiva specimens were investigated. All explanted specimens were immediately immersed in 5-Ethynyl-2′-deoxyuridine, and were subjected to hematoxylin and eosin staining, as well as immunostaining to detect nestin. RESULTS Small sub-populations of nestin-expressing cells in both normal and pterygial conjunctiva epithelium were found. These were located at the superficial layer of the epithelium, and were significantly increased (P=0.007) and spread out in the pterygial conjunctiva epithelium, even though these cells were mitotically quiescent. CONCLUSION In pterygium, more nestin-positive cells were present at the superficial layer of the epithelium. With growing scientific evidence that nestin plays an important role in defining various specialized cell types, such as stem cells, cancer cells and angiogenic cells, further investigations on the roles of nestin-expressing cells in pterygium may help to uncover the mechanisms of initiation, development and the prognosis of this disease. PMID:23826515

  17. The Olfactory Neural Epithelium As a Tool in Neuroscience.

    PubMed

    Lavoie, Joëlle; Gassó Astorga, Patricia; Segal-Gavish, Hadar; Wu, YeeWen Candace; Chung, Youjin; Cascella, Nicola G; Sawa, Akira; Ishizuka, Koko

    2017-02-01

    Capturing both dynamic changes (state) and persistent signatures (trait) directly associated with disease at the molecular level is crucial in modern medicine. The olfactory neural epithelium, easily accessible in clinical settings, is a promising surrogate model in translational brain medicine, complementing the limitations in current engineered cell models.

  18. Transcriptome Analysis of the Midgut of the Chinese Oak Silkworm Antheraea pernyi Infected with Antheraea pernyi Nucleopolyhedrovirus

    PubMed Central

    Sun, Ying; Liu, Wei; He, Ying-Zi; Wang, Feng-Cheng; Jiang, Yi-Ren; Qin, Li

    2016-01-01

    The Antheraea pernyi nucleopolyhedrovirus (ApNPV) is an exclusive pathogen of A. pernyi. The intense interactions between ApNPV and A. pernyi cause a series of physiological and pathological changes to A. pernyi. However, no detailed report exists regarding the molecular mechanisms underlying the interactions between ApNPV and A. pernyi. In this study, four cDNA libraries of the A. pernyi midgut, including two ApNPV-infected groups and two control groups, were constructed for transcriptomic analysis to provide new clues regarding the molecular mechanisms that underlie these interactions. The transcriptome of the A. pernyi midgut was de novo assembled using the Trinity platform because of the lack of a genome resource for A. pernyi. Compared with the controls, a total of 5,172 differentially expressed genes (DEGs) were identified, including 2,183 up-regulated and 2,989 down-regulated candidates, of which 2,965 and 911 DEGs were classified into different GO categories and KEGG pathways, respectively. The DEGs involved in A. pernyi innate immunity were classified into several categories, including heat-shock proteins, apoptosis-related proteins, serpins, serine proteases and cytochrome P450s. Our results suggested that these genes were related to the immune response of the A. pernyi midgut to ApNPV infection via their essential roles in regulating a variety of physiological processes. Our results may serve as a basis for future research not only on the molecular mechanisms of ApNPV invasion but also on the anti-ApNPV mechanism of A. pernyi. PMID:27820844

  19. CONSTRUCTION OF SILKWORM MIDGUT cDNA LIBRARY FOR SCREEN AND SEQUENCE ANALYSIS OF PERITROPHIC MEMBRANE PROTEIN GENES.

    PubMed

    Zhou, Yi-Jun; Xue, Bin; Li, Yang-Yang; Li, Fan-Chi; Ni, Min; Shen, Wei-De; Gu, Zhi-Ya; Li, Bing; Shen, Wei-De; Gu, Zhi-Ya; Li, Bing

    2016-01-01

    Silkworm is an important economic insect and the model species for Lepidoptera. The midgut of silkworm is an important physiological barrier, as its peritrophic membrane (PM) can resist pathogen invasion. In this study, a silkworm midgut cDNA library was constructed in order to identify silkworm PM genes. The capacity of the initial library was 6.92 × 10(6) pfu/ml, along with a recombination rate of 92.14% and a postamplification titer of 4.10 × 10(9) pfu/ml. Three silkworm PM protein genes were obtained by immunoscreening, two of which were chitin-binding protein (CBP) genes and one of which was a chitin deacetylase (CDA) gene as revealed by sequence analysis. Three genes were named BmCBP02, BmCBP13, and BmCDA17, and their ORF sizes are 678, 1,029, and 645 bp, respectively; all of them contain sequences of chitin-binding domains. Phylogenetic analysis indicated that BmCBP02 has the highest consensus with Mamestra configurata CBP at 61.0%; BmCBP13 has the highest consensus with Loxostege sticticalis PM CBP at 53.35%; BmCDA17 has the highest consensus with Helicoverpa armigera CDA5a at 70.83%. Tissue transcriptional analysis revealed that all three genes were specifically expressed in the midgut, and during the developmental process of fifth-instar silkworms, the transcription of all the genes showed an upward trend. This study laid a foundation for further studies on the functions of silkworm PM genes.

  20. Response of the common cutworm Spodoptera litura to lead stress: changes in sex ratio, Pb accumulations, midgut cell ultrastructure.

    PubMed

    Shu, Yinghua; Zhou, Jialiang; Lu, Kai; Li, Keqing; Zhou, Qiang

    2015-11-01

    When cutworm Spodoptera litura larvae were fed on the diets with different lead (Pb) concentrations for one or five generations, changes in growth and food utilization were recorded; Pb accumulations were detected by Atomic Absorption Spectrophotometer; changes in midgut cell ultrastructure were observed by Transmission Electron Microscopy (TEM). The effects of Pb stress on S. litura growth and food utilization differed significantly between insects of the 1st and 5th generation. The male-female rate of 200mgkg(-1) Pb treatment from the 1st generation and 50mgkg(-1) Pb treatment from the 5th generation was significantly higher than control. No significant difference of Pb accumulations was found in larvae, pupae and adults between the 1st and 5th generation. No significant difference of Pb accumulations in corresponding tissues of larvae was found between male and female. Compared to fat body, hemolymph, head, foregut and hindgut, the highest Pb accumulation was found in migut of larvae exposed to 200mgkg(-1) Pb. TEM showed that expanded intercellular spaces were observed in Pb-treated midgut cells. The nuclei were strongly destroyed by Pb stress, evidenced by chromatin condensation and destroyed nuclear envelope. Mitochondria became swollen with some broken cristae after exposure to Pb. Therefore, neither gender nor progeny difference was present in Pb accumulations of S. litura, although effects of Pb stress on S. litura growth and food utilization differed from different generations and genders. Pb accumulations in midgut caused pathological changes in cells ultrastructure, possibly reflected the growth and food utilization of S. litura.

  1. Effects of α-Terthienyl on the midgut detoxification enzymes of the European corn borer,Ostrinia nubilalis.

    PubMed

    Feng, R; Houseman, J G; Downe, A E; Arnason, J T

    1993-09-01

    The biochemical basis for the tolerance of the European corn borer,Ostrinia nubilalis, to the phototoxinα-terthienyl was investigated by measuring the midgut polysubstrate monooxygenases and glutathioneS-transferase activities.α-Terthienyl administered in the diet to the corn borers increased the level of cytochromeb 5, NADH-cytochromec reductase,O-demethylase, and glutathioneS-transferase activities. The induced detoxification enzyme activities should enable the corn borer to metabolizeα-terthienyl more efficiently and therefore render the corn borer highly tolerant toα-terthienyl.

  2. Transcriptomic profiles differentiate normal rectal epithelium and adenocarcinoma.

    PubMed

    Hogan, J; Dejulius, K; Liu, X; Coffey, J C; Kalady, M F

    2015-05-01

    Adenocarcinoma is a histologic diagnosis based on subjective findings. Transcriptional profiles have been used to differentiate normal tissue from disease and could provide a means of identifying malignancy. The goal of this study was to generate and test transcriptomic profiles that differentiate normal from adenocarcinomatous rectum. Comparisons were made between cDNA microarrays derived from normal epithelium and rectal adenocarcinoma. Results were filtered according to standard deviation to retain only highly dysregulated genes. Genes differentially expressed between cancer and normal tissue on two-groups t test (P < 0.05, Bonferroni P value adjustment) were further analyzed. Genes were rank ordered in terms of descending fold change. For each comparison (tumor versus normal epithelium), those 5 genes with the greatest positive fold change were grouped in a classifier. Five separate tests were applied to evaluate the discriminatory capacity of each classifier. Genetic classifiers derived comparing normal epithelium with malignant rectal epithelium from pooled stages had a mean sensitivity and specificity of 99.6% and 98.2%, respectively. The classifiers derived from comparing normal and stage I cancer had comparable mean sensitivities and specificities (97% and 98%, respectively). Areas under the summary receiver-operator characteristic curves for each classifier were 0.981 and 0.972, respectively. One gene was common to both classifiers. Classifiers were tested in an independent Gene Expression Omnibus-derived dataset. Both classifiers retained their predictive properties. Transcriptomic profiles comprising as few as 5 genes are highly accurate in differentiating normal from adenocarcinomatous rectal epithelium, including early-stage disease.

  3. Binding of Bacillus thuringiensis Cry1 Toxins to the Midgut Brush Border Membrane Vesicles of Chilo suppressalis (Lepidoptera: Pyralidae): Evidence of Shared Binding Sites

    PubMed Central

    Fiuza, L.; Nielsen-Leroux, C.; Goze, E.; Frutos, R.; Charles, J.

    1996-01-01

    Binding and competition among Cry1Aa, Cry1Ac, and Cry1Ba toxins were analyzed quantitatively in vitro by using (sup125)I-labeled activated toxins and brush border membrane vesicles isolated from Chilo suppressalis larval midguts. The three toxins bound specifically to the midgut brush border membrane vesicles. Direct binding experiments showed that Cry1Aa and Cry1Ba recognized a single class of binding sites with different affinities, whereas Cry1Aa recognized two classes of binding sites, one with a high affinity and a low concentration and the other with a lower affinity but higher concentration. Competition experiments showed that toxins Cry1Ac and Cry1Ba shared a binding site in the C. suppressalis midgut membranes and that this site was also the low-affinity binding site for Cry1Aa. PMID:16535306

  4. [The succession of sarcophagus beetles on carrion and its application in forensic medicine].

    PubMed

    Peng, Qian-Yi; Ye, Lu-Si; Ma, Li-Ping; Cai, Ji-Feng

    2009-12-01

    Sarcophagus beetles, which can not be replaced by Diptera, play a pivotal role not only in estimating PMI of dry human skeletal remains in the later stages decomposition of carcasses, but also the corruption, destruction, decomposition and posture changes of carcasses. This article explicates the succession of sarcophagus beetles on carrion and its influencing factors, and introduces the application and prospects of sarcophagus beetles in forensic entomology. Although few researches focus on sarcophagus beetles at present, it is believed that more and more forensic scientists will pay attention to sarcophagus beetles' application in forensic identification.

  5. Building a Beetle: How Larval Environment Leads to Adult Performance in a Horned Beetle

    PubMed Central

    Reaney, Leeann T.; Knell, Robert J.

    2015-01-01

    The link between the expression of the signals used by male animals in contests with the traits which determine success in those contests is poorly understood. This is particularly true in holometabolous insects such as horned beetles where signal expression is determined during metamorphosis and is fixed during adulthood, whereas performance is influenced by post-eclosion feeding. We used path analysis to investigate the relationships between larval and adult nutrition, horn and body size and fitness-related traits such as strength and testes mass in the horned beetle Euoniticellus intermedius. In males weight gain post-eclosion had a central role in determining both testes mass and strength. Weight gain was unaffected by adult nutrition but was strongly correlated with by horn length, itself determined by larval resource availability, indicating strong indirect effects of larval nutrition on the adult beetle’s ability to assimilate food and grow tissues. Female strength was predicted by a simple path diagram where strength was determined by eclosion weight, itself determined by larval nutrition: weight gain post-eclosion was not a predictor of strength in this sex. Based on earlier findings we discuss the insulin-like signalling pathway as a possible mechanism by which larval nutrition could affect adult weight gain and thence traits such as strength. PMID:26244874

  6. Arsenic accumulation in bark beetles and forest birds occupying mountain pine beetle infested stands treated with monosodium methanearsonate.

    PubMed

    Morrissey, Christy A; Albert, Courtney A; Dods, Patti L; Cullen, William R; Lai, Vivian W M; Elliott, John E

    2007-02-15

    The arsenic-based pesticide, monosodium methanearsonate (MSMA), is presently being evaluated for re-registration in Canada and the United States and has been widely used in British Columbia to help suppress Mountain Pine Beetle (MPB) outbreaks. We assessed the availability and exposure of MSMA to woodpeckers and other forest birds that may prey directly on contaminated bark beetles. Total arsenic residues in MPB from MSMA treated trees ranged from 1.3-700.2 microg g(-1) dw (geometric mean 42.0 microg g(-1)) with the metabolite monomethyl arsonic acid (MMAA) contributing 90-97% to the total arsenic extracted. Live adult and larval beetles were collected from treated trees and reached concentrations up to 327 microg g(-1) dw. MPBs from reference trees had significantly lower arsenic concentrations averaging 0.19 microg g(-1) dw. Woodpeckers foraged more heavily on MSMAtreesthat contained beetles with lower arsenic residues, suggesting those trees had reduced MSMAtranslocation and possibly greater live beetle broods. Blood samples from five species of woodpeckers and other forest passerines breeding within 1 km of MSMA stands contained elevated levels of total arsenic but with large individual variability (geometric mean = 0.18 microg g(-1) dw, range 0.02-2.20 microg g(-1). The results indicate that there is significant accumulation and transfer of organic arsenic within the food chain at levels that may present a toxicity risk to avian wildlife.

  7. Drivers of extinction: the case of Azorean beetles

    PubMed Central

    Terzopoulou, Sofia; Rigal, François; Whittaker, Robert J.; Borges, Paulo A. V.; Triantis, Kostas A.

    2015-01-01

    Oceanic islands host a disproportionately high fraction of endangered or recently extinct endemic species. We report on species extinctions among endemic Azorean beetles following 97% habitat loss since AD 1440. We infer extinctions from historical and contemporary records and examine the influence of three predictors: geographical range, habitat specialization and body size. Of 55 endemic beetle species investigated (out of 63), seven can be considered extinct. Single-island endemics (SIEs) were more prone to extinction than multi-island endemics. Within SIEs restricted to native habitat, larger species were more extinction-prone. We thus show a hierarchical path to extinction in Azorean beetles: species with small geographical range face extinction first, with the larger bodied ones being the most threatened. Our study provides a clear warning of the impact of habitat loss on island endemic biotas. PMID:26063753

  8. Observation and modeling of polarized light from scarab beetles

    NASA Astrophysics Data System (ADS)

    Lowrey, Sam; de Silva, Lakshman; Hodgkinson, Ian; Leader, John

    2007-08-01

    The light reflected from scarab beetles illuminated with unpolarized white light is analyzed ellipsometrically and displayed as the sum of an elliptically polarized spectrum Ip and an unpolarized spectrum Iu. A chirped stack of chiral resonators, each with a characteristic Bragg wavelength and partial realignment of birefringent material to a fixed axis, is proposed as a model for simulation of both reflection and polarization spectra. Possible mechanisms that effectively eliminate impedance mismatch at the air-elytron interface and allow some beetles to exhibit nearly perfect circularly polarized reflections are discussed. Results are presented for three representative beetles, Ischiosopha bifasciata, which is shown to be a narrowband left-circular polarizer; Chrysophora chrysochlora, a broadband left-circular polarizer; and Chrysina woodi, an elliptical polarizer. The methods that are developed are applicable to the more general problem of synthesis of reflectors with prescribed reflection and polarization spectra.

  9. The alternative Pharaoh approach: stingless bees mummify beetle parasites alive

    NASA Astrophysics Data System (ADS)

    Greco, Mark K.; Hoffmann, Dorothee; Dollin, Anne; Duncan, Michael; Spooner-Hart, Robert; Neumann, Peter

    2010-03-01

    Workers from social insect colonies use different defence strategies to combat invaders. Nevertheless, some parasitic species are able to bypass colony defences. In particular, some beetle nest invaders cannot be killed or removed by workers of social bees, thus creating the need for alternative social defence strategies to ensure colony survival. Here we show, using diagnostic radioentomology, that stingless bee workers ( Trigona carbonaria) immediately mummify invading adult small hive beetles ( Aethina tumida) alive by coating them with a mixture of resin, wax and mud, thereby preventing severe damage to the colony. In sharp contrast to the responses of honeybee and bumblebee colonies, the rapid live mummification strategy of T. carbonaria effectively prevents beetle advancements and removes their ability to reproduce. The convergent evolution of mummification in stingless bees and encapsulation in honeybees is another striking example of co-evolution between insect societies and their parasites.

  10. Optimal foraging for specific nutrients in predatory beetles.

    PubMed

    Jensen, Kim; Mayntz, David; Toft, Søren; Clissold, Fiona J; Hunt, John; Raubenheimer, David; Simpson, Stephen J

    2012-06-07

    Evolutionary theory predicts that animals should forage to maximize their fitness, which in predators is traditionally assumed equivalent to maximizing energy intake rather than balancing the intake of specific nutrients. We restricted female predatory ground beetles (Anchomenus dorsalis) to one of a range of diets varying in lipid and protein content, and showed that total egg production peaked at a target intake of both nutrients. Other beetles given a choice to feed from two diets differing only in protein and lipid composition selectively ingested nutrient combinations at this target intake. When restricted to nutritionally imbalanced diets, beetles balanced the over- and under-ingestion of lipid and protein around a nutrient composition that maximized egg production under those constrained circumstances. Selective foraging for specific nutrients in this predator thus maximizes its reproductive performance. Our findings have implications for predator foraging behaviour and in the structuring of ecological communities.

  11. Structural color in beetles of South America

    NASA Astrophysics Data System (ADS)

    Luna, Ana E.; Skigin, Diana C.; Inchaussandague, Marina E.; Roig Alsina, Arturo

    2010-08-01

    Photonic microstructures in nature, specifically in endemic species of Coleoptera from Argentina and the south of Chile have been identified, analyzed and modeled. These natural systems produce partial photonic bandgaps (PBGs) as a result of the high periodicity of the microstructures found in some parts of their bodies. With the aid of scanning (SEM) and transmission (TEM) electron microscopy we have identified that the elytron (modified forewing of a beetle that encases the thin hind wings used in flight) of these insects shows a periodic structure which originates diffractive phenomena resulting in extraordinary physical effects such as iridescent or metallic colors. We measured the reflectance spectrum and obtained the chromaticity diagrams of the samples with an Ocean Optics 4000 spectrophotometer. The geometrical parameters of the structure were obtained by processing the SEM images with the ImageJ software, to introduce them in our electromagnetic model. In all cases, a satisfactory agreement between the measurements and the numerical results was obtained. This permits us to explain the mechanism of color production in those specimens. The study of structural colors in the natural world can inspire the development of artificial devices with particular applications in technology, such as intelligent sensors and new kinds of filters.

  12. The original colours of fossil beetles.

    PubMed

    McNamara, Maria E; Briggs, Derek E G; Orr, Patrick J; Noh, Heeso; Cao, Hui

    2012-03-22

    Structural colours, the most intense, reflective and pure colours in nature, are generated when light is scattered by complex nanostructures. Metallic structural colours are widespread among modern insects and can be preserved in their fossil counterparts, but it is unclear whether the colours have been altered during fossilization, and whether the absence of colours is always real. To resolve these issues, we investigated fossil beetles from five Cenozoic biotas. Metallic colours in these specimens are generated by an epicuticular multi-layer reflector; the fidelity of its preservation correlates with that of other key cuticular ultrastructures. Where these other ultrastructures are well preserved in non-metallic fossil specimens, we can infer that the original cuticle lacked a multi-layer reflector; its absence in the fossil is not a preservational artefact. Reconstructions of the original colours of the fossils based on the structure of the multi-layer reflector show that the preserved colours are offset systematically to longer wavelengths; this probably reflects alteration of the refractive index of the epicuticle during fossilization. These findings will allow the former presence, and original hue, of metallic structural colours to be identified in diverse fossil insects, thus providing critical evidence of the evolution of structural colour in this group.

  13. Last interglacial beetle fauna from New Zealand

    NASA Astrophysics Data System (ADS)

    Marra, Maureen J.

    2003-01-01

    Fossil beetles from two last interglacial lake deposits from southern Wairarapa, central New Zealand are provisionally ascribed to marine oxygen isotope stages (MIS) 5a-e. Both assemblages represent ecological successions from lake margins to forest. The lower sample (MIS 5e) is characterized by species found today in northern New Zealand. These species, including Lorelus crassicornis, 'Dasytes' laticeps, Cryptobius nitidius, 'Stenomalium' sulcithorax, Psilocnaeia nana, and Microbrontes lineatus, represent a southward displacement from modern distributions by up to 700 km. Climate reconstruction indicates that temperatures at the time of deposition were 1.6-2.5°C warmer in the summer (January) and 2.3-3.2°C warmer in the winter (July) than at present. These results match local and regional pollen and phytolith findings of warmer, wetter conditions at the thermal maximum of the last interglaciation. In contrast, the upper sample is characterized by species that have widespread modern-day distributions. This indicates that modern conditions were attained later in MIS5, after the MIS 5e thermal maximum.

  14. Multivariate intralocus sexual conflict in seed beetles.

    PubMed

    Berger, David; Berg, Elena C; Widegren, William; Arnqvist, Göran; Maklakov, Alexei A

    2014-12-01

    Intralocus sexual conflict (IaSC) is pervasive because males and females experience differences in selection but share much of the same genome. Traits with integrated genetic architecture should be reservoirs of sexually antagonistic genetic variation for fitness, but explorations of multivariate IaSC are scarce. Previously, we showed that upward artificial selection on male life span decreased male fitness but increased female fitness compared with downward selection in the seed beetle Callosobruchus maculatus. Here, we use these selection lines to investigate sex-specific evolution of four functionally integrated traits (metabolic rate, locomotor activity, body mass, and life span) that collectively define a sexually dimorphic life-history syndrome in many species. Male-limited selection for short life span led to correlated evolution in females toward a more male-like multivariate phenotype. Conversely, males selected for long life span became more female-like, implying that IaSC results from genetic integration of this suite of traits. However, while life span, metabolism, and body mass showed correlated evolution in the sexes, activity did not evolve in males but, surprisingly, did so in females. This led to sexual monomorphism in locomotor activity in short-life lines associated with detrimental effects in females. Our results thus support the general tenet that widespread pleiotropy generates IaSC despite sex-specific genetic architecture.

  15. Mechanisms of larval midgut damage following exposure to phoxim and repair of phoxim-induced damage by cerium in Bombyx mori.

    PubMed

    Yu, Xiaohong; Sun, Qingqing; Li, Bing; Xie, Yi; Zhao, Xiaoyang; Hong, Jie; Sheng, Lei; Sang, Xuezi; Gui, Suxin; Wang, Ling; Shen, Weide; Hong, Fashui

    2015-04-01

    Bombyx mori is an important economic animal for silk production. However, it is liable to be infected by organophosphorus pesticide that can contaminate its food and growing environment. It has been known that organophosphorus pesticide including phoxim exposure may damage the digestive systems, produce oxidative stress and neurotoxicity in silkworm B. mori, whereas cerium treatment has been demonstrated to relieve phoxim-induced toxicity in B. mori. However, very little is known about the molecular mechanisms of midgut injury due to phoxim exposure and B. mori protection after cerium pretreatment. The aim of this study was to evaluate the midgut damage and its molecular mechanisms, and the protective role of cerium in B. mori following exposure to phoxim. The results showed that phoxim exposure led to severe midgut damages and oxidative stress; whereas cerium relieved midgut damage and oxidative stress caused by phoxim in B. mori. Furthermore, digital gene expression suggested that phoxim exposure led to significant up-regulation of 94 genes and down-regulation of 52 genes. Of these genes, 52 genes were related with digestion and absorption, specifically, the significant alterations of esterase, lysozyme, amylase 48, and lipase expressions. Cerium pretreatment resulted in up-regulation of 116 genes, and down-regulation of 29 genes, importantly, esterase 48, lipase, lysozyme, and α-amylase were up-regulated. Treatment with Phoxim + CeCl3 resulted in 66 genes up-regulation and 39 genes down-regulation; specifically, levels of esterase 48, lipase, lysozyme, and α-amylase expression in the midgut of silkworms were significantly increased. Therefore, esterase 48, lipase, lysozyme, and α-amylase may be potential biomarkers of midgut toxicity caused by phoxim exposure. These findings may expand the application of rare earths in sericulture.

  16. Susceptibility of the Adult Japanese Beetle, Popillia japonica to Entomopathogenic Nematodes.

    PubMed

    Morris, E Erin; Grewal, Parwinder S

    2011-09-01

    To build upon prior research demonstrating the potential of entomopathogenic nematode dissemination by infected adult Japanese beetle, Popillia japonica, we evaluated susceptibility of the adult beetles to 20 strains of Steinernema and Heterorhabditis under laboratory conditions. The nematodes were applied at a rate of 10,000 infective juveniles per 10 adult beetles in 148 mL plastic cups containing autoclaved sand and sassafras leaves as a source of food for the beetles. All strains infected the beetles and caused 55% to 95% mortality. The most virulent strains that caused 50% beetle mortality in less than 5 days included a strain of H. georgiana (D61), three strains of Steinernema sp. (R54, R45, and FC48), and two strains of S. carpocapsae (All and D60). The ability of two strains of Steinernema sp. (R45 and R54) and two strains of Heterorhabditis bacteriophora (D98 and GPS11) to infect and reproduce in the beetle was further examined to assess the potential of infected beetles to disseminate nematodes upon their death. All four strains infected and killed the beetles, but only Steinernema strains reproduced in the cadavers. We conclude that both Heterorhabditis and Steinernema strains are able to cause mortality to adult Japanese beetle, but Steinernema strains may be effectively disseminated due to their reproduction in the beetle.

  17. Susceptibility of the Adult Japanese Beetle, Popillia japonica to Entomopathogenic Nematodes

    PubMed Central

    Morris, E. Erin; Grewal, Parwinder S.

    2011-01-01

    To build upon prior research demonstrating the potential of entomopathogenic nematode dissemination by infected adult Japanese beetle, Popillia japonica, we evaluated susceptibility of the adult beetles to 20 strains of Steinernema and Heterorhabditis under laboratory conditions. The nematodes were applied at a rate of 10,000 infective juveniles per 10 adult beetles in 148 mL plastic cups containing autoclaved sand and sassafras leaves as a source of food for the beetles. All strains infected the beetles and caused 55% to 95% mortality. The most virulent strains that caused 50% beetle mortality in less than 5 days included a strain of H. georgiana (D61), three strains of Steinernema sp. (R54, R45, and FC48), and two strains of S. carpocapsae (All and D60). The ability of two strains of Steinernema sp. (R45 and R54) and two strains of Heterorhabditis bacteriophora (D98 and GPS11) to infect and reproduce in the beetle was further examined to assess the potential of infected beetles to disseminate nematodes upon their death. All four strains infected and killed the beetles, but only Steinernema strains reproduced in the cadavers. We conclude that both Heterorhabditis and Steinernema strains are able to cause mortality to adult Japanese beetle, but Steinernema strains may be effectively disseminated due to their reproduction in the beetle. PMID:23431080

  18. Modeling optical reflectance from chiral micromirrors embedded in manuka beetles

    NASA Astrophysics Data System (ADS)

    Hodgkinson, Ian J.; De Silva, Lakshman; Murray, Petra; Wu, Qi Hong; Arnold, Matthew; Leader, John P.

    2004-08-01

    Optical and electron microscopies reveal complexity in the multilayered chiral coatings that produce green metallic-like reflections from manuka (scarab) beetles. In particular the reflectors are shown to have the form of small concave pits and troughs that are filled with contouring chiral material. Each chiral micro-reflector presents a range of pitch and tilt to an incident beam of light. The presentation attempts to relate these physical properties to optical properties such as spectral reflectance, angle of spread and perceived color of the beetles.

  19. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    PubMed Central

    2012-01-01

    Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose

  20. Identification of G protein-coupled receptors required for vitellogenin uptake into the oocytes of the red flour beetle, Tribolium castaneum

    PubMed Central

    Bai, Hua; Palli, Subba Reddy

    2016-01-01

    Previous studies suggested that a membrane receptor might be involved in mediating vitellogenin (Vg) uptake and juvenile hormone (JH)-regulated remodeling of follicular epithelium (also called ‘patency’). G protein-coupled receptor (GPCR) family is one of the largest membrane receptor protein families and controls many key physiological processes. To investigate the role of GPCRs in insect reproduction and juvenile hormone-regulated Vg uptake, we performed a comprehensive RNA interference (RNAi) screen targeting GPCRs in the red flour beetle, Tribolium castaneum. Out of 112 GPCRs tested, knockdown of 41 GPCRs resulted in a reduction in fecundity. Interestingly, RNAi against two GPCRs (a Rhodopsin-like receptor and a Dopamine D2-like receptor) led to a significant reduction in Vg accumulation in developing oocytes. Functional assays of these two GPCRs showed that JH triggers a dose-dependent inhibition of intracellular cAMP levels in HEK293 cells expressing Tribolium Dopamine D2-like receptor. These data suggest that Dopamine D2-like receptor plays crucial roles in regulating Vg uptake and is a promising candidate membrane receptor mediating JH regulation of patency in the red flour beetle. PMID:27277501

  1. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem.

    PubMed

    Buotte, Polly C; Hicke, Jeffrey A; Preisler, Haiganoush K; Abatzoglou, John T; Raffa, Kenneth F; Logan, Jesse A

    2016-12-01

    Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle are not well understood, yet are important considerations in whether to list whitebark pine as a threatened or endangered species. We sought to increase the understanding of climate influences on mountain pine beetle outbreaks in whitebark pine forests, which are less well understood than in lodgepole pine, by quantifying climate-beetle relationships, analyzing climate influences during the recent outbreak, and estimating the suitability of future climate for beetle outbreaks. We developed a statistical model of the probability of whitebark pine mortality in the GYE that included temperature effects on beetle development and survival, precipitation effects on host tree condition, beetle population size, and stand characteristics. Estimated probability of whitebark pine mortality increased with higher winter minimum temperature, indicating greater beetle winter survival; higher fall temperature, indicating synchronous beetle emergence; lower two-year summer precipitation, indicating increased potential for host tree stress; increasing beetle populations; stand age; and increasing percent composition of whitebark pine within a stand. The recent outbreak occurred during a period of higher-than-normal regional winter temperatures, suitable fall temperatures, and low summer precipitation. In contrast to lodgepole pine systems, area with mortality was linked to precipitation variability even at high beetle populations. Projections from climate models indicate future climate conditions will likely provide favorable conditions for beetle outbreaks within nearly all current whitebark pine habitat in the GYE by

  2. Hs3st-A and Hs3st-B regulate intestinal homeostasis in Drosophila adult midgut.

    PubMed

    Guo, Yueqin; Li, Zhouhua; Lin, Xinhua

    2014-11-01

    Intrinsic and extrinsic signals as well as the extracellular matrix (ECM) tightly regulate stem cells for tissue homeostasis and regenerative capacity. Little is known about the regulation of tissue homeostasis by the ECM. Heparan sulfate proteoglycans (HSPGs), important components of the ECM, are involved in a variety of biological events. Two heparin sulfate 3-O sulfotransferase (Hs3st) genes, Hs3st-A and Hs3st-B, encode the modification enzymes in heparan sulfate (HS) biosynthesis. Here we demonstrate that Hs3st-A and Hs3st-B are required for adult midgut homeostasis. Depletion of Hs3st-A in enterocytes (ECs) results in increased intestinal stem cell (ISC) proliferation and tissue homeostasis loss. Moreover, increased ISC proliferation is also observed in Hs3st-B null mutant alone, or in combination with Hs3st-A RNAi. Hs3st-A depletion-induced ISC proliferation is effectively suppressed by simultaneous inhibition of the EGFR signaling pathway, suggesting that tissue homeostasis loss in Hs3st-A-deficient intestines is due to increased EGFR signaling. Furthermore, we find that Hs3st-A-depleted ECs are unhealthy and prone to death, while ectopic expression of the antiapoptotic p35 is able to greatly suppress tissue homeostasis loss in these intestines. Together, our data suggest that Drosophila Hs3st-A and Hs3st-B are involved in the regulation of ISC proliferation and midgut homeostasis maintenance.

  3. Exploring the midgut transcriptome and brush border membrane vesicle proteome of the rice stem borer, Chilo suppressalis (Walker).

    PubMed

    Ma, Weihua; Zhang, Zan; Peng, Chuanhua; Wang, Xiaoping; Li, Fei; Lin, Yongjun

    2012-01-01

    The rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), is one of the most detrimental pests affecting rice crops. The use of Bacillus thuringiensis (Bt) toxins has been explored as a means to control this pest, but the potential for C. suppressalis to develop resistance to Bt toxins makes this approach problematic. Few C. suppressalis gene sequences are known, which makes in-depth study of gene function difficult. Herein, we sequenced the midgut transcriptome of the rice stem borer. In total, 37,040 contigs were obtained, with a mean size of 497 bp. As expected, the transcripts of C. suppressalis shared high similarity with arthropod genes. Gene ontology and KEGG analysis were used to classify the gene functions in C. suppressalis. Using the midgut transcriptome data, we conducted a proteome analysis to identify proteins expressed abundantly in the brush border membrane vesicles (BBMV). Of the 100 top abundant proteins that were excised and subjected to mass spectrometry analysis, 74 share high similarity with known proteins. Among these proteins, Western blot analysis showed that Aminopeptidase N and EH domain-containing protein have the binding activities with Bt-toxin Cry1Ac. These data provide invaluable information about the gene sequences of C. suppressalis and the proteins that bind with Cry1Ac.

  4. Fetal Midgut Volvulus with a Cystic Appearance, Accompanying a Sinus Rhythm and an Increased Peak Systolic Velocity without Anemia

    PubMed Central

    Kaba, Metin; Oksuzoglu, Aysegul; Kaba, Gokcen; Timur, Hakan; Akbaba, Eren; Turgut, Kadriye

    2015-01-01

    A midgut volvulus rarely occurs in a fetus; however, when it does, it requires an immediate diagnosis and surgery. Thirty-week pregnant was referred to our clinic with a diagnosis of a fetal abdominal cystic mass and preterm labor. The initial ultrasound examination revealed a female fetus with a 55 × 50 mm cystic mass in the lower abdomen, which was preliminarily diagnosed as an ovarian cyst. There was a sinusoidal rhythm on cardiography. The middle cerebral artery peak systolic velocity was 60.4 cm/sec, compatible with 1.49 MoMs that suggested fetal anemia on Doppler examination. Uterine contractions were observed with tocography and maternal hydration was administered for tocolytic treatment. Despite hydration, uterine contractions continued and the infant was delivered. A newborn ultrasonographic evaluation revealed a 6 cm abdominal cyst, and plain abdominal radiographs revealed distended loops of the small bowel on the left side. Emergency surgery was performed. A midgut volvulus leading to dilatation and necrosis of the small bowel without anatomical causes was observed during laparotomy. The necrotic bowel loop was resected and an end-to-end anastomosis was performed. The newborn died due to multiorgan failure. Obstetricians should be familiar with the appropriate diagnosis and management of a fetal volvulus. PMID:26779358

  5. First insight into the lipid uptake, storage and mobilization in arachnids: role of midgut diverticula and lipoproteins.

    PubMed

    Laino, Aldana; Cunningham, Mónica L; García, Fernando; Heras, Horacio

    2009-12-01

    The importance of midgut diverticula (M-diverticula) and hemolymph lipoproteins in the lipid homeostasis of Polybetes phythagoricus was studied. Radioactivity distribution in tissues and hemolymph was analyzed either after feeding or injecting [1-(14)C]-palmitate. In both experiments, radioactivity was mostly taken up by M-diverticula that synthesized diacylglycerols, triacylglycerols and phospholipids in a ratio close to its lipid class composition. M-diverticula total lipids represent 8.08% (by wt), mostly triacylglycerols (74%) and phosphatidylcholine (13%). Major fatty acids were (in decreasing order of abundance) 18:1n-9, 18:2n-6, 16:0, 16:1n-7, 18:0, 18:3n-3. Spider hemocyanin-containing lipoprotein (VHDL) transported 83% of the circulating label at short incubation times. After 24h, VHDL and HDL-1 (comparable to insect lipophorin) were found to be involved in the lipid uptake and release from M-diverticula, HDL-2 playing a negligible role. Lipoprotein's labelled lipid changed with time, phospholipids becoming the main circulating lipid after 24h. These results indicate that arachnid M-diverticula play a central role in lipid synthesis, storage and movilization, analogous to insect fat body or crustacean midgut gland. The relative contribution of HDL-1 and VHDL to lipid dynamics indicated that, unlike insects, spider VHDL significantly contributes to the lipid exchange between M-diverticula and hemolymph.

  6. Forces driven by morphogenesis modulate Twist Expression to determine Anterior Mid-gut Differentiation in Drosophila embryos

    NASA Astrophysics Data System (ADS)

    Farge, Emmanuel

    2008-03-01

    By combining magnetic tweezers to in vivo laser ablation, we locally manipulate Drosophila embryonic tissues with physiologically relevant forces. We demonstrate that high level of Twist expression in the stomodeal primordium is mechanically induced in response to compression by the 60±20 nN force developed during germ-band extension (GBE). We find that this force triggers the junctional release and nuclear translocation of Armadillo involved in Twist mechanical induction in the stomodeum in a Src42A dependent way. Finally, stomodeal-specific RNAi-mediated silencing of Twist during compression impairs the differentiation of midgut cells, as revealed by strong defects in Dve expression and abnormal larval lethality. Thus, mechanical induction of Twist overexpression in stomodeal cells is necessary for subsequent midgut differentiation. In collaboration with Nicolas Desprat, Willy Supatto, and Philippe-Alexandre Pouille, MGDET, UMR168 CNRS, Institut Curie11 rue Pierre et Marie Curie, F-75005, Paris, France; and Emmanuel Beaurepaire, LOB, Ecole Polytechnique, CNRS and INSERM U 696, 91128 Palaiseau, France.

  7. Malaria parasites co-opt human factor H to prevent complement-mediated lysis in the mosquito midgut.

    PubMed

    Simon, Nina; Lasonder, Edwin; Scheuermayer, Matthias; Kuehn, Andrea; Tews, Sabrina; Fischer, Rainer; Zipfel, Peter F; Skerka, Christine; Pradel, Gabriele

    2013-01-16

    Human complement is a first line defense against infection in which circulating proteins initiate an enzyme cascade on the microbial surface that leads to phagocytosis and lysis. Various pathogens evade complement recognition by binding to regulator proteins that protect host cells from complement activation. We show that emerging gametes of the malaria parasite Plasmodium falciparum bind the host complement regulator factor H (FH) following transmission to the mosquito to protect from complement-mediated lysis by the blood meal. Human complement is active in the mosquito midgut for approximately 1 hr postfeeding. During this period, the gamete surface protein PfGAP50 binds to FH and uses surface-bound FH to inactivate the complement protein C3b. Loss of FH-mediated protection, either through neutralization of FH or blockade of PfGAP50, significantly impairs gametogenesis and inhibits parasite transmission to the mosquito. Thus, Plasmodium co-opts the protective host protein FH to evade complement-mediated lysis within the mosquito midgut.

  8. Histopathological effects and determination of the putative receptor of Bacillus thuringiensis Cry1Da toxin in Spodoptera littoralis midgut.

    PubMed

    BenFarhat-Touzri, Dalel; Saadaoui, Marwa; Abdelkefi-Mesrati, Lobna; Saadaoui, Imen; Azzouz, Hichem; Tounsi, Slim

    2013-02-01

    Bacillus thuringiensis subsp. aizawai strain HD133, known by its effectiveness against Spodoptera species, produces many insecticidal proteins including Cry1Ab, Cry1Ca and Cry1Da. In the present study, the insecticidal activity of Cry1Da against Spodoptera littoralis was investigated. It showed toxicity with an LC(50) of 224.4 ng/cm(2) with 95% confidence limits of (178.61-270.19) and an LC(90) of 467.77 ng/cm(2) with 95% confidence limits of (392.89-542.65). The midgut histopathology of Cry1Da fed larvae showed vesicle formation in the apical region, vacuolization and destruction of epithelial cells. Biotinylated-activated Cry1Da toxin bound protein of about 65 kDa on blots of S. littoralis brush border membrane preparations. This putative receptor differs in molecular size from those recognized by Cry1C and Vip3A which are active against this polyphagous insect. This difference in midgut receptors strongly supports the use of Cry1Da as insecticidal agent, particularly in case of Cry and/or Vip-resistance management.

  9. Exploring the Midgut Transcriptome and Brush Border Membrane Vesicle Proteome of the Rice Stem Borer, Chilo suppressalis (Walker)

    PubMed Central

    Peng, Chuanhua; Wang, Xiaoping; Li, Fei; Lin, Yongjun

    2012-01-01

    The rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), is one of the most detrimental pests affecting rice crops. The use of Bacillus thuringiensis (Bt) toxins has been explored as a means to control this pest, but the potential for C. suppressalis to develop resistance to Bt toxins makes this approach problematic. Few C. suppressalis gene sequences are known, which makes in-depth study of gene function difficult. Herein, we sequenced the midgut transcriptome of the rice stem borer. In total, 37,040 contigs were obtained, with a mean size of 497 bp. As expected, the transcripts of C. suppressalis shared high similarity with arthropod genes. Gene ontology and KEGG analysis were used to classify the gene functions in C. suppressalis. Using the midgut transcriptome data, we conducted a proteome analysis to identify proteins expressed abundantly in the brush border membrane vesicles (BBMV). Of the 100 top abundant proteins that were excised and subjected to mass spectrometry analysis, 74 share high similarity with known proteins. Among these proteins, Western blot analysis showed that Aminopeptidase N and EH domain-containing protein have the binding activities with Bt-toxin Cry1Ac. These data provide invaluable information about the gene sequences of C. suppressalis and the proteins that bind with Cry1Ac. PMID:22666467

  10. The Glycolytic Enzymes Activity in the Midgut of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) adult and their Seasonal Changes

    PubMed Central

    Guzik, Joanna; Nakonieczny, Mirosław; Tarnawska, Monika; Bereś, Paweł K.; Drzewiecki, Sławomir; Migula, Paweł

    2015-01-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is an important pest of maize. The diet of the D. virgifera imago is rich in starch and other polysaccharides present in cereals such as maize. Therefore, knowledge about enzymes involved in digestion of such specific food of this pest seems to be important. The paper shows, for the first time, the activities of main glycolytic enzymes in the midgut of D. virgifera imago: endoglycosidases (α-amylase, cellulase, chitinase, licheninase, laminarinase); exoglycosidases (α- and β-glucosidases, α- and β-galactosidases) and disaccharidases (maltase, isomaltase, sucrase, trehalase, lactase, and cellobiase). Activities of α-amylase, α-glucosidase, and maltase were the highest among assayed endoglycosidases, exoglycosidases, and disaccharidases, respectively. This indicates that in the midgut of D. virgifera imago α-amylase, α-glucosidase and maltase are important enzymes in starch hydrolysis and products of its digestion. These results lead to conclusion that inhibition of most active glycolytic enzymes of D. virgifera imago may be another promising method for chemical control of this pest of maize.

  11. Responses of the Rat Olfactory Epithelium to Retronasal Air Flow

    PubMed Central

    Scott, John W.; Acevedo, Humberto P.; Sherrill, Lisa; Phan, Maggie

    2008-01-01

    Responses of the rat olfactory epithelium were assessed with the electroolfactogram while odorants were presented to the external nares with an artificial sniff or to the internal nares by positive pressure. A series of seven odorants that varied from very polar, hydrophilic odorants to very non-polar, hydrophobic odorants were used. While the polar odorants activated the dorsal olfactory epithelium when presented by the external nares (orthonasal presentation), they were not effective when forced through the nasal cavity from the internal nares (retronasal presentation). However, the non-polar odorants were effective in both stimulus modes. These results were independent of stimulus concentration or of humidity of the carrier air. Similar results were obtained with multiunit recording from olfactory bulb. These results help to explain why human investigations often report differences in the sensation or ability to discriminate odorants presented orthonasally vs. retronasally. The results also strongly support the importance of odorant sorption in normal olfactory processes. PMID:17215498

  12. Hydrodynamics of stratified epithelium: Steady state and linearized dynamics

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2016-05-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.

  13. Nanoparticle incorporation of melittin reduces sperm and vaginal epithelium cytotoxicity.

    PubMed

    Jallouk, Andrew P; Moley, Kelle H; Omurtag, Kenan; Hu, Grace; Lanza, Gregory M; Wickline, Samuel A; Hood, Joshua L

    2014-01-01

    Melittin is a cytolytic peptide component of bee venom which rapidly integrates into lipid bilayers and forms pores resulting in osmotic lysis. While the therapeutic utility of free melittin is limited by its cytotoxicity, incorporation of melittin into the lipid shell of a perfluorocarbon nanoparticle has been shown to reduce its toxicity in vivo. Our group has previously demonstrated that perfluorocarbon nanoparticles containing melittin at concentrations <10 µM inhibit HIV infectivity in vitro. In the current study, we assessed the impact of blank and melittin-containing perfluorocarbon nanoparticles on sperm motility and the viability of both sperm and vaginal epithelial cells. We found that free melittin was toxic to sperm and vaginal epithelium at concentrations greater than 2 µM (p<0.001). However, melittin nanoparticles were not cytotoxic to sperm (p = 0.42) or vaginal epithelium (p = 0.48) at an equivalent melittin concentration of 10 µM. Thus, nanoparticle formulation of melittin reduced melittin cytotoxicity fivefold and prevented melittin toxicity at concentrations previously shown to inhibit HIV infectivity. Melittin nanoparticles were toxic to vaginal epithelium at equivalent melittin concentrations ≥20 µM (p<0.001) and were toxic to sperm at equivalent melittin concentrations ≥40 µM (p<0.001). Sperm cytotoxicity was enhanced by targeting of the nanoparticles to the sperm surface antigen sperm adhesion molecule 1. While further testing is needed to determine the extent of cytotoxicity in a more physiologically relevant model system, these results suggest that melittin-containing nanoparticles could form the basis of a virucide that is not toxic to sperm and vaginal epithelium. This virucide would be beneficial for HIV serodiscordant couples seeking to achieve natural pregnancy.

  14. Gallbladder epithelium as a niche for chronic Salmonella carriage.

    PubMed

    Gonzalez-Escobedo, Geoffrey; Gunn, John S

    2013-08-01

    Although typhoid fever has been intensively studied, chronic typhoid carriage still represents a problem for the transmission and persistence of the disease in areas of endemicity. This chronic state is highly associated with the presence of gallstones in the gallbladder of infected carriers upon which Salmonella can form robust biofilms. However, we hypothesize that in addition to gallstones, the gallbladder epithelium aids in the establishment/maintenance of chronic carriage. In this work, we present evidence of the role of the gallbladder epithelium in chronic carriage by a mechanism involving invasion, intracellular persistence, and biofilm formation. Salmonella was able to adhere to and invade polarized gallbladder epithelial cells apically in the absence and presence of bile in a Salmonella pathogenicity island 1 (SPI-1)-dependent manner. Intracellular replication of Salmonella was also evident at 12 and 24 h postinvasion. A flowthrough system revealed that Salmonella is able to adhere to and form extensive bacterial foci on gallbladder epithelial cells as early as 12 h postinoculation. In vivo experiments using a chronic mouse model of typhoid carriage showed invasion and damage of the gallbladder epithelium and lamina propria up to 2 months after Salmonella infection, with an abundant presence of macrophages, a relative absence of neutrophils, and extrusion of infected epithelial cells. Additionally, microcolonies of Salmonella cells were evident on the surface of the mouse gallbladder epithelia up to 21 days postinfection. These data reveal a second potential mechanism, intracellular persistence and/or bacterial aggregation in/on the gallbladder epithelium with luminal cell extrusion, for Salmonella maintenance in the gallbladder.

  15. Biomechanics of liquid-epithelium interactions in pulmonary airways

    PubMed Central

    Ghadiali, Samir N.; Gaver, Donald P.

    2008-01-01

    The delicate structure of the lung epithelium makes it susceptible to surface tension induced injury. For example, the cyclic reopening of collapsed and/or fluid-filled airways during the ventilation of injured lungs generates hydrodynamic forces that further damage the epithelium and exacerbate lung injury. The interactions responsible for epithelial injury during airway reopening are fundamentally multiscale, since air-liquid interfacial dynamics affect global lung mechanics, while surface tension forces operate at the molecular and cellular scales. This article will review the current state-of-knowledge regarding the effect of surface tension forces on a) the mechanics of airway reopening and b) epithelial cell injury. Due to the complex nature of the liquid-epithelium system, a combination of computational and experimental techniques are being used to elucidate the mechanisms of surface-tension induced lung injury. Continued research is leading to an integrated understanding of the biomechanical and biological interactions responsible for cellular injury during airway reopening. This information may lead to novel therapies that minimize ventilation induced lung injury. PMID:18511356

  16. Activin Potentiates Proliferation in Mature Avian Auditory Sensory Epithelium

    PubMed Central

    McCullar, Jennifer S.; Ty, Sidya; Campbell, Sean; Oesterle, Elizabeth C.

    2010-01-01

    Humans and other mammals are highly susceptible to permanent hearing and balance deficits due to an inability to regenerate sensory hair cells lost to inner ear trauma. In contrast, nonmammalian vertebrates, such as birds, robustly regenerate replacement hair cells and restore hearing and balance functions to near-normal levels. There is considerable interest in understanding the cellular mechanisms responsible for this difference in regenerative capacity. Here we report on involvement of the TGFβ superfamily type II activin receptors, Acvr2a and Acvr2b, in regulating proliferation in mature avian auditory sensory epithelium. Cultured, posthatch avian auditory sensory epithelium treated with Acvr2a and Acvr2b inhibitors shows decreased proliferation of support cells, the cell type that gives rise to new hair cells. Conversely, addition of activin A, an Acvr2a/b ligand, potentiates support cell proliferation. Neither treatment (inhibitor or ligand) affected hair cell survival, suggesting a specific effect of Acvr2a/b signaling on support cell mitogenicity. Using immunocytochemistry, Acvr2a, Acvr2b, and downstream Smad effector proteins were differentially localized in avian and mammalian auditory sensory epithelia. Collectively, these data suggest that signaling through Acvr2a/b promotes support cell proliferation in mature avian auditory sensory epithelium and that this signaling pathway may be incomplete, or actively blocked, in the adult mammalian ear. PMID:20071511

  17. Mucosal adenosine stimulates chloride secretion in canine tracheal epithelium

    SciTech Connect

    Pratt, A.D.; Clancy, G.; Welsh, M.J.

    1986-08-01

    Adenosine is a local regulator of a variety of physiological functions in many tissues and has been observed to stimulate secretion in several Cl-secreting epithelia. In canine tracheal epithelium the authors found that adenosine stimulates Cl secretion from both the mucosal and submucosal surfaces. Addition of adenosine, or its analogue 2-chloroadenosine, to the mucosal surface potently stimulated Cl secretion with no effect on the rate of Na absorption. Stimulation resulted from an interaction of adenosine with adenosine receptors, because it was blocked by the adenosine receptor blocker, 8-phenyltheophylline. The adenosine receptor was a stimulatory receptor as judged by the rank-order potency of adenosine and its analogues and by the increase in cellular adenosine 3',5'-cyclic monophosphate levels produced by 2-chloroadenosine. Adenosine also stimulated Cl secretion when it was added to the submucosal surface, although the maximal increase in secretion was less and it was much less potent. The observation that mucosal 8-phenyletheophylline blocked the effect of submucosal 2-chloroadenosine, whereas submucosal 8-phenyltheophylline did not prevent a response to mucosal or submucosal 2-chloroadenosine, suggests that adenosine receptors are located on the mucosal surface. Thus submucosal adenosine may stimulate secretion by crossing the epithelium and interacting with receptors located on the mucosal surface. Because adenosine can be released from mast cells located in the airway lumen in response to inhaled material, and because adenosine stimulated secretion from the mucosal surface, it may be in a unique position to control the epithelium on a regional level.

  18. Olfactory receptor gene expression in tiger salamander olfactory epithelium.

    PubMed

    Marchand, James E; Yang, Xinhai; Chikaraishi, Dona; Krieger, Jurgen; Breer, Heinz; Kauer, John S

    2004-06-28

    Physiological studies of odor-elicited responses from the olfactory epithelium and bulb in the tiger salamander, Ambystoma tigrinum, have elucidated a number of features of olfactory coding that appear to be conserved across several vertebrate species. This animal model has provided an accessible in vivo system for observing individual and ensemble olfactory responses to odorant stimulation using biochemical, neurophysiological, and behavioral assays. In this paper we have complemented these studies by characterizing 35 candidate odorant receptor genes. These receptor sequences are similar to those of the large families of olfactory receptors found in mammals and fish. In situ hybridization, using RNA probes to 20 of these sequences, demonstrates differential distributions of labeled cells across the extent and within the depth of the olfactory epithelium. The distributions of cells labeled with probes to different receptors show spatially restricted patterns that are generally localized to different degrees in medial-lateral and anterior-posterior directions. The patterns of receptor expression in the ventral olfactory epithelium (OE) are mirrored in the dorsal OE. We present a hypothesis as to how the sensory neuron populations expressing different receptor types responding to a particular odorant may relate to the distribution patterns of epithelial and bulbar responses previously characterized using single-unit and voltage-sensitive dye recording methods.

  19. Passive Electrical Properties of Toad Urinary Bladder Epithelium

    PubMed Central

    Reuss, Luis; Finn, Arthur L.

    1974-01-01

    The electrical resistances of the transcellular and paracellular pathways across the toad urinary bladder epithelium (a typical "tight" sodium-transporting epithelium) were determined by two independent sets of electrophysiological measurements: (a) the measurement of the total transepithelial resistance, the ratio of resistance of the apical to the basal cell membrane, and cable analysis of the voltage spread into the epithelium; (b) the measurement of the total transepithelial resistance and the ratio of resistances of both cell membranes before and after replacing all mucosal sodium with potassium (thus, increasing selectively the resistance of the apical membrane). The results obtained with both methods indicate the presence of a finite transepithelial shunt pathway, whose resistance is about 1.8 times the resistance of the transcellular pathway. Appropriate calculations show that the resistance of the shunt pathway is almost exclusively determined by the zonula occludens section of the limiting junctions. The mean resistance of the apical cell membrane is 1.7 times that of the basal cell membrane. The use of nonconducting materials on the mucosal side allowed us to demonstrate that apparently all epithelial cells are electrically coupled, with a mean space constant of 460 µm, and a voltage spread consistent with a thin sheet model. PMID:4209766

  20. Expression of interleukin-18 by porcine airway and intestinal epithelium.

    PubMed

    Muneta, Yoshihiro; Goji, Noriko; Tsuji, Noriko M; Mikami, Osamu; Shimoji, Yoshihiro; Nakajima, Yasuyuki; Yokomizo, Yuichi; Mori, Yasuyuki

    2002-08-01

    In this study, we investigated the expression of interleukin-18 (IL-18) in porcine airway and intestinal epithelium. We found constitutive protein expression of precursor IL-18 in primary culture of porcine airway epithelium. Immunohistochemical staining revealed that porcine IL-18 was localized in the porcine airway epithelium and that it was significantly upregulated with experimental endotoxemia induced by Escherichia coli lipopolysaccharide (LPS) inoculation. We also confirmed by immunohistochemical staining that IL-18 was expressed in porcine intestinal epithelial cells. Moreover, the concentration of IL-18 in intestinal cell lysates of 1-day-old piglets was about 3-fold and 6-fold less than that in those of 1-month-old and 6-month-old piglets, respectively. Exogenous IL-18 was able to induce interferon-gamma (IFN-gamma) in the peripheral blood of 1-day-old piglets, whereas concanavalin A (ConA) was not able to induce IFN-gamma in the same condition. These results suggest that mucosal epithelial cells are among the major sources of IL-18 in pig and that IL-18 may be useful as a therapeutic agent for the enhancement of immune responses and as a vaccine adjuvant, especially in neonatal piglets.

  1. Candida albicans Ultrastructure: Colonization and Invasion of Oral Epithelium

    PubMed Central

    Howlett, Julie A.; Squier, Christopher A.

    1980-01-01

    The colonization and invasion of various animal oral mucosae by Candida albicans were examined in an organ culture model. Scanning and transmission electron microscopy of the oral epithelium between 12 and 30 h after inoculation with the fungus revealed the morphological relationships between host and parasite. Examination of the fungi in thin sections showed five distinct layers in the cell wall of C. albicans within the epithelium, but changes were evident in the organization and definition of the outer cell wall layers in budding hyphae and in hyphae participating in colonization and invasion of the epithelial cells. Adherence of the fungus to the superficial cells of the oral mucosa appeared to involve intimate contact between the epithelial cell surface and the deeper layers of the fungal cell wall. During invasion a close seal was maintained between the invading hyphae and the surrounding epithelial cell envelope, there being no other evidence of damage to the host cell surface except at the site of entry. Within the epithelial cells there was only occasional loss of cytoplasmic components in the vicinity of the invading hyphae. These findings would suggest that enzymatic lysis associated with the invasive process is localized and that the mechanical support provided by surface adherence and the intimate association between the fungus and the epithelial cell envelope may permit growth of Candida on through the epithelium. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:6995338

  2. Effect of carbonated drinks on wound healing of oral epithelium

    PubMed Central

    Fahim, Ayesha; Ilyas, Muhammad Sharjeel; Jafari, Fahim Haider; Farzana, Fauzia

    2015-01-01

    Background Carbonated drinks are the second most consumed non-alcoholic beverages in the world after tea. The effects of these drinks on hard tissues and vital organs of the body have been proved beyond doubt. This study, however, explains the effect of these drinks on wound healing of oral epithelium. Methods Thirty-six male Wistar rats were considered for the study. A circular wound of 3.0 mm was created on the buccal mucosa of all animals and they were divided into two groups. Animals in group 1 were fed with chow pellet and water, while those in group 2 were fed with a commercially available carbonated drink instead of water. Six animals from each group were euthanized at 0, 7, and 21 days. Wound site was histologically assessed for differences in thickness and characteristics of the regenerating epithelium between two groups. Results There was a marked difference in the healing pattern between the two groups. Animals in group 1 showed a normal healing pattern at the end of day 21. In the group 2, the regenerated epithelium showed hyperplasia and hyperkeratosis along with acanthosis at the end of the experiment with a subsequent delayed inflammatory reaction at day 21. Conclusion Consumption of carbonated drinks can disrupt oral wound healing. The contents in carbonated drinks have a proinflammatory action on the soft tissue. Results suggest that epithelial changes seen in experimental group 2 could be a result of constant irritation by the acidic and fizzy nature of carbonated drinks. PMID:26937370

  3. Cost of flight and the evolution of stag beetle weaponry.

    PubMed

    Goyens, Jana; Van Wassenbergh, Sam; Dirckx, Joris; Aerts, Peter

    2015-05-06

    Male stag beetles have evolved extremely large mandibles in a wide range of extraordinary shapes. These mandibles function as weaponry in pugnacious fights for females. The robust mandibles of Cyclommatus metallifer are as long as their own body and their enlarged head houses massive, hypertrophied musculature. Owing to this disproportional weaponry, trade-offs exist with terrestrial locomotion: running is unstable and approximately 40% more costly. Therefore, flying is most probably essential to cover larger distances towards females and nesting sites. We hypothesized that weight, size and shape of the weaponry will affect flight performance. Our computational fluid dynamics simulations of steady-state models (without membrane wings) reveal that male stag beetles must deliver 26% more mechanical work to fly with their heavy weaponry. This extra work is almost entirely required to carry the additional weight of the massive armature. The size and shape of the mandibles have only negligible influence on flight performance (less than 0.1%). This indicates that the evolution of stag beetle weaponry is constrained by its excessive weight, not by the size or shape of the mandibles and head as such. This most probably paved the way for the wide diversity of extraordinary mandible morphologies that characterize the stag beetle family.

  4. "Sea Turtles" and "Ground Beetles" [Land Turtles] Should Shake Hands

    ERIC Educational Resources Information Center

    Kan, Da

    2004-01-01

    This article talks about those who come back to China after studies abroad, characterized as "sea turtles" and those scholars who have remained in China to arduously pursue their studies, characterized as "ground beetles". " Sea turtles" are those foreign MBAs and Ph.D.s who are objects of praise, admiration and are…

  5. Faunistics of Tiger Beetles (Coleoptera: Cicindelidae) from Pakistan

    PubMed Central

    Rafi, Muhammad Ather; Jürgen, Wiesner; Matin, Muhammad Abdul; Zia, Ahmed; Sultan, Amir; Naz, Falak

    2010-01-01

    The present biogeographic distribution of tiger beetle fauna is an attempt to register all modern taxa from Pakistan. It includes 55 taxa under 14 genera and 11 subgenera. Three species, Cylindera (Eriodera) albopunctata (Chaudoir 1852), Cicindela viridilabris (Chaudoir 1852) and Neocollyris (Neocollyris) redtenbacheri (Horn 1894) are recorded from Pakistan for the first time. PMID:20874597

  6. Chemical ecology of the redbay ambrosia beetle (Xyleborus glabratus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The redbay ambrosia beetle, Xyleborus glabratus, is an exotic wood-boring pest first detected in the U.S. in 2002 near Savannah, Georgia. Females of X. glabratus vector a newly-described fungal pathogen (Raffaelea lauricola) that causes laurel wilt, a lethal disease of trees in the family Lauraceae...

  7. Redbay ambrosia beetle: basic and applied chemical ecology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The invasive redbay ambrosia beetle, Xyleborus glabratus, is an exotic wood-boring pest first detected in the U.S. in 2002 near Savannah, Georgia. Females of X. glabratus vector a fungal pathogen (Raffaelea lauricola) that causes laurel wilt, a lethal disease of trees in the family Lauraceae. Over...

  8. Cantharimide dimers from the Chinese blister beetle, Mylabris phalerate PALLAS.

    PubMed

    Nakatani, Takafumi; Jinpo, Katsuaki; Noda, Naoki

    2007-01-01

    Five cantharidin-related compounds were isolated from the Chinese blister beetle, Mylabris phalerate PALLAS (Meloidae). Their structures were determined based on spectroscopic and chemical evidence. Three of them were identified as cantharimide dimers, which consist of two units of cantharimide combined with a tri-, tetra-, or penta-methylene group.

  9. Use of larder beetles (Coleoptera: Dermestidae) to deflesh human jaws.

    PubMed

    Charabidze, D; Colard, T; Becart, A; Hedouin, V

    2014-01-01

    We describe new experimental data for the defleshing of human bones using larder beetles (Dermestes haemorrhoidalis) (Küster, 1852). Although the ability of larder beetles to feed on vertebrate remains has been, and still is, used by taxidermists to deflesh skulls and bones, this method has never been documented from a quantitative perspective and has over time become ignored in most forensic anthropology or odontology laboratories. To promote the rational and efficient use of this method, we performed experiments to estimate the quantity of food consumed by larvae. From the 2nd instar to nymphosis, each larva consumed a mean of 0.13±0.03 g of dry beef muscle. We then used 100±50 D. haemorrhoidalis adults and 100±50 larvae to deflesh human maxillae and mandibles sampled within a forensic context (victim identification). Each sample was weighed and photographed before, during and after the experiment. According to our experiments, 20-25 days were sufficient to completely deflesh all of the samples. We concluded that a small number of larder beetles can be used to efficiently deflesh human jaws. According to this result, the use of larder beetles appears to be an inexpensive, simple and efficient way to clean mandibles and maxillae. Furthermore, this method is DNA-safe (compared to usual maceration techniques) and thus allows the samples to be used for subsequent DNA and drug analyses.

  10. 78 FR 27853 - Asian Longhorned Beetle; Quarantined Areas in Ohio

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... Inspection Service 7 CFR Part 301 Asian Longhorned Beetle; Quarantined Areas in Ohio AGENCY: Animal and Plant... prevent the artificial spread of ALB to noninfested areas of the United States. Surveys conducted in Ohio... Clermont County, OH. The State of Ohio has quarantined the infested areas to prevent the further spread...

  11. Down and Dirty with Dung Beetles: Innovating Teaching and Research

    ERIC Educational Resources Information Center

    Kelk, Joee

    2009-01-01

    A lecturer at the University of Queensland has developed an excellent model to give students an authentic, hands-on experience of ecological research. The first-year university students have been learning about biodiversity as they carry out the task of beetle identification. This partnership gives the students a chance to contribute to an…

  12. A deficiency of the homeotic complex of the beetle Tribolium

    NASA Technical Reports Server (NTRS)

    Stuart, J. J.; Brown, S. J.; Beeman, R. W.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    In Drosophila, the establishment of regional commitments along most of the anterior/posterior axis of the developing embryo depends on two clusters of homeotic genes: the Antennapedia complex (ANT-C) and the bithorax complex (BX-C). The red flour beetle has a single complex (HOM-C) representing the homologues of the ANT-C and BX-C in juxtaposition. Beetles trans-heterozygous for two particular HOM-C mutations spontaneously generate a large deficiency, presumably by an exchange within the common region of two overlapping inversions. Genetic and molecular results indicate that this deficiency spans at least the interval between the Deformed and abdominal-A homologues. In deficiency homozygous embryos, all gnathal, thoracic and abdominal segments develop antennal appendages, suggesting that a gene(s) has been deleted that acts to distinguish trunk from head. There is no evidence that beetles have a homologue of the segmentation gene fushi tarazu of similar genomic location and function. On the basis of the genetic tractability, convenient genome size and organization of Tribolium, and its relatively long phylogenetic divergence from Drosophila (>300 million years), we have integrated developmental genetic and molecular analyses of the HOM-C. We isolated about 70 mutations in the complex representing at least six complementation groups. The homeotic phenotypes of adults and lethal embryos lead us to believe that these beetle genes are homologous with the Drosophila genes indicated in Fig. 1 (see text).

  13. Evaluation of factors impacting trap captures of red flour beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An effective monitoring program is the foundation of good Integrated Pest Management programs for food facilities such as mills, processing plants, warehouses, and retail stores. The red flour beetle, Tribolium castaneum, is a major stored-product pest of food facilities, especially mills, and a nu...

  14. Current status of small hive beetle infestation in the Philippines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The distribution of the small hive beetle (SHB, Aethina tumida) is rapidly expanding. From sub-Saharan Africa where it is considered indigenous, SHB has successfully invaded other continents, is prevalent in Australia and North America, and has recently been introduced into Europe (summarized by FE...

  15. Cost of flight and the evolution of stag beetle weaponry

    PubMed Central

    Goyens, Jana; Van Wassenbergh, Sam; Dirckx, Joris; Aerts, Peter

    2015-01-01

    Male stag beetles have evolved extremely large mandibles in a wide range of extraordinary shapes. These mandibles function as weaponry in pugnacious fights for females. The robust mandibles of Cyclommatus metallifer are as long as their own body and their enlarged head houses massive, hypertrophied musculature. Owing to this disproportional weaponry, trade-offs exist with terrestrial locomotion: running is unstable and approximately 40% more costly. Therefore, flying is most probably essential to cover larger distances towards females and nesting sites. We hypothesized that weight, size and shape of the weaponry will affect flight performance. Our computational fluid dynamics simulations of steady-state models (without membrane wings) reveal that male stag beetles must deliver 26% more mechanical work to fly with their heavy weaponry. This extra work is almost entirely required to carry the additional weight of the massive armature. The size and shape of the mandibles have only negligible influence on flight performance (less than 0.1%). This indicates that the evolution of stag beetle weaponry is constrained by its excessive weight, not by the size or shape of the mandibles and head as such. This most probably paved the way for the wide diversity of extraordinary mandible morphologies that characterize the stag beetle family. PMID:25878126