Van Kleunen, Mark; Nänni, Ingrid; Donaldson, John S; Manning, John C
2007-12-01
A deviation from the classical beetle pollination syndrome of dull-coloured flowers with an unpleasant scent is found in the Greater Cape Floral Region of South Africa. Here, monkey beetles (Scarabaeidae) visit brightly coloured, odourless flowers with conspicuous dark spots and centres (beetle marks). The role of flower colour and markings in attracting monkey beetles is still poorly understood. Artificial model flowers with different marking patterns were used to test the effect of beetle marks on visitation by monkey beetles. To test whether monkey beetles are conditioned to the colour of the local matrix species, model flowers of different colours were placed in populations of three differently coloured species of Iridaceae. Among all three matrix species the presence of dark markings of some kind (either centres or spots) increased visitation rates but the different matrix species differed in whether the effect was due to a dark centre or to dark spots. Monkey beetles were not conditioned for the colour of the matrix species: model colour was not significant in the Hesperantha vaginata and in the Romulea monadelpha matrices, whereas yellow model flowers were preferred over orange ones in the orange-flowered Sparaxis elegans matrix. This study is the first to demonstrate that beetle marks attract pollinating monkey beetles in the Greater Cape Floral Region. In contrast to plants with the classical beetle pollination syndrome that use floral scent as the most important attractant of pollinating beetles, plants with the monkey beetle pollination syndrome rely on visual signals, and, in some areas at least, monkey beetles favour flowers with dark beetle markings over unmarked flowers.
Gene D. Amman; Mark D. McGregor; Robert E. Jr. Dolph
1989-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a member of a group of beetles known as bark beetles: Except when adults emerge and attack new trees, the mountain pine beetle completes its life cycle under the bark. The beetle attacks and kills lodgepole, ponderosa, sugar, and western white pines. Outbreaks frequently develop in lodgepole pine stands that...
Michael D. Warriner; T. Evan Nebeker; Theodor D. Leininger; James S. Meadows
2002-01-01
Abstract - The responses of two groups of beetles, ground beetles (Carabidae) and longhorned beetles (Cerambycidae), to a partial cutting technique (thinning) applied to major and minor stream bottom sites in Mississippi were examined. Species diversity of ground beetles and longhorned beetles was greater in thinned stands than unthinned stands two...
Therese M. Poland; John H. Borden
1997-01-01
The bark beetle predator Thanasimus undatulus Say was captured in statistically significant numbers (total catch = 470, 713, and 137) in three field experiments using multiple-funnel traps baited with various combinations of pheromones for the spruce beetle, Dendroctonus rufipennis Kirby, and the secondary bark beetles ...
Weathering the storm: how lodgepole pine trees survive mountain pine beetle outbreaks.
Erbilgin, Nadir; Cale, Jonathan A; Hussain, Altaf; Ishangulyyeva, Guncha; Klutsch, Jennifer G; Najar, Ahmed; Zhao, Shiyang
2017-06-01
Recent mountain pine beetle outbreaks in western North America killed millions of lodgepole pine trees, leaving few survivors. However, the mechanism underlying the ability of trees to survive bark beetle outbreaks is unknown, but likely involve phytochemicals such as monoterpenes and fatty acids that can drive beetle aggregation and colonization on their hosts. Thus, we conducted a field survey of beetle-resistant lodgepole pine (Pinus contorta) trees to retrospectively deduce whether these phytochemicals underlie their survival by comparing their chemistry to that of non-attacked trees in the same stands. We also compared beetle attack characteristics between resistant and beetle-killed trees. Beetle-killed trees had more beetle attacks and longer ovipositional galleries than resistant trees, which also lacked the larval establishment found in beetle-killed trees. Resistant trees contained high amounts of toxic and attraction-inhibitive compounds and low amounts of pheromone-precursor and synergist compounds. During beetle host aggregation and colonization, these compounds likely served three critical roles in tree survival. First, low amounts of pheromone-precursor (α-pinene) and synergist (mycrene, terpinolene) compounds reduced or prevented beetles from attracting conspecifics to residual trees. Second, high amounts of 4-allyanisole further inhibited beetle attraction to its pheromone. Finally, high amounts of toxic limonene, 3-carene, 4-allyanisole, α-linolenic acid, and linoleic acid inhibited beetle gallery establishment and oviposition. We conclude that the variation of chemotypic expression of local plant populations can have profound ecological consequences including survival during insect outbreaks.
Effects of an increase in population of sika deer on beetle communities in deciduous forests.
Iida, Taichi; Soga, Masashi; Koike, Shinsuke
2016-01-01
The overabundance of large herbivores is now recognized as a serious ecological problem. However, the resulting ecological consequences remain poorly understood. The ecological effects of an increase in sika deer, Cervus nippon Temminck (Cervidae), on three insect groups of beetles was investigated: ground beetles (Carabidae), carrion beetles (Silphidae), and dung beetles (Scarabaeidae and Geotrupidae) on Nakanoshima Island, Hokkaido, northern Japan. We collected beetles on Nakanoshima Island (experimental site) and lakeshore areas (control site) and compared the species richness, abundance, diversity index, and community composition of beetles between the sites. Results showed that although both species diversity and abundance of carabid beetles were significantly higher at the lakeshore site, those of dung and carrion beetles were higher at the island site. It was additionally observed that abundance of larger carabid beetles was higher at the lakeshore site, whereas that of small-sized carabid beetles did not differ between the lakeshore and island sites. For dung beetles, abundance of smaller species was higher at the island site, whereas that of large species did not differ between the lakeshore and island sites. Abundance of two body sizes (small and large) of carrion beetles were both higher at the island site. Overall, the findings of this study demonstrated that an increase in deer population altered the insect assemblages at an island scale, suggesting further changes in ecosystem functions and services in this region.
The Classroom Animal: Flour Beetles.
ERIC Educational Resources Information Center
Kramer, David C.
1988-01-01
Describes the flour beetle, "Tribolium confusum," and its life cycle, habitat, culturing requirements, and some possible uses of this beetle as a classroom animal. Discusses what children could learn from flour beetles. Explains how to get rid of beetles found in foods at home. (CW)
Pappas, P W; Barley, A J
1999-04-01
When grain beetles (Tenebrio molitor) were fed eggs of Hymenolepis diminuta, many of the eggs passed intact through the beetles' intestines, and eggs were present in the beetles' feces for at least 48 hr after feeding. When uninfected T. molitor were fed beetle feces containing H. diminuta eggs, they became infected. Tenebrio molitor were fed on H. diminuta eggs and then placed in fresh bran for 48 hr. When uninfected T. molitor were placed in this bran, they became infected. Thus, feces from beetles that have ingested H. diminuta eggs serve as a source of eggs for other beetles, as well as a mechanism of egg dispersal.
Mountain pine beetle emergence from lodgepole pine at different elevations near Fraser, CO
J Tishmack; S.A. Mata; J.M. Schmid
2005-01-01
Mountain pine beetle emergence was studied at 8760 ft, 9200 ft, and 9900 ft near Fraser, CO. Beetles began emerging at 8760 ft between July 9 and July 14 while no beetles emerged at 9200 ft and only one beetle emerged at 9900 ft during the same period. Beetle emergence continued at relatively low but fluctuating rates for the next two to three weeks. Peak emergence...
Ahmed, Nur; Englund, Jan-Eric; Johansson, Eva; Åhman, Inger
2013-11-01
Pollen beetle is a pest that attacks oilseed rape as well as many other brassicaceous crops, garden vegetables and ornamental flowers. The present study was primarily carried out to investigate whether insecticide application in brassicaceous field crops might influence the abundance of pollen beetles in nearby private garden flowers and vegetables. At peak emergence of the new generation of pollen beetles, a significantly higher number of beetles were found in flowers, and in window traps, alongside untreated as opposed to alongside treated sections of the winter oilseed rape (WOSR) field. However, the type of flower played a role in the number of pollen beetles found in the flowers. The presence of pollen beetles in both ornamental and wild flowers was also significantly influenced by the direction of placement of the flowers. No pollen beetle, neither overwintering nor newly emerged, was observed in any of the brassicaceous vegetables placed along the field. The number of pollen beetles in the WOSR field strongly influenced the number of pollen beetles in nearby flowers of preference to the beetles, and insecticide treatment with Biscaya (thiacloprid) against pollen beetle in oilseed rape may thus help, indirectly, to protect nearby garden flowers from damage. © 2013 Society of Chemical Industry.
Richard A. Werner; Edward H. Holsten
1997-01-01
Mark-release-recapture experiments were performed with spruce beetles (Dendroctonus rufipennis (Kirby)) and Ips engraver beetles (Ips perturbatus (Eichhoff)) to determine distance and direction of dispersal. The recapture rate of beetles marked with fluorescent powder was extremely low. Most I. perturbatus...
Chakravarthy, A K; Chandrashekharaiah, M; Kandakoor, Subhash B; Nagaraj, D N
2014-05-01
Red palm weevil and Rhinoceros beetle are the major pests inflicting severe damage to coconut palms. Due to ineffectiveness of the current management practices to control the two important pests on coconut, a study was conducted to know the attractiveness of red palm weevil and rhinoceros beetle to aggregation pheromone. Olfactometer studies indicated that the aggregation pheromone of red palm weevil and rhinoceros beetle attracted significantly more number of weevils (13.4 females and 7.6 male weevils) and beetles (6.5 male and 12.3 female beetles), respectively than control. Similarly, field studies found that both 750 and 1000 mg pheromone dosage lures of red palm weevil and rhinoceros beetle trapped significantly higher numbers of weevils (695.80 and 789 weevils, respectively) and beetles (98 and 108 beetles, respectively) in traps (P < 0.05), respectively. On an average (n = 6 field trials) 80-85% red palm weevil and 72-78% rhinoceros beetle population got trapped. Observations indicated activity of red palm weevil throughout the year and of rhinoceros beetle from September to March around Bangalore, South India. Pheromone traps for red palm weevil can be placed in fields from June to August and October to December and September to February for rhinoceros beetle. Population reductions of the two coleopteran pests by pheromone traps are compatible with mechanical and cultural management tools with cumulative effects.
Klutsch, Jennifer G; Najar, Ahmed; Cale, Jonathan A; Erbilgin, Nadir
2016-09-01
Plant pathogens can have cascading consequences on insect herbivores, though whether they alter competition among resource-sharing insect herbivores is unknown. We experimentally tested whether the infection of a plant pathogen, the parasitic plant dwarf mistletoe (Arceuthobium americanum), on jack pine (Pinus banksiana) altered the competitive interactions among two groups of beetles sharing the same resources: wood-boring beetles (Coleoptera: Cerambycidae) and the invasive mountain pine beetle (Dendroctonus ponderosae) (Coleoptera: Curculionidae). We were particularly interested in identifying potential mechanisms governing the direction of interactions (from competition to facilitation) between the two beetle groups. At the lowest and highest disease severity, wood-boring beetles increased their consumption rate relative to feeding levels at moderate severity. The performance (brood production and feeding) of mountain pine beetle was negatively associated with wood-boring beetle feeding and disease severity when they were reared separately. However, when both wood-boring beetles and high severity of plant pathogen infection occurred together, mountain pine beetle escaped from competition and improved its performance (increased brood production and feeding). Species-specific responses to changes in tree defense compounds and quality of resources (available phloem) were likely mechanisms driving this change of interactions between the two beetle groups. This is the first study demonstrating that a parasitic plant can be an important force in mediating competition among resource-sharing subcortical insect herbivores.
Competitive interactions among symbiotic fungi of the southern pine beetle
Kier D. Klepzig; Richard T. Wilkens
1997-01-01
The southern pine beetle, a damaging pest of conifers, is intimately linked to three symbiotic fungi.Two fungi, Ceratocystiopsis ranaculosus and Entomocorticium sp. A, are transported within specialized structures (mycangia) in the beetle exoskeleton and are mutualists of the beetle.A third fungus, Ophiostoma minus, is transported externally on the beetle exoskeleton (...
Polarizing properties and structure of the cuticle of scarab beetles from the Chrysina genus
NASA Astrophysics Data System (ADS)
Fernández del Río, Lía; Arwin, Hans; Järrendahl, Kenneth
2016-07-01
The optical properties of several scarab beetles have been previously studied but few attempts have been made to compare beetles in the same genus. To determine whether there is any relation between specimens of the same genus, we have studied and classified seven species from the Chrysina genus. The polarization properties were analyzed with Mueller-matrix spectroscopic ellipsometry and the structural characteristics with optical microscopy and scanning electron microscopy. Most of the Chrysina beetles are green colored or have a metallic look (gold or silver). The results show that the green-colored beetles polarize reflected light mainly at off-specular angles. The gold-colored beetles polarize light left-handed near circular at specular reflection. The structure of the exoskeleton is a stack of layers that form a cusplike structure in the green beetles whereas the layers are parallel to the surface in the case of the gold-colored beetles. The beetle C. gloriosa is green with gold-colored stripes along the elytras and exhibits both types of effects. The results indicate that Chrysina beetles can be classified according to these two major polarization properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentz, B.J.; Powell, J.A.; Logan, J.A.
1996-12-01
Colonization of a host tree by the mountain pine beetle (Dendroctonus ponderosae) involves chemical communication that enables a massive aggregation of beetles on a single resource, thereby ensuring host death and subsequent beetle population survival. Beetle populations have evolved a mechanism for termination of colonization on a lodgepole pine tree at optimal beetle densities, with a concomitant switch of attacks to nearby trees. Observations of the daily spatial and temporal attack process of mountain pine beetles (nonepidemic) attacking lodgepole pine suggest that beetles switch attacks to a new host tree before the original focus tree is fully colonized, and thatmore » verbenone, an antiaggregating pheromone, may be acting within a tree rather than between trees.« less
Buotte, Polly C; Hicke, Jeffrey A; Preisler, Haiganoush K; Abatzoglou, John T; Raffa, Kenneth F; Logan, Jesse A
2016-12-01
Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle are not well understood, yet are important considerations in whether to list whitebark pine as a threatened or endangered species. We sought to increase the understanding of climate influences on mountain pine beetle outbreaks in whitebark pine forests, which are less well understood than in lodgepole pine, by quantifying climate-beetle relationships, analyzing climate influences during the recent outbreak, and estimating the suitability of future climate for beetle outbreaks. We developed a statistical model of the probability of whitebark pine mortality in the GYE that included temperature effects on beetle development and survival, precipitation effects on host tree condition, beetle population size, and stand characteristics. Estimated probability of whitebark pine mortality increased with higher winter minimum temperature, indicating greater beetle winter survival; higher fall temperature, indicating synchronous beetle emergence; lower two-year summer precipitation, indicating increased potential for host tree stress; increasing beetle populations; stand age; and increasing percent composition of whitebark pine within a stand. The recent outbreak occurred during a period of higher-than-normal regional winter temperatures, suitable fall temperatures, and low summer precipitation. In contrast to lodgepole pine systems, area with mortality was linked to precipitation variability even at high beetle populations. Projections from climate models indicate future climate conditions will likely provide favorable conditions for beetle outbreaks within nearly all current whitebark pine habitat in the GYE by the middle of this century. Therefore, when surviving and regenerating trees reach ages suitable for beetle attack, there is strong potential for continued whitebark pine mortality due to mountain pine beetle. © 2016 by the Ecological Society of America.
The bacterial community of entomophilic nematodes and host beetles.
Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L
2016-05-01
Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. © 2016 John Wiley & Sons Ltd.
The fossil record and macroevolutionary history of the beetles
Smith, Dena M.; Marcot, Jonathan D.
2015-01-01
Coleoptera (beetles) is the most species-rich metazoan order, with approximately 380 000 species. To understand how they came to be such a diverse group, we compile a database of global fossil beetle occurrences to study their macroevolutionary history. Our database includes 5553 beetle occurrences from 221 fossil localities. Amber and lacustrine deposits preserve most of the beetle diversity and abundance. All four extant suborders are found in the fossil record, with 69% of all beetle families and 63% of extant beetle families preserved. Considerable focus has been placed on beetle diversification overall, however, for much of their evolutionary history it is the clade Polyphaga that is most responsible for their taxonomic richness. Polyphaga had an increase in diversification rate in the Early Cretaceous, but instead of being due to the radiation of the angiosperms, this was probably due to the first occurrences of beetle-bearing amber deposits in the record. Perhaps, most significant is that polyphagan beetles had a family-level extinction rate of zero for most of their evolutionary history, including across the Cretaceous–Palaeogene boundary. Therefore, focusing on the factors that have inhibited beetle extinction, as opposed to solely studying mechanisms that may promote speciation, should be examined as important determinants of their great diversity today. PMID:25788597
Mites associated with bark beetles and their hyperphoretic ophiostomatoid fungi
Richard W. Hofstetter; John Moser; Stacy Blomquist
2014-01-01
The role that mites play in many ecosystems is often overlooked or ignored. Within bark beetle habitats, more than 100 mite species exist and they have important impacts on community dynamics, ecosystem processes, and biodiversity of bark beetle systems. Mites use bark beetles to access and disperse among beetle-infested trees and the associations may range from...
Management of western North American bark beetles with semiochemicals
Steven J. Seybold; Barbara J. Bentz; Christopher J. Fettig; John E. Lundquist; Robert A. Progar; Nancy E. Gillette
2018-01-01
We summarize the status of semiochemical-based management of the major bark beetle species in western North America. The conifer forests of this region have a long history of profound impacts by phloem-feeding bark beetles, and species such as the mountain pine beetle (Dendroctonus ponderosae) and the spruce beetle (D. rufipennis) have recently undergone epic outbreaks...
USDA-ARS?s Scientific Manuscript database
Adult beetles of three different white grub species, Japanese beetle, Popillia japonica, June beetle, Phyllophaga spp., and masked chafer, Cyclocephala spp. were exposed to experimental and commercially available granules containing Metarhizium brunneum (Petch) strain F52, to determine susceptibilit...
Some ecological, economic, and social consequences of bark beetle infestations
Robert A. Progar; Adris Eglitis; John E. Lundquist
2009-01-01
Bark beetles are powerful agents of change in dynamic forest ecosystems. Most assessments of the effects of bark beetle outbreaks have been based on negative impacts on timber production. The positive effects of bark beetle activities are much less well understood. Bark beetles perform vital functions at all levels of scale in forest ecosystems. At the landscape...
A continuous mass-rearing technique for the southern pine beetle (Coleoptera: Scolytidae)
J. Robert Bridges; John C. Moser
1983-01-01
Studying the southern pine beetle (SPB), Dendroctonus frontalis zimmermann, during endemic periods is difficult because beetle-infested trees are often hard to locate. This is especially true during the winter months. Studies that require a continuous supply of beetles are often jeopardized by a lack of beetles. During our studies of the...
Southern Pine Beetle Competitors
Fred M. Stephen
2011-01-01
When southern pine beetles mass attack a living pine tree, if colonization is successful the tree dies and its phloem becomes immediately available to a complex of other bark beetles and long-horned beetles, all of which, in order to reproduce, compete for the new resource. In southern pines the phloem-inhabiting guild is composed of the southern pine beetle...
Disruption by conophthorin of the kairomonal response of sawyer beetles to bark beetle pheromones.
Morewood, W D; Simmonds, K E; Gries, R; Allison, J D; Borden, J H
2003-09-01
Antennally active nonhost angiosperm bark volatiles were tested for their ability to reduce the response of three common species of coniferophagous wood-boring Cerambycidae to attractant-baited multiple funnel traps in the southern interior of British Columbia. Of the nonhost volatiles tested, only conophthorin was behaviorally active, disrupting the attraction of sawyer beetles, Monochamus spp., to traps baited with the host volatiles alpha-pinene and ethanol and the bark beetle pheromones ipsenol and ipsdienol. Conophthorin did not affect the attraction of sawyer beetles to the host kairomones alpha-pinene and ethanol in the absence of bark beetle pheromones, nor did it have any behavioral effect on adults of Xylotrechus longitarsis, which were not attracted to bark beetle pheromones. These results indicate that conophthorin does not act as a general repellent for coniferophagous Cerambycidae, as it seems to do for many species of Scolytidae, but has the specific activity of disrupting the kairomonal response of sawyer beetles to bark beetle pheromones.
Steinkraus, Donald C; Hajek, Ann E; Liebherr, Jim K
2017-09-01
Adult goldenrod soldier beetles, Chauliognathus pensylvanicus, were found infected by the fungus Eryniopsis lampyridarum (Entomophthoromycotina) in Arkansas during September - October (1996, 2001, 2015 and 2016). Living and dead infected beetles were found on flowering frost aster, Symphyotrichum pilosum, common boneset, Eupatorium perfoliatum, and Canada goldenrod, Solidago canadensis. Live and dead beetles (n=446) were collected in 1996 from S. pilosum flowers and held individually in the laboratory for determination of fungal prevalence. Of the beetles collected, 281 (63%) were males and 165 (37%) were females. A total of 90 beetles were infected with E. lampyridarum, an overall prevalence of 20.2%. Prevalence in males was 19.6% (n=55 infected/281 males total) and prevalence in females was 21.2% (n=35 infected /165 females total). Conidia were produced from 57% of the infected beetles, 23% of the infected beetles produced resting spores, and 20% contained the hyphal body stage. Infected beetles produced either conidia or resting spores but never both in the same host. Post-mortem morphological changes in the hosts due to E. lampyridarum were observed periodically for 24h. Shortly before death, by unknown mechanisms, dying infected beetles tightly clamped their mandibles into flower heads and ca. 15-22h later (between 2400 and 0700h) the fungus caused dead beetles to raise their elytra and expand their metathoracic wings. Copyright © 2017. Published by Elsevier Inc.
Ugine, Todd A; Peters, Kenlyn E; Gardescu, Sana; Hajek, Ann E
2014-12-01
A study using Metarhizium brunneum Petch fungal bands designed to improve delivery of conidia to adult Asian longhorned beetles, Anoplophora glabripennis (Motschulsky), was conducted to determine how a time delay between exposure to infective conidia and pairing of male and female beetles would affect the ability to successfully transfer lethal doses of conidia to a mate. We measured conidial load at the time of mate pairing (0, 4, 24, 48 h postexposure) and assessed its effect on beetle mortality. Conidial load per beetle decreased across the four sampling times, and there was no effect of beetle sex on conidial load. At all time periods postexposure, beetles that climbed across fungal bands carried enough conidia that at least some of their indirectly exposed mates died of mycosis. For indirectly exposed beetles, mortality decreased significantly as the time delay increased from 0 to 48 h, and this was independent of beetle sex. Median survival time was only 11.5 d for females indirectly exposed immediately after their mate had been exposed, but >3 wk when there was a 48-h delay before pairing. Generally, beetles exposed directly to fungal bands died faster than their indirectly exposed mates. In contrast to the pattern seen for indirectly exposed beetles, beetles exposed directly to fungal bands showed no change in survival times with a delay between exposure and pairing. Median survival times of exposed females and males were generally similar, at 10.5-12.5 d.
Proceedings from the Third Workshop on Genetics of Bark Beetles and Associated Microorganisms
Barbara Bentz; Anthony Cognato; Kenneth Raffa
2007-01-01
These proceedings provide a synopsis of the Third Workshop on Genetics of Bark Beetles and Association Microorganisms, which was held May 20-2, 2006 in Asheville, NC. Twenty- five participants from five countries attended the meeting. The proceedings are structured into four parts: Phylogenetics of Bark Beetles, Population Genetics of Bark Beetles, Bark Beetle Gene...
R. Justin DeRose; Barbara J. Bentz; James N. Long; John D. Shaw
2013-01-01
The spruce beetle (Dendoctronus rufipennis) is a pervasive bark beetle indigenous to spruce (Picea spp.) forests of North America. In the last two decades outbreaks of spruce beetle have increased in severity and extent. Increasing temperatures have been implicated as they directly control beetle populations, potentially inciting endemic populations to build to...
Therese M. Poland; J. H. Borden; A. J. Stock; L. J. Chong
1998-01-01
We tested the hypothesis that green leaf volatiles (GLVs) disrupt the response of spruce beetles, Dendroctonus rufipennis Kirby, and western pine beetles, Dendroctonus brevicomis LeConte, to attraetant-baited traps. Two green leaf aldehydes, hexanal and (E)-2-hexenal, reduced the number of spruce beetles captured...
Watanabe, S; Melzer, M J
2017-04-01
The coconut rhinoceros beetle, Oryctes rhinoceros (L.), is a major pest of coconut and other palm trees. An incipient coconut rhinoceros beetle population was recently discovered on the island of Oahu, Hawaii and is currently the target of a large, mutiagency eradication program. Confounding this program is the widespread presence of another scarab beetle on Oahu, the oriental flower beetle, Protaetia orientalis (Gory and Percheron 1833). Eggs, early life stages, and fecal excrement of coconut rhinoceros beetle and oriental flower beetle are morphologically indistinguishable, thereby creating uncertainty when such specimens are discovered in the field. Here, we report the development of a multiplex PCR assay targeting cytochrome oxidase I of coconut rhinoceros beetle and oriental flower beetle that can rapidly detect and distinguish between these insects. This assay also features an internal positive control to ensure DNA of sufficient quantity and quality is used in the assay, increasing its reliability and reducing the chances of false negative results. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Eidson, Erika L; Mock, Karen E; Bentz, Barbara J
2018-01-01
The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva), despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis) and lodgepole (P. contorta) pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.
Mock, Karen E.; Bentz, Barbara J.
2018-01-01
The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness). The mountain pine beetle (Dendroctonus ponderosae), a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva), despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis) and lodgepole (P. contorta) pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks. PMID:29715269
Scully, Erin D; Geib, Scott M; Carlson, John E; Tien, Ming; McKenna, Duane; Hoover, Kelli
2014-12-12
Wood-feeding beetles harbor an ecologically rich and taxonomically diverse assemblage of gut microbes that appear to promote survival in woody tissue, which is devoid of nitrogen and essential nutrients. Nevertheless, the contributions of these apparent symbionts to digestive physiology and nutritional ecology remain uncharacterized in most beetle lineages. Through parallel transcriptome profiling of beetle- and microbial- derived mRNAs, we demonstrate that the midgut microbiome of the Asian longhorned beetle (Anoplophora glabripennis), a member of the beetle family Cerambycidae, is enriched in biosynthetic pathways for the synthesis of essential amino acids, vitamins, and sterols. Consequently, the midgut microbiome of A. glabripennis can provide essential nutrients that the beetle cannot obtain from its woody diet or synthesize itself. The beetle gut microbiota also produce their own suite of transcripts that can enhance lignin degradation, degrade hemicellulose, and ferment xylose and wood sugars. An abundance of cellulases from several glycoside hydrolase families are expressed endogenously by A. glabripennis, as well as transcripts that allow the beetle to convert microbe-synthesized essential amino acids into non-essential amino acids. A. glabripennis and its gut microbes likely collaborate to digest carbohydrates and convert released sugars and amino acid intermediates into essential nutrients otherwise lacking from their woody host plants. The nutritional provisioning capabilities of the A. glabripennis gut microbiome may contribute to the beetles' unusually broad host range. The presence of some of the same microbes in the guts of other Cerambycidae and other wood-feeding beetles suggests that partnerships with microbes may be a facilitator of evolutionary radiations in beetles, as in certain other groups of insects, allowing access to novel food sources through enhanced nutritional provisioning.
Larson, D.L.; Grace, J.B.; Larson, J.L.
2008-01-01
Three flea beetle species (Aphthona spp.), first introduced into North America in 1988, have come to be regarded as effective biological control organisms for leafy spurge (Euphorbia esula). The black flea beetles (Aphthona lacertosa and A. czwalinae) in particular have been shown to cause reductions in leafy spurge stem counts in the northern Great Plains, while the brown flea beetle (A. nigriscutis) has persisted and spread, but has not been found to be as effective at controlling leafy spurge. The ability of black flea beetles to control leafy spurge in any given year, however, has been found to vary. To better understand the long-term effects of flea beetle herbivory on leafy spurge, we monitored stem counts of leafy spurge and numbers of black and brown flea beetles at three sites on two National Wildlife Refuges in east-central North Dakota, USA, from 1998 to 2006. Brown flea beetle numbers were observed to be negligible on these sites. Over the 9 years of the study, black flea beetles were seen to spread over the three study sites and leafy spurge stem counts declined substantially on two of the three sites. Even at low densities of spurge, black flea beetle populations persisted, a necessary prerequisite for long-term control. We used structural equation models (SEM) to assess the yearly effects of black flea beetles, soil texture, and refuge site on leafy spurge stem counts over this time period. We then used equations developed from the SEM analysis to explore flea beetle-leafy spurge dynamics over time, after controlling for soil texture and refuge. Yearly effect strength of black flea beetles on leafy spurge was found to be modest, largely owing to substantial spatial variability in control. However, simulation results based on prediction coefficients revealed leafy spurge to be highly responsive to increases in flea beetle populations on average.
Cornelisse, Tara M; Duane, Timothy P
2013-12-01
Recreation is a leading cause of species decline on public lands, yet sometimes it can be used as a tool for conservation. Engagement in recreational activities, such as hiking and biking, in endangered species habitats may even enhance public support for conservation efforts. We used the case of the endangered Ohlone tiger beetle (Cicindela ohlone) to investigate the effect of biking and hiking on the beetle's behavior and the role of recreationists' knowledge of and attitudes toward Ohlone tiger beetle in conservation of the species. In Inclusion Area A on the University of California Santa Cruz (U.S.A.) campus, adult Ohlone tiger beetles mate and forage in areas with bare ground, particularly on recreational trails; however, recreation disrupts these activities. We tested the effect of recreation on Ohlone tiger beetles by observing beetle behavior on trails as people walked and road bikes at slow and fast speed and on trails with no recreation. We also surveyed recreationists to investigate how their knowledge of the beetle affected their attitudes toward conservation of the beetle and stated compliance with regulations aimed at beetle conservation. Fast cycling caused the beetles to fly off the trail more often and to fly farther than slow cycling or hiking. Slow cycling and hiking did not differ in their effect on the number of times and distance the beetles flew off the trail. Recreationists' knowledge of the beetle led to increased stated compliance with regulations, and this stated compliance is likely to have tangible conservation outcomes for the beetle. Our results suggest management and education can mitigate the negative effect of recreation and promote conservation of endangered species. Efectos del Conocimiento de una Especie en Peligro sobre las Actitudes y Comportamientos Declarados de los Recreacionistas y el Significado del Manejo de la Conformidad para la Conservación del Escarabajo Tigre de Ohlone. © 2013 Society for Conservation Biology.
Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.
Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J
2016-04-01
Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (< 5 yr from outbreak to time of fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado. Both bark beetle outbreaks and wildfires have increased autonomously due to recent climate variability, but this study does not support the expectation that post-beetle outbreak forests will alter fire severity, a result that has important implications for management and policy decisions.
Quantifying beetle-macrofungal associations in a temperate biodiversity hot spot.
Epps, Mary Jane; Arnold, A Elizabeth
2018-01-29
Beetles (Coleoptera) are often among the most abundant and diverse insects that feed on sporocarps of macrofungi, but little is known regarding their relative specialism or generalism in most communities. We surveyed >9000 sporocarps in montane hardwood forest in the Appalachian Mountains (USA) to characterize associations of mycophagous beetles and macrofungi. We used traditional metrics and network analyses to quantify relationships between sporocarp traits (mass, age, persistence, and toughness) and assemblages of adult beetles, drawing from >50 000 beetles collected over two survey years. Strict-sense specificity was rare in these associations: most beetle species were found on multiple fungal genera, and most fungi hosted multiple beetle species. Sporocarp age and fresh mass were positively associated with beetle diversity in fungi with ephemeral sporocarps (here including 12 genera of Agaricales and Russulales), but sporocarp persistence was not. In Polyporales, beetle diversity was greater in softer sporocarps than in tough or woody sporocarps. The increase of beetle diversity in aging sporocarps could not be attributed to increases in sporocarp mass or sampling point in the growing season, suggesting that age-related changes in chemistry or structure may support increasingly diverse beetle communities. Interaction networks differed as a function of sporocarp age, revealing that community-wide measures of generalism (i.e., network connectance) and evenness (i.e., variance in normalized degree) change as sporocarps mature and senesce. Beetles observed on Agaricales and Russulales with more persistent sporocarps had narrower interaction breadth (i.e., were more host-specific) than those on less persistent sporocarps, and beetles on Polyporales with tougher sporocarps had narrower interaction breadth than those on soft sporocarps. In addition to providing a large-scale evaluation of sporocarp use by adult beetles in this temperate biodiversity hot spot, this study shows that characteristics of food organisms are associated with specialism and generalism in interactions relevant to fungal and forest ecology.
Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest
de Novais, Samuel Matos Antunes; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; de Faria, Maurício Lopes; Neves, Frederico de Siqueira
2016-01-01
Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. PMID:27271969
Brian H. Aukema; Richard A. Werner; Kirsten E. Haberkern; Barbara L. Illman; Murray K. Clayton; Kenneth F. Raffa
2005-01-01
The spruce beetle, Dendroctonus rufipennis (Kirby), causes landscape level mortality to mature spruce (Picea spp.) throughout western and northern North America. As with other bark beetles, this beetle is associated with a variety of fungi, whose ecological functions are largely unknown. It has been proposed that the relative...
Low concentration of lindane plus induced attraction traps mountain pine beetle
Richard H. Smith
1976-01-01
Mountain pine beetles were induced to attack lodgepole pine sprayed with 0.2 percent or 0.3 percent lindane emulsion. Large numbers of beetles were killed and fell into traps at the base of the tree. The few successfully attacking beetles caused the sprayed trees to remain attractive to beetles for about two months. The incidence of attacked trees in the immediate area...
Bastola, Anup; Parajulee, Megha N; Porter, R Patrick; Shrestha, Ram B; Chen, Fa-Jun; Carroll, Stanley C
2016-02-01
A 2-year study was conducted to characterize the intercrop movement of convergent lady beetle, Hippodamia convergens Guerin-Meneville (Coleoptera: Coccinellidae) between adjacent cotton and alfalfa. A dual protein-marking method was used to assess the intercrop movement of the lady beetles in each crop. In turns field collected lady beetles in each crop were assayed by protein specific ELISA to quantify the movement of beetles between the crops. Results indicated that a high percentage of convergent lady beetles caught in cotton (46% in 2008; 56% in 2009) and alfalfa (46% in 2008; 71% in 2009) contained a protein mark, thus indicating that convergent lady beetle movement was largely bidirectional between the adjacent crops. Although at a much lower proportion, lady beetles also showed unidirectional movement from cotton to alfalfa (5% in 2008 and 6% in 2009) and from alfalfa to cotton (9% in 2008 and 14% in 2009). The season-long bidirectional movement exhibited by the beetles was significantly higher in alfalfa than cotton during both years of the study. The total influx of lady beetles (bidirectional and unidirectional combined) was significantly higher in alfalfa compared with that in cotton for both years. While convergent lady beetles moved between adjacent cotton and alfalfa, they were more attracted to alfalfa when cotton was not flowering and/or when alfalfa offered more opportunities for prey. This study offers much needed information on intercrop movement of the convergent lady beetle that should facilitate integrated pest management decisions in cotton utilizing conservation biological control. © 2014 Institute of Zoology, Chinese Academy of Sciences.
Non-native lady beetles: a diversity of outcomes
USDA-ARS?s Scientific Manuscript database
Introduction: Various lady beetle species have expanded their geographic ranges following intentional or accidental introduction and subsequent establishment within new regions. In many cases, this has been accompanied by declines in native lady beetles. Long-term monitoring of lady beetle populat...
Where Have All the Beetles Gone?
Richard A. Goyer; Kier D. Klepzig
2002-01-01
Without a doubt, bark beetles are the most destructive insect pests of Southern pines. Among these, the Southern pine beetle (SPB), Dendroctonus frontalis, isi the most notable and most noticed. During outbreak years, this small, but very aggresive, beetle can cause catastrophic losses.
Small hive beetles survive in honeybee prisons by behavioural mimicry
NASA Astrophysics Data System (ADS)
Ellis, J. D.; Pirk, C. W. W.; Hepburn, H. R.; Kastberger, G.; Elzen, P. J.
2002-05-01
We report the results of a simple experiment to determine whether honeybees feed their small hive beetle nest parasites. Honeybees incarcerate the beetles in cells constructed of plant resins and continually guard them. The longevity of incarcerated beetles greatly exceeds their metabolic reserves. We show that survival of small hive beetles derives from behavioural mimicry by which the beetles induce the bees to feed them trophallactically. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at htpp://dx.doi.org/10.1007/s00114-002-0326-y.
The Dung Beetle Dance: An Orientation Behaviour?
Baird, Emily; Byrne, Marcus J.; Smolka, Jochen; Warrant, Eric J.; Dacke, Marie
2012-01-01
An interesting feature of dung beetle behaviour is that once they have formed a piece of dung into a ball, they roll it along a straight path away from the dung pile. This straight-line orientation ensures that the beetles depart along the most direct route, guaranteeing that they will not return to the intense competition (from other beetles) that occurs near the dung pile. Before rolling a new ball away from the dung pile, dung beetles perform a characteristic “dance,” in which they climb on top of the ball and rotate about their vertical axis. This dance behaviour can also be observed during the beetles' straight-line departure from the dung pile. The aim of the present study is to investigate the purpose of the dung beetle dance. To do this, we explored the circumstances that elicit dance behaviour in the diurnal ball-rolling dung beetle, Scarabaeus (Kheper) nigroaeneus. Our results reveal that dances are elicited when the beetles lose control of their ball or lose contact with it altogether. We also find that dances can be elicited by both active and passive deviations of course and by changes in visual cues alone. In light of these results, we hypothesise that the dung beetle dance is a visually mediated mechanism that facilitates straight-line orientation in ball-rolling dung beetles by allowing them to 1) establish a roll bearing and 2) return to this chosen bearing after experiencing a disturbance to the roll path. PMID:22279572
Pedersen, Andrew B; Godfrey, Larry D
2011-08-01
The bitter plant-derived compounds cucurbitacins are known to stimulate feeding of adult cucumber beetles (Coleoptera: Chrysomelidae). A cucurbitacin-based gustatory stimulant applied as a flowable bait combined with either spinosad or carbaryl was compared with foliar sprays of spinosad and carbaryl for controlling two cucumber beetle species (Diabrotica undecimpunctata undecimpunctata Mannerheim and Acalymma trivittatum Mannerheim) in honeydew melons (Cucumis melo L.). Field studies were conducted on the University of California-Davis plant pathology farm in 2008 and 2009. Beetle densities after applications and fruit damage from beetle feeding were compared among treatments. In addition, beetle survival was compared within field cages placed over the treated foliage infested with beetles. Using all three measures of efficacy, we determined that the addition of cucurbitacin bait had no effect on the level of cucumber beetle control with carbaryl in either 2008 or 2009. In both years, spinosad did not significantly reduce cucumber beetle densities in either field cages or field plots and did not reduce fruit damage relative to the untreated control. The addition of the bait to spinosad did not improve its efficacy. A laboratory bioassay of the spinosad formulation used in the field showed it had significant lethal effects on adults of both cucumber beetle species. Results indicated that the bait formulation used did not improve cucumber beetle control but may benefit from the addition of floral attractants or using a different type of cucurbitacin.
Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest.
Macedo-Reis, Luiz Eduardo; Novais, Samuel Matos Antunes de; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; Faria, Maurício Lopes de; Neves, Frederico de Siqueira
2016-01-01
Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.
Pfammatter, Jesse A; Raffa, Kenneth F
2015-12-01
Ips grandicollis (Eichhoff) can be an important pest of plantation trees in the Great Lakes region. Mites commonly occur in phoretic association with this beetle, but little is known about their effects on beetle population dynamics. We assessed the effects of phoretic mites on the reproductive success of I. grandicollis using complementary correlative and manipulative approaches. First, we allowed beetles to colonize Pinus resinosa (Ait) logs from sites across Wisconsin, reared them in a common environment, and related the species identities and abundances of mites with beetle production from each log. We found a positive relationship between I. grandicollis abundance and the presence of five mite species, Histiostoma spp., Dendrolaelaps quadrisetus (Berlese), Iponemus confusus (Lindquist), Trichouropoda australis Hirschmann, and Tarsonemus spp. While the abundance of individual mite species was positively correlated with beetle abundance, assessments of mite community structure did not explain beetle reproduction. Next, we introduced beetles that either had a natural complement of mites or whose mites were mechanically reduced into logs, and compared reproductive success between these beetles. We found no difference in colonization rates or beetle emergence between mite-present and mite-reduced treatments. Collectively, these results suggest a correlative, rather than causal, link between beetle reproductive success and mite incidence and abundances. These mites and beetles likely benefit from mutually suitable environments rather than exerting strong reciprocal impacts. Although mites may have some effects on I. grandicollis reproductive success, they likely play a minimal role compared to factors such as tree quality, beetle predation, and weather. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
John C. Moser; J. Robert Bridges
1983-01-01
Southern pine beetles can be reared free of phoretic mites from naturally infested bark if the bark is removed from the tree and air dried. Bark removal does not reduce the number of beetles that emerge. On the average fewer than 1% of the beetles emerging from removed bark carried one or fewer mites, and 85% of the beetles emerging from attacked bard carried one or...
Larson, Diane L.; Grace, James B.; Larson, Jennifer L.
2008-01-01
Three flea beetle species (Aphthona spp.), first introduced into North America in 1988, have come to be regarded as effective biological control organisms for leafy spurge (Euphorbia esula). The black flea beetles (Aphthona lacertosa and A. czwalinae) in particular have been shown to cause reductions in leafy spurge stem counts in the northern Great Plains, while the brown flea beetle (A. nigriscutis) has persisted and spread, but has not been found to be as effective at controlling leafy spurge. The ability of black flea beetles to control leafy spurge in any given year, however, has been found to vary. To better understand the long-term effects of flea beetle herbivory on leafy spurge, we monitored stem counts of leafy spurge and numbers of black and brown flea beetles at three sites on two National Wildlife Refuges in east-central North Dakota, USA, from 1998 to 2006. Brown flea beetle numbers were observed to be negligible on these sites. Over the 9 years of the study, black flea beetles were seen to spread over the three study sites and leafy spurge stem counts declined substantially on two of the three sites. Even at low densities of spurge, black flea beetle populations persisted, a necessary prerequisite for long-term control. We used structural equation models (SEM) to assess the yearly effects of black flea beetles, soil texture, and refuge site on leafy spurge stem counts over this time period. We then used equations developed from the SEM analysis to explore flea beetle–leafy spurge dynamics over time, after controlling for soil texture and refuge. Yearly effect strength of black flea beetles on leafy spurge was found to be modest, largely owing to substantial spatial variability in control. However, simulation results based on prediction coefficients revealed leafy spurge to be highly responsive to increases in flea beetle populations on average.
Chang, Runlei; Duong, Tuan A.; Taerum, Stephen J.; Wingfield, Michael J.; Zhou, Xudong; de Beer, Z. Wilhelm
2017-01-01
Abstract The Ophiostomatales is an Ascomycete order of fungi that accommodates several tree pathogens and many species that degrade wood. These fungi are commonly vectored by Scolytine bark and ambrosia beetles. In recent years it has also been shown that hyperphoretic mites on these beetles can vector some Ophiostomatales. Little is known regarding the Ophiostomatales in China and we have consequently explored the diversity of these fungi associated with conifer-infesting beetles and mites in Yunnan province. Galleries and beetles were collected for 17 beetle species, while 13 mite species were obtained from six of these beetle species. Collectively, 340 fungal isolates were obtained, 45 from beetles, 184 from mites, 56 from galleries and 55 isolates where the specific niche was not clear. DNA sequences for five gene regions (ITS, LSU, BT, EF, and CAL) were determined for fungal isolates representing different morphological groups. Phylogenetic analyses confirmed the presence of 19 fungal taxa, including five novel species described here as Ophiostoma acarorum sp. nov., Ophiostoma brevipilosi sp. nov., Graphilbum kesiyae sp. nov., Graphilbum puerense sp. nov., and Leptographium ningerense sp. nov. Ophiostoma ips was the most frequently isolated species, representing approximately 31% of all isolates. Six of 19 taxa were present on mites, beetles and in the galleries of the beetles, while three species were found on mites and galleries. Two species were found only on mites and one species only on a beetle. Although the numbers of beetles and mites were insufficient to provide statistical inferences, this study confirmed that mites are important vectors of the Ophiostomatales in China. We hypothesize that these mites are most likely responsible for horizontal transfer of fungal species between galleries of different beetle species. The fact that half of the fungal species found were new to science, suggests that the forests of east Asia include many undescribed Ophiostomatales yet to be discovered. PMID:29559821
Arnieri, Fabrizio; Caprio, Enrico; Nervo, Beatrice; Pelissetti, Simone; Palestrini, Claudia; Roslin, Tomas; Rolando, Antonio
2017-01-01
Cattle farming is a major source of greenhouse gases (GHGs). Recent research suggests that GHG fluxes from dung pats could be affected by biotic interactions involving dung beetles. Whether and how these effects vary among beetle species and with assemblage composition is yet to be established. To examine the link between GHGs and different dung beetle species assemblages, we used a closed chamber system to measure fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from cattle dung pats. Targeting a total of four dung beetle species (a pat-dwelling species, a roller of dung balls, a large and a small tunnelling species), we ran six experimental treatments (four monospecific and two mixed) and two controls (one with dung but without beetles, and one with neither dung nor beetles). In this setting, the overall presence of beetles significantly affected the gas fluxes, but different species contributed unequally to GHG emissions. When compared to the control with dung, we detected an overall reduction in the total cumulative CO2 flux from all treatments with beetles and a reduction in N2O flux from the treatments with the three most abundant dung beetle species. These reductions can be seen as beneficial ecosystem services. Nonetheless, we also observed a disservice provided by the large tunneler, Copris lunaris, which significantly increased the CH4 flux–an effect potentially traceable to the species’ nesting strategy involving the construction of large brood balls. When fluxes were summed into CO2-equivalents across individual GHG compounds, dung with beetles proved to emit less GHGs than did beetle-free dung, with the mix of the three most abundant species providing the highest reduction (-32%). As the mix of multiple species proved the most effective in reducing CO2-equivalents, the conservation of diverse assemblages of dung beetles emerges as a priority in agro-pastoral ecosystems. PMID:28700590
USDA-ARS?s Scientific Manuscript database
The mutualism between xyleborine beetles in the genus Euwallacea (Coleoptera: Curculionidae: Scolytinae) and members of the Ambrosia Fusarium Clade (AFC) represents one of 11 known independent evolutionary origins of fungiculture by ambrosia beetles. Female Euwallacea beetles transport fusarial symb...
Overwintering biology and tests of trap and relocate as a conservation measure for burying beetles.
DOT National Transportation Integrated Search
2015-01-01
Burying beetles are carrion beetles and utilize dead animal carcasses for feeding : and reproductive efforts. They assist with decomposition, prevent the spread of disease, : and reduce the number of pest species. The largest species of carrion beetl...
USDA-ARS?s Scientific Manuscript database
Lady beetles are one of the most familiar groups of beneficial insects. Farmers and gardeners appreciate them for devouring insect pests. Both adult lady beetles and caterpillar-like juveniles eat pests. Lady beetles are recognizable by their red and orange colors that contrast with black spots and...
Southern Pine Beetle Handbook: Southern Pine Beetles Can Kill Your Ornamental Pine
Robert C. Thatcher; Jack E. Coster; Thomas L. Payne
1974-01-01
Southern pine beetles are compulsive eaters. Each year in the South from Texas to Virginia the voracious insects conduct a movable feast across thousands of acres of pine forests. Most trees die soon after the beetles sink their teeth into them.
Musser, Richard O; Hum-Musser, Sue M; Slaten-Bickford, Shannon E; Felton, Gary W; Gergerich, Rose C
2002-08-01
Phaseolus vulgaris L. cv. 'Pinto' bean is a local lesion host for the plant pathogen Southern bean mosaic virus (SBMV) and its vector is the Mexican bean beetle, Epilachna varivestis Mulsant. The objective of this study was to determine if prior feeding by the beetle would affect 'Pinto' bean's resistance to SBMV and determine if ribonuclease (RNase), a major constituent of beetle regurgitant, mediated the plant's response to the virus. 'Pinto' bean plants fed upon by beetles had increased resistance to plant viruses compared to non-wounded or mechanically wounded and buffer-treated plants. Plants that were mechanically wounded and treated with RNase had increased resistance to plant viruses that was equal to plants fed upon by adult beetles. The induction of plant pathogen defenses could be a good adaptation for the plant in the presence of a beetle and pathogen threat. This evidence suggests that RNase activity in the beetle regurgitant could function as an insect-derived elicitor of plant resistance to viruses.
Bearing selection in ball-rolling dung beetles: is it constant?
Baird, Emily; Byrne, Marcus J; Scholtz, Clarke H; Warrant, Eric J; Dacke, Marie
2010-11-01
Ball rolling in dung beetles is thought to have evolved as a means to escape intense inter- and intra-specific competition at the dung pile. Accordingly, dung beetles typically roll along a straight-line path away from the pile, this being the most effective escape strategy for transporting dung to a suitable burial site. In this study, we investigate how individual diurnal dung beetles, Scarabaeus (Kheper) nigroaeneus, select the compass bearing of their straight-line rolls. In particular, we examine whether roll bearings are constant with respect to geographic cues, celestial cues, or other environmental cues (such as wind direction). Our results reveal that the roll bearings taken by individual beetles are not constant with respect to geographic or celestial references. Environmental cues appear to have some influence over bearing selection, although the relationship is not strong. Furthermore, the variance in roll bearing that we observe is not affected by the presence or absence of other beetles. Thus, rather than being constant for individual beetles, bearing selection varies each time a beetle makes a ball and rolls it away from the dung pile. This strategy allows beetles to make an efficient escape from the dung pile while minimizing the chance of encountering competition.
Srinivas, P.; Danielson, Stephen D.; Smith, C. Michael; Foster, John E.
2001-01-01
Cross-resistance, and longevity of resistance, induced by the bean leaf beetle, Cerotoma trifurcata, was studied IN the soybean PI 227687 that exhibited induced response in earlier studies. Bean leaf beetle adults and soybean looper, Pseudoplusia includens, larvae were used to induce resistance and to determine beetle feeding preference. Beetles were collected from soybean fields 2 to 5 days prior to the feeding preference test. The level of cross-resistance induced by soybean looper herbivory to subsequent bean leaf beetle feeding was higher when compared to cross-resistance induced by bean leaf beetle herbivory against subsequent feeding by soybean looper. Further, herbivory by the bean leaf beetle also induced resistance against soybean looper feeding. In the longevity study, leaflets from treated plants were collected 5, 10, 12, 14, 16, 20 and 25 days after initiation of feeding. Pairwise comparisons of leaflets from plants treated by bean leaf beetle herbivory with untreated plants revealed that induced responses were highest 14 and lowest 25 days after initiation of feeding. On other sampling days, levels of induced response varied with the sampling day. PMID:15455065
Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data.
Strohm, S; Tyson, R C; Powell, J A
2013-10-01
Pattern formation occurs in a wide range of biological systems. This pattern formation can occur in mathematical models because of diffusion-driven instability or due to the interaction between reaction, diffusion, and chemotaxis. In this paper, we investigate the spatial pattern formation of attack clusters in a system for Mountain Pine Beetle. The pattern formation (aggregation) of the Mountain Pine Beetle in order to attack susceptible trees is crucial for their survival and reproduction. We use a reaction-diffusion equation with chemotaxis to model the interaction between Mountain Pine Beetle, Mountain Pine Beetle pheromones, and susceptible trees. Mathematical analysis is utilized to discover the spacing in-between beetle attacks on the susceptible landscape. The model predictions are verified by analysing aerial detection survey data of Mountain Pine Beetle Attack from the Sawtooth National Recreation Area. We find that the distance between Mountain Pine Beetle attack clusters predicted by our model closely corresponds to the observed attack data in the Sawtooth National Recreation Area. These results clarify the spatial mechanisms controlling the transition from incipient to epidemic populations and may lead to control measures which protect forests from Mountain Pine Beetle outbreak.
Lack of preference for infective faeces in Hymenolepis diminuta-infected beetles (Tenebrio molitor).
Shea, John F
2007-09-01
The beetle-tapeworm life cycle provides a convenient system to study how host behaviour influences the probability of re-infection because initial and secondary infections can be tracked. The beetle, Tenebrio molitor, is infected with the tapeworm Hymenolepis diminuta when it ingests rat faeces containing tapeworm eggs, which upon hatching undergo five morphologically distinct stages while developing inside the beetle. In a series of preference trials, both individual and groups of previously infected beetles were exposed to baits of infective (faeces with eggs) and uninfective faeces. Beetles did not differ in the amount of time spent or in the number of occurrences at each bait type, suggesting that infected beetles show no preference for infective faeces. This may be a host adaptation to avoid further infection, parasite manipulation to avoid competition for host resources, or both. Further, once infected, beetles are no more or no less likely to become re-infected than uninfected beetles. An analysis of the mean and variance of infection suggests that some individuals are highly susceptible to and some are highly resistant to infection, with males being more variable than females. This could explain the higher load of cysticercoids observed in males.
Evangelista, P.H.; Kumar, S.; Stohlgren, T.J.; Young, N.E.
2011-01-01
The aim of our study was to estimate forest vulnerability and potential distribution of three bark beetles (Curculionidae: Scolytinae) under current and projected climate conditions for 2020 and 2050. Our study focused on the mountain pine beetle (Dendroctonus ponderosae), western pine beetle (Dendroctonus brevicomis), and pine engraver (Ips pini). This study was conducted across eight states in the Interior West of the US covering approximately 2.2millionkm2 and encompassing about 95% of the Rocky Mountains in the contiguous US. Our analyses relied on aerial surveys of bark beetle outbreaks that occurred between 1991 and 2008. Occurrence points for each species were generated within polygons created from the aerial surveys. Current and projected climate scenarios were acquired from the WorldClim database and represented by 19 bioclimatic variables. We used Maxent modeling technique fit with occurrence points and current climate data to model potential beetle distributions and forest vulnerability. Three available climate models, each having two emission scenarios, were modeled independently and results averaged to produce two predictions for 2020 and two predictions for 2050 for each analysis. Environmental parameters defined by current climate models were then used to predict conditions under future climate scenarios, and changes in different species' ranges were calculated. Our results suggested that the potential distribution for bark beetles under current climate conditions is extensive, which coincides with infestation trends observed in the last decade. Our results predicted that suitable habitats for the mountain pine beetle and pine engraver beetle will stabilize or decrease under future climate conditions, while habitat for the western pine beetle will continue to increase over time. The greatest increase in habitat area was for the western pine beetle, where one climate model predicted a 27% increase by 2050. In contrast, the predicted habitat of the mountain pine beetle from another climate model suggested a decrease in habitat areas as great as 46% by 2050. Generally, 2020 and 2050 models that tested the three climate scenarios independently had similar trends, though one climate scenario for the western pine beetle produced contrasting results. Ranges for all three species of bark beetles shifted considerably geographically suggesting that some host species may become more vulnerable to beetle attack in the future, while others may have a reduced risk over time. ?? 2011 Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
In virtually every forest habitat, ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae) plant and maintain symbiotic fungus gardens inside dead or dying wood. Some introduced ambrosia beetles aggressively attack live trees and can damage tree crops, lumber, and native woody plant t...
A dynamical model for bark beetle outbreaks
Vlastimil Krivan; Mark Lewis; Barbara J. Bentz; Sharon Bewick; Suzanne M. Lenhart; Andrew Liebhold
2016-01-01
Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees...
Anatomical organization of the brain of a diurnal and a nocturnal dung beetle.
Immonen, Esa-Ville; Dacke, Marie; Heinze, Stanley; El Jundi, Basil
2017-06-01
To avoid the fierce competition for food, South African ball-rolling dung beetles carve a piece of dung off a dung-pile, shape it into a ball and roll it away along a straight line path. For this unidirectional exit from the busy dung pile, at night and day, the beetles use a wide repertoire of celestial compass cues. This robust and relatively easily measurable orientation behavior has made ball-rolling dung beetles an attractive model organism for the study of the neuroethology behind insect orientation and sensory ecology. Although there is already some knowledge emerging concerning how celestial cues are processed in the dung beetle brain, little is known about its general neural layout. Mapping the neuropils of the dung beetle brain is thus a prerequisite to understand the neuronal network that underlies celestial compass orientation. Here, we describe and compare the brains of a day-active and a night-active dung beetle species based on immunostainings against synapsin and serotonin. We also provide 3D reconstructions for all brain areas and many of the fiber bundles in the brain of the day-active dung beetle. Comparison of neuropil structures between the two dung beetle species revealed differences that reflect adaptations to different light conditions. Altogether, our results provide a reference framework for future studies on the neuroethology of insects in general and dung beetles in particular. © 2017 Wiley Periodicals, Inc.
Recognition of imported lady beetles in the tribe Scymnini released in Eastern North America
Lynn A. Jones; Michael Montgomery; Guoyue Yu; Wenhau Lu
2002-01-01
Adults of lady beetles in the tribe Scymnini imported for biological control of hemlock woolly adelgid, Adelges tsugae Annand, in eastern North America can be readily distinguished from native lady beetles (Coccinellidae). The imported lady beetles are in the genera Pseudoscymnus and Scymnus (Neopullus...
Southern Pine Bark Beetle Guild
T. Evan Nebeker
2011-01-01
Dendroctonus frontalis (southern pine beetle), D. terebrans (black turpentine beetle), Ips avulsus (small southern pine engraver or four-spined engraver), I. grandicollis (five-spined engraver), and I. calligraphus (six-spined engraver) comprise the southern pine bark beetle guild. Often they are found sharing the same hosts in the Southeastern United States. They...
7 CFR 301.48-6 - Movement of live Japanese beetles.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 5 2014-01-01 2014-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and otherwise...
7 CFR 301.48-6 - Movement of live Japanese beetles.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 5 2013-01-01 2013-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and otherwise...
7 CFR 301.48-6 - Movement of live Japanese beetles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and otherwise...
Relative abundance of the southern pine beetle associates in East Texas
John C. Moser; R. C. Thatcher; L. S. Pickard
1971-01-01
More than 90 species of insects were identified in bolts taken from east Texas loblolly pines infested by the southern pine beetle, Dendroctonus frontalis Zimmermann and by Ips engraver beetles (Coleoptera: scolytidae). Seasonal abundance of the associates generally paralleled that of the southern pine beetle.
Social encapsulation of beetle parasites by Cape honeybee colonies (Apis mellifera capensis Esch.)
NASA Astrophysics Data System (ADS)
Neumann, P.; Pirk, C. W. W.; Hepburn, H. R.; Solbrig, A. J.; Ratnieks, F. L. W.; Elzen, P. J.; Baxter, J. R.
2001-05-01
Worker honeybees (Apis mellifera capensis) encapsulate the small hive beetle (Aethina tumida), a nest parasite, in propolis (tree resin collected by the bees). The encapsulation process lasts 1-4 days and the bees have a sophisticated guarding strategy for limiting the escape of beetles during encapsulation. Some encapsulated beetles died (4.9%) and a few escaped (1.6%). Encapsulation has probably evolved because the small hive beetle cannot easily be killed by the bees due to its hard exoskeleton and defensive behaviour.
NASA Technical Reports Server (NTRS)
Savage, P. D.; Hayward, E. F.; Dalton, Bonnie P. (Technical Monitor)
1997-01-01
A habitat for housing up to 32 black body beetles (Trigonoscelis gigas) has been developed at Ames Research Center for conducting studies to evaluate the effects of long duration spaceflight upon insect circadian timing systems. This habitat, identified as the Beetle Kit Assembly, provides an automatically controlled lighting system and activity and temperature recording devices, as well as individual beetle enclosures. Each of the 32 enclosures allows for ad lib movement of the beetle, as well as providing a simple food source and allowing ventilation of the beetle volume via an externally operated hand pump. The Beetle Kit Assemblies will be launched on STS-84 (Shuttle-Mir Mission-06) in May, 1997 and will be transferred to the Priroda module of the Russian Mir space station. he beetles will remain on Mir for approximately 125 days, and will be returned to earth on STS-86 in September, 1997.
Use of acoustics to deter bark beetles from entering tree material.
Aflitto, Nicholas C; Hofstetter, Richard W
2014-12-01
Acoustic technology is a potential tool to protect wood materials and eventually live trees from colonization by bark beetles. Bark beetles such as the southern pine beetle Dendroctonus frontalis, western pine beetle D. brevicomis and pine engraver Ips pini (Coleoptera: Curculionidae) use chemical and acoustic cues to communicate and to locate potential mates and host trees. In this study, the efficacy of sound treatments on D. frontalis, D. brevicomis and I. pini entry into tree materials was tested. Acoustic treatments significantly influenced whether beetles entered pine logs in the laboratory. Playback of artificial sounds reduced D. brevicomis entry into logs, and playback of stress call sounds reduced D. frontalis entry into logs. Sound treatments had no effect on I. pini entry into logs. The reduction in bark beetle entry into logs using particular acoustic treatments indicates that sound could be used as a viable management tool. © 2013 Society of Chemical Industry.
Phoretic symbionts of the mountain pine beetle (Dendroctonus ponderosae Hopkins)
Javier E. Mercado; Richard W. Hofstetter; Danielle M. Reboletti; Jose F. Negron
2014-01-01
During its life cycle, the tree-killing mountain pine beetle Dendroctonus ponderosae Hopkins interacts with phoretic organisms such as mites, nematodes, fungi, and bacteria. The types of associations these organisms establish with the mountain pine beetle (MPB) vary from mutualistic to antagonistic. The most studied of these interactions are those between beetle and...
B. Staffan Lindgren; Daniel R. Miller
2002-01-01
The response of bark beetle predators and woodboring beetles to the bark beetle anti-aggregation pheromone, verbenone, was tested in the field with multiple-funnel traps baited with attractant kairomones. Catches of the predators Thanasimus undatulus (Say), Enoclerus sphegeus (F.), Enocleris lecontei (Wolcott) (...
Mechanical Control of Southern Pine Beetle Infestations
Ronald F. Billings
2011-01-01
Periodic outbreaks of the southern pine beetle (SPB) may affect thousands of acres of commercial pine forests in the Southeastern United States, Mexico, and Central America. Accordingly, this species is the target of more aggressive and effective suppression programs than any other bark beetle pest in the world. The strategy for controlling the southern pine beetle...
Southern Pine Beetle Information System (SPBIS)
Valli Peacher
2011-01-01
The southern pine beetle (SPB) is the most destructive forest insect in the South. The SPB attacks all species of southern pine, but loblolly and shortleaf are most susceptible. The Southern Pine Beetle Information System (SPBIS) is the computerized database used by the national forests in the Southern Region for tracking individual southern pine beetle infestations....
William P. Shepherd; Richard A. Goyer
2003-01-01
The most common predaceious hister beetles (Coleoptera: Histeridae) found associated with Ips engraver beetles (Coleoptera: Scolytidae) in southern Louisiana were Platysoma attenuata LeConte, P. cylindrica (Paykull), P. parallelum (Say), and Plegaderus transversus (Say). The seasonal abundance of...
77 FR 31720 - Asian Longhorned Beetle; Quarantined Areas in Massachusetts, Ohio, and New York
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
.... APHIS-2012-0003] Asian Longhorned Beetle; Quarantined Areas in Massachusetts, Ohio, and New York AGENCY...: We are amending the Asian longhorned beetle regulations to make changes to the list of quarantined... the artificial spread of Asian longhorned beetle to noninfested areas of the United States and to...
Mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae)
Barbara Bentz
2008-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins, is considered one of the most economically important insect species in coniferous forests of western North America. Adult beetles are capable of successfully reproducing in at least 12 North American species of Pinus (Pineacea) from southern British Columbia to northern Baja Mexico. Mountain pine beetle adults...
Barbara J. Bentz
2006-01-01
Lindgren pheromone traps baited with a mountain pine beetle (Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae)) lure were deployed for three consecutive years in lodgepole pine stands in central Idaho. Mountain pine beetle emergence was also monitored each year using cages on infested trees. Distributions of beetles caught in...
Effects of available water on growth and competition of southern pine beetle associated fungi
Kier D. Klepzig; J. Flores-Otero; R.W. Hofstetter; M.P. Ayers
2004-01-01
Competitive interactions among bark beetle associated fungi are potentially influenced by abiotic factors. Water potential, in particular, undergoes marked changes over the course of beetle colonization of tree hosts. To investigate the impact of water potential on competition among three southern pine beetle associated fungi, Ophiostoma minus,
Predators of the Southern Pine Beetle
John D. Reeve
2011-01-01
This chapter of the Southern Pine Beetle II reviews the overall influence of predators on southern pine beetle (SPB) population dynamics, as well as recent research on specific predators such as the clerid beetle Thanasimus dubius. Several lines of evidence suggest that predators and other natural enemies generate significant SPB mortality that contributes to outbreak...
Influences of Different Large Mammalian Fauna on Dung Beetle Diversity in Beech Forests
Enari, Hiroto; Koike, Shinsuke; Sakamaki, Haruka
2013-01-01
This paper focuses on biological relationships between mammalian species richness and the community structure of dung beetles in cool-temperate forests in the northernmost part of mainland Japan. The composition of beetle assemblages was evaluated at 3 sites in undisturbed beech forests with different mammalian fauna. In spring and summer 2009, beetles were collected at each site using pitfall traps baited with feces from Japanese macaques, Macaca fuscata Blyth (Primates: Cercopithecidae); Asiatic black bears, Ursus thibetanus Cuvier (Carnivora: Ursidae); Japanese serows, Capricornis crispus Temminck (Artiodactyla: Bovidae); and cattle. In the present study, 1,862 dung beetles representing 14 species were collected, and most dung beetles possessed the ecological characteristic of selecting specific mammalian feces. The present findings indicated that although species diversity in dung beetle assemblages was not necessarily positively correlated with mammalian species richness in cool-temperate forests, the absence of the macaque population directly resulted in the marked reduction of the beetle abundance, with the loss of the most frequent species, Aphodius eccoptus Bates (Coleoptera: Scarabaeidae) during spring. PMID:23909510
Gomez-Puerta, Luis Antonio; Lopez-Urbina, Maria Teresa; Garcia, Hector Hugo; Gonzalez, Armando Emiliano
2014-03-01
The present study evaluated the capacity of Ammophorus rubripes beetles to carry Taenia solium eggs, in terms of duration and viability of eggs in their digestive system. One hundred beetles were distributed into five polyethylene boxes, and then they were infected with T. solium eggs. Gravid proglottids of T. solium were crushed and then mixed with cattle feces. One gram of this mixture was placed in each box for 24 hours, after which each group of beetles was transferred into a new clean box. Then, five beetles were dissected every three days. Time was strongly associated with viability (r=0.89; P<0.001) and the calculated time to cero viability is 36 days. The eggs in the intestinal system of each beetle were counted and tested for viability. Taenia solium eggs were present in the beetle's digestive system for up to 39 days (13th sampling day out of 20), gradually reducing in numbers and viability, which was 0 on day 36 post-infection. Egg viability was around 40% up to day 24 post-infection, with a median number of eggs of 11 per beetle at this time. Dung beetles may potentially contribute towards dispersing T. solium eggs in endemic areas.
Cloning and characterization of luciferase from a Fijian luminous click beetle.
Mitani, Yasuo; Futahashi, Ryo; Niwa, Kazuki; Ohba, Nobuyoshi; Ohmiya, Yoshihiro
2013-01-01
Luminous click beetle is distributed almost exclusively in Central and South America with a single genus in Melanesia. Among these click beetles, the description of Melanesian species has been fragmentary, and its luciferase gene and phylogenetic relation to other click beetles still remain uncertain. We collected a living luminous click beetle, Photophorus jansonii in Fiji. It emits green-yellow light from two spots on the pronotum and has no ventral luminous organ. Here, we cloned a luciferase gene from this insect by RT-PCR. The deduced amino acid sequence showed high identity of ~85% to the luciferases derived from other click beetle species. The luciferase of the Fijian click beetle was produced as a recombinant protein to characterize its biochemical properties. The Km for D-luciferin and ATP were 173 and 270 μm, respectively. The luciferase was pH-insensitive and the spectrum measured at pH 8.0 showed a peak at 559 nm, which was in the range of green-yellow light as seen in the luminous spot of the living Fijian click beetle. The Fijian click beetle luciferase was assigned to the Elateridae clade by a phylogenetic analysis, but it made a clearly different branch from Pyrophorus group examined in this study. © 2013 The American Society of Photobiology.
Makki, Mahsa Sadat; Mowlavi, Gholamreza; Shahbazi, Farideh; Abai, Mohammad Reza; Najafi, Faezeh; Hosseini-Farash, Bibi Razieh; Teimoori, Salma; Hasanpour, Hamid; Naddaf, Saied Reza
2017-06-01
Hymenolepis diminuta is a cestod of rodents and rarely infects humans. Infection in humans is via ingestion of infected insects. This study was aimed to detect H. diminuta cysticercoids in red flour beetles, Tribolium castaneum, and cockroaches originated from different regions of Iran. The red flour beetles and cockroaches were collected from local bakeries in five cities including Tehran, Ahvaz, Kazerun, and Sabzevar during 2010-2011. Some beetles and cockroaches were colonized in insectary and adults from F1 generation were fed on H. diminuta eggs. Both laboratory-infected and field-collected samples were dissected and examined for cysticercoids. Detection of H. diminuta DNA in T. castaneum beetles was performed by targeting a partial sequence of Ribosomal gene. Except the beetles from Ahvaz, all specimens were negative for cysticercoid by microscopy. Of the four dissected beetles from Ahvaz, one harbored 12 cysticercoids. Also, 110 (52%) of laboratory-infected beetles showed infection with an average of 12-14 larvae. None of the cockroaches was infected. Two beetles from Ahvaz, including the remainder of the microscopic positive specimen, yielded the expected amplicon in PCR assay. The H. diminuta DNA sequences generated in this study were identical and matched 97-100% with similar sequences from GenBank database. Lack of infection in the majority of beetles may reflect a low rat infestation rate in those areas, alternatively, the examined specimens might not have been the representative samples of the T. castaneum populations.
Makki, Mahsa Sadat; Mowlavi, Gholamreza; Shahbazi, Farideh; Abai, Mohammad Reza; Najafi, Faezeh; Hosseini-Farash, Bibi Razieh; Teimoori, Salma; Hasanpour, Hamid; Naddaf, Saied Reza
2017-01-01
Background: Hymenolepis diminuta is a cestod of rodents and rarely infects humans. Infection in humans is via ingestion of infected insects. This study was aimed to detect H. diminuta cysticercoids in red flour beetles, Tribolium castaneum, and cockroaches originated from different regions of Iran. Methods: The red flour beetles and cockroaches were collected from local bakeries in five cities including Tehran, Ahvaz, Kazerun, and Sabzevar during 2010–2011. Some beetles and cockroaches were colonized in insectary and adults from F1 generation were fed on H. diminuta eggs. Both laboratory-infected and field-collected samples were dissected and examined for cysticercoids. Detection of H. diminuta DNA in T. castaneum beetles was performed by targeting a partial sequence of Ribosomal gene. Results: Except the beetles from Ahvaz, all specimens were negative for cysticercoid by microscopy. Of the four dissected beetles from Ahvaz, one harbored 12 cysticercoids. Also, 110 (52%) of laboratory-infected beetles showed infection with an average of 12–14 larvae. None of the cockroaches was infected. Two beetles from Ahvaz, including the remainder of the microscopic positive specimen, yielded the expected amplicon in PCR assay. The H. diminuta DNA sequences generated in this study were identical and matched 97–100% with similar sequences from GenBank database. Conclusion: Lack of infection in the majority of beetles may reflect a low rat infestation rate in those areas, alternatively, the examined specimens might not have been the representative samples of the T. castaneum populations. PMID:29062858
Reding, Michael E; Oliver, Jason B; Schultz, Peter B; Ranger, Christopher M; Youssef, Nadeer N
2013-02-01
Exotic ambrosia beetles are damaging pests in ornamental tree nurseries in North America. The species Xylosandrus crassiusculus (Motshulsky) and Xylosandrus germanus (Blandford) are especially problematic. Management of these pests relies on preventive treatments of insecticides. However, field tests of recommended materials on nursery trees have been limited because of unreliable attacks by ambrosia beetles on experimental trees. Ethanol-injection of trees was used to induce colonization by ambrosia beetles to evaluate insecticides and botanical formulations for preventing attacks by ambrosia beetles. Experiments were conducted in Ohio, Tennessee, and Virginia. Experimental trees injected with ethanol had more attacks by ambrosia beetles than uninjected control trees in all but one experiment. Xylosandrus crassiusculus and X. germanus colonized trees injected with ethanol. In most experiments, attack rates declined 8 d after ethanol-injection. Ethanol-injection induced sufficient pressure from ambrosia beetles to evaluate the efficacy of insecticides for preventing attacks. Trunk sprays of permethrin suppressed cumulative total attacks by ambrosia beetles in most tests. Trunk sprays of the botanical formulations Armorex and Veggie Pharm suppressed cumulative total attacks in Ohio. Armorex, Armorex + Permethrin, and Veggie Pharm + Permethrin suppressed attacks in Tennessee. The bifenthrin product Onyx suppressed establishment of X. germanus in one Ohio experiment, and cumulative total ambrosia beetle attacks in Virginia. Substrate drenches and trunk sprays of neonicotinoids, or trunk sprays of anthranilic diamides or tolfenpyrad were not effective. Ethanol-injection is effective for inducing attacks and ensuring pressure by ambrosia beetles for testing insecticide efficacy on ornamental trees.
Stone, David; Jepson, Paul; Laskowski, Ryszard
2002-05-01
Non-specfic carboxylesterase and glutathione S-transferase activity was measured in the ground beetle, Pterosthicus oblongopunctatus (Coleoptera: Carabidae), from five sites along a gradient of heavy metal pollution. A previous study determined that beetles from the two most polluted sites (site codes OLK2 and OLK3) were more susceptible to additional stressors compared with beetles from the reference site (Stone et al., Environ. Pollut. 113, 239-244 2001), suggesting the possibility of physiological impairment. Metal body burdens in ground beetles from five sites along the gradient ranged from 79 to 201 microg/g Zn, 0.174 to 8.66 microg/g Pb and 1.14 to 10.8 microg/g Cd, whereas Cu seemed to be efficiently regulated regardless of metal levels in the soil. Beetle mid- and hindguts were homogenized and the soluble fraction containing glutathione S-transferase (GST) and carboxylesterase (CaE) was assayed using kinetic analyses. Significantly higher levels of GST were found only in female beetles from the most polluted sites (OLK2 and OLK3; P=0.049, P<0.001, respectively) compared with the reference site (OLK7). In addition, OLK3 females had significantly higher levels of CaE compared with the reference beetles (P=0.01). Male beetles did not differ in enzyme activity along the metal gradient. Overall, obvious trends in detoxification enzymes were not detected in ground beetles in association with metal body burdens.
Urban forests sustain diverse carrion beetle assemblages in the New York City metropolitan area
Fusco, Nicole A.; Zhao, Anthony
2017-01-01
Urbanization is an increasingly pervasive form of land transformation that reduces biodiversity of many taxonomic groups. Beetles exhibit a broad range of responses to urbanization, likely due to the high functional diversity in this order. Carrion beetles (Order: Coleoptera, Family: Silphidae) provide an important ecosystem service by promoting decomposition of small-bodied carcasses, and have previously been found to decline due to forest fragmentation caused by urbanization. However, New York City (NYC) and many other cities have fairly large continuous forest patches that support dense populations of small mammals, and thus may harbor relatively robust carrion beetle communities in city parks. In this study, we investigated carrion beetle community composition, abundance and diversity in forest patches along an urban-to-rural gradient spanning the urban core (Central Park, NYC) to outlying rural areas. We conducted an additional study comparing the current carrion beetle community at a single suburban site in Westchester County, NY that was intensively surveyed in the early 1970’s. We collected a total of 2,170 carrion beetles from eight species at 13 sites along this gradient. We report little to no effect of urbanization on carrion beetle diversity, although two species were not detected in any urban parks. Nicrophorus tomentosus was the most abundant species at all sites and seemed to dominate the urban communities, potentially due to its generalist habits and shallower burying depth compared to the other beetles surveyed. Variation between species body size, habitat specialization, and % forest area surrounding the surveyed sites also did not influence carrion beetle communities. Lastly, we found few significant differences in relative abundance of 10 different carrion beetle species between 1974 and 2015 at a single site in Westchester County, NY, although two of the rare species in the early 1970’s were not detected in 2015. These results indicate that NYC’s forested parks have the potential to sustain carrion beetle communities and the ecosystem services they provide. PMID:28316891
Urban forests sustain diverse carrion beetle assemblages in the New York City metropolitan area.
Fusco, Nicole A; Zhao, Anthony; Munshi-South, Jason
2017-01-01
Urbanization is an increasingly pervasive form of land transformation that reduces biodiversity of many taxonomic groups. Beetles exhibit a broad range of responses to urbanization, likely due to the high functional diversity in this order. Carrion beetles (Order: Coleoptera, Family: Silphidae) provide an important ecosystem service by promoting decomposition of small-bodied carcasses, and have previously been found to decline due to forest fragmentation caused by urbanization. However, New York City (NYC) and many other cities have fairly large continuous forest patches that support dense populations of small mammals, and thus may harbor relatively robust carrion beetle communities in city parks. In this study, we investigated carrion beetle community composition, abundance and diversity in forest patches along an urban-to-rural gradient spanning the urban core (Central Park, NYC) to outlying rural areas. We conducted an additional study comparing the current carrion beetle community at a single suburban site in Westchester County, NY that was intensively surveyed in the early 1970's. We collected a total of 2,170 carrion beetles from eight species at 13 sites along this gradient. We report little to no effect of urbanization on carrion beetle diversity, although two species were not detected in any urban parks. Nicrophorus tomentosus was the most abundant species at all sites and seemed to dominate the urban communities, potentially due to its generalist habits and shallower burying depth compared to the other beetles surveyed. Variation between species body size, habitat specialization, and % forest area surrounding the surveyed sites also did not influence carrion beetle communities. Lastly, we found few significant differences in relative abundance of 10 different carrion beetle species between 1974 and 2015 at a single site in Westchester County, NY, although two of the rare species in the early 1970's were not detected in 2015. These results indicate that NYC's forested parks have the potential to sustain carrion beetle communities and the ecosystem services they provide.
Meng, Ling-Zeng; Martin, Konrad; Weigel, Andreas; Yang, Xiao-Dong
2013-01-01
Longhorn beetles (Coleoptera : Cerambycidae) have been used to identify sites of high biological diversity and conservation value in cultivated landscapes, but were rarely studied in changing landscapes of humid tropics. This study was conducted in a region of southern Yunnan, China, which was dominated by natural rainforest until 30 years ago, but is successively transformed into commercial rubber monoculture plantations since that time. The objectives were to investigate longhorn beetle species diversity and distribution in the major land use types of this landscape and to estimate the effects of an expected expansion of rubber plantations on the longhorn beetle assemblages. The results showed that tree species diversity (181 species in total) and longhorn beetle diversity (220 species in total) were closely related with no significant differences between the tree and longhorn beetles assemblages shown by similarity distance analysis. There was a highly positive relationship between the estimated species richness of longhorn beetles and the number of tree species. Individual numbers of longhorn beetles and trees were also highly positive related at the sampling sites. Non-metric multidimensional scaling revealed that the degree of canopy coverage, succession age and tree diversity explained 78.5% of the total variation in longhorn beetle assemblage composition. Natural forest sites had significantly higher numbers of species and individuals than any other type of habitat. Although young rubber plantations bear the highest longhorn beetle diversity outside forests (half of the total number of longhorn beetle species recorded in total), they can not provide permanent habitats for most of these species, because they develop into closed canopy plantations with less suitable habitat conditions. Therefore, along with an expected expansion of rubber cultivation which largely proceeds at the expense of forest areas, the habitat conditions for longhorn beetles in this region might decrease dramatically in future. PMID:24069421
Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine
2016-01-01
Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee species assemblages in forested landscapes.
Decreases in beetle body size linked to climate change and warming temperatures.
Tseng, Michelle; Kaur, Katrina M; Soleimani Pari, Sina; Sarai, Karnjit; Chan, Denessa; Yao, Christine H; Porto, Paula; Toor, Anmol; Toor, Harpawantaj S; Fograscher, Katrina
2018-05-01
Body size is a fundamental ecological trait and is correlated with population dynamics, community structure and function, and ecosystem fluxes. Laboratory data from broad taxonomic groups suggest that a widespread response to a warming world may be an overall decrease in organism body size. However, given the myriad of biotic and abiotic factors that can also influence organism body size in the wild, it is unclear whether results from these laboratory assays hold in nature. Here we use datasets spanning 30 to 100 years to examine whether the body size of wild-caught beetles has changed over time, whether body size changes are correlated with increased temperatures, and we frame these results using predictions derived from a quantitative review of laboratory responses of 22 beetle species to temperature. We found that 95% of laboratory-reared beetles decreased in size with increased rearing temperature, with larger-bodied species shrinking disproportionately more than smaller-bodied beetles. In addition, the museum datasets revealed that larger-bodied beetle species have decreased in size over time, that mean beetle body size explains much of the interspecific variation in beetle responses to temperature, and that long-term beetle size changes are explained by increases in autumn temperature and decreases in spring temperature in this region. Our data demonstrate that the relationship between body size and temperature of wild-caught beetles matches relatively well with results from laboratory studies, and that variation in this relationship is largely explained by interspecific variation in mean beetle body size. This long-term beetle dataset is one of the most comprehensive arthropod body size datasets compiled to date, it improves predictions regarding the shrinking of organisms with global climate change, and together with the meta-analysis data, call for new hypotheses to explain why larger-bodied organisms may be more sensitive to temperature. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles.
Nørgaard, Thomas; Dacke, Marie
2010-07-16
In the Namib Desert fog represents an alternative water source. This is utilised by Darkling beetles (Tenebrionidae) that employ different strategies for obtaining the fog water. Some dig trenches in the sand, while others use their own bodies as fog collectors assuming a characteristic fog-basking stance. Two beetle species from the genus Onymacris have been observed to fog-bask on the ridges of the sand dunes. These beetles all have smooth elytra surfaces, while another species with elytra covered in bumps is reported to have specialised adaptations facilitating water capture by fog-basking. To resolve if these other beetles also fog-bask, and if an elytra covered in bumps is a more efficient fog water collector than a smooth one, we examined four Namib Desert beetles; the smooth Onymacris unguicularis and O. laeviceps and the bumpy Stenocara gracilipes and Physasterna cribripes. Here we describe the beetles' fog-basking behaviour, the details of their elytra structures, and determine how efficient their dorsal surface areas are at harvesting water from fog. The beetles differ greatly in size. The largest P. cribripes has a dorsal surface area that is 1.39, 1.56, and 2.52 times larger than O. unguicularis, O. laeviceps, and S. gracilipes, respectively. In accordance with earlier reports, we found that the second largest O. unguicularis is the only one of the four beetles that assumes the head standing fog-basking behaviour, and that fog is necessary to trigger this behaviour. No differences were seen in the absolute amounts of fog water collected on the dorsal surface areas of the different beetles. However, data corrected according to the sizes of the beetles revealed differences. The better fog water harvesters were S. gracilipes and O. unguicularis while the large P. cribripes was the poorest. Examination of the elytra microstructures showed clear structural differences, but the elytra of all beetles were found to be completely hydrophobic. The differences in fog water harvesting efficiency by the dorsal surface areas of beetles with very different elytra surface structures were minor. We therefore conclude that the fog-basking behaviour itself is a more important factor than structural adaptations when O. unguicularis collect water from fog.
Losses of red-cockaded woodpecker cavity trees to southern pine beetles
Richard N. Conner; D. Craig Rudolph
1995-01-01
Over an 1 l-year period (1983-1993), we examined the southern pine beetle (Dendroctonus frontalis) infestation rate of single Red-cockaded Woodpecker (Picoides borealis) cavity trees on the Angelina National Forest in Texas. Southern pine beetles infested and killed 38 cavity trees during this period. Typically, within each cavity tree cluster, beetles infested only...
Southern Pine Beetle Behavior and Semiochemistry
Brian T. Sullivan
2011-01-01
The southern pine beetle (SPB) feeds both as adults and larvae within the inner bark of pine trees, which invariably die as a result of colonization. Populations of the SPB erupt periodically and produce catastrophic losses of pines, while at other times the beetles persist almost undetectably in the environment. The southern pine beetle has evolved behaviors that...
Richard H. Smith
1971-01-01
The Jeffrey pine beetle (Dendroctonus jeffreyi Hopk.), one of the bark beetles that kill trees by mining between the bark and the wood, is the principal insect enemy of Jeffrey pine. The beetle is of economic importance chiefly in California, where most of the Jeffrey pine grows, and is most destructive in old-growth stands in the timber-producing areas of northeastern...
Effects on eastern larch beetle of its natural attractant and synthetic pheromones in Alaska.
Richard A. Werner; Malcom M. Furniss; Thomas. Ward
1981-01-01
Traps baited with Seudenol + a-pinene caught 87 percent more eastern larch beetles, Dendroctonus simplex LeConte, than did tamarack logs infested with females. Male beetles responded to the synthetic attractant in greater numbers than females. Male beetles were not attracted to frontalin, a principal attractant of the closely related Douglas-fir...
Semiochemical sabotage: behavioral chemicals for protection of western conifers from bark beetles
Nancy. E. Gillette; A. Steve Munson
2009-01-01
The discovery and elucidation of volatile behavioral chemicals used by bark beetles to locate hosts and mates has revealed a rich potential for humans to sabotage beetle host-finding and reproduction. Here, we present a description of currently available semiochemical methods for use in monitoring and controlling bark beetle pests in western conifer forests. Delivery...
Code of Federal Regulations, 2010 CFR
2010-01-01
... DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-4 Conditions governing the... threat to spread the Japanese beetle because adult beetle populations are not present; or (b) The... be free of and safeguarded against Japanese beetle; or (c) The aircraft is loaded during the hours of...
Carolyn H. Sieg; Rodman R. Linn; Francois Pimont; Chad M. Hoffman; Joel D. McMillin; Judith Winterkamp; L. Scott Baggett
2017-01-01
Previous studies have suggested that bark beetles and fires can be interacting disturbances, whereby bark beetle-caused tree mortality can alter the risk and severity of subsequent wildland fires. However, there remains considerable uncertainty around the type and magnitude of the interaction between fires following bark beetle attacks, especially in drier forest types...
Asian Longhorned Beetle - A New Introduction, Pest Alert
USDA Forest Service, State and Private Forestry, Northeastern Area; Animal and Plant Health Inspection Service
2008-01-01
The Asian longhorned beetle (ALB) has been discovered attacking trees in the United States. Tunneling by beetle larvae girdles tree stems and branches. Repeated attacks lead to dieback of the tree crown and, eventually, death of the tree. ALB probably traveled to the United States inside solid wood packing material from China. The beetle has been intercepted at ports...
Predictors of southern pine beetle flight activity
John C. Moser; T.R. Dell
1979-01-01
An equation based on weather data explained differences in capture counts of pine bark beetles trapped twice weekly for an entire year at a single infestation and contributed to the udnerstanding of some aspects of beetle dynamics. The proportion of the beetles that reached the traps increased with maximum temperature and decreased with heavy rain. Production of adults...
USDA-ARS?s Scientific Manuscript database
Beetles in the genus Delphastus Casey are small whitefly-specific predatory ladybird beetles belonging to the coccinellid tribe Serangiini. They feed on all immature stages of whitefly and are reared and sold commercially all over the world for this purpose. They are compatible with the application ...
USDA-ARS?s Scientific Manuscript database
The ambrosia beetle, Euwallacea nr. fornicatus (Coleoptera:Scolytinae), is a new invasive species to Israel. To date, the beetle has been recorded from 48 tree species representing 25 plant families. Amongst the most affected are avocado, castor-bean and box elder. Isolations from beetle heads revea...
Ploy and counterploy in predator-prey interactions: Orb-weaving spiders versus bombardier beetles*
Eisner, Thomas; Dean, Jeffrey
1976-01-01
Bombardier beetles (Brachinus spp.) offered to orb-weaving spiders are either captured or lost, depending on the attack strategy of the spider. Nephila clavipes grasps a beetle directly and attempts to bite it outright, but is repelled by the beetle's defensive spray. As the spider recovers from the spray, the beetle makes its escape from the web. Argiope first imprisons the beetle by wrapping it delicately in silk, without causing it to spray. When the spider then proceeds to bite, the wrapping protects it against the full effects of the spray. The wrapping strategy may be generally effective against chemically protected insects, and it is suggested that this may be one of its principal adaptive justifications. Images PMID:16592308
Gaylord, M L; Hofstetter, R W; Wagner, M R
2010-10-01
Our research used a combination of passive traps, funnel traps with lures, baited trees, and surveys of long-term thinning plots to assess the impacts of different levels of stand basal area (BA) on bark beetle tree attack and on trap captures of Ips spp., Dendroctonus spp., and their predators. The study occurred at two sites in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests, from 2004 to 2007 during low bark beetle populations. Residual stand BA ranged from 9.0 to 37.0 m2/ha. More predators and bark beetles were collected in passive traps in stands of lower BA than in stands of higher BA; however, significance varied by species and site, and total number of beetles collected was low. Height of the clear panel passive traps affected trap catches for some species at some sites and years. When pheromone lures were used with funnel traps [Ips pini (Say) lure: lanierone, +03/-97 ipsdienol], we found no significant difference in trap catches among basal area treatments for bark beetles and their predators. Similarly, when trees were baited (Dendroctonus brevicomis LeConte lure: myrcene, exo-brevicomin and frontalin), we found no significant difference for days to first bark beetle attack. Surveys of long-term thinning treatments found evidence of bark beetle attacks only in unthinned plots (approximately 37 m2/ha basal area). We discuss our results in terms of management implications for bark beetle trapping and control.
Hayes, Christopher J; DeGomez, Tom E; Clancy, Karen M; Williams, Kelly K; McMillin, Joel D; Anhold, John A
2008-08-01
Lindgren funnel traps baited with aggregation pheromones are widely used to monitor and manage populations of economically important bark beetles (Coleoptera: Scolytidae). This study was designed to advance our understanding of how funnel trap catches assess bark beetle communities and relative abundance of individual species. In the second year (2005) of a 3-yr study of the bark beetle community structure in north-central Arizona pine (Pinus spp.) forests, we collected data on stand structure, site conditions, and local bark beetle-induced tree mortality at each trap site. We also collected samples of bark from infested (brood) trees near trap sites to identify and determine the population density of bark beetles that were attacking ponderosa pine, Pinus ponderosa Douglas ex Lawson, in the area surrounding the traps. Multiple regression models indicated that the number of Dendroctonus and Ips beetles captured in 2005 was inversely related to elevation of the trap site, and positively associated with the amount of ponderosa pine in the stand surrounding the site. Traps located closer to brood trees also captured more beetles. The relationship between trap catches and host tree mortality was weak and inconsistent in forest stands surrounding the funnel traps, suggesting that trap catches do not provide a good estimate of local beetle-induced tree mortality. However, pheromone-baited funnel trap data and data from gallery identification in bark samples produced statistically similar relative abundance profiles for the five species of bark beetles that we examined, indicating that funnel trap data provided a good assessment of species presence and relative abundance.
Held, David W; Potter, Daniel A
2004-04-01
The Japanese beetle, Popillia japonica Newman, feeds on the flowers and foliage of roses. Rosa x hybrida. Beetles attracted to roses land almost exclusively on the flowers. This study evaluated characteristics of rose flowers including color, size, petal count and fragrance, as well as height of plants and blooms within plant as factors in attractiveness to Japanese beetles. Artificial flowers that had been painted to match the spectral reflectance of real blooms were attached to potted nonflowering rose plants in the field and the number of beetles that landed on each model was recorded. More beetles landed on the yellow- and white-colored flower models than on the five other bloom colors that were tested. Large (15 cm diameter) yellow flower models attracted more beetles than did smaller (8 cm diameter) yellow models. There was no difference in beetle response to yellow flower models of the same size that differed in bloom complexity (i.e., number of petals). Experiments in which blooming rose plants were elevated above controls, or in which flower models were placed at different heights within plant canopies, failed to support the hypothesis that height per se accounts for beetles' attraction to flowers over leaves. Attractiveness of selected rose cultivars that varied in fragrance and flower color also was evaluated in the field. Yellow-flowered cultivars were more susceptible than those with red flowers, regardless of fragrance intensity as rated by breeders. Growing cultivars of roses that have relatively dark and small-sized blooms may have some benefit in reducing Japanese beetles' attraction to roses.
Vitullo, Justin M; Sadof, Clifford S
2007-02-01
Cultural and chemical controls were evaluated to determine their ability to deter feeding by Japanese beetles, Popillia japonica Newman (Coleoptera: Scarabaeidae), on floribunda type roses, Rosa 'Acadia Sunrise'. Roses were arranged in field plots and exposed to resident adult beetle populations. Cultural controls were designed to block the feeding-induced aggregation response by manually removing beetles and/ or damaged blooms from rose plants. Azadirachtin, carbaryl, and imidacloprid were evaluated in field and laboratory trials. In no-choice laboratory assays, foliar applications of azadirachtin caused low rates of morbidity to adult beetles and were unable to deter feeding. Foliar-applied carbaryl and soil-applied imidacloprid caused high rates of morbidity and reduced feeding injury. In the field, foliar sprays of azadirachtin and carbaryl, deterred feeding on foliage under low beetle pressure (maximum of 29% defoliation in untreated controls), when applied weekly after first beetle flight or every 2 wk after 5% injury was reached. A single foliar application of these materials at the 5% injury level did not significantly reduce peak defoliation. Soil applications of imidacloprid also deterred foliar feeding in the field. Blooms were more difficult to protect with both foliar- and soil-applied insecticides with only weekly application of foliar insecticides providing significant reductions in bloom injury. Removing beetles and/or blooms provided marginally greater reductions in leaf and flower injury. This suggests that blocking the feeding-induced aggregation response of Japanese beetles can provide only modest levels of control in roses where both flowers and feeding-induced volatiles recruit beetles to plants.
Eyre, M D; Sanderson, R A; McMillan, S D; Critchley, C N R
2016-04-01
Ground beetle data were generated using pitfall traps in the 17-year period from 1993 to 2009 and used to investigate the effects of changes in surrounding crop cover on beetle activity and assemblages, together with the effects of weather variability. Beetles were recorded from non-crop field margins (overgrown hedges). Crop cover changes explained far more variation in the beetle assemblages recorded than did temperature and rainfall variation. A reduction in management intensity and disturbance in the crops surrounding the traps, especially the introduction and development of willow coppice, was concomitant with changes in individual species activity and assemblage composition of beetles trapped in non-crop habitat. There were no consistent patterns in either overall beetle activity or in the number of species recorded over the 17-year period, but there was a clear change from assemblages dominated by smaller species with higher dispersal capability to ones with larger beetles with less dispersal potential and a preference for less disturbed agroecosystems. The influence of surrounding crops on ground beetle activity in non-crop habitat has implications for ecosystem service provision by ground beetles as pest predators. These results are contrary to conventional assumptions and interpretations, which suggest activity of pest predators in crops is influenced primarily by adjacent non-crop habitat. The long-term nature of the assessment was important in elucidation of patterns and trends, and indicated that policies such as agri-environment schemes should take cropping patterns into account when promoting management options that are intended to enhance natural pest control.
Li, Chao; Liu, Huai; Huang, Fangneng; Cheng, Deng-Fa; Wang, Jin-Jun; Zhang, Yun-Hui; Sun, Jin-Rui; Guo, Wen-Chao
2014-04-01
Colorado potato beetle, Leptinotarsa decemlineata (Say), is the most destructive pest of potato in many countries of the world. It first invaded China from Kazakhstan in 1990s and now is a major pest of potato in many areas of Xinjiang Uygur Autonomous Region (Xinjiang). The objective of this study was to determine the effect of temperature on the spread of Colorado potato beetle in China after its invasion. Cold temperature in winter (December) and high temperature in summer (July) were analyzed in accordance with the absence and presence of Colorado potato beetle in Xinjiang. The boundary between the absence and presence of Colorado potato beetle in Xinjiang nearly coincided with the -8°C isotherm of monthly mean minimum temperature in winter. The stress of the low temperature in winter for Colorado potato beetle basically disappeared in the southeastern Hexi Corridor in Gansu Province of China, suggesting that the Hexi Corridor is the best channel to prevent any long-distance invasions of Colorado potato beetle into the Central Plains region. However, in Turpan City in northeastern Xinjiang, the extremely hot weather in the summer prevents the local colonization of Colorado potato beetle. Furthermore, according to our monitoring, high temperature in summer also limited Colorado potato beetle to diffuse eastward through Turpan. Results of this study suggest that it is essential to strengthen inspection and quarantine measures to prevent any artificial transmissions of Colorado potato beetle spreading eastward and thus to ensure the sustainable production of potato and other Solanaceae crops in northwest regions of China.
NASA Astrophysics Data System (ADS)
Wehner, Christine E.; Stednick, John D.
2017-09-01
Natural or human-influenced disturbances are important to the health and diversity of forests, which in turn, are important to the water quantity and quality exported from a catchment. However, human-induced disturbances (prescribed fire and harvesting) have been decreasing, and natural disturbances (fires and insects) have been increasing in frequency and severity. One such natural disturbance is the mountain pine beetle (MPB), ( Dendroctonus ponderosae) an endemic species. A recent epidemic resulted in the mortality of millions of hectares of lodgepole pine ( Pinus contorta) forests in Colorado, USA. Beetle-induced tree mortality brings about changes to the hydrologic cycle, including decreased transpiration and interception with the loss of canopy cover. This study examined the effect of the mountain pine beetle kill on source water contributions to streamflow in snowmeltdominated headwater catchments using stable isotopes (2H and 18O) as tracers. Study catchments with varying level of beetle-killed forest area (6% to 97%) were sampled for groundwater, surface water, and precipitation. Streams were sampled to assess whether beetle-killed forests have altered source water contributions to streamflow. Groundwater contributions increased with increasing beetle-killed forest area ( p = 0.008). Both rain and snow contributions were negatively correlated with beetle-killed forest area ( p = 0.035 and p = 0.011, respectively). As the beetle-killed forest area increases, so does fractional groundwater contribution to streamflow.
Robert M. Hubbard; Charles C. Rhoades; Kelly Elder; Jose Negron
2013-01-01
The recent mountain pine beetle outbreak in North American lodgepole pine forests demonstrates the importance of insect related disturbances in changing forest structure and ecosystem processes. Phloem feeding by beetles disrupts transport of photosynthate from tree canopies and fungi introduced to the tree's vascular system by the bark beetles inhibit water...
2007-08-01
6 Acanthoscelides quadridentatus (Schaeffer) – Mimosa Seed Beetle (Coleoptera: Bruchidae...48 Report Documentation Page ERDC/EL TR-07-11 vi Figures Figure 1. Mimosa seed beetle adult, eggs, and adult appearing in an exit...Acanthoscelides quadridentatus (Schaeffer) – Mimosa Seed Beetle (Coleoptera: Bruchidae) (Figure 1) Figure 1. Mimosa seed beetle adult, eggs, and adult
James Hanula; Michael Ulyshen; Scott Horn`
2011-01-01
The exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), and its fungal symbiont Raffaellea lauricola Harrington, Fraedrich, and Aghayeva are responsible for widespread redbay, Persea borbonia (L.) Spreng., mortality in the southern United States. Effective traps and lures are needed to monitor spread of the beetle and...
Daniel R. Miller
2007-01-01
I report on the attraction of the white pine cone beetle, Canophthorus coniperda (Schwarz) (Coleoptera: Scolytidae), to traps baited with the host monoterpene limonene in western North Carolina. Both (+)- and (-)-limonene attracted male and female cone beetles to Japenese beetle traps in an eastern white pine, Pinus strobus L. seed...
S. Horn; M.D. Ulyshen
2009-01-01
We used pitfall traps to sample ground beetles on sandbars along a small woodland stream and in the adjacent floodplain forest (Oglethorpe Co., GA, USA). We captured a total of 1,477 ground beetles representing 41 species. Twenty-two species were exclusive to sandbars, while eight were found only in the forested habitat. Ground beetles...
Andrew Miller; Kelly Barton; Joel McMillin; Tom DeGomez; Karen Clancy; John Anhold
2008-01-01
(Please note, this is an abstract only) Bark beetles killed more than 20 million ponderosa pine trees in Arizona during 2002-2004. Historically, bark beetle populations remained endemic and ponderosa pine mortality was limited to localized areas in Arizona. Consequently, there is a lack of information on bark beetle community structure in ponderosa pine stands of...
R.A. Goyer; G.J. Lenhard; Brian L. Strom
2004-01-01
Insects that rely upon aggressive bark beetles (Coleoptera: Scolytidae) for generating appropriate habitats (natural enemies and associated species) must respond to a variety of stimuli used by bark beetles, including semiochemical and visual cues. In the southeastern US, Ips engraver beetles are non-aggressive bark beetles that exploit both standing...
Christopher J. Fettig; Christopher P. Dabney; Stepehen R. McKelvey; Dezene P.W. Huber
2008-01-01
Nonhost angiosperm volatiles (NAV) and verbenone were tested for their ability to protect individual ponderosa pines, Pinus ponderosa Dougl. ex. Laws., from attack by western pine beetle (WPB), Dendroctonus brevicomis LeConte, and red turpentine beetle (RTB), Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae). A combination of (
B. Staffan Lindren; Daniel R. Miller
2002-01-01
The response by five species of bark beetles to a range of verbenone doses were tested in bioassays using Lindgren funnel traps baited with attractant semiochemicals. The objective was to determine how these bark beetles respond to verbenone, a purported anti-aggregation pheromone of several economically significant bark beetle species. Catches of Dendroctonus...
Darrell W. Ross; Gary E. Daterman; A. Steven Munson
2004-01-01
The spruce beetle, Dendroctonus rufipennis (Kirby), produces the antiaggregation pheromone 3-methylcyclohex-2-en- 1-one (MCH) (Rudinsky et al. 1974). MCH has reduced the numbers of spruce beetles attracted to infested logs and synthetic semiochemical lures or reduced colonization rates throughout the beetles range (Kline
Christopher M. Oswalt; Sonja N. Oswalt; Jason R. Meade
2016-01-01
The southern pine beetle (Dendroctonus frontalis) is a bark beetle that is native to the Southern United States, including Tennessee. The beetle is periodically epidemic and can cause high levels of mortalityduring epidemic years, particularly in dense or aging pine (Pinus spp.) stands. An epidemic outbreak of the Southern pine...
Jeffrey D. Holland; John T. Shukle; Hossam Eldien M. Abdel Moniem; Thomas W. Mager; Kapil R. Raje; Kyle Schnepp; Shulin Yang
2013-01-01
Longhorned beetles are a diverse and important group of insects in forest ecosystems; several species attack weakened or stressed trees, relatively few attack healthy trees, and most species use only dead and decomposing wood. We surveyed longhorned beetles and metallic wood-boring beetles using four different types of traps at 36 Hardwood Ecosystem Experiment (Indiana...
Dutch elm disease pathogen transmission by the banded elm bark beetle Scolytus schevyrewi
W. R. Jacobi; R. D. Koski; J. F. Negron
2013-01-01
Dutch Elm Disease (DED) is a vascular wilt disease of Ulmus species (elms) incited in North America primarily by the exotic fungus Ophiostoma novo-ulmi. The pathogen is transmitted via root grafts and elm bark beetle vectors, including the native North American elm bark beetle, Hylurgopinus rufipes and the exotic smaller European elm bark beetle, Scolytus multistriatus...
Mountain pine beetle attack in ponderosa pine: Comparing methods for rating susceptibility
David C. Chojnacky; Barbara J. Bentz; Jesse A. Logan
2000-01-01
Two empirical methods for rating susceptibility of mountain pine beetle attack in ponderosa pine were evaluated. The methods were compared to stand data modeled to objectively rate each sampled stand for susceptibly to bark-beetle attack. Data on bark-beetle attacks, from a survey of 45 sites throughout the Colorado Plateau, were modeled using logistic regression to...
Torto, Baldwyn; Boucias, Drion G; Arbogast, Richard T; Tumlinson, James H; Teal, Peter E A
2007-05-15
Colony defense by honey bees, Apis mellifera, is associated with stinging and mass attack, fueled by the release of alarm pheromones. Thus, alarm pheromones are critically important to survival of honey bee colonies. Here we report that in the parasitic relationship between the European honey bee and the small hive beetle, Aethina tumida, the honey bee's alarm pheromones serve a negative function because they are potent attractants for the beetle. Furthermore, we discovered that the beetles from both Africa and the United States vector a strain of Kodamaea ohmeri yeast, which produces these same honey bee alarm pheromones when grown on pollen in hives. The beetle is not a pest of African honey bees because African bees have evolved effective methods to mitigate beetle infestation. However, European honey bees, faced with disease and pest management stresses different from those experienced by African bees, are unable to effectively inhibit beetle infestation. Therefore, the environment of the European honey bee colony provides optimal conditions to promote the unique bee-beetle-yeast-pollen multitrophic interaction that facilitates effective infestation of hives at the expense of the European honey bee.
Chemical Strategies of the Beetle Metoecus Paradoxus, Social Parasite of the Wasp Vespula Vulgaris.
Van Oystaeyen, Annette; van Zweden, Jelle S; Huyghe, Hilde; Drijfhout, Falko; Bonckaert, Wim; Wenseleers, Tom
2015-12-01
The parasitoid beetle Metoecus paradoxus frequently parasitizes colonies of the common wasp, Vespula vulgaris. It penetrates a host colony as a larva that attaches itself onto a foraging wasp's body and, once inside the nest, it feeds on a wasp larva inside a brood cell and then pupates. Avoiding detection by the wasp host is crucial when the beetle emerges. Here, we tested whether adult M. paradoxus beetles avoid detection by mimicking the cuticular hydrocarbon profile of their host. The beetles appear to be chemically adapted to their main host species, the common wasp, because they share more hydrocarbon compounds with it than they do with the related German wasp, V. germanica. In addition, aggression tests showed that adult beetles were attacked less by common wasp workers than by German wasp workers. Our results further indicated that the host-specific compounds were, at least partially, produced through recycling of the prey's hydrocarbons, and were not acquired through contact with the adult host. Moreover, the chemical profile of the beetles shows overproduction of the wasp queen pheromone, nonacosane (n-C29), suggesting that beetles might mimic the queen's pheromonal bouquet.
Puckett, Sarah L.; van Riper, Charles
2014-01-01
We examined the effects of a biologic control agent, the tamarisk leaf beetle (Diorhabda carinulata), on native avifauna in southwestern Colorado, specifically, addressing whether and to what degree birds eat tamarisk leaf beetles. In 2010, we documented avian foraging behavior, characterized the arthropod community, sampled bird diets, and undertook an experiment to determine whether tamarisk leaf beetles are palatable to birds. We observed that tamarisk leaf beetles compose 24.0 percent (95-percent-confidence interval, 19.9-27.4 percent) and 35.4 percent (95-percent-confidence interval, 32.4-45.1 percent) of arthropod abundance and biomass in the study area, respectively. Birds ate few tamarisk leaf beetles, despite a superabundance of D. carinulata in the environment. The frequency of occurrence of tamarisk leaf beetles in bird diets was 2.1 percent (95-percent-confidence interval, 1.3- 2.9 percent) by abundance and 3.4 percent (95-percent-confidence interval, 2.6-4.2 percent) by biomass. Thus, tamarisk leaf beetles probably do not contribute significantly to the diets of birds in areas where biologic control of tamarisk is being applied.
Tiger beetles pursue prey using a proportional control law with a delay of one half-stride.
Haselsteiner, Andreas F; Gilbert, Cole; Wang, Z Jane
2014-06-06
Tiger beetles are fast diurnal predators capable of chasing prey under closed-loop visual guidance. We investigated this control system using statistical analyses of high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Correlation analyses reveal that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The proportionality coefficient or system gain, 12 s(-1), is just below critical damping. Pursuit simulations using the derived control law predict angular orientation during pursuits with a residual error of about 7°. This is of the same order of magnitude as the oscillation imposed by the beetle's alternating tripod gait, which was not factored into the control law. The system delay of 28 ms equals a half-stride period, i.e. the time between the touch down of alternating tripods. Based on these results, we propose a physical interpretation of the observed control law: to turn towards its prey, the beetle on average exerts a sideways force proportional to the angular position of the prey measured a half-stride earlier.
Experimental porcine cysticercosis using infected beetles with Taenia solium eggs.
Gomez-Puerta, Luis A; Garcia, Hector H; Gonzalez, Armando E
2018-07-01
Beetles are intermediate hosts for human and animal parasites, and several beetle species have been shown to carry Taenia eggs. An experimental porcine cysticercosis infection model was developed using beetles (Ammophorus rubripes) infected with Taenia solium eggs and then using these beetles for oral pig challenge. A total of 18 three months-old Landrace pigs were divided in four groups. Pigs from groups 1, 2, and 3 (n = 6 pigs per group) were challenged with one, three, and six beetles infected with T. solium eggs, containing approximately 52, 156 or 312 eggs respectively. Pigs were necropsied 12 weeks after infection to assess the presence of T. solium metacestode. Porcine cysticercosis by T. solium was produced in 17 out of 18 pigs (94.4%) challenged with infected beetles, all infected pigs had viable cysts. Only one pig from group 1 was negative to the presence of cysts. The median number of metacestodes per pig in groups 1, 2, and 3 were 2 (range 0-71), 26 (range 5-33) and 40 cysts (range 4-111), respectively. Experimental porcine cysticercosis infection is consistently obtained using beetles as mechanical vectors for T. solium eggs. Copyright © 2018 Elsevier B.V. All rights reserved.
Anemomenotatic orientation in beetles and scorpions
NASA Technical Reports Server (NTRS)
Linsenmair, K. E.
1972-01-01
Orientation, by beetles and scorpions, according to wind direction and force are analyzed. Major efforts were made to determine: (1) which physical qualities of the air current influence anemomenotaxis, (2) which physiological mechanism is responsible for such orientation, (3) which sense organs do beetles and scorpions use to perceive wind directions, and (4) what the biological significance of anemomenotaxis in the beetle and scorpion is. Experimental results show that the trichobothria in scorpions perceives wind direction; in the beetle it is perceived by sense organs excited by pendicellus-flagellum joint movements. A compensation mechanism is suggested as the basis for anemomenotactic orientation. It was also suggested that the biological significance of anemomenotaxis in scorpions is space orientation; while in beetles it was found to be part of the appetitive behavior used to search for olfactory sign stimuli.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-1... other State. Japanese beetle. The live insect known as the Japanese beetle (Popillia japonica Newm.) in...
Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles
2010-01-01
Background In the Namib Desert fog represents an alternative water source. This is utilised by Darkling beetles (Tenebrionidae) that employ different strategies for obtaining the fog water. Some dig trenches in the sand, while others use their own bodies as fog collectors assuming a characteristic fog-basking stance. Two beetle species from the genus Onymacris have been observed to fog-bask on the ridges of the sand dunes. These beetles all have smooth elytra surfaces, while another species with elytra covered in bumps is reported to have specialised adaptations facilitating water capture by fog-basking. To resolve if these other beetles also fog-bask, and if an elytra covered in bumps is a more efficient fog water collector than a smooth one, we examined four Namib Desert beetles; the smooth Onymacris unguicularis and O. laeviceps and the bumpy Stenocara gracilipes and Physasterna cribripes. Here we describe the beetles' fog-basking behaviour, the details of their elytra structures, and determine how efficient their dorsal surface areas are at harvesting water from fog. Results The beetles differ greatly in size. The largest P. cribripes has a dorsal surface area that is 1.39, 1.56, and 2.52 times larger than O. unguicularis, O. laeviceps, and S. gracilipes, respectively. In accordance with earlier reports, we found that the second largest O. unguicularis is the only one of the four beetles that assumes the head standing fog-basking behaviour, and that fog is necessary to trigger this behaviour. No differences were seen in the absolute amounts of fog water collected on the dorsal surface areas of the different beetles. However, data corrected according to the sizes of the beetles revealed differences. The better fog water harvesters were S. gracilipes and O. unguicularis while the large P. cribripes was the poorest. Examination of the elytra microstructures showed clear structural differences, but the elytra of all beetles were found to be completely hydrophobic. Conclusions The differences in fog water harvesting efficiency by the dorsal surface areas of beetles with very different elytra surface structures were minor. We therefore conclude that the fog-basking behaviour itself is a more important factor than structural adaptations when O. unguicularis collect water from fog. PMID:20637085
Occurrence of gum spots in black cherry after partial harvest cutting
Charles O. Rexrode; H. Clay Smith; H. Clay Smith
1990-01-01
Bark beetles, primarily the bark beetle Phlosotribus liminori (Harris), are the major cause of gum spots in sawtimber-size black cherry Prunus serotina Ehrh. Approximately 90 percent of all gum spots in the bole sections are caused by bark beetles. Gum spots were studied in 95 black cherry trees near Parsons, West Virginia. Over 50 percent of the bark beetle-caused gum...
USDA-ARS?s Scientific Manuscript database
We evaluated the 24h contact toxicity of lambda-cyhalothrin for adult Asian longhorned beetle, Anoplophora glabripennis Motschulsky, using topical application. Results showed that beetles are sensitive to lambda-cyhalothrin: the LD50 and LD90 were 0.13639 and 0.78461µg/beetle, respectively. Residual...
Jose F. Negron; John B. Popp
2017-01-01
1) Bark beetles (Coleoptera: Curculionidae: Scolytinae) can cause extensive tree mortality in forests dominated by their hosts. Among these, the spruce beetle (Dendroctonus rufipennis) is one of the most important beetles in western North America causing Engelmann spruce (Picea engelmannii) tree mortality. 2) Although pheromone traps with attractants are commonly used...
John C. Moser; Bobbe A. Fitzgibbon; Kier D. Klepzig
2005-01-01
The Mexican pine beetle (XPB) Dendroctonus mexicanus, is recorded here for the first time as a new introduction for the United States (US). Individuals of XPB and its sibling species, the southern pine beetle (SPB) Dendroctonus frontalis, were found infesting the same logs of Chihuahua pine, Pinus...
Predicting live and dead basal area in bark beetle-affected forests from discrete-return LiDAR
Andrew T. Hudak; Ben Bright; Jose Negron; Robert McGaughey; Hans-Erik Andersen; Jeffrey A. Hicke
2012-01-01
Recent bark beetle outbreaks in western North America have been widespread and severe. High tree mortality due to bark beetles affects the fundamental ecosystem processes of primary production and decomposition that largely determine carbon balance (Kurz et al. 2008, Pfeifer et al. 2011, Hicke et al. 2012). Forest managers need accurate data on beetle-induced tree...
Jane L. Hayes; Jacqueline L. Robertson
1992-01-01
The Proceedings reports the results of a workshop focusing on the topic of bark beetle genetics. The workshop evolved because of the growing interest in this relatively unexplored area of bark beetle research. Workshop participants submitted brief descriptions of their views of the current status of bark beetle genetic research and needs for the future. Contributions...
Scott Horn; Michael Ulyshen
2009-01-01
We used pitfall traps to sample ground beetles on sandbars along a small woodland stream and in the adjacent floodplain forest (Oglethorpe Co., GA, USA). We captured a total of 1,477 ground beetles representing 41 species. Twenty-two species were exclusive to sandbars, while eight were found only in the forested habitat. Ground beetles were captured in significantly...
Field test of lindane against overwintering broods of the western pine beetle
Robert L. Lyon; Kenneth M. Swain
1968-01-01
The insecticide lindane, applied on bark any time of the year, can effectively destroy broods of the western pine beetle. It may also be effective the year round on the mountain pine beetle, the California five-spined ips, and probably other California species of bark beetles. In tests on the Sierra National Forest, lindane sprays formulated at 1.5 percent...
John T. Nowak; James R. Meeker; David R. Coyle; Chris A. Steiner; Cavell Brownie
2015-01-01
Since 2003, the Southern Pine Beetle Prevention Program (SPBPP) (a joint effort of the USDA Forest Service and Southern Group of State Foresters) has encouraged and provided cost-share assistance for silvicultural treatments to reduce stand/forest susceptibility to the southern pine beetle (SPB)(Dendroctonus frontalis Zimmermann) in the southeastern United States....
John C. Moser; B. Kielczewski; J. Wisniewski; S. Balazy
1978-01-01
Populations of Pyemotes dryas (Vitzthum 1923) from Poland were bioassayed for potential use in the biological control of the southern pine beetle in the United States. The mite apparently rides and attacks a wide range of European bark beetles that attack conifers and readily consumes brood of the southern pine beetle. However, it is not phoretic on...
Influence of shifting cultivation practices on soil-plant-beetle interactions.
Ibrahim, Kalibulla Syed; Momin, Marcy D; Lalrotluanga, R; Rosangliana, David; Ghatak, Souvik; Zothansanga, R; Kumar, Nachimuthu Senthil; Gurusubramanian, Guruswami
2016-08-01
Shifting cultivation (jhum) is a major land use practice in Mizoram. It was considered as an eco-friendly and efficient method when the cycle duration was long (15-30 years), but it poses the problem of land degradation and threat to ecology when shortened (4-5 years) due to increased intensification of farming systems. Studying beetle community structure is very helpful in understanding how shifting cultivation affects the biodiversity features compared to natural forest system. The present study examines the beetle species diversity and estimates the effects of shifting cultivation practices on the beetle assemblages in relation to change in tree species composition and soil nutrients. Scarabaeidae and Carabidae were observed to be the dominant families in the land use systems studied. Shifting cultivation practice significantly (P < 0.05) affected the beetle and tree species diversity as well as the soil nutrients as shown by univariate (one-way analysis of variance (ANOVA), correlation and regression, diversity indices) and multivariate (cluster analysis, principal component analysis (PCA), detrended correspondence analysis (DCA), canonical variate analysis (CVA), permutational multivariate analysis of variance (PERMANOVA), permutational multivariate analysis of dispersion (PERMDISP)) statistical analyses. Besides changing the tree species composition and affecting the soil fertility, shifting cultivation provides less suitable habitat conditions for the beetle species. Bioindicator analysis categorized the beetle species into forest specialists, anthropogenic specialists (shifting cultivation habitat specialist), and habitat generalists. Molecular analysis of bioindicator beetle species was done using mitochondrial cytochrome oxidase subunit I (COI) marker to validate the beetle species and describe genetic variation among them in relation to heterogeneity, transition/transversion bias, codon usage bias, evolutionary distance, and substitution pattern. The present study revealed the fact that shifting cultivation practice significantly affects the beetle species in terms of biodiversity pattern as well as evolutionary features. Spatiotemporal assessment of soil-plant-beetle interactions in shifting cultivation system and their influence in land degradation and ecology will be helpful in making biodiversity conservation decisions in the near future.
Meng, Ling-Zeng; Martin, Konrad; Weigel, Andreas; Yang, Xiao-Dong
2013-01-01
Cerambycidae) have been used to identify sites of high biological diversity and conservation value in cultivated landscapes, but were rarely studied in changing landscapes of humid tropics. This study was conducted in a region of southern Yunnan, China, which was dominated by natural rainforest until 30 years ago, but is successively transformed into commercial rubber monoculture plantations since that time. The objectives were to investigate longhorn beetle species diversity and distribution in the major land use types of this landscape and to estimate the effects of an expected expansion of rubber plantations on the longhorn beetle assemblages. The results showed that tree species diversity (181 species in total) and longhorn beetle diversity (220 species in total) were closely related with no significant differences between the tree and longhorn beetles assemblages shown by similarity distance analysis. There was a highly positive relationship between the estimated species richness of longhorn beetles and the number of tree species. Individual numbers of longhorn beetles and trees were also highly positive related at the sampling sites. Non-metric multidimensional scaling revealed that the degree of canopy coverage, succession age and tree diversity explained 78.5% of the total variation in longhorn beetle assemblage composition. Natural forest sites had significantly higher numbers of species and individuals than any other type of habitat. Although young rubber plantations bear the highest longhorn beetle diversity outside forests (half of the total number of longhorn beetle species recorded in total), they can not provide permanent habitats for most of these species, because they develop into closed canopy plantations with less suitable habitat conditions. Therefore, along with an expected expansion of rubber cultivation which largely proceeds at the expense of forest areas, the habitat conditions for longhorn beetles in this region might decrease dramatically in future.
Age and aggregation trigger mating behaviour in the small hive beetle, Aethina tumida (Nitidulidae)
NASA Astrophysics Data System (ADS)
Mustafa, Sandra G.; Spooner-Hart, Robert; Duncan, Michael; Pettis, Jeffery S.; Steidle, Johannes L. M.; Rosenkranz, Peter
2015-10-01
This study aimed to investigate the poorly documented reproductive behaviour of the small hive beetle, Aethina tumida (Nitidulidae), a honey bee ( Apis mellifera) parasite. We described the mating behaviour in detail and tested the hypothesis that beetle aggregation plays a vital role in mating in this species. Gender preference was examined in the context of age-dependency and possible chemical communication. Beetles started mating at a high frequency 18 days after emergence from the soil but only if they were aggregated ( p < 0.001); mating was infrequent when beetles were paired. Males in aggregation also tried to copulate with males and only copulated more frequently with females at 18 days after emergence from soil ( p < 0.001) in contrast to newly emerged, 7-day-old and 60-day-old beetles. Males and females spent more time in social contact with the opposite sex ( p < 0.01) when they were 18 days old in contrast to 7-day-old beetles. Filter papers which had been in contact with 21-day-old beetles were highly attractive to similar-aged beetles of the opposite sex ( p < 0.01). This suggests that chemical substances produced by the beetles themselves play a role in mating. Mating behaviour was characterised by a short pre-copulation courtship and female aggression towards other females and copulating couples. Both behaviours may be indicative of cryptic female choice. Delayed onset of reproductive behaviour is typical of many polygamous species, whilst the indispensability of aggregation for onset of sexual behaviour seems to be a feature unique to A. tumida. Both strategies support mass reproduction in this parasitic species, enabling A. tumida to overcome its honey bee host colony, and are probably triggered by chemotactic cues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Lehman
Ground beetles such as Poecilus chalcites (Coleoptera: Carabidae) are beneficial insects in agricultural systems where they contribute to the control of insect and weed pests. We assessed the complexity of bacterial communities occurring in the digestive tracts of field-collected P. chalcites using terminal restriction fragment length polymorphism analyses of polymerase chain reaction-amplified 16S rRNA genes. Bacterial identification was performed by the construction of 16S rRNA gene clone libraries and sequence analysis. Intestinal bacteria in field-collected beetles were then compared to those from groups of beetles that were reared in the lab on an artificial diet with and without antibiotics. Directmore » cell counts estimated 1.5 × 10S bacteria per milliliter of gut. The digestive tract of field-collected P. chalcites produced an average of 4.8 terminal restriction fragments (tRF) for each beetle. The most abundant clones were affiliated with the genus Lactobacillus, followed by the taxa Enterobacteriaceae, Clostridia, and Bacteriodetes. The majority of the sequences recovered were closely related to those reported from other insect gastrointestinal tracts. Lab-reared beetles produced fewer tRF, an average of 3.1 per beetle, and a reduced number of taxa with a higher number of clones from the family Enterobacteriaceae compared to the field-collected beetles. Antibiotic treatment significantly (p < 0.05) reduced the number of tRF per beetle and selected for a less diverse set of bacterial taxa. We conclude that the digestive tract of P. chalcites is colonized by a simple community of bacteria that possess autochthonous characteristics. Laboratory-reared beetles harbored the most common bacteria found in field-collected beetles, and these bacterial communities may be manipulated in the laboratory with the addition of antibiotics to the diet to allow study of functional roles.« less
Evans, Edward W; Carlile, Nolan R; Innes, Matthew B; Pitigala, Nadishan
2014-02-01
Scouting at key times in the seasonal development of insect pest populations, as guided by degree-day accumulation, is important for minimizing unwarranted insecticide application. Fields of small grains in northern Utah were censused weekly from 2001 to 2011, to assess infestation by the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae), and develop degree-day guidelines for measuring cereal leaf beetle abundance at peak egg and larval densities in any given year. Even in years of high overall numbers of cereal leaf beetle, relatively few fields were heavily infested (with 20 or more cereal leaf beetle eggs + larvae per 0.09 m2) at either egg or larval peak density during the growing season. In individual fields, the number of immature cereal leaf beetle (eggs + larvae) at peak larval density was positively related to the number of immature cereal leaf beetles present earlier at peak egg density. Although there was large variation among years in when cereal leaf beetle egg and larval numbers peaked during the season as measured by degree-day accumulation from 1 January, much of this variation was accounted for by the warmth of the early spring before significant egg laying occurred. Hence, degree-day estimates that account for early spring warmth can guide growers in scouting grain fields at peak egg densities to identify fields at high risk of subsequent economic damage from cereal leaf beetle larval feeding. The relatively low incidence of fields heavily infested by cereal leaf beetle in northern Utah emphasizes the benefit that growers can gain by scouting early before applying insecticide treatments.
Damaška, Albert; Konstantinov, Alexander
2016-04-29
Moss cushions represent an interesting, but poorly understood habitat, which hosts many species of flea beetles (Coleoptera: Chrysomelidae: Galerucinae: Alticini). However, the diversity of moss-inhabiting flea beetles is not well studied, and collecting in tropical and subtropical locations that were not sampled in the past led to the discovery of many new species (Konstantinov et al. 2013). Here, a new species of a moss-inhabiting flea beetle from the genus Cangshanaltica Konstantinov et al. 2013 is described and illustrated. This genus is one of the recently described moss-inhabiting flea beetle genera and before this study, only one species was known (Konstantinov et al., 2013). This publication raises the number of flea beetle species that are known to occur in moss cushions around the world to 30, distributed among 15 genera.
Effects of Japanese beetle (Coleoptera: Scarabaeidae) and silk clipping in field corn.
Steckel, Sandy; Stewart, S D; Tindall, K V
2013-10-01
Japanese beetle (Popillia japonica Newman) is an emerging silk-feeding insect found in fields in the lower Corn Belt and Midsouthern United States. Studies were conducted in 2010 and 2011 to evaluate how silk clipping in corn affects pollination and yield parameters. Manually clipping silks once daily had modest effects on yield parameters. Sustained clipping by either manually clipping silks three times per day or by caging Japanese beetles onto ears affected total kernel weight if it occurred during early silking (R1 growth stage). Manually clipping silks three times per day for the first 5 d of silking affected the number of kernels per ear, total kernel weight, and the weight of individual kernels. Caged beetles fed on silks and, depending on the number of beetles caged per ear, reduced the number of kernels per ear. Caging eight beetles per ear significantly reduced total kernel weight compared with noninfested ears. Drought stress before anthesis appeared to magnify the impact of silk clipping by Japanese beetles. There was evidence of some compensation for reduced pollination by increasing the size of pollinated kernels within the ear. Our results showed that it requires sustained silk clipping during the first week of silking to have substantial impacts on pollination and yield parameters, at least under good growing conditions. Some states recommend treating for Japanese beetle when three Japanese beetles per ear are found, silks are clipped to < 13 mm, and pollination is < 50% complete, and that recommendation appears to be adequate.
Bardgett, Richard D.; Louzada, Julio; Barlow, Jos
2016-01-01
Anthropogenic activities are causing species extinctions, raising concerns about the consequences of changing biological communities for ecosystem functioning. To address this, we investigated how dung beetle communities influence seed burial and seedling recruitment in the Brazilian Amazon. First, we conducted a burial and retrieval experiment using seed mimics. We found that dung beetle biomass had a stronger positive effect on the burial of large than small beads, suggesting that anthropogenic reductions in large-bodied beetles will have the greatest effect on the secondary dispersal of large-seeded plant species. Second, we established mesocosm experiments in which dung beetle communities buried Myrciaria dubia seeds to examine plant emergence and survival. Contrary to expectations, we found that beetle diversity and biomass negatively influenced seedling emergence, but positively affected the survival of seedlings that emerged. Finally, we conducted germination trials to establish the optimum burial depth of experimental seeds, revealing a negative relationship between burial depth and seedling emergence success. Our results provide novel evidence that seed burial by dung beetles may be detrimental for the emergence of some seed species. However, we also detected positive impacts of beetle activity on seedling recruitment, which are probably because of their influence on soil properties. Overall, this study provides new evidence that anthropogenic impacts on dung beetle communities could influence the structure of tropical forests; in particular, their capacity to regenerate and continue to provide valuable functions and services. PMID:27928036
Griffiths, Hannah M; Bardgett, Richard D; Louzada, Julio; Barlow, Jos
2016-12-14
Anthropogenic activities are causing species extinctions, raising concerns about the consequences of changing biological communities for ecosystem functioning. To address this, we investigated how dung beetle communities influence seed burial and seedling recruitment in the Brazilian Amazon. First, we conducted a burial and retrieval experiment using seed mimics. We found that dung beetle biomass had a stronger positive effect on the burial of large than small beads, suggesting that anthropogenic reductions in large-bodied beetles will have the greatest effect on the secondary dispersal of large-seeded plant species. Second, we established mesocosm experiments in which dung beetle communities buried Myrciaria dubia seeds to examine plant emergence and survival. Contrary to expectations, we found that beetle diversity and biomass negatively influenced seedling emergence, but positively affected the survival of seedlings that emerged. Finally, we conducted germination trials to establish the optimum burial depth of experimental seeds, revealing a negative relationship between burial depth and seedling emergence success. Our results provide novel evidence that seed burial by dung beetles may be detrimental for the emergence of some seed species. However, we also detected positive impacts of beetle activity on seedling recruitment, which are probably because of their influence on soil properties. Overall, this study provides new evidence that anthropogenic impacts on dung beetle communities could influence the structure of tropical forests; in particular, their capacity to regenerate and continue to provide valuable functions and services. © 2016 The Author(s).
Taft, Spencer; Najar, Ahmed; Erbilgin, Nadir
2015-06-01
The secondary chemistry of host plants can have cascading impacts on the establishment of new insect herbivore populations, their long-term population dynamics, and their invasion potential in novel habitats. Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae) has recently expanded its range into forests of jack pine, Pinus banksiana Lamb., in western Canada. We investigated whether variations in jack pine monoterpenes affect beetle pheromone production, as the primary components of the beetle's aggregation pheromone, (-)-trans-verbenol and anti-aggregation pheromone (-)-verbenone, are biosynthesized from the host monoterpene α-pinene. Jack pine bolts were collected from five Canadian provinces east of the beetle's current range, live D. ponderosae were introduced into them, and their monoterpene compositions were characterized. Production of (-)-trans-verbenol and (-)-verbenone emitted by beetles was measured to determine whether pheromone production varies with monoterpene composition of jack pines. Depending on particular ratios of major monoterpenes in host phloem, jack pine could be classified into three monoterpenoid groups characterized by high amounts of (+)-α-pinene, 3-carene, or a more moderate blend of monoterpenes, and beetle pheromone production varied among these groups. Specifically, beetles reared in trees characterized by high (+)-α-pinene produced the most (-)-trans-verbenol and (-)-verbenone, while beetles in trees characterized by high 3-carene produced the least. Our results indicate that pheromone production by D. ponderosae will remain a significant aspect and important predictor of its survival and persistence in the boreal forest.
Reid, Mary L; Sekhon, Jagdeep K; LaFramboise, Lanielle M
2017-04-01
A high diversity of plant defenses may be a response to herbivore diversity or may be collectively more toxic than single compounds, either of which may be important for understanding insect-plant associations. Monoterpenes in conifers are particularly diverse. We tested the fumigant toxicity of four monoterpenes, alone and in combination, to mountain pine beetles, Dendroctonus ponderosae, in the context of the beetles' individual body traits. Chemical structures of tested monoterpene hydrocarbons had modest effects on beetle survival, mass loss, water content and fat content, with (R)-(+)-limonene tending to be more toxic than (-)-α-pinene, (-)-β-pinene, and (+)-3-carene. Monoterpene diversity (all qualitative combinations of one to four monoterpenes) did not affect toxicity. Concentration (0 to 1200 ppm) of individual monoterpenes was a strong determinant of toxicity. Beetle body size and body condition index strongly and positively affected survival during monoterpene treatments. Larger beetles in better condition lost proportionally less mass during exposure, where proportion mass loss negatively affected survivorship. Toxicity was much more associated with water loss than with fat loss, suggesting that a main cost of detoxification is excretion, a process that has received little attention. These results provide insight into the determinants of beetle success in historic and novel hosts that differ in monoterpene composition and concentration. We also suggest that water availability will affect beetle success directly through their ability to tolerate detoxification as well as indirectly through host responses to drought.
Andrew J. McMahan; Alan A. Ager; Helen Maffei; Jane L. Hayes; Eric L. Smith
2008-01-01
The Westwide Pine Beetle Model and the Fire and Fuels Extension were used to simulate a mountain pine beetle outbreak under different fuel treatment scenarios on a 173,000 acre landscape on the Deschutes National Forest. The goal was to use these models within ArcFuels to analyze the interacting impacts of bark beetles and management activities on landscape fuel...
Sheryl L. Costello; William R. Jacobi; Jose F. Negron
2013-01-01
Wood borers (Coleoptera: Cerambycidae and Buprestidae) and bark beetles (Coleoptera: Curculionidae) infest ponderosa pines, Pinus ponderosa P. Lawson and C. Lawson, killed by mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, and fire. No data is available comparing wood borer and bark beetle densities or species guilds associated with MPB-killed or fire-...
Chemical ecology and behavioral studies on the emerald ash borer: an update
Deepa Pureswaran; Therese Poland
2008-01-01
In 2006, we tested host selection and feeding preference of the emerald ash borer (EAB) on four species of ash species (green, black, white, and blue ash) that are native to North America but exotic to the beetle. For comparison, we also included Manchurian ash (which is native to the beetle) and European ash (which is exotic to the beetle) in the test. Beetles were...
R. Justin DeRose; James N. Long
2012-01-01
Host conditions are known to influence spruce beetle population levels, but whether they influence the spatial and temporal patterns of beetle-caused mortality during an outbreak is unknown. Using dendrochronological techniques, we quantified the spatiotemporal dynamics of a modern (late 1980s through the early 2000s) spruce beetle outbreak in Engelmann spruce on the...
Frelik, Anna; Pakulnicka, Joanna
2015-10-01
This paper investigates the relations between the diet structure of predaceous adult water beetles from the Dytiscidae family and the structure of macrofauna inhabiting the same environments. The field studies were carried out from April until September in 2012 and 2013 in 1-mo intervals. In total, >1,000 water beetles and 5,115 benthic macro-invertebrates were collected during the whole period of the study. Subsequently, 784 specimens of adult water beetles (70.6% out of the total sampled) with benthic macro-invertebrates found in their proventriculi, were subject to analysis. The predators were divided into three categories depending on their body size: small beetles (2.3-5.0 mm), medium-sized beetles (13-15 mm), and large beetles (27-37 mm). All adult Dytiscidae consumed primarily Ephemeroptera and Chironomidae larvae. Although Asellidae were numerically dominant inhabitants of the sites, the adult water beetles did not feed on them. The analysis of feeding relations between predators and their prey revealed that abundance of Ephemeroptera, Chironomidae, and larval Dytiscidae between the environment and the diet of adult Dytiscidae were strongly correlated. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tiger beetles pursue prey using a proportional control law with a delay of one half-stride
Haselsteiner, Andreas F.; Gilbert, Cole; Wang, Z. Jane
2014-01-01
Tiger beetles are fast diurnal predators capable of chasing prey under closed-loop visual guidance. We investigated this control system using statistical analyses of high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Correlation analyses reveal that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The proportionality coefficient or system gain, 12 s−1, is just below critical damping. Pursuit simulations using the derived control law predict angular orientation during pursuits with a residual error of about 7°. This is of the same order of magnitude as the oscillation imposed by the beetle's alternating tripod gait, which was not factored into the control law. The system delay of 28 ms equals a half-stride period, i.e. the time between the touch down of alternating tripods. Based on these results, we propose a physical interpretation of the observed control law: to turn towards its prey, the beetle on average exerts a sideways force proportional to the angular position of the prey measured a half-stride earlier. PMID:24718454
Gomez-Puerta, Luis Antonio; Lopez-Urbina, Maria Teresa; Garcia, Hector Hugo; Gonzalez, Armando Emiliano
2015-01-01
The present study evaluated the capacity of Ammophorus rubripes beetles to carry Taenia solium eggs, in terms of duration and viability of eggs in their digestive system. One hundred beetles were distributed into five polyethylene boxes, and then they were infected with T. solium eggs. Gravid proglottids of T. solium were crushed and then mixed with cattle feces. One gram of this mixture was placed in each box for 24 hours, after which each group of beetles was transferred into a new clean box. Then, five beetles were dissected every three days. Time was strongly associated with viability (r=0.89; P<0.001) and the calculated time to cero viability is 36 days. The eggs in the intestinal system of each beetle were counted and tested for viability. Taenia solium eggs were present in the beetle’s digestive system for up to 39 days (13th sampling day out of 20), gradually reducing in numbers and viability, which was 0 on day 36 post-infection. Egg viability was around 40% up to day 24 post-infection, with a median number of eggs of 11 per beetle at this time. Dung beetles may potentially contribute towards dispersing T. solium eggs in endemic areas. PMID:24728368
Ramle, M; Wahid, M B; Norman, K; Glare, T R; Jackson, T A
2005-05-01
The rhinoceros beetle, Oryctes rhinoceros, has emerged as a serious pest of oil palm since the prohibition of burning as a method for maintaining estate hygiene in the 1990s. The abundance of beetles is surprising given that the Malay peninsula was the site of first discovery of the Oryctes virus, which has been used to effect good as a biological control agent in other regions. A survey of adult beetles was carried out throughout Malaysia using pheromone traps. Captured beetles were examined for presence of virus using both visual/microscopic examination and PCR detection methods. The survey indicated that Oryctes virus was common in Malaysia among the adult beetles. Viral DNA analysis was carried out after restriction with HindIII enzyme and indicated at least three distinct viral genotypes. Bioassays were used to compare the viral strains and demonstrate that one strain (type B) is the most virulent against both larvae and adults of the beetle. Virus type B has been cultured and released into healthy populations where another strain (type A) forms the natural background. Capture and examination of beetles from the release site and surrounding area has shown that the spread and persistence of the applied virus strain is accompanied by a reduction in palm frond damage.
Spafford, Helen; Ching, Alexander; Manley, Megan; Hardin, Chelsea; Bittenbender, Harry
2016-01-01
The Chinese rose beetle (Adoretus sinicus Burmeister (Coleoptera: Scarabaeidae)) is an introduced, widely-established pest in Hawai’i. The adult beetles feed on the leaves of cacao (Theobroma cacao L.), which can lead to defoliation and even death of young trees. We evaluated the impact of five commercially available products with different active ingredients (imidacloprid, azadirachtin, Beauveria bassiana (Bals.-Criv.) Vuill., kaolin clay, and pyrethrin) and the presence or absence of weed mat cover in reducing adult beetle feeding on sapling cacao in the field. The use of weed mat cover reduced feeding damage compared to the untreated control, as did foliar application of imidacloprid, azadirachtin, and B. bassiana. In the laboratory, field-collected adult beetles were presented cacao leaf samples dipped in one of the five products and compared to a control. Beetles exposed to pyrethrin died rapidly. Among the other treatments, only exposure to imidacloprid significantly reduced survival relative to the control. Beetles fed very little on leaf samples with azadirachtin but their longevity was not significantly reduced. Imidacloprid, azadirachtin, and weed mat application had the most promise for reducing adult Chinese rose beetle feeding damage in young cacao and deserve further investigation for successful management of this significant pest. PMID:27348004
Peng, C; Weiss, M J
1992-06-01
Laboratory olfactometer bioassays and field trapping experiments showed that the flea beetle,Phyllotreta cruciferae (Goeze), was highly attracted by oilseed rape(Brassica napus L.) when flea beetles were on the plant. This attraction was mediated by a flea beetle-produced aggregation pheromone based upon: (1) Oilseed rape damaged mechanically, or byP. cruciferae, or by diamondback moth,Plutella xylostella (L.), did not attractP. cruciferae. (2) Contact with the plants or feeding was required for the production of aggregation pheromone because oilseed rape alone was not attractive when separated from flea beetles by a screen. (3) Equal numbers of males and females were attracted.
Checklist of leaf beetles (Coleoptera: Chrysomelidae) from the state of Morelos, Mexico.
Niño-Maldonado, Santiago; Sánchez-Reyes, Uriel Jeshua; Clark, Shawn M; Toledo-Hernández, Victor Hugo; Corona-López, Angélica María; Jones, Robert W
2016-03-07
We record 116 genera and 366 species of Chrysomelidae from the state of Morelos, Mexico. This represents an increase of 9.3% in the species richness of these beetles for the state. Also, Morelos is currently the third most diverse state in leaf beetles within Mexico, with 16.78% of total species recorded for the country. The most diverse genera were Calligrapha, Disonycha, Blepharida, Leptinotarsa, Cryptocephalus, Systena, Alagoasa, Diabrotica and Pachybrachis, each with more than eight species. Most of these genera contain large, showy beetles. When the chrysomelid fauna is more fully understood, some of the genera of tiny beetles will likely prove to be more diverse.
Two genera of Aulacoscelinae beetles reflexively bleed azoxyglycosides found in their host cycads.
Prado, Alberto; Ledezma, Julieta; Cubilla-Rios, Luis; Bede, Jacqueline C; Windsor, Donald M
2011-07-01
Aulacoscelinae beetles have an ancient relationship with cycads (Cycadophyta: Zamiaceae), which contain highly toxic azoxyglycoside (AZG) compounds. How these "primitive" leaf beetles deal with such host-derived compounds remains largely unknown. Collections were made of adult Aulacoscelis appendiculata from Zamia cf. elegantissima in Panama, A. vogti from Dioon edule in Mexico, and Janbechynea paradoxa from Zamia boliviana in Bolivia. Total AZG levels were quantified in both cycad leaves and adult beetles by high performance liquid chromatography (HPLC). On average, cycad leaves contained between 0.5-0.8% AZG (frozen weight, FW), while adult beetles feeding on the same leaves contained even higher levels of the compounds (average 0.9-1.5% FW). High AZG levels were isolated from reflex bleeding secreted at the leg joints when beetles were disturbed. Nuclear magnetic resonance and mass spectroscopy identified two AZGs, cycasin and macrozamin, in the reflex bleeding; this is the first account of potentially plant-derived compounds in secretions of the Aulacoscelinae. These data as well as the basal phylogenetic position of the Aulacoscelinae suggest that sequestration of plant secondary metabolites appeared early in leaf beetle evolution.
Spectral information as an orientation cue in dung beetles.
El Jundi, Basil; Foster, James J; Byrne, Marcus J; Baird, Emily; Dacke, Marie
2015-11-01
During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue, green or UV, or when presented with both light cues set 180° apart. When either the UV or the green light was turned off after the beetles had set their bearing in the presence of both cues, they were still able to maintain their original bearing to the remaining light. However, if the beetles were presented with two identical green light spots set 180° apart, their ability to maintain their original bearing was impaired. In summary, our data show that ball-rolling beetles could potentially use the celestial chromatic gradient as a reference for orientation. © 2015 The Author(s).
Biogeochemistry of beetle-killed forests: Explaining a weak nitrate response
Rhoades, Charles C.; McCutchan, James H.; Cooper, Leigh A.; Clow, David; Detmer, Thomas M.; Briggs, Jennifer S.; Stednick, John D.; Veblen, Thomas T.; Ertz, Rachel M.; Likens, Gene E.; Lewis, William M.
2013-01-01
A current pine beetle infestation has caused extensive mortality of lodgepole pine (Pinus contorta) in forests of Colorado and Wyoming; it is part of an unprecedented multispecies beetle outbreak extending from Mexico to Canada. In United States and European watersheds, where atmospheric deposition of inorganic N is moderate to low (<10 kg⋅ha⋅y), disturbance of forests by timber harvest or violent storms causes an increase in stream nitrate concentration that typically is close to 400% of predisturbance concentrations. In contrast, no significant increase in streamwater nitrate concentrations has occurred following extensive tree mortality caused by the mountain pine beetle in Colorado. A model of nitrate release from Colorado watersheds calibrated with field data indicates that stimulation of nitrate uptake by vegetation components unaffected by beetles accounts for significant nitrate retention in beetle-infested watersheds. The combination of low atmospheric N deposition (<10 kg⋅ha⋅y), tree mortality spread over multiple years, and high compensatory capacity associated with undisturbed residual vegetation and soils explains the ability of these beetle-infested watersheds to retain nitrate despite catastrophic mortality of the dominant canopy tree species. PMID:23319612
Behere, G T; Firake, D M; Tay, W T; Azad Thakur, N S; Ngachan, S V
2016-01-01
Ladybird beetles are generally considered as agriculturally beneficial insects, but the ladybird beetles in the coleopteran subfamily Epilachninae are phytophagous and major plant feeding pest species which causes severe economic losses to cucurbitaceous and solanaceous crops. Henosepilachna pusillanima (Mulsant) is one of the important pest species of ladybird beetle. In this report, we sequenced and characterized the complete mitochondrial genome of H. pusillanima. For sequencing of the complete mitochondrial genome, we used the Ion Torrent sequencing platform. The complete circular mitochondrial genome of the H. pusillanima was determined to be 16,216 bp long. There were totally 13 protein coding genes, 22 transfer RNA, 2 ribosomal RNA and a control (A + T-rich) region estimated to be 1690 bp. The gene arrangement and orientations of assembled mitogenome were identical to the reported predatory ladybird beetle Coccinella septempunctata L. This is the first completely sequenced coleopteran mitochondrial genome from the beetle subfamily Epilachninae from India. Data generated in this study will benefit future comparative genomics studies for understanding the evolutionary relationships between predatory and phytophagous coccinellid beetles.
76 FR 7095 - Avocados Grown in South Florida; Increased Assessment Rate
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-09
... Red Bay Ambrosia beetle. The beetle carries the Laurel Wilt fungus which can infect and kill avocado trees. Research into the beetle and fungus had been funded by the University of Florida. However, the...
Natural History of the Southern Pine Beetle
Fred P. Hain; Adrian J. Duehl; Micah J. Gardner; Thomas L. Payne
2011-01-01
The southern pine beetle (SPB) is a tree killer of southern yellow pines. All life stagesâeggs, larvae, pupae, and adultsâinfest the inner bark or phloem tissue of the host tree. Adult beetles overcome the treeâs defenses through a mass-attack phenomenon. They are attracted to the tree by a pheromone system consisting of volatiles produced by the beetles and the host....
McKenna, Duane D; Scully, Erin D; Pauchet, Yannick; Hoover, Kelli; Kirsch, Roy; Geib, Scott M; Mitchell, Robert F; Waterhouse, Robert M; Ahn, Seung-Joon; Arsala, Deanna; Benoit, Joshua B; Blackmon, Heath; Bledsoe, Tiffany; Bowsher, Julia H; Busch, André; Calla, Bernarda; Chao, Hsu; Childers, Anna K; Childers, Christopher; Clarke, Dave J; Cohen, Lorna; Demuth, Jeffery P; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dolan, Amanda; Duan, Jian J; Dugan, Shannon; Friedrich, Markus; Glastad, Karl M; Goodisman, Michael A D; Haddad, Stephanie; Han, Yi; Hughes, Daniel S T; Ioannidis, Panagiotis; Johnston, J Spencer; Jones, Jeffery W; Kuhn, Leslie A; Lance, David R; Lee, Chien-Yueh; Lee, Sandra L; Lin, Han; Lynch, Jeremy A; Moczek, Armin P; Murali, Shwetha C; Muzny, Donna M; Nelson, David R; Palli, Subba R; Panfilio, Kristen A; Pers, Dan; Poelchau, Monica F; Quan, Honghu; Qu, Jiaxin; Ray, Ann M; Rinehart, Joseph P; Robertson, Hugh M; Roehrdanz, Richard; Rosendale, Andrew J; Shin, Seunggwan; Silva, Christian; Torson, Alex S; Jentzsch, Iris M Vargas; Werren, John H; Worley, Kim C; Yocum, George; Zdobnov, Evgeny M; Gibbs, Richard A; Richards, Stephen
2016-11-11
Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.
Truong, Q T; Nguyen, Q V; Truong, V T; Park, H C; Byun, D Y; Goo, N S
2011-09-01
We present an unsteady blade element theory (BET) model to estimate the aerodynamic forces produced by a freely flying beetle and a beetle-mimicking flapping wing system. Added mass and rotational forces are included to accommodate the unsteady force. In addition to the aerodynamic forces needed to accurately estimate the time history of the forces, the inertial forces of the wings are also calculated. All of the force components are considered based on the full three-dimensional (3D) motion of the wing. The result obtained by the present BET model is validated with the data which were presented in a reference paper. The difference between the averages of the estimated forces (lift and drag) and the measured forces in the reference is about 5.7%. The BET model is also used to estimate the force produced by a freely flying beetle and a beetle-mimicking flapping wing system. The wing kinematics used in the BET calculation of a real beetle and the flapping wing system are captured using high-speed cameras. The results show that the average estimated vertical force of the beetle is reasonably close to the weight of the beetle, and the average estimated thrust of the beetle-mimicking flapping wing system is in good agreement with the measured value. Our results show that the unsteady lift and drag coefficients measured by Dickinson et al are still useful for relatively higher Reynolds number cases, and the proposed BET can be a good way to estimate the force produced by a flapping wing system.
Urbański, Arkadiusz; Czarniewska, Elżbieta; Baraniak, Edward; Rosiński, Grzegorz
2017-06-01
Insect overwintering is one of the most astonishing phases of the insect life cycle. Despite vast amounts of knowledge available about the physiological mechanisms of this phenomenon, the impact of stress factors on insect immune system functioning during the winter is still unknown. The aim of this study is to analyze how low temperatures influence the immune system of the beetle Nicrophorus vespilloides. The results show that the beetle's immune system is differently modulated by cold induced in laboratory settings than that which occurs in natural conditions. Among beetles cultured in conditions similar to summer, low temperatures, did not influence the number of circulating haemocytes, phenoloxidase activity, haemocytes morphology, and percentage ratio of haemocyte types. In these beetles, differences were noted only in the ability of haemocytes to perform phagocytosis. Individuals acclimated in natural conditions in autumn had a higher level of humoral response and a different percentage ratio of haemocyte types. During the winter period, the number of haemocytes in the beetles decreased, but the percentage ratio of phagocytic haemocytes increased. Furthermore, we noted an increase of phenoloxidase activity. Our study also showed mitotic divisions of haemocytes in haemolymph collected from burying beetles after cold exposure and from burying beetles collected from natural conditions during autumn and winter. Differences in response to low temperatures in laboratory conditions and the natural environment suggest that the simultaneous presence of other stress factors during winter such as desiccation and starvation have a significant influence on the activity of burying beetle's immune system. © 2016 Institute of Zoology, Chinese Academy of Sciences.
The diversity of beetle assemblages in different habitat types in Sabah, Malaysia.
Chung, A Y; Eggleton, P; Speight, M R; Hammond, P M; Chey, V K
2000-12-01
The diversity of beetle assemblages in different habitat types (primary forest, logged forest, acacia plantation and oil palm plantation) in Sabah, Malaysia was investigated using three different methods based on habitat levels (Winkler sampling, flight-interception-trapping and mist-blowing). The overall diversity was extremely high, with 1711 species recorded from only 8028 individuals and 81 families (115 family and subfamily groups). Different degrees of environmental changes had varying effects on the beetle species richness and abundance, with oil palm plantation assemblage being most severely affected, followed by acacia plantation and then logged forest. A few species became numerically dominant in the oil palm plantation. In terms of beetle species composition, the acacia fauna showed much similarity with the logged forest fauna, and the oil palm fauna was very different from the rest. The effects of environmental variables (number of plant species, sapling and tree densities, amount of leaf litter, ground cover, canopy cover, soil pH and compaction) on the beetle assemblage were also investigated. Leaf litter correlated with species richness, abundance and composition of subterranean beetles. Plant species richness, tree and sapling densities correlated with species richness, abundance and composition of understorey beetles while ground cover correlated only with the species richness and abundance of these beetles. Canopy cover correlated only with arboreal beetles. In trophic structure, predators represented more than 40% of the species and individuals. Environmental changes affected the trophic structure with proportionally more herbivores (abundance) but fewer predators (species richness and abundance) in the oil palm plantation. Biodiversity, conservation and practical aspects of pest management were also highlighted in this study.
Floral transmission of Erwinia tracheiphila by cucumber beetles in a wild Cucurbita pepo.
Sasu, M A; Seidl-Adams, I; Wall, K; Winsor, J A; Stephenson, A G
2010-02-01
Cucumber beetles, Acalymma vittatum (F.) and Diabrotica undecipunctata howardi (Barber), are specialist herbivores of cucurbits and the vector of Erwinia tracheiphila (E.F. Smith) Holland, the causative agent of wilt disease. Cucumber beetles transmit E. tracheiphila when infected frass falls onto leaf wounds at the site of beetle feeding. We show that E. tracheiphila also can be transmitted via the floral nectaries of Cucurbita pepo ssp. texana L. Andres (Texas gourd). Under field conditions, we found that beetles aggregate in flowers in the late morning, that these beetles chew the anther filaments that cover the nectaries in male flowers thereby exposing the nectary, and that beetle frass accumulates on the nectary. We use real-time polymerase chain reaction to show that most of the flowers produced during the late summer possess beetle frass containing E. tracheiphila. Greenhouse experiments, in which cultures of E. tracheiphila are deposited onto floral nectaries, show that Texas gourds can contract wilt disease through the floral nectaries. Finally, we use green fluorescent protein-transformed E. tracheiphila to document the movement of E. tracheiphila through the nectary into the xylem of the pedicel before the abscission of the flower. Together, these data show that E. tracheiphila can be transmitted through infected frass that falls on or near the floral nectaries. We hypothesize that the concentration of frass from many beetles in the flowers increases both exposure to and the concentration of E. tracheiphila and plays a major role in the dynamics of wilt disease in both wild populations and cultivated squash fields.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Asian Longhorned Beetle § 301.51-1 Definitions... Health Inspection Service of the United States Department of Agriculture. Asian longhorned beetle. The insect known as Asian longhorned beetle (Anoplophora glabripennis) in any stage of development...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Asian Longhorned Beetle § 301.51-1 Definitions... Health Inspection Service of the United States Department of Agriculture. Asian longhorned beetle. The insect known as Asian longhorned beetle (Anoplophora glabripennis) in any stage of development...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Asian Longhorned Beetle § 301.51-1 Definitions... Health Inspection Service of the United States Department of Agriculture. Asian longhorned beetle. The insect known as Asian longhorned beetle (Anoplophora glabripennis) in any stage of development...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Asian Longhorned Beetle § 301.51-1 Definitions... Health Inspection Service of the United States Department of Agriculture. Asian longhorned beetle. The insect known as Asian longhorned beetle (Anoplophora glabripennis) in any stage of development...
C.J. Fettig; A.S. Munson; C.I. Jorgenson; D.M. and Grosman
2010-01-01
Bark beetles (Coleoptera: C~rculionidae, Scolytinae) are commonly recognized as important tree mortality agents in coniferous forests of the western U.S. Most species feed on the phloem and cambium, or xylem tissue of woody plants; and a few are recognized as the most destructive of all forest insect pests. The last decade has seen elevated levels of bark beetle caused...
Jane L. Hayes; Kenneth F. Raffa
1999-01-01
This proceedings contains contributions from each author or group of authors who presented their current research at the bark beetle genetics workshop held 17-18 July 1998 on the campus of the University of Wisconsin in Madison, Wisconsin, USA. This was the second meeting on this subject; the first was held in 1992. The subject of bark beetle genetics is of growing,...
Lonnie H. Williams; Richard V. Smythe
1978-01-01
Estimates derived from 1962 and 1967 State regulatory records indicate that as many as 53,000 treatments for wood-destroying beetles were performed in 11 Southern States in 1970. Cost of these treatments was probably about $4.9 million. With inflation and the fact that beetles can no longer be treated in combination with termite treatments, 1976 losses were estimated...
Carolyn Sieg; Kurt Allen; Chad Hoffman; Joel McMillin
2016-01-01
Unprecedented levels of tree mortality from native bark beetle species have occurred in a variety of forest types in Western United States and Canada in recent decades in response to beetle-favorable forest and climatic conditions (Bentz 2009, Meddens and others 2012). Previous studies suggest that bark beetle outbreaks alter stand structural attributes and fuel...
Pauchet, Y; Saski, C A; Feltus, F A; Luyten, I; Quesneville, H; Heckel, D G
2014-06-01
The ability of herbivorous beetles from the superfamilies Chrysomeloidea and Curculionoidea to degrade plant cell wall polysaccharides has only recently begun to be appreciated. The presence of plant cell wall degrading enzymes (PCWDEs) in the beetle's digestive tract makes this degradation possible. Sequences encoding these beetle-derived PCWDEs were originally identified from transcriptomes and strikingly resemble those of saprophytic and phytopathogenic microorganisms, raising questions about their origin; e.g. are they insect- or microorganism-derived? To demonstrate unambiguously that the genes encoding PCWDEs found in beetle transcriptomes are indeed of insect origin, we generated a bacterial artificial chromosome library from the genome of the leaf beetle Chrysomela tremula, containing 18 432 clones with an average size of 143 kb. After hybridizing this library with probes derived from 12 C. tremula PCWDE-encoding genes and sequencing the positive clones, we demonstrated that the latter genes are encoded by the insect's genome and are surrounded by genes possessing orthologues in the genome of Tribolium castaneum as well as in three other beetle genomes. Our analyses showed that although the level of overall synteny between C. tremula and T. castaneum seems high, the degree of microsynteny between both species is relatively low, in contrast to the more closely related Colorado potato beetle. © 2014 The Royal Entomological Society.
el Jundi, Basil; Smolka, Jochen; Baird, Emily; Byrne, Marcus J; Dacke, Marie
2014-07-01
To escape competition at the dung pile, a ball-rolling dung beetle forms a piece of dung into a ball and rolls it away. To ensure their efficient escape from the dung pile, beetles rely on a 'celestial compass' to move along a straight path. Here, we analyzed the reliability of different skylight cues for this compass and found that dung beetles rely not only on the sun but also on the skylight polarization pattern. Moreover, we show the first evidence of an insect using the celestial light-intensity gradient for orientation. Using a polarizer, we manipulated skylight so that the polarization pattern appeared to turn by 90 deg. The beetles then changed their bearing close to the expected 90 deg. This behavior was abolished if the sun was visible to the beetle, suggesting that polarized light is hierarchically subordinate to the sun. When the sky was depolarized and the sun was invisible, the beetles could still move along straight paths. Therefore, we analyzed the use of the celestial light-intensity gradient for orientation. Artificial rotation of the intensity pattern by 180 deg caused beetles to orient in the opposite direction. This light-intensity cue was also found to be subordinate to the sun and could play a role in disambiguating the polarization signal, especially at low sun elevations. © 2014. Published by The Company of Biologists Ltd.
Using dung beetles to evaluate the effects of urbanization on Atlantic Forest biodiversity.
Korasaki, Vanesca; Lopes, José; Gardner Brown, George; Louzada, Julio
2013-06-01
We used dung beetles to evaluate the impact of urbanization on insect biodiversity in three Atlantic Forest fragments in Londrina, Paraná, Brazil. This study provides the first empirical evidence of the impact of urbanization on richness, abundance, composition and guild structure of dung beetle communities from the Brazilian Atlantic Forest. We evaluated the community aspects (abundance, richness, composition and food guilds) of dung beetles in fragments with different degrees of immersion in the urban matrix using pitfall traps with four alternative baits (rotten meat, rotten fish, pig dung and decaying banana). A total of 1 719 individuals were collected, belonging to 29 species from 11 genera and six Scarabaeinae tribes. The most urban-immersed fragment showed a higher species dominance and the beetle community captured on dung presented the greatest evenness. The beetle communities were distinct with respect to the fragments and feeding habits. Except for the dung beetle assemblage in the most urbanized forest fragment, all others exhibited contrasting differences in species composition attracted to each bait type. Our results clearly show that the degree of urbanization affects Atlantic Forest dung beetle communities and that the preservation of forest fragments inside the cities, even small ones, can provide refuges for Scarabaeinae. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.
Meyer, Jan M; Baskaran, Praveen; Quast, Christian; Susoy, Vladislav; Rödelsperger, Christian; Glöckner, Frank O; Sommer, Ralf J
2017-04-01
Insects and nematodes represent the most species-rich animal taxa and they occur together in a variety of associations. Necromenic nematodes of the genus Pristionchus are found on scarab beetles with more than 30 species known from worldwide samplings. However, little is known about the dynamics and succession of nematodes and bacteria during the decomposition of beetle carcasses. Here, we study nematode and bacterial succession of the decomposing rhinoceros beetle Oryctes borbonicus on La Réunion Island. We show that Pristionchus pacificus exits the arrested dauer stage seven days after the beetles´ deaths. Surprisingly, new dauers are seen after 11 days, suggesting that some worms return to the dauer stage after one reproductive cycle. We used high-throughput sequencing of the 16S rRNA genes of decaying beetles, beetle guts and nematodes to study bacterial communities in comparison to soil. We find that soil environments have the most diverse bacterial communities. The bacterial community of living and decaying beetles are more stable but one single bacterial family dominates the microbiome of decaying beetles. In contrast, the microbiome of nematodes is relatively similar even across different families. This study represents the first characterization of the dynamics of nematode-bacterial interactions during the decomposition of insects. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Brown, Stav; Soroker, Victoria; Ribak, Gal
2017-04-01
The tropical fig borer, Batocera rufomaculata De Geer, is a large beetle that is a pest on a number of fruit trees, including fig and mango. Adults feed on the leaves and twigs and females lay their eggs under the bark of the tree. The larvae bore into the tree trunk, causing substantial damage that may lead to the collapse and death of the host tree. We studied how larval development under inferior feeding conditions (experienced during development in dying trees) affects flight endurance in the adult insect. We grew larvae either in their natural host or on sawdust enriched with stale fig tree twigs. Flight endurance of the adults was measured using a custom-built flight-mill. Beetles emerging from the natural host were significantly larger but flew shorter distances than beetles reared on less favourable substrates. There was no difference in the allometric slope of wing area with body mass between the beetles groups; however flight muscle mass scaled with total body mass with an exponent significantly lower than 1.0. Hence, smaller beetles had proportionally larger flight muscles. These findings suggest that beetles that developed smaller as a result from poor nutritional conditions in deteriorating hosts, are better equipped to fly longer distances in search of a new host tree. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Wei; Wang, Run-Run; Liu, Xin-Min
2013-03-01
By using pitfall trap method, and taking the croplands and natural grasslands under different soil and water loss control measures as sampling plots, an investigation was conducted on the dung beetle assemblages in the Huangfuchuan watershed of Inner Mongolia from September 2007 to September 2008, aimed to understand the effects of different soil and water loss control measures on the dung beetle assemblages in the watershed. A total of 6169 dung beetles were captured, belonging to 15 species, 5 genus, and 2 families. The dominant species were Aphodius rectus and Onthophagus gibbulus, accounting for 66. 54% and 13. 26% of the total captured beetles, respectively. A lack of the species suitable for living in woodland habitats was the basic feature of the dung beetle assemblages. As compared with the control, all test soil and water loss control measures did not cause an obvious increase of species richness, biomass, and abundance of the dung beetle assemblages. The biomass and species richness of the assemblages as well as the abundance of the functional groups II and III had a significant negative correlation with the average tree (grass) height. Under the effects of long-term agricultural cultivation and the lack of large herbivores, the species richness and abundance of the functional group I (larger paracoprids and telocoprids) were lower than those of the functional groups II (relatively smaller paracoprids) and II (endocoprids), the main components of the dung beetle assemblages in the watershed. The faeces of the residents and livestock in the study region provided abundant foods for the dung beetle assemblages, inducing the relatively high abundance and spices richness of the assemblages occurred in the croplands nearby the villages. Our results suggested that natural grasslands were the suitable habitats for the dung beetles in Huangfuchuan watershed. At regional scale, to popularize the successful experiences of comprehensive soil and water loss control, preserve natural grasslands, and feed appropriate number of livestock (especially larger herbivores) could be the effective approaches for maintaining the diversity of dung beetles and the ecosystem functions.
Bedford, Ashton; Sankey, Temuulen T.; Sankey, Joel B.; Durning, Laura E.C.; Ralston, Barbara
2018-01-01
Tamarisk (Tamarix spp.) is an invasive plant species that is rapidly expanding along arid and semi-arid rivers in the western United States. A biocontrol agent, tamarisk beetle (Diorhabda carinulata), was released in 2001 in California, Colorado, Utah, and Texas. In 2009, the tamarisk beetle was found further south than anticipated in the Colorado River ecosystem within the Grand Canyon National Park and Glen Canyon National Recreation Area. Our objectives were to classify tamarisk stands along 412 km of the Colorado River from the Glen Canyon Dam through the Grand Canyon National Park using 2009 aerial, high spatial resolution multispectral imagery, and then quantify tamarisk beetle impacts by comparing the pre-beetle images from 2009 with 2013 post-beetle images. We classified tamarisk presence in 2009 using the Mahalanobis Distance method with a total of 2500 training samples, and assessed the classification accuracy with an independent set of 7858 samples across 49 image quads. A total of 214 ha of tamarisk were detected in 2009 along the Colorado River, where each image quad, on average, included an 8.4 km segment of the river. Tamarisk detection accuracies varied across the 49 image quads, but the combined overall accuracy across the entire study region was 74%. Using the Normalized Difference Vegetation Index (NDVI) from 2009 and 2013 with a region-specific ratio of >1.5 decline between the two image dates (2009NDVI/2013NDVI), we detected tamarisk defoliation due to beetle herbivory. The total beetle-impacted tamarisk area was 32 ha across the study region, where tamarisk defoliation ranged 1–86% at the local levels. Our tamarisk classification can aid long-term efforts to monitor the spread and impact of the beetle along the river and the eventual mortality of tamarisk due to beetle impacts. Identifying areas of tamarisk defoliation is a useful ecological indicator for managers to plan restoration and tamarisk removal efforts.
Carlson, Amanda R.; Sibold, Jason S.; Assal, Timothy J.; Negrón, José F.
2017-01-01
Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have addressed whether these combined disturbances produce compounded effects on short-term vegetation recovery. We tested for an effect of spruce beetle outbreak severity on vegetation recovery in the West Fork Complex fire in southwestern Colorado, USA, where much of the burn area had been affected by severe spruce beetle outbreaks in the decade prior to the fire. Vegetation recovery was assessed using the Landsat-derived Normalized Difference Vegetation Index (NDVI) two years after the fire, which occurred in 2013. Beetle outbreak severity, defined as the basal area of beetle-killed trees within Landsat pixels, was estimated using vegetation index differences (dVIs) derived from pre-outbreak and post-outbreak Landsat images. Of the seven dVIs tested, the change in Normalized Difference Moisture Index (dNDMI) was most strongly correlated with field measurements of beetle-killed basal area (R2 = 0.66). dNDMI was included as an explanatory variable in sequential autoregressive (SAR) models of NDVI2015. Models also included pre-disturbance NDVI, topography, and weather conditions at the time of burning as covariates. SAR results showed a significant correlation between NDVI2015 and dNDMI, with more severe spruce beetle outbreaks corresponding to reduced post-fire vegetation cover. The correlation was stronger for models which were limited to locations in the red stage of outbreak (outbreak ≤ 5 years old at the time of fire) than for models of gray-stage locations (outbreak > 5 years old at the time of fire). These results indicate that vegetation recovery processes may be negatively impacted by severe spruce beetle outbreaks occurring within a decade of stand-replacing wildfire.
Colonization of disturbed trees by the southern pine bark beetle guild (Coleoptera: Scolytidae)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flamm, R.O.; Pulley, P.E.; Coulson, R.N.
1993-02-01
The southern pine bark beetle guild [Dendroctonus frontalis Zimmermann, D. terebrans (Olivier), Ips calligraphus (Germar), I. grandicollis (Eichhoff), and I. avulsus (Eichhoff)] uses disturbed hosts as habitat for establishment of within-tree populations. The process of colonization of disturbed hosts was examined. Using a procedure designed to emulate effects of a lightning strike, pines were severely disturbed. Response was characterized by measuring beetle populations that (1) arrived at the trees and (2) successfully attacked the trees. Establishment of within-tree populations was characterized by measuring length of egg gallery excavated by attacking adults. The time delay between arrival and attack for D.more » frontalis and I. calligraphus was also calculated. Attack densities of both species became asymptotic as arrival increased. The percentage of arriving beetles that attacked ranged from 9 to 41 for D. frontalis and from 8 to 59 for I. calligraphus. Numbers of beetles that arrived at the tree but did not attack ranged from 2.7 to 50.2 beetles per dm[sup 2] for D. frontalis and from 0.2 to 10.0 beetles per dm[sup 2] for I. calligraphus. Most D. frontalis and I. calligraphus attacked on the day they arrived. The delay between arrival and attack was longer for I. calligraphus than the D. frontalis. Egg gallery excavated by D. frontalis increased throughout the study. Eventually, the Ips species were excluded from the lower half of the hole. The low attack densities observed in this study illustrate the significance of disturbed trees in providing refuges for enzootic levels of bark beetles. The aggregation behavior of beetle populations colonizing disturbed hosts supported the contention that these trees serve as foci for initiation of infestations. Furthermore, in disturbed pines, small numbers of beetles were capable of overcoming host defense systems.« less
Shrestha, Mani; Dyer, Adrian G.; Li, Qing-Jun
2017-01-01
The Himalayan endemic alpine genus Roscoea, like other members of ginger family, exhibits the combination of floral traits that would fit pollination by long distant foragers such as bees, birds or flies. We studied the pollination biology of Roscoea alpina, observed potential floral visitors and determined their foraging behaviour, visitation frequency and pollination efficiency, to seek evidence in support of the pollination syndrome hypothesis. We also measured the floral spectra of R. alpina flowers to evaluate if signals fit with the currently known framework for observed floral visitors. We found that R. alpina have autonomous selfing and pollinator-mediated crossing, but lack apomixis. We observed that a beetle (Mylabris sp.), and a moth (Macroglossum nycteris) visit the flowers of R. alpina for pollen and nectar feeding respectively. Our field observations, the stigmatic pollen count and fruit set data indicated that the visit by the beetle was legitimate, while that of the moth was illegitimate. Emasculated flowers visited by beetles set as many fruits and seeds/fruit as auto-selfed and naturally pollinated flowers, while emasculated flowers excluded from beetle visits did not set fruit and seed; indicating that a single visit of a beetle to the flowers of R. alpina can facilitate pollination. We found that flower spectral signal of R. alpina does not fit typical spectra previously reported for beetle or bee-visited flowers. Our results suggest that, to ensure reproductive success in alpine habitat, R. alpina has evolved autonomous selfing as a predominant mode of reproduction, while beetle pollination would promote genetic diversity of this plant species. The visitation of beetles to the flowers of R. alpina, despite floral signal mismatch with the classically associated beetle vision, suggests that a different visual processing may operate in this plant-pollinator interaction at high altitudes. PMID:28723912
NASA Astrophysics Data System (ADS)
Nagler, P. L.; Nguyen, U.; Bateman, H. L.; Jarchow, C.; van Riper, C., III; Waugh, W.; Glenn, E.
2016-12-01
Northern saltcedar beetles (Diorhabda carinata) have spread widely in riparian zones on the Colorado Plateau since their initial release in 2002. One goal of the releases was to reduce water consumption by saltcedar in order to conserve water through reduction of evapotranspiration (ET). The beetle moved south on the Virgin River and reached Big Bend State Park in Nevada in 2014, an expansion rate of 60 km/year. This is important because the beetle's photoperiod requirement for diapause was expected to prevent them from moving south of 37°N latitude, where endangered southwest willow flycatcher habitat occurs. In addition to focusing on the rate of dispersal of the beetles, we used remote sensing estimates of ET at 13 sites on the Colorado, San Juan, Virgin and Dolores rivers and their tributaries to estimate riparian zone ET before and after beetle releases. We estimate that water savings from 2007-2015 was 31.5 million m3/yr (25,547 acre-ft/yr), amounting to 0.258 % of annual river flow from the Upper Colorado River Basin to the Lower Basin. Reasons for the relatively low potential water savings are: 1) baseline ET before beetle release was modest (0.472 m/yr); 2) reduction in ET was low (0.061 m/yr) because saltcedar stands tended to recover after defoliation; 3) riparian ET even in the absence of beetles was only 1.8 % of river flows, calculated as the before beetle average annual ET (472 mm/yr) times the total area of saltcedar (51,588 ha) divided by the combined total average annual flows (1964-2015) from the upper to lower catchment areas of the Colorado River Basin at the USGS gages (12,215 million m3/yr or 9.90 million acre-ft). Further research is suggested to concentrate on the ecological impacts (both positive and negative) of beetles on riparian zones and on identifying management options to maximize riparian health.
Paudel, Babu Ram; Shrestha, Mani; Dyer, Adrian G; Li, Qing-Jun
2017-01-01
The Himalayan endemic alpine genus Roscoea, like other members of ginger family, exhibits the combination of floral traits that would fit pollination by long distant foragers such as bees, birds or flies. We studied the pollination biology of Roscoea alpina, observed potential floral visitors and determined their foraging behaviour, visitation frequency and pollination efficiency, to seek evidence in support of the pollination syndrome hypothesis. We also measured the floral spectra of R. alpina flowers to evaluate if signals fit with the currently known framework for observed floral visitors. We found that R. alpina have autonomous selfing and pollinator-mediated crossing, but lack apomixis. We observed that a beetle (Mylabris sp.), and a moth (Macroglossum nycteris) visit the flowers of R. alpina for pollen and nectar feeding respectively. Our field observations, the stigmatic pollen count and fruit set data indicated that the visit by the beetle was legitimate, while that of the moth was illegitimate. Emasculated flowers visited by beetles set as many fruits and seeds/fruit as auto-selfed and naturally pollinated flowers, while emasculated flowers excluded from beetle visits did not set fruit and seed; indicating that a single visit of a beetle to the flowers of R. alpina can facilitate pollination. We found that flower spectral signal of R. alpina does not fit typical spectra previously reported for beetle or bee-visited flowers. Our results suggest that, to ensure reproductive success in alpine habitat, R. alpina has evolved autonomous selfing as a predominant mode of reproduction, while beetle pollination would promote genetic diversity of this plant species. The visitation of beetles to the flowers of R. alpina, despite floral signal mismatch with the classically associated beetle vision, suggests that a different visual processing may operate in this plant-pollinator interaction at high altitudes.
Carlson, Amanda R.; Sibold, Jason S.; Assal, Timothy J.; Negrón, Jose F.
2017-01-01
Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have addressed whether these combined disturbances produce compounded effects on short-term vegetation recovery. We tested for an effect of spruce beetle outbreak severity on vegetation recovery in the West Fork Complex fire in southwestern Colorado, USA, where much of the burn area had been affected by severe spruce beetle outbreaks in the decade prior to the fire. Vegetation recovery was assessed using the Landsat-derived Normalized Difference Vegetation Index (NDVI) two years after the fire, which occurred in 2013. Beetle outbreak severity, defined as the basal area of beetle-killed trees within Landsat pixels, was estimated using vegetation index differences (dVIs) derived from pre-outbreak and post-outbreak Landsat images. Of the seven dVIs tested, the change in Normalized Difference Moisture Index (dNDMI) was most strongly correlated with field measurements of beetle-killed basal area (R2 = 0.66). dNDMI was included as an explanatory variable in sequential autoregressive (SAR) models of NDVI2015. Models also included pre-disturbance NDVI, topography, and weather conditions at the time of burning as covariates. SAR results showed a significant correlation between NDVI2015 and dNDMI, with more severe spruce beetle outbreaks corresponding to reduced post-fire vegetation cover. The correlation was stronger for models which were limited to locations in the red stage of outbreak (outbreak ≤ 5 years old at the time of fire) than for models of gray-stage locations (outbreak > 5 years old at the time of fire). These results indicate that vegetation recovery processes may be negatively impacted by severe spruce beetle outbreaks occurring within a decade of stand-replacing wildfire. PMID:28777802
Ren, Jing; Bai, Ming; Yang, Xing-Ke; Zhang, Run-Zhi; Ge, Si-Qin
2017-01-01
The success of beetles is mainly attributed to the possibility to hide the hindwings under the sclerotised elytra. The acquisition of the transverse folding function of the hind wing is an important event in the evolutionary history of beetles. In this study, the morphological and functional variances in the hind wings of 94 leaf beetle species (Coleoptera: Chrysomelinae) is explored using geometric morphometrics based on 36 landmarks. Principal component analysis and Canonical variate analysis indicate that changes of apical area, anal area, and middle area are three useful phylogenetic features at a subtribe level of leaf beetles. Variances of the apical area are the most obvious, which strongly influence the entire venation variance. Partial least squares analysis indicates that the proximal and distal parts of hind wings are weakly associated. Modularity tests confirm that the proximal and distal compartments of hind wings are separate modules. It is deduced that for leaf beetles, or even other beetles, the hind wing possibly exhibits significant functional divergences that occurred during the evolution of transverse folding that resulted in the proximal and distal compartments of hind wings evolving into separate functional modules.
Kartika, Titik; Shimizu, Nobuhiro; Yoshimura, Tsuyoshi
2015-01-01
Lyctus africanus is a cosmopolitan powder-post beetle that is considered one of the major pests threatening timber and timber products. Because infestations of this beetle are inconspicuous, damage is difficult to detect and identification is often delayed. We identified the chemical compounds involved in the aggregation behavior of L. africanus using preparations of crude hexanic extracts from male and female beetles (ME and FE, respectively). Both male and female beetles showed significant preferences for ME, which was found to contain three esters. FE was ignored by both the sexes. Further bioassay confirmed the role of esters in the aggregation behavior of L. africanus. Three esters were identified as 2-propyl dodecanoate, 3-pentyl dodecanoate, and 3-pentyl tetradecanoate. Further behavioral bioassays revealed 3-pentyl dodecanoate to play the main role in the aggregation behavior of female L. africanus beetles. However, significantly more beetles aggregated on a paper disk treated with a blend of the three esters than on a paper disk treated with a single ester. This is the first report on pheromone identification in L. africanus; in addition, the study for the first time presents 3-pentyl dodecanoate as an insect pheromone.
Specialized proteinine rove beetles shed light on insect-fungal associations in the Cretaceous.
Cai, Chenyang; Newton, Alfred F; Thayer, Margaret K; Leschen, Richard A B; Huang, Diying
2016-12-28
Insects and fungi have a long history of association in shared habitats. Fungus-feeding, or mycophagy, is remarkably widespread in beetles (Coleoptera) and appears to be a primitive feeding habit that preceded feeding on plant tissues. Numerous Mesozoic beetles belonging to extant fungus-associated families are known, but direct fossil evidence elucidating mycophagy in insects has remained elusive. Here, we report a remarkable genus and species, Vetuproteinus cretaceus gen. et sp. nov., belonging to a new tribe (Vetuproteinini trib. nov.) of the extant rove beetle subfamily Proteininae (Staphylinidae) in Mid-Cretaceous Burmese amber. The mouthparts of this beetle have a markedly enlarged protruding galea bearing an apparent spore brush, a specialized structure we infer was used to scrape spores off surfaces and direct them into the mouth, as in multiple modern spore-feeding beetles. Considering the long evolutionary history of Fungi, the Mid-Cretaceous beetles likely fed on ancient Basidiomycota and/or Ascomycota fungi or spore-producing organisms such as slime moulds (Myxomycetes). The discovery of the first Mesozoic proteinine illustrates the antiquity of the subfamily, and suggests that ancestral Proteininae were already diverse and widespread in Pangaea before the supercontinent broke up. © 2016 The Author(s).
Specialized proteinine rove beetles shed light on insect–fungal associations in the Cretaceous
Leschen, Richard A. B.; Huang, Diying
2016-01-01
Insects and fungi have a long history of association in shared habitats. Fungus-feeding, or mycophagy, is remarkably widespread in beetles (Coleoptera) and appears to be a primitive feeding habit that preceded feeding on plant tissues. Numerous Mesozoic beetles belonging to extant fungus-associated families are known, but direct fossil evidence elucidating mycophagy in insects has remained elusive. Here, we report a remarkable genus and species, Vetuproteinus cretaceus gen. et sp. nov., belonging to a new tribe (Vetuproteinini trib. nov.) of the extant rove beetle subfamily Proteininae (Staphylinidae) in Mid-Cretaceous Burmese amber. The mouthparts of this beetle have a markedly enlarged protruding galea bearing an apparent spore brush, a specialized structure we infer was used to scrape spores off surfaces and direct them into the mouth, as in multiple modern spore-feeding beetles. Considering the long evolutionary history of Fungi, the Mid-Cretaceous beetles likely fed on ancient Basidiomycota and/or Ascomycota fungi or spore-producing organisms such as slime moulds (Myxomycetes). The discovery of the first Mesozoic proteinine illustrates the antiquity of the subfamily, and suggests that ancestral Proteininae were already diverse and widespread in Pangaea before the supercontinent broke up. PMID:28003444
Saremba, Brett M; Tymm, Fiona J M; Baethke, Kathy; Rheault, Mark R; Sherif, Sherif M; Saxena, Praveen K; Murch, Susan J
2017-05-04
American Elms were devastated by an outbreak of Dutch Elm Disease is caused by the fungus Ophiostoma novo-ulmi Brasier that originated in Asia and arrived in the early 1900s. In spite of decades of study, the specific mechanisms and disease resistance in some trees is not well understood. the fungus is spread by several species of bark beetles in the genus Scolytus, during their dispersal and feeding. Our objective was to understand elm responses to beetle feeding in the absence of the fungus to identify potential resistance mechanisms. A colony of Scolytus multistriatus was established from wild-caught beetles and beetles were co-incubated with susceptible or resistant American elm varieties in a controlled environment chamber. Beetles burrowed into the auxillary meristems of the young elm shoots. The trees responded to the beetle damage by a series of spikes in the concentration of plant growth regulating compounds, melatonin, serotonin, and jasmonic acid. Spikes in melatonin and serotonin represented a 7,000-fold increase over resting levels. Spikes in jasmonic acid were about 10-fold higher than resting levels with one very large spike observed. Differences were noted between susceptible and resistant elms that provide new understanding of plant defenses.
Targeting red-headed flea beetle larvae
USDA-ARS?s Scientific Manuscript database
Red-headed flea beetle (RHFB), Systena frontalis, is an emerging pest of cranberry that requires significant grower investment in monitoring and repeated applications of insecticides to reduce adult populations. The adult beetles are highly mobile and consume a broad range of host plants whereas t...
Modelling spruce bark beetle infestation probability
Paulius Zolubas; Jose Negron; A. Steven Munson
2009-01-01
Spruce bark beetle (Ips typographus L.) risk model, based on pure Norway spruce (Picea abies Karst.) stand characteristics in experimental and control plots was developed using classification and regression tree statistical technique under endemic pest population density. The most significant variable in spruce bark beetle...
How-To-Do-It. A Beetle, a Bur, and the Potato: An Introduction to Ecology.
ERIC Educational Resources Information Center
Jantzen, Paul G.
1983-01-01
Describes how the interrelation of the potato beetle, the buffalo-bur, and the potato is used as an introduction to ecology. Methods of controlling the beetle and ecological principles illustrated in the interrelationship are discussed. (JN)
Endocrine control of exaggerated traits in rhinoceros beetles
USDA-ARS?s Scientific Manuscript database
Juvenile hormone (JH) is a key insect growth regulator involved in modulating phenotypically plastic traits in insects such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetle. Male stag beetles have sexually-dimorphic, condition-dependent expre...
Acoustic characteristics of rhinoceros beetle stridulations
USDA-ARS?s Scientific Manuscript database
Stridulation behavior has been reported for adults and larvae of many dynastids. This report describes acoustic recordings and analyses of stridulations by larvae of two Southeastern Asia rhinoceros beetle species and by adults of the coconut rhinoceros beetle. The behavioral context of the strid...
Sampling seasons for exotic woodboring insects: how long is long enough?
Kathleen J.R. Johnson; James R. LaBonte; Alan D. Mudge; Karl A. Puls
2003-01-01
Several injurious exotic woodboring insects (EWBI) have recently been introduced into North America, such as the Asian longhorned beetle, Anoplophora glabripennis (Motschuslsky) (Coleoptera: Cerambycidae), the brown spruce longhorned beetle, Tetropium fuscum (F.) (Coleoptera: Cerambycidae), and the pine shoot beetle, ...
Method for continuously rearing Coccinella lady beetles (Coleoptera: Coccinellidae)
USDA-ARS?s Scientific Manuscript database
Coccinella novemnotata L., the ninespotted lady beetle, and Coccinella transversoguttata richardsoni Brown, the transverse lady beetle, are predatory species whose abundance has declined significantly over the last few decades in North America. An ex situ system for continuously rearing these two b...
User's guide to the douglas-fir beetle impact model. Forest Service general technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsden, M.A.; Eav, B.B.; Thompson, M.K.
1994-09-01
Douglas-fir beetle occurs throughout the range of its principal host, Douglas-fir. At epidemic levels, the beetle causes considerable mortality in large-diameter Douglas-fir trees. Wind storms, drought, fire, and other factors have been reported as precendent conditions for epidemics of Douglas-fir beetle. An impact model has been developed to simulate tree mortality during such epidemics. The model has been linked to the Stand Prognosis Model (Forest Vegetation Simulator). This is a guide for using the model.
Galdino, Tarcísio Visintin da Silva; Ferreira, Dalton de Oliveira; Santana Júnior, Paulo Antônio; Arcanjo, Lucas de Paulo; Queiroz, Elenir Aparecida; Sarmento, Renato Almeida; Picanço, Marcelo Coutinho
2017-06-01
The knowledge of the spatiotemporal dynamics of pathogens and their vectors is an important step in determining the pathogen dispersion pattern and the role of vectors in disease dynamics. However, in the case of mango wilt little is known about its spatiotemporal dynamics and the relationship of its vector [the beetle Hypocryphalus mangiferae (Stebbing 1914)] to these dynamics. The aim of this work was to determine the spatial-seasonal dynamic of H. mangiferae attacks and mango wilt in mango orchards and to verify the importance of H. mangiferae in the spatiotemporal dynamics of the disease. Two mango orchards were monitored during a period of 3 yr. The plants in these orchards were georeferenced and inspected monthly to quantify the number of plants attacked by beetles and the fungus. In these orchards, the percentage of mango trees attacked by beetles was always higher than the percentage infected by the fungus. The colonization of mango trees by beetles and the fungus occurred by colonization of trees both distant and proximal to previously attacked trees. The new plants attacked by the fungus emerged in places where the beetles had previously begun their attack. This phenomenon led to a large overlap in sites of beetle and fungal occurrence, indicating that establishment by the beetle was followed by establishment by the fungus. This information can be used by farmers to predict disease infection, and to control bark beetle infestation in mango orchards. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Matthew Hansen, E; Steven Munson, A; Blackford, Darren C; Wakarchuk, David; Scott Baggett, L
2016-10-01
We tested lethal trap trees and repellent semiochemicals as area treatments to protect host trees from spruce beetle (Dendroctonus rufipennis Kirby) attacks. Lethal trap tree treatments ("spray treatment") combined a spruce beetle bait with carbaryl treatment of the baited spruce. Repellent treatments ("spray-repellent") combined a baited lethal trap tree within a 16-m grid of MCH (3-methylcyclohex-2-en-1-one) and two novel spruce beetle repellents. After beetle flight, we surveyed all trees within 50 m of plot center, stratified by 10-m radius subplots, and compared attack rates to those from baited and unbaited control plots. Compared to the baited controls, spruce in the spray treatment had significantly reduced likelihood of a more severe attack classification (e.g., mass-attacked over strip-attacked or unsuccessful-attacked over unattacked). Because spruce in the spray treatment also had significantly heightened probability of more severe attack classification than those in the unbaited controls, however, we do not recommend lethal trap trees as a stand-alone beetle suppression strategy for epidemic beetle populations. Spruce in the spray-repellent treatment were slightly more likely to be classified as more severely attacked within 30 m of plot center compared to unbaited controls but, overall, had reduced probabilities of beetle attack over the entire 50-m radius plots. The semiochemical repellents deployed in this study were effective at reducing attacks on spruce within treated plots despite the presence of a centrally located spruce beetle bait. Further testing will be required to clarify operational protocols such as dose, elution rate, and release device spacing. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.
Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A
2014-06-01
Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.
Poinar, George; Datlen, Nicole; Espinoza, Magaly; McLaughlin, John
2015-09-01
A new nematode species, Proparasitylenchus californicus n. sp., is described from the intertidal rove beetle Tarphiota geniculata (Mäklin) (Coleoptera: Staphylinidae) in California, USA. The new species differs from European representatives of the genus by possessing a cleft stylet in both sexes. The parasitic female is ovoviviparous and produces numerous juveniles that moult twice in the beetle host, then exit and moult twice to the adult stage in the environment. After mating, the free-living fertilised females enter a new host. Heavy infections sterilise the beetles. This is the first record of the genus Proparasitylenchus Wachek, 1955 in the New World and the first allantonematid parasite of a marine, intertidal beetle.
USDA-ARS?s Scientific Manuscript database
Exotic ambrosia beetles, particularly Xylosandrus crassiusculus (Motschulsky) and Xylosandrus germanus (Blandford), are among the most economically damaging pests of ornamental trees in nurseries. Growers have had few tactics besides insecticide applications to reduce ambrosia beetle attacks but rec...
Ken Gibson; Sandy Kegley; Barbara Bentz
2009-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) is a member of a group of insects known as bark beetles. Its entire life cycle is spent beneath the bark of host trees, except when adults emerge from brood trees and fly in search of new host trees.
Jennifer Juzwik; Thomas C. Skalbeck; Marc F. Newman
2004-01-01
Many species of sap beetles have been implicated as vectors of the oak wilt pathogen, (Ceratocystis fagacearum), but the species responsible for most aboveground transmission of the fungus is unknown. The abundance of adult sap beetle species inhabiting
Chemical ecology and lure development for redbay ambrosia beetle
USDA-ARS?s Scientific Manuscript database
The exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff, has become a serious invasive pest in the U.S., currently established in nine southeastern states. Female beetles are the primary vectors of a pathogenic fungus (Raffaelea lauricola) that causes laurel wilt. This lethal vascular dise...
Male-specific sesquiterpenes from Phyllotreta flea beetles
USDA-ARS?s Scientific Manuscript database
Flea beetles in several genera are known to possess male-specific sesquiterpenes, at least some of which serve as aggregation pheromones that attract both sexes. In continuing research on the chemical ecology of Phyllotreta flea beetles, six new male-specific sesquiterpenes were identified, one fro...
On the origin and evolutionary diversification of beetle horns
Emlen, Douglas J.; Corley Lavine, Laura; Ewen-Campen, Ben
2007-01-01
Many scarab beetles produce rigid projections from the body called horns. The exaggerated sizes of these structures and the staggering diversity of their forms have impressed biologists for centuries. Recent comparative studies using DNA sequence-based phylogenies have begun to reconstruct the historical patterns of beetle horn evolution. At the same time, developmental genetic experiments have begun to elucidate how beetle horns grow and how horn growth is modulated in response to environmental variables, such as nutrition. We bring together these two perspectives to show that they converge on very similar conclusions regarding beetle evolution. Horns do not appear to be difficult structures to gain or lose, and they can diverge both dramatically and rapidly in form. Although much of this work is still preliminary, we use available information to propose a conceptual developmental model for the major trajectories of beetle horn evolution. We illustrate putative mechanisms underlying the evolutionary origin of horns and the evolution of horn location, shape, allometry, and dimorphism. PMID:17494751
Cingel, Aleksandar; Savić, Jelena; Lazarević, Jelica; Ćosić, Tatjana; Raspor, Martin; Smigocki, Ann; Ninković, Slavica
2016-01-01
Expanding from remote areas of Mexico to a worldwide scale, the ten-striped insect, the Colorado potato beetle (CPB, Leptinotarsa decemlineata Say), has risen from being an innocuous beetle to a prominent global pest. A diverse life cycle, phenotypic plasticity, adaptation to adverse conditions, and capability to detoxify or tolerate toxins make this insect appear to be virtually “indestructible”. With increasing advances in molecular biology, tools of biotechnological warfare were deployed to combat CPB. In the last three decades, genetically modified potato has created a new challenge for the beetle. After reviewing hundreds of scientific papers dealing with CPB control, it became clear that even biotechnological means of control, if used alone, would not defeat the Colorado potato beetle. This control measure once again appears to be provoking the potato beetle to exhibit its remarkable adaptability. Nonetheless, the potential for adaptation to these techniques has increased our knowledge of this pest and thus opened possibilities for devising more sustainable CPB management programs. PMID:27649141
Lack of nucleotide variability in a beetle pest with extreme inbreeding.
Andreev, D; Breilid, H; Kirkendall, L; Brun, L O; ffrench-Constant, R H
1998-05-01
The coffee berry borer beetle Hypothenemus hampei (Ferrari) (Curculionidae: Scolytinae) is the major insect pest of coffee and has spread to most of the coffee-growing countries of the world. This beetle also displays an unusual life cycle, with regular sibling mating. This regular inbreeding and the population bottlenecks occurring on colonization of new regions should lead to low levels of genetic diversity. We were therefore interested in determining the level of nucleotide variation in nuclear and mitochondrial genomes of this beetle worldwide. Here we show that two nuclear loci (Resistance to dieldrin and ITS2) are completely invariant, whereas some variability is maintained at a mitochondrial locus (COI), probably corresponding to a higher mutation rate in the mitochondrial genome. Phylogenetic analysis of the mitochondrial data shows only two clades of beetle haplotypes outside of Kenya, the proposed origin of the species. These data confirm that inbreeding greatly reduces nucleotide variation and suggest the recent global spread of only two inbreeding lines of this bark beetle.
Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson
NASA Astrophysics Data System (ADS)
Arwin, Hans; Magnusson, Roger; Landin, Jan; Järrendahl, Kenneth
2012-04-01
One hundred years ago Michelson discovered circular polarization in reflection from beetles. Today a novel Mueller-matrix ellipsometry setup allows unprecedented detailed characterization of the beetles' polarization properties. A formalism based on elliptical polarization for description of reflection from scarab beetles is here proposed and examples are given on four beetles of different character: Coptomia laevis - a simple dielectric mirror; Cetonia aurata - a left-hand narrow-band elliptical polarizer; Anoplognathus aureus - a broad-band elliptical polarizer; and Chrysina argenteola - a left-hand polarizer for visible light at small angles, whereas for larger angles, red reflected light is right-handed polarized. We confirm the conclusion of previous studies which showed that a detailed quantification of ellipticity and degree of polarization of cuticle reflection can be performed instead of only determining whether reflections are circularly polarized or not. We additionally investigate reflection as a function of incidence angle. This provides much richer information for understanding the behaviour of beetles and for structural analysis.
Percino-Daniel, Nohemí; Buckley, David; García-París, Mario
2013-06-03
Beetles of the family Meloidae (blister beetles) are often reported in pharmacological literature because of their content of cantharidin. Cantharidin has a long history in human medicine and was commonly applied in the 19th and the early 20th centuries, although its use has been progressively abandoned since then. Contrary to most, even common, large species of Coleoptera, blister beetles of the genera Berberomeloe, Physomeloe and to a lesser extent Meloe, are usually recognized and often incorporated into local folk taxonomy by inhabitants of rural areas in Spain. To demonstrate the role that pharmacological properties of blister beetles must have played in their integration in the culture of early Iberian human societies, but also in the preservation of their identity until today, a rare case for Spanish insects. To achieve this purpose we document the diversity of vernacular names applied in rural areas of Spain, and we determine, using molecular data, the antiquity of the presence of two species of the better-known blister beetle in rural Spain, Berberomeloe majalis and Berberomeloe insignis. We try to document the extent of traditional knowledge of meloid beetles in rural areas by interviewing about 120 people from villages in central and southern Spain. We also use mitochondrial DNA sequences (Cytochrome Oxidase I and 16SrRNA) obtained from several populations of two species of the better known blister beetle in rural Spain, Berberomeloe majalis and Berberomeloe insignis, to determine whether these beetles were already present in the Iberian Peninsula when earlier ancient cultures were developing. Our results show that, based on mitochondrial DNA, blister beetles of the genus Berberomeloe were present in the Iberian Peninsula long before humans arrived, so ancient Iberian cultures were in contact with the same beetle species occurring now in rural areas. On the other hand, people interviewed in rural communities provided us with more than 28 different vernacular names, a few short songs incorporated to local folklore, and some therapeutic uses. Current knowledge of blister beetles of the family Meloidae in rural Spain was likely developed as a consequence of their pharmacological properties; we hypothesize this knowledge was inherited from ancient pre-Christian Iberian native cultures as part of their traditional therapeutic traditions. It is possible then, that current vernacular names and traditional songs are the only remnants of an ancient knowledge of pharmacological uses of meloid beetles, verbally transmitted from the ancestral cultures to modern day rural Spain. Our work suggests that this legacy, part of the European Cultural Heritage, is disappearing fast, in parallel to the loss of traditional agricultural techniques. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Current state of knowledge on Wolbachia infection among Coleoptera: a systematic review
Kotásková, Nela
2018-01-01
Background Despite great progress in studies on Wolbachia infection in insects, the knowledge about its relations with beetle species, populations and individuals, and the effects of bacteria on these hosts, is still unsatisfactory. In this review we summarize the current state of knowledge about Wolbachia occurrence and interactions with Coleopteran hosts. Methods An intensive search of the available literature resulted in the selection of 86 publications that describe the relevant details about Wolbachia presence among beetles. These publications were then examined with respect to the distribution and taxonomy of infected hosts and diversity of Wolbachia found in beetles. Sequences of Wolbachia genes (16S rDNA, ftsZ) were used for the phylogenetic analyses. Results The collected publications revealed that Wolbachia has been confirmed in 204 beetle species and that the estimated average prevalence of this bacteria across beetle species is 38.3% and varies greatly across families and genera (0–88% infected members) and is much lower (c. 13%) in geographic studies. The majority of the examined and infected beetles were from Europe and East Asia. The most intensively studied have been two groups of herbivorous beetles: Curculionidae and Chrysomelidae. Coleoptera harbor Wolbachia belonging to three supergroups: F found in only three species, and A and B found in similar numbers of beetles (including some doubly infected); however the latter two were most prevalent in different families. A total of 59% of species with precise data were found to be totally infected. Single infections were found in 69% of species and others were doubly- or multiply-infected. Wolbachia caused numerous effects on its beetle hosts, including selective sweep with host mtDNA (found in 3% of species), cytoplasmic incompatibility (detected in c. 6% of beetles) and other effects related to reproduction or development (like male-killing, possible parthenogenesis or haplodiploidy induction, and egg development). Phylogenetic reconstructions for Wolbachia genes rejected cospeciation between these bacteria and Coleoptera, with minor exceptions found in some Hydraenidae, Curculionidae and Chrysomelidae. In contrast, horizontal transmission of bacteria has been suspected or proven in numerous cases (e.g., among beetles sharing habitats and/or host plants). Discussion The present knowledge about Wolbachia infection across beetle species and populations is very uneven. Even the basic data about infection status in species and frequency of infected species across genera and families is very superficial, as only c. 0.15% of all beetle species have been tested so far. Future studies on Wolbachia diversity in Coleoptera should still be based on the Multi-locus Sequence Typing system, and next-generation sequencing technologies will be important for uncovering Wolbachia relations with host evolution and ecology, as well as with other, co-occurring endosymbiotic bacteria. PMID:29568706
Erbilgin, Nadir; Ma, Cary; Whitehouse, Caroline; Shan, Bin; Najar, Ahmed; Evenden, Maya
2014-02-01
Host plant secondary chemistry can have cascading impacts on host and range expansion of herbivorous insect populations. We investigated the role of host secondary compounds on pheromone production by the mountain pine beetle (Dendroctonus ponderosae) (MPB) and beetle attraction in response to a historical (lodgepole pine, Pinus contorta var. latifolia) and a novel (jack pine, Pinus banksiana) hosts, as pheromones regulate the host colonization process. Beetles emit the same pheromones from both hosts, but more trans-verbenol, the primary aggregation pheromone, was emitted by female beetles on the novel host. The phloem of the novel host contains more α-pinene, a secondary compound that is the precursor for trans-verbenol production in beetle, than the historical host. Beetle-induced emission of 3-carene, another secondary compound found in both hosts, was also higher from the novel host. Field tests showed that the addition of 3-carene to the pheromone mixture mimicking the aggregation pheromones produced from the two host species increased beetle capture. We conclude that chemical similarity between historical and novel hosts has facilitated host expansion of MPB in jack pine forests through the exploitation of common host secondary compounds for pheromone production and aggregation on the hosts. Furthermore, broods emerging from the novel host were larger in terms of body size. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Hormesis is induced in the red flour beetle Tribolium castaneum through ingestion of charred toast.
Grünwald, Stefanie; Niedermeier, Janine; Wenzel, Uwe
2015-06-01
Charred foods are generally suspected to exert health threats by providing toxicants, such as acrylamide or polycyclic aromatic hydrocarbons. Using the red flour beetle Tribolium castaneum as a model organism, we tested its survival under heat stress in response to feeding charred toast. Survival of beetles was measured at 42 °C after a pre-feeding phase with flour enriched with increasing concentrations of charred toast. In order to assess the influence of key transcription factors for phase-I and phase-II xenobiotic metabolism, gene homologs for ahr and nrf-2, respectively, were knocked down by the use of RNA interference (RNAi). Beetles fed only charred toast died off much earlier than control beetles fed on flour, whereas beetles fed flour enriched with 5% charred toast survived significantly longer than the control. Both, ahr and nrf-2 proved essential in order to enable the increase in survival by the feeding of 5% charred toast. Moreover, functional loss of ahr and nrf-2 made the beetles hypersensitive versus the feeding of 100% charred toast. Finally, at the transcriptional level, it was shown that RNAi for ahr blocked the inducing activities of charred toast on nrf-2. Our studies suggest a hormetic response of the red flour beetle to feeding of charred toast that causes an increased stress resistance through the activation of ahr and nrf-2. Those adaptations, however, are saturable and accordingly the hormetic effects at increasing concentrations of the toxicants become expended.
Lusebrink, Inka; Erbilgin, Nadir; Evenden, Maya L
2013-09-01
Historical data show that outbreaks of the tree killing mountain pine beetle are often preceded by periods of drought. Global climate change impacts drought frequency and severity and is implicated in the range expansion of the mountain pine beetle into formerly unsuitable habitats. Its expanded range has recently reached the lodgepole × jack pine hybrid zone in central Alberta, Canada, which could act as a transition from its historical lodgepole pine host to a jack pine host present in the boreal forest. This field study tested the effects of water limitation on chemical defenses of mature trees against mountain pine beetle-associated microorganisms and on beetle brood success in lodgepole × jack pine hybrid trees. Tree chemical defenses as measured by monoterpene emission from tree boles and monoterpene concentration in needles were greater in trees that experienced water deficit compared to well-watered trees. Myrcene was identified as specific defensive compound, since it significantly increased upon inoculation with dead mountain pine beetles. Beetles reared in bolts from trees that experienced water deficit emerged with a higher fat content, demonstrating for the first time experimentally that drought conditions benefit mountain pine beetles. Further, our study demonstrated that volatile chemical emission from tree boles and phloem chemistry place the hybrid tree chemotype in-between lodgepole pine and jack pine, which might facilitate the host shift from lodgepole pine to jack pine.
Bogoni, Juliano A.; Hernández, Malva I. M.
2014-01-01
Abstract Mammal feces are the primary food and nesting resource for the majority of dung beetle species, and larval development depends on the quantity and quality of that resource. Physiological necessities, competitive interactions, and resource sharing are common and suggest that dung beetles may show preferences for feces of greater nutritional quality, which may in turn impact beetle assemblages and community structure. This study investigated whether attractiveness of dung beetles to different resource (feces) types varies depending on mammal trophic guild and associated nutritional content. This study was conducted in Atlantic Forest fragments in the Parque Estadual da Serra do Tabuleiro, Santa Catarina, Brazil. To evaluate attractiveness, the feces of the carnivore Puma concolor , the omnivores Cerdocyon thous and Sapajus nigritus, and the herbivore Tapirus terrestris were utilized as bait. Dung was collected from zoo animals fed a standard diet. Sampling was performed in triplicate in five areas in the summer of 2013. Four pitfall traps were established in each area, and each trap was baited with one type of mammal feces. Food preference of the species was analyzed by calculating Rodgers’ index for cafeteria-type experiments. In total, 426 individuals from 17 species were collected. Rodgers’ index showed that omnivorous mammal feces ( C. thous ) were most attractive to all dung beetle species , although it is known that dung beetles are commonly opportunistic with respect to search for and allocation of food resources. These results suggest that mammal loss could alter competitive interactions between dung beetles. PMID:25528749
Dötterl, Stefan; David, Anja; Boland, Wilhelm; Silberbauer-Gottsberger, Ilse; Gottsberger, Gerhard
2012-12-01
Many plants attract their pollinators with floral scents, and these olfactory signals are especially important at night, when visual signals become inefficient. Dynastid scarab beetles are a speciose group of night-active pollinators, and several plants pollinated by these insects have methoxylated aromatic compounds in their scents. However, there is a large gap in our knowledge regarding the compounds responsible for beetle attraction. We used chemical analytical analyses to determine temporal patterns of scent emission and the composition of scent released from inflorescences of Philodendron selloum. The attractiveness of the main components in the scent to the dynastid scarab beetle Erioscelis emarginata, the exclusive pollinator of this plant, was assessed in field biotests. The amount of scent increased rapidly in the evening, and large amounts of scent were released during the activity time of the beetle pollinators. Inflorescences emitted a high number of compounds of different biosynthetic origin, among them both uncommon and also widespread flower scents. Methoxylated aromatic compounds dominated the scent, and 4-methoxystyrene, the most abundant compound, attracted E. emarginata beetles. Other compounds, such as (Z)-jasmone and possibly also the methoxylated aromatic compound 3,4-dimethoxystyrene increased the attractiveness of 4-methoxystyrene. Methoxylated aromatics, which are known from other dynastid pollinated plants as well, are important signals in many scarab beetles in a different context (e.g., pheromones), thus suggesting that these plants exploit pre-existing preferences of the beetles for attracting this group of insects as pollinators.
Interactions of Root Disease and Bark Beetles
George T. Ferrell; J. Richard Parmeter Jr.
1989-01-01
Associations between root diseases and bark beetles (Scolytidae) constitute some of the most serious pest complexes affecting forests in North America and elsewhere. The interactive functioning of these pests derives from the following relationships: 1) root diseases predispose trees to bark beetle infestation by lowering resistance, and perhaps...
Robert C. Thatcher; Patrick J. Barry
1982-01-01
The southern pine beetle (Dendroctonus frontalis Zimmermann) is one of pine's most destructive insect enemies in the Southern United States, Mexico, and Central America. Because populations build rapidly to outbreak proportions and large numbers of trees are killed, this insect generates considerable concern among managers of southern pine forests. The beetle...
USDA-ARS?s Scientific Manuscript database
Dung beetles (Coleoptera: Scarabaeidae) play a major role in nutrient cycling, soil aeration, and biological control of pests and parasites that breed in manure. Habitat fragmentation, pesticide usage, and conventional agricultural practices threaten dung beetle diversity, and their conservation is ...
Callosobruchus maculatus: A Seed Beetle with a Future in Schools.
ERIC Educational Resources Information Center
Dockery, Michael
1997-01-01
Recommends the use of seed beetles for studying animal behavior and provides suggestions for practical and project assignments. Sources for obtaining the beetles and a list of the equipment needed for their study and maintenance are provided. Answers to common concerns are addressed. (DDR)
Symbiosis and competition: complex interactions among beetles, fungi, and mites
Kier D. Klepzig; J.C. Moser; F.J. Lombardero; R.W. Hofstetter; M.P. Ayres
2001-01-01
Symbioses among bark beetles and their fungal and mite associates involve complex, multi-level interactions. Dendroctonus frontalis attacks and kills southern pines, introducing fungi into the tree. Ophiostoma minus may initially aid beetles in killing trees, but later this "bluestain" fungus becomes an antagonist,...
User's guide to the Douglas-fir beetle impact model
Michael A. Marsden; Bov B. Eav; Matthew K. Thompson
1993-01-01
Douglas-fir beetle (Dendroctonus pseudotsugae Hopk.) occurs throughout the range of its principal host, Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). At epidemic levels, the beetle causes considerable mortality in large-diameter Douglas-fir trees. Wind storms, drought, fire, and other factors have been reported as precedent...
Chemical ecology and serendipity: Developing attractants for Florida ambrosia beetle pests
USDA-ARS?s Scientific Manuscript database
Two exotic ambrosia beetles have become established in southern Florida: Xyleborus glabratus, the redbay ambrosia beetle (RAB), and Euwallacea fornicatus, the tea shot hole borer (TSHB). Both pests vector pathogenic fungal symbionts; the former for laurel wilt and the latter for Fusarium dieback d...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pine Shoot Beetle § 301.50-1 Definitions. Administrator... free of pine shoot beetle and may be moved interstate to any destination. Compliance agreement. A... of the pine shoot beetle or the existence of circumstances that make it reasonable to believe that...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pine Shoot Beetle § 301.50-1 Definitions. Administrator... free of pine shoot beetle and may be moved interstate to any destination. Compliance agreement. A... of the pine shoot beetle or the existence of circumstances that make it reasonable to believe that...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pine Shoot Beetle § 301.50-1 Definitions. Administrator... free of pine shoot beetle and may be moved interstate to any destination. Compliance agreement. A... of the pine shoot beetle or the existence of circumstances that make it reasonable to believe that...
Biological Control of Southern Pine Beetle
Fred M. Stephen; C. Wayne Berisford
2011-01-01
Exotic invasive forest insects are frequently managed through classical biological control, which involves searching for, introducing, and establishing their exotic natural enemies. Biological control of native bark beetles, including the southern pine beetle (SPB), has been primarily attempted by conserving and manipulating their natural enemies. Knowledge of the role...
ERIC Educational Resources Information Center
Pearce, Amy R.; Sale, Amanda Lovelace; Srivatsan, Malathi; Beck, Christopher W.; Blumer, Lawrence S.; Grippo, Anne A.
2013-01-01
We developed an inquiry-based biology laboratory exercise in which undergraduate students designed experiments addressing whether material from the neem tree ("Azadirachta indica") altered bean beetle ("Callosobruchus maculatus") movements and oviposition. Students were introduced to the bean beetle life cycle, experimental…
Formulating entompathogens for control of boring beetles in avocado orchards
USDA-ARS?s Scientific Manuscript database
A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...
Book review: Methods for catching beetles
USDA-ARS?s Scientific Manuscript database
Beetles are the most speciose animal group and found in virtually all habitats on Earth. Methods for Catching Beetles is a comprehensive general sourcebook about where and how to collect members of this diverse group. The book makes a compelling case in its Introduction about the value of scientif...
Davis, Doreen E.
2018-01-01
Background Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae) research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond to marked discontinuities in vegetation structure between maintained yards and forest. We expected environmental boundaries to be associated with beetle boundaries. Methods We collected beetles and measured environmental variables in 200 m by 200 m sampling grids centered at the edges of three forest patches, each with a rural, suburban, or urban context, in Charlotte, North Carolina, USA. We identified boundaries within each grid at two spatial scales and tested their significance and overlap using boundary statistics and overlap statistics, respectively. We complemented boundary delineation with k-means clustering. Results Boundaries in environmental variables, such as temperature, grass cover, and leaf litter depth, occurred at or near the edges of all three sites, in many cases at both scales. The beetle variables that exhibited the most pronounced boundary structure in relation to edges were total species evenness, generalist abundance, generalist richness, generalist evenness, and Agonum punctiforme abundance. Environmental and beetle boundaries also occurred within forest patches and residential developments, indicating substantial localized spatial variation on either side of edges. Boundaries in beetle and environmental variables that displayed boundary structure at edges significantly overlapped, as did boundaries on either side of edges. The comparison of boundaries and clusters revealed that boundaries formed parts of the borders of patches of similar beetle or environmental condition. Discussion We show that edge effects on ground beetle community structure and composition and environmental variation at the intersection of forest patches and residential developments can be described by boundaries and that these boundaries overlap in space. However, our results also highlight the complexity of edge effects in our system: environmental boundaries were located at or near edges whereas beetle boundaries related to edges could be spatially disjunct from them; boundaries incompletely delineated edges such that only parts of edges were well-described by sharp transitions in beetle and/or environmental variables; and the occurrence of boundaries related to edges was apparently influenced by individual property management practices, site-specific characteristics such as development geometry, and spatial scale. PMID:29333346
Davis, Doreen E; Gagné, Sara A
2018-01-01
Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae) research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond to marked discontinuities in vegetation structure between maintained yards and forest. We expected environmental boundaries to be associated with beetle boundaries. We collected beetles and measured environmental variables in 200 m by 200 m sampling grids centered at the edges of three forest patches, each with a rural, suburban, or urban context, in Charlotte, North Carolina, USA. We identified boundaries within each grid at two spatial scales and tested their significance and overlap using boundary statistics and overlap statistics, respectively. We complemented boundary delineation with k -means clustering. Boundaries in environmental variables, such as temperature, grass cover, and leaf litter depth, occurred at or near the edges of all three sites, in many cases at both scales. The beetle variables that exhibited the most pronounced boundary structure in relation to edges were total species evenness, generalist abundance, generalist richness, generalist evenness, and Agonum punctiforme abundance. Environmental and beetle boundaries also occurred within forest patches and residential developments, indicating substantial localized spatial variation on either side of edges. Boundaries in beetle and environmental variables that displayed boundary structure at edges significantly overlapped, as did boundaries on either side of edges. The comparison of boundaries and clusters revealed that boundaries formed parts of the borders of patches of similar beetle or environmental condition. We show that edge effects on ground beetle community structure and composition and environmental variation at the intersection of forest patches and residential developments can be described by boundaries and that these boundaries overlap in space. However, our results also highlight the complexity of edge effects in our system: environmental boundaries were located at or near edges whereas beetle boundaries related to edges could be spatially disjunct from them; boundaries incompletely delineated edges such that only parts of edges were well-described by sharp transitions in beetle and/or environmental variables; and the occurrence of boundaries related to edges was apparently influenced by individual property management practices, site-specific characteristics such as development geometry, and spatial scale.
Book review of advances in insect physiology: pine bark beetles
USDA-ARS?s Scientific Manuscript database
If not the most destructive forest pest, bark beetles are probably a close second in their culpability for killing millions of trees in the Northern Hemisphere. This volume provides an aptly-timed interdisciplinary review on aspects of bark beetle physiology, especially how it relates to selecting, ...
7 CFR 301.48-6 - Movement of live Japanese beetles.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 5 2012-01-01 2012-01-01 false Movement of live Japanese beetles. 301.48-6 Section 301.48-6 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and...
7 CFR 301.48-6 - Movement of live Japanese beetles.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 5 2011-01-01 2011-01-01 false Movement of live Japanese beetles. 301.48-6 Section 301.48-6 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and...
BeetleBase in 2010: Revisions to Provide Comprehensive Genomic Information for Tribolium castaneum
USDA-ARS?s Scientific Manuscript database
BeetleBase (http://www.beetlebase.org) has been updated to provide more comprehensive genomic information for the red flour beetle Tribolium castaneum. The database contains genomic sequence scaffolds mapped to 10 linkage groups (genome assembly release Tcas_3.0), genetic linkage maps, the official ...
Insecticide dip treatments to prevent walnut twig beetle colonization of black walnut logs
Jackson Audley; Adam Taylor; William E. Klingeman; Albert (Bud) Mayfield; Scott W. Myers
2016-01-01
The health, sustainability, and commercial viability of eastern black walnut (Juglans nigra) are currently under threat from thousand cankers disease. The disease is caused by an invasive bark beetle species, the walnut twig beetle (Pityophthorus juglandis), and its associated fungal pathogen (Geosmithia morbida...
Climate change and the outbreak ranges of two North American bark beetles
David W. Williams; Andrew M. Liebhold
2002-01-01
One expected effect of global climate change on insect populations is a shift in geographical distributions toward higher latitudes and higher elevations. Southern pine beetle Dendroctonus frontalis and mountain pine beetle Dendroctonus ponderosae undergo regional outbreaks that result in large-scale disturbances to pine forests in...
Fire and bark beetle interactions
Ken Gibson; Jose F. Negron
2009-01-01
Bark beetle populations are at outbreak conditions in many parts of the western United States and causing extensive tree mortality. Bark beetles interact with other disturbance agents in forest ecosystems, one of the primary being fires. In order to implement appropriate post-fire management of fire-damaged ecosystems, we need a better understanding of...
USDA-ARS?s Scientific Manuscript database
A survey was undertaken in 2010 to assess the makeup of the ambrosia beetle (Coleoptera: Curculionidae) community at two research sites in South Mississippi. Inexpensive beetle traps were constructed and fitted with ethanol lures, with bi-weekly collections made from March through November. The gr...
Biological control of tropical soda apple (Solanaceae) in Florida: Post-release evaluation
USDA-ARS?s Scientific Manuscript database
The leaf feeding beetle Gratiana boliviana Spaeth (Coleoptera: Chrysomelidae) was released as a biological control agent against tropical soda apple (TSA) (Solanum viarum Dunal (Solanaceae)) in Sumter County, FL in 2006. Evaluation of beetle feeding damage to TSA plants and changes in the beetle po...
USDA-ARS?s Scientific Manuscript database
The Chinese rose beetle, Adoretus sinicus Burmeister (Coleoptera: Scarabaeidae: Rutelinae: Adoretini), is a broadly polyphagous scarab beetle that is economically important and causes damage to a wide variety of host plants including agricultural crops and ornamentals in Southeast Asia, China, the ...
Cold Tolerance of Pityophthorus juglandis (Coleoptera: Scolytidae) From Northern California
Andrea R. Hefty; Steven J. Seybold; Brian H. Aukema; Robert C. Venette
2017-01-01
Winter survivorship of insects is determined by a combination of physiological, behavioral, and microhabitat characteristics. We characterized the cold tolerance of the walnut twig beetle, Pityophthorus juglandis Blackman, a domestic alien invasive bark beetle that vectors a phytopathogenic fungus. The beetle and fungus cause thousand cankers...
Pheromones in White Pine Cone Beetle, Conophthorus coniperdu (Schwarz) (Coleoptera: Scolytidae)
Goran Birgersson; Gary L. DeBarr; Peter de Groot; Mark J. Dalusky; Harold D. Pierce; John H. Borden; Holger Meyer; Wittko Francke; Karl E. Espelie; C. Wayne Berisford
1995-01-01
Female white pine cone beetles, Conophrhorus coniperda, attacking second-year cones of eastern white pine, Pinus strobus L., produced a sex-specific pheromone that attracted conspecific males in laboratory bioassays and to field traps. Beetle response was enhanced by host monoterpenes. The female-produced compound was identified in...
Predicting county-level southern pine beetle outbreaks from neighborhood patterns
USDA-ARS?s Scientific Manuscript database
The southern pine beetle (Dendroctonus frontalis, Coleoptera: Curculionidae) is the most destructive insect in southern forests. States have kept county-level records on the locations of beetle outbreaks for the past forty-eight years. In this study, we seek to determine how accurately patterns of c...
The Mediterranean pine engraver
Jana C. Lee; Sheri L. Smith; Steven J. Seybold
2005-01-01
In May 2004, a new exotic bark beetle for North America was discovered in baited flight traps in Fresno, California during an annual bark beetle and woodborer survey by the California Department of Food and Agriculture. This bark beetle was identified as Orthotomicus erosus (Wollaston), the Mediterranean pine engraver, a well-documented pest of...
Edward H. Holsten; Roger E. Burnside; Steven J. Seybold
2000-01-01
From 1996 through 1999, field tests of various engraver beetle (Ips perturbatus (Eichhoff)) semiochemicals in funnel traps were conducted in south-central and interior Alaska in stands of Lutz (Picea xlutzii Little) and white spruce (P.glauca (Moench) Voss). The European spruce beetle (I....
Bark beetle-caused mortality in a drought-affected ponderosa pine landscape in Arizona, USA
Jose F. Negron; Joel D. McMillin; John A. Anhold; Dave Coulson
2009-01-01
Extensive ponderosa pine (Pinus ponderosa Dougl. ex Laws.) mortality associated with a widespread severe drought and increased bark beetle (Coleoptera: Curculionidae, Scolytinae) populations occurred in Arizona from 2001 to 2004. A complex of Ips beetles including: the Arizona fivespined ips, Ips lecontei Swaine...
Elm leaf beetle performance on ozone-fumigated elm
Jack H. Barger; Richard W. Hall; Alden M. Townsend; Alden M. Townsend
1992-01-01
Leaves (1986) from elm hybrids ('Pioneer', 'Homestead', '970') previously fumigated in open-top chambers with ozone or with charcoal-filtered air (CFA) were evaluated for water and nitrogen content or were fed to adult elm leaf beetles (ELB), Xanthogaleruca = (Pyrrhallta) luteola (Muller), to determine host suitability for beetle fecundity...
Forest health and bark beetles
C. J. Fettig
2012-01-01
In recent years, bark beetles have caused significant tree mortality in the Sierra Nevada, rivaling mortality caused by wildfire in some locations. This chapter addresses two important questions: How can managers prepare for and influence levels of bark beetle-caused tree mortality given current forest conditions and future climate uncertainties? and How would the...
Mountain pine beetle infestations in relation to lodgepole pine diameters
Walter E. Cole; Gene D. Amman
1969-01-01
Tree losses resulting from infestation by the mountain pine beetle (Dendroctonus ponderosae Hopkins) were measured in two stands of lodgepole pine (Pinus contorta Dougl.) where the beetle population had previously been epidemic. Measurement data showed that larger diameter trees were infested and killed first. Tree losses...
USDA-ARS?s Scientific Manuscript database
A series of tests was conducted to evaluate susceptibility of Tribolium castaneum (Herbst), the red flour beetle, Trogoderma variabile (Ballion), the warehouse beetle, and Dermestes maculatus (DeGeer), the hide beetle, to a new insecticide (Tekko®) which contained the IGR pyreproxyfen and the chiten...
Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle
Richard W. Hofstetter; James T. Cronin; Kier D. Klepzig; John C. Moser; Matthew P. Ayres
2005-01-01
Feedback from community interactions involving mutualisms are a rarely explored mechanism for generating complex population dynamics. We examined the effects of two linked mutualisms on the population dynamics of a beetle that exhibits outbreak dynamics. One mutualism involves an obligate association between the bark beetle, Dendroctonus frontalis...
William P. Shepherd; Brian T. Sullivan; Richard A. Goyer; Kier D. Klepzig
2005-01-01
We measured electrophysiological responses in the antennae of two predaceous hister beetles, Platysoma parallelum and Plegaderus transversus, exposes to racemic mixtures of primary aggregation pheromones of scolytid bark beetle prey, ipsenol, ipsdienol, and frontalin. No significant differences were found for either histerid...
Verbenone decreases whitebark pine mortality throughout a mountain pine beetle outbreak
USDA-ARS?s Scientific Manuscript database
Mountain pine beetle [Dendroctonus ponderosae (Hopkins)] outbreaks are killing large numbers of pine trees on millions of hectares in the western U.S. The ranges, impacts and frequencies of mountain pine beetle outbreaks are increasing, perhaps due to climate change. One of the species being impacte...
R.A. Progar; D.C. Blackford; D.R. Cluck; S. Costello; L.B. Dunning; T. Eager; C.L. Jorgensen; A.S. Munson; B. Steed; M.J. Rinella
2013-01-01
Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: CurcuIionidae: Scolytinae), is among the primary causes of mature lodgepole pine, Pinus contorta variety latifolia mortality. Verbenone is the only antiaggregant semiochemical commercially available for reducing mountain pine beetle infestation of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
...; Asian Longhorned Beetle Consumer Research Survey AGENCY: Animal and Plant Health Inspection Service... longhorned beetle consumer research survey, contact Ms. Heather Curlett, Outreach and Risk Communications... Research Survey. OMB Number: 0579-XXXX. Type of Request: Approval of an information collection. Abstract...
Molecular genetics of Asian longhorned beetles: introduction, invasion, and spread in North America
M. D. Ginzel; L. M. Hanks; K. N. Paige
2003-01-01
We have used molecular techniques to study the genetic structure of Asian longhorned beetle (ALB) populations in North America, allowing us to assess the dispersal behavior of the adult beetles, the extent to which populations have spread in urban areas, and the potential for future spread.
USDA-ARS?s Scientific Manuscript database
Invasive ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) cause significant damage to ornamental nursery tree crops throughout the Eastern U. S. Depending on surrounding habitat, some nurseries can undergo large influxes of ambrosia beetles from the forest to susceptible nursery stock. Eth...
Response of the brown spruce longhorn beetle, Tetropium fuscum (Fabr.) to host volatiles
Jon Sweeney; Peter de Groot; Linda MacDonald
2003-01-01
Studies were undertaken to develop an attractant and trap for survey and detection of the brown spruce longhorn beetle, Tetropium fuscum (Fabr.) (Coleoptera: Cerambycidae), a European beetle recently found established in Halifax, Nova Scotia. Cortical volatiles of T. fuscum-infested red spruce, Picea rubens Sarg...
USDA-ARS?s Scientific Manuscript database
This study evaluated 47 commercial plant-derived essential oils individually or as blends for their potential as adult Japanese beetle (Popillia japonica Newman) repellents during 2003 to 2007. A bioassay procedure used traps to evaluate whether essential oils could repel beetles from Japanese beet...
USDA-ARS?s Scientific Manuscript database
The first myrmecophilous flea beetle genus (Myrmeconycha) with four new species (M. erwini – Ecuador, M. gordoni - Brazil, M. pakaluki - Panama and M. pheidole - Costa Rica) is described and illustrated. It is compared with Disonychine flea beetles and may be easily differentiated based on the exte...
A foam formulation of an entomopathogenic fungus for control of boring beetles in avocado orchards
USDA-ARS?s Scientific Manuscript database
A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...
USDA-ARS?s Scientific Manuscript database
Management of ambrosia beetles in ornamental nurseries relies, in part, on treatments of insecticides to prevent beetles from boring into trees emitting stress-induced ethanol. However, data on residual efficacy of commonly used pyrethroid insecticides is warranted to gauge the duration that trees ...
Bark beetles in a changing climate
John E. Lundquist; Barbara J. Bentz
2009-01-01
Over the past decade, native bark beetles (Coleoptera: Curculionidae) have killed billions of trees across millions of hectares of forest from Alaska to Mexico. Although bark beetle infestations are a regular force of natural change in forested ecosystems, several current outbreaks occurring simultaneously across western North America are the largest and most...
USDA-ARS?s Scientific Manuscript database
Field trapping studies conducted in north-central Florida for the redbay ambrosia beetle (Xyleborus glabratus) captured numerous non-target ambrosia beetles, providing information on species diversity and relative abundance. Traps (Lindgren and sticky) baited with essential oil lures (manuka and p...
Briegleb, W; Neubert, J; Schatz, A; Sinapius, F
1975-01-01
Experiments with Tribolium confusum showed that the morphological characteristics of the beetles are modified by simulated weightlessness (fast running clinostat). Because of possible side effects due to differences in fertility of inbred lines, the first experiments were made with a genetically heterogeneous stock. Thereafter experiments were confirmed with inbred beetles. For both stocks a rise of mainly wing anomalies resulted from rotation of whole cultures of beetles within horizontal tubes. The extent to which these anomalies are teratogenetic or genetic has not yet been analysed in detail.
Mcelrath, Thomas C; Androw, Robert A; Mchugh, Joseph V
2016-08-22
Antibothrus morimotoi Sasaji, a cocoon-forming beetle (Coccinelloidea: Bothrideridae) native to the Palearctic region, is newly reported from North America. In 2013 and 2015, several series of specimens were collected during an ongoing USDA/APHIS/PPQ exotic bark beetle survey in Franklin County, Ohio, U.S.A. This is the first confirmed record of the species and genus in the New World. The capture of these specimens suggests that the beetle is established in the greater Columbus, Ohio, metropolitan area.
Creighton, C. S.; Fassuliotis, G.
1985-01-01
A nematode identified as Heterorhabditis sp. was discovered in June 1982 in larval cadavers of the banded cucumber beetle, Diabrotica balteata, in soil on wooded land. Effective beetle control (over 95%) was obtained when larvae were exposed to potted soil containing infective stage nematode juveniles or infected larval cadavers. The nematode was propagated in vivo on larvae of D. balteata, Diaphania nitidalis (the pickleworm), and Galleria mellonella (the greater wax moth). This Heterorhabditis sp. has promising potential as a biocontrol agent for the banded cucumber beetle. PMID:19294074
NASA Astrophysics Data System (ADS)
Sheiman, I. M.; Shkutin, M. F.; Terenina, N. B.; Gustafsson, M. K. S.
2006-06-01
The host-parasite relationship, Tenebrio molitor- Hymenolepis diminuta, was analyzed. The learning behavior of infected and uninfected (control) beetles in a T-maze was compared. The infected beetles moved much slower in the T-maze than the controls. The infected beetles reached the same level of learning as the controls. However, they needed more trials than the controls. The effect of the infection was already distinct after the first week and even higher after the second week. This indicates that the initial phase of infection caused stress in the beetles. Longer infection did not worsen their ability to learn. Thus, the parasites clearly changed the behavior of their intermediate host and probably made them more susceptible to their final host, the rat.
Hammer, Tobin J; Fierer, Noah; Hardwick, Bess; Simojoki, Asko; Slade, Eleanor; Taponen, Juhani; Viljanen, Heidi; Roslin, Tomas
2016-05-25
Antibiotics are routinely used to improve livestock health and growth. However, this practice may have unintended environmental impacts mediated by interactions among the wide range of micro- and macroorganisms found in agroecosystems. For example, antibiotics may alter microbial emissions of greenhouse gases by affecting livestock gut microbiota. Furthermore, antibiotics may affect the microbiota of non-target animals that rely on dung, such as dung beetles, and the ecosystem services they provide. To examine these interactions, we treated cattle with a commonly used broad-spectrum antibiotic and assessed downstream effects on microbiota in dung and dung beetles, greenhouse gas fluxes from dung, and beetle size, survival and reproduction. We found that antibiotic treatment restructured microbiota in dung beetles, which harboured a microbial community distinct from those in the dung they were consuming. The antibiotic effect on beetle microbiota was not associated with smaller size or lower numbers. Unexpectedly, antibiotic treatment raised methane fluxes from dung, possibly by altering the interactions between methanogenic archaea and bacteria in rumen and dung environments. Our findings that antibiotics restructure dung beetle microbiota and modify greenhouse gas emissions from dung indicate that antibiotic treatment may have unintended, cascading ecological effects that extend beyond the target animal. © 2016 The Author(s).
Fierer, Noah; Hardwick, Bess; Simojoki, Asko; Slade, Eleanor; Taponen, Juhani; Viljanen, Heidi; Roslin, Tomas
2016-01-01
Antibiotics are routinely used to improve livestock health and growth. However, this practice may have unintended environmental impacts mediated by interactions among the wide range of micro- and macroorganisms found in agroecosystems. For example, antibiotics may alter microbial emissions of greenhouse gases by affecting livestock gut microbiota. Furthermore, antibiotics may affect the microbiota of non-target animals that rely on dung, such as dung beetles, and the ecosystem services they provide. To examine these interactions, we treated cattle with a commonly used broad-spectrum antibiotic and assessed downstream effects on microbiota in dung and dung beetles, greenhouse gas fluxes from dung, and beetle size, survival and reproduction. We found that antibiotic treatment restructured microbiota in dung beetles, which harboured a microbial community distinct from those in the dung they were consuming. The antibiotic effect on beetle microbiota was not associated with smaller size or lower numbers. Unexpectedly, antibiotic treatment raised methane fluxes from dung, possibly by altering the interactions between methanogenic archaea and bacteria in rumen and dung environments. Our findings that antibiotics restructure dung beetle microbiota and modify greenhouse gas emissions from dung indicate that antibiotic treatment may have unintended, cascading ecological effects that extend beyond the target animal. PMID:27226475
NASA Astrophysics Data System (ADS)
Ghimire, Rajendra P.; Kivimäenpää, Minna; Blomqvist, Minna; Holopainen, Toini; Lyytikäinen-Saarenmaa, Päivi; Holopainen, Jarmo K.
2016-02-01
Climate warming driven storms are evident causes for an outbreak of the European spruce bark beetle (Ips typographus L.) resulting in the serious destruction of mature Norway spruce (Picea abies Karst.) forests in northern Europe. Conifer species are major sources of biogenic volatile organic compounds (BVOCs) in the boreal zone. Climate relevant BVOC emissions are expected to increase when conifer trees defend against bark beetle attack by monoterpene (MT)-rich resin flow. In this study, BVOC emission rates from the bark surface of beetle-attacked and non-attacked spruce trees were measured from two outbreak areas, Iitti and Lahti in southern Finland, and from one control site at Kuopio in central Finland. Beetle attack increased emissions of total MTs 20-fold at Iitti compared to Kuopio, but decreased the emissions of several sesquiterpenes (SQTs) at Iitti. At the Lahti site, the emission rate of α-pinene was positively correlated with mean trap catch of bark beetles. The responsive individual MTs were tricyclene, α-pinene, camphene, myrcene, limonene, 1,8-cineole and bornyl acetate in both of the outbreak areas. Our results suggest that bark beetle outbreaks affect local BVOC emissions from conifer forests dominated by Norway spruce. Therefore, the impacts of insect outbreaks are worth of consideration to global BVOC emission models.
A postglacial coleopterous assemblage from Lockport Gulf, New York
NASA Astrophysics Data System (ADS)
Miller, Randy F.; Morgan, Alan V.
1982-03-01
The Lockport Gulf site near Lockport, New York, is a 1.9-m sequence of organic-rich marls having a basal date of approximately 10,920 yr B.P. Six bulk samples with a combined weight of 48 kg produced over 780 individual fossil insects representing five orders, as well as molluscs and abundant plant macrofossils. Coleoptera were represented by 24 families. Several major beetle groups (Carabidae, ground beetles; Hydrophilidae, water scavenger beetles; Elmidae, riffle beetles; Staphylinidae, rove beetles; and Scolytidae, bark beetles) indicate a riffle-and-pool stream, surrounded by marsh, with open riparian habitats and nearby trees. Two zones were recognized based on the Coleoptera assemblages. The Zone 1 fauna (ca. 10,920-9800 yr B.P.) was dominated by boreal forest taxa with abundant bark beetles indicating the presence of spruce trees. In Zone 2 (ca. 9700-9100 yr B.P.) the combination of species with a restricted modern distribution in the Great Lakes-St. Lawrence Forest region and pine and deciduous tree inhabitants suggests a change in vegetation by 9700 yr B.P. Thermal estimates from a faunal analysis indicate that the climatic conditions were stable across the spruce-pine transition, with the mean July temperature in the range of 16° to 18°C.
Diversity and Interactions of Wood-Inhabiting Fungi and Beetles after Deadwood Enrichment
Müller, Tobias; Dittrich, Marcus; Rudloff, Renate; Hoppe, Björn; Linsenmair, Karl Eduard
2015-01-01
Freshly cut beech deadwood was enriched in the canopy and on the ground in three cultural landscapes in Germany (Swabian Alb, Hainich-Dün, Schorfheide-Chorin) in order to analyse the diversity, distribution and interaction of wood-inhabiting fungi and beetles. After two years of wood decay 83 MOTUs (Molecular Operational Taxonomic Units) from 28 wood samples were identified. Flight Interception Traps (FITs) installed adjacent to the deadwood enrichments captured 29.465 beetles which were sorted to 566 species. Geographical ‘region’ was the main factor determining both beetle and fungal assemblages. The proportions of species occurring in all regions were low. Statistic models suggest that assemblages of both taxa differed between stratum and management praxis but their strength varied among regions. Fungal assemblages in Hainich-Dün, for which the data was most comprehensive, discriminated unmanaged from extensively managed and age-class forests (even-aged timber management) while canopy communities differed not from those near the ground. In contrast, the beetle assemblages at the same sites showed the opposite pattern. We pursued an approach in the search for fungus-beetle associations by computing cross correlations and visualize significant links in a network graph. These correlations can be used to formulate hypotheses on mutualistic relationships for example in respect to beetles acting as vectors of fungal spores. PMID:26599572
Asian longhorned beetle complicates the relationship ...
Urban foresters routinely emphasise the importance of taxonomic diversity to reduce the vulnerability of tree assemblages to invasive pests, but it is unclear to what extent diversity reduces vulnerability to polyphagous (i.e. generalist) pests. Drawing on field data from seven communities in metropolitan Cincinnati, Ohio, USA, we tested the hypothesis that communities with higher diversity would exhibit lower vulnerability to the polyphagous Asian longhorned beetle, which currently threatens the region. Based on street tree compositions and the beetle?s host preferences, Asian longhorned beetle threatened up to 35.6% of individual street trees and 47.5% of the total basal area across the study area, but we did not see clear connections between taxonomic diversity and beetle vulnerability among study communities. For example, the city of Fairfield was among the least diverse communities but had the lowest proportion of trees vulnerable to Asian longhorned beetle, whereas the city of Wyoming exhibited high diversity and high vulnerability. On the other hand, Forest Park aligned with our original hypothesis, as it was characterised by low diversity and high vulnerability. Our results demonstrate that relatively high taxonomic diversity in street tree assemblages does not necessarily lead to reduced vulnerability to a polyphagous pest. Considering the threats posed by polyphagous pests, selecting a set of relatively pest resistant trees known to perform well in urb
Ivermectin alters reproductive success, body condition and sexual trait expression in dung beetles.
González-Tokman, Daniel; Martínez M, Imelda; Villalobos-Ávalos, Yesenia; Munguía-Steyer, Roberto; Ortiz-Zayas, María Del Rosario; Cruz-Rosales, Magdalena; Lumaret, Jean-Pierre
2017-07-01
Ivermectin is a very common parasiticide used in livestock. It is excreted in the dung and has negative effects on survival and reproduction of dung-degrading organisms, including dung beetles. Here we exposed the dung beetle Euoniticellus intermedius to different concentrations of ivermectin in the food and evaluated reproductive success and the expression of traits associated with survival and reproduction under laboratory conditions. It is the first time the effects of ivermectin were evaluated on offspring physiological condition and the expression of a secondary sexual trait. We also registered the number of emerged beetles, sex ratio and body size of emerged adult beetles. Besides reducing the number of emerged beetles and body size, as found in the same and other insects, ivermectin at high doses reduced muscle mass while at intermediate doses it increased lipid mass. Ivermectin changed offspring sex ratio and at high doses increased the size of male horn, which is an important trait defining the male mating success. Our results highlight the importance of regulating parasiticide usage in livestock in order to maintain ecosystem services provided by dung beetles and confirm that contaminants impose new environmental conditions that not only impact on wild animal survival, but also on evolutionary processes such as sexual selection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gardner, Jeffrey; Hoffmann, Michael P; Mazourek, Michael
2015-04-01
The striped cucumber beetle [Acalymma vittatum (F.)] is a specialist pest of cucurbits throughout its range in the United States and Canada. Improved integrated pest management options are needed across the pest's range, especially on organic farms where there are few effective controls. Trap cropping in cucurbits is an option, but there are significant challenges to the technique. Because cucurbit flowers are highly attractive to the beetles, four field experiments tested whether cultivar and phenology interact to preferentially aggregate beetles. The first experiment tested the hypothesis that cucurbit flowers were more attractive to striped cucumber beetles than was foliage. The second experiment tested whether there were differences in beetle aggregation between two relatively attractive cultivars. The third and fourth experiments were factorial designs with two plant cultivars and two levels of flowering to specifically test for an interaction of cultivar and flowering. Results indicated that flowers were more attractive than foliage, beetle aggregation was affected by plant cultivar, and that there was an interaction of cultivar with flowering. We conclude that a single cultivar may be sufficient to serve as a generic trap crop to protect a wide variety of cucurbits. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gedling, Cassidy R.; Smith, Charlotte M.; LeMoine, Christophe M. R.
2018-01-01
For nearly 400 million years, insects and plants have been embattled in an evolutionary arms race. Insects have developed diverse feeding strategies and behaviors in an effort to circumvent and overcome an extensive collection of plant defense tactics. Sap-sucking insects often inject saliva into hosts plants, which contains a suite of effector proteins and even microbial communities that can alter the plant’s defenses. Lacking salivary glands, leaf-feeding beetles represent an interesting group of phytophagous insects. Feeding beetles regurgitate onto leaf surfaces and it is thought that these oral secretions influence insect-plant interactions and even play a role in virus-vector specificity. Since the molecular and biological makeup of the regurgitant is virtually unknown, we carried out RNA sequencing and 16S rDNA analysis on a major soybean pest, Epilachna varivestis, to generate the first ever beetle “regurgitome” and characterize its microbiome. Interestingly, the regurgitant is comprised of a rich molecular assortment of genes encoding putative extracellular proteins involved in digestion, molting, immune defense, and detoxification. By carrying out plant inoculation assays, we reinforced the fundamental role of the regurgitant in beetle-borne virus specificity. Ultimately, these studies begin to characterize the importance of regurgitant in virus transmission and beetle-plant interactions. PMID:29377955
Silva Neto, A J; Scorsato, V; Arnoldi, F G C; Viviani, V R
2009-12-01
Several beetle luciferases have been cloned and sequenced. However, most studies on structure and function relationships and bioanalytical applications were done with firefly luciferases, which are pH sensitive. Several years ago we cloned Pyrearinus termitilluminans larval click beetle luciferase, which displays the most blue-shifted bioluminescence among beetle luciferases and is pH insensitive. This enzyme was expressed in E. coli, purified, and its properties investigated. This luciferase shows slower luminescence kinetics, K(M) values comparable to other beetle luciferases and high catalytic constant. Fluorescence studies with 8-anilino-1-naphtalene-sulfonic acid (1,8-ANS) and modeling studies suggest that the luciferin binding site of this luciferase is very hydrophobic, supporting the solvent and orientation polarizability effects as determining mechanisms for bioluminescence colors. Although pH insensitive in the range between pH 6-8, at pH 10 this luciferase displays a remarkable red-shift and broadening of the bioluminescence spectrum. Modeling studies suggest that the residue C312 may play an important role in bioluminescence color modulation. Compared to other beetle luciferases, Pyrearinus termitilluminans luciferase also displays higher thermostability and sustained luminescence in a bacterial cell environment, which makes this luciferase particularly suitable for in vivo cell analysis and bioimaging.
Saremba, Brett M.; Tymm, Fiona J. M.; Baethke, Kathy; Rheault, Mark R.; Sherif, Sherif M.; Saxena, Praveen K.; Murch, Susan J.
2017-01-01
ABSTRACT American Elms were devastated by an outbreak of Dutch Elm Disease is caused by the fungus Ophiostoma novo-ulmi Brasier that originated in Asia and arrived in the early 1900s. In spite of decades of study, the specific mechanisms and disease resistance in some trees is not well understood. the fungus is spread by several species of bark beetles in the genus Scolytus, during their dispersal and feeding. Our objective was to understand elm responses to beetle feeding in the absence of the fungus to identify potential resistance mechanisms. A colony of Scolytus multistriatus was established from wild-caught beetles and beetles were co-incubated with susceptible or resistant American elm varieties in a controlled environment chamber. Beetles burrowed into the auxillary meristems of the young elm shoots. The trees responded to the beetle damage by a series of spikes in the concentration of plant growth regulating compounds, melatonin, serotonin, and jasmonic acid. Spikes in melatonin and serotonin represented a 7,000-fold increase over resting levels. Spikes in jasmonic acid were about 10-fold higher than resting levels with one very large spike observed. Differences were noted between susceptible and resistant elms that provide new understanding of plant defenses. PMID:28448744
Buckley, P.A.; McCarthy, M.
1994-01-01
1. In response to a purported 'bird-strike problem' at J.F. Kennedy International Airport in New York City, we examined short (5 cm) and long (45 cm) grass heights as gull deterrents, in a randomized-block experiment. 2. Vegetative cover, numbers of adult insects and of larval beetles (suspected on-airport food of the gulls) were sampled in the six-block, 36-plot study area, as well as gut contents of adult and downy young gulls in the immediately adjacent colony in the Jamaica Bay Wildlife Refuge. 3. We found that (i) Oriental beetle larvae were the most numerous and concentrated in one experimental block; (ii) beetle larvae numbers were uncorrelated with grass height; (iii) adult beetles were also uncorrelated with grass height; (iv) laughing gulls were distributed across blocks irrespective of percentage cover; (v) within blocks, laughing gulls were selecting short grass and avoiding long grass plots; (vi) laughing gull numbers were positively associated with numbers of Oriental beetle larvae; (vii) adult laughing gulls on the airport were eating lower-nutrition food of terrestrial origin (74-83% adult beetles, mostly Oriental plus green June and ground beetles); (viii) on the other hand, gull chicks in the adjacent breeding colony were being fed more easily digested, higher-protein food of marine origin (86-88% fishes, crustacea and molluscs); (ix) laughing gulls on the airport were taking their adult beetles only in short-grass plots, ignoring large numbers in adjacent long grass; (x) during the summer, on-airport gulls shifted from performing largely maintenance activities on pavement to feeding actively for beetles on newly mown short grass, the change coinciding with adult beetle emergence; (xi) standing water on the airport attracted significantly more gulls than dry areas all summer long. 4. We recommend a series of ecologically compatible, but aggressive habitat management actions for controlling laughing gulls on Kennedy Airport by rendering the airport unattractive to them, notably by implementing an airport-wide programme of long-grass encouragement, draining standing water and improving runoff in water-collecting areas, and controlling beetles. 5. We conclude by outlining the necessity for airport-wide bird, vegetation and habitat management programmes fully integrated into airport operation and planning activities.
Strategies for managing rival bacterial communities: Lessons from burying beetles.
Duarte, Ana; Welch, Martin; Swannack, Chris; Wagner, Josef; Kilner, Rebecca M
2018-03-01
The role of bacteria in animal development, ecology and evolution is increasingly well understood, yet little is known of how animal behaviour affects bacterial communities. Animals that benefit from defending a key resource from microbial competitors are likely to evolve behaviours to control or manipulate the animal's associated external microbiota. We describe four possible mechanisms by which animals could gain a competitive edge by disrupting a rival bacterial community: "weeding," "seeding," "replanting" and "preserving." By combining detailed behavioural observations with molecular and bioinformatic analyses, we then test which of these mechanisms best explains how burying beetles, Nicrophorus vespilloides, manipulate the bacterial communities on their carcass breeding resource. Burying beetles are a suitable species to study how animals manage external microbiota because reproduction revolves around a small vertebrate carcass. Parents shave a carcass and apply antimicrobial exudates on its surface, shaping it into an edible nest for their offspring. We compared bacterial communities in mice carcasses that were either fresh, prepared by beetles or unprepared but buried underground for the same length of time. We also analysed bacterial communities in the burying beetle's gut, during and after breeding, to understand whether beetles could be "seeding" the carcass with particular microbes. We show that burying beetles do not "preserve" the carcass by reducing bacterial load, as is commonly supposed. Instead, our results suggest they "seed" the carcass with bacterial groups which are part of the Nicrophorus core microbiome. They may also "replant" other bacteria from the carcass gut onto the surface of their carrion nest. Both these processes may lead to the observed increase in bacterial load on the carcass surface in the presence of beetles. Beetles may also "weed" the bacterial community by eliminating some groups of bacteria on the carcass, perhaps through the production of antimicrobials themselves. Whether these alterations to the bacterial community are adaptive from the beetle's perspective, or are simply a by-product of the way in which the beetles prepare the carcass for reproduction, remains to be determined in future work. In general, our work suggests that animals might use more sophisticated techniques for attacking and disrupting rival microbial communities than is currently appreciated. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Charles Darwin, beetles and phylogenetics.
Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B
2009-11-01
Here, we review Charles Darwin's relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in "The Descent of Man". During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig's new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has changed dramatically. With very large data sets and high throughput sampling, phylogenetic questions can be addressed without prior knowledge of morphological characters. Nevertheless, molecular studies have not lead to the great breakthrough in beetle systematics--yet. Especially the phylogeny of the extremely species rich suborder Polyphaga remains incompletely resolved. Coordinated efforts of molecular workers and of morphologists using innovative techniques may lead to more profound insights in the near future. The final aim is to develop a well-founded phylogeny, which truly reflects the evolution of this immensely species rich group of organisms.
Charles Darwin, beetles and phylogenetics
NASA Astrophysics Data System (ADS)
Beutel, Rolf G.; Friedrich, Frank; Leschen, Richard A. B.
2009-11-01
Here, we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has changed dramatically. With very large data sets and high throughput sampling, phylogenetic questions can be addressed without prior knowledge of morphological characters. Nevertheless, molecular studies have not lead to the great breakthrough in beetle systematics—yet. Especially the phylogeny of the extremely species rich suborder Polyphaga remains incompletely resolved. Coordinated efforts of molecular workers and of morphologists using innovative techniques may lead to more profound insights in the near future. The final aim is to develop a well-founded phylogeny, which truly reflects the evolution of this immensely species rich group of organisms.
2013-01-01
Background The European spruce bark beetle, Ips typographus, and the North American mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae), are severe pests of coniferous forests. Both bark beetle species utilize aggregation pheromones to coordinate mass-attacks on host trees, while odorants from host and non-host trees modulate the pheromone response. Thus, the bark beetle olfactory sense is of utmost importance for fitness. However, information on the genes underlying olfactory detection has been lacking in bark beetles and is limited in Coleoptera. We assembled antennal transcriptomes from next-generation sequencing of I. typographus and D. ponderosae to identify members of the major chemosensory multi-gene families. Results Gene ontology (GO) annotation indicated that the relative abundance of transcripts associated with specific GO terms was highly similar in the two species. Transcripts with terms related to olfactory function were found in both species. Focusing on the chemosensory gene families, we identified 15 putative odorant binding proteins (OBP), 6 chemosensory proteins (CSP), 3 sensory neuron membrane proteins (SNMP), 43 odorant receptors (OR), 6 gustatory receptors (GR), and 7 ionotropic receptors (IR) in I. typographus; and 31 putative OBPs, 11 CSPs, 3 SNMPs, 49 ORs, 2 GRs, and 15 IRs in D. ponderosae. Predicted protein sequences were compared with counterparts in the flour beetle, Tribolium castaneum, the cerambycid beetle, Megacyllene caryae, and the fruit fly, Drosophila melanogaster. The most notable result was found among the ORs, for which large bark beetle-specific expansions were found. However, some clades contained receptors from all four beetle species, indicating a degree of conservation among some coleopteran OR lineages. Putative GRs for carbon dioxide and orthologues for the conserved antennal IRs were included in the identified receptor sets. Conclusions The protein families important for chemoreception have now been identified in three coleopteran species (four species for the ORs). Thus, this study allows for improved evolutionary analyses of coleopteran olfaction. Identification of these proteins in two of the most destructive forest pests, sharing many semiochemicals, is especially important as they might represent novel targets for population control. PMID:23517120
Yu, Xiao-Dong; Lü, Liang; Luo, Tian-Hong; Zhou, Hong-Zhang
2013-01-01
We report on the species richness patterns of epigaeic beetles (Coleoptera: Carabidae and Staphylinidae) along a subtropical elevational gradient of Balang Mountain, southwestern China. We tested the roles of environmental factors (e.g. temperature, area and litter cover) and direct biotic interactions (e.g. foods and antagonists) that shape elevational diversity gradients. Beetles were sampled at 19 sites using pitfall traps along the studied elevational gradient ranging from 1500 m–4000 m during the 2004 growing season. A total of 74416 specimens representing 260 species were recorded. Species richness of epigaeic beetles and two families showed unimodal patterns along the elevational gradient, peaking at mid-elevations (c. 2535 m), and the ranges of most beetle species were narrow along the gradient. The potential correlates of both species richness and environmental variables were examined using linear and second order polynomial regressions. The results showed that temperature, area and litter cover had strong explanatory power of beetle species richness for nearly all richness patterns, of beetles as a whole and of Carabidae and Staphylinidae, but the density of antagonists was associated with species richness of Carabidae only. Multiple regression analyses suggested that the three environmental factors combined contributed most to richness patterns for most taxa. The results suggest that environmental factors associated with temperature, area and habitat heterogeneity could account for most variation in richness pattern of epigaeic beetles. Additionally, the mid-elevation peaks and the small range size of most species indicate that conservation efforts should give attention to the entire gradient rather than just mid-elevations. PMID:23874906
Bogoni, Juliano A; Hernández, Malva I M
2014-01-01
Mammal feces are the primary food and nesting resource for the majority of dung beetle species, and larval development depends on the quantity and quality of that resource. Physiological necessities, competitive interactions, and resource sharing are common and suggest that dung beetles may show preferences for feces of greater nutritional quality, which may in turn impact beetle assemblages and community structure. This study investigated whether attractiveness of dung beetles to different resource (feces) types varies depending on mammal trophic guild and associated nutritional content. This study was conducted in Atlantic Forest fragments in the Parque Estadual da Serra do Tabuleiro, Santa Catarina, Brazil. To evaluate attractiveness, the feces of the carnivore Puma concolor, the omnivores Cerdocyon thous and Sapajus nigritus, and the herbivore Tapirus terrestris were utilized as bait. Dung was collected from zoo animals fed a standard diet. Sampling was performed in triplicate in five areas in the summer of 2013. Four pitfall traps were established in each area, and each trap was baited with one type of mammal feces. Food preference of the species was analyzed by calculating Rodgers' index for cafeteria-type experiments. In total, 426 individuals from 17 species were collected. Rodgers' index showed that omnivorous mammal feces (C. thous) were most attractive to all dung beetle species, although it is known that dung beetles are commonly opportunistic with respect to search for and allocation of food resources. These results suggest that mammal loss could alter competitive interactions between dung beetles. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
Brousseau, Pierre-Marc; Cloutier, Conrad; Hébert, Christian
2010-08-01
Vertebrate dung and carrion are rich and strongly attractive resources for numerous beetles that are often closely linked to them. The presence and abundance of beetles exploiting such resources are influenced by various ecological factors including climate and forest cover vegetation. We studied selected assemblages of coprophilous and necrophagous beetles in Quebec along a 115-km north-south transect in three balsam fir (Abies balsamea (L.) Miller) forest sites and in a fourth forest site dominated by sugar maple (Acer saccharum Marshall), close to the southern fir site. Beetle abundance was estimated using a sampling design comprising replicated pitfall traps baited with red deer meat or dung in each site. A total of 8,511 beetles were caught and identified to family level, 95.7% of which belonged to families with known coprophilous or necrophagous behavior. Meat-baited pitfall traps caught nearly 15 times as many beetles as dung-baited traps. All Histeridae, Hydrophilidae, Scarabaeidae, and Silphidae were identified to species to examine specific diversity variation among sites. For the beetles caught in the meat-baited traps (majority of captures), decreases in abundance and species richness were observed from south to north along the fir forest transect, with evidence of decreasing specific diversity as measured by the Shannon index of diversity. Strong differences in species assemblages were also observed between the southern maple and fir forest sites. The Silphidae and Histeridae were more abundant in the maple forest, whereas the Hydrophilidae and Ptilidae were more abundant in the fir forest.
Origin of Pest Lineages of the Colorado Potato Beetle (Coleoptera: Chrysomelidae).
Izzo, Victor M; Chen, Yolanda H; Schoville, Sean D; Wang, Cong; Hawthorne, David J
2018-04-02
Colorado potato beetle (Leptinotarsa decemlineata Say [Coleoptera: Chrysomelidae]) is a pest of potato throughout the Northern Hemisphere, but little is known about the beetle's origins as a pest. We sampled the beetle from uncultivated Solanum host plants in Mexico, and from pest and non-pest populations in the United States and used mitochondrial DNA and nuclear loci to examine three hypotheses on the origin of the pest lineages: 1) the pest beetles originated from Mexican populations, 2) they descended from hybridization between previously divergent populations, or 3) they descended from populations that are native to the Plains states in the United States. Mitochondrial haplotypes of non-pest populations from Mexico and Arizona differed substantially from beetles collected from the southern plains and potato fields in the United States, indicating that beetles from Mexico and Arizona did not contribute to founding the pest lineages. Similar results were observed for AFLP and microsatellite data . In contrast, non-pest populations from the states of Colorado, Kansas, Nebraska, New Mexico, and Texas were genetically similar to U.S. pest populations, indicating that they contributed to the founding of the pest lineages. Most of the pest populations do not show a significant reduction in genetic diversity compared to the plains populations in the United States. We conclude that genetically heterogeneous beetle populations expanded onto potato from native Solanum hosts. This mode of host range expansion may have contributed to the abundant genetic diversity of contemporary populations, perhaps contributing to the rapid evolution of climate tolerance, host range, and insecticide resistance.
Steenhuisen, S-L; Raguso, R A; Johnson, S D
2012-12-01
Evolutionary shifts between pollination systems are often accompanied by modifications of floral traits, including olfactory cues. We investigated the implications of a shift from passerine bird to beetle pollination in Protea for floral scent chemistry, and also explored the functional significance of Protea scent for pollinator attraction. Using headspace sampling and gas chromatography-mass spectrometry, we found distinct differences in the emission rates and chemical composition of floral scents between eight bird- and four beetle-pollinated species. The amount of scent emitted from inflorescences of beetle-pollinated species was, on average, about 10-fold greater than that of bird-pollinated species. Floral scent of bird-pollinated species consists mainly of small amounts of "green-leaf volatiles" and benzenoid compounds, including benzaldehyde, anisole and benzyl alcohol. The floral scent of beetle-pollinated species is dominated by emissions of linalool, a wide variety of other monoterpenes and the benzenoid methyl benzoate, which imparts a fruity odour to the human nose. The number of compounds recorded in the scent of beetle-pollinated species was, on average, greater than in bird-pollinated species (45 versus 29 compounds, respectively). Choice experiments using a Y-maze showed that a primary pollinator of Protea species, the cetoniine beetle Atrichelaphinis tigrina, strongly preferred the scent of inflorescences of the beetle-pollinated Protea simplex over those of the bird-pollinated sympatric congener, Protea roupelliae. This study shows that a shift from passerine bird- to insect-pollination can be associated with marked up-regulation and compositional changes in floral scent emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Torto, Baldwyn; Fombong, Ayuka T; Arbogast, Richard T; Teal, Peter E A
2010-12-01
The population dynamics of the honey bee pest Aethina tumida Murray (small hive beetle) have been studied in the United States with flight and Langstroth hive bottom board traps baited with pollen dough inoculated with a yeast Kodamaea ohmeri associated with the beetle. However, little is known about the population dynamics of the beetle in its native host range. Similarly baited Langstroth hive bottom board traps were used to monitor the occurrence and seasonal abundance of the beetle in honey bee colonies at two beekeeping locations in Kenya. Trap captures indicated that the beetle was present in honey bee colonies in low numbers all year round, but it was most abundant during the rainy season, with over 80% trapped during this period. The survival of larvae was tested in field releases under dry and wet soil conditions, and predators of larvae were identified. The actvity and survival of the beetle were strongly influenced by a combination of abiotic and biotic factors. Larval survival was higher during wet (28%) than dry (1.1%) conditions, with pupation occurring mostly at 0-15 cm and 11-20 cm, respectively, beneath the surface soil during these periods. The ant Pheidole megacephala was identified as a key predator of larvae at this site, and more active during the dry than wet seasons. These observations imply that intensive trapping during the rainy season could reduce the population of beetles infesting hives in subsequent seasons especially in places where the beetle is a serious pest. © 2010 Entomological Society of America
Amaral, Danilo T; Prado, Rogilene A; Viviani, Vadim R
2012-07-01
Bioluminescent click-beetles emit a wide range of bioluminescence colors (λ(Max) = 534-594 nm) from thoracic and abdominal lanterns, which are used for courtship. Only the luciferases from Pyrophorus and Pyrearinus species were cloned and sequenced. The Brazilian Fulgeochlizus bruchi click-beetle, which inhabits the Central-west Cerrado (Savannas), is noteworthy because, differently from other click-beetles, the adult stage displays only a functional abdominal lantern, which produces a bright green bioluminescence for sexual attraction purposes, and lacks functional thoracic lanterns. We cloned the cDNA for the abdominal lantern luciferase of this species. Notably, the primary sequence of this luciferase showed slightly higher identity with the green emitting dorsal lantern luciferases of the Pyrophorus genus instead of the abdominal lanterns luciferases. This luciferase displays a blue-shifted spectrum (λ(Max) = 540 nm), which is pH-insensitive from pH 7.5 to 9.5 and undergoes a slight red shift and broadening above this pH; the lowest K(M) for luciferin among studied click-beetle luciferases, and the highest optimum pH (9.0) ever reported for a beetle luciferase. At pH 9.0, the K(M) for luciferin increases, showing a decrease of affinity for this substrate, despite the higher activity. The slow luminescence decay rate of F. bruchi luciferase in vitro reaction could be an adaptation of this luciferase for the long and sustained in vivo luminescence display of the click-beetle during the courtship, and could be useful for in vivo intracellular imaging.
Kuusik, Aare; Jõgar, Katrin; Metspalu, Luule; Ploomi, Angela; Merivee, Enno; Must, Anne; Williams, Ingrid H; Hiiesaar, Külli; Sibul, Ivar; Mänd, Marika
2016-11-01
The opening-closing rhythms of the subelytral cavity and associated gas exchange patterns were monitored in diapausing Leptinotarsa decemlineata beetles. Measurements were made by means of a flow-through CO 2 analyser and a coulometric respirometer. Under the elytra of these beetles there is a more or less tightly enclosed space, the subelytral cavity (SEC). When the cavity was tightly closed, air pressure inside was sub-atmospheric, as a result of oxygen uptake into the tracheae by the beetle. In about half of the beetles, regular opening-closing rhythms of the SEC were observed visually and also recorded; these beetles displayed a discontinuous gas exchange pattern. The SEC opened at the start of the CO 2 burst and was immediately closed. On opening, a rapid passive suction inflow of atmospheric air into the SEC occurred, recorded coulometrically as a sharp upward peak. As the CO 2 burst lasted beyond the closure of the SEC, we suggest that most of the CO 2 was expelled through the mesothoracic spiracles. In the remaining beetles, the SEC was continually semi-open, and cyclic gas exchange was exhibited. The locking mechanisms and structures between the elytra and between the elytra and the body were examined under a stereomicroscope and by means of microphotography. We conclude that at least some of the L. decemlineata diapausing beetles were able to close their subelytral cavity tightly, and that the cavity then served as a water-saving device. © 2016. Published by The Company of Biologists Ltd.
Vindstad, Ole Petter Laksforsmo; Schultze, Sabrina; Jepsen, Jane Uhd; Biuw, Martin; Kapari, Lauri; Sverdrup-Thygeson, Anne; Ims, Rolf Anker
2014-01-01
Saproxylic insects play an important part in decomposing dead wood in healthy forest ecosystems, but little is known about their role in the aftermath of large-scale forest mortality caused by pest insect outbreaks. We used window traps to study short-term changes in the abundance and community structure of saproxylic beetles following extensive mortality of mountain birch in sub-arctic northern Norway caused by an outbreak of geometrid moths. Three to five years after the outbreak, the proportion of obligate saproxylic individuals in the beetle community was roughly 10% higher in forest damaged by the outbreak than in undamaged forest. This was mainly due to two early-successional saproxylic beetle species. Facultative saproxylic beetles showed no consistent differences between damaged and undamaged forest. These findings would suggest a weak numerical response of the saproxylic beetle community to the dead wood left by the outbreak. We suggest that species-specific preferences for certain wood decay stages may limit the number of saproxylic species that respond numerically to an outbreak at a particular time, and that increases in responding species may be constrained by limitations to the amount of dead wood that can be exploited within a given timeframe (i.e. satiation effects). Low diversity of beetle species or slow development of larvae in our cold sub-arctic study region may also limit numerical responses. Our study suggests that saproxylic beetles, owing to weak numerical responses, may so far have played a minor role in decomposing the vast quantities of dead wood left by the moth outbreak.
USDA-ARS?s Scientific Manuscript database
Ambrosia beetles have emerged as significant pests of avocado (Persea americana Miller) due to their association with pathogenic fungal symbionts, most notably Raffaelea lauricola, the causal agent of laurel wilt. We evaluated the interaction of ambrosia beetles with host avocado trees by documentin...
Approaches to control diseases vectored by ambrosia beetles in avocado and other American Lauraceae
USDA-ARS?s Scientific Manuscript database
Invasive ambrosia beetles and the plant pathogenic fungi they vector represent a significant challenge to North American agriculture, native and landscape trees. Ambrosia beetles encompass a range of insect species and they vector a diverse set of plant pathogenic fungi. Our lab has taken several bi...
Monitoring and risk assessment of the spruce bark beetle, Ips typographus
S. Netherer; J. Pennerstorfer; P. Baier; E. Fuhrer; A. Schopf
2003-01-01
A model describing development of the spruce bark beetle, Ips typographus, combines topo-climatic aspects of the terrain with eco-physiological aspects of the bark beetle. By correlating air temperature and solar irradiation measured at a reference station, along with topographic data and microclimatic conditions of terrain plots, topo-climatic...
Bark Beetle-Fungal Symbiosis: Context Dependency in Complex Associations
Kier D. Klepzig; D.L. Six
2004-01-01
Recent thinking in symbiosis research has emphasized a holistic consideration of these complex interactions. Bark beetles and their associated microbes are one group which has previously not been addressed in this manner. We review the study of symbiotic interactions among bark beetles and microbes in light of this thinking. We describe the considerable progress...
Jacob M. Griffin; Monica G. Turner; Martin Simard
2011-01-01
Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in...
Influence of predators and parisitoids on bark beetle productivity
Jan Weslien
1991-01-01
In an earlier field experiment, natural enemies of the bark beetle, Ips typographus (L) were estimated to have reduced bark beetle productivity by more than 80 percent. To test this hypothesis, spruce logs (Picea abies) were placed in the forest in the spring, prior to commencement of flight by I. typographus....
Richard A. Werner; Edward H. Holsten
2002-01-01
Field experiments using baited multiple-funnel traps and baited felled trees were conducted to test the hypothesis that semiochemicals from secondary species of scolytids could be used to disrupt spruce beetle (Dendroctonus rufipennis (Kirby)) attraction. Semiochemicals from three secondary species of scolytids, (Ips perturbatus...
Using pheromones to protect heat-injured lodgepole pine from mountain pine beetle infestation
Gene D. Amman; Kevin C. Ryan
1994-01-01
The bark beetle antiaggregative pheromones, verbenone and ipsdienol, were tested in protecting heat-injured lodgepole pine (Pinus contorta Dougl. ex Loud.) from mountain pine beetle (Dendroctonus ponderosae Hopkins) infestation in the Sawtooth National Recreation Area in central Idaho. Peat moss was placed around 70 percent of the...
C.J. Hayes; C.J. Fettig; L.D. Merrill
2009-01-01
The western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Curculionidae: Scolytinae), is a major cause of ponderosa pine, Pinus ponderosa Dougl. ex Laws., mortality in much of western North America. This study was designed to quantify relationships between western pine beetle trap catches [including those of its...
Evolution of saproxylic and mycophagous coleoptera in New Zeland
Rochard A.B. Leschen
2006-01-01
Beetles are an old holometabolous group dating back to the early Permian and associated with sediments containing conifers, ginkgos, and cycads. To determine the antiquity of dead wood beetles the evolution of gondwanan saproxylic and mycophagous beetles was examined in the context of available phylogenies that include New Zealand taxa. Phylogenetic position and branch...
Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae
Jacques Regniere; Barbara Bentz
2007-01-01
Cold-induced mortality is a key factor driving mountain pine beetle, Dendroctonus ponderosae, population dynamics. In this species, the supercooling point (SCP) is representative of mortality induced by acute cold exposure. Mountain pine beetle SCP and associated cold-induced mortality fluctuate throughout a generation, with the highest SCPs prior to and following...
Christopher J. Fettig; Christopher J. Hayes; Karen J. Jones; Stephen R. McKelvey; Sylvia L. Mori; Sheri L. Smith
2012-01-01
Bark beetles (Coleoptera: Curculionidae, Scolytinae) are commonly recognized as important tree mortality agents in coniferous forests of the western U.S.A.High stand density is consistently associated with bark beetle infestations in western coniferous forests, and therefore, thinning has long been advocated as a...
Multi-scale nest-site selection by black-backed woodpeckers in outbreaks of mountain pine beetles
Thomas W. Bonnot; Joshua J. Millspaugh; Mark A. Rumble
2009-01-01
Areas of mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks in the Black Hills can provide habitat for black-backed woodpeckers (Picoides arcticus), a U.S. Forest Service, Region 2 Sensitive Species. These outbreaks are managed through removal of trees infested with mountain pine beetles to control mountain pine...
USDA-ARS?s Scientific Manuscript database
The Colorado potato beetle, Leptinotarsa decemlineata, reared under diapause inducing conditions will emerge from the soil as an adult and enter the diapause initiation phase, a period where metabolic reserves are stockpiled before the beetles enter the nonfeeding diapause maintenance phase. Interna...
M.C. Miller; John C. Moser; M. McGregor; J.C. Gregoire; M. Baisier; D.L. Dahlsten; R.A. Werner
1987-01-01
Bark beetles of the genus Dendroctonus inflict serious damage in North American coniferous forests. Biological control, which has never been seriously attempted with bark beetles in the United States, should be reconsidered in light of results disclosed here. Impact of indigenous associates is discussed, as well as previous, unsuccessful attempts to...
Michael D. Conner; Robert C. Wilkinson
1983-01-01
Ips beetles usually attack weakened, dying, or recently felled trees and fresh logging debris. Large numbers Ips may build up when natural events such as lightning storms, ice storms, tornadoes, wildfires, and droughts create large amounts of pine suitable for the breeding of these beetles. Ips populations may also build up following forestry activities, such as...
Mountain pine beetle in high-elevation five-needle white pine ecosystems
Barbara Bentz; Elizabeth Campbell; Ken Gibson; Sandra Kegley; Jesse Logan; Diana Six
2011-01-01
Across western North America mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae), populations are growing at exponential rates in pine ecosystems that span a wide range of elevations. As temperature increased over the past several decades, the flexible, thermally-regulated life-history strategies of mountain pine beetle have allowed...
Analysis of cellulase and polyphenol oxidase production by southern pine beetle associated fungi
Abduvali Valiev; Zumrut B. Ogel; Dier D. Klepzig
2009-01-01
In this study, the production of extracellular enzymes by fungi associated with southern pine beetle was investigated for the first time. Cellulase and polyphenol oxidase production were analyzed for three beetle associated fungi. Only the mutualistic symbiont Entomocorticium sp. A was found to produce cellulases and polyphenol oxidase....
Evaluation of traps used to monitor southern pine beetle aerial populations and sex ratios
James T. Cronin; Jane L. Hayes; Peter Turchin
2000-01-01
Various kinds of traps have been employed to monitor and forecast population trends of the southern pine beetle (Dendroctonus frontalis Zimmermann; Coleoptera: Scolytidae), but their accuracy in assessing pine-beetle abundance and sex ratio in the field has not been evaluated directly.In trus study, we...
M. L. Gaylord; K. K. Williams; R. W. Hofstetter; J. D. McMillin; T. E. Degomez; M. R. Wagner
2008-01-01
Determination of temperature requirements for many economically important insects is a cornerstone of pest management. For bark beetles (Coleoptera: Curculionidae, Scolytinae), this information can facilitate timing of management strategies. Our goals were to determine temperature predictors for flight initiation of three species of Ips bark beetles...
Inocluative release of an exotic predator for the biological control of the black turpentine beetle
John C. Moser
1989-01-01
An inoculative release of the Eurasian predatorial beetle, Rhizophagus grandis, was made for control of the black turpentine beetle, Dendroctonus terebrans Olivier, a prominent native pest of southern pines. If this central Louisiana release proves successful, and rearing programs are prefectied, further releases should expand the...
Patricia L. Johnson; Jane L. Hayes; John E. Rinehart; Walter S. Sheppard
2008-01-01
Scolytus schevyrewi Semenov, the banded elm bark beetle, and S. multistriatus Marsham, the smaller European elm bark beetle, are morphologically similar. Reliance on adult external morphological characters for identification can be problematic because of wide within species variability and the need for good-quality specimens....
Daniel R. Miller; Christopher M. Crowe; Christopher Asaro; Gary L. DeBarr
2003-01-01
The white pine cone beetle, Conophthorus coniperda, exhibited dose and enantiospecific responses to a-pinene in stands of mature eastern white pine, Pinus strobus, in a seed orchard near Murphy, North Carolina, USA. (-)-a-Pinene significantly increased catches of cone beetles to...
USDA-ARS?s Scientific Manuscript database
Several species of the ambrosia beetle Euwallacea (Coleoptera: Curculionidae: Scolytinae) cultivate Ambrosia Fusarium Clade (AFC) species in their galleries as a source of food. Like all other scolytine beetles in the tribe Xyleborini, Euwallacea are thought to be obligate mutualists with their fung...
Lightning Strike Simula tion for Studying Southern Pine Bark and Engraver Beetle Attacks
Mitchel C. Miller
1983-01-01
Endemic populations of the southern pine beetle (Dendroctonus frontalis Zimm.) and Ips spp. attacked loblolly pines (Pinus taeda L.) on which lightning strikes were simulated with detonating cord in the field. Southern pine beetles were reared in successive generations in these trees from fall 1981 through spring 1982; only
USDA-ARS?s Scientific Manuscript database
The Asian longhorned beetle (Anoplophora glabripennis; AGLAB) is a globally significant invasive species capable of inflicting severe feeding damage on many important orchard, ornamental and forest trees. Genome sequencing, annotation, gene expression assays, and functional and comparative genomic s...
Monitoring Asian longhorned beetles in Massachusetts
Maya Nehme; Melody Keena; Aijun Zhang; Alan Sawyer; Kelli. Hoover
2011-01-01
An operationally effective trap to monitor the Asian longhorned beetle (Anoplophora glabripennis or ALB) has been a goal of the ALB eradication program since the first beetle was found in New York in 1996. Ground surveying is only ~20 percent effective at identifying infested trees and, although tree climbing is more effective, it is also...
M. Lake Maner; James Hanula; S. Kristine Braman
2013-01-01
Flight and emergence of the redbay ambrosia beetle, Xyleborus glabratus Eichhoff, were monitored from March 2011 through August 2012 using Lindgren funnel traps baited with manuka oil and emergence traps attached over individual beetle galleries on infested redbay (Persea borbonia (L.) Sprengel) trees. Of the 432 gallery entrances...
USDA-ARS?s Scientific Manuscript database
Expanding from remote areas of Mexico to a worldwide scale, the ten-striped insect, the Colorado potato beetle (CPB, Leptinotarsa decemlineata Say), has risen from being an innocuous beetle to a prominent global pest. A diverse life cycle, phenotypic plasticity, adaptation to adverse conditions, and...
Landscape dynamics of mountain pine beetles
John E. Lundquist; Robin M. Reich
2014-01-01
The magnitude and urgency of current mountain pine beetle outbreaks in the western United States and Canada have resulted in numerous studies of the dynamics and impacts of these insects in forested ecosystems. This paper reviews some of the aspects of the spatial dynamics and landscape ecology of this bark beetle. Landscape heterogeneity influences dispersal patterns...
G.D. Hertel; H. N. Wallace
1983-01-01
Effects of the cut-and-leave and cut-and-top treatments on within-tree populations of the southern pine beetle were evaluated in seven active infestations in central Louisiana. Beetle populations were significantly reduced only in December by felling freshly attacked trees.
D.M. Grosman; C.J. Fettig; C.L. Jorgensen; A.S. Munson
2010-01-01
Bark beetles (Coleoptera: Curculionidae, Scolytinae) are important tree mortality agents in western coniferous forests. Protection of individual trees from bark beetle attack has historically involved applications of liquid formulations of contact insecticides to the tree bole using hydraulic sprayers. More recently, researchers looking for more portable and...
Effects of bark beetle-caused tree mortality on wildfire
Jeffrey A Hicke; Morris C. Johnson; Jane L. Hayes; Haiganoush K. Preisler
2012-01-01
Millions of trees killed by bark beetles in western North America have raised concerns about subsequent wildfire, but studies have reported a range of conclusions, often seemingly contradictory, about effects on fuels and wildfire. In this study, we reviewed and synthesized the published literature on modifications to fuels and fire characteristics following beetle-...
USDA-ARS?s Scientific Manuscript database
This study describes a new genus and species of microsporidia which is a pathogen of the elm leaf beetle, Xanthogaleruca luteola Muller, 1776 (Coleoptera: Chrysomelidae). The beetles were collected from Istanbul in Turkey. All developmental stages are uninucleate and in direct contact with the host ...
USDA-ARS?s Scientific Manuscript database
A recent seven-state survey revealed that the newly invasive banded elm bark beetle, Scolytus schevyrewi, was abundant in areas of Colorado and Wyoming, USA, whereas the long-established European elm bark beetle, S. multistriatus was not as abundant. Behavioral trials were conducted by hanging sm...
C.J. Fettig; A.S. Munson; S.R. McKelvey; DeGomez T.E.
2009-01-01
Bark beetles are commonly recognized as important tree mortality agents in western coniferous forests, but relatively few species (<25) are capable of killing apparently-healthy trees. However, during the last decade extensive levels of tree mortality were attributed to bark beetle outbreaks in...
The mountain pine beetle and whitebark pine waltz: Has the music changed?
Barbara J. Bentz; Greta Schen-Langenheim
2007-01-01
The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) (MPB), is a bark beetle native to western North American forests, spanning wide latitudinal and elevational gradients. MPB infest and reproduce within the phloem of most Pinus species from northern Baja California in Mexico to central British Columbia in...
Christopher J. Fettig; Kenneth E. Gibson; A. Steven Munson; Jose F. Negrón
2014-01-01
There are two general approaches for reducing the negative impacts of mountain pine beetle, Dendroctonus ponderosae Hopkins, on forests. Direct control involves short-term tactics designed to address current infestations by manipulating mountain pine beetle populations, and includes the use of fire, insecticides, semiochemicals, sanitation harvests...
The eastern larch beetle in Alaska.
Richard A. Werner
1986-01-01
The eastern larch beetle (Dendroctonus simplex LeConte) exists throughout the range of tamarack (Larix laricina (Du Roi) K. Koch) in interior Alaska where it has a 1-year life cycle. Beetles overwinter as adults in the bark of the trunk below snowline in infested trees. Tamarack trees that are slow growing because of repeated...
Development of a kairomone-based monitoring tool for the invasive redbay ambrosia beetle
USDA-ARS?s Scientific Manuscript database
The redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is an exotic wood-borer that vectors the fungal agent responsible for laurel wilt. This disease has had severe impact on forest ecosystems, and has spread to eight states in the southeastern US since the first detection of the beetle in Georg...
Geographic variation in prey preference in bark beetle predators
John D. Reeve; Brian L. Strom; Lynne K. Rieske; Bruce D. Ayers; Arnaud Costa
2009-01-01
1. Bark beetles and their predators are useful systems for addressing questions concerning diet breadth and prey preference in arthropod natural enemies. These predators use bark beetle pheromones to locate their prey, and the response todifferent pheromones is a measure of prey preference. 2. Trapping experiments were conducted to examine geographic...
Guidelines for regenerating southern pine beetle spots
J.C.G. Goelz; B.L. Strom; J.P. Barnett; M.A. Sword Sayer
2012-01-01
Southern pine forests are of exceptional commercial and ecological importance to the United States, and the southern pine beetle is their most serious insect pest. The southern pine beetle generally kills overstory pines, causing spots of tree mortality that are unpredictable in time and space and frequently disruptive to management activities and goals. The canopy...
Response of smaller European elm bark beetles to pruning wounds on American elm
Jack H. Barger; William N. Cannon
1987-01-01
From 1982 to 1984, inflight smaller European elm bark beetles, Scolytus multistriatus, were captured on American elms, Ulmus americana, that were therapeutically pruned for Dutch elm disease control. Pruning wounds were treated with wound dressing or left untreated to determine effects of the treatments on beetle attraction....
A Phloem Sandwich Unit for Observing Bark Beetles, Associated Predators, and Parasites
Donald N. Kim; Mitchel C. Miller
1981-01-01
This paper describes a phloem sandwich that allows observation of parent beetles, their brood, and associates within the inner bark, and permits observation of predator and parasite behavior on the bark surface. The construction of the unit permits the introduction of multiple pairs of beetles into a single sandwich.
A small-bolt method for screening tree protectants against bark beetles (coleoptera: curculionidae)
B.L. Strom; L.M. Roton
2009-01-01
A simple, small-bolt method was developed and refi ned for evaluating and screening treatments being considered as prophylactics against bark beetles (Coleoptera: Curculionidae: Scolytinae). Using this method, 4 insecticide products (3 active ingredients) were evaluated against the southern pine beetle, Dendroctonus frontalis Zimmermann, intermittently during a period...
USDA-ARS?s Scientific Manuscript database
The Asian longhorned beetle (ALB; Anoplophora glabripennis) is an invasive, wood-boring beetle capable of thriving in the heartwood of a broad range of angiospermous trees. Here, it faces a number of nutritional and digestive challenges, including the presence of highly recalcitrant lignocellulose a...
Christopher J. Allender; Karen M. Clancy; Tom E. DeGomez; Joel D. McMillin; Scott A. Woolbright; Paul Keim; David M. Wagner
2008-01-01
Bark beetles (Coleoptera: Curculionidae, Scolytinae) play an important role as disturbance agents in ponderosa pine (Pinus ponderosa Douglas ex Lawson) forests of Arizona. However, from 2001 to 2003, elevated bark beetle activity caused unprecedented levels of ponderosa pine mortality. A better understanding of the population structure of these...
USDA-ARS?s Scientific Manuscript database
Abstract In nearly every forest habitat, ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae) plant and maintain symbiotic fungus gardens inside dead or dying trees. Some non-native ambrosia beetles aggressively attack live trees and damage tree crops, lumber, and native woody pla...
Fire-injured ponderosa pine provide a pulsed resource for bark beetles
Ryan S. Davis; Sharon Hood; Barbara J. Bentz
2012-01-01
Bark beetles can cause substantial mortality of trees that would otherwise survive fire injuries. Resin response of fire-injured northern Rocky Mountain ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) and specific injuries that contribute to increased bark beetle attack susceptibility and brood production are unknown. We monitored ponderosa pine...
Repellent properties of the host compound 4-allylanisole to the southern pine beetle
Jane Leslie Hayes; Brian L. Strom; Larry M. Roton; Leonard L. Ingram
1994-01-01
The phenylpropanoid 4-allylanisole is a compound produced by loblolly pines (Pinus taeda L.), an abundant species in southern pine forests and a preferred host of southern pine beetle (Dendroctonus frontalis Zimmermann).Repellency of individual beetles was demonstrated in laboratory behavioral assays of D. frontalis and other scolytids.Inhibition was...
Invasive Bark Beetles, Forest Insect& Disease Leaflet 176
J.C. Lee; R.A. Haack; J.F. Negron; J.J. Witcosky; S.J. Seybold
2007-01-01
Bark beetles (Scolytidae) are among the most damaging insects in Northern Hemisphere forests, killing trees by direct feeding and by vectoring fungal pathogens. In addition to an already formidable native bark beetle complex, the number of exotic scolytids in U.S. forests has increased rapidly, with 53 known species established as of June 2007.
Gouyue Yu; Michael E. Montgomery
2008-01-01
More than 63 species of lady beetles (Coleoptera: Coccinellidae) have been collected in China from hemlock infested with hemlock woolly adelgid, Adelges tsugae. The lady beetle species that seem most useful for biological control are in the genus/subgenus Scymnus (Neopullus), namely S. camptodromus, S....
Interactions among the mountain pine beetle, fires, and fuels
Michael J. Jenkins; Justin B. Runyon; Christopher J. Fettig; Wesley G. Page; Barbara J. Bentz
2014-01-01
Bark beetle outbreaks and wildfires are principal drivers of change in western North American forests, and both have increased in severity and extent in recent years. These two agents of disturbance interact in complex ways to shape forest structure and composition. For example, mountain pine beetle, Dendroctonus ponderosae Hopkins, epidemics alter forest fuels with...
Jennifer G. Klutsch; Russell D. Beam; William R. Jacobi; Jose F. Negron
2008-01-01
In the ponderosa pine forests of the northern Front Range of Colorado, downed woody debris amounts, fuel arrangement, and stand characteristics were assessed in areas infested with southwestern dwarf mistletoe (Arceuthobium vaginatum subsp. cryptopodum), mountain pine beetle (Dendroctonus ponderosae) and
Effectiveness of insecticide-incorporated bags to control stored-product beetles
USDA-ARS?s Scientific Manuscript database
Adults of seven stored-product beetle species were exposed on the inside and outside surfaces of polypropylene polymer bags incorporated with the insecticide deltamethrin (approx. concentration of 3,000 ppm; ZeroFly® Storage Bags (3g/kg). Beetles were exposed for 60, 120, and 180 min, and 1, 3 and 5...
Chaboo, Caroline S; Engel, Michael S; Chamorro-Lacayo, Maria Lourdes
2009-09-01
Complex ethological adaptations and intraspecific interactions leave few fossil traces. We document three Dominican (20 million years old [myo]) and Baltic (45 myo) amber fossils that exhibit firm evidence of highly integrated interactions between mothers and offspring in the diverse camptosomate lineage of beetles (Chrysomelidae, leaf beetles). As in contemporary species, these hard cases were initially constructed by mothers, then inherited and retained by offspring, which then elaborate this protective domicile with an unusual but economical building material, their feces. The three fossils are classified in the Subfamily Cryptocephalinae; two are classified in the tribe Chlamisini based on morphological evidence-the flattened head lacking a sharp keel and long legs with simple recurved untoothed claws. These diagnostic features are not clearly visible in the third specimen to permit more refined identification. These fossils provide more precise paleontological dating of tribal nodes within the cryptocephaline radiation of leaf beetles. These fossils are the first and earliest evidence of mother-offspring interaction, building behavior, and fecal recycling in Camptosomata beetles and of inheritance of architectural structures in beetles.
Robert, Jeanne A.; Pitt, Caitlin; Bonnett, Tiffany R.; Yuen, Macaire M. S.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P. W.
2013-01-01
The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle. PMID:24223726
Robert, Jeanne A; Pitt, Caitlin; Bonnett, Tiffany R; Yuen, Macaire M S; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W
2013-01-01
The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.
NASA Astrophysics Data System (ADS)
Chaboo, Caroline S.; Engel, Michael S.; Chamorro-Lacayo, Maria Lourdes
2009-09-01
Complex ethological adaptations and intraspecific interactions leave few fossil traces. We document three Dominican (20 million years old [myo]) and Baltic (45 myo) amber fossils that exhibit firm evidence of highly integrated interactions between mothers and offspring in the diverse camptosomate lineage of beetles (Chrysomelidae, leaf beetles). As in contemporary species, these hard cases were initially constructed by mothers, then inherited and retained by offspring, which then elaborate this protective domicile with an unusual but economical building material, their feces. The three fossils are classified in the Subfamily Cryptocephalinae; two are classified in the tribe Chlamisini based on morphological evidence—the flattened head lacking a sharp keel and long legs with simple recurved untoothed claws. These diagnostic features are not clearly visible in the third specimen to permit more refined identification. These fossils provide more precise paleontological dating of tribal nodes within the cryptocephaline radiation of leaf beetles. These fossils are the first and earliest evidence of mother-offspring interaction, building behavior, and fecal recycling in Camptosomata beetles and of inheritance of architectural structures in beetles.
Pizzo, Astrid; Mazzone, Fabio; Palestrini, Claudia
2015-01-01
Among beetles, thousands of species develop horns, the size of which is often extraordinarily disproportionate with respect to body size. The Scarabaeidae is the family in which horned species are most predominant, but other families, such as the Geotrupidae (dor beetles), also show remarkable horns, although in a more limited number of species. Horn expression mechanisms are well documented in Scarabaeidae but, despite the wealth of studies on this family, the horn morphological pattern of the Geotrupidae, to our knowledge, has never been investigated. In this paper, we describe for the first time the horn expression pattern in a dor beetle. As a study species, we chose Ceratophyus rossii, an Italian endemic dor beetle of the protected Mediterranean maquis in Tuscany, which shows remarkable head and pronotal horns in males and a notable cephalic horn in females. We identified and modeled shape and size horn patterns combining traditional and geometric morphometric approaches. We discuss the results in the wider landscape of developmental models described for other, more well-characterized, scarab beetles.
A NMR study of parasitized Tenebrio molitor and Hymenolepis diminuta cysticercoids.
Schoen, J; Modha, A; Maslow, K; Novak, M; Blackburn, B J
1996-07-01
In vivo NMR spectra of uninfected and Hymenolepis diminuta-infected Tenebrio molitor fed D-(1-13C)glucose showed that infected beetles of both sexes had a significantly higher ratio for (glycogen C1/lipid (CH2)n) than the corresponding controls. Quantitative metabolic profiles and the per cent 13C-label in metabolites, based on NMR of perchloric acid extracts, are presented for control and infected beetles fed D-(1-13C)glucose and for H. diminuta cysticercoids. Female beetles, both control and infected, contained more glycogen than their male counterparts and infected beetles of both sexes possessed less glycerophos-phocholine, but more glycogen and a higher percentage label in glucose and trehalose than their respective controls. Label was also incorporated into glycogen, succinate, acetate, alanine and lactate. Extracts of cysticercoids from beetles fed D-(1-13C)glucose contained the following labelled compounds, in order of decreasing per cent 13C label: glucose, trehalose, alanine, succinate, lactate, glycogen and acetate. In vitro cultivation experiments, employing D-(1-13C)glucose, revealed that trehalose found in cysticercoids was of parasite, and not beetle, origin.
Beetle wings are inflatable origami
NASA Astrophysics Data System (ADS)
Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David
2015-11-01
Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.
The artificial beetle, or a brief manifesto for engineered biomimicry
NASA Astrophysics Data System (ADS)
Bartl, Michael H.; Lakhtakia, Akhlesh
2015-03-01
The artificial beetle is possibly the Holy Grail for practitioners of engineered biomimicry. An artificial beetle could gather and relay data and images from compromised environments on earth and other planets to decision makers. It could also be used for surveillance of foes and friends alike, and will require ethical foresight and oversight. What would it take to develop an artificial beetle? Several biotemplating techniques can be harnessed for the replication of external structural features of beetle bodies, and thus preserve functionalities such as coloration of the exoskeleton and the hydrophobicity of wings. The body cavity must host a power supply, motors to move the wings for flight, sensors to capture ambient conditions and images, and data transmitters and receivers to communicate with a remote command center. All of these devices must be very small and reliable.
Łukowski, Adrian; Giertych, Marian J.; Zadworny, Marcin; Mucha, Joanna; Karolewski, Piotr
2015-01-01
The monophagous beetle, Altica brevicollis coryletorum, is a major leaf pest of Corylus avellana (common hazel). In contrast to majority of the other studied species of shrubs, sunlit leaves are grazed to a much greater extent than shaded leaves. Since the observation of a link between leaf irradiance level and A. brevicollis feeding is unique, we hypothesized that feeding preference of this beetle species is related to the speed needed to escape threats i.e. faster jumping. We also hypothesized that sunlit leaves are more nutritious and easier to consume than the leaves of shaded shrubs. Results indicated that beetle mass was greater in beetles occupying sunlit leaves, which is consistent with our second hypothesis. The study also confirmed under laboratory conditions, that larvae, pupae and beetles that were fed full-light (100% of full light) leaves were significantly heavier than those fed with shaded leaves (15% of full light). In the high irradiance conditions (higher temperature) duration of larval development is also reduced. Further results indicated that neither the concentration of soluble phenols, leaf toughness, or the number of trichomes could explain the insect’s preference for sunlit leaves. Notably, measurements of jump length of beetles of this species, both in the field and under laboratory conditions, indicated that the defense pattern related to jumping was associated with light conditions. The jump length of beetles in the sun was significantly higher than in the shade. Additionally, in laboratory tests, beetle defense (jumping) was more strongly affected by temperature (15, 25, or 35°C for 24h) than by leaf type. The effect of sunlit, higher nutrient leaves (greater level of non-structural carbohydrates) on defense (jumping) appears to be indirect, having a positive effect on insect mass in all developmental stages. PMID:25927706
Gunter, Nicole L; Weir, Tom A; Slipinksi, Adam; Bocak, Ladislav; Cameron, Stephen L
2016-01-01
The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed "out of Africa" hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of scarabaeine dung beetles and provide examples.
Lerch, Andrew P.; Pfammatter, Jesse A.
2016-01-01
Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks. PMID:27783632
Lerch, Andrew P; Pfammatter, Jesse A; Bentz, Barbara J; Raffa, Kenneth F
2016-01-01
Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.
Gunter, Nicole L.; Weir, Tom A.; Cameron, Stephen L.
2016-01-01
The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed “out of Africa” hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of scarabaeine dung beetles and provide examples. PMID:27145126
Tocco, Claudia; Probo, Massimiliano; Lonati, Michele; Lombardi, Giampiero; Negro, Matteo; Nervo, Beatrice; Rolando, Antonio; Palestrini, Claudia
2013-01-01
In recent decades, pastoral abandonment has produced profound ecological changes in the Alps. In particular, the reduction in grazing has led to extensive shrub encroachment of semi-natural grasslands, which may represent a threat to open habitat biodiversity. To reverse shrub encroachment, we assessed short-term effects of two different pastoral practices on vegetation and dung beetles (Coleoptera, Scarabaeoidea). Strategic placement of mineral mix supplements (MMS) and arrangement of temporary night camp areas (TNCA) for cattle were carried out during summer 2011 in the Val Troncea Natural Park, north-western Italian Alps. In 2012, one year after treatment, a reduction in shrub cover and an increase in bare ground cover around MMS sites was detected. A more intense effect was detected within TNCA through increases in forage pastoral value, and in the cover and height of the herbaceous layer. Immediately after treatment, changes in dung beetle diversity (total abundance, species richness, Shannon diversity, taxonomic and functional diversity) showed a limited disturbance effect caused by high cattle density. In contrast, dung beetle diversity significantly increased one year later both at MMS and TNCA sites, with a stronger effect within TNCA. Multivariate Regression Trees and associated Indicator Value analyses showed that some ecologically relevant dung beetle species preferred areas deprived of shrub vegetation. Our main conclusions are: i) TNCA are more effective than MMS in terms of changes to vegetation and dung beetles, ii) dung beetles respond more quickly than vegetation to pastoral practices, and iii) the main driver of the rapid response by dung beetles is the removal of shrubs. The resulting increase in dung beetle abundance and diversity, which are largely responsible for grassland ecosystem functioning, may have a positive effect on meso-eutrophic grassland restoration. Shrub encroachment in the Alps may therefore be reversed, and restoration of grassland enhanced, by using appropriate pastoral practices. PMID:24358277
Kolařík, Miroslav; Hulcr, Jiri; Tisserat, Ned; De Beer, Wilhelm; Kostovčík, Martin; Kolaříková, Zuzana; Seybold, Steven J; Rizzo, David M
2017-01-01
Fungi in the genus Geosmithia (Ascomycota: Hypocreales) are frequent associates of bark beetles and woodborers that colonize hardwood and coniferous trees. One species, Geosmithia morbida, is an economically damaging invasive species. The authors surveyed the Geosmithia species of California and Colorado, USA, to (i) provide baseline data on taxonomy of Geosmithia and beetle vector specificity across the western USA; (ii) investigate the subcortical beetle fauna for alternative vectors of the invasive G. morbida; and (iii) interpret the community composition of this region within the emerging global biogeography of Geosmithia. Geosmithia was detected in 87% of 126 beetle samples obtained from 39 plant species. Twenty-nine species of Geosmithia were distinguished, of which 13 may be new species. Bark beetles from hardwoods, Cupressus, and Sequoia appear to be regular vectors, with Geosmithia present in all beetle gallery systems examined. Other subcortical insects appear to vector Geosmithia at lower frequencies. Overall, most Geosmithia have a distinct level of vector specificity (mostly high, sometimes low) enabling their separation to generalists and specialists. Plant pathogenic Geosmithia morbida was not found in association with any other beetle besides Pityophthorus juglandis. However, four additional Geosmithia species were found in P. juglandis galleries. When integrated with recent data from other continents, a global pattern of Geosmithia distribution across continents, latitudes, and vectors is emerging: of the 29 Geosmithia species found in the western USA, 12 have not been reported outside of the USA. The most frequently encountered species with the widest global distribution also had the broadest range of beetle vectors. Several Geosmithia spp. with very narrow vector ranges in Europe exhibited the similar degree of specialization in the USA. Such strong canalization in association could reflect an ancient origin of each individual association, or a recent origin and a subsequent diversification in North America.
Tocco, Claudia; Probo, Massimiliano; Lonati, Michele; Lombardi, Giampiero; Negro, Matteo; Nervo, Beatrice; Rolando, Antonio; Palestrini, Claudia
2013-01-01
In recent decades, pastoral abandonment has produced profound ecological changes in the Alps. In particular, the reduction in grazing has led to extensive shrub encroachment of semi-natural grasslands, which may represent a threat to open habitat biodiversity. To reverse shrub encroachment, we assessed short-term effects of two different pastoral practices on vegetation and dung beetles (Coleoptera, Scarabaeoidea). Strategic placement of mineral mix supplements (MMS) and arrangement of temporary night camp areas (TNCA) for cattle were carried out during summer 2011 in the Val Troncea Natural Park, north-western Italian Alps. In 2012, one year after treatment, a reduction in shrub cover and an increase in bare ground cover around MMS sites was detected. A more intense effect was detected within TNCA through increases in forage pastoral value, and in the cover and height of the herbaceous layer. Immediately after treatment, changes in dung beetle diversity (total abundance, species richness, Shannon diversity, taxonomic and functional diversity) showed a limited disturbance effect caused by high cattle density. In contrast, dung beetle diversity significantly increased one year later both at MMS and TNCA sites, with a stronger effect within TNCA. Multivariate Regression Trees and associated Indicator Value analyses showed that some ecologically relevant dung beetle species preferred areas deprived of shrub vegetation. Our main conclusions are: i) TNCA are more effective than MMS in terms of changes to vegetation and dung beetles, ii) dung beetles respond more quickly than vegetation to pastoral practices, and iii) the main driver of the rapid response by dung beetles is the removal of shrubs. The resulting increase in dung beetle abundance and diversity, which are largely responsible for grassland ecosystem functioning, may have a positive effect on meso-eutrophic grassland restoration. Shrub encroachment in the Alps may therefore be reversed, and restoration of grassland enhanced, by using appropriate pastoral practices.
The role of dung beetles in reducing greenhouse gas emissions from cattle farming
Slade, Eleanor M.; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L.
2016-01-01
Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05–0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results perspective, and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research. PMID:26728164
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsman, Devin W.; Grosklos, Guenchik; Aukema, Brian H.
Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9-year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km 2, that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountainmore » pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources.« less
Konuma, Junji; Yamamoto, Satoshi; Sota, Teiji
2014-12-01
The snail-feeding carabid beetle Damaster blaptoides exhibits diverse head and thorax morphologies, and these morphotypes are linked with two alternative feeding behaviours. Stout-shaped beetles feed on snails by crushing the shells, whereas slender-shaped beetles consume snails by inserting their heads into the shells. A trade-off exists between these feeding strategies. Because intermediate-shaped beetles are less proficient in these two behaviours, stout-slender morphological divergence occurs between related species feeding on land snails. To examine the genetic basis of these morphotypes, we conducted morphological analyses and quantitative trait locus (QTL) mapping using backcross offspring between the stout and slender subspecies. The morphological analyses showed that the width and length of the beetle body parts were correlated with each other; in particular, the head width (HW) and thorax length (TL) were strongly negatively correlated. QTL mapping showed that QTLs for HW and TL are located in close proximity to one another on the longest linkage group and that they have positive and negative additive genetic effects. Our results suggest that the adaptive phenotypic sets of a wide head and short thorax and a narrow head and long thorax are based on the closeness of these QTLs. Morphological integration between the head and thorax may play an important role in the adaptive divergence of these beetles. © 2014 John Wiley & Sons Ltd.
Goodsman, Devin W; Grosklos, Guenchik; Aukema, Brian H; Whitehouse, Caroline; Bleiker, Katherine P; McDowell, Nate G; Middleton, Richard S; Xu, Chonggang
2018-05-29
Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9-year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km 2 , that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountain pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esker, Paul David
2001-01-01
This thesis investigated the biology and importance of the corn flea beetle vector and its role in the Stewart's disease of corn pathosystem. This was accomplished by determining the number of corn flea beetle generations that occur in Iowa and by quantifying the proportions of those populations found to be infested with the causal agent of Stewart's disease, pantoea stewartii. In addition, a preliminary study was conducted to determine how soil temperature was influenced by air temperature and how this may be applied to forecasting for Stewart's disease of corn. Research using yellow sticky cards and sweep netting demonstrated thatmore » there are overwintering, first, and second field generations of the corn flea beetle in Iowa. It was also observed that there was a period during June of both 1999 and 2000 when corn flea beetles were not found, which is important new management information. This research has also demonstrated that the incidence of P. stewartii-infested corn flea beetles can be monitored by ELISA testing and that the incidence fluctuates greatly throughout the corn growing season. The initial level of inoculum (P. stewartii-infested corn flea beetles in the adult overwintering generation) does not remain static during the spring as was previously hypothesized. This signals that additional research is needed concerning the mechanisms of fluctuation in the proportion of beetles infested with P. stewartii.« less
Diepenbrock, Lauren M; Fothergill, Kent; Tindall, Kelly V; Losey, John E; Smyth, Rebecca R; Finke, Deborah L
2016-08-01
The diversity and abundance of native lady beetles (Coccinellidae) in North America has declined in recent decades. This decline is often correlated with the introduction and establishment of exotic lady beetle species, including Coccinella septempunctata L. and Harmonia axyridis Pallas, suggesting that exotic species precipitated the decline of native lady beetles. We examined species records of native coccinellids in Missouri over 118 yr and asked whether the species composition of the community experienced a shift following the establishment of the exotic species. We found that the contemporary native coccinellid community is different from the community that was present nearly a century ago. However, there was no evidence for a recent abrupt shift in composition triggered by the establishment of exotic species. Instead, our data suggest that the native lady beetle community has been undergoing consistent and gradual change over time, with some species decreasing in abundance and others increasing. While not excluding exotic species as a factor contributing to the decline of native lady beetle species, our findings suggest that other continuous factors, like land use change, may have played a more influential role in determining the composition of the native coccinellid communities within our region. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Natural variation in chemosensation: lessons from an island nematode
McGaughran, Angela; Morgan, Katy; Sommer, Ralf J
2013-01-01
All organisms must interact with their environment, responding in behavioral, chemical, and other ways to various stimuli throughout their life cycles. Characterizing traits that directly represent an organism's ability to sense and react to their environment provides useful insight into the evolution of life-history strategies. One such trait for the nematode Pristionchus pacificus, chemosensation, is involved in navigation to beetle hosts. Essential for the survival of the nematode, chemosensory behavior may be subject to variation as nematodes discriminate among chemical cues to complete their life cycle. We examine this hypothesis using natural isolates of P. pacificus from La Réunion Island. We select strains from a variety of La Réunion beetle hosts and geographic locations and examine their chemoattraction response toward organic compounds, beetle washes, and live beetles. We find that nematodes show significant differences in their response to various chemicals and are able to chemotax to live beetles in a novel assay. Further, strains can discriminate among different cues, showing more similar responses toward beetle washes than to organic compounds in cluster analyses. However, we find that variance in chemoattraction response is not significantly associated with temperature, location, or beetle host. Rather, strains show a more concerted response toward compounds they most likely directly encounter in the wild. We suggest that divergence in odor-guided behavior in P. pacificus may therefore have an important ecological component. PMID:24455150
Fisher, Joanna J; Castrillo, Louela A; Donzelli, Bruno G G; Hajek, Ann E
2017-08-01
In several insect systems, fungal entomopathogens synergize with neonicotinoid insecticides which results in accelerated host death. Using the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), an invasive woodborer inadvertently introduced into North America and Europe, we investigated potential mechanisms in the synergy between the entomopathogenic fungus Metarhizium brunneum Petch and the insecticide imidacloprid. A potential mechanism underlying this synergy could be imidacloprid's ability to prevent feeding shortly after administration. We investigated whether starvation would have an impact similar to imidacloprid exposure on the mortality of fungal-inoculated beetles. Using real-time PCR to quantify fungal load in inoculated beetles, we determined how starvation and pesticide exposure impacted beetles' ability to tolerate or resist a fungal infection. The effect of starvation and pesticide exposure on the encapsulation and melanization immune responses of the beetles was also quantified. Starvation had a similar impact on the survival of M. brunneum-inoculated beetles compared to imidacloprid exposure. The synergy, however, was not completely due to starvation, as imidacloprid reduced the beetles' melanotic encapsulation response and capsule area, while starvation did not significantly reduce these immune responses. Our results suggest that there are multiple interacting mechanisms involved in the synergy between M. brunneum and imidacloprid. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Inoda, Toshio
2012-09-01
Larvae of diving beetles such as the various Dytiscus species (Coleoptera: Dytiscidae) are carnivorous and usually prey on other aquatic animals. Cannibalism among larvae of Dytiscus sharpi sharpi (Wehncke) was observed to begin when they were starved for more than two days under artificial breeding conditions. However, the 2-day starved larvae did not show cannibalism in the presence of intact, motionless, frozen tadpoles, or frozen shrimps. The beetle larvae attacked and captured intact tadpoles faster (15 sec) than other motionless and frozen tadpoles (120 sec), indicating that prey movement was an important factor in stimulating feeding behavior in larvae. Prey density does not have an effect on larval cannibalism. In cases in which preys are present at lower densities than that of larvae, a group of beetle larvae frequently fed on single prey. This feeding behavior, therefore, provides direct evidence of self-other recognition at the species level. Using two traps in one aquarium that allows the larvae to detect only prey smell, one containing tadpoles and another empty, the beetle larvae were attracted to the trap with tadpoles at high frequency, but not to the empty trap. In another experiment, the beetle larvae were not attracted to the trap containing a beetle larva. These results suggest that the larvae of D. sharpi sharpi are capable of recognizing prey scent, which enables the promotion of foraging behavior and the prevention of cannibalism.
Raffa, Kenneth F; Mason, Charles J; Bonello, Pierluigi; Cook, Stephen; Erbilgin, Nadir; Keefover-Ring, Ken; Klutsch, Jennifer G; Villari, Caterina; Townsend, Philip A
2017-09-01
Warming climate is allowing tree-killing bark beetles to expand their ranges and access naïve and semi-naïve conifers. Conifers respond to attack using complex mixtures of chemical defences that can impede beetle success, but beetles exploit some compounds for host location and communication. Outcomes of changing relationships will depend on concentrations and compositions of multiple host compounds, which are largely unknown. We analysed constitutive and induced chemistries of Dendroctonus ponderosae's primary historical host, Pinus contorta, and Pinus albicaulis, a high-elevation species whose encounters with this beetle are transitioning from intermittent to continuous. We quantified multiple classes of terpenes, phenolics, carbohydrates and minerals. Pinus contorta had higher constitutive allocation to, and generally stronger inducibility of, compounds that resist these beetle-fungal complexes. Pinus albicaulis contained higher proportions of specific monoterpenes that enhance pheromone communication, and lower induction of pheromone inhibitors. Induced P. contorta increased insecticidal and fungicidal compounds simultaneously, whereas P. albicaulis responses against these agents were inverse. Induced terpene accumulation was accompanied by decreased non-structural carbohydrates, primarily sugars, in P. contorta, but not P. albicaulis, which contained primarily starches. These results show some host species with continuous exposure to bark beetles have more thoroughly integrated defence syndromes than less-continuously exposed host species. © 2017 John Wiley & Sons Ltd.
Eatough Jones, Michele; Paine, Timothy D
2015-08-01
Polyphagous shot hole borer (Euwallacea sp., Coleoptera: Curculionidae: Scolytinae) has recently invaded southern California. The beetle, along with its associated fungi, Fusarium euwallaceae, Graphium sp., and Acremonium sp., causes branch dieback and tree mortality in a large variety of tree species including avocado (Persea americana Mill.) and box elder (Acer negundo L.). With the spread of the beetle through Los Angeles, Orange, and San Diego Counties in California, there is increasing concern that felled trees and pruned branches infested with polyphagous shot hole borer should receive sanitation treatment to reduce the potential spread of the beetle from the movement of untreated wood. We tested two sanitation methods to reduce beetle populations, chipping with a commercial chipper and solarization by covering logs with clear or black plastic in full sun. Both chipping and solarization decreased beetle emergence and boring activity compared to untreated control logs. Chipping was most effective for chip sizes <5 cm. Solarization was most effective using clear polyethylene sheeting during hot summer months, particularly August, when daily maximum temperatures were ≥35°C. Beetles persisted for 2 mo or more when solarization was applied during the spring or fall. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The role of dung beetles in reducing greenhouse gas emissions from cattle farming
NASA Astrophysics Data System (ADS)
Slade, Eleanor M.; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L.
2016-01-01
Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results perspective, and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.
Goodsman, Devin W.; Grosklos, Guenchik; Aukema, Brian H.; ...
2018-05-29
Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9-year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km 2, that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountainmore » pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources.« less
The role of dung beetles in reducing greenhouse gas emissions from cattle farming.
Slade, Eleanor M; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L
2016-01-05
Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results, [corrected] and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.
Jordon L. Burke; James L. Hanula; Scott Horn; Jackson P. Audley; Kamal JK. Gandhi
2012-01-01
Tests were conducted on two insecticides (carbaryl and bifenthrin) for excluding subcortical beetles (Coleoptera: Curculionidae and Cerambycidae) from loblolly pine trees (Pinus taeda L.). Two trap designs (single- and double-pane windows) and two trapping heights (1.5 and 4m) were also evaluated for maximizing beetle catches.
Milan Pernek; Boris Hrasovec; Miljenko Zupanic
2003-01-01
During field evaluations of pheromone blends used for monitoring Tomicus piniperda beetles, many non-target beetles were captured and identified. Five pheromone blends, plus commercially available TOMODOR were used in two different traps: the IPM Tech Intercept PTBB and the THEYSOHN intercept barrier trap. In addition to Tomicus...
A.S. Adams; C.R. Currie; Y. Cardoza; K.D. Klepzig; K.F. Raffa
2009-01-01
Bark beetles are associated with diverse assemblages of microorganisms, many of which affect their interactions with host plants and natural enemies. We tested how bacterial associates of three bark beetles with various types of host relationships affect growth and reproduction of their symbiotic fungi. Fungi were exposed to volatiles...
Antiserum Preparation For Immunodiffusion In Southern Pine Beetle Predation Studies
M.C. Miller; W. Adrian Chappell; William C. Gamble; J. Robert Bridges
1978-01-01
An anti-adult southern pine beetle serum was produced by subcutaneous injection of rabbits with southern pine beetle (SPB) adult antigen. Initial tests demonstrated the ability of the anti-adult SPB serum to detect adult SPB antigen in the body of the adult predator, Thanasimus dubius (F.). Cross reactivity was found between the anti-adult serum...
D. Rabern Simmons; Z. Wilhelm de Beer; Yin-Tse Huang; Craig Bateman; Alina S. Campbell; Tyler J. Dreaden; You Li; Randy C. Ploetz; Adam Black; Hou-Feng Li; Chi-Yu Chen; Michael J. Wingfield; Jiri Hulcr
2016-01-01
Raffaelea (Ophiostomatales) is a genus of more than 20 ophiostomatoid fungi commonly occurring in symbioses with wood-boring ambrosia beetles. We examined ambrosia beetles and plant hosts in the USA and Taiwan for the presence of these mycosymbionts and found 22 isolates representing known and undescribed lineages in ...
USDA-ARS?s Scientific Manuscript database
Thousand cankers disease is caused by plant pathogenic Geosmithia morbida Kolarík, Freeland, Utley, and Tisserat; a fungus vectored primarily by the walnut twig beetle, Pityophthorus juglandis (Blackman). The role of other bark and ambrosia beetle species in persistence and spread of this disease r...
D. Czokajlo; B. Hrasovec; M. Pernek; J. Hilszczanski; A. Kolk; S. Teale; J. Wickham; P. Kirsch
2003-01-01
An optimized, patented lure for the larger pine shoot beetle, Tomicus piniperda has been developed and tested in the United States, Poland, and Croatia. Seven different beetle attractants were tested: α-pinene, α-pinene oxide, ethanol, nonanal, myrtenal, myrtenol, and trans-verbenol. α-pinene was tested...
Diesel fuel oil for increasing mountain pine beetle mortality in felled logs
S. A. Mata; J. M. Schmid; D. A. Leatherman
2002-01-01
Diesel fuel oil was applied to mountain pine beetle (Dendroctonus ponderosae Hopkins) infested bolts of ponderosa pine (Pinus ponderosa Lawson) in early June. Just prior to the fuel oil application and 6 weeks later, 0.5 ft2 bark samples were removed from each bolt and the numbers of live beetles counted....
Amanda R. Carlson; Jason S. Sibold; Timothy J. Assal; Jose F. Negron
2017-01-01
Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have...
David R. Coyle; Joel D. McMillin; Elwood R. Hart
1999-01-01
Cottonwood leaf beetle, Chrysomela scripta, pupae from a laboratory colony were weighed and monitored through adult emergence, oviposition, and mortality to determine if correlations existed between various pupal or adult parameters and fecundity or longevity. Forty-three female cottonwood leaf beetles were monitored. Pupal weight was not a good...
Nancy E. Gillette; Constance J. Mehmel; Sylvia R. Mori; Jeffrey N. Webster; David L. Wood; Nadir Erbilgin; Donald R. Owen
2012-01-01
In an attempt to improve semiochemical-based treatments for protecting forest stands from bark beetle attack, we compared push-pull versus push-only tactics for protecting lodgepole pine (Pinus contorta Douglas ex Loudon) and whitebark pine (Pinus albicaulis Engelm.) stands from attack by mountain pine beetle (...
Leah S. Bauer; Joann Meerschaert; Thomas O. Forrester
1989-01-01
An artificial diet was developed for labortory rearing of the cottonwood leaf beetle, Chrysomela scripta F., and the imported willow leaf beetle, Plagiodera versicolira (Laicharting). To reduce microbial contamination of the media, procedures were developed for the separating egg masses and sterilizing egg surfaces. Cottonwood leaf...
E. Matthew Hansen; Barbara J. Bentz
2003-01-01
New spruce beetle, Dendroctonus rufipennis (Kirby), adults of univoltine and semivoltine life cycles, as well as re-emerged parent beetles, were laboratory-tested for differences in reproductive capacity and brood characteristics. Parameters measured from the three groups include dry weight, lipid content, and egg production. Brood characteristics measured include egg...
Rick G. Kelsey; D. Gallego; F.J. Sánchez-Garcia; J.A. Pajares
2014-01-01
Tree mortality from temperature-driven drought is occurring in forests around the world, often in conjunction with bark beetle outbreaks when carbon allocation to tree defense declines. Physiological metrics for detecting stressed trees with enhanced vulnerability prior to bark beetle attacks remain elusive. Ethanol, water, monoterpene concentrations, and composition...
Carbon dynamics in central US Rockies lodgepole pine type after mountain pine beetle outbreaks
E. Matthew Hansen; Michael C. Amacher; Helga Van Miegroet; James N. Long; Michael G. Ryan
2015-01-01
Mountain pine beetle-caused tree mortality has substantially changed live tree biomass in lodgepole pine ecosystems in western North America since 2000. We studied how beetle-caused mortality altered ecosystem carbon (C) stocks and productivity using a central US Rockies age sequence of ecosystem recovery after infestation, augmented with growth-and-yield...
Bark beetle outbreaks in western North America: Causes and consequences
Barbara Bentz; Jesse Logan; Jim MacMahon; Craig D. Allen; Matt Ayres; Ed Berg; Allan Carroll; Matt Hansen; Jeff Hicke; Linda Joyce; Wallace Macfarlane; Steve Munson; Jose Negron; Tim Paine; Jim Powell; Ken Raffa; Jacques Regniere; Mary Reid; Bill Romme; Steven J. Seybold; Diana Six; Diana Tomback; Jim Vandygriff; Tom Veblen; Mike White; Jeff Witcosky; David Wood
2009-01-01
Since 1990, native bark beetles have killed billions of trees across millions of acres of forest from Alaska to northern Mexico. Although bark beetle infestations are a regular force of natural change in forested ecosystems, several of the current outbreaks, which are occurring simultaneously across western North America, are the largest and most severe in recorded...
Estimating the probability of mountain pine beetle red-attack damage
Michael A Wulder; J. C. White; Barbara J Bentz; M. F. Alvarez; N. C. Coops
2006-01-01
Accurate spatial information on the location and extent of mountain pine beetle infestation is critical for the planning of mitigation and treatment activities. Areas of mixed forest and variable terrain present unique challenges for the detection and mapping of mountain pine beetle red-attack damage, as red-attack has a more heterogeneous distribution under these...
E. Matthew Hansen; Barbara J. Bentz; A. Steven Munson; James C. Vandygriff; David L. Turner
2006-01-01
Although funnel traps are routinely used to manage bark beetles, little is known regarding the relationship between trap captures of spruce beetle (Dendroctonus rufipennis Kirby) and mortality of Engelmann spruce (Picea engelmannii Parry ex Engelm.) within a 10 ha block of the trap. Using recursive partitioning tree analyses, rules...
Dispersal flight and attack of the spruce beetle, Dendroctonus rufipennis, in south-central Alaska.
Edward H. Holsten; John S. Hard
2001-01-01
Data from 1999 and 2000 field studies regarding the dispersal flight and initial attack behavior of the spruce beetle (Dendroctonus rufipennis Kirby) are summarized. More dispersing beetles were trapped in flight near the middle to upper tree bole than the lower bole. There were no significant differences between trap location and ambient...
Deepa S. Pureswaran; Richard W. Hofstetter; Brian Sullivan; Kristen A. Potter
2016-01-01
When related species coexist, selection pressure should favor evolution of species recognition mechanisms to prevent interspecific pairing and wasteful reproductive encounters. We investigated the potential role of pheromone and acoustic signals in species recognition between two species of tree-killing bark beetles, the southern pine beetle, Dendroctonus frontalis...
Deepa S. Pureswaran; Richard W. Hofstetter; Brian T. Sullivan; Amanda M. Grady; Cavell Brownie
2016-01-01
When related species coexist, selection pressure should favor evolution of species recognition mechanisms to prevent interspecific pairing and wasteful reproductive encounters. We investigated the potential role of pheromone and acoustic signals in species recognition between two species of tree-killing bark beetles, the southern pine beetle, Dendroctonus frontalis...
USDA-ARS?s Scientific Manuscript database
Chinese rose beetle, Adoretus sinicus (Burmeister), a scarab beetle found in Asia and the Pacific Islands, was first reported in Hawaii in 1891. Adults feed at night on leaves of a wide range of plant species, including many that are economically important. Aggregate feeding can stunt or even kill ...
Peter De Groot; Gary L. DeBarr
2000-01-01
Field studies were conducted in the United States and Canada to determine the response of the white pine cone beetle, Conophthorus coniperda (Schwarz), and the red pine cone beetle, Conophthorus resinosae Hopkins, to two potential inhibitors, conophthorin and verbenone, of pheromone communication. Trap catches of male C....
Junyong Zhu; Xiaolin Luo; Shen Tian; Roland Gleisner; Jose Negron; Eric Horn
2011-01-01
This study applied Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL) to evaluate the potential of mountain pine beetle-killed lodgepole pine for ethanol production using conventional Saccharomyces cerevisiae without hydrolysate detoxification. The results indicate that the beetle-killed trees are more susceptible to SPORL pretreatment than live...
Orthotomicus erosus: A new pine-infesting bark beetle in the United States
Robert A. Haack
2004-01-01
Established populations of yet another new exotic beetle (Scolytidae) were discovered in the United States in 2004: Othotomicus erosus. This Eurasian bark beetle, commonly called the Mediterranean pine engraver, is native to the pine (Pinus)growing areas of Europe, northern Africa, and Asia. It has also been introduced to Chile, Fiji, South Africa, and Swaziland....
The Mexican pine beetle (Dendroctonus mexicanus), our "newest" invasive species
Kier D. Klepzig; John C. Moser; B. A. Fitzgibbon
2003-01-01
The Mexican pine beetle, Dendroctonus mexicanus Hopkins (XPB), is recorded here for the first time as a new introduction for the U.S. Individuals of this species are occupying the same logs of Pinus leiophilla and several other pines in the Chiricahua mountains, AZ with the sibling species of XPB, the southern pine beetle,
Bark beetle outbreaks in western North America: Causes and consequences
Bentz, Barbara; Logan, Jesse; MacMahon, James A.; Allen, Craig D.; Ayres, Matt; Berg, Edward E; Carroll, Allan; Hansen, Matt; Hicke, Jeff H.; Joyce, Linda A.; Macfarlane, Wallace; Munson, Steve; Negron, Jose; Paine, Tim; Powell, Jim; Raffa, Kenneth; Regniere, Jacques; Reid, Mary; Romme, Bill; Seybold, Steven J.; Six, Diana; Vandygriff, Jim; Veblen, Tom; White, Mike; Witcosky, Jeff
2005-01-01
Since 1990, native bark beetles have killed billions of trees across millions of acres of forest from Alaska to northern Mexico. Although bark beetle infestations are a regular force of natural change in forested ecosystems, several of the current outbreaks, which are occurring simultaneously across western North America, are the largest and most severe in recorded history.
J. Levieux; F. Lieutier; John C. Moser; Thelma J. Perry
1989-01-01
The bark beetle Ips sexdentatrds carries several types of conidiospores and ascopores in the pronotal punctures located around the setae on the sides of the pronotum. For swarming beetles, some of the spores seem to be germinating. Nine species of mites were phoretic on swarming Ips sexdentutus in France. Hypophoretic...
Alicia Nino-Dominguez; Brian T. Sullivan; Jose H. Lopez-Urbina; Jorge E. Macias-Samano
2015-01-01
Where their geographic and host ranges overlap, sibling species of tree-killing bark beetles may simultaneously attack and reproduce on the same hosts. However, sustainability of these potentially mutually beneficial associations demands effective prezygotic reproductive isolation mechanisms between the interacting species. The pine bark beetle, Dendroctonus...
E. Matthew Hansen; Jim C. Vandygriff; Robert J. Cain; David Wakarchuk
2006-01-01
We compared naturally baited trapping systems to synthetically baited funnel traps and fallen trap trees for suppressing preoutbreak spruce beetle, Dendroctonus rufipennis Kirby, populations. Lures for the traps were fresh spruce (Picea spp.) bolts or bark sections, augmented by adding female spruce beetles to create secondary attraction. In 2003, we...
Stand hazard rating for central Idaho forests
Robert Steele; Ralph E. Williams; Julie C. Weatherby; Elizabeth D. Reinhardt; James T. Hoffman; R. W. Thier
1996-01-01
Growing concern over sustainability of central ldaho forests has created a need to assess the health of forest stands on a relative basis. A stand hazard rating was developed as a composite of 11 individual ratings to compare the health hazards of different stands. The composite rating includes Douglas-fir beetle, mountain pine beetle, western pine beetle, spruce...
USDA-ARS?s Scientific Manuscript database
The insulin signaling pathway has been implicated in the control of insect polyphenisms for some caste-forming insects and potentially has a role in horn dimorphisms in beetles. Males of the sexually dimorphic dung beetle Onthophagus nigriventris develop a magnificent thoracic horn up to twice the l...
B. J. Bentz; D. Endreson
2004-01-01
Spatial accuracy in the detection and monitoring of mountain pine beetle populations is an important aspect of both forest research and management. Using ground-collected data, classification models to predict mountain pine beetle-caused lodgepole pine mortality were developed for Landsat TM, ETM+, and IKONOS imagery. Our results suggest that low-resolution imagery...
R. Talbot Trotter, III; Melody A. Keena
2016-01-01
Efforts to manage and eradicate invasive species can benefit from an improved understanding of the physiology, biology, and behavior of the target species, and ongoing efforts to eradicate the Asian longhorned beetle (Anoplophora glabripennis Motschulsky) highlight the roles this information may play. Here, we present a climate-driven phenology...
USDA-ARS?s Scientific Manuscript database
The granulate ambrosia beetle, Xylosandrus crassiusculus, is one of the most important exotic pests in orchards and nurseries in the U.S. The beetle has a wide host range, including some of the most popular and valuable trees in nurseries, and is difficult to control using chemical insecticides beca...
Fungi associated with the North American spruce beetle, Dendroctonus rufipennis
Diana L. Six; Barbara J. Bentz
2003-01-01
Fungi were isolated from individual Dendroctonus rufipennis (Kirby) collected from six populations in Alaska, Colorado, Utah, and Minnesota, U.S.A. In all populations, Leptographium abietinum (Peck) Wingfield was the most commonly isolated mycelial fungus (91-100% of beetles). All beetles in all populations were associated with yeasts and some with only yeasts (0-5%)....
Mountain pine beetle in lodgepole pine: mortality and fire implications (Project INT-F-07-03)
Jennifer G. Klutsch; Daniel R. West; Mike A Battaglia; Sheryl L. Costello; José F. Negrón; Charles C. Rhoades; John Popp; Rick Caissie
2013-01-01
Mountain pine beetle (Dendroctonus ponderosae Hopkins) has infested over 2 million acres of lodgepole pine (Pinus contorta Dougl. ex Loud.) forest since an outbreak began approximately in 2000 in north central Colorado. The tree mortality from mountain pine beetle outbreaks has the potential to alter stand composition and stand...
USDA-ARS?s Scientific Manuscript database
Capa and pyrokinin (pk) genes in hexapods share a common evolutionary origin. Using transcriptomics and peptidomics, we analyzed products of these genes in two beetles, the giant mealworm beetle (Zophobas atratus; Tenebrionidae) and the boll weevil (Anthonomus grandis grandis; Curculionidae). Our ...
Janna C. Lee; Ingrid Aguayo; Ray Aslin; Gail Durham; Shakeeb M. Hamud; Beruce D. Moltzan; A. Steve Munson; Jose F. Negron; Travis Peterson; Iral R. Ragenovich; Jeffrey J. Witcosky; Steven J. Seybold
2009-01-01
The invasive European elm bark beetle, Scolytus multistriatus (Marsham), was detected in Massachusetts a century ago, and it now occurs throughout the continental United States and southern Canada. The Asian banded elm bark beetle, Scolytus schevyrewi Semenov, was discovered in the United States in 2003, and now occurs in 28 states...
O. Pechanova; W.D. Stone; W. Monroe; T.E. Nebeker; K.D. Klepzig; C. Yuceer
2008-01-01
The southern pine beetle ( Dendroctonus frontalis Zimmermann) kills all pines within its range and is among the most important forest pest species in the US. Using a specialized mycangium surrounded by gland cells in the pronotum, adult females culture, transport, and inoculate two fungi into beetle galleries during oviposition. These...
C.R. Breece; T.E. Kolb; B.G. Dickson; J.D. McMillin; K.M. Clancey
2008-01-01
Prescribed fire is an important tool in the management of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests, yet effects on bark beetle (Coleoptera: Curculionidae, Scolytinae) activity and tree mortality are poorly understood in the southwestern U.S. We compared bark beetle attacks and tree mortality between paired prescribed-burned and...
7 CFR 301.48-2 - Authorization to designate, and terminate designation of, regulated airports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-2 Authorization to designate, and... State to be a regulated airport when he or she determines that adult populations of Japanese beetle... Japanese beetle and aircraft destined for the States listed in § 301.48(b) may be leaving the airport. (b...
7 CFR 301.48-2 - Authorization to designate, and terminate designation of, regulated airports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-2 Authorization to designate, and... State to be a regulated airport when he or she determines that adult populations of Japanese beetle... Japanese beetle and aircraft destined for the States listed in § 301.48(b) may be leaving the airport. (b...
7 CFR 301.48-2 - Authorization to designate, and terminate designation of, regulated airports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-2 Authorization to designate, and... State to be a regulated airport when he or she determines that adult populations of Japanese beetle... Japanese beetle and aircraft destined for the States listed in § 301.48(b) may be leaving the airport. (b...
USDA-ARS?s Scientific Manuscript database
The invasive weed Rumex confertus Willd. (mossy sorrel) is fed upon and severely defoliated by Gastrophysa viridula Deg. (dock leaf beetle), a highly promising biological control agent for this weed. We report volatile organic compound (VOC) induction when one leaf on R. confertus was damaged by G. ...
Brian T. Sullivan; Cavell Brownie; JoAnne P. Barrett
2016-01-01
The southern pine beetle Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae: Scolytinae) is attracted to an aggregation pheromone that includes the multifunctional pheromone component endobrevicomin. The effect of endo-brevicomin on attractive lures varies from strong enhancement to reduction of beetle attraction depending upon release rate, lure component...
Peter Biedermann; Kier Klepzig; Taborsky Michael
2009-01-01
Fungus cultivation by ambrosia beetles is one of the four independently evolved cases of agriculture known in animals. Such cultivation is most advanced in the highly social subtribe Xyleborina (Scolytinae), which is characterized by haplodiploidy and extreme levels of inbreeding. Despite their ubiquity in forests worldwide, the behavior of these beetles remains poorly...
Erika L. Eidson; Karen E. Mock; Barbara J. Bentz
2017-01-01
Over the last two decades, mountain pine beetle (Dendroctonus ponderosae) populations reached epidemic levels across much of western North America, including high elevations where cool temperatures previously limited mountain pine beetle persistence. Many high-elevation pine species are susceptible hosts and experienced high levels of mortality in recent outbreaks, but...
Scramble competition in the southern pine beetle, Dendroctonus frontalis
John D. Reeve; Douglas J. Rhodes; Peter Turchin
1998-01-01
1. The nature of intraspecific competition was investigated in the southern pine beetle, Dendroctonus frontalis, a highly destructive pest of pine forests in the southern U.S.A.Date were analyzed from an observation study of naturally-attacked trees, and from field experiments where attack density was manipulated by adding different numbers of beetles to caged trees....
Nadir Erbilgin; Nancy E. Gillette; Donald R. Owen; Sylvia R. Mori; Andrew S. Nelson; Fabian C.C. Uzoh; David L. Wood
2008-01-01
The western pine beetle Dendroctonus brevicomis LeConte (Coleoptera: Scolytidae) is one of the most damaging insect pests of ponderosa pines Pinus ponderosa Douglas ex P. & C. Lawson in Western U.S.A. We compared the effect of verbenone, a well known bark beetle anti-aggregation pheromone, with that...
Andrea Brunelle; Gerald E. Rehfeldt; Barbara Bentz; A. Steven Munson
2008-01-01
Paleoecological reconstructions from two lakes in the U.S. northern Rocky Mountain region of Idaho and Montana revealed the presence of bark beetle elytra and head capsules (cf. Dendroctonus spp., most likely D. ponderosae, mountain pine beetle). Occurrence of these macrofossils during the period of time associated with the 1920/...
Barbara J. Bentz; Jacob P. Duncan; James A. Powell
2016-01-01
Future forests are being shaped by changing climate and disturbances. Climate change is causing large-scale forest declines globally, in addition to distributional shifts of many tree species. Because environmental cues dictate insect seasonality and population success, climate change is also influencing tree-killing bark beetles. The mountain pine beetle,...
Hemlock woolly adelgid phenology and predacious beetle community on Japanese hemlocks
Shigehiko Shiyake; Yorio Miyatake; Michael Montgomery; Ashley Lamb
2008-01-01
Monthly samples of the hemlock woolly adelgid (HWA), Adelges tsugae, and predatory beetles were taken from Tsuga sieboldii near the border of Osaka and Kyoto prefectures. The beetles were collected by sweeping the canopy up to 5 meters height with nets. The phenology of HWA life stages were monitored by collecting branches and...
USDA-ARS?s Scientific Manuscript database
Japanese beetles, Popillia japonica Newman, are a quarantine issue for nursery shipments to certain U.S. states. The Domestic Japanese Beetle Harmonization Plan (DJHP) allows balled and burlapped (B&B) root ball immersion in chlorpyrifos or bifenthrin for P. japonica certification. Study objective...
7 CFR 301.48-2 - Authorization to designate, and terminate designation of, regulated airports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-2 Authorization to designate, and... State to be a regulated airport when he or she determines that adult populations of Japanese beetle... Japanese beetle and aircraft destined for the States listed in § 301.48(b) may be leaving the airport. (b...
Richard W. Hofstetter; J. C. Moser; R. McGuire
2009-01-01
Many species of mite that live exclusively in decaying wood and subcortical environments have intricate relationships with bark beetles (Coleoptera: Curculionidae, Scolytinae) (e.g., in the genus Dendroctonus, Ips, Scolytus) (Lindquist, 1969; Moser, 1975; Hirschmann and Wisniewski, 1983; Karg, 1993). These mites depend on bark beetles or other subcorticolous insects...
Benjamin Bright; J. A. Hicke; A. T. Hudak
2012-01-01
Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field...
USDA-ARS?s Scientific Manuscript database
The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), is a polyphagous wood-boring insect native to Asia. Since it invaded North America in the 1990s, the beetle has been continuously targeted by quarantines and eradication programs in the United States and Canada. In the present st...
Is self-thinning in ponderosa pine ruled by Dendroctonus bark beetles?
William W. Oliver
1995-01-01
Stand density of even-aged stands of ponderosa pine in California seems to be ruled by Dendroctonus bark beetles, rather than the suppressioninduced mortality common for other tree species. Size-density trajectories were plotted for 155 permanent plots in both plantations and natural stands. Bark beetle kills created a limiting Stand Density Index of...
Faecal mimicry by seeds ensures dispersal by dung beetles.
Midgley, Jeremy J; White, Joseph D M; Johnson, Steven D; Bronner, Gary N
2015-10-05
The large brown, round, strongly scented seeds of Ceratocaryum argenteum (Restionaceae) emit many volatiles found to be present in herbivore dung. These seeds attract dung beetles that roll and bury them. As the seeds are hard and offer no reward to the dung beetles, this is a remarkable example of deception in plant seed dispersal.
Thomas W. Bonnot; Mark A. Rumble; Joshua J. Millspaugh
2008-01-01
Black-backed Woodpeckers (Picoides arcticus) are burned-forest specialists that rely on beetles (Coleoptera) for food. In the Black Hills, South Dakota, standing dead forests resulting from mountain pine beetle (Dendroctonus ponderosae) outbreaks offer food resources for Black-backed Woodpeckers, in addition to providing habitat...
Robert A. Haack; Daniel Kucera; Steven Passoa
1993-01-01
The common (or larger) pine shoot beetle, Tomicus (=Blastophagus) piniperda (L.), was discovered near Cleveland, Ohio in July 1992. As of this writing, it is now in six states: Illinois, Indiana, Michigan, New York, Ohio, and Pennsylvania. Adults of the common pine shoot beetle are cylindrical and range from 3 to 5 mm in length (about the size of a match head). Their...
A. D. Giunta; Justin Runyon; M. J. Jenkins; M. Teich
2016-01-01
Mass attack by tree-killing bark beetles (Curculionidae: Scolytinae) brings about large chemical changes in host trees that can have important ecological consequences. For example, mountain pine beetle (Dendroctonus ponderosae Hopkins) attack increases emission of terpenes by lodgepole pine (Pinus contorta Dougl. ex Loud.), affecting foliage flammability with...
R. Justin DeRose; James N. Long; John D. Shaw
2009-01-01
Engelmann spruce forests are structurally and compositionally diverse, occur across a wide range of physiographic conditions, and are the result of varying disturbance histories such as fire, wind and spruce beetle. The spruce beetle is a natural disturbance agent of spruce forests and has population levels that fluctuate from endemic to epidemic. Conceptually,...
USDA-ARS?s Scientific Manuscript database
Fusarium dieback, a destructive disease of avocado (Persea americana), was reported in California and Israel in 2012. It is associated with an ambrosia beetle, Euwallacea sp., and damage caused by an unnamed symbiont of the beetle in Clade 3 of the Fusarium solani species complex (FSSC) designated p...
Ronald F Billings; William W. Upton
2010-01-01
An operational system to forecast infestation trends (increasing, static, declining) and relative population levels (high, moderate, low) of the southern pine beetle (SPB), Dendroctonus frontalis, has been implemented in the Southern and Eastern United States. Numbers of dispersing SPB and those of a major predator (the clerid beetle, ...
USDA-ARS?s Scientific Manuscript database
The beekeeping industry is critical to many agricultural crops. Recently, an invasive pest, the Small Hive Beetle, was introduced into North America. Beetles invade hives feed on pollen, bee brood, and ruin honey. Thus, the beetle has had a dramatic effect on the $14 billion/year apiculture and pol...
Distance and Sex Determine Host Plant Choice by Herbivorous Beetles
Ballhorn, Daniel J.; Kautz, Stefanie; Heil, Martin
2013-01-01
Background Plants respond to herbivore damage with the release of volatile organic compounds (VOCs). This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores? Methodology We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis) when facing lima bean plants (Fabaceae: Phaseolus lunatus) with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials. Conclusion Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores, whereas the presence of a slightly damaged plant can help males to localize putative mating partners. PMID:23405176
Flight Period of Mountain Pine Beetle (Coleoptera: Curculionidae) in its Recently Expanded Range.
Bleiker, K P; Van Hezewijk, B H
2016-12-01
The ability to predict key phenological events, such as the timing of flight periods, is useful for the monitoring and management of insect pests. We used empirical data to describe the flight period of mountain pine beetle, Dendroctonus ponderosae Hopkins, in its recently expanded range east of the Rocky Mountains in Canada and developed a degree-day model based on the number of trapped beetles. Data were collected over four degrees of latitude and six years. The main flight period, when the middle 70% of the total number of beetles were caught, started during the second or third week of July, lasted 26 d, and peaked within 2 wk of starting. The best model accounted for 89% of the variation in the data. Mountain pine beetle's flight tended to start later and be more contracted at higher latitudes. The synchrony of mountain pine beetle's flight period in the expanded range appears to be comparable to the limited reports from the historic range, although it may start earlier. This suggests that conditions in the new range are suitable for a coordinated dispersal flight, which is critical for the beetle's strategy of overwhelming tree defenses by attacking en masse. Forest managers can use the model to support operational decisions, e.g., when to impose hauling restrictions to reduce the risk of spread through the transport of infested material, or the time frame for control programs. Understanding the flight period may also improve our ability to assess the response of mountain pine beetle to novel and changing climates in the future. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Batilani-Filho, M; Hernandez, M I M
2017-08-01
The feeding behavior of the Scarabaeinae subfamily has positive implications on ecosystem functioning. We characterize the necrophagous and coprophagous dung beetle assemblages, and we quantify the removal of swine carrion and domestic dog dung in two areas with different degrees of environmental disturbance in an Atlantic Forest remnant located in Florianopolis, SC, Brazil. The experiment was setup at eight sampling points in each area, by installing one control and two collection and removal assessment arenas for collecting necrophagous dung beetles while simultaneously evaluating the removal of carrion (50 g of rotting pork for 48 h). We used the same sample design with 50 g of domestic dog dung for evaluating the coprophagous dung beetle assemblage and dung removal. Our results indicated that necrophagous dung beetles were more sensitive to environmental disturbance owing to a lower richness and changes in species dominance, which resulted in a lower removal in the areas with greater disturbance and lower environmental quality (39.6% carrion removal) in relation to less disturbed areas (75.1% carrion removal). The dung beetle assemblages were similar in structure and removal rates between areas (80% of dung was removed). In assessing the influence of richness, abundance, and biomass of dung beetles on resource removal both for the whole assemblage and for each separate functional guild, only the abundance and biomass of rollers contributed significantly to dung removal. These results highlight the implications of environmental disturbances on the functions of dung beetles, which respond differently according to the resource they use. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Vindstad, Ole Petter Laksforsmo; Schultze, Sabrina; Jepsen, Jane Uhd; Biuw, Martin; Kapari, Lauri; Sverdrup-Thygeson, Anne; Ims, Rolf Anker
2014-01-01
Saproxylic insects play an important part in decomposing dead wood in healthy forest ecosystems, but little is known about their role in the aftermath of large-scale forest mortality caused by pest insect outbreaks. We used window traps to study short-term changes in the abundance and community structure of saproxylic beetles following extensive mortality of mountain birch in sub-arctic northern Norway caused by an outbreak of geometrid moths. Three to five years after the outbreak, the proportion of obligate saproxylic individuals in the beetle community was roughly 10% higher in forest damaged by the outbreak than in undamaged forest. This was mainly due to two early-successional saproxylic beetle species. Facultative saproxylic beetles showed no consistent differences between damaged and undamaged forest. These findings would suggest a weak numerical response of the saproxylic beetle community to the dead wood left by the outbreak. We suggest that species-specific preferences for certain wood decay stages may limit the number of saproxylic species that respond numerically to an outbreak at a particular time, and that increases in responding species may be constrained by limitations to the amount of dead wood that can be exploited within a given timeframe (i.e. satiation effects). Low diversity of beetle species or slow development of larvae in our cold sub-arctic study region may also limit numerical responses. Our study suggests that saproxylic beetles, owing to weak numerical responses, may so far have played a minor role in decomposing the vast quantities of dead wood left by the moth outbreak. PMID:24911056
Therrien, Janet; Mason, Charles J; Cale, Jonathan A; Adams, Aaron; Aukema, Brian H; Currie, Cameron R; Raffa, Kenneth F; Erbilgin, Nadir
2015-10-01
Bark beetles are associated with diverse communities of symbionts. Although fungi have received significant attention, we know little about how bacteria, and in particular their interactions with fungi, affect bark beetle reproduction. We tested how interactions between four bacterial associates, two symbiotic fungi, and two opportunistic fungi affect performance of mountain pine beetles (Dendroctonus ponderosae) in host tissue. We compared beetle performance in phloem of its historical host, lodgepole pine (Pinus contorta), and its novel host recently accessed through warming climate, jack pine (Pinus banksiana). Overall, beetles produced more larvae, and established longer ovipositional and larval galleries in host tissue predominantly colonized by the symbiotic fungi, Grosmannia clavigera, or Ophiostoma montium than by the opportunistic colonizer Aspergillus and to a lesser extent, Trichoderma. This occurred in both historical and naïve hosts. Impacts of bacteria on beetle reproduction depended on particular fungus-bacterium combinations and host species. Some bacteria, e.g., Pseudomonas sp. D4-22 and Hy4T4 in P. contorta and Pseudomonas sp. Hy4T4 and Stenotrophomonas in P. banksiana, reduced antagonistic effects by Aspergillus and Trichoderma resulting in more larvae and longer ovipositional and larval galleries. These effects were not selective, as bacteria also reduced beneficial effects by symbionts in both host species. Interestingly, Bacillus enhanced antagonistic effects by Aspergillus in both hosts. These results demonstrate that bacteria influence brood development of bark beetles in host tissue. They also suggest that climate-driven range expansion of D. ponderosae through the boreal forest will not be significantly constrained by requirements of, or interactions among, its microbial associates.
Schneider, Erik S.; Schmitz, Anke; Schmitz, Helmut
2015-01-01
Jewel beetles of the genus Melanophila possess a pair of metathoracic infrared (IR) organs. These organs are used for forest fire detection because Melanophila larvae can only develop in fire killed trees. Several reports in the literature and a modeling of a historic oil tank fire suggest that beetles may be able to detect large fires by means of their IR organs from distances of more than 100 km. In contrast, the highest sensitivity of the IR organs, so far determined by behavioral and physiological experiments, allows a detection of large fires from distances up to 12 km only. Sensitivity thresholds, however, have always been determined in non-flying beetles. Therefore, the complete micromechanical environment of the IR organs in flying beetles has not been taken into consideration. Because the so-called photomechanic sensilla housed in the IR organs respond bimodally to mechanical as well as to IR stimuli, it is proposed that flying beetles make use of muscular energy coupled out of the flight motor to considerably increase the sensitivity of their IR sensilla during intermittent search flight sequences. In a search flight the beetle performs signal scanning with wing beat frequency while the inputs of the IR organs on both body sides are compared. By this procedure the detection of weak IR signals could be possible even if the signals are hidden in the thermal noise. If this proposed mechanism really exists in Melanophila beetles, their IR organs could even compete with cooled IR quantum detectors. The theoretical concept of an active amplification mechanism in a photon receptor innervated by highly sensitive mechanoreceptors is presented in this article. PMID:26733883
deJonge, R B; Bourchier, R S; Smith, S M
2017-06-01
Native insects can form novel associations with introduced invasive plants and use them as a food source. The recent introduction into eastern North America of a nonnative European vine, Vincetoxicum rossicum (Kleopow) Barbar., allows us to examine the initial response of a native chrysomelid beetle, Chrysochus auratus F., that feeds on native plants in the same family as V. rossicum (Apocynaceae). We tested C. auratus on V. rossicum and closely related or co-occurring native plants (Apocynum spp., Asclepias spp., and Solidago canadensis L.) using all life stages of the beetle in lab, garden, and field experiments. Experiments measured feeding (presence or absence and amount), survival, oviposition, and whether previous exposure to V. rossicum in the lab or field affected adult beetle feeding. Beetles fed significantly less on V. rossicum than on native Apocynum hosts. Adult beetles engaged in exploratory feeding on leaves of V. rossicum and survived up to 10 d. Females oviposited on V. rossicum, eggs hatched, and larvae fed initially on the roots; however, no larvae survived beyond second instar. Beetles collected from Apocynum cannabinum L. field sites intermixed with V. rossicum were less likely to feed on this novel nonnative host than those collected from colonies further from and less likely to be exposed to V. rossicum (>5 km). Our experimental work indicates that V. rossicum may act as an oviposition sink for C. auratus and that this native beetle has not adapted to survive on this recently introduced novel host plant. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Reisig, Dominic D; Bacheler, Jack S; Herbert, D Ames; Heiniger, Ron; Kuhar, Thomas; Malone, Sean; Philips, Chris; Tilley, M Scott
2017-06-01
Cereal leaf beetle, Oulema melanopus L., is a pest of small grains and the literature conflicts on whether it is more abundant in sparse or dense stands of wheat. Our objectives were to determine the impact of stand denseness on cereal leaf beetle abundance and to investigate the regional dispersion of cereal leaf beetles across North Carolina and Virginia. One-hundred twenty fields were sampled across North Carolina and Virginia during 2011 for stand denseness, and cereal leaf beetle eggs, larvae, and adults. Two small-plot wheat experiments were planted in North Carolina using a low and a high seeding rate. Main plots were split, with one receiving a single nitrogen application and one receiving two. Egg density, but not larva or adult density, was positively correlated with stand denseness in the regional survey. Furthermore, regional spatial patterns of aggregation were noted for both stand denseness and egg number. In the small-plot experiments, seeding rate influenced stand denseness, but not nitrogen application. In one experiment, egg densities per unit area were higher in denser wheat, while in the other experiment, egg densities per tiller were lower in denser wheat. Larvae were not influenced by any factor. Overall, there were more cereal leaf beetle eggs in denser wheat stands. Previous observations that sparse stands of wheat are more prone to cereal leaf beetle infestation can be attributed to the fact that sparser stands have fewer tillers, which increases the cereal leaf beetle to tiller ratio compared with denser stands. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hansen, E Matthew; Munson, A Steven; Blackford, Darren C; Graves, Andrew D; Coleman, Tom W; Baggett, L Scott
2017-10-01
We tested 3-methylcyclohex-2-en-1-one (MCH) and an Acer kairomone blend (AKB) as repellent semiochemicals for area and single tree protection to prevent spruce beetle (Dendroctonus rufipennis Kirby) attacks at locations in Utah and New Mexico. In the area protection study, we compared host infestation rates of MCH applications at three densities (20, 40, and 80 g MCH ha-1) against a control treatment over 0.64 ha plots centered within ~1.25 ha treatment blocks. All treatments included two baited funnel traps within the plot to assure spruce beetle pressure. Following beetle attack, plots were surveyed for new spruce beetle attacks and to quantify stand characteristics. The probability of more severe spruce beetle attacks was significantly reduced, by ~50%, in each of the MCH area treatments compared with the control treatment but there was no significant treatment difference among the MCH deployment densities. For the single tree protection study, we compared attack rates of MCH, Acer kairomone blend (AKB), and MCH plus AKB on spruce beetle-baited trees against bait-only trees. Each treatment was applied over a range of host diameters to test for host size effects. Seventy-five percent of control trees were mass-attacked, about one-third of MCH- and AKB-alone spruce was mass-attacked, and no MCH plus AKB spruce were mass-attacked. These results suggest that MCH alone is a marginal area and single tree protectant against spruce beetle but that deployment with other repellents can significantly increase treatment efficacy. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Nottingham, L B; Kuhar, T P
2016-08-01
Mexican bean beetle, Epilachna varivestis Mulsant, is a serious pest of snap beans, Phaseolus vulgaris L., in the eastern United States. These beetles are intolerant to direct sunlight, explaining why individuals are typically found on the undersides of leaves and in the lower portion of the plant canopy. We hypothesized that snap beans grown on reflective, agricultural polyethylene (plastic mulch) would have fewer Mexican bean beetles and less injury than those grown on black plastic or bare soil. In 2014 and 2015, beans were seeded into beds of metallized, white, and black plastic, and bare soil, in field plots near Blacksburg, VA. Mexican bean beetle density, feeding injury, predatory arthropods, and snap bean yield were sampled. Reflected light intensity, temperature, and humidity were monitored using data loggers. Pyranometer readings showed that reflected light intensity was highest over metallized plastic and second highest over white plastic; black plastic and bare soil were similarly low. Temperature and humidity were unaffected by treatments. Significant reductions in Mexican bean beetle densities and feeding injury were observed in both metallized and white plastic plots compared to black plastic and bare soil, with metallized plastic having the fewest Mexican bean beetle life stages and injury. Predatory arthropod densities were not reduced by reflective plastic. Metallized plots produced the highest yields, followed by white. The results of this study suggest that growing snap beans on reflective plastic mulch can suppress the incidence and damage of Mexican bean beetle, and increase yield in snap beans. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Millar, D.; Ewers, B. E.; Peckham, S. D.; Mackay, D. S.; Frank, J. M.; Massman, W. J.; Reed, D. E.
2015-12-01
Mountain pine beetle (Dendroctonus ponderosae) and spruce beetle (Dendroctonus rufipennis) epidemics have led to extensive mortality in lodgepole pine (Pinus contorta) and Engelmann spruce (Picea engelmannii) forests in the Rocky Mountains of the western US. In both of these tree species, mortality results from hydraulic failure within the xylem, due to blue stain fungal infection associated with beetle attack. However, the impacts of these disturbances on ecosystem-scale water fluxes can be complex, owing to their variable and transient nature. In this work, xylem scaling factors that reduced whole-tree conductance were initially incorporated into a forest ecohydrological model (TREES) to simulate the impact of beetle mortality on evapotranspiration (ET) in both pine and spruce forests. For both forests, simulated ET was compared to observed ET fluxes recorded using eddy covariance techniques. Using xylem scaling factors, the model overestimated the impact of beetle mortality, and observed ET fluxes were approximately two-fold higher than model predictions in both forests. The discrepancy between simulated and observed ET following the onset of beetle mortality may be the result of spatial and temporal heterogeneity of plant communities within the foot prints of the eddy covariance towers. Since simulated ET fluxes following beetle mortality in both forests only accounted for approximately 50% of those observed in the field, it is possible that newly established understory vegetation in recently killed tree stands may play a role in stabilizing ecosystem ET fluxes. Here, we further investigate the unaccounted for ET fluxes in the model by breaking it down into multiple cohorts that represent live trees, dying trees, and understory vegetation that establishes following tree mortality.
Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.
2013-01-01
Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4 +) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks. PMID:23755166
Keville, Megan P; Reed, Sasha C; Cleveland, Cory C
2013-01-01
Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.
Venette, Robert C.; Maddox, Mitchell P.; Aukema, Brian H.
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death. PMID:28472047
Rosenberger, Derek W; Venette, Robert C; Maddox, Mitchell P; Aukema, Brian H
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death.
Schneider, Erik S; Schmitz, Anke; Schmitz, Helmut
2015-01-01
Jewel beetles of the genus Melanophila possess a pair of metathoracic infrared (IR) organs. These organs are used for forest fire detection because Melanophila larvae can only develop in fire killed trees. Several reports in the literature and a modeling of a historic oil tank fire suggest that beetles may be able to detect large fires by means of their IR organs from distances of more than 100 km. In contrast, the highest sensitivity of the IR organs, so far determined by behavioral and physiological experiments, allows a detection of large fires from distances up to 12 km only. Sensitivity thresholds, however, have always been determined in non-flying beetles. Therefore, the complete micromechanical environment of the IR organs in flying beetles has not been taken into consideration. Because the so-called photomechanic sensilla housed in the IR organs respond bimodally to mechanical as well as to IR stimuli, it is proposed that flying beetles make use of muscular energy coupled out of the flight motor to considerably increase the sensitivity of their IR sensilla during intermittent search flight sequences. In a search flight the beetle performs signal scanning with wing beat frequency while the inputs of the IR organs on both body sides are compared. By this procedure the detection of weak IR signals could be possible even if the signals are hidden in the thermal noise. If this proposed mechanism really exists in Melanophila beetles, their IR organs could even compete with cooled IR quantum detectors. The theoretical concept of an active amplification mechanism in a photon receptor innervated by highly sensitive mechanoreceptors is presented in this article.
Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.
2013-01-01
Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.
Draft genomes of two blister beetles Hycleus cichorii and Hycleus phaleratus
Wu, Yuan-Ming; Li, Jiang
2018-01-01
Abstract Background Commonly known as blister beetles or Spanish fly, there are more than 1500 species in the Meloidae family (Hexapoda: Coleoptera: Tenebrionoidea) that produce the potent defensive blistering agent cantharidin. Cantharidin and its derivatives have been used to treat cancers such as liver, stomach, lung, and esophageal cancers. Hycleus cichorii and Hycleus phaleratus are the most commercially important blister beetles in China due to their ability to biosynthesize this potent vesicant. However, there is a lack of genome reference, which has hindered development of studies on the biosynthesis of cantharidin and a better understanding of its biology and pharmacology. Results We report 2 draft genomes and quantified gene sets for the blister beetles H. cichorii and H. phaleratus, 2 complex genomes with >72% repeats and approximately 1% heterozygosity, using Illumina sequencing data. An integrated assembly pipeline was performed for assembly, and most of the coding regions were obtained. Benchmarking universal single-copy orthologs (BUSCO) assessment showed that our assembly obtained more than 98% of the Endopterygota universal single-copy orthologs. Comparison analysis showed that the completeness of coding genes in our assembly was comparable to other beetle genomes such as Dendroctonus ponderosae and Agrilus planipennis. Gene annotation yielded 13 813 and 13 725 protein-coding genes in H. cichorii and H. phaleratus, of which approximately 89% were functionally annotated. BUSCO assessment showed that approximately 86% and 84% of the Endopterygota universal single-copy orthologs were annotated completely in these 2 gene sets, whose completeness is comparable to that of D. ponderosae and A. planipennis. Conclusions Assembly of both blister beetle genomes provides a valuable resource for future biosynthesis of cantharidin and comparative genomic studies of blister beetles and other beetles. PMID:29444297
Draft genomes of two blister beetles Hycleus cichorii and Hycleus phaleratus.
Wu, Yuan-Ming; Li, Jiang; Chen, Xiang-Sheng
2018-03-01
Commonly known as blister beetles or Spanish fly, there are more than 1500 species in the Meloidae family (Hexapoda: Coleoptera: Tenebrionoidea) that produce the potent defensive blistering agent cantharidin. Cantharidin and its derivatives have been used to treat cancers such as liver, stomach, lung, and esophageal cancers. Hycleus cichorii and Hycleus phaleratus are the most commercially important blister beetles in China due to their ability to biosynthesize this potent vesicant. However, there is a lack of genome reference, which has hindered development of studies on the biosynthesis of cantharidin and a better understanding of its biology and pharmacology. We report 2 draft genomes and quantified gene sets for the blister beetles H. cichorii and H. phaleratus, 2 complex genomes with >72% repeats and approximately 1% heterozygosity, using Illumina sequencing data. An integrated assembly pipeline was performed for assembly, and most of the coding regions were obtained. Benchmarking universal single-copy orthologs (BUSCO) assessment showed that our assembly obtained more than 98% of the Endopterygota universal single-copy orthologs. Comparison analysis showed that the completeness of coding genes in our assembly was comparable to other beetle genomes such as Dendroctonus ponderosae and Agrilus planipennis. Gene annotation yielded 13 813 and 13 725 protein-coding genes in H. cichorii and H. phaleratus, of which approximately 89% were functionally annotated. BUSCO assessment showed that approximately 86% and 84% of the Endopterygota universal single-copy orthologs were annotated completely in these 2 gene sets, whose completeness is comparable to that of D. ponderosae and A. planipennis. Assembly of both blister beetle genomes provides a valuable resource for future biosynthesis of cantharidin and comparative genomic studies of blister beetles and other beetles.
Evidence for a Phe-Gly-Leu-amide-like allatostatin in the beetle Tenebrio molitor.
Elliott, Karen L; Chan, Kuen Kuen; Stay, Barbara
2010-03-01
The allatostatins (ASTs) with Phe-Gly-Leu-amide C-terminal sequence are multifunctional neuropeptides discovered as inhibitors of juvenile hormone (JH) synthesis by corpora allata (CA) of cockroaches. Although these ASTs inhibit JH synthesis only in cockroaches, crickets, termites and locusts, isolation of peptides or of cDNA/genomic DNA or analysis of genomes indicates their occurrence in many orders of insects with the exception of coleopterans. The gene for these ASTs has not been found in the genome of the red flour beetle Tribolium castaneum (Family Tenebrionidae). Yet, in view of widespread occurrence of these peptides in insects, crustaceans and nematodes, they would be expected to occur in beetles. This study provides evidence for the presence of FGLa-like ASTs in the tenebrionid beetle, Tenebrio molitor, and scarabid beetle, Popillia japonica. Extract of brain from both beetles inhibited JH synthesis by cockroach CA dose dependently and reversibly. 20 brain equivalents of T. molitor and P. japonica extracts inhibited JH synthesis 64+/-5 and 65+/-0.6% respectively. Antibody against cockroach allatostatin (Diploptera punctata AST-7) used in an enzyme-linked immunosorbent assay reacted with brain extract of these beetles. Antibody against D. punctata AST-5 localized FGLa-like ASTs in the brain and subesophageal ganglion of T. molitor and P. japonica. In addition, pretreatment of T. molitor brain extract with anti-D. punctata AST-5 reduced the inhibition of JH synthesis and pretreatment of anti-D. punctata AST-5 with D. punctata AST-5 diminished the immunoreactivity of the antibody. Thus we predict that FGLa-like allatostatins will be found in beetles. (c) 2009 Elsevier Inc. All rights reserved.
Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae
Mitchell, Robert F.; Hughes, David T.; Luetje, Charles W.; Millar, Jocelyn G.; Soriano-Agatón, Flor; Hanks, Lawrence M.; Robertson, Hugh M.
2012-01-01
Odorant receptors (Ors) are a unique family of ligand-gated ion channels and the primary mechanism by which insects detect volatile chemicals. Here, we describe 57 putative Ors sequenced from an antennal transcriptome of the cerambycid beetle Megacyllene caryae (Gahan). The male beetles produce a pheromone blend of nine components, and we functionally characterized Ors tuned to three of these chemicals: receptor McOr3 is sensitive to (S)-2-methyl-1-butanol; McOr20 is sensitive to (2S,3R)-2,3-hexanediol; and McOr5 is sensitive to 2-phenylethanol. McOr3 and McOr20 are also sensitive to structurally-related chemicals that are pheromones of other cerambycid beetles, suggesting that orthologous receptors may be present across many cerambycid species. These Ors are the first to be functionally characterized from any species of beetle and lay the groundwork for understanding the evolution of pheromones within the Cerambycidae. PMID:22504490
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amman, G.D.; Ryan, K.C.
The bark beetle antiaggregative pheromones, verbenone and ipsdienol, were tested in protecting heat-injured lodgepole pine (Pinus contorta Dougl. ex Loud.) from mountain pine beetle (Dendroctonus ponderosae) infestation in the Sawtooth National Recreation Area in central Idaho. Peat moss was placed around 70 percent of the basal circumference of lodgepole pines. When the peat moss was ignited, it simulated the smoldering of natural duff, generating temperatures that killed the cambium. The four treatments tested were uninjured tree, heat-injured tree, heat-injured tree treated with verbenone, and heat-injured tree treated with verbenone plus ipsdienol. Treatments were replicated 20 times. Mountain pine beetles weremore » attracted into treatment blocks by placing mountain pine beetle tree baits on metal posts 3 to 5 meters from treated trees. Fisher's Extract Test showed that treatment and beetle infestation were not independent (P < 0.015). Check treatments contained more unattacked and mass-attacked trees, whereas pheromone treatments contained more unsuccessfully attacked trees.« less
Fraser, Jordie D; Bonnett, Tiffany R; Keeling, Christopher I; Huber, Dezene P W
2017-01-01
Winter mortality is a major factor regulating population size of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Glycerol is the major cryoprotectant in this freeze intolerant insect. We report findings from a gene expression study on an overwintering mountain pine beetle population over the course of 35 weeks. mRNA transcript levels suggest glycerol production in the mountain pine beetle occurs through glycogenolytic, gluconeogenic and potentially glyceroneogenic pathways, but not from metabolism of lipids. A two-week lag period between fall glycogen phosphorylase transcript and phosphoenolpyruvate carboxykinase transcript up-regulation suggests that gluconeogenesis serves as a secondary glycerol-production process, subsequent to exhaustion of the primary glycogenolytic source. These results provide a first look at the details of seasonal gene expression related to the production of glycerol in the mountain pine beetle.
Cascading trait-mediated interactions induced by ant pheromones
Hsieh, Hsun-Yi; Liere, Heidi; Soto, Estelí J; Perfecto, Ivette
2012-01-01
Trait-mediated indirect interactions (TMII) can be as important as density-mediated indirect interactions. Here, we provide evidence for a novel trait-mediated cascade (where one TMII affects another TMII) and demonstrate that the mechanism consists of a predator eavesdropping on chemical signaling. Ants protect scale insects from predation by adult coccinellid beetles – the first TMII. However, parasitic phorid flies reduce ant foraging activity by 50% – the second TMII, providing a window of opportunity for female beetles to oviposit in high-quality microsites. Beetle larvae are protected from ant predation and benefit from living in patches with high scale densities. We demonstrate that female beetles can detect pheromones released by the ant when attacked by phorids, and that only females, and especially gravid females, are attracted to the ant pheromone. As ants reduce their movement when under attack by phorids, we conclude that phorids facilitate beetle oviposition, thus producing the TMII cascade. PMID:23139877
Southern Pine Beetle Ecology: Populations within Stands
Matthew P. Ayres; Sharon J. Martinson; Nicholas A. Friedenberg
2011-01-01
Populations of southern pine beetle (SPB) are typically substructured into local aggregations, each with tens of thousands of individual beetles. These aggregations, known as âspotsâ because of their appearance during aerial surveys, are the basic unit for the monitoring and management of SPB populations in forested regions. They typically have a maximum lifespan of 1...
Bark beetles and fungal associates colonizing white spruce in the Great Lakes region.
Kirsten E. Haberkern; Barbara L. Illman; Kenneth F. Raffa
2002-01-01
We examined the major bark beetles and associated fungi colonizing subcortical tissues of white spruce (Picea glauca (Moench) Voss) in the Great Lakes region. Trees were felled at one northwestern Wisconsin site in a preliminary study in 1997 and at 10 sites throughout northern Wisconsin, Minnesota, and Michigan in 1998. Fungal isolations were made from beetles...
Assessment and response to bark beetle outbreaks in the Rocky Mountain area
Safiya Samman; Jesse Logan
2000-01-01
Bark beetles act as "agents of change" within the conifer forests of the Rocky Mountain area. They play a critical role in the development, senescence, and rebirth of Western forests. Bark beetle-caused tree mortality can be extensive, covering thousands of acres. This report is the Forest Service response to a Congressional direction in the FY2000 Interior...
USDA-ARS?s Scientific Manuscript database
The gut microbial communities associated with xylophagous beetles are taxonomically rich and predominately comprised of taxa that are poised to promote survival in woody tissue, which is devoid of nitrogen and essential nutrients. However, the contributions of gut microbes to digestive physiology a...
Gum spots in black cherry caused by natural attacks of peach bark beetle
Charles O. Rexrode
1981-01-01
Peach bark beetles, Phloeotribus liminaris (Harris), made abortive attacks on healthy black cherry, Prunus serotina Ehrh., trees. The beetle attacks caused five types of gum spots in the wood and a gummy exudate on the bark. The most extensive and common types of gum spot were single and multiple rows of interray gum spots that...
Kathleen A. Dwire; Robert Hubbard; Roberto Bazan
2015-01-01
Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout western North America, and thereby contributing to the heterogeneity of fuel distribution. In forested watersheds, conifer-dominated riparian forests frequently occur as narrow linear features in the landscape mosaic and contribute to...
Arjan J. H. Meddens; Jeffrey A. Hicke; Lee A. Vierling; Andrew T. Hudak
2013-01-01
Bark beetles cause significant tree mortality in coniferous forests across North America. Mapping beetle-caused tree mortality is therefore important for gauging impacts to forest ecosystems and assessing trends. Remote sensing offers the potential for accurate, repeatable estimates of tree mortality in outbreak areas. With the advancement of multi-temporal disturbance...
Suppression of Bark Beetles and Protection of Pines in the Urban Environment: A Case Study
Jane Leslie Hayes; James R. Meeker; John L. Foltz; Brian L. Strom
1996-01-01
Southern pine beetles (SPB), and associated bark beetles, have long been recognized as major pests of southern forests. Tactics used for controlling infestations in conventional forest settings have not proven effective at achieving area-wide control, nor are they suitable for the control of infestations in high-value stands such as homesites or wildlife habitat areas...