Sample records for behavior mechanical properties

  1. Skin mechanical properties and modeling: A review.

    PubMed

    Joodaki, Hamed; Panzer, Matthew B

    2018-04-01

    The mechanical properties of the skin are important for various applications. Numerous tests have been conducted to characterize the mechanical behavior of this tissue, and this article presents a review on different experimental methods used. A discussion on the general mechanical behavior of the skin, including nonlinearity, viscoelasticity, anisotropy, loading history dependency, failure properties, and aging effects, is presented. Finally, commonly used constitutive models for simulating the mechanical response of skin are discussed in the context of representing the empirically observed behavior.

  2. On the continuum mechanics approach for the analysis of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chaudhry, M. S.; Czekanski, A.

    2016-04-01

    Today carbon nanotubes have found various applications in structural, thermal and almost every field of engineering. Carbon nanotubes provide great strength, stiffness resilience properties. Evaluating the structural behavior of nanoscale materials is an important task. In order to understand the materialistic behavior of nanotubes, atomistic models provide a basis for continuum mechanics modelling. Although the properties of bulk materials are consistent with the size and depends mainly on the material but the properties when we are in Nano-range, continuously change with the size. Such models start from the modelling of interatomic interaction. Modelling and simulation has advantage of cost saving when compared with the experiments. So in this project our aim is to use a continuum mechanics model of carbon nanotubes from atomistic perspective and analyses some structural behaviors of nanotubes. It is generally recognized that mechanical properties of nanotubes are dependent upon their structural details. The properties of nanotubes vary with the varying with the interatomic distance, angular orientation, radius of the tube and many such parameters. Based on such models one can analyses the variation of young's modulus, strength, deformation behavior, vibration behavior and thermal behavior. In this study some of the structural behaviors of the nanotubes are analyzed with the help of continuum mechanics models. Using the properties derived from the molecular mechanics model a Finite Element Analysis of carbon nanotubes is performed and results are verified. This study provides the insight on continuum mechanics modelling of nanotubes and hence the scope to study the effect of various parameters on some structural behavior of nanotubes.

  3. Role of Polymer Segregation on the Mechanical Behavior of All-Polymer Solar Cell Active Layers.

    PubMed

    Balar, Nrup; Xiong, Yuan; Ye, Long; Li, Sunsun; Nevola, Daniel; Dougherty, Daniel B; Hou, Jianhui; Ade, Harald; O'Connor, Brendan T

    2017-12-20

    An all-polymer bulk heterojunction (BHJ) active layer that removes the use of commonly used small molecule electron acceptors is a promising approach to improve the thermomechanical behavior of organic solar cells. However, there has been limited research on their mechanical properties. Here, we report on the mechanical behavior of high-performance blade-coated all-polymer BHJ films cast using eco-friendly solvents. The mechanical properties considered include the elastic modulus, crack onset strain, and cohesive fracture energy. We show that the mechanical behavior of the blend is largely unaffected by significant changes in the segregation characteristics of the polymers, which was varied systematically through solvent formulation. In comparison to a polymer:fullerene BHJ counterpart, the all-polymer films were found to have lower stiffness and increased ductility. Yet, the fracture energy of the all-polymer films is not significantly improved compared to that of the polymer:fullerene films. This study highlights that improved mechanical behavior of all-polymer systems cannot be assumed, and that details of the molecular structure, molecular weight, and film morphology play an important role in both the optoelectronic and mechanical properties. Furthermore, we show that simple composite modeling provides a predictive tool for the mechanical properties of the polymer blend films, providing a framework to guide future optimization of the mechanical behavior.

  4. How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials?

    PubMed

    Hedayati, R; Janbaz, S; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2017-01-01

    Although the initial mechanical properties of additively manufactured porous biomaterials are intensively studied during the last few years, almost no information is available regarding the evolution of the mechanical properties of implant-bone complex as the tissue regeneration progresses. In this paper, we studied the effects of tissue regeneration on the static and fatigue behavior of selective laser melted porous titanium structures with three different porosities (i.e. 77, 81, and 85%). The porous structures were filled with four different polymeric materials with mechanical properties in the range of those observed for de novo bone (0.7GPa

  5. Processing and Characterization of Cellulose Nanocrystals/Polylactic Acid Nanocomposite Films

    Treesearch

    Erin Sullivan; Robert Moon; Kyriaki Kalaitzidou

    2015-01-01

    The focus of this study is to examine the effect of cellulose nanocrystals (CNC) on the properties of polylactic acid (PLA) films. The films are fabricated via melt compounding and melt fiber spinning followed by compression molding. Film fracture morphology, thermal properties, crystallization behavior, thermo-mechanical behavior, and mechanical behavior were...

  6. Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: Experimental and numerical approaches.

    PubMed

    Naghieh, Saman; Karamooz-Ravari, Mohammad Reza; Sarker, M D; Karki, Eva; Chen, Xiongbiao

    2018-04-01

    Tissue scaffolds fabricated by three-dimensional (3D) bioprinting are attracting considerable attention for tissue engineering applications. Because the mechanical properties of hydrogel scaffolds should match the damaged tissue, changing various parameters during 3D bioprinting has been studied to manipulate the mechanical behavior of the resulting scaffolds. Crosslinking scaffolds using a cation solution (such as CaCl 2 ) is also important for regulating the mechanical properties, but has not been well documented in the literature. Here, the effect of varied crosslinking agent volume and crosslinking time on the mechanical behavior of 3D bioplotted alginate scaffolds was evaluated using both experimental and numerical methods. Compression tests were used to measure the elastic modulus of each scaffold, then a finite element model was developed and a power model used to predict scaffold mechanical behavior. Results showed that crosslinking time and volume of crosslinker both play a decisive role in modulating the mechanical properties of 3D bioplotted scaffolds. Because mechanical properties of scaffolds can affect cell response, the findings of this study can be implemented to modulate the elastic modulus of scaffolds according to the intended application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Differences in time-dependent mechanical properties between extruded and molded hydrogels

    PubMed Central

    Ersumo, N; Witherel, CE; Spiller, KL

    2016-01-01

    The mechanical properties of hydrogels used in biomaterials and tissue engineering applications are critical determinants of their functionality. Despite the recent rise of additive manufacturing, and specifically extrusion-based bioprinting, as a prominent biofabrication method, comprehensive studies investigating the mechanical behavior of extruded constructs remain lacking. To address this gap in knowledge, we compared the mechanical properties and swelling properties of crosslinked gelatin-based hydrogels prepared by conventional molding techniques or by 3D bioprinting using a BioBots Beta pneumatic extruder. A preliminary characterization of the impact of bioprinting parameters on construct properties revealed that both Young's modulus and optimal extruding pressure increased with polymer content, and that printing resolution increased with both printing speed and nozzle gauge. High viability (>95%) of encapsulated NIH 3T3 fibroblasts confirmed the cytocompatibility of the construct preparation process. Interestingly, the Young's moduli of extruded and molded constructs were not different, but extruded constructs did show increases in both the rate and extent of time-dependent mechanical behavior observed in creep. Despite similar polymer densities, extruded hydrogels showed greater swelling over time compared to molded hydrogels, suggesting that differences in creep behavior derived from differences in microstructure and fluid flow. Because of the crucial roles of time-dependent mechanical properties, fluid flow, and swelling properties on tissue and cell behavior, these findings highlight the need for greater consideration of the effects of the extrusion process on hydrogel properties. PMID:27550945

  8. Spatiotemporal properties of microsaccades: Model predictions and experimental tests

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Fang; Yuan, Wu-Jie; Zhou, Zhao

    2016-10-01

    Microsaccades are involuntary and very small eye movements during fixation. Recently, the microsaccade-related neural dynamics have been extensively investigated both in experiments and by constructing neural network models. Experimentally, microsaccades also exhibit many behavioral properties. It’s well known that the behavior properties imply the underlying neural dynamical mechanisms, and so are determined by neural dynamics. The behavioral properties resulted from neural responses to microsaccades, however, are not yet understood and are rarely studied theoretically. Linking neural dynamics to behavior is one of the central goals of neuroscience. In this paper, we provide behavior predictions on spatiotemporal properties of microsaccades according to microsaccade-induced neural dynamics in a cascading network model, which includes both retinal adaptation and short-term depression (STD) at thalamocortical synapses. We also successfully give experimental tests in the statistical sense. Our results provide the first behavior description of microsaccades based on neural dynamics induced by behaving activity, and so firstly link neural dynamics to behavior of microsaccades. These results indicate strongly that the cascading adaptations play an important role in the study of microsaccades. Our work may be useful for further investigations of the microsaccadic behavioral properties and of the underlying neural dynamical mechanisms responsible for the behavioral properties.

  9. Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence on Chemical Heterogeneity, Anisotropy, and Microstructure

    NASA Astrophysics Data System (ADS)

    Wahlquist, Joseph A.

    This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence of mechanical properties. Finally, we examined material anisotropy of both the calcified and uncalcified tissues of the osteochondral interface. This research provides insight into how articular cartilage serves to support physiologic loads and simultaneously sustain chondrocyte viability.

  10. Mechanical Properties of Polymers.

    ERIC Educational Resources Information Center

    Aklonis, J. J.

    1981-01-01

    Mechanical properties (stress-strain relationships) of polymers are reviewed, taking into account both time and temperature factors. Topics include modulus-temperature behavior of polymers, time dependence, time-temperature correspondence, and mechanical models. (JN)

  11. Microstructure Analysis of Ti-xPt Alloys and the Effect of Pt Content on the Mechanical Properties and Corrosion Behavior of Ti Alloys

    PubMed Central

    Song, Ho-Jun; Han, Mi-Kyung; Jeong, Hyeon-Gyeong; Lee, Yong-Tai; Park, Yeong-Joon

    2014-01-01

    The microstructure, mechanical properties, and corrosion behavior of binary Ti-xPt alloys containing 5, 10, 15 and 20 wt% Pt were investigated in order to develop new Ti-based dental materials possessing superior properties than those of commercially pure titanium (cp-Ti). All of the Ti-xPt (x = 5, 10, 15, 20) alloys showed hexagonal α-Ti structure with cubic Ti3Pt intermetallic phase. The mechanical properties and corrosion behavior of Ti-xPt alloys were sensitive to the Pt content. The addition of Pt contributed to hardening of cp-Ti and to improving its oxidation resistance. Electrochemical results showed that the Ti-xPt alloys exhibited superior corrosion resistance than that of cp-Ti. PMID:28788660

  12. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model whichmore » can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.« less

  13. Relationship between disease-specific structures of amyloid fibrils and their mechanical properties

    NASA Astrophysics Data System (ADS)

    Yoon, Gwonchan; Kab Kim, Young; Eom, Kilho; Na, Sungsoo

    2013-01-01

    It has recently been reported that the mechanical behavior of prion nanofibrils may play a critical role in expression of neurodegenerative diseases. In this work, we have studied the mechanical behavior of HET-s prion nanofibrils using an elastic network model. We have shown that the mechanical properties of prion nanofibrils formed as left-handed β-helices are different from those of non-prion nanofibrils formed as right-handed β-helices. In particular, the bending behavior of prion nanofibrils depends on the length of the nanofibril and that the bending rigidity of the prion nanofibril is larger than that of the non-prion nanofibril.

  14. Heat treatment effect on the mechanical properties of industrial drawn copper wires

    NASA Astrophysics Data System (ADS)

    Beribeche, Abdellatif; Boumerzoug, Zakaria; Ji, Vincent

    2013-12-01

    In this present investigation, the mechanical properties of industrial drawn copper wires have been studied by tensile tests. The effect of prior heat treatments at 500°C on the drawn wires behavior was the main goal of this investigation. We have found that the mechanical behavior of drawn wires depends strongly on those treatments. SEM observations of the wire cross section after tensile tests have shown that the mechanism of rupture was mainly controlled by the void formation.

  15. Tissue-level Mechanical Properties of Bone Contributing to Fracture Risk

    PubMed Central

    Nyman, Jeffry S.; Granke, Mathilde; Singleton, Robert C.; Pharr, George M.

    2016-01-01

    Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown. PMID:27263108

  16. Tissue-Level Mechanical Properties of Bone Contributing to Fracture Risk.

    PubMed

    Nyman, Jeffry S; Granke, Mathilde; Singleton, Robert C; Pharr, George M

    2016-08-01

    Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.

  17. The mechanical behavior of nanoscale metallic multilayers: A survey

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Xie, J. Y.; Wang, F.; Huang, P.; Xu, K. W.; Lu, T. J.

    2015-06-01

    The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of microlaminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size-dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plastic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engineers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qualities the interfaces in NMMs display at atomic scale.

  18. Enhanced mechanical properties of self-polymerized polydopamine-coated recycled PLA filament used in 3D printing

    NASA Astrophysics Data System (ADS)

    Zhao, Xing Guan; Hwang, Kyung-Jun; Lee, Dongoh; Kim, Taemin; Kim, Namsu

    2018-05-01

    Dopamine readily adsorbs onto almost all kinds of surfaces and develops cohesive strength through self-polymerization; hence, aqueous solutions of dopamine can be used as adhesives. These properties were used to prevent the degradation in the mechanical properties of recycled PLA fabricated by 3D printer. The mechanical properties of 3D printed PLA play a critical role in determining its applications. To reduce the manufacturing cost as well as environmental pollutants, recycling of 3D printed materials has attracted many attentions. However, recycling of polymeric materials causes the degradation of the mechanical properties. Our study is aimed at advancing the current knowledge on the adhesion behavior of polydopamine coatings on PLA pellets used in 3D printing process. Polydopamine was synthesized by oxidative polymerization and used to coat PLA specimens. The adhesion behavior and mechanical properties of the 3D printed specimens were evaluated by tensile tests. It was found that the mechanical properties of recycled specimen with polydopamine coating have been improved. Microstructural and chemical characterization of the coated specimens was carried out using FE-SEM, FTIR, and XPS analyses.

  19. Rheological and mechanical properties of polypropylene prepared with multi-walled carbon nanotube masterbatch.

    PubMed

    Shim, Young-Sun; Park, Soo-Jin

    2012-07-01

    In this study, the effects of polypropylene-grafted maleic-anhydride-treated multi-walled carbon nanotubes (PP-MWNTs) on the viscoelastic behaviors and mechanical properties of a polypropylene-(PP)-based composite system were examined. The PP-MWNT/PP composites were prepared via melt mixing with a 3:1 ratio of PP-g-MA and acid-treated MWNTs at 220 degrees C. The surface characteristics of the PP-MWNTs were confirmed via Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). The viscoelastic behavior and mechanical properties of the PP-MWNT/PP composites were confirmed using a rheometer and an ultimate testing machine (UTM). The storage and loss moduli increased with increasing PP-MWNT content. The critical intensity stress factor (K(IC)) of the PP-MWNT/PP composites at high filler loading was also higher than that of the MWNT/PP composites. In conclusion, the viscoelastic behavior and mechanical properties of MWNT/PP can be improved by grafting MWNTs to PP-g-MA.

  20. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading.

    PubMed

    Lake, Spencer P; Miller, Kristin S; Elliott, Dawn M; Soslowsky, Louis J

    2009-12-01

    Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for investigation due to its complex mechanical environment and corresponding inhomogeneity. In addition, SST injury occurs frequently with limited success in treatment strategies, illustrating the need for a better understanding of SST properties. Therefore, the objective of this study was to quantitatively evaluate the inhomogeneous tensile mechanical properties, fiber organization, and fiber realignment under load of human SST utilizing a novel polarized light technique. Fiber distributions were found to become more aligned under load, particularly during the low stiffness toe-region, suggesting that fiber realignment may be partly responsible for observed nonlinear behavior. Fiber alignment was found to correlate significantly with mechanical parameters, providing evidence for strong structure-function relationships in tendon. Human SST exhibits complex, inhomogeneous mechanical properties and fiber distributions, perhaps due to its complex loading environment. Surprisingly, histological grade of degeneration did not correlate with mechanical properties.

  1. Prediction of high temperature metal matrix composite ply properties

    NASA Technical Reports Server (NTRS)

    Caruso, J. J.; Chamis, C. C.

    1988-01-01

    The application of the finite element method (superelement technique) in conjunction with basic concepts from mechanics of materials theory is demonstrated to predict the thermomechanical behavior of high temperature metal matrix composites (HTMMC). The simulated behavior is used as a basis to establish characteristic properties of a unidirectional composite idealized an as equivalent homogeneous material. The ply properties predicted include: thermal properties (thermal conductivities and thermal expansion coefficients) and mechanical properties (moduli and Poisson's ratio). These properties are compared with those predicted by a simplified, analytical composite micromechanics model. The predictive capabilities of the finite element method and the simplified model are illustrated through the simulation of the thermomechanical behavior of a P100-graphite/copper unidirectional composite at room temperature and near matrix melting temperature. The advantage of the finite element analysis approach is its ability to more precisely represent the composite local geometry and hence capture the subtle effects that are dependent on this. The closed form micromechanics model does a good job at representing the average behavior of the constituents to predict composite behavior.

  2. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.

    PubMed

    Kennedy, Kelsey M; Bhaw-Luximon, Archana; Jhurry, Dhanjay

    2017-03-01

    Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and cell behavior work in a dynamic feedback loop to drive tissue development, and discusses opportunities for improved design of mechanical environments that are conducive to tissue development. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Was, Gary; Wirth, Brian; Motta, Athur

    The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiatedmore » microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations.« less

  4. Mechanics of additively manufactured biomaterials.

    PubMed

    Zadpoor, Amir A

    2017-06-01

    Additive manufacturing (3D printing) has found many applications in healthcare including fabrication of biomaterials as well as bioprinting of tissues and organs. Additively manufactured (AM) biomaterials may possess arbitrarily complex micro-architectures that give rise to novel mechanical, physical, and biological properties. The mechanical behavior of such porous biomaterials including their quasi-static mechanical properties and fatigue resistance is not yet well understood. It is particularly important to understand the relationship between the designed micro-architecture (topology) and the resulting mechanical properties. The current special issue is dedicated to understanding the mechanical behavior of AM biomaterials. Although various types of AM biomaterials are represented in the special issue, the primary focus is on AM porous metallic biomaterials. As a prelude to this special issue, this editorial reviews some of the latest findings in the mechanical behavior of AM porous metallic biomaterials so as to describe the current state-of-the-art and set the stage for the other studies appearing in the issue. Some areas that are important for future research are also briefly mentioned. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. INFLUENCE OF HIGH-ENERGY FORMING ON THE BEHAVIOR OF MATERIALS (EINFLUSS DER HOCHENERGIEUMFORMUNG AUF DAS WERKSTOFFVERHALTEN),

    DTIC Science & Technology

    MATERIAL FORMING, METALS), (*METALS, MECHANICAL PROPERTIES), EXPLOSIVE FORMING, ELECTROFORMING, HYDROFORMING (MECHANICAL), IRON, STEEL, NICKEL, NIOBIUM, TENSILE PROPERTIES, TANTALUM, DEFORMATION, EAST GERMANY.

  6. Non-destructive thermo-mechanical behavior assessment of glass-ceramics for dental applications

    NASA Astrophysics Data System (ADS)

    Kordatos, E. Z.; Abdulkadhim, Z.; Feteira, A. M.

    2017-05-01

    Every year millions of people seek dental treatment to either repair damaged, unaesthetic and dysfunctional teeth or replace missing natural teeth. Several dental materials have been developed to meet the stringent requirements in terms of mechanical properties, aesthetics and chemical durability in the oral environment. Glass-ceramics exhibit a suitable combination of these properties for dental restorations. This research is focused on the assessment of the thermomechanical behavior of bio-ceramics and particularly lithium aluminosilicate glass-ceramics (LAS glass-ceramics). Specifically, methodologies based on Infrared Thermography (IRT) have been applied in order the structure - property relationship to be evaluated. Non-crystallized, partially crystallized and fully crystallized glass-ceramic samples have been non-destructively assessed in order their thermo-mechanical behavior to be associated with their micro-structural features.

  7. Investigation of Mechanisms of Viscoelastic Behavior of Collagen Molecule

    PubMed Central

    Ghodsi, Hossein; Darvish, Kurosh

    2015-01-01

    Unique mechanical properties of collagen molecule make it one of the most important and abundant proteins in animals. Many tissues such as connective tissues rely on these properties to function properly. In the past decade, molecular dynamics (MD) simulations have been used extensively to study the mechanical behavior of molecules. For collagen, MD simulations were primarily used to determine its elastic properties. In this study, constant force steered MD simulations were used to perform creep tests on collagen molecule segments. The mechanical behavior of the segments, with lengths of approximately 20 (1X), 38 (2X), 74 (4X), and 290 nm (16X), was characterized using a quasi-linear model to describe the observed viscoelastic responses. To investigate the mechanisms of the viscoelastic behavior, hydrogen bonds (H-bonds) rupture/formation time history of the segments were analyzed and it was shown that the formation growth rate of H-bonds in the system is correlated with the creep growth rate of the segment ( β = 2.41 βH). In addition, a linear relationship between H-bonds formation growth rate and the length of the segment was quantified. Based on these findings, a general viscoelastic model was developed and verified where, using the smallest segment as a building block, the viscoelastic properties of larger segments could be predicted. In addition, the effect of temperature control methods on the mechanical properties were studied, and it was shown that application of Langevin Dynamics had adverse effect on these properties while the Lowe-Anderson method was shown to be more appropriate for this application. This study provides information that is essential for multi-scale modeling of collagen fibrils using a bottom-up approach. PMID:26256473

  8. Investigation of mechanisms of viscoelastic behavior of collagen molecule.

    PubMed

    Ghodsi, Hossein; Darvish, Kurosh

    2015-11-01

    Unique mechanical properties of collagen molecule make it one of the most important and abundant proteins in animals. Many tissues such as connective tissues rely on these properties to function properly. In the past decade, molecular dynamics (MD) simulations have been used extensively to study the mechanical behavior of molecules. For collagen, MD simulations were primarily used to determine its elastic properties. In this study, constant force steered MD simulations were used to perform creep tests on collagen molecule segments. The mechanical behavior of the segments, with lengths of approximately 20 (1X), 38 (2X), 74 (4X), and 290 nm (16X), was characterized using a quasi-linear model to describe the observed viscoelastic responses. To investigate the mechanisms of the viscoelastic behavior, hydrogen bonds (H-bonds) rupture/formation time history of the segments were analyzed and it was shown that the formation growth rate of H-bonds in the system is correlated with the creep growth rate of the segment (β=2.41βH). In addition, a linear relationship between H-bonds formation growth rate and the length of the segment was quantified. Based on these findings, a general viscoelastic model was developed and verified here, using the smallest segment as a building block, the viscoelastic properties of larger segments could be predicted. In addition, the effect of temperature control methods on the mechanical properties were studied, and it was shown that application of Langevin Dynamics had adverse effect on these properties while the Lowe-Anderson method was shown to be more appropriate for this application. This study provides information that is essential for multi-scale modeling of collagen fibrils using a bottom-up approach. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Life Prediction of Turbine Blade Nickel Base Superalloy Single Crystals.

    DTIC Science & Technology

    1986-08-01

    mechanical properties between single crystals and the DS version of Mar-M200. Soon it was recognized again through the mechanical property - structure ... property achievements demonstrated by screening and simulated engine tests. 1 Single crystals are the results of extensive investigation on the mechanical ...behavior, (especially fatigue and creep) of, and the structure - property correlations in the equiaxed and directionally solidified (DS) nickel-base

  10. Evaluation of disintegration properties of orally rapidly disintegrating tablets using a novel disintegration tester.

    PubMed

    Kondo, Keita; Niwa, Toshiyuki; Danjo, Kazumi

    2012-01-01

    This report describes a new disintegration tester that can determine not only the disintegration time of orally rapidly disintegrating tablets (ODT), but also the disintegration behavior and mechanism. Using the tester, the disintegration properties of the tablets prepared in a previous study were examined. The purpose of this study is to confirm the utility of the tester as an instrument for evaluating the disintegration properties of ODT and determine relations among time, behavior and mechanism of the disintegration. Results demonstrated that in vitro disintegration time in the tester is similar to that in the commercial disintegration tester for ODT and is highly correlated with oral disintegration time. Observations of disintegration process revealed that a difference in disintegration behavior between tablets compressed at 50-75 MPa and 100 MPa; the disintegration behavior of the tablets were designated immediate disintegrating type and gradual disintegrating type, respectively. The dynamic swelling profile and water absorption profile indicated that the disintegration mechanism of the tablets involved wicking action induced by swelling of the disintegrant; the disintegration time was closely related to the initial rates of swelling and water absorption. Furthermore, the mechanism of water absorption of tablets compressed at 50-75 MPa and 100 MPa shows anomalous diffusion and case-II transport, respectively. The shift in this mechanism is consistent with differences in disintegration time and behavior between the tablets. These findings suggest that information on disintegration properties obtained by our tester is useful for understanding of disintegration phenomena of ODT.

  11. Engineering three-dimensional cell mechanical microenvironment with hydrogels.

    PubMed

    Huang, Guoyou; Wang, Lin; Wang, Shuqi; Han, Yulong; Wu, Jinhui; Zhang, Qiancheng; Xu, Feng; Lu, Tian Jian

    2012-12-01

    Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed.

  12. Processing and Characterization of Cellulose Nanocrystals/Polylactic Acid Nanocomposite Films

    PubMed Central

    Sullivan, Erin M.; Moon, Robert J.; Kalaitzidou, Kyriaki

    2015-01-01

    The focus of this study is to examine the effect of cellulose nanocrystals (CNC) on the properties of polylactic acid (PLA) films. The films are fabricated via melt compounding and melt fiber spinning followed by compression molding. Film fracture morphology, thermal properties, crystallization behavior, thermo-mechanical behavior, and mechanical behavior were determined as a function of CNC content using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, dynamic mechanical analysis, and tensile testing. Film crystallinity increases with increasing CNC content indicating CNC act as nucleating agents, promoting crystallization. Furthermore, the addition of CNC increased the film storage modulus and slightly broadened the glass transition region. PMID:28793701

  13. Material and Mechanical Characterizations for Braided Composite Pressure Vessels

    DTIC Science & Technology

    1990-05-01

    Effects on Mechanical Properties......... 16 2.3 Predictions of Hygrothermal Behavior of Braided Composites ....23 2.4 Summary... Behavior of Braided Composites 0 Predictions of the mechanical response of braided composites have not enjoyed the same plethora of attention given to...specific data for braided composite hygrothermomechanical behavior , broad conclusions developed from other studies may provide some insightful information

  14. Influence of compression parameters on mechanical behavior of mozzarella cheese.

    PubMed

    Fogaça, Davi Novaes Ladeia; da Silva, William Soares; Rodrigues, Luciano Brito

    2017-10-01

    Studies on the interaction between direction and degree of compression in the Texture Profile Analysis (TPA) of cheeses are limited. For this reason the present study aimed to evaluate the mechanical properties of Mozzarella cheese by TPA at different compression degrees (65, 75, and 85%) and directions (axes X, Y, and Z). Data obtained were compared in order to identify possible interaction between both factors. Compression direction did not affect any mechanical variable, or rather, the cheese had an isotropic behavior for TPA. Compression degree had a significant influence (p < 0.05) on TPA responses, excepting for chewiness TPA (N), which remained constant. Data from texture profile were adjusted to models to explain the mechanical behavior according to the compression degree used in the test. The isotropic behavior observed may be result of differences in production method of Mozzarella cheese especially on stretching of cheese mass. Texture Profile Analysis (TPA) is a technique largely used to assess the mechanical properties of food, particularly cheese. The precise choice of the instrumental test configuration is essential for achieving results that represent the material analyzed. The method of manufacturing is another factor that may directly influence the mechanical properties of food. This can be seen, for instance, in stretched curd cheese, such as Mozzarella. Knowledge on such mechanical properties is highly relevant for food industries due to the mechanical resistance in piling, pressing, manufacture of packages, and food transport, or to melting features presented by the food at high temperatures in preparation of several foods, such as pizzas, snacks, sandwiches, and appetizers. © 2016 Wiley Periodicals, Inc.

  15. Experimental Investigation of the Mechanical Behavior of a Filled Elastomer at Pressures Below 10 to the -6th Power Torr. Ph.D. Thesis - Va. Polytechnic Inst.

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.

    1972-01-01

    The mechanical behavior of a filled elastomer was studied with emphasis on understanding the vacuum-material interactions occurring, and to develop analytical techniques for predicting the vacuum behavior. The test results indicate that two separate mechanisms are involved in the observed property changes: the first controls the time response to applied stress; the second determines the initial internal state of the materials as the result of stresses. It is concluded that the mechanical property changes are attributable to changes in the relaxation processes occurring in the material. These changes are brought about by outgassing of water. Recommendations for future investigations are included.

  16. Opposite rheological properties of neuronal microcompartments predict axonal vulnerability in brain injury.

    PubMed

    Grevesse, Thomas; Dabiri, Borna E; Parker, Kevin Kit; Gabriele, Sylvain

    2015-03-30

    Although pathological changes in axonal morphology have emerged as important features of traumatic brain injury (TBI), the mechanical vulnerability of the axonal microcompartment relative to the cell body is not well understood. We hypothesized that soma and neurite microcompartments exhibit distinct mechanical behaviors, rendering axons more sensitive to a mechanical injury. In order to test this assumption, we combined protein micropatterns with magnetic tweezer rheology to probe the viscoelastic properties of neuronal microcompartments. Creep experiments revealed two opposite rheological behaviors within cortical neurons: the cell body was soft and characterized by a solid-like response, whereas the neurite compartment was stiffer and viscous-like. By using pharmacological agents, we demonstrated that the nucleus is responsible for the solid-like behavior and the stress-stiffening response of the soma, whereas neurofilaments have a predominant contribution in the viscous behavior of the neurite. Furthermore, we found that the neurite is a mechanosensitive compartment that becomes softer and adopts a pronounced viscous state on soft matrices. Together, these findings highlight the importance of the regionalization of mechanical and rigidity-sensing properties within neuron microcompartments in the preferential damage of axons during traumatic brain injury and into potential mechanisms of axonal outgrowth after injury.

  17. Opposite rheological properties of neuronal microcompartments predict axonal vulnerability in brain injury

    NASA Astrophysics Data System (ADS)

    Grevesse, Thomas; Dabiri, Borna E.; Parker, Kevin Kit; Gabriele, Sylvain

    2015-03-01

    Although pathological changes in axonal morphology have emerged as important features of traumatic brain injury (TBI), the mechanical vulnerability of the axonal microcompartment relative to the cell body is not well understood. We hypothesized that soma and neurite microcompartments exhibit distinct mechanical behaviors, rendering axons more sensitive to a mechanical injury. In order to test this assumption, we combined protein micropatterns with magnetic tweezer rheology to probe the viscoelastic properties of neuronal microcompartments. Creep experiments revealed two opposite rheological behaviors within cortical neurons: the cell body was soft and characterized by a solid-like response, whereas the neurite compartment was stiffer and viscous-like. By using pharmacological agents, we demonstrated that the nucleus is responsible for the solid-like behavior and the stress-stiffening response of the soma, whereas neurofilaments have a predominant contribution in the viscous behavior of the neurite. Furthermore, we found that the neurite is a mechanosensitive compartment that becomes softer and adopts a pronounced viscous state on soft matrices. Together, these findings highlight the importance of the regionalization of mechanical and rigidity-sensing properties within neuron microcompartments in the preferential damage of axons during traumatic brain injury and into potential mechanisms of axonal outgrowth after injury.

  18. Development of visible-light responsive and mechanically enhanced "smart" UCST interpenetrating network hydrogels.

    PubMed

    Xu, Yifei; Ghag, Onkar; Reimann, Morgan; Sitterle, Philip; Chatterjee, Prithwish; Nofen, Elizabeth; Yu, Hongyu; Jiang, Hanqing; Dai, Lenore L

    2017-12-20

    An interpenetrating polymer network (IPN), chlorophyllin-incorporated environmentally responsive hydrogel was synthesized and exhibited the following features: enhanced mechanical properties, upper critical solution temperature (UCST) swelling behavior, and promising visible-light responsiveness. Poor mechanical properties are known challenges for hydrogel-based materials. By forming an interpenetrating network between polyacrylamide (PAAm) and poly(acrylic acid) (PAAc) polymer networks, the mechanical properties of the synthesized IPN hydrogels were significantly improved compared to hydrogels made of a single network of each polymer. The formation of the interpenetrating network was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), the analysis of glass transition temperature, and a unique UCST responsive swelling behavior, which is in contrast to the more prevalent lower critical solution temperature (LCST) behaviour of environmentally responsive hydrogels. The visible-light responsiveness of the synthesized hydrogel also demonstrated a positive swelling behavior, and the effect of incorporating chlorophyllin as the chromophore unit was observed to reduce the average pore size and further enhance the mechanical properties of the hydrogel. This interpenetrating network system shows potential to serve as a new route in developing "smart" hydrogels using visible-light as a simple, inexpensive, and remotely controllable stimulus.

  19. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions

    PubMed Central

    Chen, Tao-Hsing; Tsai, Chih-Kai

    2015-01-01

    In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-Al-Ni metallic glasses were studied with X-ray diffraction (XRD) and differential scanning calorimeter. The mechanical property experiments and microstructural observations of Zr-Cu-Al-Ni metallic glasses under different strain rates ranging from 10−3 to 5.1 × 103 s−1 and at temperatures of 25 °C were investigated using compressive split-Hopkinson bar (SHPB) and an MTS tester. An in situ transmission electron microscope (TEM) nanoindenter was used to carry out compression tests and investigate the deformation behavior arising at nanopillars of the Zr-based metallic glass. The formation and interaction of shear band during the plastic deformation were investigated. Moreover, it was clearly apparent that the mechanical strength and ductility could be enhanced by impeding the penetration of shear bands with reinforced particles. PMID:28788034

  20. Production, characterization, and mechanical behavior of cementitious materials incorporating carbon nanofibers.

    DOT National Transportation Integrated Search

    2012-08-01

    Carbon nanotubes (CNTs) and carbon nanofirbers (CNFs) have excellent properties : (mechanical, electrical, magnetic, etc.), which can make them effective : nanoreinforcements for improving the properties of materials. The incorporation of : CNT/Fs in...

  1. Evolution of the Deformation Behavior of Sn-Rich Solders during Cyclic Fatigue

    NASA Astrophysics Data System (ADS)

    Wentlent, Luke Arthur

    Continuous developments in the electronics industry have provided a critical need for a quantitative, fundamental understanding of the behavior of SnAgCu (SAC) solders in both isothermal and thermal fatigue conditions. This study examines the damage behavior of Sn-based solders in a constant amplitude and variable amplitude environment. In addition, damage properties are correlated with crystal orientation and slip behavior. Select solder joints were continuously characterized and tested repeatedly in order to eliminate the joint to joint variation due to the anisotropy of beta-Sn. Characterization was partitioned into three different categories: effective properties and slip behavior, creep mechanisms and crystal morphology development, and atomic behavior and evolution. Active slip systems were correlated with measured properties. Characterization of the mechanical behavior was performed by the calculation and extrapolation of the elastic modulus, work, effective stiffness, Schmid factors, and time-dependent plasticity (creep). Electron microscopy based characterization methods included Scanning Electron Microscopy (SEM), Electron Backscattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM). Testing showed a clear evolution of the steady-state creep mechanism when the cycling amplitudes were varied, from dislocation controlled to diffusion controlled creep. Dislocation behavior was examined and shown to evolve differently in single amplitude vs. variable amplitude testing. Finally, the mechanism of the recrystallization behavior of the beta-Sn was observed. This work fills a gap in the literature, providing a systematic study which identifies how the damage behavior in Sn-alloys depends upon the previous damage. A link is made between the observed creep behavior and the dislocation observations, providing a unified picture. Information developed in this work lays a stepping stone to future fundamental analyses as well as clarifying aspects of the mechanistic behavior of Sn and Sn-based alloys.

  2. Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burch, Alexandra; Yeager, John; Bahr, David

    Assessing the mechanical behavior (elastic properties, plastic properties, and fracture phenomena) of molecular crystals is often complicated by the difficulty in preparing samples. Pharmaceuticals and energetic materials in particular are often used in composite structures or tablets, where the individual grains can strongly impact the solid behavior. Nanoindentation is a convenient method to experimentally assess these properties, and it is used here to demonstrate the similarity in the mechanical properties of two distinct systems: individual crystals of the explosive cyclotetramethylene tetranitramine (HMX) and the pharmaceutical idoxuridine were tested in their as-precipitated state, and the effective average modulus and hardness (whichmore » can be orientation dependent) were determined. Both exhibit a hardness of 1.0 GPa, with an effective reduced modulus of 25 and 23 GPa for the HMX and idoxuridine, respectively. They also exhibit similar yield point behavior. This indicates idoxuridine may be a suitable mechanical surrogate (or “mock”) for HMX. While the methodology to assess elastic and plastic properties was relatively insensitive to specific crystal orientation (i.e., a uniform distribution in properties was observed for all random crystals tested), the indentation-induced fracture properties appear to be much more sensitive to tip-crystal orientation, and an unloading slope analysis is used to demonstrate the need for further refinement in relating toughness to orientation in these materials with relatively complex slip systems and crystal structures. View Full-Text« less

  3. Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity

    DOE PAGES

    Burch, Alexandra; Yeager, John; Bahr, David

    2017-11-01

    Assessing the mechanical behavior (elastic properties, plastic properties, and fracture phenomena) of molecular crystals is often complicated by the difficulty in preparing samples. Pharmaceuticals and energetic materials in particular are often used in composite structures or tablets, where the individual grains can strongly impact the solid behavior. Nanoindentation is a convenient method to experimentally assess these properties, and it is used here to demonstrate the similarity in the mechanical properties of two distinct systems: individual crystals of the explosive cyclotetramethylene tetranitramine (HMX) and the pharmaceutical idoxuridine were tested in their as-precipitated state, and the effective average modulus and hardness (whichmore » can be orientation dependent) were determined. Both exhibit a hardness of 1.0 GPa, with an effective reduced modulus of 25 and 23 GPa for the HMX and idoxuridine, respectively. They also exhibit similar yield point behavior. This indicates idoxuridine may be a suitable mechanical surrogate (or “mock”) for HMX. While the methodology to assess elastic and plastic properties was relatively insensitive to specific crystal orientation (i.e., a uniform distribution in properties was observed for all random crystals tested), the indentation-induced fracture properties appear to be much more sensitive to tip-crystal orientation, and an unloading slope analysis is used to demonstrate the need for further refinement in relating toughness to orientation in these materials with relatively complex slip systems and crystal structures. View Full-Text« less

  4. Fibrin mechanical properties and their structural origins.

    PubMed

    Litvinov, Rustem I; Weisel, John W

    2017-07-01

    Fibrin is a protein polymer that is essential for hemostasis and thrombosis, wound healing, and several other biological functions and pathological conditions that involve extracellular matrix. In addition to molecular and cellular interactions, fibrin mechanics has been recently shown to underlie clot behavior in the highly dynamic intra- and extravascular environments. Fibrin has both elastic and viscous properties. Perhaps the most remarkable rheological feature of the fibrin network is an extremely high elasticity and stability despite very low protein content. Another important mechanical property that is common to many filamentous protein polymers but not other polymers is stiffening occurring in response to shear, tension, or compression. New data has begun to provide a structural basis for the unique mechanical behavior of fibrin that originates from its complex multi-scale hierarchical structure. The mechanical behavior of the whole fibrin gel is governed largely by the properties of single fibers and their ensembles, including changes in fiber orientation, stretching, bending, and buckling. The properties of individual fibrin fibers are determined by the number and packing arrangements of double-stranded half-staggered protofibrils, which still remain poorly understood. It has also been proposed that forced unfolding of sub-molecular structures, including elongation of flexible and relatively unstructured portions of fibrin molecules, can contribute to fibrin deformations. In spite of a great increase in our knowledge of the structural mechanics of fibrin, much about the mechanisms of fibrin's biological functions remains unknown. Fibrin deformability is not only an essential part of the biomechanics of hemostasis and thrombosis, but also a rapidly developing field of bioengineering that uses fibrin as a versatile biomaterial with exceptional and tunable biochemical and mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Correlation between mechanical behavior of protein films at the air/water interface and intrinsic stability of protein molecules.

    PubMed

    Martin, Anneke H; Cohen Stuart, Martien A; Bos, Martin A; van Vliet, Ton

    2005-04-26

    The relation between mechanical film properties of various adsorbed protein layers at the air/water interface and intrinsic stability of the corresponding proteins is discussed. Mechanical film properties were determined by surface deformation in shear and dilation. In shear, fracture stress, sigma(f), and fracture strain, gamma(f), were determined, as well as the relaxation behavior after macroscopic fracture. The dilatational measurements were performed in a Langmuir trough equipped with an infra-red reflection absorption spectroscopy (IRRAS) accessory. During compression and relaxation of the surface, the surface pressure, Pi, and adsorbed amount, Gamma (determined from the IRRAS spectra), were determined simultaneously. In addition, IRRAS spectra revealed information on conformational changes in terms of secondary structure. Possible correlations between macroscopic film properties and intrinsic stability of the proteins were determined and discussed in terms of molecular dimensions of single proteins and interfacial protein films. Molecular properties involved the area per protein molecule at Pi approximately 0 mN/m (A(0)), A(0)/M (M = molecular weight) and the maximum slope of the Pi-Gamma curves (dPi/dGamma). The differences observed in mechanical properties and relaxation behavior indicate that the behavior of a protein film subjected to large deformation may vary widely from predominantly viscous (yielding) to more elastic (fracture). This transition is also observed in gradual changes in A(0)/M. It appeared that in general protein layers with high A(0)/M have a high gamma(f) and behave more fluidlike, whereas solidlike behavior is characterized by low A(0)/M and low gamma(f). Additionally, proteins with a low A(0)/M value have a low adaptability in changing their conformation upon adsorption at the air/water interface. Both results support the conclusion that the hardness (internal cohesion) of protein molecules determines predominantly the mechanical behavior of adsorbed protein layers.

  6. Mechanical response of collagen molecule under hydrostatic compression.

    PubMed

    Saini, Karanvir; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Passive and active mechanical properties of biotemplated ceramics revisited.

    PubMed

    Van Opdenbosch, Daniel; Fritz-Popovski, Gerhard; Plank, Johann; Zollfrank, Cordt; Paris, Oskar

    2016-10-13

    Living nature and human technology apply different principles to create hard, strong and tough materials. In this review, we compare and discuss prominent aspects of these alternative strategies, and demonstrate for selected examples that nanoscale-precision biotemplating is able to produce uncommon mechanical properties as well as actuating behavior, resembling to some extent the properties of the original natural templates. We present and discuss mechanical testing data showing for the first time that nanometer-precision biotemplating can lead to porous ceramic materials with deformation characteristics commonly associated with either biological or highly advanced technical materials. We also review recent findings on the relation between hierarchical structuring and humidity-induced directional motion. Finally, we discuss to which extent the observed behavior is in agreement with previous results and theories on the mechanical properties of multiscale hierarchical materials, as well as studies of highly disperse technical materials, together with an outlook for further lines of investigation.

  8. The mechanical properties of ionic polymer-metal composites

    NASA Astrophysics Data System (ADS)

    Park, Il-Seok; Kim, Sang-Mun; Kim, Doyeon; Kim, Kwang J.

    2007-04-01

    In this study, we investigated the mechanical properties of various type ionic polymer-metal composites (IPMCs) and Pt, Au, Pd, and Pt electroded ionic liquid (IL-Pt) IPMCs, by testing tensile modulus and dynamic mechanical behavior. The SEM was utilized to investigate the characteristics of the doped electroding layer, and the DSC was probed in order to look into the thermal behavior of various types of IPMCs. Au IPMCs, having a 5~7 μm doped layer and nano-sized Au particles (ca. 10 nm), showed the highest tensile strength (56 MPa) and modulus (602 MPa) in a dried condition. In a thermal behavior, Au IPMC has the highest T g (153°C) and T m (263°C) in both the DMA and DSC results. The fracture behavior of various types IPMCs followed base material's behavior, Nafion TM, which is represented as the semicrystalline polymer characteristic.

  9. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  10. Finite element 3D modeling of mechanical behavior of mineralized collagen microfibrils.

    PubMed

    Barkaoui, Abdelwahed; Hambli, Ridha

    2011-01-01

    The aim of this work is to develop a 3D finite elements model to study the nanomechanical behavior of mineralized collagen microfibrils, which consists of three phases, (i) collagen phase formed by five tropocollagen (TC) molecules linked together with cross-links, (ii) a mineral phase (Hydroxyapatite), and (iii) impure mineral phase, and to investigate the important role of individual properties of every constituent. The mechanical and geometric properties (TC molecule diameter) of both tropocollagen and mineral were taken into consideration as well as cross-links, which was represented by spring elements with adjusted properties based on experimental data. In this paper an equivalent homogenized model was developed to assess the whole microfibril mechanical properties (Young's modulus and Poisson's ratio) under varying mechanical properties of each phase. In this study, both equivalent Young's modulus and Poisson's ratio, which were expressed as functions of Young's modulus of each phase, were obtained under tensile load with symmetric and periodic boundary conditions.

  11. Rapid shape memory TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin hydrogels with enhanced mechanical strength.

    PubMed

    Li, Nan; Chen, Wei; Chen, Guangxue; Tian, Junfei

    2017-09-01

    TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin shape memory hydrogels were successfully fabricated through a facile in-situ free-radical polymerization method, and double network was formed by chemically cross-linked polyacrylamide (PAM) network and physically cross-linked gelatin network. TEMPO-oxidized cellulose nanofibers (TOCNs) were introduced to improve the mechanical properties of the hydrogel. The structure, shape memory behaviors and mechanical properties of the resulting composite gels with varied gel compositions were investigated. The results obtained from those different studies revealed that TOCNs, gelatin, and PAM could mix with each other homogeneously. Due to the thermoreversible nature of the gelatin network, the composite hydrogels exhibited attractive thermo-induced shape memory properties. In addition, good mechanical properties (strength >200kPa, strain >650%) were achieved. Such composite hydrogels with good shape memory behavior and enhanced mechanical strength would be an attractive candidate for a wide variety of applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Microstructural and Morphological Factors Affecting Uncertainty in Small Scale Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Maughan, Michael R.

    If materials are to be developed from the ground up, the process will be dependent upon accurate and well-defined models of material behavior. These models can be closed-form solutions developed from first principles, simulations, or empirically derived equations, among others. Material behavior at the mesoscale is in general well understood, having had several centuries of study. However, behavior at the micro or nanoscale still requires characterization. Understanding the collective influence of the microstructure on the bulk material, for example with models like the Hall-Petch relation, has advanced our ability to manipulate the material to our advantage. We now have the ability to study not only the structure of the material, but also the material behavior and properties at the nanoscale. Understanding this behavior is critical to developing a framework for interpreting and utilizing these properties in materials design. This research aims to improve the fundamental understanding of the mechanical performance of materials and the subsequent variation in measured properties. The literature reports widely varying material properties such as hardness, elastic modulus, and yield point when measured at the nanoscale. Proposed variation mechanisms in these properties include surface preparation, error in measurement, heterogeneous dislocation density and distribution, crystal orientation, surface oxide film fracture, and others. Among other things, this work shows that these sources of variation can be determined and quantified, and that this information can be utilized as a characterization and/or predictive tool. The main goals of this work are to 1) continue basic research on sources of variation in the nanoscale properties of materials, specifically hardness and modulus in crystalline and glassy solids, 2) study the abrupt transition from elastic to plastic material behavior known as pop-in and resolve the problem of pseudo-elastic behavior prior to plasticity, and 3) integrate the sources of and propagate the variation into materials simulations, 4) study the influence of dislocation processes on indentation size effects, and 5) apply this learning to difficult to measure or interpret materials applications.

  13. Mechanical Properties of Additively Manufactured Thick Honeycombs.

    PubMed

    Hedayati, Reza; Sadighi, Mojtaba; Mohammadi Aghdam, Mohammad; Zadpoor, Amir Abbas

    2016-07-23

    Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA) using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson's ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions.

  14. Contagious behavior: an alternative approach to mirror-like phenomena.

    PubMed

    Provine, Robert R

    2014-04-01

    Contagious behaviors such as yawning and itching/scratching have mirror-like properties and clearly defined stimulus and motor parameters; they are also relatively easy to study and should be part of the debate about mirror neurons and the neurological mechanisms of social behavior. The broadly tuned, multimodal stimuli of contagious behavior challenge present accounts of mirror mechanisms that focus on specific, mirrored acts.

  15. Nanoscale Mechanical Stimulation Method for Quantifying C. elegans Mechanosensory Behavior and Memory.

    PubMed

    Sugi, Takuma; Okumura, Etsuko; Kiso, Kaori; Igarashi, Ryuji

    2016-01-01

    Withdrawal escape response of C. elegans to nonlocalized vibration is a useful behavioral paradigm to examine mechanisms underlying mechanosensory behavior and its memory-dependent change. However, there are very few methods for investigating the degree of vibration frequency, amplitude and duration needed to induce behavior and memory. Here, we establish a new system to quantify C. elegans mechanosensory behavior and memory using a piezoelectric sheet speaker. In the system, we can flexibly change the vibration properties at a nanoscale displacement level and quantify behavioral responses under each vibration property. This system is an economic setup and easily replicated in other laboratories. By using the system, we clearly detected withdrawal escape responses and confirmed habituation memory. This system will facilitate the understanding of physiological aspects of C. elegans mechanosensory behavior in the future.

  16. Effects of polar solvents on the mechanical behavior of fish scales.

    PubMed

    Murcia, Sandra; Li, Guihua; Yahyazadehfar, Mobin; Sasser, Mikaela; Ossa, Alex; Arola, D

    2016-04-01

    Fish scales are unique structural materials that serve as a form of natural armor. In this investigation the mechanical behavior of scales from the Cyprinus carpio was evaluated after exposure to a polar solvent. Uniaxial tensile and tear tests were conducted on specimens prepared from the scales of multiple fish extracted from near the head, middle and tail regions, and after exposure to ethanol for periods from 0 to 24h. Submersion in ethanol caused instantaneous changes in the tensile properties regardless of anatomical site, with increases in the elastic modulus, strength and modulus of toughness exceeding 100%. The largest increase in properties overall occurred in the elastic modulus of scales from the tail region and exceeded 200%. Although ethanol treatment had significant effect on the tensile properties, it had limited influence on the tear resistance. The contribution of ethanol to the mechanical behavior appears to be derived from an increase in the degree of interpeptide hydrogen-bonding of the collagen molecules. Spatial variations in the effects of ethanol exposure on the mechanical behavior arise from the differences in degree of mineralization and lower mineral content in scales of the tail region. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Mechanical analysis of carbon fiber reinforced shape memory polymer composite for self-deployable structure in space environment

    NASA Astrophysics Data System (ADS)

    Hong, Seok Bin; Ahn, Yong San; Jang, Joon Hyeok; Kim, Jin-Gyun; Goo, Nam Seo; Yu, Woong-Ryeol

    2016-04-01

    Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Reinforcements as carbon fiber had been used for making shape memory polymer composite (CF-SMPC). This study investigated a possibility of designing self-deployable structures in harsh space condition using CF-SMPCs and analyzed their shape memory behaviors with constitutive equation model.CF-SMPCs were prepared using woven carbon fabrics and a thermoset epoxy based SMP to obtain their basic mechanical properties including actuation in harsh environment. The mechanical and shape memory properties of SMP and CF-SMPCs were characterized using dynamic mechanical analysis (DMA) and universal tensile machine (UTM) with an environmental chamber. The mechanical properties such as flexural strength and tensile strength of SMP and CF-SMPC were measured with simple tensile/bending test and time dependent shape memory behavior was characterized with designed shape memory bending test. For mechanical analysis of CF-SMPCs, a 3D constitutive equation of SMP, which had been developed using multiplicative decomposition of the deformation gradient and shape memory strains, was used with material parameters determined from CF-SMPCs. Carbon fibers in composites reinforced tensile and flexural strength of SMP and acted as strong elastic springs in rheology based equation models. The actuation behavior of SMP matrix and CF-SMPCs was then simulated as 3D shape memory bending cases. Fiber bundle property was imbued with shell model for more precise analysis and it would be used for prediction of deploying behavior in self-deployable hinge structure.

  18. The Mechanical Properties of Nanowires

    PubMed Central

    Wang, Shiliang; Shan, Zhiwei

    2017-01-01

    Applications of nanowires into future generation nanodevices require a complete understanding of the mechanical properties of the nanowires. A great research effort has been made in the past two decades to understand the deformation physics and mechanical behaviors of nanowires, and to interpret the discrepancies between experimental measurements and theoretical predictions. This review focused on the characterization and understanding of the mechanical properties of nanowires, including elasticity, plasticity, anelasticity and strength. As the results from the previous literature in this area appear inconsistent, a critical evaluation of the characterization techniques and methodologies were presented. In particular, the size effects of nanowires on the mechanical properties and their deformation mechanisms were discussed. PMID:28435775

  19. Carbon nanotubes reinforced chitosan films: mechanical properties and cell response of a novel biomaterial for cardiovascular tissue engineering.

    PubMed

    Kroustalli, A; Zisimopoulou, A E; Koch, S; Rongen, L; Deligianni, D; Diamantouros, S; Athanassiou, G; Kokozidou, M; Mavrilas, D; Jockenhoevel, S

    2013-12-01

    Carbon nanotubes have been proposed as fillers to reinforce polymeric biomaterials for the strengthening of their structural integrity to achieve better biomechanical properties. In this study, a new polymeric composite material was introduced by incorporating various low concentrations of multiwalled carbon nanotubes (MWCNTs) into chitosan (CS), aiming at achieving a novel composite biomaterial with superior mechanical and biological properties compared to neat CS, in order to be used in cardiovascular tissue engineering applications. Both mechanical and biological characteristics in contact with the two relevant cell types (endothelial cells and vascular myofibroblasts) were studied. Regarding the mechanical behavior of MWCNT reinforced CS (MWCNT/CS), 5 and 10 % concentrations of MWCNTs enhanced the mechanical behavior of CS, with that of 5 % exhibiting a superior mechanical strength compared to 10 % concentration and neat CS. Regarding biological properties, MWCNT/CS best supported proliferation of endothelial and myofibroblast cells, MWCNTs and MWCNT/CS caused no apoptosis and were not toxic of the examined cell types. Conclusively, the new material could be suitable for tissue engineering (TE) and particularly for cardiovascular TE applications.

  20. Processing and Properties of Silicon Carbide Reinforced Reaction Bonded Silicon Nitride Composites

    DTIC Science & Technology

    1992-11-30

    work as well as of polymer derived and composite parts will be discussed. 3. Mechanical Behavior of a Continuous SiC Fiber Reinforced RBSN, S.V...Silicon carbide paniculate composites exhibited improved fracture toughnesses and evidence of R-Curve behavior. Composites made with SiC (w...i£L LIST OF TABLES Page No. 1. Summary of mechanical properties measured for RBSN and RBSN/ SiC 7 composites 2. Summary of characteristics for

  1. The mechanisms of plastic strain accommodation and post critical behavior of heterogeneous reactive composites subject to dynamic loading

    NASA Astrophysics Data System (ADS)

    Olney, Karl L.

    The dynamic behavior of granular/porous and laminate reactive materials is of interest due to their practical applications; reactive structural components, reactive fragments, etc. The mesostructural properties control meso- and macro-scale dynamic behavior of these heterogeneous composites including the behavior during the post-critical stage of deformation. They heavily influence mechanisms of fragment generation and the in situ development of local hot spots, which act as sites of ignition in these materials. This dissertation concentrates on understanding the mechanisms of plastic strain accommodation in two representative reactive material systems with different heterogeneous mesostructrues: Aluminum-Tungsten granular/porous and Nickel-Aluminum laminate composites. The main focus is on the interpretation of results of the following dynamic experiments conducted at different strain and strain rates: drop weight tests, explosively expanded ring experiments, and explosively collapsed thick walled cylinder experiments. Due to the natural limitations in the evaluation of the mesoscale behavior of these materials experimentally and the large variation in the size scales between the mesostructural level and the sample, it is extremely difficult, if not impossible, to examine the mesoscale behavior in situ. Therefore, numerical simulations of the corresponding experiments are used as the main tool to explore material behavior at the mesoscale. Numerical models were developed to elucidate the mechanisms of plastic strain accommodation and post critical behavior in these heterogeneous composites subjected to dynamic loading. These simulations were able to reproduce the qualitative and quantitative features that were observable in the experiments and provided insight into the evolution of the mechanisms of plastic strain accommodation and post critical behavior in these materials with complex mesotructure. Additionally, these simulations provided a framework to examine the influence of various mesoscale properties such as the bonding of interfaces, the role of material properties, and the influence of mesoscale geometry. The results of this research are helpful in the design of material mesotructures conducive to the desirable behavior under dynamic loading.

  2. Mechanical properties, morphology, and hydrolytic degradation behavior of polylactic acid / natural rubber blends

    NASA Astrophysics Data System (ADS)

    Buys, Y. F.; Aznan, A. N. A.; Anuar, H.

    2018-01-01

    Due to its biodegradability and renewability, polylactic acid (PLA) has been receiving enormous attention as a potential candidate to replace petroleum based polymers. However, PLA has limitation due to its inherent brittleness. In order to overcome this limitation, blending PLA with elastomeric materials such as natural rubber (NR) are commonly reported. In previous, several researches on PLA/NR blend had been reported, with most of them evaluated the mechanical properties. On the other hand, study of degradation behavior is significance of importance, as controlling materials degradation is required in some applications. This research studied the effect of blend composition on mechanical properties, morphology development, and hydrolytic degradation behavior of PLA/NR blends. Various compositions of PLA/NR blends were prepared by melt blending technique. Tensile test and impact test of the blends were performed to evaluate the mechanical properties. Addition of NR improved the elongation at break and impact strength of the blends, but reduced the tensile strength and stiffness of the specimens. Dynamic Mechanical Analysis (DMA) measurements of the blends displayed two peaks at temperature -70˚C which corresponded to T g of NR and 65˚C which corresponded to T g of PLA. Field Emission Scanning Electron Microscopy (FE-SEM) micrograph of 70/30 PLA/NR specimen also showed two distinct phases, which lead to indication that PLA/NR blends are immiscible. Hydrolytic degradation behavior was evaluated by measuring the remaining weight of the samples immersed in sodium hydroxide solution for a predetermined times. It was shown that the degradation behavior of PLA/NR blends is affected by composition of the blends, with 100 PLA and 70/30 PLA/NR blend showed the fastest degradation rate and 100 NR displayed the slowest one.

  3. Metal matrix composite micromechanics: In-situ behavior influence on composite properties

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1989-01-01

    Recent efforts in computational mechanics methods for simulating the nonlinear behavior of metal matrix composites have culminated in the implementation of the Metal Matrix Composite Analyzer (METCAN) computer code. In METCAN material nonlinearity is treated at the constituent (fiber, matrix, and interphase) level where the current material model describes a time-temperature-stress dependency of the constituent properties in a material behavior space. The composite properties are synthesized from the constituent instantaneous properties by virtue of composite micromechanics and macromechanics models. The behavior of metal matrix composites depends on fabrication process variables, in situ fiber and matrix properties, bonding between the fiber and matrix, and/or the properties of an interphase between the fiber and matrix. Specifically, the influence of in situ matrix strength and the interphase degradation on the unidirectional composite stress-strain behavior is examined. These types of studies provide insight into micromechanical behavior that may be helpful in resolving discrepancies between experimentally observed composite behavior and predicted response.

  4. Size-dependent fracture behavior of silver nanowires.

    PubMed

    Cao, Ke; Han, Ying; Zhang, Hongti; Gao, Libo; Yang, Hongwei; Chen, Jialin; Li, Yuxiu; Lu, Yang

    2018-07-20

    Silver (Ag) nanowires have great potential to be used in the flexible electronics industry for their applications in flexible, transparent conductors due to high conductivity and light reflectivity. Those applications always involve mechanical loading and deformations, which requires an in-depth understanding of their mechanical behavior and performance under loadings. However, current understanding on the mechanical properties of Ag nanowires is limited, especially on their size-dependent fracture behavior. In this work, mechanical properties of Ag nanowires with diameters ranging from 50 to 300 nm were systematically studied by in situ TEM tensile testing for the first time. The size effect was clearly found, with the increasing of the diameter of Ag nanowires, the ultimate tensile stress decreased. More importantly, the fracture behavior of Ag nanowire was studied and a brittle-to-ductile transition in fracture behavior was observed at the diameters around 100 nm which could be attributed to the dislocation activities within the geometry confinement. This work could give insights for understanding nanosized Ag wires and the design of Ag nanowire-based flexible devices and touchable panels.

  5. Size-dependent fracture behavior of silver nanowires

    NASA Astrophysics Data System (ADS)

    Cao, Ke; Han, Ying; Zhang, Hongti; Gao, Libo; Yang, Hongwei; Chen, Jialin; Li, Yuxiu; Lu, Yang

    2018-07-01

    Silver (Ag) nanowires have great potential to be used in the flexible electronics industry for their applications in flexible, transparent conductors due to high conductivity and light reflectivity. Those applications always involve mechanical loading and deformations, which requires an in-depth understanding of their mechanical behavior and performance under loadings. However, current understanding on the mechanical properties of Ag nanowires is limited, especially on their size-dependent fracture behavior. In this work, mechanical properties of Ag nanowires with diameters ranging from 50 to 300 nm were systematically studied by in situ TEM tensile testing for the first time. The size effect was clearly found, with the increasing of the diameter of Ag nanowires, the ultimate tensile stress decreased. More importantly, the fracture behavior of Ag nanowire was studied and a brittle-to-ductile transition in fracture behavior was observed at the diameters around 100 nm which could be attributed to the dislocation activities within the geometry confinement. This work could give insights for understanding nanosized Ag wires and the design of Ag nanowire-based flexible devices and touchable panels.

  6. Designing with figer-reinforced plastics (planar random composites)

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1982-01-01

    The use of composite mechanics to predict the hygrothermomechanical behavior of planar random composites (PRC) is reviewed and described. These composites are usually made from chopped fiber reinforced resins (thermoplastics or thermosets). The hygrothermomechanical behavior includes mechanical properties, physical properties, thermal properties, fracture toughness, creep and creep rupture. Properties are presented in graphical form with sample calculations to illustrate their use. Concepts such as directional reinforcement and strip hybrids are described. Typical data that can be used for preliminary design for various PRCs are included. Several resins and molding compounds used to make PRCs are described briefly. Pertinent references are cited that cover analysis and design methods, materials, data, fabrication procedures and applications.

  7. Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer

    DOE PAGES

    Li, Yuzhan; Pruitt, Cole; Rios, Orlando; ...

    2015-04-10

    Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less

  8. Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuzhan; Pruitt, Cole; Rios, Orlando

    Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less

  9. Hippocampal mechanisms for the context-dependent retrieval of episodes

    PubMed Central

    Hasselmo, Michael E.; Eichenbaum, Howard B.

    2008-01-01

    Behaviors ranging from delivering newspapers to waiting tables depend on remembering previous episodes to avoid incorrect repetition. Physiologically, this requires mechanisms for long-term storage and selective retrieval of episodes based on time of occurrence, despite variable intervals and similarity of events in a familiar environment. Here, this process has been modeled based on physiological properties of the hippocampal formation, including mechanisms for sustained activity in entorhinal cortex and theta rhythm oscillations in hippocampal subregions. The model simulates the context-sensitive firing properties of hippocampal neurons including trial specific firing during spatial alternation and trial by trial changes in theta phase precession on a linear track. This activity is used to guide behavior, and lesions of the hippocampal network impair memory-guided behavior. The model links data at the cellular level to behavior at the systems level, describing a physiologically plausible mechanism for the brain to recall a given episode which occurred at a specific place and time. PMID:16263240

  10. Analysis of the mechanical behavior of single wall carbon nanotubes by a modified molecular structural mechanics model incorporating an advanced chemical force field

    NASA Astrophysics Data System (ADS)

    Eberhardt, Oliver; Wallmersperger, Thomas

    2018-03-01

    The outstanding properties of carbon nanotubes (CNTs) keep attracting the attention of researchers from different fields. CNTs are promising candidates for applications e.g. in lightweight construction but also in electronics, medicine and many more. The basis for the realization of the manifold applications is a detailed knowledge of the material properties of the carbon nanotubes. In particular for applications in lightweight constructions or in composites, the knowledge of the mechanical behavior of the CNTs is of vital interest. Hence, a lot of effort is put into the experimental and theoretical determination of the mechanical material properties of CNTs. Due to their small size, special techniques have to be applied. In this research, a modified molecular structural mechanics model for the numerical determination of the mechanical behavior of carbon nanotubes is presented. It uses an advanced approach for the geometrical representation of the CNT structure while the covalent bonds in the CNTs are represented by beam elements. Furthermore, the model is specifically designed to overcome major drawbacks in existing molecular structural mechanics models. This includes energetic consistency with the underlying chemical force field. The model is developed further to enable the application of a more advanced chemical force field representation. The developed model is able to predict, inter alia, the lateral and radial stiffness properties of the CNTs. The results for the lateral stiffness are given and discussed in order to emphasize the progress made with the presented approach.

  11. A Comparison of the Quasi-static Mechanical and Nonlinear Viscoelastic Properties of the Human Semitendinosus and Gracilis Tendons

    PubMed Central

    Abramowitch, Steven D.; Zhang, Xiaoyan; Curran, Molly; Kilger, Robert

    2010-01-01

    Background Over fifty-percent of anterior cruciate ligament reconstructions are performed using semitendinosus and gracilis tendon autografts. Despite their increased use, there remains little quantitative data on their mechanical behavior. Therefore, the objective of this study was to investigate the quasi-static mechanical and nonlinear viscoelastic properties of human semitendinosus and gracilis tendons, as well as the variation of these properties along their length. Methods Specimens were subjected to a series of uniaxial tensile tests: one-hour static stress-relaxation test, 30-cycle cyclic stress-relaxation test and load to failure test. To describe the nonlinear viscoelastic behavior, the quasi-linear viscoelastic theory was utilized to model data from the static stress relaxation experiment. Findings The constants describing the viscoelastic behavior were similar between the proximal and distal halves of the gracilis tendon. The proximal half of the semitendinosus tendon, however, had a greater viscous response than its distal half, which was also significantly higher than the proximal gracilis tendon. In terms of the quasi-static mechanical properties, the properties were similar between the proximal and distal halves of the semitendinosus tendon. However, the distal gracilis tendon showed a significantly higher tangent modulus and ultimate stress compared to its proximal half, which was also significantly higher than the distal semitendinosus tendon. Interpretation The results of this study demonstrate differences between the semitendinosus and gracilis tendons in terms of their quasi-static mechanical and nonlinear viscoelastic properties. These results are important for establishing surgical preconditioning protocols and graft selection. PMID:20092917

  12. Characterization of the anisotropic mechanical behavior of human abdominal wall connective tissues.

    PubMed

    Astruc, Laure; De Meulaere, Maurice; Witz, Jean-François; Nováček, Vit; Turquier, Frédéric; Hoc, Thierry; Brieu, Mathias

    2018-06-01

    Abdominal wall sheathing tissues are commonly involved in hernia formation. However, there is very limited work studying mechanics of all tissues from the same donor which prevents a complete understanding of the abdominal wall behavior and the differences in these tissues. The aim of this study was to investigate the differences between the mechanical properties of the linea alba and the anterior and posterior rectus sheaths from a macroscopic point of view. Eight full-thickness human anterior abdominal walls of both genders were collected and longitudinal and transverse samples were harvested from the three sheathing connective tissues. The total of 398 uniaxial tensile tests was conducted and the mechanical characteristics of the behavior (tangent rigidities for small and large deformations) were determined. Statistical comparisons highlighted heterogeneity and non-linearity in behavior of the three tissues under both small and large deformations. High anisotropy was observed under small and large deformations with higher stress in the transverse direction. Variabilities in the mechanical properties of the linea alba according to the gender and location were also identified. Finally, data dispersion correlated with microstructure revealed that macroscopic characterization is not sufficient to fully describe behavior. Microstructure consideration is needed. These results provide a better understanding of the mechanical behavior of the abdominal wall sheathing tissues as well as the directions for microstructure-based constitutive model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Mechanical Properties of Additively Manufactured Thick Honeycombs

    PubMed Central

    Hedayati, Reza; Sadighi, Mojtaba; Mohammadi Aghdam, Mohammad; Zadpoor, Amir Abbas

    2016-01-01

    Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA) using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions. PMID:28773735

  14. Mechanical property characterization of intraply hybrid composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1979-01-01

    An investigation of the mechanical properties of intraply hybrids made from graphite fiber/epoxy matrix hybridized with secondary S-glass or Kevlar 49 fiber composites is presented. The specimen stress-strain behavior was determined, showing that mechanical properties of intraply hybrid composites can be measured with available methods such as the ten-degree off-axis test for intralaminar shear, and conventional tests for tensile, flexure, and Izod impact properties. The results also showed that combinations of high modulus graphite/S-glass/epoxy matrix composites exist which yield intraply hybrid laminates with the best 'balanced' properties, and that the translation efficiency of mechanical properties from the constituent composites to intraply hybrids may be assessed with a simple equation.

  15. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale

    NASA Astrophysics Data System (ADS)

    Semnani, S. J.; White, J. A.; Borja, R. I.

    2014-12-01

    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers, 2002.

  16. Contact stiffness and damping of liquid films in dynamic atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Rong-Guang; Leng, Yongsheng, E-mail: leng@gwu.edu

    2016-04-21

    The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayermore » distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film.« less

  17. Studying physical properties of deformed intact and fractured rocks by micro-scale hydro-mechanical-seismicity model

    NASA Astrophysics Data System (ADS)

    Raziperchikolaee, Samin

    The pore pressure variation in an underground formation during hydraulic stimulation of low permeability formations or CO2 sequestration into saline aquifers can induce microseismicity due to fracture generation or pre-existing fracture activation. While the analysis of microseismic data mainly focuses on mapping the location of fractures, the seismic waves generated by the microseismic events also contain information for understanding of fracture mechanisms based on microseismic source analysis. We developed a micro-scale geomechanics, fluid-flow and seismic model that can predict transport and seismic source behavior during rock failure. This model features the incorporation of microseismic source analysis in fractured and intact rock transport properties during possible rock damage and failure. The modeling method considers comprehensive grains and cements interaction through a bonded-particle-model. As a result of grain deformation and microcrack development in the rock sample, forces and displacements in the grains involved in the bond breakage are measured to determine seismic moment tensor. In addition, geometric description of the complex pore structure is regenerated to predict fluid flow behavior of fractured samples. Numerical experiments are conducted for different intact and fractured digital rock samples, representing various mechanical behaviors of rocks and fracture surface properties, to consider their roles on seismic and transport properties of rocks during deformation. Studying rock deformation in detail provides an opportunity to understand the relationship between source mechanism of microseismic events and transport properties of damaged rocks to have a better characterizing of fluid flow behavior in subsurface formations.

  18. Non-linear mechanical behavior of a sintered material for braking application using digital image correlation

    NASA Astrophysics Data System (ADS)

    Mann, Ruddy; Magnier, Vincent; Serrano-Munoz, Itziar; Brunel, Jean-Francois; Brunel, Florent; Dufrenoy, Philippe; Henrion, Michele

    2017-12-01

    Friction materials for braking applications are complex composites made of many components to ensure the various performances required (friction coefficient level, low wear, mechanical strength, thermal resistance, etc.). The material is developed empirically by a trial and error approach. With the solicitation, the material evolves and probably also its properties. In the literature, the mechanical behavior of such materials is generally considered as linear elastic and independent of the loading history. This paper describes a methodology to characterize the mechanical behavior of such a heterogeneous material in order to investigate its non-linear mechanical behavior. Results from mechanical tests are implemented into material laws for numerical simulations. Thanks to the instrumentation, some links with the microstructure can also be proposed. The material is made of a metallic matrix embedding graphite and ceramic particles and is manufactured by sintering. It is used for dry friction applications such as high-energy brake for trains, cars and motorcycles. Compression tests are done with digital image correlation to measure full-filled displacement. It allows to calculate strain fields with enough resolution to identify the material heterogeneity and the role of some of the components of the formulation. A behavior model of the material with plasticity and damage is proposed to simulate the non-linear mechanical behavior and is implemented in an FEM code. Results of mechanical test simulations are compared with two types of experiments showing good agreement. This method thus makes it possible to determine mechanical properties at a virgin state but is extensible for characterizing a material having been submitted to braking solicitations.

  19. Striatal fast-spiking interneurons selectively modulate circuit output and are required for habitual behavior

    PubMed Central

    O'Hare, Justin K; Li, Haofang; Kim, Namsoo; Gaidis, Erin; Ade, Kristen; Beck, Jeff; Yin, Henry

    2017-01-01

    Habit formation is a behavioral adaptation that automates routine actions. Habitual behavior correlates with broad reconfigurations of dorsolateral striatal (DLS) circuit properties that increase gain and shift pathway timing. The mechanism(s) for these circuit adaptations are unknown and could be responsible for habitual behavior. Here we find that a single class of interneuron, fast-spiking interneurons (FSIs), modulates all of these habit-predictive properties. Consistent with a role in habits, FSIs are more excitable in habitual mice compared to goal-directed and acute chemogenetic inhibition of FSIs in DLS prevents the expression of habitual lever pressing. In vivo recordings further reveal a previously unappreciated selective modulation of SPNs based on their firing patterns; FSIs inhibit most SPNs but paradoxically promote the activity of a subset displaying high fractions of gamma-frequency spiking. These results establish a microcircuit mechanism for habits and provide a new example of how interneurons mediate experience-dependent behavior. PMID:28871960

  20. Comparison of mechanical properties for several electrical spring contact alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordstrom, Terry V.

    Work was conducted to determine whether beryllium-nickel alloy 440 had mechanical properties which made it suitable as a substitute for the presently used precious metal contact alloys Paliney 7 and Neyoro G, in certain electrical contact applications. Possible areas of applicability for the alloy were where extremely low contact resistance was not necessary or in components encountering elevated temperatures above those presently seen in weapons applications. Evaluation of the alloy involved three major experimental areas: 1) measurement of the room temperature microplastic (epsilon approximately 10/sup -6/) and macroplastic (epsilon approximately 10/sup -3/) behavior of alloy 440 in various age hardeningmore » conditions, 2) determination of applied stress effects on stress relaxation or contact force loss and 3) measurement of elevated temperature mechanical properties and stress relaxation behavior. Similar measurements were also made on Neyoro G and Paliney 7 for comparison. The primary results of the study show that beryllium-nickel alloy 440 is from a mechanical properties standpoint, equal or superior to the presently used Paliney 7 and Neyoro G for normal Sandia requirements. For elevated temperature applications, alloy 440 has clearly superior mechanical properties.« less

  1. Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6 wt.% Zn Scaffolds for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Yan, Yang; Kang, Yijun; Li, Ding; Yu, Kun; Xiao, Tao; Wang, Qiyuan; Deng, Youwen; Fang, Hongjie; Jiang, Dayue; Zhang, Yu

    2018-03-01

    Porous Mg-based scaffolds have been extensively researched as biodegradable implants due to their attractive biological and excellent mechanical properties. In this study, porous Mg-6 wt.% Zn scaffolds were prepared by powder metallurgy using ammonium bicarbonate particles as space-holder particles. The effects of space-holder particle content on the microstructure, mechanical properties and corrosion resistance of the Mg-6 wt.% Zn scaffolds were studied. The mean porosity and pore size of the open-cellular scaffolds were within the range 6.7-52.2% and 32.3-384.2 µm, respectively. Slight oxidation was observed at the grain boundaries and on the pore walls. The Mg-6 wt.% Zn scaffolds were shown to possess mechanical properties comparable with those of natural bone and had variable in vitro degradation rates. Increased content of space-holder particles negatively affected the mechanical behavior and corrosion resistance of the Mg-6 wt.% Zn scaffolds, especially when higher than 20%. These results suggest that porous Mg-6 wt.% Zn scaffolds are promising materials for application in bone tissue engineering.

  2. Variation of mechanical behavior of β-TCP/collagen two phase composite scaffold with mesenchymal stem cell in vitro.

    PubMed

    Arahira, Takaaki; Todo, Mitsugu

    2016-08-01

    The primary aim of this study is to characterize the variational behavior of the compressive mechanical property of bioceramic-based scaffolds using stem cells during the cell culture period. β-Tricalcium phosphate (TCP)/collagen two phase composites and β-TCP scaffolds were fabricated using the polyurethane template technique and a subsequent freeze-drying method. Rat bone-marrow mesenchymal stem cells (rMSCs) were then cultured in these scaffolds for up to 28 days. Compression tests of the scaffolds with rMSCs were periodically conducted. Biological properties, such as the cell number, alkaline phosphatase (ALP) activity, and gene expressions of osteogenesis, were evaluated. The microstructural change due to cell growth and the formation of extracellular matrices was examined using a field-emission scanning electron microscope. The compressive property was then correlated with the biological properties and microstructures to understand the mechanism of the variational behavior of the macroscopic mechanical property. The porous collagen structure in the β-TCP scaffold effectively improved the structural stability of the composite scaffold, whereas the β-TCP scaffold exhibited structural instability with the collapse of the porous structure when immersed in a culture medium. The β-TCP/collagen composite scaffold exhibited higher ALP activity and more active generation of osteoblastic markers than the β-TCP scaffold. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Textured silicon nitride: processing and anisotropic properties

    PubMed Central

    Zhu, Xinwen; Sakka, Yoshio

    2008-01-01

    Textured silicon nitride (Si3N4) has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW) and templated grain growth (TGG). The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured α-Sialon using the same methods as those used for textured β-Si3N4 and β-Sialon. PMID:27877995

  4. Structure, Nanomechanics and Dynamics of Dispersed Surfactant-Free Clay Nanocomposite Films

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Zhao, Jing; Snyder, Chad; Karim, Alamgir; National Institute of Standards; Technology Collaboration

    Natural Montmorillonite particles were dispersed as tactoids in thin films of polycaprolactone (PCL) through a flow coating technique assisted by ultra-sonication. Wide angle X-ray scattering (WAXS), Grazing-incidence wide angle X-ray scattering (GI-WAXS), and transmission electron microscopy (TEM) were used to confirm the level of dispersion. These characterization techniques are in conjunction with its nanomechanical properties via strain-induced buckling instability for modulus measurements (SIEBIMM), a high throughput technique to characterize thin film mechanical properties. The linear strengthening trend of the elastic modulus enhancements was fitted with Halpin-Tsai (HT) model, correlating the nanoparticle geometric effects and mechanical behaviors based on continuum theories. The overall aspect ratio of dispersed tactoids obtained through HT model fitting is in reasonable agreement with digital electron microscope image analysis. Moreover, glass transition behaviors of the composites were characterized using broadband dielectric relaxation spectroscopy. The segmental relaxation behaviors indicate that the associated mechanical property changes are due to the continuum filler effect rather than the interfacial confinement effect.

  5. Determination of mechanical behavior of nanoscale materials using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Heo, Seongjun

    It is important to understand the mechanical properties of nanometer-scale materials for use in such applications as microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). These properties are difficult to measure directly using experimental methods due to their small sizes. Computational simulations provide important insights that complement experimental data and lead to improved understanding of the mechanical properties of nanometer-scale systems. Molecular dynamics (MD) simulations, which are used to investigate the properties of materials at the atomic scale, is used in my research to determine (1) best thermostat managing way for acceptable mechanical behavior of nanoscale systems; (2) filling effect on the bending and compressive properties of carbon nanotubes (CNTs); (3) vibrational behavior of bridged and cantilevered CNT bombarded by external fluid atoms; (4) frictional behavior of filled CNT bundles and the effect of external molecules on friction; (5) effect of sliding orientations on the tribological properties of polyethylene (PE). In all the simulations the reactive empirical bond-order (REBO) potential combined with the Lennard Jones potential is applied to control inter-atomic interactions. During the MD simulations, thermostats are used to maintain the system temperature at a constant value. Tests indicate that the simulations describe the mechanical behavior of CNTs differently depending on the type of thermostat used, and the relative fraction of the system to which the thermostat is applied. The results indicate that Langevin and velocity rescaling thermostats are more reliable for temperature control than the Nose-Hoover thermostat. In examining CNT bending and compression, the simulations predict filled CNTs are more resistant to external bending and compressive forces than hollow CNTs. The mechanical properties deteriorate with increases in temperature and number of CNT wall defects. MD simulations of the vibrational behavior of bridged and cantilevered CNTs are found to match the results of continuum mechanics calculations. The principal vibration frequency of the CNT is predicted to decrease with increasing nanotube length, gas pressure, and the atomic mass of the external fluid. In studies of CNT tribology, simulations show that two layers of filled CNTs are more resistant to compressive forces and exhibit lower friction coefficients during sliding than unfilled CNTs. The friction coefficient increases with the thickness of the CNT layer due to the increase in effective friction interface. The addition of an external, molecular fluid of benzene molecules is predicted to reduce the friction coefficient of CNTs because of the lubricity of the molecules. Lastly, simulation results illustrate the effect of relative orientation on the tribological properties of polyethylene (PE) sliding surfaces. The friction coefficient of perpendicular sliding is much higher than that of parallel sliding based on the polymer chain orientation. The PE exhibits stick-slip motion during sliding regardless of the sliding orientation. In addition, the PE shows no surface morphology change due to the higher strength of the PE bonds, which is in contrast to the behavior of other polymers, such as polytetrafluoroethylene (PTFE), which exhibits bond breaking and realignment of surface chains along the sliding direction in the less favorable orientation.

  6. Thermomechanical Fatigue Behavior of a Silicon Carbide Fiber-Reinforced Calcium Aluminosilicate Glass-Ceramic Matrix Composite.

    DTIC Science & Technology

    1992-08-01

    space applications. Prior to being used to replace current metal superalloys and monolithic ceramics, the mechanical and thermal properties of CMCs...many investigations of the general mechanical properties of ceramic composites have been performed (see sources 2-10 for a briej sampling), the room...Review of Materials Science, Vol. 17, 1987, pp. 341-383. 7 Thouless, M.D., and Evans, A.G., "Effects of Pull-Out on the Mechanical Properties of

  7. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability.

    PubMed

    Mieszala, Maxime; Hasegawa, Madoka; Guillonneau, Gaylord; Bauer, Jens; Raghavan, Rejin; Frantz, Cédric; Kraft, Oliver; Mischler, Stefano; Michler, Johann; Philippe, Laetitia

    2017-02-01

    By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response

    PubMed Central

    Jung, GangSeob; Qin, Zhao

    2017-01-01

    The behavior of chemical bonding under various mechanical loadings is an intriguing mechanochemical property of biological materials, and the property plays a critical role in determining their deformation and failure mechanisms. Because of their astonishing mechanical properties and roles in constituting the basis of a variety of physiologically relevant materials, biological protein materials have been intensively studied. Understanding the relation between chemical bond networks (structures) and their mechanical properties offers great possibilities to enable new materials design in nanotechnology and new medical treatments for human diseases. Here we focus on how the chemical bonds in biological systems affect mechanical properties and how they change during mechanical deformation and failure. Three representative cases of biomaterials related to the human diseases are discussed in case studies, including: amyloids, intermediate filaments, and collagen, each describing mechanochemical features and how they relate to the pathological conditions at multiple scales. PMID:26108895

  9. Effect of Copper and Zirconium Addition on Properties of Fe-Co-Si-B-Nb Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Ikram, Haris; Khalid, Fazal Ahmad; Akmal, Muhammad; Abbas, Zameer

    2017-07-01

    In this research work, iron-based bulk metallic glasses (BMGs) have been fabricated, characterized and compared with Fe-Si alloy. BMG alloys of composition ((Fe0.6Co0.4)0.75B0.20Si0.05)96Nb4) were synthesized by suction casting technique using chilled copper die. Effect of copper and zirconium addition on magnetic, mechanical, thermal and electrochemical behavior of ((Fe0.6Co0.4)0.75B0.20Si0.05)96Nb4 BMGs was investigated. Furthermore, effect of annealing on nano-crystallization and subsequently on magnetic and mechanical behavior was also analyzed. Amorphousness of structure was evidenced by XRD analysis and microscopic visualization, whereas nano-crystallization behavior was identified by peak broadening of XRD patterns. Magnetic properties, measured by vibrating sample magnetometer, were found to be improved for as-cast BMG alloys by copper addition and further enhanced by nano-crystallization after annealing. Mechanical properties were observed to be increased by zirconium addition while slightly declined by copper addition. Potentiodynamic polarization analysis manifested the positive role of zirconium in enhancing corrosion resistance of BMGs in acidic, basic and brine mediums. Moreover, mechanical properties and corrosion analysis results affirmed the superiority of BMG alloys over Fe-Si alloy.

  10. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy.

    PubMed

    Zhang, Xiaobo; Yuan, Guangyin; Mao, Lin; Niu, Jialin; Fu, Penghuai; Ding, Wenjiang

    2012-03-01

    Mechanical properties at room temperature and biocorrosion behaviors in simulated body fluid (SBF) at 37 °C of a new type of patented Mg-3Nd-0.2Zn-0.4Zr (hereafter, denoted as JDBM) alloy prepared at different extrusion temperatures, as well as heat treatment, were studied. The mechanical properties of this magnesium alloy at room temperature were improved significantly after extrusion and heat treatment compared to an as-cast alloy. The results of mechanical properties show that the yield strength (YS) decreases with increasing extrusion temperature. The tensile elongation decreases a little while the ultimate tensile strength (UTS) has no obvious difference. The yield strength and ultimate tensile strength were improved clearly after heat treatment at 200 °C for 10 h compared with that at the extrusion state, which can be mainly contributed to the precipitation strengthening. The biocorrosion behaviors of the JDBM alloy were studied using immersion tests and electrochemical tests. The results reveal that the extruded JDBM alloy and the aging treatment on the extruded alloy show much better biocorrosion resistance than that at solid solution state (T4 treatment), and the JDBM exhibited favorable uniform corrosion mode in SBF. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Remote Determination of Time-Dependent Stiffness of Surface-Degrading-Polymer Scaffolds Via Synchrotron-Based Imaging.

    PubMed

    Bawolin, N K; Chen, X B

    2017-04-01

    Surface-degrading polymers have been widely used to fabricate scaffolds with the mechanical properties appropriate for tissue regeneration/repair. During their surface degradation, the material properties of polymers remain approximately unchanged, but the scaffold geometry and thus mechanical properties vary with time. This paper presents a novel method to determine the time-dependent mechanical properties, particularly stiffness, of scaffolds from the geometric changes captured by synchrotron-based imaging, with the help of finite element analysis (FEA). Three-dimensional (3D) tissue scaffolds were fabricated from surface-degrading polymers, and during their degradation, the tissue scaffolds were imaged via the synchrotron-based imaging to characterize their changing geometry. On this basis, the stiffness behavior of scaffolds was estimated from the FEA, and the results obtained were compared to the direct measurements of scaffold stiffness from the load-displacement material testing. The comparison illustrates that the Young's moduli estimated from the FEA and characterized geometry are in agreement with the ones of direct measurements. The developed method of estimating the mechanical behavior was also demonstrated effective with a nondegrading scaffold that displays the nonlinear stress-strain behavior. The in vivo monitoring of Young's modulus by morphology characterization also suggests the feasibility of characterizing experimentally the difference between in vivo and in vitro surface degradation of tissue engineering constructs.

  12. The effect of collagen crosslinking on the biphasic poroviscoelastic cartilage properties determined from a semi-automated microindentation protocol for stress relaxation.

    PubMed

    McGann, Megan E; Bonitsky, Craig M; Ovaert, Timothy C; Wagner, Diane R

    2014-06-01

    Given the important role of the collagenous structure in cartilage mechanics, there is considerable interest in the relationship between collagen crosslinking and the mechanical behavior of the cartilage matrix. While crosslink-induced alterations to the elastic modulus of cartilage have been described, changes to time-dependent behavior have not yet been determined. The objective of the study was to quantify changes to cartilage material properties, including viscoelastic coefficients, with crosslinking via indentation. To accomplish this, a semi-autonomous microindentation stress relaxation protocol was first developed, validated and then applied to cartilage specimens before and after crosslinking. The change in mechanical properties with crosslinking was analyzed both in the unloading portions of the test via the Oliver-Pharr method and in the holding portion with an inverse iterative finite element model that represented cartilage as a biphasic poroviscoelastic material. Although both techniques suggested a similar increase in equilibrium modulus in the crosslinked specimens as compared to the controls, distinct differences in the control specimens were apparent, suggesting that the two different techniques may be capturing different aspects of the material behavior. No differences in time-dependent properties were observed between the crosslinked and the control specimens. These results give further insight into the effects of crosslinking in cartilage mechanical behavior. Additionally, the microindentation stress relaxation protocol may enable increased automation for high-throughput testing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Indentation mapping revealed poroelastic, but not viscoelastic, properties spanning native zonal articular cartilage.

    PubMed

    Wahlquist, Joseph A; DelRio, Frank W; Randolph, Mark A; Aziz, Aaron H; Heveran, Chelsea M; Bryant, Stephanie J; Neu, Corey P; Ferguson, Virginia L

    2017-12-01

    Osteoarthrosis is a debilitating disease affecting millions, yet engineering materials for cartilage regeneration has proven difficult because of the complex microstructure of this tissue. Articular cartilage, like many biological tissues, produces a time-dependent response to mechanical load that is critical to cell's physiological function in part due to solid and fluid phase interactions and property variations across multiple length scales. Recreating the time-dependent strain and fluid flow may be critical for successfully engineering replacement tissues but thus far has largely been neglected. Here, microindentation is used to accomplish three objectives: (1) quantify a material's time-dependent mechanical response, (2) map material properties at a cellular relevant length scale throughout zonal articular cartilage and (3) elucidate the underlying viscoelastic, poroelastic, and nonlinear poroelastic causes of deformation in articular cartilage. Untreated and trypsin-treated cartilage was sectioned perpendicular to the articular surface and indentation was used to evaluate properties throughout zonal cartilage on the cut surface. The experimental results demonstrated that within all cartilage zones, the mechanical response was well represented by a model assuming nonlinear biphasic behavior and did not follow conventional viscoelastic or linear poroelastic models. Additionally, 10% (w/w) agarose was tested and, as anticipated, behaved as a linear poroelastic material. The approach outlined here provides a method, applicable to many tissues and biomaterials, which reveals and quantifies the underlying causes of time-dependent deformation, elucidates key aspects of material structure and function, and that can be used to provide important inputs for computational models and targets for tissue engineering. Elucidating the time-dependent mechanical behavior of cartilage, and other biological materials, is critical to adequately recapitulate native mechanosensory cues for cells. We used microindentation to map the time-dependent properties of untreated and trypsin treated cartilage throughout each cartilage zone. Unlike conventional approaches that combine viscoelastic and poroelastic behaviors into a single framework, we deconvoluted the mechanical response into separate contributions to time-dependent behavior. Poroelastic effects in all cartilage zones dominated the time-dependent behavior of articular cartilage, and a model that incorporates tension-compression nonlinearity best represented cartilage mechanical behavior. These results can be used to assess the success of regeneration and repair approaches, as design targets for tissue engineering, and for development of accurate computational models. Copyright © 2017 Acta Materialia Inc. All rights reserved.

  14. Characterization of Anisotropic Behavior for High Grade Pipes

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Huo, Chunyong; Ji, Lingkang; Li, Yang; Zhang, Jiming; Ma, Qiurong

    With the developing requirement of nature gas, the property needs of steel for pipe line are higher and higher, especially in strength and toughness. It is necessary to improve the steel grade in order to ensure economic demand and safety. However, with the rise of steel grade, the differences on properties in different orientations (anisotropic behaviors) become more and more obvious after the process of hot rolling, which may affect the prediction of fracture for the pipes seriously (Thinking of isotropic mechanical properties for material in traditional predict way). In order to get the reason for anisotropic mechanics, a series of tests are carried out for high grade steel pipes, including not only mechanical properties but also microstructures. Result indicates that there are obviously anisotropic behaviors for high grade steel pipes in two orientations (rolling orientation and transverse orientation). Strength is better in T orientation because Rm is higher and Rt 0.5 rises more in T orientation, and toughness is better in L orientation because of the higher Akv and SA in L orientation under a same temperature. Banded structures are formed in T orientation, and the spatial distribution of inclusion and precipitated phases are different in T, L and S orientation. The anisotropic arrangement for the matrix in space (banded structures), which is formed after the process of hot rolling, may affect the mechanical properties in different orientation. Moreover, the elasticity modulus of particles is different from the elasticity modulus of matrix, deformation between particles and matrix may cause stress concentration, and damage forms in this place. Because of the different distribution of particles in space, the level of damage is anisotropic in different orientations, and the anisotropic mechanical properties occur finally. Therefore, the anisotropic mechanical properties are determined by the anisotropic microstructures, both the anisotropic of matrix and the anisotropic of particles are included.

  15. Thermal treatment and mechanical properties of aluminum-2021

    NASA Technical Reports Server (NTRS)

    Brennecke, M. W.

    1970-01-01

    Mechanical properties, after thermal treatments, are summarized for sheet and plate of copper-rich, high-strength, heat-treatable aluminum-2021. The alloy is quench sensitive, quench rate and variations in aging affect corrosion behavior. Aging effects on yield strength, tensile strength, and elongation of sheet and plate are compared.

  16. Casein films: effects of formulation, environmental conditions, and addition of citric pectin on the structure and mechanical properties

    USDA-ARS?s Scientific Manuscript database

    Thin casein films for food packaging applications reportedly possess good strength and low oxygen permeability, but low water-resistance and elasticity. Modifying and customizing the mechanical properties of the films to target specific behaviors depending on environmental conditions would enable a...

  17. Properties predictive modeling through the concept of a hybrid interphase existing between phases in contact

    NASA Astrophysics Data System (ADS)

    Portan, D. V.; Papanicolaou, G. C.

    2018-02-01

    From practical point of view, predictive modeling based on the physics of composite material behavior is wealth generating; by guiding material system selection and process choices, by cutting down on experimentation and associated costs; and by speeding up the time frame from the research stage to the market place. The presence of areas with different properties and the existence of an interphase between them have a pronounced influence on the behavior of a composite system. The Viscoelastic Hybrid Interphase Model (VHIM), considers the existence of a non-homogeneous viscoelastic and anisotropic interphase having properties depended on the degree of adhesion between the two phases in contact. The model applies for any physical/mechanical property (e.g. mechanical, thermal, electrical and/or biomechanical). Knowing the interphasial variation of a specific property one can predict the corresponding macroscopic behavior of the composite. Moreover, the model acts as an algorithm and a two-way approach can be used: (i) phases in contact may be chosen to get the desired properties of the final composite system or (ii) the initial phases in contact determine the final behavior of the composite system, that can be approximately predicted. The VHIM has been proven, amongst others, to be extremely useful in biomaterial designing for improved contact with human tissues.

  18. Molecular deformation mechanisms of the wood cell wall material.

    PubMed

    Jin, Kai; Qin, Zhao; Buehler, Markus J

    2015-02-01

    Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Aluminium. II - A review of deformation properties of high purity aluminium and dilute aluminium alloys.

    NASA Technical Reports Server (NTRS)

    Reed, R. P.

    1972-01-01

    The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.

  20. The effect of storage temperature on blue cheese mechanical properties.

    PubMed

    Joyner Melito, Helen S; Francis, Dorothy; Luzzi, Brooke; Johnson, John R

    2018-06-01

    Blue cheese is commonly aged for 60 days at 10°C after curing. However, some manufacturers store blue cheese at 4°C and the effect of lower storage temperature on blue cheese final properties is unknown. Thus, the objective of this study was to determine the effect of storage temperature and time on blue cheese mechanical behaviors. Blue cheeses were stored at 4 or 10°C for 77 days after production. Composition and small- and large-strain rheological behaviors were evaluated every 2 weeks of storage. Storage time had significant impact on blue cheese rheological behaviors; storage temperature did not. Large-strain compressive force and viscoelastic moduli decreased with storage time, and the extent of nonlinear viscoelastic behavior increased. These results indicated that sample microstructure likely weakened and was more easily deformed as storage time increased. Overall, blue cheese can be stored at 4-10°C without significant changes to its composition or mechanical behavior. The results of this work can be used by blue cheese manufacturers to better understand the impact of storage time and temperature on blue cheese end quality. Manufacturers can take advantage of the effects of storage time on blue cheese mechanical behaviors to determine how long to age blue cheese to achieve the desired texture. © 2017 Wiley Periodicals, Inc.

  1. Rheological behaviors of edible casein-based packaging films under extreme environmental conditions, using humidity-controlled dynamic mechanical analysis

    USDA-ARS?s Scientific Manuscript database

    Thin casein films for food packaging applications possess good strength and low oxygen permeability but low water-resistance and elasticity. Customizing the mechanical properties of the films to target specific behaviors depending on temperature and humidity changes would enable a variety of commerc...

  2. Heparin-mimetic polyurethane hydrogels with anticoagulant, tunable mechanical property and controllable drug releasing behavior.

    PubMed

    Chen, Yuan; Wang, Rui; Wang, Yonghui; Zhao, Weifeng; Sun, Shudong; Zhao, Changsheng

    2017-05-01

    In the present study, novel heparin-mimetic polyurethane hydrogels were prepared by introducing chemical crosslinked sulfated konjac glucomannan (SKGM). Scanning electron microscopy (SEM) results indicated that the introduction of SKGM and the increase of the molecular weight of diol segments could enlarge the pore sizes of the hydrogels. The swelling behavior corresponded with the SEM results, and the hydrogels could absorb more water after the modification. The modification also led to an improvement in the mechanical property. Meanwhile, the SKGM and the modified polyurethane hydrogels showed excellent hemocompatibility. The thromboplastin time of SKGM could reach up to 182.9s. Gentamycin sulfate (GS) was used as a model drug to be loaded into the hydrogels, and the loading amount was increased ca. 50% after the introduction of SKGM, thus resulting in high bactericidal efficiency. The results indicated that the introduction of SKGM and the alternation in the diol's molecular weight bestowed polyurethane hydrogels with promising properties of integrated blood-compatibility, mechanical properties and drug loading-releasing behavior. Therefore, the heparin-mimetic multifunctional polyurethane hydrogels have great potential to be used in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Experimental characterization and microstructure linked modeling of mechanical behavior of ultra-thin aluminum foils used in packaging

    NASA Astrophysics Data System (ADS)

    Tabourot, Laurent; Charleux, Ludovic; Balland, Pascale; Sène, Ndèye Awa; Andreasson, Eskil

    2018-05-01

    This paper is based on the hypothesis that introducing distribution of mechanical properties is beneficial for modeling all kinds of mechanical behavior, even of ordinary metallic materials. To bring proof of its admissibility, it has to be first shown that modeling based on this assertion is able to efficiently describe standard mechanical behavior of materials. Searching for typical study case, it has been assessed that at a low scale, yield stresses could be strongly distributed in ultrathin aluminum foils used in packaging industry, offering opportunities to identifying their distribution and showing its role on the mechanical properties. Considering initially reduced modeling allow to establish a valuable connection between the hardening curve and the distribution of local yield stresses. This serves for finding initial value of distribution parameters in a more sophisticated identification procedure. With finally limited number of representative classes of local yield stresses, concretely 3 is enough, it is shown that a 3D finite element simulation involving limited numbers of elements returns realistic behavior of an ultrathin aluminum foil exerted to tensile test, in reference to experimental results. This gives way to large possibilities in modeling in order to give back complex experimental evidence.

  4. Stress-strain behavior under static loading in Gd123 high-temperature superconductors at 77 K

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki; Murakami, Akira; Teshima, Hidekazu; Morita, Mitsuru

    2013-10-01

    Mechanical properties of melt-growth GdBa2Cu3Ox (Gd123) superconducting samples with 10 wt.% Ag2O and 0.5 wt.% Pt were evaluated at 77 K through flexural tests for specimens cut from the samples in order to estimate the mechanical properties of the Gd123 material without metal substrates, buffer layers or stabilization layers. We discuss the mechanical properties; the Young's modulus and flexural strength with stress-strain behavior at 77 K. The results show that the flexural strength and fracture strain of Gd123 at 77 K are approximately 100 MPa and 0.1%, respectively, and that the origin of the fracture is defects such as pores, impurities and non-superconducting compounds. We also show that the Young's modulus of Gd123 is estimated to be 160-165 GPa.

  5. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites.

    PubMed

    Kamal, Musa R; Khoshkava, Vahid

    2015-06-05

    In earlier work, we reported that spray freeze drying of cellulose nanocrystals (CNC) yields porous agglomerate structures. On the other hand, the conventional spray dried CNC (CNCSD) and the freeze dried CNC (CNCFD) produce compact solid structures with very low porosity. As it is rather difficult to obtain direct microscopic evidence of the quality of dispersion of CNC in polymer nanocomposites, it was shown that supporting evidence of the quality and influence of dispersion in a polypropylene (PP)/CNC nanocomposite could be obtained by studying the rheological behavior, mechanical properties and crystallization characteristics of PP/CNC nanocomposites. In an effort to produce a sustainable, fully biosourced, biodegradable nanocomposite, this manuscript presents the results of a study of the rheological, mechanical and crystallization behavior of PLA/CNCSFD nanocomposites obtained by melt processing. The results are analyzed to determine CNC network formation, rheological percolation threshold concentrations, mechanical properties in the rubbery and glassy states, and the effect of CNCSFD on crystalline nucleation and crystallization rates of PLA. These results suggest that the porosity and network structure of CNCSFD agglomerates contribute significantly to good dispersion of CNC in the PLA matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties.

    PubMed

    Katira, Parag; Bonnecaze, Roger T; Zaman, Muhammad H

    2013-01-01

    Malignant transformation, though primarily driven by genetic mutations in cells, is also accompanied by specific changes in cellular and extra-cellular mechanical properties such as stiffness and adhesivity. As the transformed cells grow into tumors, they interact with their surroundings via physical contacts and the application of forces. These forces can lead to changes in the mechanical regulation of cell fate based on the mechanical properties of the cells and their surrounding environment. A comprehensive understanding of cancer progression requires the study of how specific changes in mechanical properties influences collective cell behavior during tumor growth and metastasis. Here we review some key results from computational models describing the effect of changes in cellular and extra-cellular mechanical properties and identify mechanistic pathways for cancer progression that can be targeted for the prediction, treatment, and prevention of cancer.

  7. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.

    PubMed

    Bootsma, Katherine; Fitzgerald, Martha M; Free, Brandon; Dimbath, Elizabeth; Conjerti, Joe; Reese, Greg; Konkolewicz, Dominik; Berberich, Jason A; Sparks, Jessica L

    2017-06-01

    Interpenetrating network (IPN) hydrogel materials are recognized for their unique mechanical properties. While IPN elasticity and toughness properties have been explored in previous studies, the factors that impact the time-dependent stress relaxation behavior of IPN materials are not well understood. Time-dependent (i.e. viscoelastic) mechanical behavior is a critical design parameter in the development of materials for a variety of applications, such as medical simulation devices, flexible substrate materials, cellular mechanobiology substrates, or regenerative medicine applications. This study reports a novel technique for 3D printing alginate-polyacrylamide IPN gels with tunable elastic and viscoelastic properties. The viscoelastic stress relaxation behavior of the 3D printed alginate-polyacrylamide IPN hydrogels was influenced most strongly by varying the concentration of the acrylamide cross-linker (MBAA), while the elastic modulus was affected most by varying the concentration of total monomer material. The material properties of our 3D printed IPN constructs were consistent with those reported in the biomechanics literature for soft tissues such as skeletal muscle, cardiac muscle, skin and subcutaneous tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Mechanical characterization and modeling for anodes and cathodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Lubing; Yin, Sha; Zhang, Chao; Huan, Yong; Xu, Jun

    2018-07-01

    Mechanical properties of electrode materials have significant influence over electrochemical properties as well as mechanical integrity of lithium-ion battery cells. Here, anode and cathode in a commercially available 18650 NCA (Nickel Cobalt Aluminum Oxide)/graphite cell were comprehensively studied by tensile tests considering material anisotropy, SOC (state of charge), strain rate and electrolyte content. Results showed that the mechanical properties of both electrodes were highly dependent on strain rate and electrolyte content; however, anode was SOC dependent while cathode was not. Besides, coupled effects of strain rate and SOC of anodes were also discussed. SEM (scanning electron microscope) images of surfaces and cross-sections of electrodes showed the fracture morphology. In addition, mechanical behavior of Cu foil separated from anode with different SOC values were studied and compared. Finally, constitutive models of electrodes considering both strain rate and anisotropy effects were established. This study reveals the relationship between electrochemical dependent mechanical behavior of the electrodes. The established mechanical models of electrodes can be applied to the numerical computation of battery cells. Results are essential to predict the mechanical responses as well as the deformation of battery cell under various loading conditions, facilitating safer battery design and manufacturing.

  9. In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn–Mg alloy

    PubMed Central

    Gong, Haibo; Wang, Kun; Strich, Randy; Zhou, Jack G.

    2017-01-01

    Zinc–Magnesium (Zn–Mg) alloy as a novel biodegradable metal holds great potential in biodegradable implant applications as it is more corrosion resistant than Magnesium (Mg). However, the mechanical properties, biodegradation uniformity, and cytotoxicity of Zn–Mg alloy remained as concerns. In this study, hot extrusion process was applied to Zn–1 wt % Mg (Zn–1Mg) to refine its microstructure. Effects of hot extrusion on biodegradation behavior and mechanical properties of Zn–1Mg were investigated in comparison with Mg rare earth element alloy WE43. Metallurgical analysis revealed significant grain size reduction, and immersion test found that corrosion rates of WE43 and Zn–1Mg were reduced by 35% and 57%, respectively after extrusion. Moreover, hot extrusion resulted in a much more uniform biodegradation in extruded Zn–1Mg alloy and WE43. In vitro cytotoxicity test results indicated that Zn–1Mg alloy was biocompatible. Therefore, hot extruded Zn–1Mg with homogenous microstructure, uniform as well as slow degradation, improved mechanical properties, and good biocompatibility was believed to be an excellent candidate material for load-bearing biodegradable implant application. PMID:25581552

  10. Fabrication and characterization of carbon nanotube turfs

    NASA Astrophysics Data System (ADS)

    Qiu, Anqi

    Carbon nanotube turfs are vertically aligned, slightly tortuous and entangled functional nanomaterials that exhibit high thermal and electrical properties. CNT turfs exhibit unique combinations of thermal and electrical conductivity, energy absorbing capability, low density and adhesive behavior. The objective of this study is to fabricate, measure, manipulate and characterize CNT turfs and thus determine the relationship between a turf's properties and its morphology, and provide guidance for developing links between turf growth conditions and of the subsequent turf properties. Nanoindentation was utilized to determine the mechanical and in situ electrical properties of CNT turfs. Elastic properties do not vary significantly laterally within a single turf, quantifying for the first time the ability to treat the turf as a mechanical continuum throughout. The use of the average mechanical properties for any given turf should be suitable for design purpose without the necessity of accounting for lateral spatial variation in structure. Properties variation based on time dependency, rate dependency, adhesive behavior and energy absorption and dissipation behavior have been investigated for these CNT turfs. Electrical properties measurements of CNT turfs have been carried out and show that a constant electrical current at a constant penetration depth indicates that a constant number of CNTs in contact with the tip; combining with the results that adhesive load increased with an increasing penetration hold time, thus we conclude that during a hold period of nanoindentation, individual tubes increase their individual attachment to the tip. CNT turfs show decreased adhesion and modulus after exposure to an electron beam due to carbon deposition and subsequent oxidation. To increase the modulus of the turf, axial compression and solvent capillary were used to increase the density of the turf by up to 15 times. Structure-property relationships were determined from the density and tortuosity measurements carried out through in situ electrical measurements and directionality measurements. Increasing density increases the mechanical properties as well as electrical conductivity. The modulus increased with a lower tortuosity, which may be related to the compressive buckling positioning.

  11. Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata

    PubMed Central

    Han, C. J.

    2015-01-01

    This paper addresses the mechanical behavior of buried steel pipeline crossing subsidence strata. The investigation is based on numerical simulation of the nonlinear response of the pipeline-soil system through finite element method, considering large strain and displacement, inelastic material behavior of buried pipeline and the surrounding soil, as well as contact and friction on the pipeline-soil interface. Effects of key parameters on the mechanical behavior of buried pipeline were investigated, such as strata subsidence, diameter-thickness ratio, buried depth, internal pressure, friction coefficient and soil properties. The results show that the maximum strain appears on the outer transition subsidence section of the pipeline, and its cross section is concave shaped. With the increasing of strata subsidence and diameter-thickness ratio, the out of roundness, longitudinal strain and equivalent plastic strain increase gradually. With the buried depth increasing, the deflection, out of roundness and strain of the pipeline decrease. Internal pressure and friction coefficient have little effect on the deflection of buried pipeline. Out of roundness is reduced and the strain is increased gradually with the increasing of internal pressure. The physical properties of soil have a great influence on the mechanical properties of buried pipeline. The results from the present study can be used for the development of optimization design and preventive maintenance for buried steel pipelines. PMID:26103460

  12. Mechanical properties and crystallization behavior of hydroxyapatite/poly(butylenes succinate) composites.

    PubMed

    Guo, Wenmin; Zhang, Yihe; Zhang, Wei

    2013-09-01

    Biodegradable synthetic polymers have attracted much attention nowadays, and more and more researches have been done on biodegradable polymers due to their excellent mechanical properties, biocompatibility, and biodegradability. In this work, hydroxyapatite (HA) particles were melt-mixing with poly (butylenes succinate) (PBS) to prepare the material, which could be used in the biomedical industry. To develop high-performance PBS for cryogenic engineering applications, it is necessary to investigate the cryogenic mechanical properties and crystallization behavior of HA/PBS composites. Cryogenic mechanical behaviors of the composites were studied in terms of tensile and impact strength at the glass transition temperature (-30°C) and compared to their corresponding behaviors at room temperature. With the increase of HA content, the crystallization of HA/PBS composites decreased and crystallization onset temperature shifted to a lower temperature. The diameter of spherulites increased at first and decreased with a further HA content. At the same time, the crystallization rate became slow when the HA content was no more than 15wt% and increased when HA content reached 20wt%. In all, the results we obtained demonstrate that HA/PBS composites reveal a better tensile strength at -30°C in contrast to the strength at room temperature. HA particles with different amount affect the crystallization of PBS in different ways. Copyright © 2013 Wiley Periodicals, Inc.

  13. Volumetric influence on the mechanical behavior of organic solids: The case of aspirin and paracetamol addressed via dispersion corrected DFT

    NASA Astrophysics Data System (ADS)

    Adhikari, Kapil; Flurchick, Kenneth M.; Valenzano, Loredana

    2015-06-01

    The elastic and mechanical properties of the most stable polymorphs of aspirin and paracetamol are obtained at B3LYP-D2* level of theory to show how effects arising from volumetric expansions related to thermal variations influence the behavior of these materials. Results are in fair agreement with experimental values reported at temperatures far from 0 K, showing that the proposed approach can describe the elastic response of molecular crystals as rationalized in terms of inter-molecular forces. The computational approach, despite its semi-empirical nature, allows achieving a qualitative chemical understanding of the macroscopic mechanical properties of molecular crystals with respect to changes in temperature.

  14. A Quantitative Study of the Relationship between the Distribution of Different Types of Collagen and the Mechanical Behavior of Rabbit Medial Collateral Ligaments

    PubMed Central

    Wan, Chao; Hao, Zhixiu; Wen, Shizhu; Leng, Huijie

    2014-01-01

    The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen), and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young's modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments) with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen) and the Young's modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation () was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen) and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues. PMID:25062068

  15. A quantitative study of the relationship between the distribution of different types of collagen and the mechanical behavior of rabbit medial collateral ligaments.

    PubMed

    Wan, Chao; Hao, Zhixiu; Wen, Shizhu; Leng, Huijie

    2014-01-01

    The mechanical properties of ligaments are key contributors to the stability and function of musculoskeletal joints. Ligaments are generally composed of ground substance, collagen (mainly type I and III collagen), and minimal elastin fibers. However, no consensus has been reached about whether the distribution of different types of collagen correlates with the mechanical behaviors of ligaments. The main objective of this study was to determine whether the collagen type distribution is correlated with the mechanical properties of ligaments. Using axial tensile tests and picrosirius red staining-polarization observations, the mechanical behaviors and the ratios of the various types of collagen were investigated for twenty-four rabbit medial collateral ligaments from twenty-four rabbits of different ages, respectively. One-way analysis of variance was used in the comparison of the Young's modulus in the linear region of the stress-strain curves and the ratios of type I and III collagen for the specimens (the mid-substance specimens of the ligaments) with different ages. A multiple linear regression was performed using the collagen contents (the ratios of type I and III collagen) and the Young's modulus of the specimens. During the maturation of the ligaments, the type I collagen content increased, and the type III collagen content decreased. A significant and strong correlation (R2 = 0.839, P < 0.05) was identified by multiple linear regression between the collagen contents (i.e., the ratios of type I and type III collagen) and the mechanical properties of the specimens. The collagen content of ligaments might provide a new perspective for evaluating the linear modulus of global stress-strain curves for ligaments and open a new door for studying the mechanical behaviors and functions of connective tissues.

  16. Structural properties and gas sensing behavior of sol-gel grown nanostructured zinc oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajyaguru, Bhargav; Gadani, Keval; Kansara, S. B.

    2016-05-06

    In this communication, we report the results of the studies on structural properties and gas sensing behavior of nanostructured ZnO grown using acetone precursor based modified sol-gel technique. Final product of ZnO was sintered at different temperatures to vary the crystallite size while their structural properties have been studied using X-ray diffraction (XRD) measurement performed at room temperature. XRD results suggest the single phasic nature of all the samples and crystallite size increases from 11.53 to 20.96 nm with increase in sintering temperature. Gas sensing behavior has been studied for acetone gas which indicates that lower sintered samples are moremore » capable to sense the acetone gas and related mechanism has been discussed in the light of crystallite size, crystal boundary density, defect mechanism and possible chemical reaction between gas traces and various oxygen species.« less

  17. Analytical, numerical, and experimental investigations on effective mechanical properties and performances of carbon nanotubes and nanotube based nanocomposites with novel three dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Askari, Davood

    The theoretical objectives and accomplishment of this work are the analytical and numerical investigation of material properties and mechanical behavior of carbon nanotubes (CNTs) and nanotube nanocomposites when they are subjected to various loading conditions. First, the finite element method is employed to investigate numerically the effective Young's modulus and Poisson's ratio of a single-walled CNT. Next, the effects of chirality on the effective Young's modulus and Poisson's ratio are investigated and then variations of their effective coefficient of thermal expansions and effective thermal conductivities are studied for CNTs with different structural configurations. To study the influence of small vacancy defects on mechanical properties of CNTs, finite element analyses are performed and the behavior of CNTs with various structural configurations having different types of vacancy defects is studied. It is frequently reported that nano-materials are excellent candidates as reinforcements in nanocomposites to change or enhance material properties of polymers and their nanocomposites. Second, the inclusion of nano-materials can considerably improve electrical, thermal, and mechanical properties of the bonding agent, i.e., resin. Note that, materials atomic and molecular level do not usually show isotropic behaviour, rather they have orthotropic properties. Therefore, two-phase and three-phase cylindrically orthotropic composite models consisting of different constituents with orthotropic properties are developed and introduced in this work to analytically predict the effective mechanical properties and mechanical behavior of such structures when they are subjected to various external loading conditions. To verify the analytically obtained exact solutions, finite element analyses of identical cylindrical structures are also performed and then results are compared with those obtained analytically, and excellent agreement is achieved. The third part of this dissertation investigates the growth of vertically aligned, long, and high density arrays of CNTs and novel 3-D carbon nanotube nano-forests. A Chemical vapor deposition technique is used to grow radially aligned CNTs on various types of fibrous materials such as silicon carbide, carbon, Kevlar, and glass fibers and clothes that can be used for the fabrication of multifunctional high performing laminated nanocomposite structures. Using the CNTs nano-forest clothes, nanocomposite samples are prepared and tested giving promising results for the improvement of mechanical properties and performance of composites structures.

  18. Low-cycle fatigue testing methods

    NASA Technical Reports Server (NTRS)

    Lieurade, H. P.

    1978-01-01

    The good design of highly stressed mechanical components requires accurate knowledge of the service behavior of materials. The main methods for solving the problems of designers are: determination of the mechanical properties of the material after cyclic stabilization; plotting of resistance to plastic deformation curves; effect of temperature on the life on low cycle fatigue; and simulation of notched parts behavior.

  19. The Mechanical Properties and Modeling of Creep Behavior of UHMWPE/Nano-HA Composites

    NASA Astrophysics Data System (ADS)

    Li, Fan; Gao, Lilan; Gao, Hong; Cui, Yun

    2017-09-01

    Composites with different levels of hydroxyapatite (HA) content and ultra-high molecular weight polyethylene (UHMWPE) were prepared in this work. Mechanical properties of the composites were examined here, and to evaluate the effect of HA particles on the time-dependent behavior of the pure matrix, the creep and recovery performance of composites at various stress levels were also researched. As expected, the addition of HA influenced the time-dependent response of the UHMWPE and the effect had a strong dependence on the HA content. The creep and recovery strain of the composites significantly decreased with increasing HA content, and tensile properties were also impaired, which was due to the concentration of HA fillers. The mechanism and effect of HA dispersed into the UHMWPE matrix were examined by scanning electron microscopy. Additionally, since variations in the adjusted parameters revealed the impact of HA on the creep behavior of the UHMWPE matrix, Findley's model was employed. The results indicated that the analytical model was accurate for the prediction of creep of the pure matrix and its composites.

  20. Effects of mechanical strain on the performance of germanene sheets: Strength, failure behavior, and electronic structure

    NASA Astrophysics Data System (ADS)

    Ding, Ning; Wang, Huan; Liu, Long; Guo, Weimin; Chen, Xiangfeng; Wu, Chi-Man Lawrence

    2018-02-01

    As a two-dimensional material with a low-buckling structure, germanene has attracted considerable interest because of its excellent physical properties, such as massless Dirac fermions and quantum spin Hall effect. The mechanical characteristics of germanene are of the utmost importance when one is assessing its viability for nanodevices, especially for ones with defects. In this work, the stabilities, mechanical properties, and changes in electronic properties under mechanical strain for both pristine and defective germanene sheets were studied and analyzed with use of density functional theory. The mechanical properties of defect-free germanene exhibited obvious anisotropy along different directions. The mechanical properties of germanene sheets exhibited high sensitivity to the defect parameters, such as the linear density of vacancies, the width of the cracks, and the inflection angles caused by the grain boundaries. In addition, the applied mechanical strain changed the electronic properties of germanene to a large extent. The information obtained will be useful for the understanding and potential application of germanene.

  1. Mechanical Properties of Plasma-Sprayed ZrO2-8 wt% Y2O3 Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2004-01-01

    Mechanical behavior of free standing, plasma-sprayed ZrO2-8 wt% Y2O3 thermal barrier coatings, including strength, fracture toughness, fatigue, constitutive relation, elastic modulus, and directionality, has been determined under various loading-specimen configurations. This report presents and describes a summary of mechanical properties of the plasma-sprayed coating material to provide them as a design database.

  2. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete.

    PubMed

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-02-26

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber-polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance.

  3. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete

    PubMed Central

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-01-01

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber—polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance. PMID:28773256

  4. Unit mechanisms of fission gas release: Current understanding and future needs

    DOE PAGES

    Tonks, Michael; Andersson, David; Devanathan, Ram; ...

    2018-03-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. Here, this basic understanding of the fission gas behavior mechanisms has the potentialmore » to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less

  5. Unit mechanisms of fission gas release: Current understanding and future needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, Michael; Andersson, David; Devanathan, Ram

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. Here, this basic understanding of the fission gas behavior mechanisms has the potentialmore » to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less

  6. Unit mechanisms of fission gas release: Current understanding and future needs

    NASA Astrophysics Data System (ADS)

    Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael

    2018-06-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.

  7. Tension-compression viscoelastic behaviors of the periodontal ligament.

    PubMed

    Wang, Chen-Ying; Su, Ming-Zen; Chang, Hao-Hueng; Chiang, Yu-Chih; Tao, Shao-Huan; Cheng, Jung-Ho; Fuh, Lih-Jyh; Lin, Chun-Pin

    2012-09-01

    Although exhaustively studied, the mechanism responsible for tooth support and the mechanical properties of the periodontal ligament (PDL) remain a subject of considerable controversy. In the past, various experimental techniques and theoretical analyses have been employed to tackle this intricate problem. The aim of this study was to investigate the viscoelastic behaviors of the PDL using three-dimensional finite element analysis. Three dentoalveolar complex models were established to simulate the tissue behaviors of the PDL: (1) deviatoric viscoelastic model; (2) volumetric viscoelastic model; and (3) tension-compression volumetric viscoelastic model. These modified models took into consideration the presence of tension and compression along the PDL during both loading and unloading. The inverse parameter identification process was developed to determine the mechanical properties of the PDL from the results of previously reported in vitro and in vivo experiments. The results suggest that the tension-compression volumetric viscoelastic model is a good approximation of normal PDL behavior during the loading-unloading process, and the deviatoric viscoelastic model is a good representation of how a damaged PDL behaves under loading conditions. Moreover, fluid appears to be the main creep source in the PDL. We believe that the biomechanical properties of the PDL established via retrograde calculation in this study can lead to the construction of more accurate extra-oral models and a comprehensive understanding of the biomechanical behavior of the PDL. Copyright © 2012. Published by Elsevier B.V.

  8. A continuum-based structural modeling approach for cellulose nanocrystals (CNCs)

    NASA Astrophysics Data System (ADS)

    Shishehbor, Mehdi; Dri, Fernando L.; Moon, Robert J.; Zavattieri, Pablo D.

    2018-02-01

    We present a continuum-based structural model to study the mechanical behavior of cellulose nanocrystals (CNCs), and analyze the effect of bonded and non-bonded interactions on the mechanical properties under various loading conditions. In particular, this model assumes the uncoupling between the bonded and non-bonded interactions and their behavior is obtained from atomistic simulations. Our results indicates that the major contribution to the tensile and bending stiffness is mainly due to the cellulose chain stiffness, and the shear behavior is mainly governed by Van der Waals (VdW) forces. In addition, we report a negligible torsional stiffness, which may explain the CNC tendency to easily twist under very small or nonexistent torques. In addition, the sensitivity of geometrical imperfection on the mechanical properties using an analytical model of the CNC structure was investigated. Our results indicate that the presence of imperfections have a small influence on the majority of the elastic properties. Finally, it is shown that a simple homogeneous and orthotropic representation of a CNC under bending underestimates the contribution of non-bonded interaction leading up to 60% error in the calculation of the bending stiffness of CNCs. On the other hand, the proposed model can lead to more accurate predictions of the elastic behavior of CNCs. This is the first step toward the development of a more efficient model that can be used to model the inelastic behavior of single and multiple CNCs.

  9. Effect of crystallographic orientations of grains on the global mechanical properties of steel sheets by depth sensing indentation

    NASA Astrophysics Data System (ADS)

    Burik, P.; Pesek, L.; Kejzlar, P.; Andrsova, Z.; Zubko, P.

    2017-01-01

    The main idea of this work is using a physical model to prepare a virtual material with required properties. The model is based on the relationship between the microstructure and mechanical properties. The macroscopic (global) mechanical properties of steel are highly dependent upon microstructure, crystallographic orientation of grains, distribution of each phase present, etc... We need to know the local mechanical properties of each phase separately in multiphase materials. The grain size is a scale, where local mechanical properties are responsible for the behavior. Nanomechanical testing using depth sensing indentation (DSI) provides a straightforward solution for quantitatively characterizing each of phases in microstructure because it is very powerful technique for characterization of materials in small volumes. The aim of this experimental investigation is: (i) to prove how the mixing rule works for local mechanical properties (indentation hardness HIT) in microstructure scale using the DSI technique on steel sheets with different microstructure; (ii) to compare measured global properties with properties achieved by mixing rule; (iii) to analyze the effect of crystallographic orientations of grains on the mixing rule.

  10. Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA

    NASA Astrophysics Data System (ADS)

    Lin, Liulan; Zhang, Lingfeng; Guo, Yanwei

    2018-01-01

    In this study, the effect of content of glutaraldehyde (GA) on the shape memory behavior of a shape memory polymer based on polyvinyl alcohol chemically cross-linked with GA was investigated. Thermal-responsive shape memory composites with three different GA levels, GA-PVA (3 wt%, 5 wt%, 7 wt%), were prepared by particle melting, mold forming and freeze-drying technique. The mechanical properties, thermal properties and shape memory behavior were measured by differential scanning calorimeter, physical bending test and cyclic thermo-mechanical test. The addition of GA to PVA led to a steady shape memory transition temperature and an improved mechanical compressive strength. The composite with 5 wt% of GA exhibited the best shape recoverability. Further increase in the crosslinking agent content of GA would reduce the recovery force and prolong the recovery time due to restriction in the movement of the soft PVA chain segments. These results provide important information for the study on materials in 4D printing.

  11. Mechanical and hydraulic properties of rocks related to induced seismicity

    USGS Publications Warehouse

    Witherspoon, P.A.; Gale, J.E.

    1977-01-01

    Witherspoon, P.A. and Gale, J.E., 1977. Mechanical and hydraulic properties of rocks related to induced seismicity. Eng. Geol., 11(1): 23-55. The mechanical and hydraulic properties of fractured rocks are considered with regard to the role they play in induced seismicity. In many cases, the mechanical properties of fractures determine the stability of a rock mass. The problems of sampling and testing these rock discontinuities and interpreting their non-linear behavior are reviewed. Stick slip has been proposed as the failure mechanism in earthquake events. Because of the complex interactions that are inherent in the mechanical behavior of fractured rocks, there seems to be no simple way to combine the deformation characteristics of several sets of fractures when there are significant perturbations of existing conditions. Thus, the more important fractures must be treated as individual components in the rock mass. In considering the hydraulic properties, it has been customary to treat a fracture as a parallel-plate conduit and a number of mathematical models of fracture systems have adopted this approach. Non-steady flow in fractured systems has usually been based on a two-porosity model, which assumes the primary (intergranular) porosity contributes only to storage and the secondary (fracture) porosity contributes only to the overall conductivity. Using such a model, it has been found that the time required to achieve quasi-steady state flow in a fractured reservoir is one or two orders of magnitude greater than it is in a homogeneous system. In essentially all of this work, the assumption has generally been made that the fractures are rigid. However, it is clear from a review of the mechanical and hydraulic properties that not only are fractures easily deformed but they constitute the main flow paths in many rock masses. This means that one must consider the interaction of mechanical and hydraulic effects. A considerable amount of laboratory and field data is now available that clearly demonstrates this stress-flow behavior. Two approaches have been used in attempting to numerically model such behavior: (1) continuum models, and (2) discrete models. The continuum approach only needs information as to average values of fracture spacing and material properties. But because of the inherent complexity of fractured rock masses and the corresponding decrease in symmetry, it is difficult to develop an equivalent continuum that will simulate the behavior of the entire system. The discrete approach, on the other hand, requires details of the fracture geometry and material properties of both fractures and rock matrix. The difficulty in obtaining such information has been considered a serious limitation of discrete models, but improved borehole techniques can enable one to obtain the necessary data, at least in shallow systems. The possibility of extending these methods to deeper fracture systems needs more investigation. Such data must be considered when deciding whether to use a continuum or discrete model to represent the interaction of rock and fluid forces in a fractured rock system, especially with regard to the problem of induced seismicity. When one is attempting to alter the pressure distribution in a fault zone by injection or withdrawal of fluids, the extent to which this can be achieved will be controlled in large measure by the behavior of the fractures that communicate with the borehole. Since this is essentially a point phenomenon, i.e., the changes will propagate from a relatively small region around the borehole, the use of a discrete model would appear to be preferable. ?? 1977.

  12. Determination of prestress and elastic properties of virus capsids

    NASA Astrophysics Data System (ADS)

    Aggarwal, Ankush

    2018-03-01

    Virus capsids are protein shells that protect the virus genome, and determination of their mechanical properties has been a topic of interest because of their potential use in nanotechnology and therapeutics. It has been demonstrated that stresses exist in virus capsids, even in their equilibrium state, due to their construction. These stresses, termed "prestresses" in this study, closely affect the capsid's mechanical behavior. Three methods—shape-based metric, atomic force microscope indentation, and molecular dynamics—have been proposed to determine the capsid elastic properties without fully accounting for prestresses. In this paper, we theoretically analyze the three methods used for mechanical characterization of virus capsids and numerically investigate how prestresses affect the capsid's mechanical properties. We consolidate all the results and propose that by using these techniques collectively, it is possible to accurately determine both the mechanical properties and prestresses in capsids.

  13. Modelling of the mechanical behavior of a polyurethane finger interphalangeal joint endoprosthesis after surface modification by ion implantation

    NASA Astrophysics Data System (ADS)

    Beliaev, A.; Svistkov, A.; Iziumov, R.; Osorgina, I.; Kondyurin, A.; Bilek, M.; McKenzie, D.

    2016-04-01

    Production of biocompatible implants made of polyurethane treated with plasma is very perspective. During plasma treatment the surface of polyurethane acquires unique physic-chemical properties. However such treatment may change the mechanical properties of polyurethane which may adversely affect the deformation behaviour of the real implant. Therefore careful study of the mechanical properties of the plasma-modified polyurethane is needed. In this paper, experimental observations of the elastic characteristics of plasma treated polyurethane and modelling of the deformation behaviour of polyurethane bio-implants are reported.

  14. Tensile strength of Iß crystalline cellulose predicted by molecular dynamics simulation

    Treesearch

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2014-01-01

    The mechanical properties of Iß crystalline cellulose are studied using molecular dynamics simulation. A model Iß crystal is deformed in the three orthogonal directions at three different strain rates. The stress-strain behaviors for each case are analyzed and then used to calculate mechanical properties. The results show that the elastic modulus, Poisson's ratio...

  15. Mechanical Properties and Fracture Behaviors of the As-Extruded Mg-5Al-3Ca Alloys Containing Yttrium at Elevated Temperature.

    PubMed

    Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee

    2016-02-01

    Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound.

  16. The effects of glycosaminoglycan degradation on the mechanical behavior of the posterior porcine sclera

    PubMed Central

    Murienne, Barbara J.; Jefferys, Joan L.; Quigley, Harry A.; Nguyen, Thao D.

    2014-01-01

    Pathological changes in scleral glycosaminoglycan (GAG) content and in scleral mechanical properties have been observed in eyes with glaucoma and myopia. The purpose of this study is to investigate the effect of GAG removal on the scleral mechanical properties to better understand the impact of GAG content variations in the pathophysiology of glaucoma and myopia. We measured how the removal of sulphated GAG (s-GAG) affected the hydration, thickness and mechanical properties of the posterior sclera in enucleated eyes of 6–9 month-old pigs. Measurements were made in 4 regions centered on the optic nerve head (ONH) and evaluated under 3 conditions: no treatment (control), after treatment in buffer solution alone, and after treatment in buffer containing chondroitinase ABC (ChABC) to remove s-GAGs. The specimens were mechanically tested by pressure-controlled inflation with full-field deformation mapping using digital image correlation (DIC). The mechanical outcomes described the tissue tensile and viscoelastic behavior. Treatment with buffer alone increased the hydration of the posterior sclera compared to controls, while s-GAG removal caused a further increase in hydration compared to buffer-treated scleras. Buffer-treatment significantly changed the scleral mechanical behavior compared to the control condition, in a manner consistent with an increase in hydration. Specifically, buffer-treatment led to an increase in low-pressure stiffness, hysteresis, and creep rate, and a decrease in high-pressure stiffness. ChABC-treatment on buffer-treated scleras had opposite mechanical effects than buffer-treatment on controls, leading to a decrease in low-pressure stiffness, hysteresis, and creep rate, and an increase in high-pressure stiffness and transition strain. Furthermore, s-GAG digestion dramatically reduced the differences in the mechanical behavior among the 4 quadrants surrounding the ONH as well as the differences between the circumferential and meridional responses compared to the buffer-treated condition. These findings demonstrate a significant effect of s-GAGs on both the stiffness and time-dependent behavior of the sclera. Alterations in s-GAG content may contribute to the altered creep and stiffness of the sclera of myopic and glaucoma eyes. PMID:25448352

  17. Effect of Heat Index on Microstructure and Mechanical Behavior of Friction Stir Processed AZ31

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Mishra, Rajiv S.

    Friction stir processing modifies the micro structure and properties of metals through intense plastic deformation. The frictional heat input affects the microstructure evolution and resulting mechanical properties. 2 mm thick commercial AZ31B-H24 Mg alloy was friction stir processed under various process parameter combinations to investigate the effect of heat index on micro structure and properties. Recrystallized grain structure in the nugget region was observed for all processing conditions with decrease in hardness. Results indicate a reduced tensile yield strength and ultimate tensile strength compared to the as-received material in H-temper, but with an improved hardening capacity. The strain hardening behavior of friction stir processed material is discussed.

  18. The wave attenuation mechanism of the periodic local resonant metamaterial

    NASA Astrophysics Data System (ADS)

    Chang, I.-Ling; Liang, Zhen-Xian; Kao, Hao-Wei; Chang, Shih-Hsiang; Yang, Chih-Ying

    2018-01-01

    This research discusses the wave propagation behavior and attenuation mechanism of the elastic metamaterial with locally resonant sub-structure. The dispersion relation of the single resonance system, i.e., periodic spring mass system with sub-structure, could be derived based on lattice dynamics and the band gap could be easily identified. The dynamically equivalent properties, i.e., mass and elastic property, of the single resonance system are derived and found to be frequency dependent. Negative effective properties are found in the vicinity of the local resonance. It is examined whether the band gap always coincides with the frequency range of negative effective properties. The wave attenuation mechanism and the characteristic dynamic behavior of the elastic metamaterial are also studied from the energy point of view. From the analysis, it is clarified that the coupled Bragg-resonance band gap is much wider than the narrow-banded local resonance and the corresponding effective material properties at band gap could be either positive or negative. However, the band gap is totally overlapping with the frequency range of negative effective properties for the metamaterial with band gap purely caused by local resonance. The presented analysis can be extended to other forms of elastic metamaterials involving periodic resonator structures.

  19. Mechanical Behavior of Al-SiC Nanolaminate Composites Using Micro-Scale Testing Methods

    NASA Astrophysics Data System (ADS)

    Mayer, Carl Randolph

    Nanolaminate composite materials consist of alternating layers of materials at the nanoscale (≤100 nm). Due to the nanometer scale thickness of their layers, these materials display unique and tailorable properties. This enables us to alter both mechanical attributes such as strength and wear properties, as well as functional characteristics such as biocompatibility, optical, and electronic properties. This dissertation focuses on understanding the mechanical behavior of the Al-SiC system. From a practical perspective, these materials exhibit a combination of high toughness and strength which is attractive for many applications. Scientifically, these materials are interesting due to the large elastic modulus mismatch between the layers. This, paired with the small layer thickness, allows a unique opportunity for scientists to study the plastic deformation of metals under extreme amounts of constraint. Previous studies are limited in scope and a more diverse range of mechanical characterization is required to understand both the advantages and limitations of these materials. One of the major challenges with testing these materials is that they are only able to be made in thicknesses on the order of micrometers so the testing methods are limited to small volume techniques. This work makes use of both microscale testing techniques from the literature as well as novel methodologies. Using these techniques we are able to gain insight into aspects of the material's mechanical behavior such as the effects of layer orientation, flaw dependent fracture, tension-compression asymmetry, fracture toughness as a function of layer thickness, and shear behavior as a function of layer thickness.

  20. Microstructure and Strain Rate Effects on the Mechanical Behavior of Particle Reinforced Epoxy-Based Reactive Materials

    DTIC Science & Technology

    2011-12-01

    LIST OF TABLES 2.1 Experimentally measured mechanical properties of pure epoxy and Ni+ Al powder -reinforced composites...for the same quantity of Cu , Ni, and Al deposited . Figure taken from [31]. stronger reactivity of Cu with metals also caused clusters to form. In the...Experimentally measured mechanical properties of pure epoxy and Ni+ Al powder -reinforced composites. Table data is from [14] Material Density Measured E

  1. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks.

    PubMed

    Sapudom, Jiranuwat; Rubner, Stefan; Martin, Steve; Kurth, Tony; Riedel, Stefanie; Mierke, Claudia T; Pompe, Tilo

    2015-06-01

    The behavior of cancer cells is strongly influenced by the properties of extracellular microenvironments, including topology, mechanics and composition. As topological and mechanical properties of the extracellular matrix are hard to access and control for in-depth studies of underlying mechanisms in vivo, defined biomimetic in vitro models are needed. Herein we show, how pore size and fibril diameter of collagen I networks distinctively regulate cancer cell morphology and invasion. Three-dimensional collagen I matrices with a tight control of pore size, fibril diameter and stiffness were reconstituted by adjustment of concentration and pH value during matrix reconstitution. At first, a detailed analysis of topology and mechanics of matrices using confocal laser scanning microscopy, image analysis tools and force spectroscopy indicate pore size and not fibril diameter as the major determinant of matrix elasticity. Secondly, by using two different breast cancer cell lines (MDA-MB-231 and MCF-7), we demonstrate collagen fibril diameter--and not pore size--to primarily regulate cell morphology, cluster formation and invasion. Invasiveness increased and clustering decreased with increasing fibril diameter for both, the highly invasive MDA-MB-231 cells with mesenchymal migratory phenotype and the MCF-7 cells with amoeboid migratory phenotype. As this behavior was independent of overall pore size, matrix elasticity is shown to be not the major determinant of the cell characteristics. Our work emphasizes the complex relationship between structural-mechanical properties of the extracellular matrix and invasive behavior of cancer cells. It suggests a correlation of migratory and invasive phenotype of cancer cells in dependence on topological and mechanical features of the length scale of single fibrils and not on coarse-grained network properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effect of vitro preservation on mechanical properties of brain tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Yi-fan; Liu, Li-fu; Niu, Ying; Ma, Jian-li; Wu, Cheng-wei

    2017-05-01

    To develop the protective devices for preventing traumatic brain injuries, it requires the accurate characterization of the mechanical properties of brain tissue. For this, it necessary to elucidate the effect of vitro preservation on the mechanical performance of brain tissue as usually the measurements are carried out in vitro. In this paper, the thermal behavior of brain tissue preserved for various period of time was first investigated and the mechanical properties were also measured. Both reveals the deterioration with prolonged preservation duration. The observations of brain tissue slices indicates the brain tissue experiences karyorrhexis and karyorrhexis in sequence, which accounts for the deterioration phenomena.

  3. Influence of zirconium additions on nitinol shape memory phase stability, transformation temperatures, and thermo-mechanical properties

    NASA Astrophysics Data System (ADS)

    Kornegay, Suzanne M.

    This research focuses on exploring the influence of Zr additions in Ni-rich Nitinol alloys on the phase stability, transformation temperatures, and thermo-mechanical behavior using various microanalysis techniques. The dissertation is divided into three major bodies of work: (1) The microstructural and thermo-mechanical characterization of a 50.3Ni-32.2Ti-17.5Zr (at.%) Zr alloy; (2) The characterization and mechanical behavior of 50.3Ni-48.7Ti-1Zr and 50.3Ni-48.7Ti-1Hf alloys to determine how dilute additions alter the phases, transformation temperatures, and thermo-mechanical properties; and (3) The microstructural evolution and transformation behavior comparison of microstructure and transformation temperature for 50.3Ni-(49.7-X)Ti-XZr alloys, where X is 1,7, or 17.5% Zr aged at either 400°C and 550°C. The major findings of this work include the following: (1) In the dilute limit of 1% Zr, at 400°C aging, a spherical precipitate, denoted as the S-phase, was observed. This is the first report of this phase. Further aging resulted in the secondary precipitation event of the H-phase. Increasing the aging temperature to 550°C, resulted in no evident precipitation of the S- and H-phase precipitates suggestive this temperature is above the solvus boundary for these compositions. (2) For the 7% and 17.5% Zr alloys, aging at 400°C and 550°C resulted in the precipitation of the H-phase. For the lower temperature anneal, this phase required annealing up to 300 hours of aging to be observed for the 17.5% Zr alloy. Upon increasing the aging temperature, the H-phase precipitation was present in both alloys. The transformation behavior and thermo-mechanical properties are linked to the precipitation behavior.

  4. DE-NE0000724 - Research Performance Final Report - Investigation of Thermal Aging Effects on the Evolution of Microstructure and Mechanical Properties of Cast Duplex Stainless Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankem, Sreeramamurthy; Perea, Daniel E.; Kolli, R. Prakash

    This report details the research activities carried out under DOE-NEUP award number DE-NE0000724 concerning the evolution of structural and mechanical properties during thermal aging of CF–3 and CF–8 cast duplex stainless steels (CDSS). The overall objective of this project was to use state-of-the-art characterization techniques to elucidate trends and phenomena in the mechanical and structural evolution of cast duplex stainless steels (CDSS) during thermal aging. These steels are commonly used as structural materials in commercial light water nuclear power plants, undergoing aging for decades in operation as cooling water pipes, pump casings, valve bodies, etc. During extended exposure to thesemore » conditions, CDSS are known to undergo a change in mechanical properties resulting in a loss of ductility, i.e. embrittlement. While it is generally accepted that structural changes within the ferrite phase, such as decomposition into iron (Fe)-rich and chromium (Cr)-rich domains, lead to the bulk embrittlement of the steels, many questions remain as to the mechanisms of embrittlement at multiple length scales. This work is intended to shed insight into the atomic level composition changes, associated kinetic mechanisms, and effects of changing phase structure on micro- and nano-scale deformation that lead to loss of impact toughness and tensile ductility in these steels. In general, this project provides a route to answer some of these major questions using techniques such as 3-dimensional (3-D) atom probe tomography (APT) and real-microstructure finite element method (FEM) modeling, which were not readily available when these steels were originally selected for service in light water reactors. Mechanical properties evaluated by Charpy V-notch impact testing (CVN), tensile testing, and microhardness and nanohardness measurements were obtained for each condition and compared with the initial baseline properties to view trends in deformation behavior during aging. Concurrent analysis of the microstructure and nanostructure by atom probe tomography (APT) and transmission electron microscopy (TEM) provide mechanistic insight into the kinetic and mechanical behavior occurring on the nano-scale. The presence and morphology of the ferrite, austenite, and carbide phases have been characterized, and formation of new phases during aging, including spinodal decomposition products (α- and α'-ferrite) and G-phase, have been observed. The mechanical and structural characterization have been used to create accurate FEM models based on the real micro- and nano-structures of the systems. These models provide new insight into the local deformation behavior of these steels and the effects of each individual phase (including ferrite, austenite, carbides, and spinodal decomposition products) on the evolving bulk mechanical behavior of the system. The project was divided into three major tasks: 1. Initial Microstructure and Mechanical Property Survey and Initiate Heat Treatment; 2. Microstructural Characterization and Mechanical Property Testing During Aging; and 3. Microstructure-based Finite Element Modeling. Each of these tasks was successfully executed, resulting in reliable data and analysis that add to the overall body of work on the CDSS materials. Baseline properties and aging trends in mechanical data confirm prior observations and add new insights into the mechanical behavior of the steels. Structural characterization on multiple length scales provides new information on phase changes occurring during aging and sheds light on the kinetic processes occurring at the atomic scale. Furthermore, a combination of mechanical testing and microstructural characterization techniques was utilized to design FEM models of local deformation behavior of the ferrite and austenite phases, providing valuable new information regarding the effects of each of the microstructural components on the hardening and embrittlement processes. The data and analysis presented in this report and the publication associated with this project (§V) increase the understanding of aging and deformation in CF–3 and CF–8 steels. These results provide valuable information that can be utilized to aid in making informed decisions regarding the ongoing use of these steels in commercial nuclear infrastructure.« less

  5. A computational modeling approach for the characterization of mechanical properties of 3D alginate tissue scaffolds.

    PubMed

    Nair, K; Yan, K C; Sun, W

    2008-01-01

    Scaffold guided tissue engineering is an innovative approach wherein cells are seeded onto biocompatible and biodegradable materials to form 3-dimensional (3D) constructs that, when implanted in the body facilitate the regeneration of tissue. Tissue scaffolds act as artificial extracellular matrix providing the environment conducive for tissue growth. Characterization of scaffold properties is necessary to understand better the underlying processes involved in controlling cell behavior and formation of functional tissue. We report a computational modeling approach to characterize mechanical properties of 3D gellike biomaterial, specifically, 3D alginate scaffold encapsulated with cells. Alginate inherent nonlinearity and variations arising from minute changes in its concentration and viscosity make experimental evaluation of its mechanical properties a challenging and time consuming task. We developed an in silico model to determine the stress-strain relationship of alginate based scaffolds from experimental data. In particular, we compared the Ogden hyperelastic model to other hyperelastic material models and determined that this model was the most suitable to characterize the nonlinear behavior of alginate. We further propose a mathematical model that represents the alginate material constants in Ogden model as a function of concentrations and viscosity. This study demonstrates the model capability to predict mechanical properties of 3D alginate scaffolds.

  6. Influence of internal composition on physicochemical properties of alginate aqueous-core capsules.

    PubMed

    Ben Messaoud, Ghazi; Sánchez-González, Laura; Probst, Laurent; Desobry, Stéphane

    2016-05-01

    To enhance physicochemical properties of alginate aqueous-core capsules, conventional strategies were focused in literature on designing composite and coated capsules. In the present study, own effect of liquid-core composition on mechanical and release properties was investigated. Capsules were prepared by dripping a CaCl2 solution into an alginate gelling solution. Viscosity of CaCl2 solution was adjusted by adding cationic, anionic and non-ionic naturally derived polymers, respectively chitosan, xanthan gum and guar gum. In parallel, uniform alginate hydrogels were prepared by different methods (pouring, in situ forming and mixing). Mechanical stability of capsules and plane hydrogels were respectively evaluated by compression experiments and small amplitude oscillatory shear rheology and then correlated. Capsules permeability was evaluated by monitoring diffusion of encapsulated cochineal dye, riboflavin and BSA. The core-shell interactions were investigated by ATR-FTIR. Results showed that inner polymer had an impact on membrane stability and could act as an internal coating or provide mechanical reinforcement. Mechanical properties of alginate capsules were in a good agreement with rheological behavior of plane hydrogels. Release behavior of the entrapped molecules changed considerably. This study demonstrated the importance of aqueous-core composition, and gave new insights for possible adjusting of microcapsules physicochemical properties by modulating core-shell interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Interplay of differential cell mechanical properties, motility, and proliferation in emergent collective behavior of cell co-cultures

    NASA Astrophysics Data System (ADS)

    Sutter, Leo; Kolbman, Dan; Wu, Mingming; Ma, Minglin; Das, Moumita

    The biophysics of cell co-cultures, i.e. binary systems of cell populations, is of great interest in many biological processes including formation of embryos, and tumor progression. During these processes, different types of cells with different physical properties are mixed with each other, with important consequences for cell-cell interaction, aggregation, and migration. The role of the differences in their physical properties in their collective behavior remains poorly understood. Furthermore, until recently most theoretical studies of collective cell migration have focused on two dimensional systems. Under physiological conditions, however, cells often have to navigate three dimensional and confined micro-environments. We study a confined, three-dimensional binary system of interacting, active, and deformable particles with different physical properties such as deformability, motility, adhesion, and division rates using Langevin Dynamics simulations. Our findings may provide insights into how the differences in and interplay between cell mechanical properties, division, and motility influence emergent collective behavior such as cell aggregation and segregation experimentally observed in co-cultures of breast cancer cells and healthy breast epithelial cells. This work was partially supported by a Cottrell College Science Award.

  8. Determination of the axial and circumferential mechanical properties of the skin tissue using experimental testing and constitutive modeling.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Haghighatnama, Maedeh; Haghi, Afsaneh Motevalli

    2015-01-01

    The skin, being a multi-layered material, is responsible for protecting the human body from the mechanical, bacterial, and viral insults. The skin tissue may display different mechanical properties according to the anatomical locations of a body. However, these mechanical properties in different anatomical regions and at different loading directions (axial and circumferential) of the mice body to date have not been determined. In this study, the axial and circumferential loads were imposed on the mice skin samples. The elastic modulus and maximum stress of the skin tissues were measured before the failure occurred. The nonlinear mechanical behavior of the skin tissues was also computationally investigated through a suitable constitutive equation. Hyperelastic material model was calibrated using the experimental data. Regardless of the anatomic locations of the mice body, the results revealed significantly different mechanical properties in the axial and circumferential directions and, consequently, the mice skin tissue behaves like a pure anisotropic material. The highest elastic modulus was observed in the back skin under the circumferential direction (6.67 MPa), while the lowest one was seen in the abdomen skin under circumferential loading (0.80 MPa). The Ogden material model was narrowly captured the nonlinear mechanical response of the skin at different loading directions. The results help to understand the isotropic/anisotropic mechanical behavior of the skin tissue at different anatomical locations. They also have implications for a diversity of disciplines, i.e., dermatology, cosmetics industry, clinical decision making, and clinical intervention.

  9. Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray

    NASA Astrophysics Data System (ADS)

    Rokni, M. R.; Nutt, S. R.; Widener, C. A.; Champagne, V. K.; Hrabe, R. H.

    2017-08-01

    In the cold spray (CS) process, deposits are produced by depositing powder particles at high velocity onto a substrate. Powders deposited by CS do not undergo melting before or upon impacting the substrate. This feature makes CS suitable for deposition of a wide variety of materials, most commonly metallic alloys, but also ceramics and composites. During processing, the particles undergo severe plastic deformation and create a more mechanical and less metallurgical bond with the underlying material. The deformation behavior of an individual particle depends on multiple material and process parameters that are classified into three major groups—powder characteristics, geometric parameters, and processing parameters, each with their own subcategories. Changing any of these parameters leads to evolution of a different microstructure and consequently changes the mechanical properties in the deposit. While cold spray technology has matured during the last decade, the process is inherently complex, and thus, the effects of deposition parameters on particle deformation, deposit microstructure, and mechanical properties remain unclear. The purpose of this paper is to review the parameters that have been investigated up to now with an emphasis on the existent relationships between particle deformation behavior, microstructure, and mechanical properties of various cold spray deposits.

  10. Extreme mechanical properties of materials under extreme pressure and temperature conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Armentrout, M. M.; Xie, M.; Weinberger, M.; Kaner, R. B.; Tolbert, S. H.

    2010-12-01

    A strong synergy ties together the high-pressure subfields of mineral physics, solid-state physics, and materials engineering. The catalog of studies measuring the mechanical properties of materials subjected to large differential stresses in the diamond anvil cell demonstrates a significant pressure-enhancement of strength across many classes of materials, including elemental solids, salts, oxides, silicates, and borides and nitrides. High pressure techniques—both radial diffraction and laser heating in the diamond anvil cell—can be used to characterize the behavior of ultrahard materials under extreme conditions, and help test hypotheses about how composition, structure, and bonding work together to govern the mechanical properties of materials. The principles that are elucidated by these studies can then be used to help design engineering materials to encourage desired properties. Understanding Earth and planetary interiors requires measuring equations of state of relevant materials, including oxides, silicates, and metals under extreme conditions. If these minerals in the diamond anvil cell have any ability to support a differential stress, the assumption of quasi-hydrostaticity no longer applies, with a resulting non-salubrious effect on attempts to measure equation of state. We illustrate these applications with the results of variety of studies from our laboratory and others’ that have used high-pressure radial diffraction techniques and also laser heating in the diamond anvil cell to characterize the mechanical properties of a variety of ultrahard materials, especially osmium metal, osmium diboride, rhenium diboride, and tungsten tetraboride. We compare ambient condition strength studies such as hardness testing with high-pressure studies, especially radial diffraction under differential stress. In addition, we outline criteria for evaluating mechanical properties of materials at combination high pressures and temperatures. Finally, we synthesize our understanding of mechanical properties and composite behavior to suggest new approaches to designing high-pressure experiments to target specific measurements of a wide variety of mechanical properties.

  11. Effect of space exposure of some epoxy matrix composites on their thermal expansion and mechanical properties (AO 138-8)

    NASA Technical Reports Server (NTRS)

    Jabs, Heinrich

    1991-01-01

    The experiment objectives are: to detect a variation of the coefficient of thermal expansion (CTE) of composite samples; to detect an evolution of mechanical properties; to compare the behavior of two epoxy resins. The CTE is measured by interferometric method in a vacuum chamber. The following mechanical tests are achieved on the samples: interlaminar shear strength; flexural strength; flatwise tensile strength. The results are reported.

  12. The structural, electronic, magnetic, and mechanical properties of perovskite oxides PbM1/2Nb1/2O3 (M = Fe, Co and Ni)

    NASA Astrophysics Data System (ADS)

    Erkisi, A.; Surucu, G.; Deligoz, E.

    2018-03-01

    In this study, the structural, electronic, magnetic, and mechanical properties of perovskite oxides PbM1/2Nb1/2O3 (M = Fe, Co and Ni) are investigated. The systems are treated in ferromagnetic order. The calculations are carried out in the framework of density functional theory (DFT) within the plane-wave pseudopotential method. The exchange-correlation potential is approximated by generalized-gradient spin approach (GGA). The intra-atomic Coulomb repulsion is also taken into account in calculations (GGA + U). We have considered two generalized-gradient spin approximation functionals, which are Perdew-Burke-Ernzerhof (PBE) and PBE for solids (PBEsol) for structural parameter calculations when it included Hubbard potential. Although the spin-polarized electronic band structures of PbCo1/2Nb1/2O3 and PbNi1/2Nb1/2O3 systems exhibit metallic property in ferromagnetic phase, a bandgap is observed in spin-down states of PbFe1/2Nb1/2O3 resulting in half-metallic behavior. The main reason for this behavior is attributed to the hybridization between d-states of transition metal atoms and p-states of oxygen atoms. The stability mechanically and the calculated mechanical properties by using elastic constants show that these compounds are mechanically stable in tetragonal phase and have anisotropic character mechanically.

  13. Broadband electromagnetic analysis of compacted kaolin

    NASA Astrophysics Data System (ADS)

    Bore, Thierry; Wagner, Norman; Cai, Caifang; Scheuermann, Alexander

    2017-01-01

    The mechanical compaction of soil influences not only the mechanical strength and compressibility but also the hydraulic behavior in terms of hydraulic conductivity and soil suction. At the same time, electric and dielectric parameters are increasingly used to characterize soil and to relate them with mechanic and hydraulic parameters. In the presented study electromagnetic soil properties and suction were measured under defined conditions of standardized compaction tests. The impact of external mechanical stress conditions of nearly pure kaolinite was analyzed on soil suction and broadband electromagnetic soil properties. An experimental procedure was developed and validated to simultaneously determine mechanical, hydraulic and broadband (1 MHz-3 GHz) electromagnetic properties of the porous material. The frequency dependent electromagnetic properties were modeled with a classical mixture equation (advanced Lichtenecker and Rother model, ALRM) and a hydraulic-mechanical-electromagnetic coupling approach was introduced considering water saturation, soil structure (bulk density, porosity), soil suction (pore size distribution, water sorption) as well as electrical conductivity of the aqueous pore solution. Moreover, the relaxation behavior was analyzed with a generalized fractional relaxation model concerning a high-frequency water process and two interface processes extended with an apparent direct current conductivity contribution. The different modeling approaches provide a satisfactory agreement with experimental data for the real part. These results show the potential of broadband electromagnetic approaches for quantitative estimation of the hydraulic state of the soil during densification.

  14. Formation of functionalized nanoclusters by solvent evaporation and their effect on the physicochemical properties of dental composite resins.

    PubMed

    Rodríguez, Henry A; Giraldo, Luis F; Casanova, Herley

    2015-07-01

    The aim of this work was to study the effect of silica nanoclusters (SiNC), obtained by a solvent evaporation method and functionalized by 3-methacryloxypropyltrimethoxysilane (MPS) and MPS+octyltrimethoxysilane (OTMS) (50/50wt/wt), on the rheological, mechanical and sorption properties of urethane dimethylacrylate (UDMA)/triethylenglycol dimethacrylate (TEGDMA) (80/20wt/wt) resins blend. Silica nanoparticles (SiNP) were silanized with MPS or MPS+OTMS (50/50wt/wt) and incorporated in an UDMA-isopropanol mix to produce functionalized silica nanoclusters after evaporating the isopropanol. The effect of functionalized SiNC on resins rheological properties was determined by large and small deformation tests. Mechanical, thermal, sorption and solubility properties were evaluated for composite materials. The UDMA/TEGDMA (80/20wt/wt) resins blend with added SiNC (ca. 350nm) and functionalized with MPS showed a Newtonian flow behavior associated to their spheroidal shape, whereas the resins blend with nanoclusters silanized with MPS+OTMS (50/50wt/wt) (ca. 400nm) showed a shear-thinning behavior due to nanoclusters irregular shape. Composite materials prepared with bare silica nanoclusters showed lower compressive strength than functionalized silica nanoclusters. MPS functionalized nanoclusters showed better mechanical properties but higher water sorption than functionalized nanoclusters with both silane coupling agents, MPS and OTMS. The solvent evaporation method applied to functionalized nanoparticles showed to be an alternative way to the sinterization method for producing nanoclusters, which improved some dental composite mechanical properties and reduced water sorption. The shape of functionalized silica nanoclusters showed to have influence on the rheological properties of SiNC resin suspensions and the mechanical and sorption properties of light cured composites. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture

    NASA Astrophysics Data System (ADS)

    Nadkarni, Seemantini K.

    2013-12-01

    During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recognition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease progression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current optical technologies that provide information on the mechanical properties of arterial tissue to advance our understanding of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical approaches discussed include optical microrheology and traction force microscopy that probe the mechanical behavior of single cell and extracellular matrix components, and intravascular imaging modalities including laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating the mechanical aspects of coronary atherosclerosis in the future.

  16. A zebrafish embryo behaves both as a "cortical shell-liquid core" structure and a homogeneous solid when experiencing mechanical forces.

    PubMed

    Liu, Fei; Wu, Dan; Chen, Ken

    2014-12-01

    Mechanical properties are vital for living cells, and various models have been developed to study the mechanical behavior of cells. However, there is debate regarding whether a cell behaves more similarly to a "cortical shell-liquid core" structure (membrane-like) or a homogeneous solid (cytoskeleton-like) when experiencing stress by mechanical forces. Unlike most experimental methods, which concern the small-strain deformation of a cell, we focused on the mechanical behavior of a cell undergoing small to large strain by conducting microinjection experiments on zebrafish embryo cells. The power law with order of 1.5 between the injection force and the injection distance indicates that the cell behaves as a homogenous solid at small-strain deformation. The linear relation between the rupture force and the microinjector radius suggests that the embryo behaves as membrane-like when subjected to large-strain deformation. We also discuss the possible reasons causing the debate by analyzing the mechanical properties of F-actin filaments.

  17. Nonlinear Viscoelastic Characterization of the Porcine Spinal Cord

    PubMed Central

    Shetye, Snehal; Troyer, Kevin; Streijger, Femke; Lee, Jae H. T.; Kwon, Brian K.; Cripton, Peter; Puttlitz, Christian M.

    2014-01-01

    Although quasi-static and quasi-linear viscoelastic properties of the spinal cord have been reported previously, there are no published studies that have investigated the fully (strain-dependent) nonlinear viscoelastic properties of the spinal cord. In this study, stress relaxation experiments and dynamic cycling were performed on six fresh porcine lumbar cord specimens to examine their viscoelastic mechanical properties. The stress relaxation data were fitted to a modified superposition formulation and a novel finite ramp time correction technique was applied. The parameters obtained from this fitting methodology were used to predict the average dynamic cyclic viscoelastic behavior of the porcine cord. The data indicate that the porcine spinal cord exhibited fully nonlinear viscoelastic behavior. The average weighted RMSE for a Heaviside ramp fit was 2.8kPa, which was significantly greater (p < 0.001) than that of the nonlinear (comprehensive viscoelastic characterization (CVC) method) fit (0.365kPa). Further, the nonlinear mechanical parameters obtained were able to accurately predict the dynamic behavior, thus exemplifying the reliability of the obtained nonlinear parameters. These parameters will be important for future studies investigating various damage mechanisms of the spinal cord and studies developing high resolution finite elements models of the spine. PMID:24211612

  18. Influence of Deformation Mechanisms on the Mechanical Behavior of Metals and Alloys: Experiments, Constitutive Modeling, and Validation

    NASA Astrophysics Data System (ADS)

    Gray, G. T.; Cerreta, E.; Chen, Shuh Rong; Maudlin, P. J.

    2004-06-01

    Jim Williams has made seminal contributions to the field of structure / property relations and its controlling effects on the mechanical behavior of metals and alloys. This talk will discuss experimental results illustrating the role of interstitial content, grain size, texture, temperature, and strain rate on the operative deformation mechanisms, mechanical behavior, and substructure evolution in titanium, zirconium, hafnium, and rhenium. Increasing grain size is shown to significantly decrease the dynamic flow strength of Ti and Zr while increasing work-hardening rates due to an increased incidence of deformation twinning. Increasing oxygen interstitial content is shown to significantly alter both the constitutive response and α-ω shock-induced phase transition in Zr. The influence of crystallographic texture on the mechanical behavior in Ti, Zr, and Hf is discussed in terms of slip system and deformation twinning activity. An example of the utility of incorporation of operative deformation mechanisms into a polycrystalline plasticity constitutive model and validation using Taylor cylinder impact testing is presented.

  19. In vivo quantification of spatially-varying mechanical properties in developing tissues

    PubMed Central

    Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Kealhofer, David A.; Lucio, Adam A.; Hockenbery, Zachary M.; Campàs, Otger

    2017-01-01

    It is generally believed that the mechanical properties of the cellular microenvironment and their spatiotemporal variations play a central role in sculpting embryonic tissues, maintaining organ architecture and controlling cell behavior, including cell differentiation. However, no direct in vivo and in situ measurement of mechanical properties within developing 3D tissues and organs has been performed yet. Here we introduce a technique that employs biocompatible ferrofluid microdroplets as local mechanical actuators and allows quantitative spatiotemporal measurements of mechanical properties in vivo. Using this technique, we show that vertebrate body elongation entails spatially-varying tissue mechanics along the anteroposterior axis. Specifically, we find that the zebrafish tailbud is viscoelastic (elastic below a few seconds and fluid after just one minute) and displays decreasing stiffness and increasing fluidity towards its posterior elongating region. This method opens new avenues to study mechanobiology in vivo, both in embryogenesis and in disease processes, including cancer. PMID:27918540

  20. Combination of experimental and numerical methods for mechanical characterization of Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Kruglova, A.; Roland, M.; Diebels, S.; Mücklich, F.

    2017-10-01

    In general, mechanical properties of Al-Si alloys strongly depend on the morphology and arrangement of microconstituents, such as primary aluminium dendrites, silicon particles, etc. Therefore, a detailed characterization of morphological and mechanical properties of the alloys is necessary to better understand the relations between the underlined properties and to tailor the material’s microstructure to the specific application needs. The mechanical characterization usually implies numerical simulations and mechanical tests, which allow to investigate the influence of different microstructural aspects on different scales. In this study, the uniaxial tension and compression tests have been carried out on Al-Si alloys having different microstructures. The mechanical behavior of the alloys has been interpreted with respect to the morphology of the microconstituents and has been correlated with the results of numerical simulations. The advantages and limitations of the experimental and numerical methods have been disclosed and the importance of combining both techniques for the interpretation of the mechanical behavior of Al-Si alloys has been shown. Thereby, it has been suggested that the density of Si particles and the size of Al dendrites are more important for the strengthening of the alloys than the size-shape features of the eutectic Si induced by the modification.

  1. Nanoindentation data analysis of loading curve performed on DLC thin films: Effect of residual stress on the elasto-plastic properties

    NASA Astrophysics Data System (ADS)

    Ouchabane, M.; Dublanche-Tixier, Ch.; Dergham, D.

    2017-11-01

    The present work is a contribution to the understanding of the mechanical behavior of DLC thin films through nanoindentation tests. DLC films of different thicknesses deposited by the PECVD process on a silicon substrate contain high residual compressive stresses when they are very thin and the stresses become relatively low and more relaxed as the film thickens. These different levels of residual stress influence the values of hardness (H) and Young's modulus (E) obtained when probing the film-substrate system by nanoindentation. It is observed that the DLC layers exhibit different mechanical behaviors even when they are deposited under the same conditions. It is proposed that the compressive stress induces structural modifications resulting in modifying the elasto-plastic properties of each thin film-substrate system. Data analysis of the loading curve can provide information on the elasto-plastic properties of DLC thin films, particularly the stiffness (S) and Er2/H, as a function of residual compressive stresses. The structural changes induced by residual stresses were probed by using Raman spectroscopy and correlated to the mechanical properties.

  2. Effect of Thermomechanical Treatment on the Environmentally Induced Cracking Behavior of AA7075 Alloy

    NASA Astrophysics Data System (ADS)

    Ghosh, Rahul; Venugopal, A.; Sankaravelayudham, P.; Panda, Rajiv; Sharma, S. C.; George, Koshy M.; Raja, V. S.

    2015-02-01

    The influence of thermomechanical treatment on the stress corrosion cracking behavior of AA7075 aluminum alloy forgings was examined in 3.5% NaCl solution by varying the extent of thermomechanical working imparted to each of the conditions. The results show that inadequate working during billet processing resulted in inferior corrosion and mechanical properties. However, more working with intermediate pre-heating stages also led to precipitation of coarse particles resulting in lowering of mechanical properties marginally and a significant reduction in the general/pitting corrosion resistance. The results obtained in the present study indicate that optimum working with controlled pre-heating levels is needed during forging to achieve the desired properties. It is also demonstrated that AA7075 in the over aged condition does not show any environmental cracking susceptibility in spite of the microstructural variations in terms of size and volume fraction of the precipitates. However, the above microstructural variations definitely affected the pitting corrosion and mechanical properties significantly and hence a strict control over the working and pre-heating stages during billet processing is suggested.

  3. Semicrystalline Ionomer-Metal Carboxylate Composite: Phase Behavior and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Katsuyuki

    2005-03-01

    We have shown previously that the thermal and mechanical behavior of ethylene-methacrylic acid (E-MAA) ionomers can be tuned by the addition of certain magnesium carboxylates, such as magnesium stearate (MgSt). The property modifications result from coassembly of the two components, both co-aggregation of the ionic groups and co-crystallization of the methylene sequences, as revealed by X-ray scattering. When MgSt is replaced by sodium stearate (NaSt), a different suite of mechanical properties is obtained. NaSt, with its high melting and clearing (288 ^oC) points, readily crystallizes out of solution in the molten polymer and forms an effective composite upon cooling from a single-phase melt. The NaSt crystals in the composite resemble the rectangular polymorph in pure NaSt, though with some differences in lattice parameters and transition temperatures due to interaction with the acid groups of the copolymer. The different physical properties of the NaSt vs. MgSt modified ionomers are traced to these microstructural differences, elucidated through a combination of X-ray scattering and microscopy.

  4. Microstructures, mechanical properties, and fracture behaviors of metal-injection molded 17-4PH stainless steel

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Wei; Huang, Zeng-Kai; Tseng, Chun-Feng; Hwang, Kuen-Shyang

    2015-05-01

    Metal injection molding (MIM) is a versatile technique for economically manufacturing various metal parts with complicated shapes and excellent properties. The objective of this study was to clarify the effects of powder type (water-atomized and gas-atomized powders) and various heat treatments (sintering, solutioning, H900, and H1100) on the microstructures, mechanical properties, and fracture behaviors of MIM 17-4PH stainless steels. The results showed that better mechanical properties of MIM 17-4PH can be achieved with gas-atomized powder than with water-atomized powder due mainly to the lower silicon and oxygen contents and fewer SiO2 inclusions in the steels. The presence of 10 vol% δ ferrite does not impair the UTS or elongation of MIM 17-4PH stainless steels. The δ ferrite did not fracture, even though the neighboring martensitic matrix was severely cracked. Moreover, H900 treatment produces the highest hardness and UTS, along with moderate elongation. H1100 treatment produces the best elongation, along with moderate hardness and UTS.

  5. Mechanical properties of porous and cellular materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieradzki, K.; Green, D.J.; Gibson, L.J.

    1991-01-01

    This symposium successfully brought scientists together from a wide variety of disciplines to focus on the mechanical behavior of porous and cellular solids composed of metals, ceramics, polymers, or biological materials. For cellular materials, papers ranged from processing techniques through microstructure-mechanical property relationships to design. In an overview talk, Mike Ashby (Cambridge Univ.) showed how porous cellular materials can be more efficient than dense materials in designs that require minimum weight. He indicated that many biological materials have been able to accomplish such efficiency but there exists an opportunity to design even more efficient, manmade materials controlling microstructures at differentmore » scale levels. In the area of processing, James Aubert (Sandia National Laboratories) discussed techiques for manipulating polymersolvent phase equilibria to control the microstructure of microcellular foams. Other papers on processing discussed the production of cellular ceramics by CVD, HIPing and sol- gel techniques. Papers on the mechanical behavior of cellular materials considered various ceramics microcellular polymers, conventional polymer foams and apples. There were also contributions that considered optimum design procedures for cellular materials. Steven Cowin (City Univ. of New York) discussed procedures to match the discrete microstructural aspects of cellular materials with the continuum mechanics approach to their elastic behavior.« less

  6. Electrospun microcrimped fibers with nonlinear mechanical properties enhance ligament fibroblast phenotype.

    PubMed

    Grace Chao, Pen-hsiu; Hsu, Hsiang-Yi; Tseng, Hsiao-Yun

    2014-09-01

    Fiber structure and order greatly impact the mechanical behavior of fibrous materials. In biological tissues, the nonlinear mechanics of fibrous scaffolds contribute to the functionality of the material. The nonlinear mechanical properties of the wavy structure (crimp) in collagen allow tissue flexibility while preventing over-extension. A number of approaches have tried to recreate this complex mechanical functionality. We generated microcrimped fibers by briefly heating electrospun parallel fibers over the glass transition temperature or by ethanol treatment. The crimp structure is similar to those of collagen fibers found in native aorta, intestines, or ligaments. Using poly-L-lactic acid fibers, we demonstrated that the bulk materials exhibit changed stress-strain behaviors with a significant increase in the toe region in correlation to the degree of crimp, similar to those observed in collagenous tissues. In addition to mimicking the stress-strain behavior of biological tissues, the microcrimped fibers are instructive in cell morphology and promote ligament phenotypic gene expression. This effect can be further enhanced by dynamic tensile loading, a physiological perturbation in vivo. This rapid and economical approach for microcrimped fiber production provides an accessible platform to study structure-function relationships and a novel functional scaffold for tissue engineering and cell mechanobiology studies.

  7. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite while the effect on the axial properties is shown to be insignificant.

  8. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  9. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  10. Nb-Base FS-85 Alloy as a Candidate Structural Material for Space Reactor Applications: Effects of Thermal Aging

    NASA Astrophysics Data System (ADS)

    Leonard, Keith J.; Busby, Jeremy T.; Hoelzer, David T.; Zinkle, Steven J.

    2009-04-01

    The proposed uses of fission reactors for manned or deep space missions have typically relied on the potential use of refractory metal alloys as structural materials. Throughout the history of these programs, a leading candidate has been Nb-1Zr, due to its good fabrication and welding characteristics. However, the less-than-optimal creep resistance of this alloy has encouraged interest in the more complex FS-85 (Nb-28Ta-10W-1Zr) alloy. Despite this interest, only a relatively small database exists for the properties of FS-85. Database gaps include the potential microstructural instabilities that can lead to mechanical property degradation. In this work, changes in the microstructure and mechanical properties of FS-85 were investigated following 1100 hours of thermal aging at 1098, 1248, and 1398 K. The changes in electrical resistivity, hardness, and tensile properties between the as-annealed and aged materials are compared. Evaluation of the microstructural changes was performed through optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The development of intragranular and grain-boundary precipitation of Zr-rich compounds as a function of aging temperature was followed. Brittle tensile behavior was measured in the material aged at 1248 K, while ductile behavior occurred in samples aged above and below this temperature. The effect of temperature on the under- and overaging of the grain-boundary particles is believed to have contributed to the mechanical property behavior of the aged materials.

  11. Formulation and validation of a reduced order model of 2D materials exhibiting a two-phase microstructure as applied to graphene oxide

    NASA Astrophysics Data System (ADS)

    Benedetti, Ivano; Nguyen, Hoang; Soler-Crespo, Rafael A.; Gao, Wei; Mao, Lily; Ghasemi, Arman; Wen, Jianguo; Nguyen, SonBinh; Espinosa, Horacio D.

    2018-03-01

    Novel 2D materials, e.g., graphene oxide (GO), are attractive building blocks in the design of advanced materials due to their reactive chemistry, which can enhance interfacial interactions while providing good in-plane mechanical properties. Recent studies have hypothesized that the randomly distributed two-phase microstructure of GO, which arises due to its oxidized chemistry, leads to differences in nano- vs meso-scale mechanical responses. However, this effect has not been carefully studied using molecular dynamics due to computational limitations. Herein, a continuum mechanics model, formulated based on density functional based tight binding (DFTB) constitutive results for GO nano-flakes, is establish for capturing the effect of oxidation patterns on the material mechanical properties. GO is idealized as a continuum heterogeneous two-phase material, where the mechanical response of each phase, graphitic and oxidized, is informed from DFTB simulations. A finite element implementation of the model is validated via MD simulations and then used to investigate the existence of GO representative volume elements (RVE). We find that for the studied GO, an RVE behavior arises for monolayer sizes in excess to 40 nm. Moreover, we reveal that the response of monolayers with two main different functional chemistries, epoxide-rich and hydroxyl-rich, present distinct differences in mechanical behavior. In addition, we explored the role of defect density in GO, and validate the applicability of the model to larger length scales by predicting membrane deflection behavior, in close agreement with previous experimental and theoretical observations. As such the work presents a reduced order modeling framework applicable in the study of mechanical properties and deformation mechanisms in 2D multiphase materials.

  12. Effect of friction stir processing on tribological properties of Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Aktarer, S. M.; Sekban, D. M.; Yanar, H.; Purçek, G.

    2017-02-01

    As-cast Al-12Si alloy was processed by single-pass friction stir processing (FSP), and its effect on mainly friction and wear properties of processed alloy was studied in detail. The needle-shaped eutectic silicon particles were fragmented by intense plastic deformation and dynamic recrystallization during FSP. The fragmented and homogenously distributed Si particles throughout the improve the mechanical properties and wear behavior of Al-12Si alloy. The wear mechanisms for this improvement were examined and the possible reasons were discussed.

  13. Effect of processing method on the mechanical and thermal of Silvergrass/HDPE composites

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Jin, Yueqiang; Wang, Shuying

    2017-05-01

    This paper investigates the effect of compression and injection molding methods on properties of Silvergrass-HDPE (High Density Polyethylene) composites, with respect to mechanical behaviors. Maleated polyethylene (MAPE) was added in the composite and improved the mechanical property of the composite. The research founds MAPE can improve the mechanical property because it improved the interfacial compatibility as a coupling agent. When added a content of 8% of MAPE, Silvergrass-HDPE composites made from compression molding shows a better mechanical performance in tensile strength and flexural strength than that made from injection molding, with increasing Silvergrass fiber content from 30% to 50%. However, the WPCs (wood plastics composites) made from injection molding had a lower degree of crystallinity with or without MAPE treatment.

  14. Simulation based estimation of dynamic mechanical properties for viscoelastic materials used for vocal fold models

    NASA Astrophysics Data System (ADS)

    Rupitsch, Stefan J.; Ilg, Jürgen; Sutor, Alexander; Lerch, Reinhard; Döllinger, Michael

    2011-08-01

    In order to obtain a deeper understanding of the human phonation process and the mechanisms generating sound, realistic setups are built up containing artificial vocal folds. Usually, these vocal folds consist of viscoelastic materials (e.g., polyurethane mixtures). Reliable simulation based studies on the setups require the mechanical properties of the utilized viscoelastic materials. The aim of this work is the identification of mechanical material parameters (Young's modulus, Poisson's ratio, and loss factor) for those materials. Therefore, we suggest a low-cost measurement setup, the so-called vibration transmission analyzer (VTA) enabling to analyze the transfer behavior of viscoelastic materials for propagating mechanical waves. With the aid of a mathematical Inverse Method, the material parameters are adjusted in a convenient way so that the simulation results coincide with the measurement results for the transfer behavior. Contrary to other works, we determine frequency dependent functions for the mechanical properties characterizing the viscoelastic material in the frequency range of human speech (100-250 Hz). The results for three different materials clearly show that the Poisson's ratio is close to 0.5 and that the Young's modulus increases with higher frequencies. For a frequency of 400 Hz, the Young's modulus of the investigated viscoelastic materials is approximately 80% higher than for the static case (0 Hz). We verify the identified mechanical properties with experiments on fabricated vocal fold models. Thereby, only small deviations between measurements and simulations occur.

  15. Experimental Investigation of the Effect of Burnishing Force on Service Properties of AISI 1010 Steel Plates

    NASA Astrophysics Data System (ADS)

    Gharbi, F.; Sghaier, S.; Morel, F.; Benameur, T.

    2015-02-01

    This paper presents the results obtained with a new ball burnishing tool developed for the mechanical treatment of large flat surfaces. Several parameters can affect the mechanical behavior and fatigue of workpiece. Our study focused on the effect of the burnishing force on the surface quality and on the service properties (mechanical behavior, fatigue) of AISI 1010 steel hot-rolled plates. Experimental results assert that burnishing force not exceeding 300 N causes an increase in the ductility. In addition, results indicated that the effect of the burnishing force on the residual surface stress was greater in the direction of advance than in the cross-feed direction. Furthermore, the flat burnishing surfaces did not improve the fatigue strength of AISI 1010 steel flat specimens.

  16. Long-life physical property preservation and postendodontic rehabilitation with the Composipost.

    PubMed

    Duret, B; Duret, F; Reynaud, M

    1996-01-01

    Most coronal radicular reconstructions are made of cast inlay core metals or prefabricated posts covered in composite. The differences in the mechanical properties of these elements create a heterogeneous mass with inconsistent mechanical behavior. Studies using the Finite Element Method have shown the biomechanical disturbances caused by the inclusion of materials with a modulus of elasticity that is superior to that of dentine (i.e., nickel, chrome, zircon, etc). The use of materials with a modulus of elasticity close to that of dentine does not disturb the flow of stress inside the root. To our knowledge, only a composite material structured with programmable mechanical properties would be capable of producing both high mechanical performance and a modulus of elasticity adapted to dentine values. The C-POST, made of carbon epoxy, accommodates the demands of the dentine, as well as the in vitro stress linked to the prosthesis. The internal structure, consisting of long high-performance carbon fibers, unidirectionally and equally stretched, confers a totally original behavior that is adapted to clinical objectives. In addition, the C-POST has a fracture resistance superior to most metals.

  17. Molecular modeling of polycarbonate materials: Glass transition and mechanical properties

    NASA Astrophysics Data System (ADS)

    Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim

    2017-09-01

    Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.

  18. Mechanical property characterization of intraply hybrid composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1979-01-01

    An investigation was conducted to characterize the mechanical properties of intraply hybrids made from graphite fiber/epoxy matrix (primary composites) hybridized with varying amounts of secondary composites made from S-glass or Kevlar 49 fibers. The tests were conducted using thin laminates having the same thickness. The specimens for these tests were instrumented with strain gages to determine stress-strain behavior. Significant results are included.

  19. EBSD characterization of low temperature deformation mechanisms in modern alloys

    NASA Astrophysics Data System (ADS)

    Kozmel, Thomas S., II

    For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermos-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel, 4140 steel, and Ti-6Al-4V. In both 9310 and 4140 steel, the distribution of carbides throughout the microstructure affected the ability of the material to dynamically recrystallize and determined the size of the dynamically recrystallized grains. Processing the materials at lower temperatures and higher strain rates resulted in finer dynamically recrystallized grains. Microstructural process models that can be used to estimate the resulting microstructure based on the processing parameters were developed for both 9310 and 4140 steel. Heat treatment studies performed on 9310 steel showed that the sub-micron grain size obtained during deformation could not be retained due to the low equilibrium volume fraction of carbides. Commercially available aluminum alloys were investigated to explain their high strain rate deformation behavior. Alloys such as 2139, 2519, 5083, and 7039 exhibit strain softening after an ultimate strength is reached, followed by a rapid degradation of mechanical properties after a critical strain level has been reached. Microstructural analysis showed that the formation of shear bands typically preceded this rapid degradation in properties. Shear band boundary misorientations increased as a function of equivalent strain in all cases. Precipitation behavior was found to greatly influence the microstructural response of the alloys. Additionally, precipitation strengthened alloys were found to exhibit similar flow stress behavior, whereas solid solution strengthened alloys exhibited lower flow stresses but higher ductility during dynamic loading. Schmid factor maps demonstrated that shear band formation behavior was influenced by texturing in these alloys.

  20. The Cyclic Mechanical and Fatigue Properties of Ferroanelastic Beta Prime Gold Cadmium. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Karz, R. S.

    1973-01-01

    The fatigue behavior of beta prime Au1.05Cd0.95 alloy was investigated and found to be exceptional for certain orientations with lives of 10,000 to 1,000,000 cycles at total strain amplitudes above 0.05 not uncommon. Fatigue lives were influenced principally by the stress level which controlled the amount of plastic deformation, and stress fatigue resistance was low compared with most metals. Failure always exhibited brittle characteristics. An algorithm was devised to predict mechanical behavior from the twin system orientations and was found in good agreement with experiment for longitudinal strains above 0.04. The cyclic mechanical properties were examined, and a model for the behavior was proposed utilizing previous theories of the restoring force and the Peierls-Nabarro stress for twinning and new concepts. Gold-cadmium was found to have certain strain fatigue resistant applications, particularly in electronics where the alloy's high electrical conductivity is utilized.

  1. Effect of Nb Content on Mechanical Behavior and Structural Properties of W/(Zr55Cu30Al10Ni5)100- x Nb x Composite

    NASA Astrophysics Data System (ADS)

    Mahmoodan, Morteza; Gholamipour, Reza; Mirdamadi, Shamseddin; Nategh, Said

    2017-05-01

    In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by infiltration process. Structural studies were investigated by scanning electron microscopy and X-ray diffraction method. Also, mechanical behaviors of the materials were analyzed using quasi-static compressive tests. Results indicated that the best mechanical properties i.e., 2105 MPa compressive ultimate strength and 28 pct plastic strain before failure, were achieved in the composite sample with X = 2. It was also found that adding Nb to the matrix modified interface structure in W fiber/(Zr55Cu30Al10Ni5)98Nb2 since the stable diffusion band formation acts as a functionally graded layer. Finally, the observation of multiple shear bands formation in the matrix could confirm the excellent plastic deformation behavior of the composite.

  2. Magnesium based degradable biomaterials: A review

    NASA Astrophysics Data System (ADS)

    Gu, Xue-Nan; Li, Shuang-Shuang; Li, Xiao-Ming; Fan, Yu-Bo

    2014-09-01

    Magnesium has been suggested as a revolutionary biodegradable metal for biomedical applications. The corrosion of magnesium, however, is too rapid to match the rates of tissue healing and, additionally, exhibits the localized corrosion mechanism. Thus it is necessary to control the corrosion behaviors of magnesium for their practical use. This paper comprehensively reviews the research progress on the development of representative magnesium based alloys, including Mg-Ca, Mg-Sr, Mg-Zn and Mg-REE alloy systems as well as the bulk metallic glass. The influence of alloying element on their microstructures, mechanical properties and corrosion behaviors is summarized. The mechanical and corrosion properties of wrought magnesium alloys are also discussed in comparison with those of cast alloys. Furthermore, this review also covers research carried out in the field of the degradable coatings on magnesium alloys for biomedical applications. Calcium phosphate and biodegradable polymer coatings are discussed based on different preparation techniques used. We also compare the effect of different coatings on the corrosion behaviors of magnesium alloys substrate.

  3. The Effect of Various Weave Designs on Mechanical Behavior of Lamina Intraply Composite Made from Kenaf Fiber Yarn

    NASA Astrophysics Data System (ADS)

    Yuhazri, M. Y.; Amirhafizan, M. H.; Abdullah, A.; Sihombing, H.; Saarah, A. B.; Fadzol, O. M.

    2016-11-01

    The development of lamina intraply composite is a novel approach that can be adopted to address the challenges of balance mechanical properties of polymer composite. This research will focuses on the effects of weave designs on the mechanical behavior of a single ply or also known as lamina intraply composite. The six (6) specimens of lamina intraply composites were made by kenaf fiber as a reinforcement and unsaturated polyester resin as a matrix in various weave designs which were plain, twill, satin, basket, mock leno and leno weave. The vacuum infusion technique was adopted due to advantages over hand lay-up. It was found that the plain, twill and satin weave exhibited better mechanical properties on tensile strength. The fiber content of the specimen was 40% and the result of the resin content of the specimen was 60% due to the higher permeability of natural fiber.

  4. Microstructure and Mechanical Behavior of Amorphous Al-Cu-Ti Metal Foams Synthesized by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Li, Maoyuan; Lu, Lin; Dai, Zhen; Hong, Yiqiang; Chen, Weiwei; Zhang, Yuping; Qiao, Yingjie

    Amorphous Al-Cu-Ti metal foams were prepared by spark plasma sintering (SPS) process with the diameter of 10mm. The SPS process was conducted at the pressure of 200 and 300MPa with the temperature of 653-723K, respectively. NaCl was used as the space-holder, forming almost separated pores with the porosity of 65 vol%. The microstructure and mechanical behavior of the amorphous Al-Cu-Ti metal foams were systematically investigated. The results show that the crystallinity increased at elevated temperatures. The effect of pressure and holding time on the crystallization was almost negligible. The intermetallic compounds, i.e. Al-Ti, Al-Cu and Al-Cu-Ti were identified from X-ray diffraction (XRD) patterns. It was found that weak adhesion and brittle intermetallic compounds reduced the mechanical properties, while lower volume fraction and smaller size of NaCl powders improved the mechanical properties.

  5. Nanoscale size effects on the mechanical properties of platinum thin films and cross-sectional grain morphology

    NASA Astrophysics Data System (ADS)

    Abbas, K.; Alaie, S.; Ghasemi Baboly, M.; Elahi, M. M. M.; Anjum, D. H.; Chaieb, S.; Leseman, Z. C.

    2016-01-01

    The mechanical behavior of polycrystalline Pt thin films is reported for thicknesses of 75 nm, 100 nm, 250 nm, and 400 nm. These thicknesses correspond to transitions between nanocrystalline grain morphology types as found in TEM studies. Thinner samples display a brittle behavior, but as thickness increases the grain morphology evolves, leading to a ductile behavior. During evolution of the morphology, dramatic differences in elastic moduli (105-160 GPa) and strengths (560-1700 MPa) are recorded and explained by the variable morphology. This work suggests that in addition to the in-plane grain size of thin films, the transitions in cross-sectional morphologies of the Pt films significantly affect their mechanical behavior.

  6. The effect of filler parameters on the healing of thermal conductivity and mechanical properties of a thermal interface material based on a self-healable organic-inorganic polymer matrix

    NASA Astrophysics Data System (ADS)

    Zhong, Nan; Garcia, Santiago J.; van der Zwaag, Sybrand

    2016-08-01

    Thermal interface materials (TIMs) are widely used in all kinds of electronic devices to handle the heat dissipation and the mechanical anchoring of the heat producing component. The aging of TIMs may lead to delamination and internal crack formation causing a loss of heat transfer and mechanical integrity both leading to premature device failure. In the present work, a novel TIM system based on a self-healing organic-inorganic polymer matrix filled with spherical glass beads is presented which is capable of healing both the thermal conductivity and the mechanical properties upon thermal activation. The effect of particle volume concentration (PVC) and particle size on tensile strength and thermal conductivity healing behavior is investigated. The results show that a higher PVC increases the mechanical property but decreases mechanical healing. For the same PVC, bigger particles lead to lower mechanical properties but higher thermal conductivities and higher mechanical healing efficiencies.

  7. Mechanical Behavior of PBO Fiber Used for Lunar Soil Sampler

    NASA Astrophysics Data System (ADS)

    Gao, Xingwen; Tang, Dewei; Yue, Honghao; Qiao, Fei; Li, Yanwei

    2017-06-01

    The stability of the mechanical properties of the materials used for lunar soil sampler at different temperatures is one of the key factors to ensure the success of the lunar sampling task. In this paper, two kinds of poly(pphenylene-2,6-benzobisoxazole) (PBO) fiber fabric used for lunar soil sampler, flexible tube and wireline, are tested for mechanical properties. The results show that the mechanical properties of the PBO flexible tube and wireline raised 8.3% and 5.7% respectively in -194°C environment comparing with the room temperature of 25°C. When the temperature rises to 300°C, the deviation is -38.6% and -46.4% respectively.

  8. Deformation Mechanisms and Biocompatibility of the Superelastic Ti-23Nb-0.7Ta-2Zr-0.5N Alloy

    NASA Astrophysics Data System (ADS)

    Castany, P.; Gordin, D. M.; Drob, S. I.; Vasilescu, C.; Mitran, V.; Cimpean, A.; Gloriant, T.

    2016-03-01

    In this study, we have synthesized a new Ti-23Nb-0.7Ta-2Zr-0.5N alloy composition with the aim to obtain useful mechanical properties to be used in medicine such as high strength, good superelastic property, low modulus, and large ductility. Thus, mechanical properties including superelasticity and plasticity were investigated in relation with the different deformation mechanisms observed (stress-induced martensitic transformation, twinning and dislocation slip). On the other hand, the corrosion resistance in simulated body fluid (Ringer solution) and the in vitro cell behavior (MG63 human osteoblasts) of such biomedical alloy were also evaluated in order to assess its biocompatibility.

  9. Influence of Hot Plastic Deformation in γ and (γ + α) Area on the Structure and Mechanical Properties of High-Strength Low-Alloy (HSLA) Steel.

    PubMed

    Sas, Jan; Kvačkaj, Tibor; Milkovič, Ondrej; Zemko, Michal

    2016-11-30

    The main goal of this study was to develop a new processing technology for a high-strength low-alloy (HSLA) steel in order to maximize the mechanical properties attainable at its low alloy levels. Samples of the steel were processed using thermal deformation schedules carried out in single-phase (γ) and dual-phase (γ + α) regions. The samples were rolled at unconventional finishing temperatures, their final mechanical properties were measured, and their strength and plasticity behavior was analyzed. The resulting microstructures were observed using optical and transmission electron microscopy (TEM). They consisted of martensite, ferrite and (NbV)CN precipitates. The study also explored the process of ferrite formation and its influence on the mechanical properties of the material.

  10. Mechanical behavior of monocrystalline aluminum-lithium alloy at low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z.G.; Liu, W.; Xu, Y.B.

    1994-12-01

    Investigations have indicated that at low temperature aluminum- lithium alloys display improved toughness and an improved strength-toughness relationship. The yield strength, ultimate tensile strength, elongation and the fracture toughness increase with decreasing temperatures. Several mechanisms have been proposed to explain this most striking feature. Webster claimed that low melting point impurities, such as sodium and potassium, are responsible for the improvement of mechanical properties in Al-Li alloys at low temperatures. However, Venkateswara Rao et al. indicated that the increased delamination at low temperatures can increase the degree of in-plane crack deflection, resulting in toughening of the alloys. On the basismore » of their own results, Xu and coworker pointed out that the improvement of tensile and fatigue properties at liquid nitrogen temperatures is also presumably attributable to the delamination. Therefore, the mechanisms responsible for the variation in mechanical properties with temperature are not currently well-understood. In order to elucidate the real situation, single crystals of a binary aluminum-lithium alloy were adopted in the present study. This paper is devoted to the description of the behavior of the load-displacement curves and the associated slip traces on the sample surfaces.« less

  11. Process Evaluation of AISI 4340 Steel Manufactured by Laser Powder Bed Fusion

    NASA Astrophysics Data System (ADS)

    Jelis, Elias; Hespos, Michael R.; Ravindra, Nuggehalli M.

    2018-01-01

    Laser powder bed fusion (L-PBF) involves the consolidation of metal powder, layer by layer, through laser melting and solidification. In this study, process parameters are optimized for AISI 4340 steel to produce dense and homogeneous structures. The optimized process parameters produce mechanical properties at the center of the build plate that are comparable to wrought in the vertical and horizontal orientations after heat treatment and machining. Four subsequent builds are filled with specimens to evaluate the mechanical behavior as a function of location and orientation. Variations in the mechanical properties are likely due to recoater blade interactions with the powder and uneven gas flow. The results obtained in this study are analyzed to assess the reliability and reproducibility of the process. A different build evaluates the performance of near-net-shaped tensile specimens angled 35°-90° from the build plate surface (horizontal). Ductility measurements and surface roughness vary significantly as a function of the build angle. In the stress-relieved and as-built conditions, the mechanical behavior of vertically oriented specimens exhibits somewhat lower and more variable ductility than horizontally oriented specimens. Therefore, several process variables affect the mechanical properties of parts produced by the L-PBF process.

  12. Comparative Analysis of the Biaxial Mechanical Behavior of Carotid Wall Tissue and Biological and Synthetic Materials Used for Carotid Patch Angioplasty

    PubMed Central

    Kamenskiy, Alexey V.; Pipinos, Iraklis I.; MacTaggart, Jason N.; Jaffar Kazmi, Syed A.; Dzenis, Yuris A.

    2011-01-01

    Patch angioplasty is the most common technique used for the performance of carotid endarterectomy. A large number of patching materials are available for use while new materials are being continuously developed. Surprisingly little is known about the mechanical properties of these materials and how these properties compare with those of the carotid artery wall. Mismatch of the mechanical properties can produce mechanical and hemodynamic effects that may compromise the long-term patency of the endarterectomized arterial segment. The aim of this paper was to systematically evaluate and compare the biaxial mechanical behavior of the most commonly used patching materials. We compared PTFE (n = 1), Dacron (n = 2), bovine pericardium (n = 10), autogenous greater saphenous vein (n = 10), and autogenous external jugular vein (n = 9) with the wall of the common carotid artery (n = 18). All patching materials were found to be significantly stiffer than the carotid wall in both the longitudinal and circumferential directions. Synthetic patches demonstrated the most mismatch in stiffness values and vein patches the least mismatch in stiffness values compared to those of the native carotid artery. All biological materials, including the carotid artery, demonstrated substantial nonlinearity, anisotropy, and variability; however, the behavior of biological and biologically-derived patches was both qualitatively and quantitatively different from the behavior of the carotid wall. The majority of carotid arteries tested were stiffer in the circumferential direction, while the opposite anisotropy was observed for all types of vein patches and bovine pericardium. The rates of increase in the nonlinear stiffness over the physiological stress range were also different for the carotid and patching materials. Several carotid wall samples exhibited reverse anisotropy compared to the average behavior of the carotid tissue. A similar characteristic was observed for two of 19 vein patches. The obtained results quantify, for the first time, significant mechanical dissimilarity of the currently available patching materials and the carotid artery. The results can be used as guidance for designing more efficient patches with mechanical properties resembling those of the carotid wall. The presented systematic comparative mechanical analysis of the existing patching materials provides valuable information for patch selection in the daily practice of carotid surgery and can be used in future clinical studies comparing the efficacy of different patches in the performance of carotid endarterectomy. PMID:22168740

  13. Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg2Si composites for biodegradable implant applications.

    PubMed

    Sikora-Jasinska, M; Paternoster, C; Mostaed, E; Tolouei, R; Casati, R; Vedani, M; Mantovani, D

    2017-12-01

    Recently, Fe and Fe-based alloys have shown their potential as degradable materials for biomedical applications. Nevertheless, the slow corrosion rate limits their performance in certain situations. The shift to iron matrix composites represents a possible approach, not only to improve the mechanical properties, but also to accelerate and tune the corrosion rate in a physiological environment. In this work, Fe-based composites reinforced by Mg 2 Si particles were proposed. The initial powders were prepared by different combinations of mixing and milling processes, and finally consolidated by hot rolling. The influence of the microstructure on mechanical properties and corrosion behavior of Fe/Mg 2 Si was investigated. Scanning electron microscopy and X-ray diffraction were used for the assessment of the composite structure. Tensile and hardness tests were performed to characterize the mechanical properties. Potentiodynamic and static corrosion tests were carried out to investigate the corrosion behavior in a pseudo-physiological environment. Samples with smaller Mg 2 Si particles showed a more homogenous distribution of the reinforcement. Yield and ultimate tensile strength increased when compared to those of pure Fe (from 400MPa and 416MPa to 523MPa and 630MPa, respectively). Electrochemical measurements and immersion tests indicated that the addition of Mg 2 Si could increase the corrosion rate of Fe even twice (from 0.14 to 0.28mm·year -1 ). It was found that the preparation method of the initial composite powders played a major role in the corrosion process as well as in the corrosion mechanism of the final composite. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Viscoelastic Properties of Collagen-Adhesive Composites under Water Saturated and Dry Conditions

    PubMed Central

    Singh, Viraj; Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Spencer, Paulette

    2014-01-01

    To investigate the time and rate dependent mechanical properties of collagen-adhesive composites, creep and monotonic experiments are performed under dry and wet conditions. The composites are prepared by infiltration of dentin adhesive into a demineralized bovine dentin. Experimental results show that for small stress level under dry conditions, both the composite and neat adhesive have similar behavior. On the other hand, in wet conditions, the composites are significantly soft and weak compared to the neat adhesives. The behavior in the wet condition is found to be affected by the hydrophilicity of both the adhesive and collagen. Since the adhesive-collagen composites area part of the complex construct that forms the adhesive-dentin interface, their presence will affect the overall performance of the restoration. We find that Kelvin-Voigt model with at least 4-elements is required to fit the creep compliance data, indicating that the adhesive-collagen composites are complex polymers with several characteristics time-scales whose mechanical behavior will be significantly affected by loading rates and frequencies. Such mechanical properties have not been investigated widely for these types of materials. The derived model provides an additional advantage that it can be exploited to extract other viscoelastic properties which are, generally, time consuming to obtain experimentally. The calibrated model is utilized to obtain stress relaxation function, frequency-dependent storage and loss modulus, and rate dependent elastic modulus. PMID:24753362

  15. Dynamically Cross-linked Elastomer Hybrids with Light-Induced Rapid and Efficient Self-Healing Ability and Reprogrammable Shape Memory Behavior.

    PubMed

    Bai, Jing; Shi, Zixing

    2017-08-16

    Pristine carbon nanotubes (CNTs) were activated to exhibit Diels-Alder (DA) reactivity in a polymer matrix, which was modified with monomers containing furan groups. The DA-active polymer matrix was transferred into a dynamic reversible cross-linked inorganic-organic network via a Diels-Alder reaction with CNTs, where pristine CNTs were used as dienophile chemicals and furan-modified SBS acted as the macromolecular diene. In this system, the mechanical properties as well as resilience and solvent resistance were greatly improved even with the presence of only 1 wt % CNTs. Meanwhile, the hybrids retained recyclability and exhibited some smart behaviors, including self-healing and reprogrammable shape memory properties. Furthermore, due to the photothermal effect of CNTs, a retro-Diels-Alder (rDA) reaction was activated under laser irradiation, and healing of a crack on the hybrid surface was demonstrated in approximately 10 s with almost complete recovery of the mechanical properties. Such fast and efficient self-healing performance provides a new concept in designing self-healing nanocomposites with tunable structures and mechanical properties. Furthermore, the DA and rDA reactions could be combined to reprogram the shape memory behavior under laser irradiation or thermal treatment, wherein the temporary shape of the sample could be transferred to a permanent shape via the rDA reaction at high temperature.

  16. Separable Roles for Attentional Control Sub-Systems in Reading Tasks: A Combined Behavioral and fMRI Study

    PubMed Central

    Ihnen, S.K.Z.; Petersen, Steven E.; Schlaggar, Bradley L.

    2015-01-01

    Attentional control is important both for learning to read and for performing difficult reading tasks. A previous study invoked 2 mechanisms to explain reaction time (RT) differences between reading tasks with variable attentional demands. The present study combined behavioral and neuroimaging measures to test the hypotheses that there are 2 mechanisms of interaction between attentional control and reading; that these mechanisms are dissociable both behaviorally and neuro-anatomically; and that the 2 mechanisms involve functionally separable control systems. First, RT evidence was found in support of the 2-mechanism model, corroborating the previous study. Next, 2 sets of brain regions were identified as showing functional magnetic resonance imaging blood oxygen level-dependent activity that maps onto the 2-mechanism distinction. One set included bilateral Cingulo-opercular regions and mostly right-lateralized Dorsal Attention regions (CO/DA+). This CO/DA+ region set showed response properties consistent with a role in reporting which processing pathway (phonological or lexical) was biased for a particular trial. A second set was composed primarily of left-lateralized Frontal-parietal (FP) regions. Its signal properties were consistent with a role in response checking. These results demonstrate how the subcomponents of attentional control interact with subcomponents of reading processes in healthy young adults. PMID:24275830

  17. Mechanical Behavior and Fatigue Studies of Rubber Components Used in Tracked Vehicles

    DTIC Science & Technology

    2010-08-17

    durability to this elastomers and polybutadiene is rubber , which gives rubber -like properties. SBR has good abrasion resistance and good aging ...SIMULATION, TESTING AND VALIDATION (MSTV) MINI-SYMPOSIUM AUGUST 17-19 DEARBORN, MICHIGAN MECHANICAL BEHAVIOR AND FATIGUE STUDIES OF RUBBER COMPONENTS USED...Analytics Group US Army TARDEC Warren, MI ABSTRACT In this study, a styrene butadiene rubber , which is similar to the rubber used in road wheel

  18. Modular cell biology: retroactivity and insulation

    PubMed Central

    Del Vecchio, Domitilla; Ninfa, Alexander J; Sontag, Eduardo D

    2008-01-01

    Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effect of interconnections on the input–output dynamic characteristics of transcriptional components, focusing on a property, which we call ‘retroactivity', that plays a role analogous to non-zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when the amount of transcription factor is comparable to, or smaller than, the amount of promoter-binding sites, or when the affinity of such binding sites is high. To attenuate the effect of retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics. We introduce, in particular, a mechanism based on a phosphorylation–dephosphorylation cycle. This mechanism enjoys a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation reactions. PMID:18277378

  19. Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens.

    PubMed

    Safranski, David L; Boothby, Jennifer M; Kelly, Cambre N; Beatty, Kyle; Lakhera, Nishant; Frick, Carl P; Lin, Angela; Guldberg, Robert E; Griffis, Jack C

    2016-09-01

    New processing methods for shape-memory polymers allow for tailoring material properties for numerous applications. Shape-memory nonwovens have been previously electrospun, but melt blow processing has yet to be evaluated. In order to determine the process parameters affecting shape-memory behavior, this study examined the effect of air pressure and collector speed on the mechanical behavior and shape-recovery of shape-memory polyurethane nonwovens. Mechanical behavior was measured by dynamic mechanical analysis and tensile testing, and shape-recovery was measured by unconstrained and constrained recovery. Microstructure changes throughout the shape-memory cycle were also investigated by micro-computed tomography. It was found that increasing collector speed increases elastic modulus, ultimate strength and recovery stress of the nonwoven, but collector speed does not affect the failure strain or unconstrained recovery. Increasing air pressure decreases the failure strain and increases rubbery modulus and unconstrained recovery, but air pressure does not influence recovery stress. It was also found that during the shape-memory cycle, the connectivity density of the fibers upon recovery does not fully return to the initial values, accounting for the incomplete shape-recovery seen in shape-memory nonwovens. With these parameter to property relationships identified, shape-memory nonwovens can be more easily manufactured and tailored for specific applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Simulation of the mechanical behavior of random fiber networks with different microstructure.

    PubMed

    Hatami-Marbini, H

    2018-05-24

    Filamentous protein networks are broadly encountered in biological systems such as cytoskeleton and extracellular matrix. Many numerical studies have been conducted to better understand the fundamental mechanisms behind the striking mechanical properties of these networks. In most of these previous numerical models, the Mikado algorithm has been used to represent the network microstructure. Here, a different algorithm is used to create random fiber networks in order to investigate possible roles of architecture on the elastic behavior of filamentous networks. In particular, random fibrous structures are generated from the growth of individual fibers from random nucleation points. We use computer simulations to determine the mechanical behavior of these networks in terms of their model parameters. The findings are presented and discussed along with the response of Mikado fiber networks. We demonstrate that these alternative networks and Mikado networks show a qualitatively similar response. Nevertheless, the overall elasticity of Mikado networks is stiffer compared to that of the networks created using the alternative algorithm. We describe the effective elasticity of both network types as a function of their line density and of the material properties of the filaments. We also characterize the ratio of bending and axial energy and discuss the behavior of these networks in terms of their fiber density distribution and coordination number.

  1. Characterization, Long-Term Behavior Evaluation and Thermomechanical Properties of Untreated and Treated Flax Fiber-Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Amiri, Ali

    In recent years there has been a resurgence of interest in the usage of natural fiber reinforced composites in more advanced structural applications. Consequently, the need for improving their mechanical properties as well as service life and long-term behavior modeling and predictions has arisen. In a step towards further development of these materials, in this study, two newly developed biobased resins, derived from soybean oil, methacrylated epoxidized sucrose soyate and double methacrylated epoxidized sucrose soyate are combined with untreated and alkaline treated flax fiber to produce novel biocomposites. Vinyl ester reinforced with flax fiber is used as control in addition to comparing properties of biobased composites against commercial pultruded composites. Effects of alkaline treatment of flax fiber as well as addition of 1% acrylic resin to vinyl ester and the two mentioned biobased resins on mechanical properties are studied. Properties are evaluated in short-term and also, after being exposed to accelerated weathering (i.e. UV and moisture). Moreover, long-term creep of these novel biobased composites and effect of fiber and matrix treatment on viscoelastic behavior is investigated using Time-temperature superposition (TTS) principle. Based on the results of this study, the TTS provides an accelerated method for evaluation of mechanical properties of biobased composites, and satisfactory master curves are achieved by use of this principle. Also, fiber and matrix treatments were effective in increasing mechanical properties of biobased composites in short-term, and treatments delayed the creep response and slowed the process of creep in composites under study in the steady state region. Overall, results of this study reveal the successful production of biocomposites having properties that meet or exceed those of conventional pultruded members while maintaining high biocontent. Composites using treated flax fiber and newly developed resins showed less degradation in properties after accelerated weather exposure. Procedures and methods developed throughout this study, as well as results presented are essential to further development of these novel materials and utilizing them in more advanced structural applications. Results presented in this dissertation have been published as 5 peer reviewed journal articles, 2 book chapters and have been presented in 6 national and international conferences.

  2. Mechanical and thermal behavior of ionic polymer metal composites: effects of electroded metals

    NASA Astrophysics Data System (ADS)

    Park, Il-Seok; Kim, Sang-Mun; Kim, Kwang J.

    2007-08-01

    In this study, we investigated the mechanical properties of various types of ionic polymer-metal composites (IPMCs) and Pt, Au, Pd, and Pt electroded ionic liquid (IL-Pt) IPMCs, by testing tensile modulus and dynamic mechanical behavior. The SEM was utilized to investigate the characteristics of the doped electroding layer, and the DSC was probed in order to look into the thermal behavior of various types of IPMCs. Au IPMCs, having a 5-7 µm-doped layer and nanosized Au particles (ca. 10 nm), showed the highest tensile strength (56 MPa) and modulus (602 MPa) in dried conditions. With regards to thermal behavior, Au IPMC had the highest Tg (153 °C) and Tm (263 °C) in both the DMA and DSC results. The fracture behavior of various types of IPMCs followed the behavior of the base material, Nafion™, which is represented as the semicrystalline polymer characteristic.

  3. Hybrid composites prepared from Industrial waste: Mechanical and swelling behavior

    PubMed Central

    Ahmed, Khalil

    2013-01-01

    In this assessment, hybrid composites were prepared from the combination of industrial waste, as marble waste powder (MWP) with conventional fillers, carbon black (CB) as well as silica as reinforcing material, incorporated with natural rubber (NR). The properties studied were curing, mechanical and swelling behavior. Assimilation of CB as well as silica into MWP containing NR compound responded in decreasing the scorch time and cure time besides increasing in the torque. Additionally, increasing the CB and silica in their respective NR hybrid composite increases the tensile, tear, modulus, hardness, and cross-link density, but decreases the elongation and swelling coefficient. The degradation property e.g., thermal aging of the hybrid composite was also estimated. The overall behavior at 70 °C aging temperature signified that the replacement of MS by CB and silica improved the aging performance. PMID:25750756

  4. Sexual Experience in Female Rodents: Cellular Mechanisms and Functional Consequences

    PubMed Central

    Meisel, Robert L.; Mullins, Amanda J.

    2007-01-01

    The neurobiology of female sexual behavior has largely focused on mechanisms of hormone action on nerve cells and how these effects translate into the display of copulatory motor patterns. Of equal importance, though less studied, are some of the consequences of engaging in sexual behavior, including the rewarding properties of sexual interactions and how sexual experience alters copulatory efficiency. This review summarizes the effects of sexual experience on reward processes and copulation in female Syrian hamsters. Neural correlates of these sexual interactions include long-term cellular changes in dopamine transmission and postsynaptic signaling pathways related to neuronal plasticity (e.g., dendritic spine formation). Taken together, these studies suggest that sexual experience enhances the reinforcing properties of sexual behavior, which has the coincident outcome of increasing copulatory efficiency in a way that can increase reproductive success. PMID:16978593

  5. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    PubMed

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Chitosan membranes for tissue engineering: comparison of different crosslinkers.

    PubMed

    Ruini, F; Tonda-Turo, C; Chiono, V; Ciardelli, G

    2015-11-03

    Chitosan (CS), a derivative of the naturally occurring biopolymer chitin, is an attractive material for biomedical applications thanks to its biocompatibility, biodegradability, antibacterial properties and ability to enhance cell adhesion and growth compared to other biopolymers. However, the physical and mechanical stability of CS based materials in aqueous solutions is limited and crosslinking agents are required to increase CS performances in a biological environment. In this work, the effect of three highly-biocompatible crosslinkers as genipin (GP), γ-glycidoxypropyltrimethoxysilane (GPTMS), dibasic sodium phosphate (DSP) and a combination of GPTMS and DSP (GPTMS_DSP) on CS physicochemical, thermal, morphological, mechanical properties, swelling and degradation behavior was investigated. Infrared spectroscopy and thermogravimetric analyses confirmed the chemical reaction between CS and the different crosslinkers. CS wettability was enhanced when CS was DSP ionically crosslinked showing contact angle values of about 65° and exhibiting a higher swelling behavior compared to covalently crosslinked films. Moreover, all the crosslinking methods analyzed improved the stability of CS in aqueous media, showed model molecule permeation in time and increased the mechanical properties when compared with non-crosslinked films. The possibility to tailor the final properties of CS scaffolds through crosslinking is a key strategy in applying CS in different biomedical and tissue engineering applications. The obtained results reveal that the optimization of the crosslinking mechanism provides CS membrane properties required in different biomedical applications.

  7. Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming

    Treesearch

    Yottha Srithep; Lih-Sheng Turng; Ronald Sabo; Craig Clemons

    2012-01-01

    Polyvinyl alcohol (PVOH) and its nanofibrillated cellulose (NFC) reinforced nanocomposites were produced and foamed and its properties-such as the dynamic mechanical properties, crystallization behavior, and solubility of carbon dioxide (CO2)were evaluated. PVOH was mixed with an NFC fiber suspension in water followed by casting. Transmission...

  8. Mechanical modeling of self-expandable stent fabricated using braiding technology.

    PubMed

    Kim, Ju Hyun; Kang, Tae Jin; Yu, Woong-Ryeol

    2008-11-14

    The mechanical behavior of a stent is one of the important factors involved in ensuring its opening within arterial conduits. This study aimed to develop a mechanical model for designing self-expandable stents fabricated using braiding technology. For this purpose, a finite element model was constructed by developing a preprocessing program for the three-dimensional geometrical modeling of the braiding structure inside stents, and validated for various stents with different braiding structures. The constituent wires (Nitinol) in the braided stents were assumed to be superelastic material and their mechanical behavior was incorporated into the finite element software through a user material subroutine (VUMAT in ABAQUS) employing a one-dimensional superelastic model. For the verification of the model, several braided stents were manufactured using an automated braiding machine and characterized focusing on their compressive behavior. It was observed that the braided stents showed a hysteresis between their loading and unloading behavior when a compressive load was applied to the braided tube. Through the finite element analysis, it was concluded that the current mechanical model can appropriately predict the mechanical behavior of braided stents including such hysteretic behavior, and that the hysteresis was caused by the slippage between the constituent wires and their superelastic property.

  9. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite.

    PubMed

    Ataollahi Oshkour, Azim; Pramanik, Sumit; Mehrali, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan

    2015-09-01

    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites.

    PubMed

    Zia, Khalid Mahmood; Zuber, Mohammad; Barikani, Mehdi; Hussain, Rizwan; Jamil, Tahir; Anjum, Sohail

    2011-12-01

    Chitin based polyurethane bio-nanocomposites (PUBNC) were prepared using chitin, Delite HPS bentonite nanoclay enriched in montmorillonite (MMT), 4,4'-diphenylmethane diisocyanate (MDI) and polycaprolactone polyol CAPA 231 (3000 g/mol(-1)). The prepolymers having different concentration of Delite HPS bentonite nanoclay were extended with 2 moles of chitin. The structures of the resulted polymers were determined by FT-IR technique. The effect of nanoclay contents on mechanical properties and in vitro biocompatibility was investigated. The mechanical properties of the synthesized materials were improved with increase in the Delite HPS bentonite nanoclay contents. Optimum mechanical properties were obtained from the PU bio-nanocomposite samples having 4% Delite HPS bentonite nanoclay. The results revealed that the final PU bio-nanocomposite having 2% Delite HPS bentonite nanoclay contents is ideal contenders for surgical threads with on going investigations into their in vitro biocompatibility, non-toxicity, and mechanical properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Mechanical Analyses for coupled Vegetation-Flow System

    NASA Astrophysics Data System (ADS)

    Chen, L.; Acharya, K.; Stone, M.

    2010-12-01

    Vegetation in riparian areas plays important roles in hydrology, geomorphology and ecology in local environment. Mechanical response of the aquatic vegetation to hydraulic forces and its impact on flow hydraulics have received considerable attention due to implications for flood control, habitat restoration, and water resources management. This study aims to advance understanding of the mechanical properties of in-stream vegetation including drag force, moment and stress. Dynamic changes of these properties under various flow conditions largely determine vegetation affected flow field and dynamic resistance with progressive bending, and hydraulic conditions for vegetation failure (rupture or wash-out) thus are critical for understanding the coupled vegetation-flow system. A new approach combining fluid and material mechanics is developed in this study to examine the behavior of both rigid and flexible vegetation. The major advantage of this approach is its capability to treat large deflection (bending) of plants and associated changes of mechanical properties in both vegetation and flow. Starting from simple emergent vegetation, both static and dynamic formulations of the problem are presented and the solutions are compared. Results show the dynamic behavior of a simplified system mimicking complex and real systems, implying the approach is able to disclose the physical essence of the coupled system. The approach is extended to complex vegetation under both submerged and emergent conditions using more realistic representation of biomechanical properties for vegetation.

  12. Assessment of nanoscopic dynamic mechanical properties and B-C-N triad effect on MWCNT/h-BNNP nanofillers reinforced HDPE hybrid composite using oscillatory nanoindentation: An insight into medical applications.

    PubMed

    Badgayan, Nitesh Dhar; Sahu, Santosh Kumar; Samanta, Sutanu; Rama Sreekanth, P S

    2018-04-01

    A thrust on improvement of different properties of polymer has taken a contemporary route with advent of nanofillers. Although several nanofillers are existent; MultiWalled Carbon Nanotubes- (MWCNTs) and h-Boron Nitride nanoplatelets-(h-BNNPs) unique combination of 1D and 2D dimensional geometry aids an advantage of B-C-N triad elemental effects on properties of tested samples. The current study aims to investigate the effects of MWCNT and h-BNNP reinforcement in High Density Polyethylene (HDPE) for high load bearing areas of medical applications requiring both elastic and viscous behavior. The results were analyzed keeping a view of its application in areas like HDPE based fracture fixation plates, acetabular cups and others. The composite and hybrid samples with different loadings were prepared after surface modification of nanofillers by mechanical mixing and molding technique. The dynamic nano-mechanical properties like storage modulus, loss modulus and tan delta were assessed for each sample during frequency swept from 10 to 220 Hz. The viscoelastic properties like h c /h m , H/E, elastic-plastic deformation were investigated and evaluated. At a frequency of 10 Hz, the storage and loss modulus of 0.1 CNT increased by 37.56% and decreased by 23.52% respectively on comparison with pure HDPE. This infers a good elastic as well as viscous behavior. Overall elastic behavior of 0.1 CNT was confirmed from tan delta evaluation. The interaction between B-C-N elemental triad had significant effect on creep strength, visco-damping property (h c /h m and H/E), elastic plastic displacement and pile-up and sink-in behavior. Highest creep strength and visco-damping property was exhibited by 0.25 CNT/0.15 BNNP hybrid. The elastic-plastic displacement of hybrid composite was noted as least, which decreased by 30% on comparison with pure HDPE. It can be inferred that presence of 1D-MWCNT and 2D-h-BNNP had significant effect on important dynamic viscoelastic and creep properties of HDPE based hybrid composites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Investigating interfacial contact configuration and behavior of single-walled carbon nanotube-based nanodevice with atomistic simulations

    NASA Astrophysics Data System (ADS)

    Cui, Jianlei; Zhang, Jianwei; He, Xiaoqiao; Mei, Xuesong; Wang, Wenjun; Yang, Xinju; Xie, Hui; Yang, Lijun; Wang, Yang

    2017-03-01

    Carbon nanotubes (CNTs), including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs), are considered to be the promising candidates for next-generation interconnects with excellent physical and chemical properties ranging from ultrahigh mechanical strength, to electrical properties, to thermal conductivity, to optical properties, etc. To further study the interfacial contact configurations of SWNT-based nanodevice with a 13.56-Å diameter, the corresponding simulations are carried out with the molecular dynamic method. The nanotube collapses dramatically into the surface with the complete collapse on the Au/Ag/graphite electrode surface and slight distortion on the Si/SiO2 substrate surface, respectively. The related dominant mechanism is studied and explained. Meanwhile, the interfacial contact configuration and behavior, depended on other factors, are also analyzed in this article.

  14. On the correlation between microscopic structural heterogeneity and embrittlement behavior in metallic glasses

    PubMed Central

    Li, Weidong; Gao, Yanfei; Bei, Hongbin

    2015-01-01

    In order to establish a relationship between microstructure and mechanical properties, we systematically annealed a Zr-based bulk metallic glass (BMG) at 100 ~ 300 °C and measured their mechanical and thermal properties. The as-cast BMG exhibits some ductility, while the increase of annealing temperature and time leads to the transition to a brittle behavior that can reach nearly-zero fracture energy. The differential scanning calorimetry did not find any significant changes in crystallization temperature and enthalpy, indicating that the materials still remained fully amorphous. Elastic constants measured by ultrasonic technique vary only slightly with respect to annealing temperature and time, which does obey the empirical relationship between Poisson’s ratio and fracture behavior. Nanoindentation pop-in tests were conducted, from which the pop-in strength mapping provides a “mechanical probe” of the microscopic structural heterogeneities in these metallic glasses. Based on stochastically statistic defect model, we found that the defect density decreases with increasing annealing temperature and annealing time and is exponentially related to the fracture energy. A ductile-versus-brittle behavior (DBB) model based on the structural heterogeneity is developed to identify the physical origins of the embrittlement behavior through the interactions between these defects and crack tip. PMID:26435318

  15. On the correlation between microscopic structural heterogeneity and embrittlement behavior in metallic glasses

    DOE PAGES

    Li, Weidong; Gao, Yanfei; Bei, Hongbin

    2015-10-05

    To establish a relationship between microstructure and mechanical properties, we systematically annealed a Zr-based bulk metallic glass (BMG) at 100 ~ 300°C and measured their mechanical and thermal properties. The as-cast BMG exhibits some ductility, while the increase of annealing temperature and time leads to the transition to a brittle behavior that can reach nearly-zero fracture energy. The differential scanning calorimetry did not find any significant changes in crystallization temperature and enthalpy, indicating that the materials still remained fully amorphous. Elastic constants measured by ultrasonic technique vary only slightly with respect to annealing temperature and time, which does obey themore » empirical relationship between Poisson’s ratio and fracture behavior. Nanoindentation pop-in tests were conducted, from which the pop-in strength mapping provides a “mechanical probe” of the microscopic structural heterogeneities in these metallic glasses. Based on stochastically statistic defect model, we found that the defect density decreases with increasing annealing temperature and annealing time and is exponentially related to the fracture energy. A ductile-versus-brittle behavior (DBB) model based on the structural heterogeneity is developed to identify the physical origins of the embrittlement behavior through the interactions between these defects and crack tip.« less

  16. Comparison of mechanical properties for several electrical spring contact alloys. [Beryllium-nickel alloy 440 (Ni--1. 95 Be--0. 5 Ti); comparison with Neyoro G and Paliney 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordstrom, T.V.

    Purpose was to determine whether beryllium--nickel alloy 440 (Ni-1.95 Be-0.5 Ti) had mechanical properties which made it suitable as a substitute for the presently used precious metal contact alloys Paliney 7 and Neyoro G, in certain electrical contact applications. Possible areas of applicability for the alloy were where extremely low contact resistance was not necessary or in components encountering elevated temperatures above those presently seen in weapons applications. Evaluation of the alloy involved three major experimental areas: (1) measurement of the room temperature microplastic (epsilon approximately 10/sup -6/) and macroplastic (epsilon approximately 10/sup -3/) behavior of alloy 440 in variousmore » age hardening conditions, (2) determination of applied stress effects on stress relaxation or contact force loss, and (3) measurement of elevated temperature mechanical properties and stress relaxation behavior. Similar measurements were also made on Neyoro G and Paliney 7 for comparison. Results show that beryllium-nickel alloy 440 is equal or superior to the presently used Paliney 7 and Neyoro G for normal Sandia requirements. For elevated temperature applications, alloy 440 has clearly superior mechanical properties. 12 fig.« less

  17. Mechanical Properties of Plant Cell Walls Probed by Relaxation Spectra1[W][OA

    PubMed Central

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola; Jørgensen, Bodil; Borkhardt, Bernhard; Petersen, Bent Larsen; Ulvskov, Peter

    2011-01-01

    Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply a method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, BayesRelax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated using tuber tissue from wild-type and transgenic potatoes (Solanum tuberosum) that differ in rhamnogalacturonan I side chain structure. PMID:21075961

  18. Suspensions of Noncolloidal Particles in Yield Stress Fluids: Experimental and Micromechanical Approaches

    NASA Astrophysics Data System (ADS)

    Mahaut, Fabien; Bertrand, François; Coussot, Philippe; Chateau, Xavier; Ovarlez, Guillaume

    2008-07-01

    We study experimentally and theoretically the behavior of suspensions of noncolloidal particles in yield stress fluids. We develop procedures and materials that allow focusing on the purely mechanical contribution of the particles to the yield stress fiuid behavior, allowing relating the macroscopic properties of these suspensions to the mechanical properties of the yield stress fluid and the particle volume fraction. We find that the elastic modulus/concentration relationship follows a Krieger-Dougherty law, and show that the yield stress/concentration relationship is related to the elastic modulus/concentration relationship through a very simple law, in agreement with a micromechanical analysis. We finally present evidence for shear-induced migration in the flows of these suspensions.

  19. Evaluation of mechanical properties of hybrid fiber (hemp, jute, kevlar) reinforced composites

    NASA Astrophysics Data System (ADS)

    Suresha, K. V.; Shivanand, H. K.; Amith, A.; Vidyasagar, H. N.

    2018-04-01

    In today's world composites play wide role in all the engineering fields. The reinforcement of composites decides the properties of the material. Natural fiber composites compared to synthetic fiber possesses poor mechanical properties. The solution for this problem is to use combination of natural fiber and synthetic fiber. Hybridization helps to improve the overall mechanical properties of the material. In this study, hybrid reinforced composites of Hemp fabric/Kevlar fabric/Epoxy and Jute fabric/ Kevlar fabric/Epoxy composites are fabricated using Simple hand layup technique followed by Vacuum bagging process. Appropriate test methods as per standards and guidelines are followed to analyze mechanical behavior of the composites. The mechanical characteristics like tensile, compression and flexural properties of the hybrid reinforced composites are tested as per the ASTM standards by series of tensile test; compression test and three point bending tests were conducted on the hybrid composites. A quantitative relationship between the Hemp fabric/Kevlar fabric/Epoxy and Jute/ Kevlar fabric/Epoxy has been established with constant thickness.

  20. A combination of experimental measurement, constitutive damage model, and diffusion tensor imaging to characterize the mechanical properties of the human brain.

    PubMed

    Karimi, Alireza; Rahmati, Seyed Mohammadali; Razaghi, Reza

    2017-09-01

    Understanding the mechanical properties of the human brain is deemed important as it may subject to various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the frontal lobe of the human brain. The constrained nonlinear minimization method was employed to identify the brain coefficients according to the axial and transversal compressive data. The pseudo-elastic damage model data was also well compared with that of the experimental data and it not only up to the primary loading but also the discontinuous softening could well address the mechanical behavior of the brain tissue.

  1. Characteristics and engineering properties of the soft soil layer in highway soil subgrades.

    DOT National Transportation Integrated Search

    2006-06-01

    The objective of this research was to examine the conditions and characteristics of soil subgrades that had been stabilized using mechanical compaction. Goals of the study are to identify and examine the engineering properties and behavior of the ...

  2. Mechanical property determination of high conductivity metals and alloys

    NASA Technical Reports Server (NTRS)

    Harrod, D. L.; Vandergrift, E.; France, L.

    1973-01-01

    Pertinent mechanical properties of three high conductivity metals and alloys; namely, vacuum hot pressed grade S-200E beryllium, OFHC copper and beryllium-copper alloy no. 10 were determined. These materials were selected based on their possible use in rocket thrust chamber and nozzle hardware. They were procured in a form and condition similar to that which might be ordered for actual hardware fabrication. The mechanical properties measured include (1) tension and compression stress strain curves at constant strain rate (2) tensile and compressive creep, (3) tensile and compressive stress-relaxation behavior and (4) elastic properties. Tests were conducted over the temperature range of from 75 F to 1600 F. The resulting data is presented in both graphical and tabular form.

  3. Serviceability and Prestress Loss Behavior of SCC Prestressed Concrete Girders Subjected to Increased Compressive Stresses at Release

    DOT National Transportation Integrated Search

    2009-08-01

    There are limited measurements documented in the literature related to long-term prestress losses in self-consolidated concrete (SCC) members. Recorded test data has shown variations in mechanical property behavior of SCC compared to conventional HSC...

  4. Microstructure and magnetic behavior of Cu-Co-Si ternary alloy synthesized by mechanical alloying and isothermal annealing

    NASA Astrophysics Data System (ADS)

    Chabri, Sumit; Bera, S.; Mondal, B. N.; Basumallick, A.; Chattopadhyay, P. P.

    2017-03-01

    Microstructure and magnetic behavior of nanocrystalline 50Cu-40Co-10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450-650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.

  5. Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals.

    PubMed

    Cao, Liming; Yuan, Daosheng; Xu, Chuanhui; Chen, Yukun

    2017-10-19

    Cellulose nanocrystals represent a promising and environmentally friendly reinforcing nanofiller for polymers, especially for rubbers and elastomers. Here, a simple approach via latex mixing is used to fabricate biobased, healable rubber with high strength based on epoxidized natural rubber (ENR). Tunicate cellulose nanocrystals (t-CNs) isolated from marine biomass with a high aspect ratio are used to improve both mechanical properties and self-healing behavior of the material. By introducing dynamic hydrogen bond supramolecular networks between oxygenous groups of ENR and hydroxyl groups on the t-CN surface, together with chain interdiffusion in permanently but slightly cross-linked rubber, self-healing and mechanical properties are facilitated significantly in the resulting materials. Macroscopic tensile healing behavior and microscopic morphology analyses are carried out to evaluate the performance of the materials. Both t-CN content and healing time have significant influence on healing behavior. The results indicate that a synergistic effect between molecular interdiffusion and dynamic hydrogen bond supramolecular networks leads to the improved self-healing behavior.

  6. Viscoelastic properties of model segments of collagen molecules.

    PubMed

    Gautieri, Alfonso; Vesentini, Simone; Redaelli, Alberto; Buehler, Markus J

    2012-03-01

    Collagen is the prime construction material in vertebrate biology, determining the mechanical behavior of connective tissues such as tendon, bone and skin. Despite extensive efforts in the investigation of the origin of collagen unique mechanical properties, a deep understanding of the relationship between molecular structure and mechanical properties remains elusive, hindered by the complex hierarchical structure of collagen-based tissues. In particular, although extensive studies of viscoelastic properties have been pursued at the macroscopic (fiber/tissue) level, fewer investigations have been performed at the smaller scales, including in particular collagen molecules and fibrils. These scales are, however, important for a complete understanding of the role of collagen as an important constituent in the extracellular matrix. Here, using an atomistic modeling approach, we perform in silico creep tests of a collagen-like peptide, monitoring the strain-time response for different values of applied external load. The results show that individual collagen molecules exhibit a nonlinear viscoelastic behavior, with a Young's modulus increasing from 6 to 16GPa (for strains up to 20%), a viscosity of 3.84.±0.38Pa·s, and a relaxation time in the range of 0.24-0.64ns. The single molecule viscosity, for the first time reported here, is several orders of magnitude lower than the viscosity found for larger-scale single collagen fibrils, suggesting that the viscous behavior of collagen fibrils and fibers involves additional mechanisms, such as molecular sliding between collagen molecules within the fibril or the effect of relaxation of larger volumes of solvent. Based on our molecular modeling results we propose a simple structural model that describes collagen tissue as a hierarchical structure, providing a bottom-up description of elastic and viscous properties form the properties of the tissue basic building blocks. Copyright © 2011 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  7. Study on the behavior and mechanism of polycarbonate with hot-water aging

    NASA Astrophysics Data System (ADS)

    Kong, L. P.; Zhao, Y. X.; Zhou, C. H.; Huang, Y. H.; Tang, M.; Gao, J. G.

    2016-07-01

    The present work was concerned with hot-water aging behavior and mechanism of Bisphenol A polycarbonate (PC) used as food and packaging materials. It indicated that with the aging time prolonged, PC sample had internal defects and the mechanical properties of PC materials changed not too much, molecular weight decreased, thermal stability declined. Phenolic hydroxyl absorption intensity enhanced in IR spectra and the maximum absorption wavelength red shift of benzene in UV-Vis spectra, the level of BPA increased. The color change of PC sample was not apparent.

  8. Free body analysis, beam mechanics, and finite element modeling of the mandible of Alligator mississippiensis.

    PubMed

    Porro, Laura B; Holliday, Casey M; Anapol, Fred; Ontiveros, Lupita C; Ontiveros, Lolita T; Ross, Callum F

    2011-08-01

    The mechanical behavior of mammalian mandibles is well-studied, but a comprehensive biomechanical analysis (incorporating detailed muscle architecture, accurate material properties, and three-dimensional mechanical behavior) of an extant archosaur mandible has never been carried out. This makes it unclear how closely models of extant and extinct archosaur mandibles reflect reality and prevents comparisons of structure-function relationships in mammalian and archosaur mandibles. We tested hypotheses regarding the mechanical behavior of the mandible of Alligator mississippiensis by analyzing reaction forces and bending, shear, and torsional stress regimes in six models of varying complexity. Models included free body analysis using basic lever arm mechanics, 2D and 3D beam models, and three high-resolution finite element models of the Alligator mandible, incorporating, respectively, isotropic bone without sutures, anisotropic bone with sutures, and anisotropic bone with sutures and contact between the mandible and the pterygoid flange. Compared with the beam models, the Alligator finite element models exhibited less spatial variability in dorsoventral bending and sagittal shear stress, as well as lower peak values for these stresses, suggesting that Alligator mandibular morphology is in part designed to reduce these stresses during biting. However, the Alligator models exhibited greater variability in the distribution of mediolateral and torsional stresses than the beam models. Incorporating anisotropic bone material properties and sutures into the model reduced dorsoventral and torsional stresses within the mandible, but led to elevated mediolateral stresses. These mediolateral stresses were mitigated by the addition of a pterygoid-mandibular contact, suggesting important contributions from, and trade-offs between, material properties and external constraints in Alligator mandible design. Our results suggest that beam modeling does not accurately represent the mechanical behavior of the Alligator mandible, including important performance metrics such as magnitude and orientation of reaction forces, and mediolateral bending and torsional stress distributions. J.Morphol. 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.

  9. Effects of high-temperature gas dealkalization on surface mechanical properties of float glass

    NASA Astrophysics Data System (ADS)

    Senturk, Ufuk

    The surface topography, and the near-surface structure and mechanical property changes on float glass, that was treated in atmospheres containing SOsb2, HCl, and 1,1 difluoroethane (DFE) gases, at temperatures in the glass transition region, were studied. Structure was investigated using surface sensitive infrared spectroscopy techniques (attenuated total reflectance (ATR) and diffuse reflectance (DRIFT)) and the topography was evaluated using atomic force microscopy (AFM). The results obtained from the two FTIR methods were in agreement with each other. Mechanical property characteristics of the surface were determined by measuring microhardness using a recording microindentation set-up. A simple analysis performed on the three hardness calculation methods-LVH, LVHsb2, and Lsb2VH-indicated that LVH and LVHsb2 are less effected by measurement errors and are better suited for the calculation of hardness. Contact damage characteristics of the treated glass was also studied by monitoring the crack initiation behavior during indentation, using acoustic emission. The results of the studies, aiming for the understanding of the structure, topography, and hardness property changes indicate that the treatment parameters-temperature, time, and treatment atmosphere conditions-are significant factors influencing these properties. The analysis of these results suggest a relation to exist between the three properties. This relation is used in understanding the surface mechanical properties of the treated float glasses. The difference in the thermal expansion coefficients between the dealkalized surface and bulk, the nature of surface structure changes, structural relaxation, surface water content, and glass transformation temperature are identified as the major factors having an influence on the properties. A model connecting these features is suggested. A difference in the structure, hardness, and topography on the air and tin sides of float glass is also shown to exist. The contact damage behavior of the treated surfaces is shown to differ from those of untreated surfaces, for SOsb2-treated float glass, where the crack initiation characteristics indicate crack formation from the surface and the indenter tip, different than the expected anomalous deformation. This behavior resembles that of a silica glass deformation on the surface, which is in agreement with the other foundations in this study.

  10. Micro-mechanical evaluation of SiC-SiC composite interphase properties and debond mechanisms

    DOE PAGES

    Kabel, Joey; Yang, Y.; Balooch, Mehdi; ...

    2017-07-31

    SiC-SiC composites exhibit exceptional high temperature strength and oxidation properties making them an advantageous choice for accident tolerant nuclear fuel cladding. In the present work, small scale mechanical testing along with AFM and TEM analysis were employed to evaluate PyC interphase properties that play a key role in the overall mechanical behavior of the composite. The Mohr-Coulomb formulation allowed for the extraction of the internal friction coefficient and debonding shear strength as a function of the PyC layer thickness, an additional parameter. Here, these results have led to re-evaluation of the Mohr-Coulomb failure criterion and adjustment via a new phenomenologicalmore » equation.« less

  11. Influence of ageing treatment on microstructure, mechanical and bio-corrosion properties of Mg-Dy alloys.

    PubMed

    Yang, Lei; Huang, Yuanding; Feyerabend, Frank; Willumeit, Regine; Kainer, Karl Ulrich; Hort, Norbert

    2012-09-01

    Mg-Dy alloys have shown to be promising for medical applications. In order to investigate the influence of ageing treatment on their mechanical and corrosion properties, three Mg-xDy alloys (x=10, 15, 20 wt%) were prepared. Their microstructure, mechanical and corrosion behavior were investigated. The results indicate that ageing at 250 °C has little influence on the mechanical and corrosion properties. In contrast, ageing at 200 °C significantly increases the yield strength, and reduces the ductility. After ageing at 200 °C, the corrosion rate of Mg-20Dy alloy increases largely in 0.9 wt% NaCl solution, but remains unchanged in cell culture medium. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Mechanical properties of Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass with different geometric confinements

    NASA Astrophysics Data System (ADS)

    Zhang, Changqin; Zhang, Haifeng; Sun, Qilei; Liu, Kegao

    2018-03-01

    Zr41.2Ti13.8Ni10Cu12.5Be22.5 (Vit 1) bulk metallic glass with Cu sleeves at different positions was prepared by the Cu mold casting method, and the effects of different geometric confinements offered by Cu sleeves on the mechanical properties of Vit 1 were investigated. It was found that the mechanical properties were prominently influenced by different geometric confinements and the plasticity could be modified by optimizing the positions of Cu sleeves. The results revealed that shear band initiation and propagation could be efficiently intervened by changing the radial boundary restraints, which led to quite different mechanical behaviors.

  13. Role of Grain Crushing in the Alteration of Mechanical and Flow Properties of Sandstones during Mechanical Failure

    NASA Astrophysics Data System (ADS)

    Mirabolghasemi, M.; Prodanovic, M.; Choens, R. C., II; Dewers, T. A.

    2016-12-01

    We present a workflow to study the alteration of flow and mechanical characteristics of sandstones after shear failure, specifically modeling weakening of the formation due to CO2 injection. We use discrete elements method (DEM) to represent each sand grain as a cluster of bonded sub-particles, and model their potential crushing. We also introduce bonds between sand grain clusters to enable the modeling of the mechanical behavior of consolidated sandstones. The model is tuned by comparing our numerical compression tests on single sand grains with the experimental results reported in the literature. Once the mechanical behavior of individual grains is adequately captured by the model, a packing of such grains is subjected to shear stress. Once the packing fails under the imposed shear stress, its mechanical properties, permeability, and porosity are calculated. This test is repeated for various conditions by varying parameters such as the brittleness of single grains (the relative quartz-feldspar content of the grains), normal stress, and cement strength (assuming (chemical) weakening of the inter- and intra-grain-cluster bonds due to CO2 injection). We specifically compare the effect of cement/bond strength weakening on mechanical properties to triaxial compression experimental measurements before and after hydrous scCO2 and CO2-saturated brine injection in Boise sandstone performed in Sandia National Laboratory.

  14. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation.

    PubMed

    Shokuhfar, Ali; Arab, Behrouz

    2013-09-01

    Recently, great attention has been focused on using epoxy polymers in different fields such as aerospace, automotive, biotechnology, and electronics, owing to their superior properties. In this study, the classical molecular dynamics (MD) was used to simulate the cross linking of diglycidyl ether of bisphenol-A (DGEBA) with diethylenetriamine (DETA) curing agent, and to study the behavior of resulted epoxy polymer with different conversion rates. The constant-strain (static) approach was then applied to calculate the mechanical properties (Bulk, shear and Young's moduli, elastic stiffness constants, and Poisson's ratio) of the uncured and cross-linked systems. Estimated material properties were found to be in good agreement with experimental observations. Moreover, the dependency of mechanical properties on the cross linking density was investigated and revealed improvements in the mechanical properties with increasing the cross linking density. The radial distribution function (RDF) was also used to study the evolution of local structures of the simulated systems as a function of cross linking density.

  15. Micro-Mechanical Viscoelastic Properties of Crosslinked Hydrogels Using the Nano-Epsilon Dot Method.

    PubMed

    Mattei, Giorgio; Cacopardo, Ludovica; Ahluwalia, Arti

    2017-08-02

    Engineering materials that recapitulate pathophysiological mechanical properties of native tissues in vitro is of interest for the development of biomimetic organ models. To date, the majority of studies have focused on designing hydrogels for cell cultures which mimic native tissue stiffness or quasi-static elastic moduli through a variety of crosslinking strategies, while their viscoelastic (time-dependent) behavior has been largely ignored. To provide a more complete description of the biomechanical environment felt by cells, we focused on characterizing the micro-mechanical viscoelastic properties of crosslinked hydrogels at typical cell length scales. In particular, gelatin hydrogels crosslinked with different glutaraldehyde (GTA) concentrations were analyzed via nano-indentation tests using the nano-epsilon dot method. The experimental data were fitted to a Maxwell Standard Linear Solid model, showing that increasing GTA concentration results in increased instantaneous and equilibrium elastic moduli and in a higher characteristic relaxation time. Therefore, not only do gelatin hydrogels become stiffer with increasing crosslinker concentration (as reported in the literature), but there is also a concomitant change in their viscoelastic behavior towards a more elastic one. As the degree of crosslinking alters both the elastic and viscous behavior of hydrogels, caution should be taken when attributing cell response merely to substrate stiffness, as the two effects cannot be decoupled.

  16. Dynamic mechanical control of local vacancies in NiO thin films

    NASA Astrophysics Data System (ADS)

    Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V.; Kim, Yunseok

    2018-07-01

    The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.

  17. Dynamic mechanical control of local vacancies in NiO thin films.

    PubMed

    Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V; Kim, Yunseok

    2018-07-06

    The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.

  18. Low carbon steel: Metallurgical structure vs. mechanical properties

    NASA Technical Reports Server (NTRS)

    Shull, Robert D.

    1990-01-01

    The objective is to provide a low cost, simple experiment for either demonstration purposes or as a laboratory experiment that will teach the student the importance of the thermal-mechanical history of a metallic alloy in determining that material's mechanical behavior. Hairpins are subjected to various treatments. The experimental equipment and procedures are discussed.

  19. Heterogeneous structure and its effect on properties and electrochemical behavior of ion-exchange membrane

    NASA Astrophysics Data System (ADS)

    Ariono, D.; Khoiruddin; Subagjo; Wenten, I. G.

    2017-02-01

    Generally, commercially available ion-exchange membrane (IEM) can be classified into homogeneous and heterogeneous membranes. The classification is based on degree of heterogeneity in membrane structure. It is well known that the heterogeneity greatly affects the properties of IEM, such as conductivity, permselectivity, chemical and mechanical stability. The heterogeneity also influences ionic and electrical current transfer behavior of IEM-based processes during their operation. Therefore, understanding the role of heterogeneity in IEM properties is important to provide preliminary information on their operability and applicability. In this paper, the heterogeneity and its effect on IEM properties are reviewed. Some models for describing the heterogeneity of IEM and methods for characterizing the degree of heterogeneity are discussed. In addition, the influence of heterogeneity on the performance of IEM-based processes and their electrochemical behavior are described.

  20. Spurious heat conduction behavior of finite-size graphene nanoribbon under extreme uniaxial strain caused by the AIREBO potential

    NASA Astrophysics Data System (ADS)

    Yang, Xueming; Wu, Sihan; Xu, Jiangxin; Cao, Bingyang; To, Albert C.

    2018-02-01

    Although the AIREBO potential can well describe the mechanical and thermal transport of the carbon nanostructures under normal conditions, previous studies have shown that it may overestimate the simulated mechanical properties of carbon nanostructures in extreme strains near fracture. It is still unknown whether such overestimation would also appear in the thermal transport of nanostructrues. In this paper, the mechanical and thermal transport of graphene nanoribbon under extreme deformation conditions are studied by MD simulations using both the original and modified AIREBO potential. Results show that the cutoff function of the original AIREBO potential produces an overestimation on thermal conductivity in extreme strains near fracture stage. Spurious heat conduction behavior appears, e.g., the thermal conductivity of GNRs does not monotonically decrease with increasing strain, and even shows a ;V; shaped reversed and nonphysical trend. Phonon spectrum analysis show that it also results in an artificial blue shift of G peak and phonon stiffening of the optical phonon modes. The correlation between spurious heat conduction behavior and overestimation of mechanical properties near the fracture stage caused by the original AIREBO potential are explored and revealed.

  1. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites

    PubMed Central

    Alajmi, Mahdi; Shalwan, Abdullah

    2015-01-01

    The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE), Graphite/Epoxy composites (GE), and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE). The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific wear rate (SWR) and coefficient of friction (COF) of composites. In general, graphite as an additive to polymeric composite has had an eclectic effect on mechanical properties, whereas it has led to a positive effect on tribological properties, whilst date palm fibers (DPFs), as reinforcement for polymeric composite, promoted a mechanical performance with a slight improvement to the tribological performance. Statistically, this study reveals that there is no strong confirmation of any marked correlation between the mechanical and the specific wear rate of filler/Epoxy composites. There is, however, a remarkable correlation between the mechanical properties and the friction coefficient of filler/Epoxy composites. PMID:28793431

  2. The Effect of Water Molecules on Mechanical Properties of Bamboo Microfibrils

    NASA Astrophysics Data System (ADS)

    Rahbar, Nima

    Bamboo fibers have higher strength-to-weight ratios than steel and concrete. The unique properties of bamboo fibers come from their natural composite structures that comprise mainly cellulose nanofibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have utilized atomistic simulations to investigate the mechanical properties and mechanisms of interactions between these materials, in the presence of water molecules. Our results suggest that hemicellulose exhibits better mechanical properties and lignin shows greater tendency to adhere to cellulose nanofibrils. Consequently, the role of hemicellulose found to be enhancing the mechanical properties and lignin found to be providing the strength of bamboo fibers. The abundance of Hbonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose nanofibrils is responsible for higher adhesion energy between LCC/cellulose nanofibrils. We also found out that the amorphous regions of cellulose nanofibrils is the weakest interface in bamboo Microfibrils. In presence of water, the elastic modulus of lignin increases at low water content (less than 10 NSF CAREER Grant No. 1261284.

  3. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites.

    PubMed

    Alajmi, Mahdi; Shalwan, Abdullah

    2015-07-08

    The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE), Graphite/Epoxy composites (GE), and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE). The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific wear rate (SWR) and coefficient of friction (COF) of composites. In general, graphite as an additive to polymeric composite has had an eclectic effect on mechanical properties, whereas it has led to a positive effect on tribological properties, whilst date palm fibers (DPFs), as reinforcement for polymeric composite, promoted a mechanical performance with a slight improvement to the tribological performance. Statistically, this study reveals that there is no strong confirmation of any marked correlation between the mechanical and the specific wear rate of filler/Epoxy composites. There is, however, a remarkable correlation between the mechanical properties and the friction coefficient of filler/Epoxy composites.

  4. Effects of the Heterogeneity in the Electron Beam Welded Joint on Mechanical Properties of Ti6Al4V Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Gao, Xiao-Long; Zhang, Lin-Jie; Zhang, Jian-Xun

    2015-01-01

    The aim of this investigation was to evaluate the effect of microstructure heterogeneity on the tensile and low cycle fatigue properties of electron beam welded (EBW) Ti6Al4V sheets. To achieve this goal, the tensile and low cycle fatigue property in the EBW joints and base metal (BM) specimens is compared. During the tensile testing, digital image correlation technology was used to measure the plastic strain field evolution within the specimens. The experimental results showed that the tensile ductility and low cycle fatigue strength of EBW joints are lower than that of BM specimens, mainly because of the effect of microstructure heterogeneity of the welded joint. Moreover, the EBW joints exhibit the cyclic hardening behavior during low fatigue process, while BM specimens exhibit the cyclic softening behavior. Compared with the BM specimens with uniform microstructure, the heterogeneity of microstructure in the EBW joint is found to decrease the mechanical properties of welded joint.

  5. Network reconfiguration and neuronal plasticity in rhythm-generating networks.

    PubMed

    Koch, Henner; Garcia, Alfredo J; Ramirez, Jan-Marino

    2011-12-01

    Neuronal networks are highly plastic and reconfigure in a state-dependent manner. The plasticity at the network level emerges through multiple intrinsic and synaptic membrane properties that imbue neurons and their interactions with numerous nonlinear properties. These properties are continuously regulated by neuromodulators and homeostatic mechanisms that are critical to maintain not only network stability and also adapt networks in a short- and long-term manner to changes in behavioral, developmental, metabolic, and environmental conditions. This review provides concrete examples from neuronal networks in invertebrates and vertebrates, and illustrates that the concepts and rules that govern neuronal networks and behaviors are universal.

  6. Numerical Simulation of Tension Properties for Al-Cu Alloy Friction Stir-Welded Joints with GTN Damage Model

    NASA Astrophysics Data System (ADS)

    Sun, Guo-Qin; Sun, Feng-Yang; Cao, Fang-Li; Chen, Shu-Jun; Barkey, Mark E.

    2015-11-01

    The numerical simulation of tensile fracture behavior on Al-Cu alloy friction stir-welded joint was performed with the Gurson-Tvergaard-Needleman (GTN) damage model. The parameters of the GTN model were studied in each region of the friction stir-welded joint by means of inverse identification. Based on the obtained parameters, the finite element model of the welded joint was built to predict the fracture behavior and tension properties. Good agreement can be found between the numerical and experimental results in the location of the tensile fracture and the mechanical properties.

  7. Crystallization behavior of polyamide-6 microcellular nanocomposites

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Andreas Winardi

    2004-09-01

    The crystallization behaviors of polyamide-6 (PA-6) and its nanocomposites undergoing the microcellular injection molding process are studied using Transmission Electron Microscopy (TEM), X-ray Diffractometer (XRD), Polarized Optical Microscopy (POM), and Differential Scanning Calorimetry (DSC). The relationships among the morphology, the mechanical property of the...

  8. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Wijeratne, Sithara S.; Penev, Evgeni S.; Lu, Wei; Li, Jingqiang; Duque, Amanda L.; Yakobson, Boris I.; Tour, James M.; Kiang, Ching-Hwa

    2016-08-01

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solution-based mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces.

  9. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution

    PubMed Central

    Wijeratne, Sithara S.; Penev, Evgeni S.; Lu, Wei; Li, Jingqiang; Duque, Amanda L.; Yakobson, Boris I.; Tour, James M.; Kiang, Ching-Hwa

    2016-01-01

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solution-based mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces. PMID:27503635

  10. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Li, Jingqiang; Wijeratne, Sithara; Penev, Evgeni; Lu, Wei; Duque, Amanda; Yakobson, Boris; Tour, James; Kiang, Ching-Hwa; Boris I. Yakobson Group Team; James M. Tour Group Team; Ching-Hwa Kiang Group Team

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solutionbased mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces.

  11. Evaluating the effects of hydroxyapatite coating on the corrosion behavior of severely deformed 316Ti SS for surgical implants.

    PubMed

    Mhaede, Mansour; Ahmed, Aymen; Wollmann, Manfred; Wagner, Lothar

    2015-05-01

    The present work investigates the effects of severe plastic deformation by cold rolling on the microstructure, the mechanical properties and the corrosion behavior of austenitic stainless steel (SS) 316Ti. Hydroxyapatite coating (HA) was applied on the deformed material to improve their corrosion resistance. The martensitic transformation due to cold rolling was recorded by X-ray diffraction spectra. The effects of cold rolling on the corrosion behavior were studied using potentiodynamic polarization. The electrochemical tests were carried out in Ringer's solution at 37±1 °C. Cold rolling markedly enhanced the mechanical properties while the electrochemical tests referred to a lower corrosion resistance of the deformed material. The best combination of both high strength and good corrosion resistance was achieved after applying hydroxyapatite coating. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Study on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn-Ca Alloy Wire for Biomaterial Application

    NASA Astrophysics Data System (ADS)

    Zheng, Maobo; Xu, Guangquan; Liu, Debao; Zhao, Yue; Ning, Baoqun; Chen, Minfang

    2018-03-01

    Due to their excellent biocompatibility and biodegradability, magnesium alloy wires have attracted much attention for biomaterial applications including orthopedic K-wires and sutures in wound closure. In this study, Mg-3Zn-0.2Ca alloy wires were prepared by cold drawing combined with proper intermediate annealing process. Microstructures, texture, mechanical properties and corrosion behavior of Mg-3Zn-0.2Ca alloy wire in a simulated body fluid were investigated. The results showed that the secondary phase and average grain size of the Mg-3Zn-0.2Ca alloy were refined in comparison with the as-extruded alloy and a strong (0002)<10-10>//DD basal fiber texture system was formed after multi-pass cold drawing. After the annealing, most of the basal planes were tilted to the drawing direction (DD) by about 35°, presenting the characteristics of random texture, and the texture intensity decreased. The as-annealed wire shows good mechanical properties with the ultimate tensile strength (UTS), yield strength (YS) and elongation of 253 ± 8.5 MPa, 212 ± 11.3 MPa and 9.2 ± 0.9%, respectively. Electrochemical and hydrogen evolution measurements showed that the corrosion resistance of the Mg-3Zn-0.2Ca alloy wire was improved after the annealing. The immersion test indicated that the Mg-3Zn-0.2Ca wire exhibited uniform corrosion behavior during the initial period of immersion, but then exhibited local corrosion behavior.

  13. Diffusive, Displacive Deformations and Local Phase Transformation Govern the Mechanics of Layered Crystals: The Case Study of Tobermorite.

    PubMed

    Tao, Lei; Shahsavari, Rouzbeh

    2017-07-19

    Understanding the deformation mechanisms underlying the mechanical behavior of materials is the key to fundamental and engineering advances in materials' performance. Herein, we focus on crystalline calcium-silicate-hydrates (C-S-H) as a model system with applications in cementitious materials, bone-tissue engineering, drug delivery and refractory materials, and use molecular dynamics simulation to investigate its loading geometry dependent mechanical properties. By comparing various conventional (e.g. shear, compression and tension) and nano-indentation loading geometries, our findings demonstrate that the former loading leads to size-independent mechanical properties while the latter results in size-dependent mechanical properties at the nanometer scales. We found three key mechanisms govern the deformation and thus mechanics of the layered C-S-H: diffusive-controlled and displacive-controlled deformation mechanisms, and strain gradient with local phase transformations. Together, these elaborately classified mechanisms provide deep fundamental understanding and new insights on the relationship between the macro-scale mechanical properties and underlying molecular deformations, providing new opportunities to control and tune the mechanics of layered crystals and other complex materials such as glassy C-S-H, natural composite structures, and manmade laminated structures.

  14. Effect of Annealing Treatments on the Microstructure, Mechanical Properties and Corrosion Behavior of Direct Metal Laser Sintered Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Xu, Yangzi; Lu, Yuan; Sundberg, Kristin L.; Liang, Jianyu; Sisson, Richard D.

    2017-05-01

    An experimental investigation on the effects of post-annealing treatments on the microstructure, mechanical properties and corrosion behavior of direct metal laser sintered Ti-6Al-4V alloys has been conducted. The microstructure and phase evolution as affected by annealing treatment temperature were examined through scanning electron microscopy and x-ray diffraction. The tensile properties and Vickers hardness were measured and compared to the commercial Grade 5 Ti-6Al-4V alloy. Corrosion behavior of the parts was analyzed electrochemically in simulated body fluid at 37 °C. It was found out that the as-printed parts mainly composed of non-equilibrium α' phase. Annealing treatment allowed the transformation from α' to α phase and the development of β phase. The tensile test results indicated that post-annealing treatment could improve the ductility and decrease the strength. The as-printed Ti-6Al-4V part exhibits inferior corrosion resistance compared to the commercial alloy, and post-annealing treatment can reduce its susceptibility to corrosion by reducing the two-phase interface area.

  15. Temperature dependent nonlinear metal matrix laminae behavior

    NASA Technical Reports Server (NTRS)

    Barrett, D. J.; Buesking, K. W.

    1986-01-01

    An analytical method is described for computing the nonlinear thermal and mechanical response of laminated plates. The material model focuses upon the behavior of metal matrix materials by relating the nonlinear composite response to plasticity effects in the matrix. The foundation of the analysis is the unidirectional material model which is used to compute the instantaneous properties of the lamina based upon the properties of the fibers and matrix. The unidirectional model assumes that the fibers properties are constant with temperature and assumes that the matrix can be modelled as a temperature dependent, bilinear, kinematically hardening material. An incremental approach is used to compute average stresses in the fibers and matrix caused by arbitrary mechanical and thermal loads. The layer model is incorporated in an incremental laminated plate theory to compute the nonlinear response of laminated metal matrix composites of general orientation and stacking sequence. The report includes comparisons of the method with other analytical approaches and compares theoretical calculations with measured experimental material behavior. A section is included which describes the limitations of the material model.

  16. Fundamental Studies on Phase Transformations and Mechanical Properties of Fusion Welds in Advanced Naval Steels

    DTIC Science & Technology

    2017-07-31

    Studies on Phase Transformations and Mechanical Properties of Fusion Welds in Advanced Naval Steels Sb. GRANT NUMBER N00014-12-1-0475 Sc. PROGRAM...naval and structural applications. However, prior to this research project, a fundamental understanding of the phase transformation behavior under the...Steel, Phase Transformations 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER a. REPORT b.ABSTRACT c. THIS PAGE ABSTRACT OF PAGES u u

  17. Parametric Study Of A Ceramic-Fiber/Metal-Matrix Composite

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1992-01-01

    Report describes computer-model parametric study of effects of degradation of constituent materials upon mechanical properties of ceramic-fiber/metal-matrix composite material. Contributes to understanding of weakening effects of large changes in temperature and mechanical stresses in fabrication and use. Concerned mainly with influences of in situ fiber and matrix properties upon behavior of composite. Particular attention given to influence of in situ matrix strength and influence of interphase degradation.

  18. Analytic structure of the S-matrix for singular quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner

    2015-06-15

    The analytic structure of the S-matrix of singular quantum mechanics is examined within a multichannel framework, with primary focus on its dependence with respect to a parameter (Ω) that determines the boundary conditions. Specifically, a characterization is given in terms of salient mathematical and physical properties governing its behavior. These properties involve unitarity and associated current-conserving Wronskian relations, time-reversal invariance, and Blaschke factorization. The approach leads to an interpretation of effective nonunitary solutions in singular quantum mechanics and their determination from the unitary family.

  19. The hygroscopic behavior of plant fibers: a review.

    PubMed

    Célino, Amandine; Fréour, Sylvain; Jacquemin, Frédéric; Casari, Pascal

    2013-01-01

    Environmental concern has resulted in a renewed interest in bio-based materials. Among them, plant fibers are perceived as an environmentally friendly substitute to glass fibers for the reinforcement of composites, particularly in automotive engineering. Due to their wide availability, low cost, low density, high-specific mechanical properties, and eco-friendly image, they are increasingly being employed as reinforcements in polymer matrix composites. Indeed, their complex microstructure as a composite material makes plant fiber a really interesting and challenging subject to study. Research subjects about such fibers are abundant because there are always some issues to prevent their use at large scale (poor adhesion, variability, low thermal resistance, hydrophilic behavior). The choice of natural fibers rather than glass fibers as filler yields a change of the final properties of the composite. One of the most relevant differences between the two kinds of fiber is their response to humidity. Actually, glass fibers are considered as hydrophobic whereas plant fibers have a pronounced hydrophilic behavior. Composite materials are often submitted to variable climatic conditions during their lifetime, including unsteady hygroscopic conditions. However, in humid conditions, strong hydrophilic behavior of such reinforcing fibers leads to high level of moisture absorption in wet environments. This results in the structural modification of the fibers and an evolution of their mechanical properties together with the composites in which they are fitted in. Thereby, the understanding of these moisture absorption mechanisms as well as the influence of water on the final properties of these fibers and their composites is of great interest to get a better control of such new biomaterials. This is the topic of this review paper.

  20. The hygroscopic behavior of plant fibers: a review

    PubMed Central

    Célino, Amandine; Fréour, Sylvain; Jacquemin, Frédéric; Casari, Pascal

    2013-01-01

    Environmental concern has resulted in a renewed interest in bio-based materials. Among them, plant fibers are perceived as an environmentally friendly substitute to glass fibers for the reinforcement of composites, particularly in automotive engineering. Due to their wide availability, low cost, low density, high-specific mechanical properties, and eco-friendly image, they are increasingly being employed as reinforcements in polymer matrix composites. Indeed, their complex microstructure as a composite material makes plant fiber a really interesting and challenging subject to study. Research subjects about such fibers are abundant because there are always some issues to prevent their use at large scale (poor adhesion, variability, low thermal resistance, hydrophilic behavior). The choice of natural fibers rather than glass fibers as filler yields a change of the final properties of the composite. One of the most relevant differences between the two kinds of fiber is their response to humidity. Actually, glass fibers are considered as hydrophobic whereas plant fibers have a pronounced hydrophilic behavior. Composite materials are often submitted to variable climatic conditions during their lifetime, including unsteady hygroscopic conditions. However, in humid conditions, strong hydrophilic behavior of such reinforcing fibers leads to high level of moisture absorption in wet environments. This results in the structural modification of the fibers and an evolution of their mechanical properties together with the composites in which they are fitted in. Thereby, the understanding of these moisture absorption mechanisms as well as the influence of water on the final properties of these fibers and their composites is of great interest to get a better control of such new biomaterials. This is the topic of this review paper. PMID:24790971

  1. Constitutive formulations for the mechanical investigation of colonic tissues.

    PubMed

    Carniel, Emanuele Luigi; Gramigna, Vera; Fontanella, Chiara Giulia; Stefanini, Cesare; Natali, Arturo N

    2014-05-01

    A constitutive framework is provided for the characterization of the mechanical behavior of colonic tissues, as a fundamental tool for the development of numerical models of the colonic structures. The constitutive analysis is performed by a multidisciplinary approach that requires the cooperation between experimental and computational competences. The preliminary investigation pertains to the review of the tissues histology. The complex structural configuration of the tissues and the specific distributions of fibrous elements entail the nonlinear mechanical behavior and the anisotropic response. The identification of the mechanical properties requires to perform mechanical tests according to different loading situations, as different loading directions. Because of the typical functionality of colon structures, the tissues mechanics is investigated by tensile tests, which are performed on taenia coli and haustra specimens from fresh pig colons. Accounting for the histological investigation and the results from the mechanical tests, a specific hyperelastic framework is provided within the theory of fiber-reinforced composite materials. Preliminary analytical formulations are defined to identify the constitutive parameters by the inverse analysis of the experimental tests. Finite element models of the specimens are developed accounting for the actual configuration of the colon structures to verify the quality of the results. The good agreement between experimental and numerical model results suggests the reliability of the constitutive formulations and parameters. Finally, the developed constitutive analysis makes it possible to identify the mechanical behavior and properties of the different colonic tissues. Copyright © 2013 Wiley Periodicals, Inc.

  2. Contribution of collagen fiber undulation to regional biomechanical properties along porcine thoracic aorta.

    PubMed

    Zeinali-Davarani, Shahrokh; Wang, Yunjie; Chow, Ming-Jay; Turcotte, Raphaël; Zhang, Yanhang

    2015-05-01

    As major extracellular matrix components, elastin, and collagen play crucial roles in regulating the mechanical properties of the aortic wall and, thus, the normal cardiovascular function. The mechanical properties of aorta, known to vary with age and multitude of diseases as well as the proximity to the heart, have been attributed to the variations in the content and architecture of wall constituents. This study is focused on the role of layer-specific collagen undulation in the variation of mechanical properties along the porcine descending thoracic aorta. Planar biaxial tensile tests are performed to characterize the hyperelastic anisotropic mechanical behavior of tissues dissected from four locations along the thoracic aorta. Multiphoton microscopy is used to image the associated regional microstructure. Exponential-based and recruitment-based constitutive models are used to account for the observed mechanical behavior while considering the aortic wall as a composite of two layers with independent properties. An elevated stiffness is observed in distal regions compared to proximal regions of thoracic aorta, consistent with sharper and earlier collagen recruitment estimated for medial and adventitial layers in the models. Multiphoton images further support our prediction that higher stiffness in distal regions is associated with less undulation in collagen fibers. Recruitment-based models further reveal that regardless of the location, collagen in the media is recruited from the onset of stretching, whereas adventitial collagen starts to engage with a delay. A parameter sensitivity analysis is performed to discriminate between the models in terms of the confidence in the estimated model parameters.

  3. Anisotropic mechanical behaviors and their structural dependences of crossed-lamellar structure in a bivalve shell.

    PubMed

    Jiao, D; Liu, Z Q; Qu, R T; Zhang, Z F

    2016-02-01

    Crossed-lamellar structure is one of the most common organizations found in mollusk shells and may serve as a natural mimetic model for designing bio-inspired synthetic materials. Nonetheless, the mechanical behaviors and corresponding mechanisms have rarely been investigated for individual macro-layer of such structure. The integrated effects of orientation and hydration also remain unclear. In this study, the mechanical behaviors and their structural dependences of pure crossed-lamellar structure in Saxidomus purpuratus shell were systematically examined by three-point bending and compression tests. Mechanical properties and fracture mechanisms were revealed to depend strongly on the orientation, hydration state and loading condition. Three basic cracking modes of inter-platelet, trans-platelet, and along the interfaces between first-order lamellae were identified, and the interfacial separation was enhanced by hydration. Macroscopic compressive fracture was accomplished through axial splitting during which multiple toughening mechanisms were activated. The competition among different cracking modes was quantitatively evaluated by analyzing their driving stresses and resistances from fundamental mechanics. This study helps to clarify the mechanical behaviors of naturally occurring crossed-lamellar structure, and accordingly, aids in designing new bio-inspired synthetic materials by mimicking it. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

    NASA Astrophysics Data System (ADS)

    Hammad, A. E.; El-Taher, A. M.

    2014-11-01

    The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

  5. Mechanical Properties and Tribological Behavior of In Situ NbC/Fe Surface Composites

    NASA Astrophysics Data System (ADS)

    Cai, Xiaolong; Zhong, Lisheng; Xu, Yunhua

    2017-01-01

    The mechanical properties and tribological behavior of the niobium carbide (NbC)-reinforced gray cast iron surface composites prepared by in situ synthesis have been investigated. Composites are comprised of a thin compound layer and followed by a deep diffusion zone on the surface of gray cast iron. The graded distributions of the hardness and elastic modulus along the depth direction of the cross section of composites form in the ranges of 6.5-20.1 and 159.3-411.2 GPa, respectively. Meanwhile, dry wear tests for composites were implemented on pin-on-disk equipment at sliding speed of 14.7 × 10-2 m/s and under 5 or 20 N, respectively. The result indicates that tribological performances of composites are considerably dependent on the volume fraction and the grain size of the NbC as well as the mechanical properties of the matrices in different areas. The surface compound layer presents the lowest coefficient of friction and wear rate, and exhibits the highest wear resistance, in comparison with diffusion zone and substrate. Furthermore, the worn morphologies observed reveal the dominant wear mechanism is abrasive wear feature in compound layer and diffusion zone.

  6. Effect of gamma irradiation on the structural, mechanical and optical properties of polytetrafluoroethylene sheet

    NASA Astrophysics Data System (ADS)

    Mohammadian-Kohol, M.; Asgari, M.; Shakur, H. R.

    2018-04-01

    In this study, the effects of gamma radiation on the chemical structure, mechanical and optical properties of polytetrafluoroethylene (PTFE) sheet were investigated with various doses up to 12 kGy. The chemical changes in the structure were studied by FTIR spectroscopy. Also, effects of radiation on the different mechanical parameters such as Young's modulus, toughness, strain, and stress were studied at the maximum tolerable force and the fracture points. Furthermore, changing the various optical parameters such as absorption coefficient, Urbach energy, optical band gaps, refractive index, optical dispersion parameters and plasma resonance frequency were studied by UV-visible spectroscopy. Formation of a band at 1594 cm-1, which was belonged to double carbon bonds, indicated that chain-scission was occurred at 12 kGy gamma irradiation dose. As well, the mechanical results showed an increase in the elastic behavior of PTFE sheets and a decrease in the plastic behavior of it with absorbed dose increasing. Moreover, the results showed that gamma irradiation can effectively change the various optical properties of PTFE sheets due to different phenomena such as degradation of the main chains, occurring chain-scission, formation of free radicals and cross-linking in the polymer structure.

  7. Multiaxial mechanical response and constitutive modeling of esophageal tissues: Impact on esophageal tissue engineering.

    PubMed

    Sommer, Gerhard; Schriefl, Andreas; Zeindlinger, Georg; Katzensteiner, Andreas; Ainödhofer, Herwig; Saxena, Amulya; Holzapfel, Gerhard A

    2013-12-01

    Congenital defects of the esophagus are relatively frequent, with 1 out of 2500 babies suffering from such a defect. A new method of treatment by implanting tissue engineered esophagi into newborns is currently being developed and tested using ovine esophagi. For the reconstruction of the biological function of native tissues with engineered esophagi, their cellular structure as well as their mechanical properties must be considered. Since very limited mechanical and structural data for the esophagus are available, the aim of this study was to investigate the multiaxial mechanical behavior of the ovine esophagus and the underlying microstructure. Therefore, uniaxial tensile, biaxial tensile and extension-inflation tests on esophagi were performed. The underlying microstructure was examined in stained histological sections through standard optical microscopy techniques. Moreover, the uniaxial ultimate tensile strength and residual deformations of the tissue were determined. Both the mucosa-submucosa and the muscle layers showed nonlinear and anisotropic mechanical behavior during uniaxial, biaxial and inflation testing. Cyclical inflation of the intact esophageal tube caused marked softening of the passive esophagi in the circumferential direction. The rupture strength of the mucosa-submucosa layer was much higher than that of the muscle layer. Overall, the ovine esophagus showed a heterogeneous and anisotropic behavior with different mechanical properties for the individual layers. The intact and layer-specific multiaxial properties were characterized using a well-known three-dimensional microstructurally based strain-energy function. This novel and complete set of data serves the basis for a better understanding of tissue remodeling in diseased esophagi and can be used to perform computer simulations of surgical interventions or medical-device applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Evidence that αC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers.

    PubMed

    Houser, John R; Hudson, Nathan E; Ping, Lifang; O'Brien, E Timothy; Superfine, Richard; Lord, Susan T; Falvo, Michael R

    2010-11-03

    Fibrin fibers form the structural scaffold of blood clots and perform the mechanical task of stemming blood flow. Several decades of investigation of fibrin fiber networks using macroscopic techniques have revealed remarkable mechanical properties. More recently, the microscopic origins of fibrin's mechanics have been probed through direct measurements on single fibrin fibers and individual fibrinogen molecules. Using a nanomanipulation system, we investigated the mechanical properties of individual fibrin fibers. The fibers were stretched with the atomic force microscope, and stress-versus-strain data was collected for fibers formed with and without ligation by the activated transglutaminase factor XIII (FXIIIa). We observed that ligation with FXIIIa nearly doubled the stiffness of the fibers. The stress-versus-strain behavior indicates that fibrin fibers exhibit properties similar to other elastomeric biopolymers. We propose a mechanical model that fits our observed force extension data, is consistent with the results of the ligation data, and suggests that the large observed extensibility in fibrin fibers is mediated by the natively unfolded regions of the molecule. Although some models attribute fibrin's force-versus-extension behavior to unfolding of structured regions within the monomer, our analysis argues that these models are inconsistent with the measured extensibility and elastic modulus. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Tensile properties of polyhydroxyalkanoate/polycaprolactone blends studied by rheo-optical near-infrared (NIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishida, Masahiro; Ogura, Takashi; Shinzawa, Hideyuki; Nishida, Masakazu; Kanematsu, Wataru

    2016-11-01

    In order to improve the mechanical properties of Polyhydroxyalkanoate (PHA), the polycaprolactone (PCL) pellet was blended with a PHA-based pellet. The effects of the mixing ratio on the tensile properties, Young's modulus, tensile strength and elongation at break, were examined using a universal testing machine. When the mixing ration of PCL increased to 50%, the elongation at break of the polymer blend increased and the gauge area of tensile test specimens whitened and became porous. In order to understand this behavior, a rheo-optical characterization technique based on near-infrared (NIR) spectroscopy was applied to the mechanical deformation of the polymer blends during static tensile tests. Two-dimensional (2D) correlation of NIR spectra was then examined. It was found from peaks of ethyl group or methyl group that PCL was preferentially deformed. The difference in the deformation behavior is thought to be the cause of the porous structure.

  10. Tensile properties of helical auxetic structures: A numerical study

    NASA Astrophysics Data System (ADS)

    Wright, J. R.; Sloan, M. R.; Evans, K. E.

    2010-08-01

    This paper discusses a helical auxetic structure which has a diverse range of practical applications. The mechanical properties of the system can be determined by particular combinations of geometry and component material properties; finite element analysis is used to investigate the static behavior of these structures under tension. Modeling criteria are determined and design issues are discussed. A description of the different strain-dependent mechanical phases is provided. It is shown that the stiffnesses of the component fibers and the initial helical wrap angle are critical design parameters, and that strain-dependent changes in cross-section must be taken into consideration: we observe that the structures exhibit nonlinear behavior due to nonzero component Poisson's ratios. Negative Poisson's ratios for the helical structures as low as -5 are shown. While we focus here on the structure as a yarn our findings are, in principle, scaleable.

  11. Effects of chromium and aluminum on mechanical and oxidation properties of iron-nickel-base superalloys based on CG-27

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.

    1985-01-01

    The effects of chromium and aluminum on the mechanical and oxidation properties of a series of gamma-prime-strengthened alloys based on CG-27 were studied. Gamma-prime dispersion and solid-solution strengthening were the principal modes of alloy strengthening. The oxidation attack parameter K sub a decreased with increasing Cr and Al contents for each alloy group based on Al content. As a group, alloys with 3 wt % Al had the lowest attack parameters. Therefore, 3 wt % is the optimum level of Al for parabolic oxidation behavior. Spalling, due to diffusion-induced grain growth, was controlled by the overall Cr and Al levels. The alloy with 4 wt % Cr and 3 wt % Al had stress-rupture properties superior to those of the base alloy, CG-27, and maintained parabolic oxidation behavior while the Cr content was reduced by two-thirds of its value in cast CG-27.

  12. AC and DC electrical properties of graphene nanoplatelets reinforced epoxy syntactic foam

    NASA Astrophysics Data System (ADS)

    Zegeye, Ephraim; Wicker, Scott; Woldesenbet, Eyassu

    2018-04-01

    Benefits of employing graphene nanopletlates (GNPLs) in composite structures include mechanical as well as multifunctional properties. Understanding the impedance behavior of GNPLs reinforced syntactic foams may open new applications for syntactic foam composites. In this work, GNPLs reinforced syntactic foams were fabricated and tested for DC and AC electrical properties. Four sets of syntactic foam samples containing 0, 0.1, 0.3, and 0.5 vol% of GNPLs were fabricated and tested. Significant increase in conductivity of syntactic foams due to the addition of GNPLs was noted. AC impedance measurements indicated that the GNPLs syntactic foams become frequency dependent as the volume fraction of GNPLs increases. With addition of GNPLs, the characteristic of the syntactic foams are also observed to transition from dominant capacitive to dominant resistive behavior. This work was carried out at Southern University, Mechanical Engineering Department, Baton Rouge, LA 70802, United States of America.

  13. Morphological and mechanical properties of styrene butadiene rubber/nano copper nanocomposites

    NASA Astrophysics Data System (ADS)

    Harandi, Maryam Hadizadeh; Alimoradi, Fakhrodin; Rowshan, Gholamhussein; Faghihi, Morteza; Keivani, Maryam; Abadyan, Mohamadreza

    In this research, rubber based nanocomposites with presence of nanoparticle has been studied. Styrene butadiene rubber (SBR)/nanocopper (NC) composites were prepared using two-roll mill method. Transmission electron microscope (TEM) and scanning electron microscope (SEM) images showed proper dispersion of NC in the SBR matrix without substantial agglomeration of nanoparticles. To evaluate the curing properties of nanocomposite samples, swelling and cure rheometric tests were conducted. Moreover, the rheological studies were carried out over a range of shear rates. The effect of NC particles was examined on the thermal behavior of the SBR using thermal gravimetric analysis (TGA). Furthermore, tensile tests were employed to investigate the capability of nanoparticles to enhance mechanical behavior of the compounds. The results showed enhancement in tensile properties with incorporation of NC to SBR matrix. Moreover, addition of NC increased shear viscosity and curing time of SBR composites.

  14. Dynamic mechanical properties of a Ti-based metallic glass matrix composite

    NASA Astrophysics Data System (ADS)

    Li, Jinshan; Cui, Jing; Qiao, Jichao; Bai, Jie; Kou, Hongchao; Wang, Jun

    2015-04-01

    Dynamic mechanical behavior of a Ti50Zr20Nb12Cu5Be13 bulk metallic glass composite was investigated using mechanical spectroscopy in both temperature and frequency domains. Storage modulus G' and loss modulus G″ are determined by temperature, and three distinct regions corresponding to different states in the bulk metallic glass composite are characterized. Physical parameters, such as atomic mobility and correlation factor χ, are introduced to analyze dynamic mechanical behavior of the bulk metallic glass composite in the framework of quasi-point defects (QPD) model. The experimental results are in good agreement with the prediction of QPD model.

  15. Dynamic mechanical properties of a Ti-based metallic glass matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinshan, E-mail: ljsh@nwpu.edu.cn; Cui, Jing; Bai, Jie

    2015-04-21

    Dynamic mechanical behavior of a Ti{sub 50}Zr{sub 20}Nb{sub 12}Cu{sub 5}Be{sub 13} bulk metallic glass composite was investigated using mechanical spectroscopy in both temperature and frequency domains. Storage modulus G′ and loss modulus G″ are determined by temperature, and three distinct regions corresponding to different states in the bulk metallic glass composite are characterized. Physical parameters, such as atomic mobility and correlation factor χ, are introduced to analyze dynamic mechanical behavior of the bulk metallic glass composite in the framework of quasi-point defects (QPD) model. The experimental results are in good agreement with the prediction of QPD model.

  16. Whole bone mechanics and bone quality.

    PubMed

    Cole, Jacqueline H; van der Meulen, Marjolein C H

    2011-08-01

    The skeleton plays a critical structural role in bearing functional loads, and failure to do so results in fracture. As we evaluate new therapeutics and consider treatments to prevent skeletal fractures, understanding the basic mechanics underlying whole bone testing and the key principles and characteristics contributing to the structural strength of a bone is critical. We therefore asked: (1) How are whole bone mechanical tests performed and what are the key outcomes measured? (2) How do the intrinsic characteristics of bone tissue contribute to the mechanical properties of a whole bone? (3) What are the effects of extrinsic characteristics on whole bone mechanical behavior? (4) Do environmental factors affect whole bone mechanical properties? We conducted a PubMed search using specific search terms and limiting our included articles to those related to in vitro testing of whole bones. Basic solid mechanics concepts are summarized in the context of whole bone testing and the determinants of whole bone behavior. Whole bone mechanical tests measure structural stiffness and strength from load-deformation data. Whole bone stiffness and strength are a function of total bone mass and the tissue geometric distribution and material properties. Age, sex, genetics, diet, and activity contribute to bone structural performance and affect the incidence of skeletal fractures. Understanding and preventing skeletal fractures is clinically important. Laboratory tests of whole bone strength are currently the only measures for in vivo fracture prediction. In the future, combined imaging and engineering models may be able to predict whole bone strength noninvasively.

  17. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  18. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing

    PubMed Central

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  19. Final Report for DE-FG02-99ER45795

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, John Warren

    The research supported by this grant focuses on atomistic studies of defects, phase transitions, electronic and magnetic properties, and mechanical behaviors of materials. We have been studying novel properties of various emerging nanoscale materials on multiple levels of length and time scales, and have made accurate predictions on many technologically important properties. A significant part of our research has been devoted to exploring properties of novel nano-scale materials by pushing the limit of quantum mechanical simulations, and development of a rigorous scheme to design accurate classical inter-atomic potentials for larger scale atomistic simulations for many technologically important metals and metalmore » alloys.« less

  20. The effect of preparation conditions on the structure and mechanical properties of reaction-sintered silicon nitride

    NASA Technical Reports Server (NTRS)

    Heinrich, J.

    1980-01-01

    The microstructure of reaction sintered silicon nitride (RSSN) was changed over a wide range by varying the grain density, grain size of the silicon starting powder, nitriding conditions, and by introducing artificial pores. The influence of single microstructural parameters on mechanical properties like room temperature strength, creep behavior, and resistance to thermal shock was investigated. The essential factors influencing these properties were found to be total porosity, pore size distribution, and the fractions of alpha and beta Si3N4. In view of high temperature engineering applications of RSSN, potentials for optimizing the material's properties by controlled processing are discussed.

  1. Mechanical behavior of osteoporotic bone at sub-lamellar length scales

    NASA Astrophysics Data System (ADS)

    Jimenez-Palomar, Ines; Shipov, Anna; Shahar, Ron; Barber, Asa

    2015-02-01

    Osteoporosis is a disease known to promote bone fragility but the effect on the mechanical properties of bone material, which is independent of geometric effects, is particularly unclear. To address this problem, micro-beams of osteoporotic bone were prepared using focused ion beam (FIB) microscopy and mechanically tested in compression using an atomic force microscope (AFM) while observing using in situ electron microscopy. This experimental approach was shown to be effective at measuring the subtle changes in the mechanical properties of bone material required to evaluate the effects of osteoporosis. Osteoporotic bone material was found to have lower elastic modulus and increased strain to failure when compared to healthy bone material, while the strength of osteoporotic and healthy bone was similar. A mechanism is suggested based on these results and previous literature that indicates degradation of the organic material in osteoporosis bone is responsible for resultant mechanical properties.

  2. A constitutive model for developing blood clots with various compositions and their nonlinear viscoelastic behavior.

    PubMed

    van Kempen, Thomas H S; Donders, Wouter P; van de Vosse, Frans N; Peters, Gerrit W M

    2016-04-01

    The mechanical properties determine to a large extent the functioning of a blood clot. These properties depend on the composition of the clot and have been related to many diseases. However, the various involved components and their complex interactions make it difficult at this stage to fully understand and predict properties as a function of the components. Therefore, in this study, a constitutive model is developed that describes the viscoelastic behavior of blood clots with various compositions. Hereto, clots are formed from whole blood, platelet-rich plasma and platelet-poor plasma to study the influence of red blood cells, platelets and fibrin, respectively. Rheological experiments are performed to probe the mechanical behavior of the clots during their formation. The nonlinear viscoelastic behavior of the mature clots is characterized using a large amplitude oscillatory shear deformation. The model is based on a generalized Maxwell model that accurately describes the results for the different rheological experiments by making the moduli and viscosities a function of time and the past and current deformation. Using the same model with different parameter values enables a description of clots with different compositions. A sensitivity analysis is applied to study the influence of parameter variations on the model output. The relative simplicity and flexibility make the model suitable for numerical simulations of blood clots and other materials showing similar behavior.

  3. Viscoelastic Properties Measurement of Human Lymphocytes by Atomic Force Microscopy Based on Magnetic Beads Cell Isolation.

    PubMed

    Mi Li; Lianqing Liu; Xiubin Xiao; Ning Xi; Yuechao Wang

    2016-07-01

    Cell mechanics has been proved to be an effective biomarker for indicating cellular states. The advent of atomic force microscopy (AFM) provides an exciting instrument for measuring the mechanical properties of single cells. However, current AFM single-cell mechanical measurements are commonly performed on cell lines cultured in vitro which are quite different from the primary cells in the human body. Investigating the mechanical properties of primary cells from clinical environments can help us to better understand cell behaviors. Here, by combining AFM with magnetic beads cell isolation, the viscoelastic properties of human primary B lymphocytes were quantitatively measured. B lymphocytes were isolated from the peripheral blood of healthy volunteers by density gradient centrifugation and CD19 magnetic beads cell isolation. The activity and specificity of the isolated cells were confirmed by fluorescence microscopy. AFM imaging revealed the surface topography and geometric parameters of B lymphocytes. The instantaneous modulus and relaxation time of living B lymphocytes were measured by AFM indenting technique, showing that the instantaneous modulus of human normal B lymphocytes was 2-3 kPa and the relaxation times were 0.03-0.06 s and 0.35-0.55 s. The differences in cellular visocoelastic properties between primary B lymphocytes and cell lines cultured in vitro were analyzed. The study proves the capability of AFM in quantifying the viscoelastic properties of individual specific primary cells from the blood sample of clinical patients, which will improve our understanding of the behaviors of cells in the human body.

  4. Stimulus Fading and Transfer in the Treatment of Self-Restraint and Self-Injurious Behavior.

    ERIC Educational Resources Information Center

    Pace, Gary M.; And Others

    1986-01-01

    Manipulation of mechanical restraint properties were conducted in separate studies with two profoundly retarded adolescents who exhibited both self-restraint and self-injurious behavior. Techniques included prompting, differential reinforcement, and stimulus fading. Results suggested that stimulus fading and transfer may be valuable components in…

  5. Behavior dynamics: One perspective

    PubMed Central

    Marr, M. Jackson

    1992-01-01

    Behavior dynamics is a field devoted to analytic descriptions of behavior change. A principal source of both models and methods for these descriptions is found in physics. This approach is an extension of a long conceptual association between behavior analysis and physics. A theme common to both is the role of molar versus molecular events in description and prediction. Similarities and differences in how these events are treated are discussed. Two examples are presented that illustrate possible correspondence between mechanical and behavioral systems. The first demonstrates the use of a mechanical model to describe the molar properties of behavior under changing reinforcement conditions. The second, dealing with some features of concurrent schedules, focuses on the possible utility of nonlinear dynamical systems to the description of both molar and molecular behavioral events as the outcome of a deterministic, but chaotic, process. PMID:16812655

  6. Solid Lubrication Fundamentals and Applications. Properties of Clean Surfaces: Adhesion, Friction, and Wear

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1998-01-01

    This chapter presents the adhesion, friction, and wear behaviors of smooth, atomically clean surfaces of solid-solid couples, such as metal-ceramic couples, in a clean environment. Surface and bulk properties, which determine the adhesion, friction, and wear behaviors of solid-solid couples, are described. The primary emphasis is on the nature and character of the metal, especially its surface energy and ductility. Also, the mechanisms of friction and wear for clean, smooth surfaces are stated.

  7. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation.

    PubMed

    Vojtěch, D; Kubásek, J; Serák, J; Novák, P

    2011-09-01

    In the present work Zn-Mg alloys containing up to 3wt.% Mg were studied as potential biodegradable materials for medical use. The structure, mechanical properties and corrosion behavior of these alloys were investigated and compared with those of pure Mg, AZ91HP and casting Zn-Al-Cu alloys. The structures were examined by light and scanning electron microscopy (SEM), and tensile and hardness testing were used to characterize the mechanical properties of the alloys. The corrosion behavior of the materials in simulated body fluid with pH values of 5, 7 and 10 was determined by immersion tests, potentiodynamic measurements and by monitoring the pH value evolution during corrosion. The surfaces of the corroded alloys were investigated by SEM, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. It was found that a maximum strength and elongation of 150MPa and 2%, respectively, were achieved at Mg contents of approximately 1wt.%. These mechanical properties are discussed in relation to the structural features of the alloys. The corrosion rates of the Zn-Mg alloys were determined to be significantly lower than those of Mg and AZ91HP alloys. The former alloys corroded at rates of the order of tens of microns per year, whereas the corrosion rates of the latter were of the order of hundreds of microns per year. Possible zinc doses and toxicity were estimated from the corrosion behavior of the zinc alloys. It was found that these doses are negligible compared with the tolerable biological daily limit of zinc. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Creep-induced anisotropy in covalent adaptable network polymers.

    PubMed

    Hanzon, Drew W; He, Xu; Yang, Hua; Shi, Qian; Yu, Kai

    2017-10-11

    Anisotropic polymers with aligned macromolecule chains exhibit directional strengthening of mechanical and physical properties. However, manipulating the orientation of polymer chains in a fully cured thermoset is almost impossible due to its permanently crosslinked nature. In this paper, we demonstrate that rearrangeable networks with bond exchange reactions (BERs) can be utilized to tailor the anisotropic mechanical properties of thermosetting polymers. When a constant force is maintained at BER activated temperatures, the malleable thermoset creeps in the direction of stress, and macromolecule chains align themselves in the same direction. The aligned polymer chains result in an anisotropic network with a stiffer mechanical behavior in the direction of creep, while with a more compliant behavior in the transverse direction. The degree of network anisotropy is proportional to the amount of creep strain. A multi-length scale constitutive model is developed to study the creep-induced anisotropy of thermosetting polymers. The model connects the micro-scale BER kinetics, orientation of polymer chains, and directional mechanical properties of network polymers. Without any fitting parameters, it is able to predict the evolution of creep strain at different temperatures and anisotropic stress-strain behaviors of CANs after creep. Predictions on the chain orientation are verified by molecular dynamics (MD) simulation. Based on parametric studies, it is shown that the influences of creep time and temperature on the network anisotropy can be generalized into a single parameter, and the evolution of directional modulus follows an Arrhenius type time-temperature superposition principle (TTSP). The presented work provides a facile approach to transform isotropic thermosets into anisotropic ones using simple heating, and their directional properties can be readily tailored by the processing conditions.

  9. Effect of geometric size on mechanical properties of dielectric elastomers based on an improved visco-hyperelastic film model

    NASA Astrophysics Data System (ADS)

    Chang, Mengzhou; Wang, Zhenqing; Tong, Liyong; Liang, Wenyan

    2017-03-01

    Dielectric polymers show complex mechanical behaviors with different boundary conditions, geometry size and pre-stress. A viscoelastic model suitable for inhomogeneous deformation is presented integrating the Kelvin-Voigt model in a new form in this work. For different types of uniaxial tensile test loading along the length direction of sample, single-step-relaxation tests, loading-unloading tests and tensile-creep-relaxation tests the improved model provides a quite favorable comparison with the experiment results. Moreover, The mechanical properties of test sample with several length-width ratios under different boundary conditions are also invested. The influences of the different boundary conditions are calculated with a stress applied on the boundary point and the result show that the fixed boundary will increase the stress compare with homogeneous deformation. In modeling the effect of pre-stress in the shear test, three pre-stressed mode are discussed. The model validation on the general mechanical behavior shows excellent predictive capability.

  10. Neuronal Differentiation Modulated by Polymeric Membrane Properties.

    PubMed

    Morelli, Sabrina; Piscioneri, Antonella; Drioli, Enrico; De Bartolo, Loredana

    2017-01-01

    In this study, different collagen-blend membranes were successfully constructed by blending collagen with chitosan (CHT) or poly(lactic-co-glycolic acid) (PLGA) to enhance their properties and thus create new biofunctional materials with great potential use for neuronal tissue engineering and regeneration. Collagen blending strongly affected membrane properties in the following ways: (i) it improved the surface hydrophilicity of both pure CHT and PLGA membranes, (ii) it reduced the stiffness of CHT membranes, but (iii) it did not modify the good mechanical properties of PLGA membranes. Then, we investigated the effect of the different collagen concentrations on the neuronal behavior of the membranes developed. Morphological observations, immunocytochemistry, and morphometric measures demonstrated that the membranes developed, especially CHT/Col30, PLGA, and PLGA/Col1, provided suitable microenvironments for neuronal growth owing to their enhanced properties. The most consistent neuronal differentiation was obtained in neurons cultured on PLGA-based membranes, where a well-developed neuronal network was achieved due to their improved mechanical properties. Our findings suggest that tensile strength and elongation at break are key material parameters that have potential influence on both axonal elongation and neuronal structure and organization, which are of fundamental importance for the maintenance of efficient neuronal growth. Hence, our study has provided new insights regarding the effects of membrane mechanical properties on neuronal behavior, and thus it may help to design and improve novel instructive biomaterials for neuronal tissue engineering. © 2017 S. Karger AG, Basel.

  11. Dynamic behavior of the mechanical systems from the structure of a hybrid automobile

    NASA Astrophysics Data System (ADS)

    Dinel, Popa; Irina, Tudor; Nicolae-Doru, Stănescu

    2017-10-01

    In introduction are presented solutions of planetary mechanisms that can be used in the construction of the hybrid automobiles where the thermal and electrical sources must be coupled. The systems have in their composition a planetary mechanism with two degrees of mobility at which are coupled a thermal engine, two revertible electrical machines, a gear transmission with four gears and a differential mechanism which transmits the motion at the driving wheels. For the study of the dynamical behavior, with numerical results, one designs such mechanisms, models the elements with solids in AutoCAD, and obtains the mechanical properties of the elements. Further on, we present and solve the equations of motion of a hybrid automotive for which one knows the dynamical parameters.

  12. Understanding the Effect of Ni on Mechanical and Wear Properties of Low-Carbon Steel from a View-Point of Electron Work Function

    NASA Astrophysics Data System (ADS)

    Lu, Hao; Huang, Xiaochen; Hou, Runfang; Li, D. Y.

    2018-07-01

    Electron work function (EWF) is correlated to intrinsic properties of metallic materials and can be an alternative parameter to obtain supplementary clues for guiding material design and modification. A higher EWF corresponds to a more stable electronic state, leading to higher resistance to any attempt to change the material structure and properties. In this study, effects of Ni as a solute with a higher EWF on mechanical, electrochemical, and tribological properties of low-carbon steel were investigated. Added Ni, which has more valence electrons, enhanced the electrons-nuclei interaction in the steel, corresponding to higher EWF. As a result, the Ni-added steel showed increased mechanical strength and corrosion resistance, resulting in higher resistances to wear and corrosive wear. Mechanism for the improvements is elucidated through analyzing EWF-related variations in Young's modulus, hardness, corrosion potential, and tribological behavior.

  13. Thermo-mechanical behaviors of thermoplastic starch derived from sugar palm tree (Arenga pinnata).

    PubMed

    Sahari, J; Sapuan, S M; Zainudin, E S; Maleque, M A

    2013-02-15

    In recent years, increasing environmental concerns focused greater attention on the development of biodegradable materials. A thermoplastic starch derived from bioresources, sugar palm tree was successfully developed in the presence of biodegradable glycerol as a plasticizer. Sugar palm starch (SPS) was added with 15-40 w/w% of glycerol to prepare workable bioplastics and coded as SPS/G15, SPS/G20, SPS/G30 and SPS/G40. The samples were characterized for thermal properties, mechanical properties and moisture absorption on exposure to humidity were evaluated. Morphological studies through scanning electron microscopy (SEM) were used to explain the observed mechanical properties. Generally, the addition of glycerol decrease the transition temperature of plasticized SPS. The mechanical properties of plasticized SPS increase with the increasing of glycerol but up to 30 w/w%. Meanwhile, the water absorption of plasticized SPS decrease with increasing of glycerol. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Understanding the Effect of Ni on Mechanical and Wear Properties of Low-Carbon Steel from a View-Point of Electron Work Function

    NASA Astrophysics Data System (ADS)

    Lu, Hao; Huang, Xiaochen; Hou, Runfang; Li, D. Y.

    2018-04-01

    Electron work function (EWF) is correlated to intrinsic properties of metallic materials and can be an alternative parameter to obtain supplementary clues for guiding material design and modification. A higher EWF corresponds to a more stable electronic state, leading to higher resistance to any attempt to change the material structure and properties. In this study, effects of Ni as a solute with a higher EWF on mechanical, electrochemical, and tribological properties of low-carbon steel were investigated. Added Ni, which has more valence electrons, enhanced the electrons-nuclei interaction in the steel, corresponding to higher EWF. As a result, the Ni-added steel showed increased mechanical strength and corrosion resistance, resulting in higher resistances to wear and corrosive wear. Mechanism for the improvements is elucidated through analyzing EWF-related variations in Young's modulus, hardness, corrosion potential, and tribological behavior.

  15. Constitutive Modeling of Crosslinked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Frankland, S. J. V.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2004-01-01

    A non-linear, continuum-based constitutive model is developed for carbon nanotube materials in which bundles of aligned carbon nanotubes have varying amounts of crosslinks between the nanotubes. The model accounts for the non-linear elastic constitutive behavior of the material in terms of strain, and is developed using a thermodynamic energy approach. The model is used to examine the effect of the crosslinking on the overall mechanical properties of variations of the crosslinked carbon nanotube material with varying degrees of crosslinking. It is shown that the presence of the crosslinks has significant effects on the mechanical properties of the carbon nanotube materials. An increase in the transverse shear properties is observed when the nanotubes are crosslinked. However, this increase is accompanied by a decrease in axial mechanical properties of the nanotube material upon crosslinking.

  16. Mechanical Properties of Organized Microcomposites Fabricated by Interference Lithography

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srikanth; Chang, Sehoon; Jang, Ji-Hyun; Davis, Whitney; Thomas, Edwin; Tsukruk, Vladimir

    2009-03-01

    We demonstrate that organized, porous, polymer microstructures with continuous open nanoscale pores and sub-micron spacings obtained via interference lithography can be successfully utilized in a highly non-traditional field of ordered microcomposites. Organized microcomposite structures are fabricated by employing two independent strategies, namely, capillary infiltration and in situ polymerization of the rubbery component into the porous glassy microframes. The mechanical properties and ultimate fracture behavior of the single and bicomponent microframes are investigated at different length scales. The ordered single and bi-component microstructures with high degree of control over the microscopic organization of the polymeric phases result in excellent mechanical properties. Combining hard and soft polymer components provides multifunctional materials and coatings with synergetic properties and is frequently utilized for design of advanced polymeric composites.

  17. Mussel-inspired tough hydrogels with self-repairing and tissue adhesion

    NASA Astrophysics Data System (ADS)

    Gao, Zijian; Duan, Lijie; Yang, Yongqi; Hu, Wei; Gao, Guanghui

    2018-01-01

    The mussel-inspired polymeric hydrogels have been attractively explored owing to their self-repairing or adhesive property when the catechol groups of dopamine could chelate metal ions. However, it was a challenge for self-repairing hydrogels owning high mechanical properties. Herein, a synergistic strategy was proposed by combining catechol-Fe3+ complexes and hydrophobic association. The resulting hydrogels exhibited seamless self-repairing behavior, tissue adhesion and high mechanical property. Moreover, the pH-dependent stoichiometry of catechol-Fe3+ and temperature-sensitive hydrophobic association endue hydrogels with pH/thermo responsive characteristics. Subsequently, the self-repairing rate and mechanical property of hydrogels were investigated at different pH and temperature. This bio-inspired strategy would build an avenue for designing and constructing a new generation of self-repairing, tissue-adhesive and tough hydrogel.

  18. Fracture and fatigue behavior of shot-blasted titanium dental implants.

    PubMed

    Gil, F J; Planell, J A; Padrós, A

    2002-01-01

    This investigation studies the effect of the shot-blasting treatment on the cyclic deformation behavior of a commercially pure titanium, with two microstructures: equiaxed and acicular. The fatigue tests were carried out in artificial saliva medium at 37 degrees C. Cyclic deformation tests have been carried out up to fracture, and the fatigue crack nucleation and propagation have been analyzed. The results show that the shot-blasting treatment improves the fatigue life in the microstructures studied, and that the equiaxed was better in mechanical properties than the acicular. The cause of this improvement in the mechanical properties is due to the compressive stress on the material surface for the shot-blasted specimens. Hardness tests were carried out to determine the value of these internal stresses.

  19. Prestress Strengthens the Shell of Norwalk Virus Nanoparticles

    PubMed Central

    Baclayon, Marian; Shoemaker, Glen K.; Uetrecht, Charlotte; Crawford, Sue E.; Estes, Mary K.; Prasad, B. V. Venkataram; Heck, Albert J. R.; Wuite, Gijs J. L.; Roos, Wouter H.

    2014-01-01

    We investigated the influence of the protruding domain of Norwalk virus-like particles (NVLP) on its overall structural and mechanical stability. Deletion of the protruding domain yields smooth mutant particles and our AFM nanoindentation measurements show a surprisingly altered indentation response of these particles. Notably, the brittle behavior of the NVLP as compared to the plastic behavior of the mutant reveals that the protruding domain drastically changes the capsid’s material properties. We conclude that the protruding domain introduces prestress, thereby increasing the stiffness of the NVLP and effectively stabilizing the viral nanoparticles. Our results exemplify the variety of methods that nature has explored to improve the mechanical properties of viral capsids, which in turn provides new insights for developing rationally designed, self-assembled nanodevices. PMID:21967663

  20. Modeling the Coupled Chemo-Thermo-Mechanical Behavior of Amorphous Polymer Networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Jonathan A.; Nguyen, Thao D.; Xiao, Rui

    2015-02-01

    Amorphous polymers exhibit a rich landscape of time-dependent behavior including viscoelasticity, structural relaxation, and viscoplasticity. These time-dependent mechanisms can be exploited to achieve shape-memory behavior, which allows the material to store a programmed deformed shape indefinitely and to recover entirely the undeformed shape in response to specific environmental stimulus. The shape-memory performance of amorphous polymers depends on the coordination of multiple physical mechanisms, and considerable opportunities exist to tailor the polymer structure and shape-memory programming procedure to achieve the desired performance. The goal of this project was to use a combination of theoretical, numerical and experimental methods to investigate themore » effect of shape memory programming, thermo-mechanical properties, and physical and environmental aging on the shape memory performance. Physical and environmental aging occurs during storage and through exposure to solvents, such as water, and can significantly alter the viscoelastic behavior and shape memory behavior of amorphous polymers. This project – executed primarily by Professor Thao Nguyen and Graduate Student Rui Xiao at Johns Hopkins University in support of a DOE/NNSA Presidential Early Career Award in Science and Engineering (PECASE) – developed a theoretical framework for chemothermo- mechanical behavior of amorphous polymers to model the effects of physical aging and solvent-induced environmental factors on their thermoviscoelastic behavior.« less

  1. Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion.

    PubMed

    Fang, Fei; Lake, Spencer P

    2016-10-01

    Human supraspinatus tendon (SST) exhibits region-specific nonlinear mechanical properties under tension, which have been attributed to its complex multiaxial physiological loading environment. However, the mechanical response and underlying multiscale mechanism regulating SST behavior under other loading scenarios are poorly understood. Furthermore, little is known about the contribution of elastin to tendon mechanics. We hypothesized that (1) SST exhibits region-specific shear mechanical properties, (2) fiber sliding is the predominant mode of local matrix deformation in SST in shear, and (3) elastin helps maintain SST mechanical integrity by facilitating force transfer among collagen fibers. Through the use of biomechanical testing and multiphoton microscopy, we measured the multiscale mechanical behavior of human SST in shear before and after elastase treatment. Three distinct SST regions showed similar stresses and microscale deformation. Collagen fiber reorganization and sliding were physical mechanisms observed as the SST response to shear loading. Measures of microscale deformation were highly variable, likely due to a high degree of extracellular matrix heterogeneity. After elastase treatment, tendon exhibited significantly decreased stresses under shear loading, particularly at low strains. These results show that elastin contributes to tendon mechanics in shear, further complementing our understanding of multiscale tendon structure-function relationships. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. QUANTIFYING THE MICROMECHANICAL EFFECTS OF VARIABLE CEMENT IN GRANULAR POROUS MEDIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boutt, David F; Goodwin, Laurel B

    2010-03-01

    The mechanical and hydrologic behavior of clastic rocks and sediments is fundamentally controlled by variables such as grain size and shape, sorting, grain and cement mineralogy, porosity, and %cement - parameters that are not used directly in field-scale models of coupled flow and deformation. To improve our understanding of the relationship between these micromechanical properties and bulk behavior we focused on (1) relating detailed, quantitative characterization of the grain-pore systems to both hydrologic and mechanical properties of a suite of variably quartz-cemented quartz arenite samples and (2) the use of a combination of discrete element method (DEM) and poroelastic modelsmore » parameterized by data from the natural samples to isolate and compare the influence of changes in the mechanical and hydrologic properties of granular porous media due to changes in degree of cementation. Quartz overgrowths, the most common form of authigenic cements in sandstones, are responsible for significant porosity and permeability reduction. The distribution of quartz overgrowths is controlled by available pore space and the crystallographic orientations of individual quartz grains. Study of the St. Peter Sandstone allowed evaluation of the relative effects of quartz cementation and compaction on final grain and pore morphology, showing that progressive quartz cementation modifies the grain framework in consistent, predictable ways. Detailed microstructural characterization and multiple regression analyses show that with progressive diagenesis, the number and length of grain contacts increases as the number of pores increases, the number of large, well-connected pores decreases, and pores become rounder. These changes cause a decrease in pore size variability that leads to a decrease in bulk permeability and both stiffening and strengthening of the grain framework. The consistent nature of these changes allows us to predict variations in hydrologic and mechanical properties with progressive diagenesis, and explore the impact of these changes on aquifer behavior. Several examples of this predictive capability are offered. In one application, data from natural sandstones are used to calibrate the proportionality constant of the Kozeny- Carman relationship, improving the ability to predict permeability in quartz-cemented quartz arenites. In another, the bond-to-grain ratio (BGR) is used to parameterize a discrete element model with data acquired from sandstone samples. The DEM results provide input to poroelastic models used to explore the hydrologic, mechanical, and coupled hydrologic and mechanical response of the sandstone to pumping stresses. This modeling exercise shows that at the macroscale, changes in mechanical and hydrologic properties directly influence the magnitude and area of aquifer deformation. The significant difference in sensitivity of the system to the mechanical properties alone versus its sensitivity to coupled mechanical and hydrologic properties demonstrates the importance of including hydrologic properties that are adjusted for changes in cementation in fluid storage and deformation studies. The large magnitude of radial deformation compared to vertical deformation in these models emphasizes the importance of considering three dimensional deformation in fluid flow and deformation studies.« less

  3. Mechanical responses of a-axis GaN nanowires under axial loads

    NASA Astrophysics Data System (ADS)

    Wang, R. J.; Wang, C. Y.; Feng, Y. T.; Tang, Chun

    2018-03-01

    Gallium nitride (GaN) nanowires (NWs) hold technological significance as functional components in emergent nano-piezotronics. However, the examination of their mechanical responses, especially the mechanistic understanding of behavior beyond elasticity (at failure) remains limited due to the constraints of in situ experimentation. We therefore performed simulations of the molecular dynamics (MD) of the mechanical behavior of [1\\bar{2}10]-oriented GaN NWs subjected to tension or compression loading until failure. The mechanical properties and critical deformation processes are characterized in relation to NW sizes and loading conditions. Detailed examinations revealed that the failure mechanisms are size-dependent and controlled by the dislocation mobility on shuffle-set pyramidal planes. The size dependence of the elastic behavior is also examined in terms of the surface structure determined modification of Young’s modulus. In addition, a comparison with c-axis NWs is made to show how size-effect trends vary with the growth orientation of NWs.

  4. Experiments and Simulations of Fully Hydro-Mechanically Coupled Response of Rough Fractures Exposed to High-Pressure Fluid Injection

    NASA Astrophysics Data System (ADS)

    Vogler, D.; Settgast, R. R.; Annavarapu, C.; Madonna, C.; Bayer, P.; Amann, F.

    2018-02-01

    In this work, we present the application of a fully coupled hydro-mechanical method to investigate the effect of fracture heterogeneity on fluid flow through fractures at the laboratory scale. Experimental and numerical studies of fracture closure behavior in the presence of heterogeneous mechanical and hydraulic properties are presented. We compare the results of two sets of laboratory experiments on granodiorite specimens against numerical simulations in order to investigate the mechanical fracture closure and the hydro-mechanical effects, respectively. The model captures fracture closure behavior and predicts a nonlinear increase in fluid injection pressure with loading. Results from this study indicate that the heterogeneous aperture distributions measured for experiment specimens can be used as model input for a local cubic law model in a heterogeneous fracture to capture fracture closure behavior and corresponding fluid pressure response.

  5. The Utility of Behavioral Economics in Expanding the Free-Feed Model of Obesity

    PubMed Central

    Rasmussen, Erin B.; Robertson, Stephen H.; Rodriguez, Luis R.

    2016-01-01

    Animal models of obesity are numerous and diverse in terms of identifying specific neural and peripheral mechanisms related to obesity; however, they are limited when it comes to behavior. The standard behavioral measure of food intake in most animal models occurs in a free-feeding environment. While easy and cost-effective for the researcher, the free-feeding environment omits some of the most important features of obesity-related food consumption—namely, properties of food availability, such as effort and delay to obtaining food. Behavior economics expands behavioral measures of obesity animal models by identifying such behavioral mechanisms. First, economic demand analysis allows researchers to understand the role of effort in food procurement, and how physiological and neural mechanisms are related. Second, studies on delay discounting contribute to a growing literature that shows that sensitivity to delayed food- and food-related outcomes is likely a fundamental process of obesity. Together, these data expand the animal model in a manner that better characterizes how environmental factors influence food consumption. PMID:26923097

  6. Effect of MoSi2 Content on Dry Sliding Tribological Properties of Zr-Based Bulk Metallic Glass Composites

    NASA Astrophysics Data System (ADS)

    Liu, Longfei; Yang, Jun

    2017-12-01

    Zr55Cu30Al10Ni5 bulk metallic glass and its composites were prepared by suction casting into a copper mold. The effect of MoSi2 content on the tribological behavior of Zr55Cu30Al10Ni5 BMG was studied by using a high-speed reciprocating friction and wear tester. The results indicate that the friction coefficient and wear resistance of the BMGs can be improved by a certain amount of crystalline phase induced by MoSi2 content from 1 to 3% and deteriorated with MoSi2 content of 4%. The wear mechanism of both the metallic glass and its composite is abrasive wear. The mechanism of crystalline phase-dependent tribological properties of the composite was discussed based on the wear track and mechanical properties in the present work. The wear behavior of Zr55Cu30Al10Ni5 BMG and its composite indicates that a good combination of the toughness and the hardness can make the composite be well wear resistant.

  7. Chitosan/titanium dioxide nanocomposite coatings: Rheological behavior and surface application to cellulosic paper.

    PubMed

    Tang, Yanjun; Hu, Xiulan; Zhang, Xinqi; Guo, Daliang; Zhang, Junhua; Kong, Fangong

    2016-10-20

    Incorporation of nanofillers into a polymeric matrix has received much attention as a route to reinforced polymer nanocomposites. In the present work, an environmentally friendly chitosan (CTS)/titanium dioxide (TiO2) nanocomposite coating was designed/prepared and subsequently employed for imparting antibacterium and improved mechanical properties to cellulosic paper via surface coating. Effect of TiO2 nanoparticle loadings on the rheological behavior of nanocomposite coatings was investigated. Surface application of CTS/TiO2 nanocomposite coatings to cellulosic paper was performed, and the antibacterial activity and mechanical properties of surface-coated cellulosic paper were examined. Results showed that the increased TiO2 nanoparticle loadings decreased the viscosity and dynamic viscoelasticity of the as-prepared coatings, and improved the antibacterial activity and mechanical properties of surface-coated cellulosic paper. The optimum loading of TiO2 nanoparticles was identified at 10%. This work suggested that CTS/TiO2 nanocomposite coatings may have the potential to be used as a promising antibacterial protective coating for paper packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effect of Annealing on Mechanical Properties and Formability of Cold Rolled Thin Sheets of Fe-P P/M Alloys

    NASA Astrophysics Data System (ADS)

    Trivedi, Shefali; Ravi Kumar, D.; Aravindan, S.

    2016-10-01

    Phosphorus in steel is known to increase strength and hardness and decrease ductility. Higher phosphorus content (more than 0.05%), however, promotes brittle behavior due to segregation of Fe3P along the grain boundaries which makes further mechanical working of these alloys difficult. In this work, thin sheets of Fe-P alloys (with phosphorus in range of 0.1-0.35%) have been developed through processing by powder metallurgy followed by hot rolling and cold rolling. The effect of phosphorus content and annealing parameters (temperature and time) on microstructure, mechanical properties, formability in biaxial stretching and fracture behavior of the cold rolled and annealed sheets has been studied. A comparison has also been made between the properties of the sheets made through P/M route and the conventional cast route with similar phosphorus content. It has been shown that thin sheets of Fe-P alloys with phosphorous up to 0.35% possessing a good combination of strength and formability can be produced through rolling of billets of these alloys made through powder metallurgy technique without the problem of segregation.

  9. An Introduction to the Mechanical Properties of Ceramics

    NASA Astrophysics Data System (ADS)

    Green, David J.

    1998-09-01

    Over the past twenty-five years ceramics have become key materials in the development of many new technologies as scientists have been able to design these materials with new structures and properties. An understanding of the factors that influence their mechanical behavior and reliability is essential. This book will introduce the reader to current concepts in the field. It contains problems and exercises to help readers develop their skills. This is a comprehensive introduction to the mechanical properties of ceramics, and is designed primarily as a textbook for advanced undergraduates in materials science and engineering. It will also be of value as a supplementary text for more general courses and to industrial scientists and engineers involved in the development of ceramic-based products, materials selection and mechanical design.

  10. Effect of storage duration on the rheological properties of goose liquid egg products and eggshell membranes.

    PubMed

    Kumbar, V; Nedomova, S; Trnka, J; Buchar, J; Pytel, R

    2016-07-01

    In practice, goose eggs are increasingly used and, therefore, the rheological properties have to be known for processing. The eggs of geese (Landes Goose, Anser anser f. domestica) were stored for one, 2, 3, 4, 6, and 8 wk at a constant temperature 4°C. First of all, the egg quality parameters were described in terms of egg weight, egg weight loss, egg shape index, yolk height, albumen height, yolk index, albumen index, and Haugh units. In the next step the rheological behavior of liquid egg products (egg yolk, albumen, and whole liquid egg) was studied using a concentric cylinder viscometer. Flow curves of all liquid egg products exhibited non-Newtonian shear thinning behavior. This behavior can be described using the Herschel-Bulkley model and for technical application using the Ostwald-de Waele model. The effect of the storage duration on the rheological behavior is different for the different liquid egg products. With the exception of very low shear rates, the viscosity of the egg yolk as well as of the whole liquid egg decreases with storage time. At lower shear rates there is a tendency toward increased albumen viscosity with storage duration. The storage duration also affects the mechanical properties of the eggshell membrane. This effect has been evaluated in terms of the ultimate tensile strength, fracture strain, and fracture toughness. All these parameters increased with the loading rate, but decreased during the egg storage. These mechanical phenomena should be respected, namely in the design of the egg model for the numerical simulation of the egg behavior under different kinds of the mechanical loading. © 2016 Poultry Science Association Inc.

  11. Rheological properties and tunable thermoplasticity of phenolic rich fraction of pyrolysis bio-oil.

    PubMed

    Sahaf, Amir; Laborie, Marie-Pierre G; Englund, Karl; Garcia-Perez, Manuel; McDonald, Armando G

    2013-04-08

    In this work we report on the preparation, characterization, and properties of a thermally treated lignin-derived, phenolic-rich fraction (PRF) of wood pyrolysis bio-oil obtained by ethyl acetate extraction. The PRF was characterized for viscoelastic and rheological behavior using dynamic mechanical analysis (DMA) and cone and plate rheology. A unique thermoplastic behavior was evidenced. Heat-treated PRFs acquire high modulus but show low temperatures of thermal flow which can be systematically manipulated through the thermal pretreatment. Loss of volatiles, changes in molecular weight, and glass transition temperature (Tg) were investigated using thermogravimetric analysis (TGA), mass spectrometry (MS), and differential scanning calorimetry (DSC), respectively. Underlying mechanisms for the thermal and rheological behavior are discussed with regard to interactions between pyrolytic lignin nanoparticles present in the system and the role of volatile materials on determining the properties of the material resembling in several aspects to colloidal suspension systems. Low thermal flow temperatures and reversible thermal effects can be attributed to association of pyrolytic lignin particles due to intermolecular interactions that are easily ruptured at higher temperatures. The thermoplastic behavior of PRF and its low Tg is of particular interest, as it gives opportunities for application of this fraction in several melt processing and adhesive technologies.

  12. Research Update: Mechanical properties of metal-organic frameworks - Influence of structure and chemical bonding

    NASA Astrophysics Data System (ADS)

    Li, Wei; Henke, Sebastian; Cheetham, Anthony K.

    2014-12-01

    Metal-organic frameworks (MOFs), a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  13. Self-repairing systems based on ionomers and epoxidized natural rubber blends.

    PubMed

    Rahman, Md Arifur; Penco, Maurizio; Peroni, Isabella; Ramorino, Giorgio; Grande, Antonio Mattia; Di Landro, Luca

    2011-12-01

    The development of materials with the ability of intrinsic self-repairing after damage in a fashion resembling that of living tissues has important scientific and technological implications, particularly in relation to cost-effective approaches toward damage management of materials. Natural rubbers with epoxy functional groups in the macromolecular chain (ENR) and ethylene-methacrylic acid ionomers having acid groups partially neutralized with metal ions possess self-repairing behavior following high energy impacts. This research investigates the self-repairing behavior of both ENR and ionomers during ballistic puncture test on the basis of their thermal and mechanical properties. Heterogeneous blending of ionomers and ENR have also been used here as a strategy to tune the thermal and mechanical properties of the materials. Interestingly, blends of sodium ion containing ionomer exhibit complete self-repairing behavior, whereas blends of zinc ion containing ionomer show limited mending. The chemical structure studied by FTIR and thermal analysis shows that both ion content of ionomer and functionality of ENR have significant influence on the self-repairing behavior of blends. The mobility of rubbery phases along with its interaction to ionomer phase in the blends significantly changes the mending capability of materials. The healing behavior of the materials has been discussed on the basis of their thermal, mechanical, and rheological tests for each materials. © 2011 American Chemical Society

  14. Mechanical properties of green composites based on thermoplastic starch

    NASA Astrophysics Data System (ADS)

    Fornes, F.; Sánchez-Nácher, L.; Fenollar, O.; Boronat, T.; Garcia-Sanoguera, D.

    2010-06-01

    The present work is focused on study of "green composites" elaborated from thermoplastic starch (TPS) as polymer matrix and a fiber from natural origin (rush) as reinforced fiber. The effect of the fiber content has been studied by means of the mechanical properties. The composite resulting presents a lack of interaction between matrix and fiber that represents a performance decrease. However the biodegradability behavior of the resulting composite raise this composite as useful an industrial level.

  15. Corrosion behavior and mechanical properties of bioactive sol-gel coatings on titanium implants.

    PubMed

    Catauro, M; Bollino, F; Papale, F; Giovanardi, R; Veronesi, P

    2014-10-01

    Organic-inorganic hybrid coatings based on zirconia and poly (ε-caprolactone) (PCL) were prepared by means of sol-gel dip-coating technique and used to coat titanium grade 4 implants (Ti-4) in order to improve their wear and corrosion resistance. The coating chemical composition has been analysed by ATR-FTIR. The influence of the PCL amount has been investigated on the microstructure, mechanical properties of the coatings and their ability to inhibit the corrosion of titanium. SEM analysis has shown that all coatings have a nanostructured nature and that the films with high PCL content are crack-free. Mechanical properties of the coatings have been studied using scratch and nano-indentation tests. The results have shown that the Young's modulus of the coatings decreases in presence of large amounts of the organic phase, and that PCL content affects also the adhesion of the coatings to the underlying Ti-4 substrate. However, the presence of cracks on the PCL-free coatings affects severely the mechanical response of the samples at high loads. The electrochemical behavior and corrosion resistance of the coated and uncoated substrate has been investigated by polarization tests. The results have shown that both the coatings with or without PCL don't affect significantly the already excellent passivation properties of titanium. Copyright © 2014. Published by Elsevier B.V.

  16. Polarity effect of electromigration on mechanical properties of lead-free solder joints

    NASA Astrophysics Data System (ADS)

    Ren, Fei

    The trend of electronic packaging is to package the chips and the associated interconnections in a compact way that allows high speed operation; that allows for sufficient heat removal; that can withstand the thermal cycling associated with the turning on and turning off of the circuits; and that protects the circuits from environmental attack. These goals require that flip chip solder joints have higher resistance to electromigration, stronger mechanical property to sustain thermal mechanical stress, and are lead-free materials to satisfy environment and health concern. With lots of work on chemical reaction, electromigration and mechanical study in flip chip solder joints, however, the interaction between different driving forces is still little known. As a matter of fact, the combination study of chemical, electrical and mechanical is more and more significant to the understanding of the behavior of flip chip solder joints. In this dissertation, I developed one dimensional Cu (wire)-eutectic SnAgCu(ball)-Cu(wire) structure to investigate the interaction between electrical and mechanical force in lead-free solder joints. Electromigration was first conducted. The mechanical behaviors of solder joints before, after, and during electromigration were examined. Electrical current and mechanical stress were applied either in serial or in parallel to the solder joints. Tensile, creep, and drop tests, combined with different electrical current densities (1˜5x10 3A/cm2) and different stressing time (3˜144 hours), have been performed to study the effect of electromigration on the mechanical behavior of solder joints. Nano-indentation test was conducted to study the localized mechanical property of IMC at both interfaces in nanometer scale. Fracture images help analyze the failure mechanism of solder joints driven by both electrical and mechanical forces. The combination study shows a strain build-up during electromigration. Furthermore, a ductile-to-brittle transition in flip chip solder joints induced by electromigration is observed, in which the fracture position migrates from the middle to the cathode interface of the joint with increasing current density and time. The transition is explained by the polarity effect of electromigration, particular due to the accumulation of vacancies at the cathode interface.

  17. Mechanical properties of DNA origami nanoassemblies are determined by Holliday junction mechanophores

    PubMed Central

    Shrestha, Prakash; Emura, Tomoko; Koirala, Deepak; Cui, Yunxi; Hidaka, Kumi; Maximuck, William J; Endo, Masayuki; Sugiyama, Hiroshi; Mao, Hanbin

    2016-01-01

    DNA nanoassemblies have demonstrated wide applications in various fields including nanomaterials, drug delivery and biosensing. In DNA origami, single-stranded DNA template is shaped into desired nanostructure by DNA staples that form Holliday junctions with the template. Limited by current methodologies, however, mechanical properties of DNA origami structures have not been adequately characterized, which hinders further applications of these materials. Using laser tweezers, here, we have described two mechanical properties of DNA nanoassemblies represented by DNA nanotubes, DNA nanopyramids and DNA nanotiles. First, mechanical stability of DNA origami structures is determined by the effective density of Holliday junctions along a particular stress direction. Second, mechanical isomerization observed between two conformations of DNA nanotubes at 10–35 pN has been ascribed to the collective actions of individual Holliday junctions, which are only possible in DNA origami with rotational symmetric arrangements of Holliday junctions, such as those in DNA nanotubes. Our results indicate that Holliday junctions control mechanical behaviors of DNA nanoassemblies. Therefore, they can be considered as ‘mechanophores’ that sustain mechanical properties of origami nanoassemblies. The mechanical properties observed here provide insights for designing better DNA nanostructures. In addition, the unprecedented mechanical isomerization process brings new strategies for the development of nano-sensors and actuators. PMID:27387283

  18. Influence of the forming process on the mechanical behavior of a commingled carbon PPS composite part

    NASA Astrophysics Data System (ADS)

    Patou, J.; De Luycker, E.; Bonnaire, R.; Cutard, T.; Bernhart, G.

    2018-05-01

    In this research work, the influence of the forming process on commingled thermoplastic composite parts mechanical behavior was investigated. The aim of this work is to evaluate the influence of fabric shearing on the mechanical response of composite laminate. Different sheets with a given shear angle are manufactured. Tensile experimental results are compared with the properties obtained from a simple model based on the laminate plate theory for various off angles. Later, the link with a tetrahedron shape 3D part manufactured by punch deep drawing will be made.

  19. Apollo soil mechanics experiment S-200

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Houston, W. N.; Carrier, W. D., III; Costes, N. C.

    1974-01-01

    The physical and mechanical properties of the unconsolidated lunar surface material samples that were obtained during the Apollo missions were studied. Sources of data useful for deduction of soil information, and methods used to obtained the data are indicated. A model for lunar soil behavior is described which considers soil characteristics, density and porosity, strength, compressibility, and trafficability parameters. Lunar history and processes are considered, and a comparison is made of lunar and terrestrial soil behavior. The impact of the findings on future exploration and development of the moon are discussed, and publications resulting from lunar research by the soil mechanics team members are listed.

  20. Mechanical Degradation of Porous NiTi Alloys Under Static and Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyyed Alireza

    2017-12-01

    Pore characteristics and morphology have significant effect on mechanical behavior of porous NiTi specimens. In this research, porous NiTi with different pore sizes, shapes and morphology were produced by powder metallurgy methods using space-holder materials. The effect of the pore characteristics on the mechanical properties was investigated by static and cyclic compression tests at body temperature. The results show that specimens with low porosity and isolated pores exhibit more mechanical strength and recoverable strain. The specimen with 36% porosity produced without space holder could preserve its properties up to 10% strain and its strain recovery was complete after cyclic compression tests. On the other hand, the specimens produced by a urea space holder with more than 60% interconnected porosity show rapid degradation of their scaffolds. The highly porous specimens degraded even below 5% strain due to crack formation and propagation in the thin pore walls. For highly porous specimens produced by a NaCl space holder, the pores are partially interconnected with a cubic shape; nevertheless, their mechanical behavior is close to low-porosity specimens.

  1. Preparation and properties of recycled HDPE/clay hybrids

    Treesearch

    Yong Lei; Qinglin Wu; Craig M. Clemons

    2007-01-01

    Hybrids based on recycled high density polyethylene (RHDPE) and organic clay were made by melt compounding. The influence of blending method, compatibilizers, and clay content on clay intercalation and exfoliation, RHDPE crystallization behavior, and the mechanical properties of RHDPE/clay hybrids were investigated. Both maleated polyethylene (MAPE) and titanate could...

  2. Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation-induced plasticity steel

    NASA Astrophysics Data System (ADS)

    Timokhina, I. B.; Hodgson, P. D.; Pereloma, E. V.

    2003-08-01

    Thermomechanical processing simulations were performed using a hot-torsion machine, in order to develop a comprehensive understanding of the effect of severe deformation in the recrystallized and nonrecrystallized austenite regions on the microstructural evolution and mechanical properties of the 0.2 wt pct C-1.55 wt pct Mn-1.5 wt pct Si transformation-induced plasticity (TRIP) steel. The deformation schedule affected all constituents (polygonal ferrite, bainite in different morphologies, retained austenite, and martensite) of the multiphased TRIP steel microstructure. The complex relationships between the volume fraction of the retained austenite, the morphology and distribution of all phases present in the microstructure, and the mechanical properties of TRIP steel were revealed. The bainite morphology had a more pronounced effect on the mechanical behavior than the refinement of the microstructure. The improvement of the mechanical properties of TRIP steel was achieved by variation of the volume fraction of the retained austenite rather than the overall refinement of the microstructure.

  3. Structures and Properties of Polymers Important to Their Wear Behavior

    NASA Technical Reports Server (NTRS)

    Tanaka, K.

    1984-01-01

    The wear and transfer of various semicrystalline polymers sliding against smooth steel or glass surfaces were examined. The effects of structures, and properties of polymers on their wear behavior are discussed. It is found that the high wear characteristics of PTFE is due to the easy destruction of the banded structure of PTFE. The size of spherulites and the molecular profile are closely related to the magnitude of wear rates of typical semicrystalline polymers. The effects of these factors on the wear rate on the basis of the destruction or melting of spherulites at the frictional surface are discussed. Although the fatigue theory of wear indicates that some mechanical properties are important to wear behavior, it is shown that the theory does not always explain the experimental result obtained on a smooth surface.

  4. Differences in Tribological Behaviors upon Switching Fixed and Moving Materials of Tribo-pairs including Metal and Polymer.

    PubMed

    Xu, Aijie; Tian, Pengyi; Wen, Shizhu; Guo, Fei; Hu, Yueqiang; Jia, Wenpeng; Dong, Conglin; Tian, Yu

    2017-10-12

    The coefficient of friction (COF) between two materials is usually believed to be an intrinsic property of the materials themselves. In this study, metals of stainless steel (304) and brass (H62), and polymers of polypropylene (PP) and polytetrafluoroethylene (PTFE) were tested on a standard ball-on-three-plates test machine. Significantly different tribological behaviors were observed when fixed and moving materials of tribo-pairs (metal/polymer) were switched. As an example, under the same applied load and rotating speed, the COF (0.49) between a rotating PP ball and three fixed H62 plates was approximately 2.3 times higher than that between switched materials of tribo-pairs. Meanwhile, the COF between H62 and PTFE was relatively stable. The unexpected tribological behaviors were ascribed to the thermal and mechanical properties of tribo-pairs. Theoretical analysis revealed that the differences in the maximum local temperature between switching the fixed and moving materials of tribo-pairs were consistent with the differences in the tested COF. This result indicated the precise prediction of the COF of two materials is complexcity, and that thermal and mechanical properties should be properly considered in designing tribo-pairs, because these properties may significantly affect tribological performance.

  5. Effect of space exposure of some epoxy matrix composites on their thermal expansion and mechanical properties (A0138-8)

    NASA Technical Reports Server (NTRS)

    Jabs, Heinrich

    1992-01-01

    Assessments of the behavior of the carbon/epoxy composites in space conditions are described. After an exposure of five years, the mechanical characteristics and the coefficient of thermal expansion are measured and compared to reference values.

  6. Crack-growth behavior in thick welded plates of Inconel 718 at room and cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Forman, R. G.

    1974-01-01

    Results of mechanical-properties and axial-load fatigue and fracture tests performed on thick welded plates of Inconel 718 superalloy are presented. The test objectives were to determine the tensile strength properties and the crack-growth behavior in electron-beam, plasma-arc, and gas tungsten are welds for plates 1.90 cm (0.75 in) thick. Base-metal specimens were also tested to determine the flaw-growth behavior. The tests were performed in room-temperature-air and liquid nitrogen environments. The experimental crack-growth-rate data are correlated with theoretical crack-growth-rate predictions for semielliptical surface flaws.

  7. Physics of Life: A Model for Non-Newtonian Properties of Living Systems

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2010-01-01

    This innovation proposes the reconciliation of the evolution of life with the second law of thermodynamics via the introduction of the First Principle for modeling behavior of living systems. The structure of the model is quantum-inspired: it acquires the topology of the Madelung equation in which the quantum potential is replaced with the information potential. As a result, the model captures the most fundamental property of life: the progressive evolution; i.e. the ability to evolve from disorder to order without any external interference. The mathematical structure of the model can be obtained from the Newtonian equations of motion (representing the motor dynamics) coupled with the corresponding Liouville equation (representing the mental dynamics) via information forces. All these specific non-Newtonian properties equip the model with the levels of complexity that matches the complexity of life, and that makes the model applicable for description of behaviors of ecological, social, and economical systems. Rather than addressing the six aspects of life (organization, metabolism, growth, adaptation, response to stimuli, and reproduction), this work focuses only on biosignature ; i.e. the mechanical invariants of life, and in particular, the geometry and kinematics of behavior of living things. Living things obey the First Principles of Newtonian mechanics. One main objective of this model is to extend the First Principles of classical physics to include phenomenological behavior on living systems; to develop a new mathematical formalism within the framework of classical dynamics that would allow one to capture the specific properties of natural or artificial living systems such as formation of the collective mind based upon abstract images of the selves and non-selves; exploitation of this collective mind for communications and predictions of future expected characteristics of evolution; and for making decisions and implementing the corresponding corrections if the expected scenario is different from the originally planned one. This approach postulates that even a primitive living species possesses additional, non-Newtonian properties that are not included in the laws of Newtonian or statistical mechanics. These properties follow from a privileged ability of living systems to possess a self-image (a concept introduced in psychology) and to interact with it. The proposed mathematical system is based on the coupling of the classical dynamical system representing the motor dynamics with the corresponding Liouville equation describing the evolution of initial uncertainties in terms of the probability density and representing the mental dynamics. The coupling is implemented by the information-based supervising forces that can be associated with self-awareness. These forces fundamentally change the pattern of the probability evolution, and therefore, lead to a major departure of the behavior of living systems from the patterns of both Newtonian and statistical mechanics. This innovation is meant to capture the signature of life based only on observable behavior, not on any biochemistry. This will not prevent the use of this model for developing artificial living systems, as well as for studying some general properties of behavior of natural, living systems.

  8. Magnesium Alloy WE43 and WE43-T5 - Mechanical and Thermal Properties

    NASA Astrophysics Data System (ADS)

    Xiang, Chongchen

    Magnesium alloys are promising in aerospace, automotive and electronic industries due to low density, high specific strength and excellent machinability. A rare earth element alloy (WE43) is studied in as cast and heat treated conditions. Multiscale characterization is conducted to understand the nanomechanical response using a nanoindentor and microscale behavior using tensile tests. Further, compressive characterization is conducted across six orders of strain rate magnitudes from 10-3 to 3x103 s -1 under the range of liquid nitrogen (-196°C) to room temperature (25°C). Based on the results, a constitutive model is developed to estimate the plastic behavior of as-cast WE43 and WE43-T5 at different strain rates and under different temperatures. In addition, dynamic properties are studied using a dynamic mechanical analyzer at 1-100 Hz loading frequencies and the temperature range from 35°C to 500°C. Only Yttrium-rich cuboidal phase and zirconium-rich phase were present in WE43-T5 alloy and the eutectic phase was absent. Also, the grain size was reduced due to the hot rolling process. The difference in microstructure reflects into the mechanical properties. WE43-T5 specimens have improved mechanical properties over the as-cast alloy. Two transition temperatures are found at 210 and 250°C based on the storage and loss moduli results. The Mg24Y5 peak is found in the high temperature x-ray diffraction results along with a new Mg12Nd peak at those two temperature points. The corrosion behavior, studied by 7-day immersion in 3.5% NaCl solution, shows that the heat treated alloy has significantly lower corrosion rate than the as-cast alloy due to the absence of the eutectic mixture in the microstructure. With rapidly growing applications of magnesium alloys, particularly with rare earth elements, this study is expected to provide critical data and structure-property correlations that will help the scientific community.

  9. Direct measurement of local material properties within living embryonic tissues

    NASA Astrophysics Data System (ADS)

    Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Kealhofer, David; Lucio, Adam; Hockenbery, Zachary; Campàs, Otger

    The shaping of biological matter requires the control of its mechanical properties across multiple scales, ranging from single molecules to cells and tissues. Despite their relevance, measurements of the mechanical properties of sub-cellular, cellular and supra-cellular structures within living embryos pose severe challenges to existing techniques. We have developed a technique that uses magnetic droplets to measure the mechanical properties of complex fluids, including in situ and in vivo measurements within living embryos ,across multiple length and time scales. By actuating the droplets with magnetic fields and recording their deformation we probe the local mechanical properties, at any length scale we choose by varying the droplets' diameter. We use the technique to determine the subcellular mechanics of individual blastomeres of zebrafish embryos, and bridge the gap to the tissue scale by measuring the local viscosity and elasticity of zebrafish embryonic tissues. Using this technique, we show that embryonic zebrafish tissues are viscoelastic with a fluid-like behavior at long time scales. This technique will enable mechanobiology and mechano-transduction studies in vivo, including the study of diseases correlated with tissue stiffness, such as cancer.

  10. Effects of mechanical strain on optical properties of ZnO nanowire

    NASA Astrophysics Data System (ADS)

    Vazinishayan, Ali; Lambada, Dasaradha Rao; Yang, Shuming; Zhang, Guofeng; Cheng, Biyao; Woldu, Yonas Tesfaye; Shafique, Shareen; Wang, Yiming; Anastase, Ndahimana

    2018-02-01

    The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW) before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM) software package ABAQUS and three-dimensional (3D) finite-difference time-domain (FDTD) methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.

  11. Transient Dynamic Mechanical Analysis of Resilin-based Elastomeric Hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Linqing; Kiick, Kristi

    2014-04-01

    The outstanding high-frequency properties of emerging resilin-like polypeptides (RLPs) have motivated their development for vocal fold tissue regeneration and other applications. Recombinant RLP hydrogels show efficient gelation, tunable mechanical properties, and display excellent extensibility, but little has been reported about their transient mechanical properties. In this manuscript, we describe the transient mechanical behavior of new RLP hydrogels investigated via both sinusoidal oscillatory shear deformation and uniaxial tensile testing. Oscillatory stress relaxation and creep experiments confirm that RLP-based hydrogels display significantly reduced stress relaxation and improved strain recovery compared to PEG-based control hydrogels. Uniaxial tensile testing confirms the negligible hysteresis, reversible elasticity and superior resilience (up to 98%) of hydrated RLP hydrogels, with Young’s modulus values that compare favorably with those previously reported for resilin and that mimic the tensile properties of the vocal fold ligament at low strain (< 15%). These studies expand our understanding of the properties of these RLP materials under a variety of conditions, and confirm the unique applicability, for mechanically demanding tissue engineering applications, of a range of RLP hydrogels.

  12. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology.

    PubMed

    Connizzo, Brianne K; Grodzinsky, Alan J

    2017-03-21

    Tendons transmit load from muscle to bone by utilizing their unique static and viscoelastic tensile properties. These properties are highly dependent on the composition and structure of the tissue matrix, including the collagen I hierarchy, proteoglycans, and water. While the role of matrix constituents in the tensile response has been studied, their role in compression, particularly in matrix pressurization via regulation of fluid flow, is not well understood. Injured or diseased tendons and tendon regions that naturally experience compression are known to have alterations in glycosaminoglycan content, which could modulate fluid flow and ultimately mechanical function. While recent theoretical studies have predicted tendon mechanics using poroelastic theory, no experimental data have directly demonstrated such behavior. In this study, we use high-bandwidth AFM-based rheology to determine the dynamic response of tendons to compressive loading at the nanoscale and to determine the presence of poroelastic behavior. Tendons are found to have significant characteristic dynamic relaxation behavior occurring at both low and high frequencies. Classic poroelastic behavior is observed, although we hypothesize that the full dynamic response is caused by a combination of flow-dependent poroelasticity as well as flow-independent viscoelasticity. Tendons also demonstrate regional dependence in their dynamic response, particularly near the junction of tendon and bone, suggesting that the structural and compositional heterogeneity in tendon may be responsible for regional poroelastic behavior. Overall, these experiments provide the foundation for understanding fluid-flow-dependent poroelastic mechanics of tendon, and the methodology is valuable for assessing changes in tendon matrix compressive behavior at the nanoscale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Equipment and Protocols for Quasi-Static and Dynamic Tests of Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC)

    DTIC Science & Technology

    2016-08-01

    quasi -static mechanical properties, deformation behavior, and damage mechanisms in HSHDC and compare the behavior with VHSC. 2. Develop experimental ...using the experimental setup described in Chapter 6. The quasi -static strain rate was approximately 10-4/s. All panels tested have nominal dimensions...ER D C TR -1 6- 13 Force Protection Basing; TeCD 1a Equipment and Protocols for Quasi -Static and Dynamic Tests of Very-High-Strength

  14. On the effect of hydrogen on the mechanical behavior of Beta-C titanium in aged condition

    NASA Astrophysics Data System (ADS)

    Alvarez, Anna-Maria

    The effect of hydrogen in solid solution on the mechanical behavior of the metastable beta-titanium alloy Beta-C was studied. The samples were aged at 482°C for 28 h prior to hydrogen charging in order to obtain a microstructure of alpha-precipitates in a beta-phase matrix. The kinetics and thermodynamics of hydrogen uptake in the alloy were studied in order to determine the required parameters to gas charge the samples with hydrogen, without altering the microstructure. The mechanical samples were hydrogen charged at 350°C to hydrogen concentrations between 0.6 and 24 at%. The samples were thereafter tested under tensile and alternating loading in order to study the effect of hydrogen on the tensile properties, fatigue properties and crack propagation rate. The fracture surfaces were then studied by using SEM, TEM and X-ray diffraction techniques. The macroscopic mechanical properties were compared with the micromechanisms of deformation and fracture in order to obtain information about the operating hydrogen-enhanced fracture mechanism. It was found that the tensile behavior was sensitive to hydrogen. A sharp ductile-to-brittle transition (DBT) occurred when hydrogen in solid solution reached a concentration of about 3.5 at%. TEM and X-ray analysis showed that stress-induced hydrides form in areas of low stress intensities at hydrogen concentrations above the DBT, and it is therefore believed that this is the cause of the hydrogen embrittlement in this alloy. However, at higher stress intensities, slip localization and enhanced slip band fracture were observed. Since slip localization and hydrogen-induced slip band fracture have previously been connected with a large decrease in ductility it can not be excluded that these effects of hydrogen affects the DBT. The cyclic stress strain behavior was not affected by hydrogen; the non-linear elastic behavior and the cyclic softening did not change with introduction of hydrogen up to a level of 10.8 at%. The fatigue life was, however, reduced when hydrogen charged samples were tested at low frequency (0.00032 Hz).

  15. Creep Behavior of ABS Polymer in Temperature-Humidity Conditions

    NASA Astrophysics Data System (ADS)

    An, Teagen; Selvaraj, Ramya; Hong, Seokmoo; Kim, Naksoo

    2017-04-01

    Acrylonitrile-Butadiene-Styrene (ABS), also known as a thermoplastic polymer, is extensively utilized for manufacturing home appliances products as it possess impressive mechanical properties, such as, resistance and toughness. However, the aforementioned properties are affected by operating temperature and atmosphere humidity due to the viscoelasticity property of an ABS polymer material. Moreover, the prediction of optimum working conditions are the little challenging task as it influences the final properties of product. This present study aims to develop the finite element (FE) models for predicting the creep behavior of an ABS polymeric material. In addition, the material constants, which represent the creep properties of an ABS polymer material, were predicted with the help of an interpolation function. Furthermore, a comparative study has been made with experiment and simulation results to verify the accuracy of developed FE model. The results showed that the predicted value from FE model could agree well with experimental data as well it can replicate the actual creep behavior flawlessly.

  16. Additively manufactured biodegradable porous magnesium.

    PubMed

    Li, Y; Zhou, J; Pavanram, P; Leeflang, M A; Fockaert, L I; Pouran, B; Tümer, N; Schröder, K-U; Mol, J M C; Weinans, H; Jahr, H; Zadpoor, A A

    2018-02-01

    An ideal bone substituting material should be bone-mimicking in terms of mechanical properties, present a precisely controlled and fully interconnected porous structure, and degrade in the human body to allow for full regeneration of large bony defects. However, simultaneously satisfying all these three requirements has so far been highly challenging. Here we present topologically ordered porous magnesium (WE43) scaffolds based on the diamond unit cell that were fabricated by selective laser melting (SLM) and satisfy all the requirements. We studied the in vitro biodegradation behavior (up to 4 weeks), mechanical properties and biocompatibility of the developed scaffolds. The mechanical properties of the AM porous WE43 (E = 700-800 MPa) scaffolds were found to fall into the range of the values reported for trabecular bone even after 4 weeks of biodegradation. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), electrochemical tests and µCT revealed a unique biodegradation mechanism that started with uniform corrosion, followed by localized corrosion, particularly in the center of the scaffolds. Biocompatibility tests performed up to 72 h showed level 0 cytotoxicity (according to ISO 10993-5 and -12), except for one time point (i.e., 24 h). Intimate contact between cells (MG-63) and the scaffolds was also observed in SEM images. The study shows for the first time that AM of porous Mg may provide distinct possibilities to adjust biodegradation profile through topological design and open up unprecedented opportunities to develop multifunctional bone substituting materials that mimic bone properties and enable full regeneration of critical-size load-bearing bony defects. The ideal biomaterials for bone tissue regeneration should be bone-mimicking in terms of mechanical properties, present a fully interconnected porous structure, and exhibit a specific biodegradation behavior to enable full regeneration of bony defects. Recent advances in additive manufacturing have resulted in biomaterials that satisfy the first two requirements but simultaneously satisfying the third requirement has proven challenging so far. Here we present additively manufactured porous magnesium structures that have the potential to satisfy all above-mentioned requirements. Even after 4 weeks of biodegradation, the mechanical properties of the porous structures were found to be within those reported for native bone. Moreover, our comprehensive electrochemical, mechanical, topological, and biological study revealed a unique biodegradation behavior and the limited cytotoxicity of the developed biomaterials. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Crash simulation of hybrid structures considering the stress and strain rate dependent material behavior of thermoplastic materials

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.

    2015-05-01

    Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with impact velocities up to 5 m/s. The mechanical behavior of the plastics structure is simulated using a quadratic yield surface, which takes the state of stress and the strain rate into account. The FE model is made from mid surface elements to reduce the computing time.

  18. Effect of moisture on the traction-separation behavior of cellulose nanocrystal interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinko, Robert; Keten, Sinan, E-mail: s-keten@northwestern.edu; Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Room A136, Evanston, Illinois 60208

    2014-12-15

    Interfaces and stress transfer between cellulose nanocrystals (CNCs) dictate the mechanical properties of hierarchical cellulose materials such as neat films and nanocomposites. An interesting question that remains is how the behavior of these interfaces changes due to environmental stimuli, most notably moisture. We present analyses on the traction-separation behavior between Iβ CNC elementary fibrils, providing insight into how the presence of a single atomic layer of water at these interfaces can drastically change the mechanical behavior. We find that molecular water at the interface between hydrophilic CNC surfaces has a negligible effect on the tensile separation adhesion energy. However, whenmore » water cannot hydrogen bond easily to the surface (i.e., hydrophobic surface), it tends to maintain hydrogen bonds with other water molecules across the interface and form a capillary bridge that serves to increase the energy required to separate the crystals. Under shear loading, water lowers the energy barriers to sliding by reducing the atomic friction and consequently the interlayer shear modulus between crystals. Our simulations indicate that these nanoscale interfaces and physical phenomena such as interfacial adhesion, interlayer shear properties, and stick-slip friction behavior can be drastically altered by the presence of water.« less

  19. Dynamic Manipulation of Hydrogels to Control Cell Behavior: A Review

    PubMed Central

    Vats, Kanika

    2013-01-01

    For many tissue engineering applications and studies to understand how materials fundamentally affect cellular functions, it is important to have the ability to synthesize biomaterials that can mimic elements of native cell–extracellular matrix interactions. Hydrogels possess many properties that are desirable for studying cell behavior. For example, hydrogels are biocompatible and can be biochemically and mechanically altered by exploiting the presentation of cell adhesive epitopes or by changing hydrogel crosslinking density. To establish physical and biochemical tunability, hydrogels can be engineered to alter their properties upon interaction with external driving forces such as pH, temperature, electric current, as well as exposure to cytocompatible irradiation. Additionally, hydrogels can be engineered to respond to enzymes secreted by cells, such as matrix metalloproteinases and hyaluronidases. This review details different strategies and mechanisms by which biomaterials, specifically hydrogels, can be manipulated dynamically to affect cell behavior. By employing the appropriate combination of stimuli and hydrogel composition and architecture, cell behavior such as adhesion, migration, proliferation, and differentiation can be controlled in real time. This three-dimensional control in cell behavior can help create programmable cell niches that can be useful for fundamental cell studies and in a variety of tissue engineering applications. PMID:23541134

  20. Propensity of bond exchange as a window into the mechanical properties of metallic glasses

    NASA Astrophysics Data System (ADS)

    Jiao, W.; Wang, X. L.; Lan, S.; Pan, S. P.; Lu, Z. P.

    2015-02-01

    We investigated the mechanical properties of Zr-Cu-Al bulk metallic glasses, by compression experiment and molecular dynamics simulations. From the simulation, we found that the large, solvent atom, Zr, has high propensity of bond exchange compared to those of the smaller solute atoms. The difference in bond exchange is consistent with the observed disparity in mechanical behaviors: Zr-rich metallic glass exhibits low elastic modulus and large plastic strain. X-ray photoelectron spectroscopy measurements suggest that the increased propensity in bond exchange is related to the softening of Zr bonds with increasing Zr content.

  1. Effect of pH on chitosan hydrogel polymer network structure.

    PubMed

    Xu, Hongcheng; Matysiak, Silvina

    2017-06-29

    Chitosan is a molecule that can form water-filled 3D polymer networks with a wide range of applications. A new coarse-grained model for chitosan hydrogel was developed to explore its pH-dependent self-assembly behavior and mechanical properties. Our results indicate that the underlying polymer physical crosslinking pattern induced by solution pH has a significant effect on hydrogel elastic moduli. With this model, we obtain pH-dependent structural and mechanical property changes in agreement with experimental observations, and provide a molecular mechanism behind the changes in polymer crosslinking patterns.

  2. Species, Sex and Individual Differences in the Vasotocin/Vasopressin System: Relationship to Neurochemical Signaling in the Social Behavior Neural Network

    PubMed Central

    Albers, H. Elliott

    2014-01-01

    Arginine-vasotocin(AVT)/arginine vasopressin (AVP) are members of the AVP/oxytocin (OT) superfamily of peptides that are involved in the regulation of social behavior, social cognition and emotion. Comparative studies have revealed that AVT/AVP and their receptors are found throughout the “Social Behavior Neural Network” and display the properties expected from a signaling system that controls social behavior (i.e., species, sex and individual differences and modulation by gonadal hormones and social factors). Neurochemical signaling within the SBNN likely involves a complex combination of synaptic mechanisms that co-release multiple chemical signals (e.g., classical neurotransmitters and AVT/AVP as well as other peptides) and non-synaptic mechanisms (i.e., volume transmission). Crosstalk between AVP/OT peptides and receptors within the SBNN is likely. A better understanding of the functional properties of neurochemical signaling in the SBNN will allow for a more refined examination of the relationships between this peptide system and species, sex and individual differences in sociality. PMID:25102443

  3. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.

    PubMed

    Kilpatrick, Jason I; Revenko, Irène; Rodriguez, Brian J

    2015-11-18

    The behavior and mechanical properties of cells are strongly dependent on the biochemical and biomechanical properties of their microenvironment. Thus, understanding the mechanical properties of cells, extracellular matrices, and biomaterials is key to understanding cell function and to develop new materials with tailored mechanical properties for tissue engineering and regenerative medicine applications. Atomic force microscopy (AFM) has emerged as an indispensable technique for measuring the mechanical properties of biomaterials and cells with high spatial resolution and force sensitivity within physiologically relevant environments and timescales in the kPa to GPa elastic modulus range. The growing interest in this field of bionanomechanics has been accompanied by an expanding array of models to describe the complexity of indentation of hierarchical biological samples. Furthermore, the integration of AFM with optical microscopy techniques has further opened the door to a wide range of mechanotransduction studies. In recent years, new multidimensional and multiharmonic AFM approaches for mapping mechanical properties have been developed, which allow the rapid determination of, for example, cell elasticity. This Progress Report provides an introduction and practical guide to making AFM-based nanomechanical measurements of cells and surfaces for tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The effect of various metallurgical parameters on the flow and fracture behavior of polycrystalline NiAl near the brittle-to-ductile transition

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.

    1994-01-01

    An investigation of the effect of various metallurgical parameters such as interfaces, allowing additions, test temperature, and strain rate on the flow and fracture behavior of polycrystalline NiAl is summarized. From this study, a more complete understanding of the deformation and fracture behavior of polycrystalline NiAl near the brittle-to-ductile transition temperature has been developed. A mechanism for the BDTT is proposed that is based on the operation of localized dislocation climb processes that operate within the vicinity of the grain boundaries and provide the additional deformation mechanisms necessary for grain-to-grain compatibility during plastic deformation. Finally, methods for improving the low temperature mechanical behavior of NiAl were considered and reviewed within the context of the present knowledge of NiAl-based materials and the operative deformation and fracture mechanisms determined in this study. Special emphasis was placed on the use of second phases for improving low temperature properties.

  5. Study of the influence of volume fraction of ceramic inclusions in NiCr-TiC composite with columnar structure on its mechanical behavior

    NASA Astrophysics Data System (ADS)

    Eremina, Galina M.; Smolin, Alexey Yu.; Shilko, Evgeny V.

    2017-12-01

    Metal-ceramic materials are characterized by high mechanical and tribological properties. The surface treatment of the composite by an electron beam in inert gas plasma leads to a qualitative and quantitative change in its microstructure as well as to a change in mechanical properties of the components: a columnar structure forms in the modified layer. Different treatment regimes result in different concentrations of inclusions in the surface layer. In this paper, the effect of the volume concentration of inclusions on the integral mechanical properties of a dispersion-strengthened NiCr-TiC composite is studied on the basis of 3D numerical simulation. The results of computer simulation show that the change in concentration significantly affects the integral mechanical characteristics of the composite material as well as the nature of the nucleation and development of damages in it.

  6. Unit mechanisms of fission gas release: Current understanding and future needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, Michael; Andersson, David; Devanathan, Ram

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel properties and, once the gas is released into the gap between the fuel and cladding, lowering gap thermal conductivity and increasing gap pressure. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are being applied to provide unprecedented understanding of the unit mechanisms that define the fission product behavior. In this article, existing research on the basic mechanisms behind the various stages of fission gas releasemore » during normal reactor operation are summarized and critical areas where experimental and simulation work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior during reactor operation and to design fuels that have improved fission product retention. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less

  7. A Three-Dimensional Computational Model of Collagen Network Mechanics

    PubMed Central

    Lee, Byoungkoo; Zhou, Xin; Riching, Kristin; Eliceiri, Kevin W.; Keely, Patricia J.; Guelcher, Scott A.; Weaver, Alissa M.; Jiang, Yi

    2014-01-01

    Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions. PMID:25386649

  8. Bioprosthetic heart valve heterograft biomaterials: structure, mechanical behavior and computational simulation.

    PubMed

    Sacks, Michael S; Mirnajafi, Ali; Sun, Wei; Schmidt, Paul

    2006-11-01

    The present review surveys significant developments in the biomechanical characterization and computational simulation of biologically derived chemically cross-linked soft tissues, or 'heterograft' biomaterials, used in replacement bioprosthetic heart valve (BHV). A survey of mechanical characterization techniques, relevant mechanical properties and computational simulation approaches is presented for both the source tissues and cross-linked biomaterials. Since durability remains the critical problem with current bioprostheses, changes with the mechanical behavior with fatigue are also presented. Moreover, given the complex nature of the mechanical properties of heterograft biomaterials it is not surprising that most constitutive (stress-strain) models, historically used to characterize their behavior, were oversimplified. Simulations of BHV function utilizing these models have inevitably been inaccurate. Thus, more recent finite element simulations utilizing nonlinear constitutive models, which achieve greater model fidelity, are reviewed. An important conclusion of this review is the need for accurate constitutive models, rigorously validated with appropriate experimental data, in order that the design benefits of computational models can be realized. Finally, for at least the coming 20 years, BHVs fabricated from heterograft biomaterials will continue to be extensively used, and will probably remain as the dominant valve design. We should thus recognize that rational, scientifically based approaches to BHV biomaterial development and design can lead to significantly improved BHV, over the coming decades, which can potentially impact millions of patients worldwide with heart valve disease.

  9. Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications.

    PubMed

    Hua, Nengbin; Chen, Wenzhe; Zhang, Lei; Li, Guanghui; Liao, Zhenlong; Lin, Yan

    2017-07-01

    The present study prepares novel Zr 70+x Al 5 Fe 15-x Nb 10 (x=0, 5) alloys by arc-melting for potential biomedical application. The mechanical properties and bio-tribological behaviors of the Zr-based alloys are evaluated and compared with biomedical pure Zr. The as-prepared alloys exhibit a microstructure containing a micrometer-sized dendritic beta-Zr phase dispersed in a Zr 2 Fe-typed matrix. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high compressive strength. The wear resistance of the Zr-Al-Fe-Nb alloys in air and phosphate buffer saline (PBS) solution is superior to that of pure Zr. The wear mechanism of Zr-based alloys sliding in air is controlled by oxidation and abrasive wear whereas that sliding in PBS is controlled by synergistic effects of the abrasive and corrosive wear. Electrochemical measurements demonstrate that the Zr-based alloys are corrosion resistant in PBS. Their bio-corrosion resistance is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. The Zr 75 Al 5 Fe 10 Nb 10 exhibits the best corrosion resistance in PBS, which contributes to its superior wear resistance in a simulated body environment. The combination of good mechanical properties, corrosion resistance, and biotribological behaviors of the Zr-Al-Fe-Nb alloys offers them potential advantages in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Hierarchical structure and mechanical properties of remineralized dentin.

    PubMed

    Chen, Yi; Wang, Jianming; Sun, Jian; Mao, Caiyun; Wang, Wei; Pan, Haihua; Tang, Ruikang; Gu, Xinhua

    2014-12-01

    It is widely accepted that the mechanical properties of dentin are significantly determined by its hierarchical structure. The current correlation between the mechanical properties and the hierarchical structure was mainly established by studying altered forms of dentin, which limits the potential outcome of the research. In this study, dentins with three different hierarchical structures were obtained via two different remineralization procedures and at different remineralization stages: (1) a dentin structure with amorphous minerals incorporated into the collagen fibrils, (2) a dentin with crystallized nanominerals incorporated into the collagen fibrils, and (3) a dentin with an out-of-order mineral layer filling the collagen fibrils matrix. Nanoindentation tests were performed to investigate the mechanical behavior of the remineralized dentin slides. The results showed that the incorporation of the crystallized nanominerals into the acid-etched demineralized organic fibrils resulted in a remarkable improvement of the mechanical properties of the dentin. In contrast, for the other two structures, i.e. the amorphous minerals inside the collagen fibrils and the out-of-order mineral layer within the collagen fibrils matrix, the excellent mechanical properties of dentin could not be restored. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Magnetic Field-Induced Phase Transformation in Magnetic Shape Memory Alloys with High Actuation Stress and Work Output

    DTIC Science & Technology

    2010-05-03

    Mechanisms for Advanced Properties in Phase Transforming Materials , Materials Science & Technology 2009 Conference, October 25-29, 2009, Pittsburgh, PA...Advanced Properties in Phase Transforming Materials , Materials Science & Technology 2009 Conference, October 25-29, 2009, Pittsburgh, PA, 2009. 11...observed materials behavior. Indeed, measured materials properties were found not to be the exact indication of the materials real response

  12. Mechanical biocompatibility of highly deformable biomedical materials.

    PubMed

    Mazza, Edoardo; Ehret, Alexander E

    2015-08-01

    Mismatch of mechanical properties between highly deformable biomedical materials and adjacent native tissue might lead to short and long term health impairment. The capability of implants to deform at the right level, i.e. similar to the macroscopic mechanical response of the surrounding biological materials, is often associated with dissimilar microstructural deformation mechanisms. This mismatch on smaller length scales might lead to micro-injuries, cell damage, inflammation, fibrosis or necrosis. Hence, the mechanical biocompatibility of soft implants depends not only on the properties and composition of the implant material, but also on its organization, distribution and motion at one or several length scales. The challenges related to the analysis and attainment of mechanical biocompatibility are illustrated with two examples: prosthetic meshes for hernia and pelvic repair and electrospun scaffolds for tissue engineering. For these material systems we describe existing methods for characterization and analysis of the non-linear response to uniaxial and multiaxial stress states, its time and history dependence, and the changes in deformation behavior associated with tissue in-growth and material resorption. We discuss the multi-scale deformation behavior of biomaterials and adjacent tissue, and indicate major interdisciplinary questions to be addressed in future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Synchrotron Microtomography Reveals the Fine Three-Dimensional Porosity of Composite Polysaccharide Aerogels

    PubMed Central

    Ghafar, Abdul; Parikka, Kirsti; Tenkanen, Maija; Suuronen, Jussi-Petteri

    2017-01-01

    This study investigates the impact of ice-templating conditions on the morphological features of composite polysaccharide aerogels in relation to their mechanical behavior and aims to get a better insight into the parameters governing these properties. We have prepared polysaccharide aerogels of guar galactomannan (GM) and tamarind seed xyloglucan (XG) by enzymatic oxidation with galactose oxidase (GaO) to form hydrogels, followed by conventional and unidirectional ice-templating (freezing) methods and lyophilization to form aerogels. Composite polysaccharide aerogels were prepared by incorporating nanofibrillated cellulose (NFC) into polysaccharide solutions prior to enzymatic oxidation and gel formation; such a cross linking technique enabled the homogeneous distribution of the NFC reinforcement into the gel matrix. We conducted phase-enhanced synchrotron X-ray microtomography (XMT) scans and visualized the internal microstructure of the aerogels in three-dimensional (3D) space. Volume-weighted pore-size and pore-wall thickness distributions were quantitatively measured and correlated to the aerogels’ mechanical properties regarding ice-templating conditions. Pore-size distribution and orientation depended on the ice-templating methods and the NFC reinforcement that significantly determined the mechanical and shape-recovery behavior of the aerogels. The results obtained will guide the design of the microporous structure of polysaccharide aerogels with optimal morphology and mechanical behavior for life-sciences applications. PMID:28773235

  14. A multi-scale and multi-field coupling nonlinear constitutive theory for the layered magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Pei, Yongmao; Li, Faxin; Fang, Daining

    2018-05-01

    The magnetic, electric and mechanical behaviors are strongly coupled in magnetoelectric (ME) materials, making them great promising in the application of functional devices. In this paper, the magneto-electro-mechanical fully coupled constitutive behaviors of ME laminates are systematically studied both theoretically and experimentally. A new probabilistic domain switching function considering the surface ferromagnetic anisotropy and the interface charge-mediated effect is proposed. Then a multi-scale multi-field coupling nonlinear constitutive model for layered ME composites is developed with physical measureable parameters. The experiments were performed to compare the theoretical predictions with the experimental data. The theoretical predictions have a good agreement with experimental results. The proposed constitutive relation can be used to describe the nonlinear multi-field coupling properties of both ME laminates and thin films. Several novel coupling experimental phenomena such as the electric-field control of magnetization, and the magnetic-field tuning of polarization are observed and analyzed. Furthermore, the size-effect of the electric tuning behavior of magnetization is predicted, which demonstrates a competition mechanism between the interface strain-mediated effect and the charge-driven effect. Our study offers deep insight into the coupling microscopic mechanism and macroscopic properties of ME layered composites, which is benefit for the design of electromagnetic functional devices.

  15. Effects of Molecular Structure in Macroscopic Mechanical Properties of an Advanced Polymer (LARC(sup TM)-SI)

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Hinkley, Jeffrey A.; Whitley, Karen S.; Gates, Thomas S.

    2004-01-01

    Mechanical testing of an advanced polymer resin with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The elastic properties, inelastic elongation behavior, and notched tensile strength all as a function of molecular weight and test temperature were determined. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature.

  16. Microstructure-property relationships in directionally solidified single crystal nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Nathal, M. V.

    1986-01-01

    Some of the microstructural features which influence the creep properties of directionally solidified and single crystal nickel-base superalloys are discussed. Gamma precipitate size and morphology, gamma-gamma lattice mismatch, phase instability, alloy composition, and processing variations are among the factors considered. Recent experimental results are reviewed and related to the operative deformation mechanisms and to the corresponding mechanical properties. Special emphasis is placed on the creep behavior of single crystal superalloys at high temperatures, where directional gamma coarsening is prominent, and at lower temperatures, where gamma coarsening rates are significantly reduced. It can be seen that very subtle changes in microstructural features can have profound effects on the subsequent properties of these materials.

  17. Tunable dynamic response of magnetic gels: Impact of structural properties and magnetic fields

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke; Cremer, Peet; Borin, Dmitry Y.; Odenbach, Stefan; Löwen, Hartmut; Menzel, Andreas M.

    2014-10-01

    Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question of how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical properties helps to design materials that optimize the requested behavior.

  18. Effect of Interface Structure on Mechanical Properties of Advanced Composite Materials

    PubMed Central

    Gan, Yong X.

    2009-01-01

    This paper deals with the effect of interface structures on the mechanical properties of fiber reinforced composite materials. First, the background of research, development and applications on hybrid composite materials is introduced. Second, metal/polymer composite bonded structures are discussed. Then, the rationale is given for nanostructuring the interface in composite materials and structures by introducing nanoscale features such as nanopores and nanofibers. The effects of modifying matrices and nano-architecturing interfaces on the mechanical properties of nanocomposite materials are examined. A nonlinear damage model for characterizing the deformation behavior of polymeric nanocomposites is presented and the application of this model to carbon nanotube-reinforced and reactive graphite nanotube-reinforced epoxy composite materials is shown. PMID:20054466

  19. Effect of gluten, egg and soy proteins on the rheological and thermo-mechanical properties of wholegrain rice flour.

    PubMed

    Pătraşcu, Livia; Banu, Iuliana; Vasilean, Ina; Aprodu, Iuliana

    2017-03-01

    The effect of protein addition on the rheological, thermo-mechanical and baking properties of wholegrain rice flour was investigated. Gluten, powdered eggs and soy protein concentrate were first analyzed in terms of rheological properties, alone and in admixture with rice flour. The temperature ramp tests showed clear differences in the rheological behavior of the batters supplemented with different proteins. The highest thermal stability was observed in case of soy protein samples. Frequency sweep tests indicated significant improvements of the rheological properties of rice flour supplemented with 15% gluten or soy proteins. The thermo-mechanical tests showed that, due to the high fat contents and low level of free water, the dough samples containing powdered eggs exhibited the highest stability. Addition of gluten resulted in a significant decrease of the dough development time, whereas samples with powdered eggs and soy proteins were more difficult to hydrate. The incorporation of proteins into the rice flour-based dough formulations significantly affected starch behavior by decreasing the peak consistency values. Concerning the quality of the rice flour-based breads, soy protein addition resulted in lighter crumb color and increased texture attributes, samples with gluten had better resilience and adhesiveness, whereas breads with egg protein were less brittle.

  20. Powder Metallurgy Fabrication of Porous 51(at.%)Ni-Ti Shape Memory Alloys for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mustafa K.; Hamzah, E.; Saud, Safaa N.; Nazim, E. M.

    2018-05-01

    The effect of time and temperature on the microwave sintering of 51(at.%)Ni-Ti shape memory alloys (SMAs) was investigated in the current research. Furthermore, the microstructure, mechanical properties, and bio-corrosion properties were analyzed based on the sintering conditions. The results revealed that the sintering condition of 700 °C for 15 min produced a part with coherent surface survey that does not exhibit gross defects. Increasing the sintering time and temperature created defects on the outer surface, while reducing the temperature to 550 °C severely affected the mechanical properties. The microstructure of these samples showed two regions of Ni-rich region and Ti-rich region between them Ti2Ni, NiTi, and Ni3Ti phases. The differential scanning calorimeter (DSC) curves of Ni-Ti samples exhibited a multi-step phase transformation B19'-R-B2 during heating and cooling. An increase in the sintering temperature from 550 to 700 °C was found to increase the fracture strength significantly and decreased the fracture strain slightly. Reducing the sintering temperature from 700 to 550 °C severely affected the corrosion behaviors of 51%Ni-Ti SMAs. This research aims to select the optimum parameters to produce Ni-Ti alloys with desired microstructure, mechanical properties, and corrosion behaviors for biomedical applications.

  1. Active Mesogenic Droplets: Impact of Liquid Crystallinity and Collective Behavior

    NASA Astrophysics Data System (ADS)

    Bahr, Christian

    Droplets of common mesogenic compounds show a self-propelled motion when immersed in aqueous solutions containing ionic surfactants at concentrations well above the critical micelle concentration. After introducing some general properties of this type of artificial microswimmer, we focus on two topics: the influence of liquid crystallinity on the swimming behavior and the collective behavior of ensembles of a larger number of droplets. The mesogenic properties are not essential for the basic mechanism of self-propulsion, nevertheless they considerably influence the swimming behavior of the droplets. For instance, the shape of the trajectories strongly depends on whether the droplets are in the nematic or isotropic state. The droplet swimmers are also ideally suited for the study of collective behavior: Microfluidics enables the generation of large numbers of identical swimmers and we can tune their buoyancy. We report on the collective behavior in three-dimensional environments. Supported by the Deutsche Forschungsgemeinschaft (SPP 1726 ``Microswimmers'').

  2. Chitosan based edible films and coatings: a review.

    PubMed

    Elsabee, Maher Z; Abdou, Entsar S

    2013-05-01

    Chitosan is a biodegradable biocompatible polymer derived from natural renewable resources with numerous applications in various fields, and one of which is the area of edible films and coatings. Chitosan has antibacterial and antifungal properties which qualify it for food protection, however, its weak mechanical properties, gas and water vapor permeability limit its uses. This review discusses the application of chitosan and its blends with other natural polymers such as starch and other ingredients for example essential oils, and clay in the field of edible films for food protection. The mechanical behavior and the gas and water vapor permeability of the films are also discussed. References dealing with the antimicrobial behavior of these films and their impact on food protection are explored. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Discrete element analysis of the mechanical properties of deep-sea methane hydrate-bearing soils considering interparticle bond thickness

    NASA Astrophysics Data System (ADS)

    Jiang, Mingjing; He, Jie; Wang, Jianfeng; Zhou, Yaping; Zhu, Fangyuan

    2017-12-01

    Due to increasing global energy demands, research is being conducted on the mechanical properties of methane hydrate-bearing soils (MHBSs), from which methane hydrate (MH) will be explored. This paper presents a numerical approach to study the mechanical properties of MHBSs. The relationship between the level of MH saturation and the interparticle bond thickness is first obtained by analyzing the scanning electron microscope images of MHBS samples, in which is the bridge connecting the micromechanical behavior captured by the DEM with the macroscopic properties of MHBSs. A simplified thermal-hydromechanical (THM) bond model that considers the different bond thicknesses is then proposed to describe the contact behavior between the soil particles and those incorporated into the discrete element method (DEM). Finally, a series of biaxial compression tests are carried out with different MH saturations under different effective confining pressures to analyze the mechanical properties of deep-sea MHBSs. The results of the DEM numerical simulation are also compared with the findings from triaxial compression tests. The results show that the macromechanical properties of deep-sea MHBSs can be qualitatively captured by the proposed DEM. The shear strength, cohesion, and volumetric contraction of deep-sea MHBSs increase with increasing MH saturation, although its influence on the internal friction angle is obscure. The shear strength and volumetric contraction increase with increasing effective confining pressure. The peak shear strength and the dilation of MHBSs increase as the critical bond thickness increases, while the residual deviator stress largely remains the same at a larger axial strain. With increasing the axial strain, the percentage of broken bonds increases, along with the expansion of the shear band.

  4. Size-dependent Young’s modulus in ZnO nanowires with strong surface atomic bonds

    NASA Astrophysics Data System (ADS)

    Fan, Shiwen; Bi, Sheng; Li, Qikun; Guo, Qinglei; Liu, Junshan; Ouyang, Zhongliang; Jiang, Chengming; Song, Jinhui

    2018-03-01

    The mechanical properties of size-dependent nanowires are important in nano-electro-mechanical systems (NEMSs), and have attracted much research interest. Characterization of the size effect of nanowires in atmosphere directly to broaden their practical application instead of just in high vacuum situations, as reported previously, is desperately needed. In this study, we systematically studied the Young’s modulus of vertical ZnO nanowires in atmosphere. The diameters ranged from 48 nm to 239 nm with a resonance method using non-contact atomic force microscopy. The values of Young’s modulus in atmosphere present extremely strong increasing tendency with decreasing diameter of nanowire due to stronger surface atomic bonds compared with that in vacuum. A core-shell model for nanowires is proposed to explore the Young’s modulus enhancement in atmosphere, which is correlated with atoms of oxygen occurring near the nanowire surface. The modified model is more accurate for analyzing the mechanical behavior of nanowires in atmosphere compared with the model in vacuum. Furthermore, it is possible to use this characterization method to measure the size-related elastic properties of similar wire-sharp nanomaterials in atmosphere and estimate the corresponding mechanical behavior. The study of the size-dependent Young’s modulus in ZnO nanowires in atmosphere will improve the understanding of the mechanical properties of nanomaterials as well as providing guidance for applications in NEMSs, nanogenerators, biosensors and other related areas.

  5. Comparison of mechanical behavior between implant-simulated bone tissue and implant-jaw bone tissue interfaces based on Pull Out testing

    NASA Astrophysics Data System (ADS)

    Lopez, C.; Muñoz, J. C.; Pinillos, J. C.

    2013-11-01

    The main purpose of this research was to achieve a better understanding of the relationship within the mechanical properties of human cadaver jaw bone with kind D2 density regarding a substitute polymer to simulate bone tissue, proposed by the ASTM, to evaluate orthopedic implants. However, despite the existence of several densities of foams and his mechanical characterization has been classified into different degrees of tissue densities to simulate cancellous and cortical bone, the value of the densities are different contrasted with the densities of bone tissue, making difficult to establish direct relationship about mechanical behavior between the polymer and the bone material, and therefore no clear criteria known for choosing the polymeric foam which describes the mechanical behavior of tissue for a specific or particular study. To understand such behavior from bone tissue regarding the polymer samples, on this research was a dental implant inserted into the samples, and subjected to destructive Pull Out test according to ASTM F543The Pull Out strength was compared between implant-jawbone and implant-rigid polyurethane foam interfaces. Thus, the test pieces with mechanical behavior similar to bone tissue, enabling an approximation to choose degree appropriate of polymer to replace the bone tissue in future trials biomechanical.

  6. Polymeric Additives For Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Nir, Z.

    1990-01-01

    Report describes experimental studies of properties of several graphite/epoxy composites containing polymeric additives as flexibilizing or toughening agents. Emphasizes effects of brominated polymeric additives (BPA's) with or without carboxy-terminated butadiene acrylonitrile rubber. Reviews effects of individual and combined additives on fracture toughnesses, environmental stabilities, hot/wet strengths, thermomechanical behaviors, and other mechanical properties of composites.

  7. Influence of nanoclay on properties of HDPE/wood composites

    Treesearch

    Yong Lei; Qinglin Wu; Craig M. Clemons; Fei Yao; Yanjun Xu

    2007-01-01

    Composites based on high density polyethylene (HDPE), pine flour, and organic clay were made by melt compounding and then injection molding. The influence of clay on crystallization behavior, mechanical properties, water absorption, and thermal stability of HDPE/pine composites was investigated. The HDPE/pine composites containing exfoliated clay were made by a two-...

  8. Computational predictions of the tensile properties of electrospun fiber meshes: effect of fiber diameter and fiber orientation

    PubMed Central

    Stylianopoulos, Triantafyllos; Bashur, Chris A.; Goldstein, Aaron S.; Guelcher, Scott A.; Barocas, Victor H.

    2008-01-01

    The mechanical properties of biomaterial scaffolds are crucial for their efficacy in tissue engineering and regenerative medicine. At the microscopic scale, the scaffold must be sufficiently rigid to support cell adhesion, spreading, and normal extracellular matrix deposition. Concurrently, at the macroscopic scale the scaffold must have mechanical properties that closely match those of the target tissue. The achievement of both goals may be possible by careful control of the scaffold architecture. Recently, electrospinning has emerged as an attractive means to form fused fiber scaffolds for tissue engineering. The diameter and relative orientation of fibers affect cell behavior, but their impact on the tensile properties of the scaffolds has not been rigorously characterized. To examine the structure-property relationship, electrospun meshes were made from a polyurethane elastomer with different fiber diameters and orientations and mechanically tested to determine the dependence of the elastic modulus on the mesh architecture. Concurrently, a multiscale modeling strategy developed for type I collagen networks was employed to predict the mechanical behavior of the polyurethane meshes. Experimentally, the measured elastic modulus of the meshes varied from 0.56 to 3.0 MPa depending on fiber diameter and the degree of fiber alignment. Model predictions for tensile loading parallel to fiber orientation agreed well with experimental measurements for a wide range of conditions when a fitted fiber modulus of 18 MPa was used. Although the model predictions were less accurate in transverse loading of anisotropic samples, these results indicate that computational modeling can assist in design of electrospun artificial tissue scaffolds. PMID:19627797

  9. Thermally-induced softening of PNIPAm-based nanopillar arrays.

    PubMed

    Sanz, Belén; von Bilderling, Catalina; Tuninetti, Jimena S; Pietrasanta, Lía; Mijangos, Carmen; Longo, Gabriel S; Azzaroni, Omar; Giussi, Juan M

    2017-03-29

    The surface properties of soft nanostructured hydrogels are crucial in the design of responsive materials that can be used as platforms to create adaptive devices. The lower critical solution temperature (LCST) of thermo-responsive hydrogels such as poly(N-isopropylacrylamide) (PNIPAm) can be modified by introducing a hydrophilic monomer to create a wide range of thermo-responsive micro-/nano-structures in a large temperature range. Using surface initiation atom-transfer radical polymerization in synthesized anodized aluminum oxide templates, we designed, fabricated, and characterized thermo-responsive nanopillars based on PNIPAm hydrogels with tunable mechanical properties by incorporating acrylamide monomers (AAm). In addition to their LCST, the incorporation of a hydrophilic entity in the nanopillars based on PNIPAm has abruptly changed the topological and mechanical properties of our system. To gain an insight into the mechanical properties of the nanostructure, its hydrophilic/hydrophobic behavior and topological characteristics, atomic force microscopy, molecular dynamics simulations and water contact angle studies were combined. When changing the nanopillar composition, a significant and opposite variation was observed in their mechanical properties. As temperature increased above the LCST, the stiffness of PNIPAm nanopillars, as expected, did so too, in contrast to the stiffness of PNIPAm-AAm nanopillars that decreased significantly. The molecular dynamics simulations proposed a local molecular rearrangement in our nanosystems at the LCST. The local aggregation of NIPAm segments near the center of the nanopillars displaced the hydrophilic AAm units towards the surface of the structure leading to contact with the aqueous environment. This behavior was confirmed via contact angle measurements below and above the LCST.

  10. Tough composite materials: Recent developments

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F. (Editor); Johnston, N. J. (Editor); Teichman, L. A. (Editor); Blankenship, C. P. (Editor)

    1985-01-01

    The present volume broadly considers topics in composite fracture toughness and impact behavior characterization, composite system constituent properties and their interrelationships, and matrix systems' synthesis and characterization. Attention is given to the characterization of interlaminar crack growth in composites by means of the double cantilever beam specimen, the characterization of delamination resistance in toughened resin composites, the effect of impact damage and open holes on the compressive strength of tough resin/high strain fiber laminates, the effect of matrix and fiber properties on compression failure mechanisms and impact resistance, the relation of toughened neat resin properties to advanced composite mechanical properties, and constituent and composite properties' relationships in thermosetting matrices. Also treated are the effect of cross-link density on the toughening mechanism of elastomer-modified epoxies, the chemistry of fiber/resin interfaces, novel carbon fibers and their properties, the development of a heterogeneous laminating resin, solvent-resistant thermoplastics, NASA Lewis research in advanced composites, and opportunities for the application of composites in commercial aircraft transport structures.

  11. Local mechanical and electromechanical properties of the P(VDF-TrFE)-graphene oxide thin films

    NASA Astrophysics Data System (ADS)

    Silibin, M. V.; Bystrov, V. S.; Karpinsky, D. V.; Nasani, N.; Goncalves, G.; Gavrilin, I. M.; Solnyshkin, A. V.; Marques, P. A. A. P.; Singh, Budhendra; Bdikin, I. K.

    2017-11-01

    Recently, many organic materials, including carbon materials such as carbon nanotubes (CNTs) and graphene (single-walled carbon sheet structure) were studied in order to improve their mechanical and electrical properties. In particular, copolymers of poly (vinylidene fluoride) and poly trifluoroethylene [P(VDF-TrFE)] are promising materials, which can be used as probes, sensors, actuators, etc. Composite thin film of the copolymer P(VDF-TrFE) with graphene oxide (GO) were prepared by spin coating. The obtained films were investigated using piezoresponse force microscopy (PFM). The switching behavior, piezoelectric response, dielectric permittivity and mechanical properties of the films were found to depend on the presence of GO. For understanding the mechanism of piezoresponse evolution of the composite we used models of PVDF chain, its behavior in electrical field and computed the data for piezoelectric coefficients using HyperChem software. The summarized models of graphene oxide based on graphene layer from 96 carbon atoms C: with oxygen and OH groups and with COOH groups arranged by hydrogen were used for PVDF/Graphene oxide complex: 1) with H-side (hydrogen atom) connected from PVDF to graphene oxide, 2) with F-side (fluorine atom) connected from PVDF graphene oxide and 3) Graphene Oxide/PVDF with both sides (sandwich type). Experimental results qualitatively correlate with those obtained in the calculations.

  12. Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels.

    PubMed

    Wei, Jinguang; Chen, Yufei; Liu, Hongzhi; Du, Chungui; Yu, Huilong; Zhou, Zhongxi

    2016-08-20

    In this study, TEMPO-oxidized bamboo cellulose nanofibers (TO-CNF) with anionic carboxylate groups on the surfaces were in-situ incorporated into poly(N-isopropylacrylamide) (PNIPAm) matrix to improve its thermo-responsive and mechanical properties during the polymerization. The microstructure, swelling behaviors, and compressive strength of resultant PNIPAm composite hydrogels with varying contents of TO-CNFs (0-10wt%) were then examined, respectively. Modified hydrogels exhibited the similar light transparency to pure PNIPAm one due to the formation of semi-IPN structure between PNIPAm and TO-CNF. FT-IR spectra demonstrated that the presence of TO-CNF did not alter the position of characteristic peaks associated with PNIPAm. SEM observation suggested that the pore size of PNIPAm hydrogels was markedly increased after the incorporation of TO-CNF. Also, the composite hydrogels showed superior swelling behavior and much improved compression properties with respect to pure PNIPAm one. Thus, TO-CNF appeared to be a "green" nanofiller that can simultaneously improve swelling and mechanical properties of PNIPAm hydrogel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Metamorphosis in the Porosity of Recycled Concretes Through the Use of a Recycled Polyethylene Terephthalate (PET) Additive. Correlations between the Porous Network and Concrete Properties

    PubMed Central

    Mendivil-Escalante, José Miguel; Gómez-Soberón, José Manuel; Almaral-Sánchez, Jorge Luis; Cabrera-Covarrubias, Francisca Guadalupe

    2017-01-01

    In the field of construction, sustainable building materials are currently undergoing a process of technological development. This study aims to contribute to understanding the behavior of the fundamental properties of concretes prepared with recycled coarse aggregates that incorporate a polyethylene terephthalate (PET)-based additive in their matrix (produced by synthesis and glycolysis of recycled PET bottles) in an attempt to reduce their high porosity. Techniques to measure the gas adsorption, water porosity, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to evaluate the effect of the additive on the physical, mechanical and microstructural properties of these concretes. Porosity reductions of up to 30.60% are achieved with the addition of 1%, 3%, 4%, 5%, 7% and 9% of the additive, defining a new state in the behavioral model of the additive (the overdosage point) in the concrete matrix; in addition, the porous network of these concretes and their correlation with other physical and mechanical properties are also explained. PMID:28772540

  14. Metamorphosis in the Porosity of Recycled Concretes Through the Use of a Recycled Polyethylene Terephthalate (PET) Additive. Correlations between the Porous Network and Concrete Properties.

    PubMed

    Mendivil-Escalante, José Miguel; Gómez-Soberón, José Manuel; Almaral-Sánchez, Jorge Luis; Cabrera-Covarrubias, Francisca Guadalupe

    2017-02-14

    In the field of construction, sustainable building materials are currently undergoing a process of technological development. This study aims to contribute to understanding the behavior of the fundamental properties of concretes prepared with recycled coarse aggregates that incorporate a polyethylene terephthalate (PET)-based additive in their matrix (produced by synthesis and glycolysis of recycled PET bottles) in an attempt to reduce their high porosity. Techniques to measure the gas adsorption, water porosity, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to evaluate the effect of the additive on the physical, mechanical and microstructural properties of these concretes. Porosity reductions of up to 30.60% are achieved with the addition of 1%, 3%, 4%, 5%, 7% and 9% of the additive, defining a new state in the behavioral model of the additive (the overdosage point) in the concrete matrix; in addition, the porous network of these concretes and their correlation with other physical and mechanical properties are also explained.

  15. Pathological Overeating: Emerging Evidence for a Compulsivity Construct

    PubMed Central

    Moore, Catherine F; Sabino, Valentina; Koob, George F; Cottone, Pietro

    2017-01-01

    Compulsive eating behavior is a transdiagnostic construct that is characteristic of medical and psychiatric conditions such as forms of obesity and eating disorders. Although feeding research is moving toward a better understanding of the proposed addictive properties of food, the components and the mechanisms contributing to compulsive eating are not yet clearly defined or understood. Current understanding highlights three elements of compulsive behavior as it applies to pathological overeating: (1) habitual overeating; (2) overeating to relieve a negative emotional state; and (3) overeating despite aversive consequences. These elements emerge through mechanisms involving pathological habit formation through an aberrant learning process, the emergence of a negative emotional state, and dysfunctions in behavioral control. Dysfunctions in systems within neurocircuitries that comprise the basal ganglia, the extended amygdala, and the prefrontal cortex result in compulsive eating behaviors. Here, we present evidence to relate compulsive eating behavior and addiction and to characterize their underlying neurobiological mechanisms. A major need to improve understanding of compulsive eating through the integration of complex motivational, emotional, and cognitive constructs is warranted. PMID:27922596

  16. Pathological Overeating: Emerging Evidence for a Compulsivity Construct.

    PubMed

    Moore, Catherine F; Sabino, Valentina; Koob, George F; Cottone, Pietro

    2017-06-01

    Compulsive eating behavior is a transdiagnostic construct that is characteristic of medical and psychiatric conditions such as forms of obesity and eating disorders. Although feeding research is moving toward a better understanding of the proposed addictive properties of food, the components and the mechanisms contributing to compulsive eating are not yet clearly defined or understood. Current understanding highlights three elements of compulsive behavior as it applies to pathological overeating: (1) habitual overeating; (2) overeating to relieve a negative emotional state; and (3) overeating despite aversive consequences. These elements emerge through mechanisms involving pathological habit formation through an aberrant learning process, the emergence of a negative emotional state, and dysfunctions in behavioral control. Dysfunctions in systems within neurocircuitries that comprise the basal ganglia, the extended amygdala, and the prefrontal cortex result in compulsive eating behaviors. Here, we present evidence to relate compulsive eating behavior and addiction and to characterize their underlying neurobiological mechanisms. A major need to improve understanding of compulsive eating through the integration of complex motivational, emotional, and cognitive constructs is warranted.

  17. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.

    PubMed

    Schierbaum, Nicolas; Rheinlaender, Johannes; Schäffer, Tilman E

    2017-06-01

    Malignant transformation drastically alters the mechanical properties of the cell and its response to the surrounding cellular environment. We studied the influence of the physical contact between adjacent cells in an epithelial monolayer on the viscoelastic behavior of normal MCF10A, non-invasive cancerous MCF7, and invasive cancerous MDA-MB-231 human breast cells. Using an atomic force microscopy (AFM) imaging technique termed force clamp force mapping (FCFM) to record images of the viscoelastic material properties, we found that normal MCF10A cells are stiffer and have a lower fluidity at confluent than at sparse density. Contrarily, cancerous MCF7 and MDA-MB-231 cells do not stiffen and do not decrease their fluidity when progressing from sparse to confluent density. The behavior of normal MCF10A cells appears to be governed by the formation of stable cell-cell contacts, because their disruption with a calcium-chelator (EGTA) causes the stiffness and fluidity values to return to those at sparse density. In contrast, EGTA-treatment of MCF7 and MDA-MB-231 cells does not change their viscoelastic properties. Confocal fluorescence microscopy showed that the change of the viscoelastic behavior in MCF10A cells when going from sparse to confluent density is accompanied by a remodeling of the actin cytoskeleton into thick stress fiber bundles, while in MCF7 and MDA-MB-231 cells the actin cytoskeleton is only composed of thin and short fibers, regardless of cell density. While the observed behavior of normal MCF10A cells might be crucial for providing mechanical stability and thus in turn integrity of the epithelial monolayer, the dysregulation of this behavior in cancerous MCF7 and MDA-MB-231 cells is possibly a central aspect of cancer progression in the epithelium. We measured the viscoelastic properties of normal and cancerous human breast epithelial cells in different states of confluency using atomic force microscopy. We found that confluent normal cells are stiffer and have lower fluidity than sparse normal cells, which appears to be governed by the formation of cell-cell contacts. Contrarily, confluent cancer cells do not stiffen and not have a decreased fluidity compared to sparse cancer cells and their viscoelastic properties are independent of cell-cell contact formation. While the observed behavior of normal cells appears to be crucial for providing the mechanical stability and therefore the integrity of the epithelial monolayer, the dysregulation of this behavior in cancer cells might be a central aspect of early stage cancer progression and metastasis in the epithelium. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Viscoelastic Properties of Human Tracheal Tissues.

    PubMed

    Safshekan, Farzaneh; Tafazzoli-Shadpour, Mohammad; Abdouss, Majid; Shadmehr, Mohammad B

    2017-01-01

    The physiological performance of trachea is highly dependent on its mechanical behavior, and therefore, the mechanical properties of its components. Mechanical characterization of trachea is key to succeed in new treatments such as tissue engineering, which requires the utilization of scaffolds which are mechanically compatible with the native human trachea. In this study, after isolating human trachea samples from brain-dead cases and proper storage, we assessed the viscoelastic properties of tracheal cartilage, smooth muscle, and connective tissue based on stress relaxation tests (at 5% and 10% strains for cartilage and 20%, 30%, and 40% for smooth muscle and connective tissue). After investigation of viscoelastic linearity, constitutive models including Prony series for linear viscoelasticity and quasi-linear viscoelastic, modified superposition, and Schapery models for nonlinear viscoelasticity were fitted to the experimental data to find the best model for each tissue. We also investigated the effect of age on the viscoelastic behavior of tracheal tissues. Based on the results, all three tissues exhibited a (nonsignificant) decrease in relaxation rate with increasing the strain, indicating viscoelastic nonlinearity which was most evident for cartilage and with the least effect for connective tissue. The three-term Prony model was selected for describing the linear viscoelasticity. Among different models, the modified superposition model was best able to capture the relaxation behavior of the three tracheal components. We observed a general (but not significant) stiffening of tracheal cartilage and connective tissue with aging. No change in the stress relaxation percentage with aging was observed. The results of this study may be useful in the design and fabrication of tracheal tissue engineering scaffolds.

  19. Bi-directional signaling: Extracellular Matrix and Integrin Regulation of Breast Tumor Progression

    PubMed Central

    Gehler, Scott; Ponik, Suzanne M.; Riching, Kristin M; Keely, Patricia J.

    2016-01-01

    Cell transformation and tumor progression involves a common set of acquired capabilities, including increased proliferation, failure of cell death, self-sufficiency in growth, angiogenesis, and tumor cell invasion and metastasis (1). The stromal environment consists of many cell types, including fibroblasts, macrophages, and endothelial cells, in addition to various extracellular matrix (ECM) proteins that function to support normal tissue maintenance, but have also been implicated in tumor progression (2). Both the chemical and mechanical properties of the ECM have been shown to influence normal and malignant cell behavior. For instance, mesenchymal stem cells differentiate into specific lineages that are dependent on matrix stiffness (3), while tumor cells undergo changes in cell behavior and gene expression in response to matrix stiffness (4). ECM remodeling is implicated in tumor progression and includes changes in both the chemical and mechanical properties of the ECM (5) that can be a result of 1.) increased deposition of stromal ECM, 2.) enhanced contraction of ECM fibrils, and 3.) altered collagen alignment and ECM stiffness. In addition, remodeling of the ECM may alter whether tumor cells employ proteolytic degradation mechanisms during invasion and metastasis. Tumor cells respond to such changes in ECM remodeling through altered intracellular signaling and cell cycle control that lead to enhanced proliferation, loss of normal tissue architecture, and local tumor cell migration and invasion into the surrounding stromal tissue (6). This review will focus on the bi-directional interplay between the mechanical properties of the ECM and changes in integrin-mediated signal transduction events in an effort to elucidate cell behaviors during tumor progression. PMID:23582036

  20. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  1. Understanding the bond-energy, hardness, and adhesive force from the phase diagram via the electron work function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Hao; Huang, Xiaochen; Li, Dongyang, E-mail: dongyang.li@ualberta.ca

    2014-11-07

    Properties of metallic materials are intrinsically determined by their electron behavior. However, relevant theoretical treatment involving quantum mechanics is complicated and difficult to be applied in materials design. Electron work function (EWF) has been demonstrated to be a simple but fundamental parameter which well correlates properties of materials with their electron behavior and could thus be used to predict material properties from the aspect of electron activities in a relatively easy manner. In this article, we propose a method to extract the electron work functions of binary solid solutions or alloys from their phase diagrams and use this simple approachmore » to predict their mechanical strength and surface properties, such as adhesion. Two alloys, Fe-Ni and Cu-Zn, are used as samples for the study. EWFs extracted from phase diagrams show same trends as experimentally observed ones, based on which hardness and surface adhesive force of the alloys are predicted. This new methodology provides an alternative approach to predict material properties based on the work function, which is extractable from the phase diagram. This work may also help maximize the power of phase diagram for materials design and development.« less

  2. Rheological behavior of aqueous dispersions containing blends of rhamsan and welan polysaccharides with an eco-friendly surfactant.

    PubMed

    Trujillo-Cayado, L A; Alfaro, M C; Raymundo, A; Sousa, I; Muñoz, J

    2016-09-01

    Small amplitude oscillatory shear and steady shear flow properties of rhamsan gum and welan gum dispersions containing an eco-friendly surfactant (a polyoxyethylene glycerol ester) formulated to mimic the continuous phase of O/W emulsions were studied using the surface response methodology. A second order polynomial equation fitted the influence of surfactant concentration, rhamsan/welan mass ratio and total concentration of polysaccharides. Systems containing blends of rhamsan and welan did not show synergism but thermodynamic incompatibility and made it possible to adjust the linear viscoelastic and low shear rate flow properties to achieve values in between those of systems containing either rhamsan or welan as the only polysaccharide. All the systems studied exhibited weak gel rheological properties as the mechanical spectra displayed the plateau or rubber-like relaxation zone, the linear viscoelastic range was rather narrow and flow curves presented shear thinning behavior, which fitted the power-law equation. While mechanical spectra of the systems studied demonstrated that they did not control the linear viscoelastic properties of the corresponding emulsions, the blend of rhamsan and welan gums was able to control the steady shear flow properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid–liquid mechanical properties

    PubMed Central

    Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud

    2016-01-01

    An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid–liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this ”liquid wire” and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid–liquid materials. PMID:27185930

  4. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid-liquid mechanical properties.

    PubMed

    Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud

    2016-05-31

    An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this "liquid wire" and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.

  5. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid-liquid mechanical properties

    NASA Astrophysics Data System (ADS)

    Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud

    2016-05-01

    An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this ”liquid wire” and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.

  6. Ferroelectric Phase Transformations for Energy Conversion and Storage Applications

    NASA Astrophysics Data System (ADS)

    Jo, Hwan Ryul

    Ferroelectric materials possess a spontaneous polarization and actively respond to external mechanical, electrical, and thermal loads. Due to their coupled behavior, ferroelectric materials are used in products such as sensors, actuators, detectors, and transducers. However, most current applications rely on low-energy conversion that involves low magnitude fields. They utilize the low-field linear properties of ferroelectric materials (piezoelectric, pyroelectric) and do not take full advantage of the large-field nonlinear behavior (irreversible domain wall motion, phase transformations) that can occur in ferroelectric materials. When external fields exceed a certain critical level, a structural transformation of the crystal can occur. These phase transformations are accompanied by a much larger response than the linear piezoelectric and pyroelectric responses, by as much as a multiple of ten times in the magnitude. This makes the non-linear behavior in ferroelectric materials promising for energy harvesting and energy storage technologies which will benefit from large-energy conversion. Yet, the ferroelectric phase transformation behavior under large external fields have been less studied and only a few studies have been directed at utilizing this large material response in applications. This dissertation addresses the development ferroelectric phase transformation-based applications, with particular focus on the materials. Development of the ferroelectric phase transformation-based applications was approached in several steps. First, the phase transformation behavior was fully characterized and understood by measuring the phase transformation responses under mechanical, electrical, thermal, and combined loads. Once the behavior was well characterized, systems level applications were addressed. This required assessing the effect of the phase transformation behavior on system performance. The performance of ferroelectric devices is strongly dependent on material properties and phase transformation behavior which can be tailored by modifying the chemical composition, processing conditions, and the loading history (poling). This results in optimization of system performance by tailoring material properties and phase transformation behavior. This approach applied to three ferroelectric phase transformation-based applications: 1. Ferroelectric energy generation 2. Ferroelectric high-energy storage capacitor 3. Ferroelectric thermal energy harvesting. This dissertation has addressed tuning the large field properties for phase transformation-based systems.

  7. Design of Boiler Welding for Improvement of Lifetime and Cost Control.

    PubMed

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-11-03

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.

  8. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    PubMed Central

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-01-01

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone. PMID:28774014

  9. Ultrasensitive Wearable Soft Strain Sensors of Conductive, Self-healing, and Elastic Hydrogels with Synergistic "Soft and Hard" Hybrid Networks.

    PubMed

    Liu, Yan-Jun; Cao, Wen-Tao; Ma, Ming-Guo; Wan, Pengbo

    2017-08-02

    Robust, stretchable, and strain-sensitive hydrogels have recently attracted immense research interest because of their potential application in wearable strain sensors. The integration of the synergistic characteristics of decent mechanical properties, reliable self-healing capability, and high sensing sensitivity for fabricating conductive, elastic, self-healing, and strain-sensitive hydrogels is still a great challenge. Inspired by the mechanically excellent and self-healing biological soft tissues with hierarchical network structures, herein, functional network hydrogels are fabricated by the interconnection between a "soft" homogeneous polymer network and a "hard" dynamic ferric (Fe 3+ ) cross-linked cellulose nanocrystals (CNCs-Fe 3+ ) network. Under stress, the dynamic CNCs-Fe 3+ coordination bonds act as sacrificial bonds to efficiently dissipate energy, while the homogeneous polymer network leads to a smooth stress-transfer, which enables the hydrogels to achieve unusual mechanical properties, such as excellent mechanical strength, robust toughness, and stretchability, as well as good self-recovery property. The hydrogels demonstrate autonomously self-healing capability in only 5 min without the need of any stimuli or healing agents, ascribing to the reorganization of CNCs and Fe 3+ via ionic coordination. Furthermore, the resulted hydrogels display tunable electromechanical behavior with sensitive, stable, and repeatable variations in resistance upon mechanical deformations. Based on the tunable electromechanical behavior, the hydrogels can act as a wearable strain sensor to monitor finger joint motions, breathing, and even the slight blood pulse. This strategy of building synergistic "soft and hard" structures is successful to integrate the decent mechanical properties, reliable self-healing capability, and high sensing sensitivity together for assembling a high-performance, flexible, and wearable strain sensor.

  10. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.

    PubMed

    Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico

    2008-11-14

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (mu=0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micro-mechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load-transfer mechanisms taking place at the cement-bone interface.

  11. A Model of Thermal Aging of Hyper-Elastic Materials with an Application to Natural Rubber

    NASA Astrophysics Data System (ADS)

    Korba, Ahmed G.

    Understanding the degradation of material properties and stress-strain behavior of rubber-like materials that has been exposed to elevated temperature is essential for rubber among components design and lifetime prediction. The complexity of the relationship between hyper-elastic materials, crosslinking density, and chemical composition present a difficult problem for the accurate prediction of mechanical properties under thermal aging. In the first part of the current research, a new and relatively simple mathematical formulation is presented to expresses the change in material properties of natural rubber subjected to various elevated temperatures and aging times. The aging temperatures ranged from 76.7 °C to 115.0 °C, and the aging times ranged from 0 to 600 hours. Based on the experimental data, the natural rubber mechanical properties under thermal aging showed a similar behavior to the rate of change of the crosslinking density (CLD) with aging time and temperature as determined as of the research. Three mechanical properties have been chosen to be studied: the ultimate tensile strength, the fracture stretch value, and the secant modulus at 11.0% strain. The proposed phenomenological model relates the mechanical properties with the rate of change of the CLD based on a form of Arrhenius equation. The proposed equations showed promising results compared to the experimental data with an acceptable error margin of less than 10% in most of the cases studied. In the second part of the current research, a closed form set of equations that was based on basic continuum mechanics assumptions has been proposed to define the material stress-strain behavior of natural rubber as an application of hyper-elastic materials. The proposed formulas include the influence of aging time and temperature. The newly proposed "Wight Function Based" (WFB) method has been verified against the historic Treloar's test data for uni-axial, bi-axial and pure shear loadings of Treloar's vulcanized rubber material, showing a promising level of confidence compared to the Ogden and the Yeoh methods. Tensile testing was performed on strip specimens that were thermally aged then subjected uni-axial tension and hardness tests. A non-linear least square optimization tool in Matlab (Lscurvefitt) was used for all fitting purposes.

  12. Receptor-based differences in human aortic smooth muscle cell membrane stiffness

    NASA Technical Reports Server (NTRS)

    Huang, H.; Kamm, R. D.; So, P. T.; Lee, R. T.

    2001-01-01

    Cells respond to mechanical stimuli with diverse molecular responses. The nature of the sensory mechanism involved in mechanotransduction is not known, but integrins may play an important role. The integrins are linked to both the cytoskeleton and extracellular matrix, suggesting that probing cells via integrins should yield different mechanical properties than probing cells via non-cytoskeleton-associated receptors. To test the hypothesis that the mechanical properties of a cell are dependent on the receptor on which the stress is applied, human aortic smooth muscle cells were plated, and magnetic beads, targeted either to the integrins via fibronectin or to the transferrin receptor by use of an IgG antibody, were attached to the cell surface. The resistance of the cell to deformation ("stiffness") was estimated by oscillating the magnetic beads at 1 Hz by use of single-pole magnetic tweezers at 2 different magnitudes. The ratio of bead displacements at different magnitudes was used to explore the mechanical properties of the cells. Cells stressed via the integrins required approximately 10-fold more force to obtain the same bead displacements as the cells stressed via the transferrin receptors. Cells stressed via integrins showed stiffening behavior as the force was increased, whereas this stiffening was significantly less for cells stressed via the transferrin receptor (P<0.001). Mechanical characteristics of vascular smooth muscle cells depend on the receptor by which the stress is applied, with integrin-based linkages demonstrating cell-stiffening behavior.

  13. Polyaryl ethers and related polysiloxane copolymer molecular coatings preparation and radiation degrdation

    NASA Technical Reports Server (NTRS)

    Mcgrath, J. E.; Hedrick, J. L.; Webster, D. C.; Johnson, B. C.; Mohanty, D. K.; Yilgor, I.

    1983-01-01

    Poly(arylene ether sulfones) comprise a class of materials known as engineering thermoplastics which have a variety of important applications. These polymers are tough, rigid materials with good mechanical properties over a wide temperature range, and they are processed by conventional methods into products typically having excellent hydrolytic, thermal, oxidative and dimensional stability. Wholly aromatic random copolymers of hydroquinone and biphenol with 4.4 prime dichlorodiphenyl sulfone were synthesized via mechanical nucleophilic displacement. Their structures were characterized and mechanical behavior studied. These tough, ductile copolymers show excellent radiation resistance to electron beam treatment and retain much of the mechanical properties up to at least 700 Mrads under argon.

  14. Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk.

    PubMed

    Tierney, Áine P; Callanan, Anthony; McGloughlin, Timothy M

    2012-02-01

    To investigate the use of regional variations in the mechanical properties of abdominal aortic aneurysms (AAA) in finite element (FE) modeling of AAA rupture risk, which has heretofore assumed homogeneous mechanical tissue properties. Electrocardiogram-gated computed tomography scans from 3 male patients with known infrarenal AAA were used to characterize the behavior of the aneurysm in 4 different segments (posterior, anterior, and left and right lateral) at maximum diameter and above the infrarenal aorta. The elasticity of the aneurysm (circumferential cyclic strain, compliance, and the Hudetz incremental modulus) was calculated for each segment and the aneurysm as a whole. The FE analysis inclusive of prestress (pre-existing tensile stress) produced a detailed stress pattern on each of the aneurysm models under pressure loading. The 4 largest areas of stress in each region were considered in conjunction with the local regional properties of the segment to define a specific regional prestress rupture index (RPRI). In terms of elasticity, there were average reductions of 68% in circumferential cyclic strain and 63% in compliance, with a >5-fold increase in incremental modulus, between the healthy and the aneurysmal aorta for each patient. There were also regional variations in all elastic properties in each individual patient. The average difference in total stress inclusive of prestress was 59%, 67%, and 15%, respectively, for the 3 patients. Comparing the strain from FE models with the CT scans revealed an average difference in strain of 1.55% for the segmented models and 3.61% for the homogeneous models, which suggests that the segmented models more accurately reflect in vivo behavior. RPRI values were calculated for each segment for all patients. A greater understanding of the local material properties and their use in FE models is essential for greater accuracy in rupture prediction. Quantifying the regional behavior will yield insight into the changes in patient-specific aneurysms and increase understanding about the progression of aneurysmal disease.

  15. Mechanical behavior of nanocrystalline NaCl islands on Cu(111).

    PubMed

    Bombis, Ch; Ample, F; Mielke, J; Mannsberger, M; Villagómez, C J; Roth, Ch; Joachim, C; Grill, L

    2010-05-07

    The mechanical response of ultrathin NaCl crystallites of nanometer dimensions upon manipulation with the tip of a scanning tunneling microscope (STM) is investigated, expanding STM manipulation to various nanostructuring modes of inorganic materials as cutting, moving, and cracking. In the light of theoretical calculations, our results reveal that atomic-scale NaCl islands can behave elastically and follow a classical Hooke's law. When the elastic limit of the nanocrystallites is reached, the STM tip induces atomic dislocations and consequently the regime of plastic deformation is entered. Our methodology is paving the way to understand the mechanical behavior and properties of other nanoscale materials.

  16. A thermodynamical model for stress-fiber organization in contractile cells.

    PubMed

    Foucard, Louis; Vernerey, Franck J

    2012-01-02

    Cell mechanical adaptivity to external stimuli is vital to many of its biological functions. A critical question is therefore to understand the formation and organization of the stress fibers from which emerge the cell's mechanical properties. By accounting for the mechanical aspects and the viscoelastic behavior of stress fibers, we here propose a thermodynamic model to predict the formation and orientation of stress fibers in contractile cells subjected to constant or cyclic stretch and different substrate stiffness. Our results demonstrate that the stress fibers viscoelastic behavior plays a crucial role in their formation and organization and shows good consistency with various experiments.

  17. Mechanical properties of DNA origami nanoassemblies are determined by Holliday junction mechanophores.

    PubMed

    Shrestha, Prakash; Emura, Tomoko; Koirala, Deepak; Cui, Yunxi; Hidaka, Kumi; Maximuck, William J; Endo, Masayuki; Sugiyama, Hiroshi; Mao, Hanbin

    2016-08-19

    DNA nanoassemblies have demonstrated wide applications in various fields including nanomaterials, drug delivery and biosensing. In DNA origami, single-stranded DNA template is shaped into desired nanostructure by DNA staples that form Holliday junctions with the template. Limited by current methodologies, however, mechanical properties of DNA origami structures have not been adequately characterized, which hinders further applications of these materials. Using laser tweezers, here, we have described two mechanical properties of DNA nanoassemblies represented by DNA nanotubes, DNA nanopyramids and DNA nanotiles. First, mechanical stability of DNA origami structures is determined by the effective density of Holliday junctions along a particular stress direction. Second, mechanical isomerization observed between two conformations of DNA nanotubes at 10-35 pN has been ascribed to the collective actions of individual Holliday junctions, which are only possible in DNA origami with rotational symmetric arrangements of Holliday junctions, such as those in DNA nanotubes. Our results indicate that Holliday junctions control mechanical behaviors of DNA nanoassemblies. Therefore, they can be considered as 'mechanophores' that sustain mechanical properties of origami nanoassemblies. The mechanical properties observed here provide insights for designing better DNA nanostructures. In addition, the unprecedented mechanical isomerization process brings new strategies for the development of nano-sensors and actuators. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Influence of thermally activated processes on the deformation behavior during low temperature ECAP

    NASA Astrophysics Data System (ADS)

    Fritsch, S.; Scholze, M.; F-X Wagner, M.

    2016-03-01

    High strength aluminum alloys are generally hard to deform. Therefore, the application of conventional severe plastic deformation methods to generate ultrafine-grained microstructures and to further increase strength is considerably limited. In this study, we consider low temperature deformation in a custom-built, cooled equal channel angular pressing (ECAP) tool (internal angle 90°) as an alternative approach to severely plastically deform a 7075 aluminum alloy. To document the maximum improvement of mechanical properties, these alloys are initially deformed from a solid solution heat-treated condition. We characterize the mechanical behavior and the microstructure of the coarse grained initial material at different low temperatures, and we analyze how a tendency for the PLC effect and the strain-hardening rate affect the formability during subsequent severe plastic deformation at low temperatures. We then discuss how the deformation temperature and velocity influence the occurrence of PLC effects and the homogeneity of the deformed ECAP billets. Besides the mechanical properties and these microstructural changes, we discuss technologically relevant processing parameters (such as pressing forces) and practical limitations, as well as changes in fracture behavior of the low temperature deformed materials as a function of deformation temperature.

  19. Histology and Biaxial Mechanical Behavior of Abdominal Aortic Aneurysm Tissue Samples.

    PubMed

    Pancheri, Francesco Q; Peattie, Robert A; Reddy, Nithin D; Ahamed, Touhid; Lin, Wenjian; Ouellette, Timothy D; Iafrati, Mark D; Luis Dorfmann, A

    2017-03-01

    Abdominal aortic aneurysms (AAAs) represent permanent, localized dilations of the abdominal aorta that can be life-threatening if progressing to rupture. Evaluation of risk of rupture depends on understanding the mechanical behavior of patient AAA walls. In this project, a series of patient AAA wall tissue samples have been evaluated through a combined anamnestic, mechanical, and histopathologic approach. Mechanical properties of the samples have been characterized using a novel, strain-controlled, planar biaxial testing protocol emulating the in vivo deformation of the aorta. Histologically, the tissue ultrastructure was highly disrupted. All samples showed pronounced mechanical stiffening with stretch and were notably anisotropic, with greater stiffness in the circumferential than the axial direction. However, there were significant intrapatient variations in wall stiffness and stress. In biaxial tests in which the longitudinal stretch was held constant at 1.1 as the circumferential stretch was extended to 1.1, the maximum average circumferential stress was 330 ± 70 kPa, while the maximum average axial stress was 190 ± 30 kPa. A constitutive model considering the wall as anisotropic with two preferred directions fit the measured data well. No statistically significant differences in tissue mechanical properties were found based on patient gender, age, maximum bulge diameter, height, weight, body mass index, or smoking history. Although a larger patient cohort is merited to confirm these conclusions, the project provides new insight into the relationships between patient natural history, histopathology, and mechanical behavior that may be useful in the development of accurate methods for rupture risk evaluation.

  20. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Xu, Jun; Cao, Lei; Wu, Zenan; Santhanagopalan, Shriram

    2017-07-01

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion and a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. The test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.

  1. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    DOE PAGES

    Zhang, Chao; Xu, Jun; Cao, Lei; ...

    2017-05-05

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less

  2. The influence of ZrO2/20%Y2O3 and Al2O3 deposited coatings to the behavior of an aluminum alloy subjected to mechanical shock

    NASA Astrophysics Data System (ADS)

    Pintilei, G. L.; Crismaru, V. I.; Abrudeanu, M.; Munteanu, C.; Luca, D.; Istrate, B.

    2015-10-01

    Aluminum alloys are used in the aerospace industry due to their good mechanical properties and their low density compared with the density of steels. Usually the parts made of aluminum alloys contribute to the structural frame of aircrafts and they must withstand static and variable mechanical loads and also mechanical loads applied in a very short time which determine different phenomenon's in the material behavior then static or fatigue loads. This paper analysis the resilience of a 2024 aluminum alloy subjected to shock loads and the way how a coating can improve its behavior. For improving the behavior two coatings were considered: Al2O3 with 99.5% purity and ZrO2/20%Y2O3. The coatings were deposited on the base material by plasma spraying. The samples with and without coating were subject to mechanical shock to determine the resilience of the materials and the cracks propagation was investigated using SEM analysis. To highlight the physical phenomenon's that appear in the samples during the mechanical shock, explicit finite element analysis were done using Ansys 14.5 software.

  3. Investigation on mechanical properties of basalt composite fabrics (experiment study)

    NASA Astrophysics Data System (ADS)

    Talebi Mazraehshahi, H.; Zamani, H.

    2010-06-01

    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with another, the effect of weight must be considered. Weight measurement showed that the replacement of glass fabric reinforcement with basalt fabric has little effect on weight. Investigation also shows that mechanical behavior of basalt fabric is higher than glass fabric. This is due to the excellent mechanical properties of the ballast fabric such as Young modulus and strength in compare with the glass fabric. Figure1 shows the samples which used for tensile testing in warp direction.

  4. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid.

    PubMed

    Ma, Yanxuan; Zheng, Yudong; Huang, Xiaoshan; Xi, Tingfei; Lin, Xiaodan; Han, Dongfei; Song, Wenhui

    2010-04-01

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  5. Polymer models of interphase chromosomes

    PubMed Central

    Vasquez, Paula A; Bloom, Kerry

    2014-01-01

    Clear organizational patterns on the genome have emerged from the statistics of population studies of fixed cells. However, how these results translate into the dynamics of individual living cells remains unexplored. We use statistical mechanics models derived from polymer physics to inquire into the effects that chromosome properties and dynamics have in the temporal and spatial behavior of the genome. Overall, changes in the properties of individual chains affect the behavior of all other chains in the domain. We explore two modifications of chain behavior: single chain motion and chain-chain interactions. We show that there is not a direct relation between these effects, as increase in motion, doesn’t necessarily translate into an increase on chain interaction. PMID:25482191

  6. Translation and cultural adaptation of the Brazilian Portuguese version of the Behavioral Pain Scale.

    PubMed

    Morete, Márcia Carla; Mofatto, Sarah Camargo; Pereira, Camila Alves; Silva, Ana Paula; Odierna, Maria Tereza

    2014-01-01

    The objective of this study was to translate and culturally adapt the Behavioral Pain Scale to Brazilian Portuguese and to evaluate the psychometric properties of this scale. This study was conducted in two phases: the Behavioral Pain Scale was translated and culturally adapted to Brazilian Portuguese and the psychometric properties of this scale were subsequently assessed (reliability and clinical utility). The study sample consisted of 100 patients who were older than 18 years of age, admitted to an intensive care unit, intubated, mechanically ventilated, and subjected or not to sedation and analgesia from July 2012 to December 2012. Pediatric and non-intubated patients were excluded. The study was conducted at a large private hospital that was situated in the city of São Paulo (SP). Regarding reproducibility, the results revealed that the observed agreement between the two evaluators was 92.08% for the pain descriptor "adaptation to mechanical ventilation", 88.1% for "upper limbs", and 90.1% for "facial expression". The kappa coefficient of agreement for "adaptation to mechanical ventilation" assumed a value of 0.740. Good agreement was observed between the evaluators with an intraclass correlation coefficient of 0.807 (95% confidence interval: 0.727-0.866). The Behavioral Pain Scale was easy to administer and reproduce. Additionally, this scale had adequate internal consistency. The Behavioral Pain Scale was satisfactorily adapted to Brazilian Portuguese for the assessment of pain in critically ill patients.

  7. Hybrid system of unbonded post-tensioned CLT panels and light-frame wood shear walls

    Treesearch

    T. Ho; T. Dao; S. Aaleti; J. van de Lindt; Douglas Rammer

    2016-01-01

    Cross-laminated timber (CLT) is a relatively new type of massive timber system that has shown to possess excellent mechanical properties and structural behavior in building construction. When post-tensioned with high-strength tendons, CLT panels perform well under cyclic loadings because of two key characteristics: their rocking behavior and self-centering capacity....

  8. Friction, wear, and lubrication in vacuum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1971-01-01

    A review of studies and observations on the friction, wear, and lubrication behavior of materials in a vacuum environment is presented. The factors that determine and influence friction and wear are discussed. They include topographical, physical, mechanical, and the chemical nature of the surface. The effects of bulk properties such as deformation characteristics, fracture behavior, and structure are included.

  9. A systematic study of mechanical properties, corrosion behavior and biocompatibility of AZ31B Mg alloy after ultrasonic nanocrystal surface modification.

    PubMed

    Hou, Xiaoning; Qin, Haifeng; Gao, Hongyu; Mankoci, Steven; Zhang, Ruixia; Zhou, Xianfeng; Ren, Zhencheng; Doll, Gary L; Martini, Ashlie; Sahai, Nita; Dong, Yalin; Ye, Chang

    2017-09-01

    Magnesium alloys have tremendous potential for biomedical applications due to their good biocompatibility, osteoconductivity, and degradability, but can be limited by their poor mechanical properties and fast corrosion in the physiological environment. In this study, ultrasonic nanocrystal surface modification (UNSM), a recently developed surface processing technique that utilizes ultrasonic impacts to induce plastic strain on metal surfaces, was applied to an AZ31B magnesium (Mg) alloy. The mechanical properties, corrosion resistance, and biocompatibility of the alloy after UNSM treatment were studied systematically. Significant improvement in hardness, yield stress and wear resistance was achieved after the UNSM treatment. In addition, the corrosion behavior of UNSM-treated AZ31B was not compromised compared with the untreated samples, as demonstrated by the weight loss and released element concentrations of Mg and Al after immersion in alpha-minimum essential medium (α-MEM) for 24h. The in vitro biocompatibility of the AZ31B Mg alloys toward adipose-derived stem cells (ADSCs) before and after UNSM processing was also evaluated using a cell culture study. Comparable cell attachments were achieved between the two groups. These studies showed that UNSM could significantly improve the mechanical properties of Mg alloys without compromising their corrosion rate and biocompatibility in vitro. These findings suggest that UNSM is a promising method to treat biodegradable Mg alloys for orthopaedic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sintering behavior and mechanical properties of zirconia compacts fabricated by uniaxial press forming.

    PubMed

    Oh, Gye-Jeong; Yun, Kwi-Dug; Lee, Kwang-Min; Lim, Hyun-Pil; Park, Sang-Won

    2010-09-01

    The purpose of this study was to compare the linear sintering behavior of presintered zirconia blocks of various densities. The mechanical properties of the resulting sintered zirconia blocks were then analyzed. Three experimental groups of dental zirconia blocks, with a different presintering density each, were designed in the present study. Kavo Everest® ZS blanks (Kavo, Biberach, Germany) were used as a control group. The experimental group blocks were fabricated from commercial yttria-stabilized tetragonal zirconia powder (KZ-3YF (SD) Type A, KCM. Corporation, Nagoya, Japan). The biaxial flexural strengths, microhardnesses, and microstructures of the sintered blocks were then investigated. The linear sintering shrinkages of blocks were calculated and compared. Despite their different presintered densities, the sintered blocks of the control and experimental groups showed similar mechanical properties. However, the sintered block had different linear sintering shrinkage rate depending on the density of the presintered block. As the density of the presintered block increased, the linear sintering shrinkage decreased. In the experimental blocks, the three sectioned pieces of each block showed the different linear shrinkage depending on the area. The tops of the experimental blocks showed the lowest linear sintering shrinkage, whereas the bottoms of the experimental blocks showed the highest linear sintering shrinkage. Within the limitations of this study, the density difference of the presintered zirconia block did not affect the mechanical properties of the sintered zirconia block, but affected the linear sintering shrinkage of the zirconia block.

  11. Sintering behavior and mechanical properties of zirconia compacts fabricated by uniaxial press forming

    PubMed Central

    Oh, Gye-Jeong; Yun, Kwi-Dug; Lee, Kwang-Min; Lim, Hyun-Pil

    2010-01-01

    PURPOSE The purpose of this study was to compare the linear sintering behavior of presintered zirconia blocks of various densities. The mechanical properties of the resulting sintered zirconia blocks were then analyzed. MATERIALS AND METHODS Three experimental groups of dental zirconia blocks, with a different presintering density each, were designed in the present study. Kavo Everest® ZS blanks (Kavo, Biberach, Germany) were used as a control group. The experimental group blocks were fabricated from commercial yttria-stabilized tetragonal zirconia powder (KZ-3YF (SD) Type A, KCM. Corporation, Nagoya, Japan). The biaxial flexural strengths, microhardnesses, and microstructures of the sintered blocks were then investigated. The linear sintering shrinkages of blocks were calculated and compared. RESULTS Despite their different presintered densities, the sintered blocks of the control and experimental groups showed similar mechanical properties. However, the sintered block had different linear sintering shrinkage rate depending on the density of the presintered block. As the density of the presintered block increased, the linear sintering shrinkage decreased. In the experimental blocks, the three sectioned pieces of each block showed the different linear shrinkage depending on the area. The tops of the experimental blocks showed the lowest linear sintering shrinkage, whereas the bottoms of the experimental blocks showed the highest linear sintering shrinkage. CONCLUSION Within the limitations of this study, the density difference of the presintered zirconia block did not affect the mechanical properties of the sintered zirconia block, but affected the linear sintering shrinkage of the zirconia block. PMID:21165274

  12. Investigation of mechanical properties and deformation behavior of single-crystal Al-Cu core-shell nanowire generated using non-equilibrium molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Sarkar, Jit

    2018-06-01

    Molecular dynamics (MD) simulation studies were carried out to generate a cylindrical single-crystal Al-Cu core-shell nanowire and its mechanical properties like yield strength and Young's modulus were evaluated in comparison to a solid aluminum nanowire and hollow copper nanowire which combines to constitute the core-shell structure respectively. The deformation behavior due to changes in the number of Wigner-Seitz defects and dislocations during the entire tensile deformation process was thoroughly studied for the Al-Cu core-shell nanowire. The single-crystal Al-Cu core-shell nanowire shows much higher yield strength and Young's modulus in comparison to the solid aluminum core and hollow copper shell nanowire due to tangling of dislocations caused by lattice mismatch between aluminum and copper. Thus, the Al-Cu core-shell nanowire can be reinforced in different bulk matrix to develop new type of light-weight nanocomposite materials with greatly enhanced material properties.

  13. Gallium containing composites as a tunable material to understand neuronal behavior under variable stiffness and radiation conditions.

    PubMed

    Berg, Nora G; Pearce, Brady L; Rohrbaugh, Nathaniel; Jiang, Lin; Nolan, Michael W; Ivanisevic, Albena

    2017-02-01

    We report a composite biomaterial containing nanostructured GaOOH and Matrigel™ that can be modulated with respect to its stiffness and radiosensitization properties. A variety of concentrations of GaOOH were added to the composite to alter the mechanical properties of the material as well as to tune the radiosensitizing properties to the composite. PC-12 cells were used to study the combined effects of different stimuli on cell behavior. NGF was given to the cells to record their morphology as well as viability. An increase in the substrate stiffness caused an increase in neurite outgrowth but a decrease in cell viability. In addition, increasing the radiation dose decreased neurite outgrowth but increased cell viability when radiosensitizing particles were present. A subtractive effect between radiosensitizing and mechanical stimuli was observed when PC-12 cells were grown on the GaOOH containing composite. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Viscoelastic behavior of mineralized (CaCO3) chitin based PVP-CMC hydrogel scaffolds

    NASA Astrophysics Data System (ADS)

    Čadež, Vida; Saha, Nabanita; Sikirić, Maja Dutour; Saha, Petr

    2017-05-01

    Enhancement of the mechanical as well as functional properties of the perspective mineralized PVP-CMC-CaCO3 hydrogel scaffold applicable for bone tissue engineering is quite essential. Therefore, the incorporation feasibility of chitin, a bioactive, antibacterial and biodegradable material, was examined in order to test its ability to enchance mechanical properties of the PVP-CMC-CaCO3 hydrogel scaffold. Chitin based PVP-CMC hydrogels were prepared and characterized both as non-mineralized and mineralized (CaCO3) form of hydrogel scaffolds. Both α-chitin (commercially bought) and β-chitin (isolated from the cuttlebone) were individually tested. It was observed that at 1% strain all hydrogel scaffolds have linear trend, with highly pronounced elastic properties in comparison to viscous ones. The complex viscosity has directly proportional behavior with negative slope against angular frequency within the range of ω = 0.1 - 100 rad.s-1. Incorporation of β-chitin increased storage modulus of all mineralized samples, making it interesting for further research.

  15. Effects of thermomechanical processing on the microstructure and mechanical properties of a Ti-V-N steel

    NASA Astrophysics Data System (ADS)

    Dogan, B.; Collins, L. E.; Boyd, J. D.

    1988-05-01

    Based on studies of austenite deformation behavior and continuous-cooling-transformation behavior of a Ti-V microalloyed steel by cam plastometer and quench-deformation dilatometer, respectively, plate rolling schedules were designed to produce (i) recrystallized austenite, (ii) unrecrystallized austenite, (iii) deformed ferrite + unrecrystallized austenite. The effects of austenite condition and cooling rate on the final microstructure and mechanical properties were investigated. To rationalize the variation in final ferrite grain size with different thermomechanical processing schedules, it is necessary to consider the kinetics of ferrite grain growth in addition to the density of ferrite nucleation sites. The benefit of dilatometer studies in determining the optimum deformation schedule and cooling rate for a given steel is domonstrated. A wide range of tensile and impact properties results from the different microstructures studied. Yield strength is increased by increasing the amount of deformed ferrite, bainite, or martensite, and by decreasing the ferrite grain size. Impact toughness is most strongly influenced by ferrite grain size and occurrence of rolling plane delaminations.

  16. Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts.

    PubMed

    Wan, Chao; Hao, Zhixiu; Feng, Xiqiao

    2016-10-17

    Locusts have excellent jumping and kicking abilities to survive in nature, which are achieved through the energy storage and release processes occurring in cuticles, especially in the semi-lunar processes (SLP) at the femorotibial joints. As yet, however, the strain energy-storage mechanisms of the SLP cuticles remain unclear. To decode this mystery, we investigated the microstructure, material composition, and mechanical properties of the SLP cuticle and its remarkable strain energy-storage mechanisms for jumping and kicking. It is found that the SLP cuticle of adult Locusta migratoria manilensis consists of five main parts that exhibit different microstructural features, material compositions, mechanical properties, and biological functions in storing strain energy. The mechanical properties of these five components are all transversely isotropic and strongly depend on their water contents. Finite element simulations indicate that the two parts of the core region of the SLP cuticle likely make significant contributions to its outstanding strain energy-storage ability. This work deepens our understanding of the locomotion behaviors and superior energy-storage mechanisms of insects such as locusts and is helpful for the design and fabrication of strain energy-storage devices.

  17. Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts

    PubMed Central

    Wan, Chao; Hao, Zhixiu; Feng, Xiqiao

    2016-01-01

    Locusts have excellent jumping and kicking abilities to survive in nature, which are achieved through the energy storage and release processes occurring in cuticles, especially in the semi-lunar processes (SLP) at the femorotibial joints. As yet, however, the strain energy-storage mechanisms of the SLP cuticles remain unclear. To decode this mystery, we investigated the microstructure, material composition, and mechanical properties of the SLP cuticle and its remarkable strain energy-storage mechanisms for jumping and kicking. It is found that the SLP cuticle of adult Locusta migratoria manilensis consists of five main parts that exhibit different microstructural features, material compositions, mechanical properties, and biological functions in storing strain energy. The mechanical properties of these five components are all transversely isotropic and strongly depend on their water contents. Finite element simulations indicate that the two parts of the core region of the SLP cuticle likely make significant contributions to its outstanding strain energy-storage ability. This work deepens our understanding of the locomotion behaviors and superior energy-storage mechanisms of insects such as locusts and is helpful for the design and fabrication of strain energy-storage devices. PMID:27748460

  18. Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts

    NASA Astrophysics Data System (ADS)

    Wan, Chao; Hao, Zhixiu; Feng, Xiqiao

    2016-10-01

    Locusts have excellent jumping and kicking abilities to survive in nature, which are achieved through the energy storage and release processes occurring in cuticles, especially in the semi-lunar processes (SLP) at the femorotibial joints. As yet, however, the strain energy-storage mechanisms of the SLP cuticles remain unclear. To decode this mystery, we investigated the microstructure, material composition, and mechanical properties of the SLP cuticle and its remarkable strain energy-storage mechanisms for jumping and kicking. It is found that the SLP cuticle of adult Locusta migratoria manilensis consists of five main parts that exhibit different microstructural features, material compositions, mechanical properties, and biological functions in storing strain energy. The mechanical properties of these five components are all transversely isotropic and strongly depend on their water contents. Finite element simulations indicate that the two parts of the core region of the SLP cuticle likely make significant contributions to its outstanding strain energy-storage ability. This work deepens our understanding of the locomotion behaviors and superior energy-storage mechanisms of insects such as locusts and is helpful for the design and fabrication of strain energy-storage devices.

  19. Correlating Single Crystal Structure, Nanomechanical, and Bulk Compaction Behavior of Febuxostat Polymorphs.

    PubMed

    Yadav, Jayprakash A; Khomane, Kailas S; Modi, Sameer R; Ugale, Bharat; Yadav, Ram Naresh; Nagaraja, C M; Kumar, Navin; Bansal, Arvind K

    2017-03-06

    Febuxostat exhibits unprecedented solid forms with a total of 40 polymorphs and pseudopolymorphs reported. Polymorphs differ in molecular arrangement and conformation, intermolecular interactions, and various physicochemical properties, including mechanical properties. Febuxostat Form Q (FXT Q) and Form H1 (FXT H1) were investigated for crystal structure, nanomechanical parameters, and bulk deformation behavior. FXT Q showed greater compressibility, densification, and plastic deformation as compared to FXT H1 at a given compaction pressure. Lower mechanical hardness of FXT Q (0.214 GPa) as compared to FXT H1 (0.310 GPa) was found to be consistent with greater compressibility and lower mean yield pressure (38 MPa) of FXT Q. Superior compaction behavior of FXT Q was attributed to the presence of active slip systems in crystals which offered greater plastic deformation. By virtue of greater compressibility and densification, FXT Q showed higher tabletability over FXT H1. Significant correlation was found with anticipation that the preferred orientation of molecular planes into a crystal lattice translated nanomechanical parameters to a bulk compaction process. Moreover, prediction of compactibility of materials based on true density or molecular packing should be carefully evaluated, as slip-planes may cause deviation in the structure-property relationship. This study supported how molecular level crystal structure confers a bridge between particle level nanomechanical parameters and bulk level deformation behavior.

  20. A combined molecular dynamics/micromechanics/finite element approach for multiscale constitutive modeling of nanocomposites with interface effects

    NASA Astrophysics Data System (ADS)

    Yang, B. J.; Shin, H.; Lee, H. K.; Kim, H.

    2013-12-01

    We introduce a multiscale framework based on molecular dynamic (MD) simulation, micromechanics, and finite element method (FEM). A micromechanical model, which considers influences of the interface properties, nanoparticle (NP) size, and microcracks, is developed. Then, we perform MD simulations to characterize the mechanical properties of the nanocomposite system (silica/nylon 6) with varying volume fraction and size of NPs. By comparing the MD with micromechanics results, intrinsic physical properties at interfacial region are derived. Finally, we implement the developed model in the FEM code with the derived interfacial parameters, and predict the mechanical behavior of the nanocomposite at the macroscopic scale.

  1. Constitutive Modeling of the Mechanical Properties of Optical Fibers

    NASA Technical Reports Server (NTRS)

    Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.

    1998-01-01

    Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.

  2. A comparison of dynamic mechanical properties of processing-tomato peel as affected by hot lye and infrared radiation heating for peeling

    USDA-ARS?s Scientific Manuscript database

    This study investigated the viscoelastic characteristics of tomato skins subjected to conventional hot lye peeling and emerging infrared-dry peeling by using dynamic mechanical analysis (DMA). Three DMA testing modes, including temperature ramp, frequency sweep, and creep behavior test, were conduct...

  3. Mechanics of Brittle Materials. Part 1. Preliminary Mechanical Properties and Statistical Representations

    DTIC Science & Technology

    1973-10-01

    intensity computation are shown in Figure 17. Using the same formal procedure outlined by Winne & Wundt . a notch geometry can be chosen to induce...Nitride at Elevated Temperatures . Winne, D.H. and Wundt , B.M., "Application of the Gnffith-Irwm Theory of Crack Propagation to the Bursting Behavior

  4. New intrinsic mechanism on gum-like superelasticity of multifunctional alloys

    PubMed Central

    Liu, Jia-Peng; Wang, Yan-Dong; Hao, Yu-Lin; Wang, Yunzhi; Nie, Zhi-Hua; Wang, Dong; Ren, Yang; Lu, Zhao-Ping; Wang, Jinguo; Wang, Haoliang; Hui, Xidong; Lu, Ning; Kim, Moon J.; Yang, Rui

    2013-01-01

    Ti-Nb-based Gum Metals exhibit extraordinary superelasticity with ultralow elastic modulus, superior strength and ductility, and a peculiar dislocation-free deformation behavior, most of which challenge existing theories of crystal strength. Additionally, this kind of alloys actually displays even more anomalous mechanical properties, such as the non-linear superelastic behavior, accompanied by a pronounced tension-to-compression asymmetry, and large ductility with a low Poisson's ratio. Two main contradictory arguments exist concerning the deformation mechanisms of those alloys, i.e., formation of reversible nanodisturbance and reversible martensitic transformation. Herein we used the in-situ synchrotron high-energy X-ray scattering technique to reveal the novel intrinsic physical origin of all anomalous mechanical properties of the Ti-24Nb-4Zr-8Sn-0.10O alloy, a typical gum-like metal. Our experiments provide direct evidence on two different kinds of interesting, stress-induced, reversible nanoscale martensitic transitions, i.e., the austenitic regions with B2 structure transform to α″ martensite and those with BCC structure transform to δ martensite. PMID:23831664

  5. Microstructure, Mechanical and Wear Behaviors of Hot-Pressed Copper-Nickel-Based Materials for Diamond Cutting Tools

    NASA Astrophysics Data System (ADS)

    Miranda, G.; Ferreira, P.; Buciumeanu, M.; Cabral, A.; Fredel, M.; Silva, F. S.; Henriques, B.

    2017-08-01

    The current trend to replace cobalt in diamond cutting tools (DCT) for stone cutting has motivated the study of alternative materials for this end. The present study characterizes several copper-nickel-based materials (Cu-Ni; Cu-Ni-10Sn, Cu-Ni-15Sn, Cu-Ni-Sn-2WC and Cu-Ni-Sn-10WC) for using as matrix material for diamond cutting tools for stone. Copper-nickel-based materials were produced by hot pressing, at a temperature of 850 °C during 15 min and under an applied pressure of 50 MPa. The mechanical properties were evaluated though the shear strength and hardness values. The microstructures and fracture surfaces were analyzed by SEM. The wear behavior of all specimens was assessed using a reciprocating ball-on-plate tribometer. The hot pressing produced compacts with good densification. Sn and WC promoted enhanced mechanical properties and wear performance to Cu-Ni alloys. Cu-Ni-10Sn and Cu-Ni-10Sn-2WC displayed the best compromise between mechanical and wear performance.

  6. Mechanical properties and deformation mechanism of Al2O3 determined from in situ transmission electron microscopy compression

    NASA Astrophysics Data System (ADS)

    Lin, Kai-Peng; Stachiv, Ivo; Fang, Te-Hua

    2017-07-01

    The mechanical properties and deformation mechanism of alumina (Al2O3) ceramic nanopillars and microstructures have been studied using in situ transmission electron microscopy (TEM) compression and nanoindentation experiments. It has been found that the Young’s modulus of Al2O3 nanopillars significantly increases with a decrease of its thickness; it ranges from 54.8 GPa for the nanopillar of radius 175 nm to 347.5 GPa for the one of radius of 75 nm. The hardness of Al2O3 microstructures estimated by the nanoindentation is between 3.19 to 20.60 GPa. The Raman spectra of Al2O3 substrate has a production peak (577.3 cm-1) between 418.3 and 645.2 (cm-1) peaks. The strain hardening behavior of Al2O3 microstructures has been observed and the impact of size on the compressive and bending behavior of Al2O3 micro-pillared structures is also examined and explained.

  7. Influence of Bi addition on the property of Ag-Bi nano-composite coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxin; Tay, See Leng; Zhou, Xiaowei

    Silver (Ag) coatings have been widely used in many industry areas due to their excellent conductivity. However, wider applications of Ag coatings have been hindered by their poor mechanical properties. In this research, to improve the mechanical performance, Ag-Bi nano-composite coatings were prepared by a novel ionic co-discharge method. A systematic study of the microstructure, mechanical properties, electrical conductivity and antibacterial behavior of the resulting coating was performed. The results indicated that after adding an appropriate amount of Bi containing solution into the Ag plating solution, Ag-Bi nanoparticles were in-situ formed and distributed uniformly throughout the coating matrix, resulting inmore » a significant improvement in the mechanical properties. The hardness of Ag-Bi coating was increased by 60% compared to that of the pure Ag coating. The corrosion resistance of Ag-Bi coatings was also enhanced. The Ag-Bi coatings prepared in the current study will find a broader application in electronics, jewelry, aerospace and other industries.« less

  8. Influence of Bi addition on the property of Ag-Bi nano-composite coatings

    DOE PAGES

    Wang, Yuxin; Tay, See Leng; Zhou, Xiaowei; ...

    2018-03-26

    Silver (Ag) coatings have been widely used in many industry areas due to their excellent conductivity. However, wider applications of Ag coatings have been hindered by their poor mechanical properties. In this research, to improve the mechanical performance, Ag-Bi nano-composite coatings were prepared by a novel ionic co-discharge method. A systematic study of the microstructure, mechanical properties, electrical conductivity and antibacterial behavior of the resulting coating was performed. The results indicated that after adding an appropriate amount of Bi containing solution into the Ag plating solution, Ag-Bi nanoparticles were in-situ formed and distributed uniformly throughout the coating matrix, resulting inmore » a significant improvement in the mechanical properties. The hardness of Ag-Bi coating was increased by 60% compared to that of the pure Ag coating. The corrosion resistance of Ag-Bi coatings was also enhanced. The Ag-Bi coatings prepared in the current study will find a broader application in electronics, jewelry, aerospace and other industries.« less

  9. Classical continuum theory limits to determine the size-dependency of mechanical properties of GaN NWs

    NASA Astrophysics Data System (ADS)

    Zamani Kouhpanji, Mohammad Reza; Behzadirad, Mahmoud; Busani, Tito

    2017-12-01

    We used the stable strain gradient theory including acceleration gradients to investigate the classical and nonclassical mechanical properties of gallium nitride (GaN) nanowires (NWs). We predicted the static length scales, Young's modulus, and shear modulus of the GaN NWs from the experimental data. Combining these results with atomic simulations, we also found the dynamic length scale of the GaN NWs. Young's modulus, shear modulus, static, and dynamic length scales were found to be 318 GPa, 131 GPa, 8 nm, and 8.9 nm, respectively, usable for demonstrating the static and dynamic behaviors of GaN NWs having diameters from a few nm to bulk dimensions. Furthermore, the experimental data were analyzed with classical continuum theory (CCT) and compared with the available literature to illustrate the size-dependency of the mechanical properties of GaN NWs. This practice resolves the previous published discrepancies that happened due to the limitations of CCT used for determining the mechanical properties of GaN NWs and their size-dependency.

  10. Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites.

    PubMed

    Siqueira, Gilberto; Bras, Julien; Dufresne, Alain

    2009-02-09

    In the present work, nanowhiskers and microfibrillated cellulose (MFC) both extracted from sisal were used to reinforce polycaprolactone (PCL). We report the influence of the nanoparticle's nature on the mechanical and thermal properties of the ensuing nanocomposites. The surface of both the nanoparticles was chemically modified to improve their compatibilization with the polymeric matrix. N-Octadecyl isocyanate (C18H37NCO) was used as the grafting agent. PCL nanocomposite films reinforced with sisal whiskers or MFC (raw or chemically modified) were prepared by film casting. The thermal behavior (Tg, Tm, Tc, and degree of crystallinity) and the mechanical properties of the nanocomposites in both the linear and the nonlinear range were determined using differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), and tensile tests, respectively. Significant differences were reported according to the nature of the nanoparticle and amount of nanofillers used as reinforcement. It was also proved that the chemical treatment clearly improves the ultimate properties of the nanocomposites.

  11. Phase transition induced strain in ZnO under high pressure

    DOE PAGES

    Yan, Xiaozhi; Dong, Haini; Li, Yanchun; ...

    2016-05-13

    Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strengthmore » decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. Ultimately, these findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure.« less

  12. Consideration of critical axial properties of pristine and defected carbon nanotubes under compression.

    PubMed

    Ranjbartoreh, A R; Su, D; Wang, G

    2012-06-01

    Carbon nanotubes are hexagonally configured carbon atoms in cylindrical structures. Exceptionally high mechanical strength, electrical conductivity, surface area, thermal stability and optical transparency of carbon nanotubes outperformed other known materials in numerous advanced applications. However, their mechanical behaviors under practical loading conditions remain to be demonstrated. This study investigates the critical axial properties of pristine and defected single- and multi-walled carbon nanotubes under axial compression. Molecular dynamics simulation method has been employed to consider the destructive effects of Stone-Wales and atom vacancy defects on mechanical properties of armchair and zigzag carbon nanotubes under compressive loading condition. Armchair carbon nanotube shows higher axial stability than zigzag type. Increase in wall number leads to less susceptibility of multi-walled carbon nanotubes to defects and higher stability of them under axial compression. Atom vacancy defect reveals higher destructive effect than Stone-Wales defect on mechanical properties of carbon nanotubes. Critical axial strain of single-walled carbon nanotube declines by 67% and 26% due to atom vacancy and Stone-Wales defects.

  13. Effect of water on mechanical properties and stress corrosion behavior of alloy 600, alloy 690, EN82H welds, and EN52 welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C.M.; Mills, W.J.

    1999-02-01

    The fracture toughness and tensile properties of alloy 600 (UNS N06600), alloy 690 (UNS N06690), and their welds (EN82H [UNS N06082] and EN52 [UNS N06052]) were characterized in 54 C and 338 C water with an elevated hydrogen content. Results were compared with air data to evaluate the effect of low- and high-temperature water on the mechanical properties. In addition, the stress corrosion cracking (SCC) behavior of EN82H and EN52 welds was evaluated in 360 C water. Elastic-plastic (J{sub IC}) fracture toughness testing revealed that the fracture resistance of all test materials was exceptionally high in 54 C and 338more » C air and 338 C water, demonstrating that fracture properties essentially were unaffected by the high-temperature water environment. In 54 C water, however, J{sub IC} values for EN82H and EN52 welds were reduced by an order of magnitude, and alloy 690 showed a fivefold decrease in J{sub IC}. Scanning electron fractography revealed that the degraded fracture properties were associated with a fracture mechanism transition from ductile dimple rupture to intergranular cracking. The latter was associated with hydrogen-induced cracking mechanism. The fracture toughness for alloy 600 remained high in 54 C water, and microvoid coalescence was the operative mechanism in low-temperature air and water. Tensile properties for all test materials essentially were unaffected by the water environment, except for the total elongation for EN82H welds, which was reduced significantly in 54 C water. Constant-load testing of precracked weld specimens in 360 C water resulted in extensive intergranular SCC in EN82H welds, whereas no SCC occurred in EN52 welds under comparable test conditions.« less

  14. Investigation of superconducting interactions and amorphous semiconductors

    NASA Technical Reports Server (NTRS)

    Janocko, M. A.; Jones, C. K.; Gavaler, J. R.; Deis, D. W.; Ashkin, M.; Mathur, M. P.; Bauerle, J. E.

    1972-01-01

    Research papers on superconducting interactions and properties and on amorphous materials are presented. The search for new superconductors with improved properties was largely concentrated on the study of properties of thin films. An experimental investigation of interaction mechanisms revealed no new superconductivity mechanism. The properties of high transition temperature, type 2 materials prepared in thin film form were studied. A pulsed field solenoid capable of providing fields in excess of 300 k0e was developed. Preliminary X-ray measurements were made of V3Si to determine the behavior of cell constant deformation versus pressure up to 98 kilobars. The electrical properties of amorphous semiconducting materials and bulk and thin film devices, and of amorphous magnetic materials were investigated for developing radiation hard, inexpensive switches and memory elements.

  15. Effect of foaming temperature on the mechanical properties of produced closed-cell A356Aluminum foams with melting method

    NASA Astrophysics Data System (ADS)

    Movahedi, N.; Mirbagheri, S. M. H.; Hoseini, S. R.

    2014-07-01

    In this study an attempt was carried out to determine the effect of production temperature on the mechanical properties and energy absorption behavior of closed-cell A356 alloy foams under uniaxial compression test. For this purpose, three different A356 alloy closed-cell foams were synthesized at three different casting temperatures, 650 °C, 675 °C and 700 °C by adding the same amounts of granulated calcium as thickening and TiH2 as blowing agent. The samples were characterized by SEM to study the pore morphology at different foaming temperatures. Compression tests of the A356 foams were carried out to assess their mechanical properties and energy absorption behavior. The results indicated that increasing the foaming temperature from 650 °C to 675 °C and 700 °C reduces the relative density of closed cell A356 alloys by 18.3% and 38% respectively and consequently affects the compressive strength and energy absorption of cellular structures by changing them from equiaxed polyhedral closed cells to distorted cells. Also at 700 °C foaming temperature, growth of micro-pores and coalescence with other surrounding pores leads to several big voids.

  16. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties

    PubMed Central

    Zhou, Kesong; Ma, Wenyou; Attard, Bonnie; Zhang, Panpan; Kuang, Tongchun

    2018-01-01

    Abstract Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing. PMID:29707073

  17. Effect of Al content on impact resistance behavior of Al-Ti-B4C composite fabricated under air atmosphere.

    PubMed

    Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan

    2016-12-01

    Reaction behavior, mechanical property and impact resistance of TiC-TiB 2 /Al composite reacted from Al-Ti-B 4 C system with various Al content via combination method of combustion synthesis and hot pressed sintering under air was investigated. Al content was the key point to the variation of mechanical property and impact resistance. Increasing Al content could increase the density, strength and toughness of the composite. Due to exorbitant ceramic content, 10wt.% and 20wt.% Al-Ti-B 4 C composites exhibited poor molding ability and machinability. Flexural strength, fracture toughness, compressive strength and impact toughness of 30-50wt.% Al-Ti-B 4 C composite were higher than those of Al matrix. The intergranular fracture dispersed and defused impact load and restricted crack extension, enhancing the impact resistance of the composite. The composite with 50wt.% Al content owned highest mechanical properties and impact resistance. The results were useful for the application of TiC-TiB 2 /Al composite in impact resistance field of ceramic reinforced Al matrix composite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Sliding durability of two carbide-oxide candidate high temperature fiber seal materials in air to 900 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce M.

    1992-01-01

    A test program to determine the friction and wear properties of two complex carbide oxide ceramic fibers for high temperature sliding seal applications is described. The fibers are based on Si, C, O, and Ti or Si, C, N, and O ceramic systems. Pin on disk tests using ceramic fiber covered pins and Inconel 718 disks, were conducted in air from 25 to 900 C to evaluate potential seal materials. This testing procedure was used in a previous study of oxide ceramic fibers which were found to exhibit wear behavior based predominantly on their mechanical properties. Like the oxide fibers tested previously, these carbide oxide ceramic fibers, show an increase in friction and wear with increased test temperature. At room temperature, the wear behavior seems to be based upon mechanical properties, namely tensile strength. At 500 and especially 900 C, the fibers wear by both mechanical fracture and by oxidative type wear. Based upon post test microscopic and x ray analyses, interaction between the fiber constituents and elements transferred from the counterface, namely Ni and Cr, may have occurred enhancing the tribochemical wear process. These results are interpreted.

  19. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties.

    PubMed

    Tan, Chaolin; Zhou, Kesong; Ma, Wenyou; Attard, Bonnie; Zhang, Panpan; Kuang, Tongchun

    2018-01-01

    Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm 3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV 0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing.

  20. Mechanical and Fatigue Properties of Additively Manufactured Metallic Materials

    NASA Astrophysics Data System (ADS)

    Yadollahi, Aref

    This study aims to investigate the mechanical and fatigue behavior of additively manufactured metallic materials. Several challenges associated with different metal additive manufacturing (AM) techniques (i.e. laser-powder bed fusion and direct laser deposition) have been addressed experimentally and numerically. Experiments have been carried out to study the effects of process inter-layer time interval--i.e. either building the samples one-at-a-time or multi-at-a-time (in-parallel)--on the microstructural features and mechanical properties of 316L stainless steel samples, fabricated via a direct laser deposition (DLD). Next, the effect of building orientation--i.e. the orientation in which AM parts are built--on microstructure, tensile, and fatigue behaviors of 17-4 PH stainless steel, fabricated via a laser-powder bed fusion (L-PBF) method was investigated. Afterwards, the effect of surface finishing--here, as-built versus machined--on uniaxial fatigue behavior and failure mechanisms of Inconel 718 fabricated via a laser-powder bed fusion technique was sought. The numerical studies, as part of this dissertation, aimed to model the mechanical behavior of AM materials, under monotonic and cyclic loading, based on the observations and findings from the experiments. Despite significant research efforts for optimizing process parameters, achieving a homogenous, defect-free AM product--immediately after fabrication--has not yet been fully demonstrated. Thus, one solution for ensuring the adoption of AM materials for application should center on predicting the variations in mechanical behavior of AM parts based on their resultant microstructure. In this regard, an internal state variable (ISV) plasticity-damage model was employed to quantify the damage evolution in DLD 316L SS, under tensile loading, using the microstructural features associated with the manufacturing process. Finally, fatigue behavior of AM parts has been modeled based on the crack-growth concept. Using the FASTRAN code, the fatigue-life of L-PBF Inconel 718 was accurately calculated using the size and shape of process-induced voids in the material. In addition, the maximum valley depth of the surface profile was found to be an appropriate representative of the initial surface flaw for fatigue-life prediction of AM materials in an as-built surface condition.

  1. Linking Resting-State Networks in the Prefrontal Cortex to Executive Function: A Functional Near Infrared Spectroscopy Study.

    PubMed

    Zhao, Jia; Liu, Jiangang; Jiang, Xin; Zhou, Guifei; Chen, Guowei; Ding, Xiao P; Fu, Genyue; Lee, Kang

    2016-01-01

    Executive function (EF) plays vital roles in our everyday adaptation to the ever-changing environment. However, limited existing studies have linked EF to the resting-state brain activity. The functional connectivity in the resting state between the sub-regions of the brain can reveal the intrinsic neural mechanisms involved in cognitive processing of EF without disturbance from external stimuli. The present study investigated the relations between the behavioral executive function (EF) scores and the resting-state functional network topological properties in the Prefrontal Cortex (PFC). We constructed complex brain functional networks in the PFC from 90 healthy young adults using functional near infrared spectroscopy (fNIRS). We calculated the correlations between the typical network topological properties (regional topological properties and global topological properties) and the scores of both the Total EF and components of EF measured by computer-based Cambridge Neuropsychological Test Automated Battery (CANTAB). We found that the Total EF scores were positively correlated with regional properties in the right dorsal superior frontal gyrus (SFG), whereas the opposite pattern was found in the right triangular inferior frontal gyrus (IFG). Different EF components were related to different regional properties in various PFC areas, such as planning in the right middle frontal gyrus (MFG), working memory mainly in the right MFG and triangular IFG, short-term memory in the left dorsal SFG, and task switch in the right MFG. In contrast, there were no significant findings for global topological properties. Our findings suggested that the PFC plays an important role in individuals' behavioral performance in the executive function tasks. Further, the resting-state functional network can reveal the intrinsic neural mechanisms involved in behavioral EF abilities.

  2. Structural, Kinetic And Magnetic Properties Of Mechanically Alloyed Fe-Zr Powders

    NASA Astrophysics Data System (ADS)

    Mishra, Debabrata; Perumal, A.; Srinivasan, A.

    2008-04-01

    We report the study of amorphous/non-equilibrium solid solution Fe100-xZrx (x = 20 to 35) alloys by mechanical alloying process. It is observed that with increasing Zr substitution, (a) the activation energy increases, (b) the saturation magnetization and coercivity show oscillating behavior. Low temperature magnetic measurements show the presence of spin-glass like phase transition even at H = 10 kOe. The oscillating behavior of magnetic parameters is explained on the basis of variations in the average internal stress calculated using magnetic data.

  3. From Solidification Processing to Microstructure to Mechanical Properties: A Multi-scale X-ray Study of an Al-Cu Alloy Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tourret, D.; Mertens, J. C. E.; Lieberman, E.

    We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure,more » supported by quantitative simulations of microstructure formation and its mechanical behavior.« less

  4. From Solidification Processing to Microstructure to Mechanical Properties: A Multi-scale X-ray Study of an Al-Cu Alloy Sample

    DOE PAGES

    Tourret, D.; Mertens, J. C. E.; Lieberman, E.; ...

    2017-09-13

    We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure,more » supported by quantitative simulations of microstructure formation and its mechanical behavior.« less

  5. From Solidification Processing to Microstructure to Mechanical Properties: A Multi-scale X-ray Study of an Al-Cu Alloy Sample

    NASA Astrophysics Data System (ADS)

    Tourret, D.; Mertens, J. C. E.; Lieberman, E.; Imhoff, S. D.; Gibbs, J. W.; Henderson, K.; Fezzaa, K.; Deriy, A. L.; Sun, T.; Lebensohn, R. A.; Patterson, B. M.; Clarke, A. J.

    2017-11-01

    We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure, supported by quantitative simulations of microstructure formation and its mechanical behavior.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esfahani, M. Nasr; Yilmaz, M.; Sonne, M. R.

    The trend towards nanomechanical resonator sensors with increasing sensitivity raises the need to address challenges encountered in the modeling of their mechanical behavior. Selecting the best approach in mechanical response modeling amongst the various potential computational solid mechanics methods is subject to controversy. A guideline for the selection of the appropriate approach for a specific set of geometry and mechanical properties is needed. In this study, geometrical limitations in frequency response modeling of flexural nanomechanical resonators are investigated. Deviation of Euler and Timoshenko beam theories from numerical techniques including finite element modeling and Surface Cauchy-Born technique are studied. The resultsmore » provide a limit beyond which surface energy contribution dominates the mechanical behavior. Using the Surface Cauchy-Born technique as the reference, a maximum error on the order of 50 % is reported for high-aspect ratio resonators.« less

  7. Mechanical design of DNA nanostructures

    NASA Astrophysics Data System (ADS)

    Castro, Carlos E.; Su, Hai-Jun; Marras, Alexander E.; Zhou, Lifeng; Johnson, Joshua

    2015-03-01

    Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07153k

  8. Numerical Simulation of Thermal Response and Ablation Behavior of a Hybrid Carbon/Carbon Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Bai; Li, Xudong

    2017-09-01

    The thermal response and ablation behavior of a hybrid carbon/carbon (C/C) composite are studied herein by using a numerical model. This model is based on the energy- and mass-conservation principles as well as on the calculation of the thermophysical properties of materials. The thermal response and ablation behavior are simulated from the perspective of the matrix and fiber components of a hybrid C/C composite. The thermophysical properties during ablation are calculated, and a moving boundary is implemented to consider the recession of the ablation surface. The temperature distribution, thermophysical properties, char layer thickness, linear ablation rate, mass flow rate of the pyrolysis gases, and mass loss of the hybrid C/C composite are quantitatively predicted. This numerical study describing the thermal response and ablation behavior provides a fundamental understanding of the ablative mechanism of a hybrid C/C composite, serving as a reference and basis for further designs and optimizations of thermoprotective materials.

  9. Numerical Simulation of Thermal Response and Ablation Behavior of a Hybrid Carbon/Carbon Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Bai; Li, Xudong

    2018-06-01

    The thermal response and ablation behavior of a hybrid carbon/carbon (C/C) composite are studied herein by using a numerical model. This model is based on the energy- and mass-conservation principles as well as on the calculation of the thermophysical properties of materials. The thermal response and ablation behavior are simulated from the perspective of the matrix and fiber components of a hybrid C/C composite. The thermophysical properties during ablation are calculated, and a moving boundary is implemented to consider the recession of the ablation surface. The temperature distribution, thermophysical properties, char layer thickness, linear ablation rate, mass flow rate of the pyrolysis gases, and mass loss of the hybrid C/C composite are quantitatively predicted. This numerical study describing the thermal response and ablation behavior provides a fundamental understanding of the ablative mechanism of a hybrid C/C composite, serving as a reference and basis for further designs and optimizations of thermoprotective materials.

  10. Effect of nanopatterning on mechanical properties of Lithium anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Colin; Lee, Yong Min; Cho, Kuk Young

    One of the challenges in developing Lithium anodes for Lithium ion batteries (LIB) is controlling the formation of Li dendrites during cycling of the battery. Nanostructuring and nanopatterning of electrodes shows a promising way to suppress the growth of Li dendrites. However, in order to control this behavior, a fundamental understanding of the effect of nanopatterning on the electromechanical properties of Li metal is necessary. In this paper, we have investigated the mechanical and wear properties of Li metal using Atomic Force Microscopy (AFM) in an airtight cell. By using different load regimes, we determined the mechanical properties of Limore » metal. Here, we show that as a result of nanopatterning, Li metal surface underwent work hardening due to residual compressive stress. The presence of such stresses can help to improve cycle lifetime of LIBs with Li anodes and obtain very high energy densities.« less

  11. Mechanical properties of Fe -10Ni -7Mn martensitic steel subjected to severe plastic deformation via cold rolling and wire drawing

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nanesa, H.; Nili-Ahmadabadi, M.; Shirazi, H.

    2010-07-01

    Fe-Ni-Mn martensitic steels are one of the major groups of ultra-high strength steels that have good mechanical properties and ductility in as annealed condition but they suffer from severe inter-granular embitterment after aging. In this paper, the effect of heavy shaped cold rolling and wire drawing on the mechanical properties of Fe-Ni-Mn steel was investigated. This process could provide a large strain deformation in this alloy. The total strain was epsilon ~7. Aging behavior and tensile properties of Fe-10Ni-7Mn were studied after aging at 753 K. The results showed that the ultimate tensile strength and ductility after cold rolling, wire drawing and aging increased up to 2540 MPa and 7.1 %, respectively, while the conventional steels show a premature fracture stress of 830 MPa with about zero ductility after aging.

  12. Effect of Injection Molding Melt Temperatures on PLGA Craniofacial Plate Properties during In Vitro Degradation.

    PubMed

    de Melo, Liliane Pimenta; Salmoria, Gean Vitor; Fancello, Eduardo Alberto; Roesler, Carlos Rodrigo de Mello

    2017-01-01

    The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures.

  13. Effect of nanopatterning on mechanical properties of Lithium anode

    DOE PAGES

    Campbell, Colin; Lee, Yong Min; Cho, Kuk Young; ...

    2018-02-06

    One of the challenges in developing Lithium anodes for Lithium ion batteries (LIB) is controlling the formation of Li dendrites during cycling of the battery. Nanostructuring and nanopatterning of electrodes shows a promising way to suppress the growth of Li dendrites. However, in order to control this behavior, a fundamental understanding of the effect of nanopatterning on the electromechanical properties of Li metal is necessary. In this paper, we have investigated the mechanical and wear properties of Li metal using Atomic Force Microscopy (AFM) in an airtight cell. By using different load regimes, we determined the mechanical properties of Limore » metal. Here, we show that as a result of nanopatterning, Li metal surface underwent work hardening due to residual compressive stress. The presence of such stresses can help to improve cycle lifetime of LIBs with Li anodes and obtain very high energy densities.« less

  14. Setting kinetics and mechanical properties of flax fibre reinforced glass ionomer restorative materials

    PubMed Central

    Abou Neel, Ensanya Ali; Young, Anne M.

    2017-01-01

    Regardless of the excellent properties of glass ionomer cements, their poor mechanical properties limit their applications to non-load bearing areas. This study aimed to investigate the effect of incorporated short, chopped and randomly distributed flax fibers (0, 0.5, 1, 2.5, 5 and 25 wt%) on setting reaction kinetics, and mechanical and morphological properties of glass ionomer cements. Addition of flax fibers did not significantly affect the setting reaction extent. According to their content, flax fibers increased the compressive (from 148 to 250 MPa) and flexure strength (from 20 to 42 MPa). They also changed the brittle behavior of glass ionomer cements to a plastic one. They significantly reduced the compressive (from 3 to 1.3 GPa) and flexure modulus (from 19 to 14 GPa). Accordingly, flax fiber-modified glass ionomer cements could be potentially used in high-stress bearing areas. PMID:28808218

  15. Mechanical Characteristics of Welded Joints of Aluminum Alloy 6061 T6 Formed by Arc and Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Astarita, A.; Squillace, A.; Nele, L.

    2016-01-01

    Butt welds formed by arc welding in inert gas with nonconsumable electrode (tungsten inert gas (TIG) welding) and by friction stir welding (FSW) from aluminum alloy AA6061 T6 are studied. Comparative analysis of the structures and mechanical properties of the welded joints is performed using the results of optical and electron microscopy, tensile tests, tests for residual bending ductility, and measurements of microhardness. The changes in the microstructure in different zones and the degrees of degradation of the mechanical properties after the welding are determined. It is shown that the size of the tool for the friction stir welding affects the properties of the welds. Quantitative results showing the relation between the microscopic behavior of the alloy and the welding-induced changes in the microstructure are obtained. Friction stir welding is shown to provide higher properties of the welds.

  16. Topology effects on nonaffine behavior of semiflexible fiber networks

    NASA Astrophysics Data System (ADS)

    Hatami-Marbini, H.; Shriyan, V.

    2017-12-01

    Filamentous semiflexible networks define the mechanical and physical properties of many materials such as cytoskeleton. In the absence of a distinct unit cell, the Mikado fiber network model is commonly used algorithm for representing the microstructure of these networks in numerical models. Nevertheless, certain types of filamentous structures such as collagenous tissues, at early stages of their development, are assembled by growth of individual fibers from random nucleation sites. In this work, we develop a computational model to investigate the mechanical response of such networks by characterizing their nonaffine behavior. We show that the deformation of these networks is nonaffine at all length scales. Furthermore, similar to Mikado networks, the degree of nonaffinity in these structures decreases with increasing the probing length scale, the network fiber density, and/or the bending stiffness of constituting filaments. Nevertheless, despite the lower coordination number of these networks, their deformation field is more affine than that of the Mikado networks with the same fiber density and fiber mechanical properties.

  17. Effect of Friction Stir Process Parameters on the Mechanical and Thermal Behavior of 5754-H111 Aluminum Plates.

    PubMed

    Serio, Livia Maria; Palumbo, Davide; De Filippis, Luigi Alberto Ciro; Galietti, Umberto; Ludovico, Antonio Domenico

    2016-02-23

    A study of the Friction Stir Welding (FSW) process was carried out in order to evaluate the influence of process parameters on the mechanical properties of aluminum plates (AA5754-H111). The process was monitored during each test by means of infrared cameras in order to correlate temperature information with eventual changes of the mechanical properties of joints. In particular, two process parameters were considered for tests: the welding tool rotation speed and the welding tool traverse speed. The quality of joints was evaluated by means of destructive and non-destructive tests. In this regard, the presence of defects and the ultimate tensile strength (UTS) were investigated for each combination of the process parameters. A statistical analysis was carried out to assess the correlation between the thermal behavior of joints and the process parameters, also proving the capability of Infrared Thermography for on-line monitoring of the quality of joints.

  18. Effect of Friction Stir Process Parameters on the Mechanical and Thermal Behavior of 5754-H111 Aluminum Plates

    PubMed Central

    Serio, Livia Maria; Palumbo, Davide; De Filippis, Luigi Alberto Ciro; Galietti, Umberto; Ludovico, Antonio Domenico

    2016-01-01

    A study of the Friction Stir Welding (FSW) process was carried out in order to evaluate the influence of process parameters on the mechanical properties of aluminum plates (AA5754-H111). The process was monitored during each test by means of infrared cameras in order to correlate temperature information with eventual changes of the mechanical properties of joints. In particular, two process parameters were considered for tests: the welding tool rotation speed and the welding tool traverse speed. The quality of joints was evaluated by means of destructive and non-destructive tests. In this regard, the presence of defects and the ultimate tensile strength (UTS) were investigated for each combination of the process parameters. A statistical analysis was carried out to assess the correlation between the thermal behavior of joints and the process parameters, also proving the capability of Infrared Thermography for on-line monitoring of the quality of joints. PMID:28773246

  19. The Effect of Adding PET (Polyethylen Terephthalate) Plastic Waste on SCC (Self-Compacting Concrete) to Fresh Concrete Behavior and Mechanical Characteristics

    NASA Astrophysics Data System (ADS)

    Aswatama W, K.; Suyoso, H.; Meyfa U, N.; Tedy, P.

    2018-01-01

    To study the effect PET waste plastics on SCC then PET plastic waste content for SCC is made into 2.5%; 5%; 7.5%; and 10%. As reference concrete is made SCC with 0% PET level. The results on all fresh concrete test items indicate that for all PET waste levels made are meeting the criteria as SCC. The effect of adding PET to fresh concrete behavior on all test items shows that the filling ability and passing ability of concrete work increases with increasing of PET. However, the increase in PET will decrease its mechanical properties. The result of heat test shows that the mechanical properties of concrete (compressive strength, splitting, and elastic modulus) after heating at 250°C temperature has not changed, while at 600°C has significant capacity decline. To clarify the differences between SCC before and after heating, microstructure analysis was done in the form of photo magnification of specimen using SEM (Scanning Electron Microscope).

  20. Interlayer shear behaviors of graphene-carbon nanotube network

    NASA Astrophysics Data System (ADS)

    Qin, Huasong; Liu, Yilun

    2017-09-01

    The interlayer shear resistance plays an important role in graphene related applications, and different mechanisms have been proposed to enhance its interlayer load capacity. In this work, we performed molecular dynamics (MD) simulations and theoretical analysis to study interlayer shear behaviors of three dimensional graphene-carbon (3D-GC) nanotube networks. The shear mechanical properties of carbon nanotubes (CNTs) crosslink with different diameters are obtained which is one order of magnitude larger than that of other types of crosslinks. Under shear loading, 3D-GC exhibits two failure modes, i.e., fracture of graphene sheet and failure of CNT crosslink, determined by the diameter of CNT crosslink, crosslink density, and length of 3D-GC. A modified tension-shear chain model is proposed to predict the shear mechanical properties and failure mode of 3D-GC, which agrees well with MD simulation results. The results presented in this work may provide useful insights for future development of high-performance 3D-GC materials.

  1. Characterization of the bioactive and mechanical behavior of dental ceramic/sol-gel derived bioactive glass mixtures.

    PubMed

    Abbasi, Zahra; Bahrololoum, Mohammad E; Bagheri, Rafat; Shariat, Mohammad H

    2016-02-01

    Dental ceramics can be modified by bioactive glasses in order to develop apatite layer on their surface. One of the benefits of such modification is to prolong the lifetime of the fixed dental prosthesis by preventing the formation of secondary caries. Dental ceramic/sol-gel derived bioactive glass mixture is one of the options for this modification. In the current study, mixtures of dental ceramic/bioactive glass with different compositions were successfully produced. To evaluate their bioactive behavior, prepared samples were immersed in a simulated body fluid at various time intervals. The prepared and soaked specimens were characterized using Fourier transform infrared spectroscopy, X-ray diffractometry and scanning electron microscopy. Since bioactive glasses have deleterious effects on the mechanical properties of dental ceramics, 3-point bending tests were used to evaluate the flexural strength, flexural strain, tangent modulus of elasticity and Weibull modulus of the specimens in order to find the optimal relationship between mechanical and bioactive properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. In vivo dynamical behavior of yeast chromatin modeled as an entangled polymer network with constraint release

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Kilfoil, Maria L.

    2013-03-01

    The high fidelity segregation of chromatin is the central problem in cell mitosis. The role of mechanics underlying this, however, is undetermined. Work in this area has largely focused on cytoskeletal elements of the process. Preliminary work in our lab suggests the mechanical properties of chromatin are fundamental in this process. Nevertheless, the mechanical properties of chromatin in the cellular context are not well-characterized. For better understanding of the role of mechanics in this cellular process, and of the chromatin mechanics in vivo generally, a systematic dynamical description of chromatin in vivo is required. Accordingly, we label specific sites on chromatin with fluorescent proteins of different wave lengths, enabling us to detect multiple spots separately in 3D and track their displacements in time inside living yeast cells. We analyze the pairwise cross-correlated motion between spots as a function of relative distance along the DNA contour. Comparison between the reptation model and our data serves to test our conjecture that chromatin in the cell is basically an entangled polymer network under constraints to thermal motion, and removal of constraints by non-thermal cellular processes is expected to affect its dynamic behavior.

  3. Characterization of the mechanical properties of resected porcine organ tissue using optical fiber photoelastic polarimetry.

    PubMed

    Hudnut, Alexa W; Babaei, Behzad; Liu, Sonya; Larson, Brent K; Mumenthaler, Shannon M; Armani, Andrea M

    2017-10-01

    Characterizing the mechanical behavior of living tissue presents an interesting challenge because the elasticity varies by eight orders of magnitude, from 50Pa to 5GPa. In the present work, a non-destructive optical fiber photoelastic polarimetry system is used to analyze the mechanical properties of resected samples from porcine liver, kidney, and pancreas. Using a quasi-linear viscoelastic fit, the elastic modulus values of the different organ systems are determined. They are in agreement with previous work. In addition, a histological assessment of compressed and uncompressed tissues confirms that the tissue is not damaged during testing.

  4. Failure criterion for materials with spatially correlated mechanical properties

    NASA Astrophysics Data System (ADS)

    Faillettaz, J.; Or, D.

    2015-03-01

    The role of spatially correlated mechanical elements in the failure behavior of heterogeneous materials represented by fiber bundle models (FBMs) was evaluated systematically for different load redistribution rules. Increasing the range of spatial correlation for FBMs with local load sharing is marked by a transition from ductilelike failure characteristics into brittlelike failure. The study identified a global failure criterion based on macroscopic properties (external load and cumulative damage) that is independent of spatial correlation or load redistribution rules. This general metric could be applied to assess the mechanical stability of complex and heterogeneous systems and thus provide an important component for early warning of a class of geophysical ruptures.

  5. Microstructural modification of pure Mg for improving mechanical and biocorrosion properties.

    PubMed

    Ahmadkhaniha, D; Järvenpää, A; Jaskari, M; Sohi, M Heydarzadeh; Zarei-Hanzaki, A; Fedel, M; Deflorian, F; Karjalainen, L P

    2016-08-01

    In this study, the effect of microstructural modification on mechanical properties and biocorrosion resistance of pure Mg was investigated for tailoring a load-bearing orthopedic biodegradable implant material. This was performed utilizing the friction stir processing (FSP) in 1-3 passes to refine the grain size. Microstructure was examined in an optical microscope and scanning electron microscope with an electron backscatter diffraction unit. X-ray diffraction method was used to identify the texture. Mechanical properties were measured by microhardness and tensile testing. Electrochemical impedance spectroscopy was applied to evaluate corrosion behavior. The results indicate that even applying a single pass of FSP refined the grain size significantly. Increasing the number of FSP passes further refined the structure, increased the mechanical strength and intensified the dominating basal texture. The best combination of mechanical properties and corrosion resistance were achieved after three FSP passes. In this case, the yield strength was about six times higher than that of the as-cast Mg and the corrosion resistance was also improved compared to that in the as-cast condition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Flexural and compressive mechanical behaviors of the porous titanium materials with entangled wire structure at different sintering conditions for load-bearing biomedical applications.

    PubMed

    He, Guo; Liu, Ping; Tan, Qingbiao; Jiang, Guofeng

    2013-12-01

    The entangled titanium materials with various porosities have been investigated in terms of the flexural and compressive mechanical properties and the deformation and failure modes. The effect of the sintering parameters on the mechanical properties and the porosity reduction has been comprehensively studied. The results indicate that both the flexural and compressive mechanical properties increase significantly as the porosity decreases. In the porosity range investigated the flexural elastic modulus is in the range of 0.05-6.33GPa, the flexural strength is in the range of 9.8-324.9MPa, the compressive elastic modulus is in the range of 0.03-2.25GPa, and the compressive plateau stress is in the range of 2.3-147.8MPa. The mechanical properties of the entangled titanium materials can be significantly improved by sintering, which increase remarkably as the sintering temperature and/or the sintering time increases. But on other hand, the sintering process can induce the porosity reduction due to the oxidation on the titanium wire surface. © 2013 Elsevier Ltd. All rights reserved.

  7. Protocol dependence of mechanical properties in granular systems.

    PubMed

    Inagaki, S; Otsuki, M; Sasa, S

    2011-11-01

    We study the protocol dependence of the mechanical properties of granular media by means of computer simulations. We control a protocol of realizing disk packings in a systematic manner. In 2D, by keeping material properties of the constituents identical, we carry out compaction with various strain rates. The disk packings exhibit the strain rate dependence of the critical packing fraction above which the pressure becomes non-zero. The observed behavior contrasts with the well-studied jamming transitions for frictionless disk packings. We also observe that the elastic moduli of the disk packings depend on the strain rate logarithmically. Our results suggest that there exists a time-dependent state variable to describe macroscopic material properties of disk packings, which depend on its protocol.

  8. The mechanical behavior of GLARE laminates for aircraft structures

    NASA Astrophysics Data System (ADS)

    Wu, Guocai; Yang, J.-M.

    2005-01-01

    GLARE (glass-reinforced aluminum laminate) is a new class of fiber metal laminates for advanced aerospace structural applications. It consists of thin aluminum sheets bonded together with unidirectional or biaxially reinforced adhesive prepreg of high-strength glass fibers. GLARE laminates offer a unique combination of properties such as outstanding fatigue resistance, high specific static properties, excellent impact resistance, good residual and blunt notch strength, flame resistance and corrosion properties, and ease of manufacture and repair. GLARE laminates can be tailored to suit a wide variety of applications by varying the fiber/resin system, the alloy type and thickness, stacking sequence, fiber orientation, surface pretreatment technique, etc. This article presents a comprehensive overview of the mechanical properties of various GLARE laminates under different loading conditions.

  9. Physical property measurements of doped cesium iodide crystals

    NASA Technical Reports Server (NTRS)

    Synder, R. S.; Clotfelter, W. N.

    1974-01-01

    Mechanical and thermal property values are reported for crystalline cesium iodide doped with sodium and thallium. Young's modulus, bulk modulus, shear modulus, and Poisson's ratio were obtained from ultrasonic measurements. Young's modulus and the samples' elastic and plastic behavior were also measured under tension and compression. Thermal expansion and thermal conductivity were the temperature dependent measurements that were made.

  10. Effect of moisture cycling on truss-plate joint behavior

    Treesearch

    Leslie H. Groom

    1994-01-01

    The structural performance of wood trusses, which are now commonplace in light-frame construction, is dictated in part by the mechanical properties of the truss-plate joints. However, little information exists quantifying the effect of environmental conditions on truss-plate joint properties. The main objective of this paper was to quantify the effect of moisture...

  11. Fatigue Analysis of Magnesium Alloys Components for Car Industry

    NASA Astrophysics Data System (ADS)

    Marsavina, Liviu; Rusu, Lucian; Șerban, Dan Andrei; Negru, Radu Marcel; Cernescu, Anghel

    2017-12-01

    The use of magnesium alloys in the automotive industry increased in the last decade because of their low weight and relative good mechanical properties. However, the variable loading conditions require a good fatigue behavior. This paper summaries the fatigue properties of magnesium alloys and presents new fatigue curve results for die cast AM50 magnesium alloy.

  12. The effect of altered lignin composition on mechanical properties of CINNAMYL ALCOHOL DEHYDROGENASE (CAD) deficient poplars.

    PubMed

    Özparpucu, Merve; Gierlinger, Notburga; Burgert, Ingo; Van Acker, Rebecca; Vanholme, Ruben; Boerjan, Wout; Pilate, Gilles; Déjardin, Annabelle; Rüggeberg, Markus

    2018-04-01

    CAD-deficient poplars enabled studying the influence of altered lignin composition on mechanical properties. Severe alterations in lignin composition did not influence the mechanical properties. Wood represents a hierarchical fiber-composite material with excellent mechanical properties. Despite its wide use and versatility, its mechanical behavior has not been entirely understood. It has especially been challenging to unravel the mechanical function of the cell wall matrix. Lignin engineering has been a useful tool to increase the knowledge on the mechanical function of lignin as it allows for modifications of lignin content and composition and the subsequent studying of the mechanical properties of these transgenics. Hereby, in most cases, both lignin composition and content are altered and the specific influence of lignin composition has hardly been revealed. Here, we have performed a comprehensive micromechanical, structural, and spectroscopic analysis on xylem strips of transgenic poplar plants, which are downregulated for cinnamyl alcohol dehydrogenase (CAD) by a hairpin-RNA-mediated silencing approach. All parameters were evaluated on the same samples. Raman microscopy revealed that the lignin of the hpCAD poplars was significantly enriched in aldehydes and reduced in the (relative) amount of G-units. FTIR spectra indicated pronounced changes in lignin composition, whereas lignin content was not significantly changed between WT and the hpCAD poplars. Microfibril angles were in the range of 18°-24° and were not significantly different between WT and transgenics. No significant changes were observed in mechanical properties, such as tensile stiffness, ultimate stress, and yield stress. The specific findings on hpCAD poplar allowed studying the specific influence of lignin composition on mechanics. It can be concluded that the changes in lignin composition in hpCAD poplars did not affect the micromechanical tensile properties.

  13. Mechanical and thermal properties of short-coirfiber-reinforced natural rubber/polyethylene composites

    NASA Astrophysics Data System (ADS)

    Xu, Zh. H.; Kong, Zh. N.

    2014-07-01

    Natural rubber (NR) and polyethylene (PE) composites were compounded with chemically treated coir fibers by using a heated two-roll mill. Two chemical treatments of the fibers — by silane and sodium hydroxide — were carried out to improve the interfacial adhesion between them and the polyethylene matrix. The mechanical properties of the composites obtained were evaluated and compared with those made from a neat polymer and untreated fibers. The mechanical properties of the composites, such as the tensile strength, Young's modulus, and the elongation at break, were examined, and their shrinkage and flame retardant characteristics were measured. From these experiments, the effect of plasma treatment on the mechanical-physical behavior of coconut-fiberreinforced NR/PE composites was identified. In addition, their thermal characteristics were evaluated, and the results showed a slight decrease in them with increasing content of coir fibers.

  14. Physical probing of cells

    NASA Astrophysics Data System (ADS)

    Rehfeldt, Florian; Schmidt, Christoph F.

    2017-11-01

    In the last two decades, it has become evident that the mechanical properties of the microenvironment of biological cells are as important as traditional biochemical cues for the control of cellular behavior and fate. The field of cell and matrix mechanics is quickly growing and so is the development of the experimental approaches used to study active and passive mechanical properties of cells and their surroundings. Within this topical review we will provide a brief overview, on the one hand, over how cellular mechanics can be probed physically, how different geometries allow access to different cellular properties, and, on the other hand, how forces are generated in cells and transmitted to the extracellular environment. We will describe the following experimental techniques: atomic force microscopy, traction force microscopy, magnetic tweezers, optical stretcher and optical tweezers pointing out both their advantages and limitations. Finally, we give an outlook on the future of the physical probing of cells.

  15. Effects of bioleaching on the mechanical and chemical properties of waste rocks

    NASA Astrophysics Data System (ADS)

    Yin, Sheng-Hua; Wu, Ai-Xiang; Wang, Shao-Yong; Ai, Chun-Ming

    2012-01-01

    Bioleaching processes cause dramatic changes in the mechanical and chemical properties of waste rocks, and play an important role in metal recovery and dump stability. This study focused on the characteristics of waste rocks subjected to bioleaching. A series of experiments were conducted to investigate the evolution of rock properties during the bioleaching process. Mechanical behaviors of the leached waste rocks, such as failure patterns, normal stress, shear strength, and cohesion were determined through mechanical tests. The results of SEM imaging show considerable differences in the surface morphology of leached rocks located at different parts of the dump. The mineralogical content of the leached rocks reflects the extent of dissolution and precipitation during bioleaching. The dump porosity and rock size change under the effect of dissolution, precipitation, and clay transportation. The particle size of the leached rocks decreased due to the loss of rock integrity and the conversion of dry precipitation into fine particles.

  16. Fractal analysis on human dynamics of library loans

    NASA Astrophysics Data System (ADS)

    Fan, Chao; Guo, Jin-Li; Zha, Yi-Long

    2012-12-01

    In this paper, the fractal characteristic of human behaviors is investigated from the perspective of time series constructed with the amount of library loans. The values of the Hurst exponent and length of non-periodic cycle calculated through rescaled range analysis indicate that the time series of human behaviors and their sub-series are fractal with self-similarity and long-range dependence. Then the time series are converted into complex networks by the visibility algorithm. The topological properties of the networks such as scale-free property and small-world effect imply that there is a close relationship among the numbers of repetitious behaviors performed by people during certain periods of time. Our work implies that there is intrinsic regularity in the human collective repetitious behaviors. The conclusions may be helpful to develop some new approaches to investigate the fractal feature and mechanism of human dynamics, and provide some references for the management and forecast of human collective behaviors.

  17. Strain Rate and Anisotropic Microstructure Dependent Mechanical Behaviors of Silkworm Cocoon Shells

    PubMed Central

    Xu, Jun; Zhang, Wen; Gao, Xiang; Meng, Wanlin; Guan, Juan

    2016-01-01

    Silkworm cocoons are multi-layered composite structures comprised of high strength silk fiber and sericin, and their mechanical properties have been naturally selected to protect pupas during metamorphosis from various types of external attacks. The present study attempts to gain a comprehensive understanding of the mechanical properties of cocoon shell materials from wild silkworm species Antheraea pernyi under dynamic loading rates. Five dynamic strain rates from 0.00625 s-1 to 12.5 s-1 are tested to show the strain rate sensitivity of the cocoon shell material. In the meantime, the anisotropy of the cocoon shell is considered and the cocoon shell specimens are cut along 0°, 45° and 90° orientation to the short axis of cocoons. Typical mechanical properties including Young’s modulus, yield strength, ultimate strength and ultimate strain are extracted and analyzed from the stress-strain curves. Furthermore, the fracture morphologies of the cocoon shell specimens are observed under scanning electron microscopy to help understand the relationship between the mechanical properties and the microstructures of the cocoon material. A discussion on the dynamic strain rate effect on the mechanical properties of cocoon shell material is followed by fitting our experimental results to two previous models, and the effect could be well explained. We also compare natural and dried cocoon materials for the dynamic strain rate effect and interestingly the dried cocoon shells show better overall mechanical properties. This study provides a different perspective on the mechanical properties of cocoon material as a composite material, and provides some insight for bio-inspired engineering materials. PMID:26939063

  18. Microporoelastic Modeling of Organic-Rich Shales

    NASA Astrophysics Data System (ADS)

    Khosh Sokhan Monfared, S.; Abedi, S.; Ulm, F. J.

    2014-12-01

    Organic-rich shale is an extremely complex, naturally occurring geo-composite. The heterogeneous nature of organic-rich shale and its anisotropic behavior pose grand challenges for characterization, modeling and engineering design The intricacy of organic-rich shale, in the context of its mechanical and poromechanical properties, originates in the presence of organic/inorganic constituents and their interfaces as well as the occurrence of porosity and elastic anisotropy, at multiple length scales. To capture the contributing mechanisms, of 1st order, responsible for organic-rich shale complex behavior, we introduce an original approach for micromechanical modeling of organic-rich shales which accounts for the effect of maturity of organics on the overall elasticity through morphology considerations. This morphology contribution is captured by means of an effective media theory that bridges the gap between immature and mature systems through the choice of system's microtexture; namely a matrix-inclusion morphology (Mori-Tanaka) for immature systems and a polycrystal/granular morphology for mature systems. Also, we show that interfaces play a role on the effective elasticity of mature, organic-rich shales. The models are calibrated by means of ultrasonic pulse velocity measurements of elastic properties and validated by means of nanoindentation results. Sensitivity analyses using Spearman's Partial Rank Correlation Coefficient shows the importance of porosity and Total Organic Carbon (TOC) as key input parameters for accurate model predictions. These modeling developments pave the way to reach a "unique" set of clay properties and highlight the importance of depositional environment, burial and diagenetic processes on overall mechanical and poromechanical behavior of organic-rich shale. These developments also emphasize the importance of understanding and modeling clay elasticity and organic maturity on the overall rock behavior which is of critical importance for a practical rock physics model that accounts for time dependent phenomena which can be employed for seismic inversion.

  19. Feasibility of silica-hybridized collagen hydrogels as three-dimensional cell matrices for hard tissue engineering.

    PubMed

    Yu, Hye-Sun; Lee, Eun-Jung; Seo, Seog-Jin; Knowles, Jonathan C; Kim, Hae-Won

    2015-09-01

    Exploiting hydrogels for the cultivation of stem cells, aiming to provide them with physico-chemical cues suitable for osteogenesis, is a critical demand for bone engineering. Here, we developed hybrid compositions of collagen and silica into hydrogels via a simple sol-gel process. The physico-chemical and mechanical properties, degradation behavior, and bone-bioactivity were characterized in-depth; furthermore, the in vitro mesenchymal stem cell growth and osteogenic differentiation behaviors within the 3D hybrid gel matrices were communicated for the first time. The hydrolyzed and condensed silica phase enabled chemical links with the collagen fibrils to form networked hybrid gels. The hybrid gels showed improved chemical stability and greater resistance to enzymatic degradation. The in vitro apatite-forming ability was enhanced by the hybrid composition. The viscoelastic mechanical properties of the hybrid gels were significantly improved in terms of the deformation resistance to an applied load and the modulus values under a dynamic oscillation. Mesenchymal stem cells adhered well to the hybrid networks and proliferated actively with substantial cytoskeletal extensions within the gel matrices. Of note, the hybrid gels substantially reduced the cell-mediated gel contraction behaviors, possibly due to the stiffer networks and higher resistance to cell-mediated degradation. Furthermore, the osteogenic differentiation of cells, including the expression of bone-associated genes and protein, was significantly upregulated within the hybrid gel matrices. Together with the physico-chemical and mechanical properties, the cellular behaviors observed within 3D gel matrices, being different from the previous approaches reported on 2D substrates, provide new information on the feasibility and usefulness of the silica-collagen system for stem cell culture and tissue engineering of hard tissues. © The Author(s) 2015.

  20. Degradation Mechanisms and Mechanical Property Variation of Epdm Rubbers for Automotive Radiator Hosess

    NASA Astrophysics Data System (ADS)

    Kwak, Eung-Bum; Choi, Nak-Sam

    The degradation behaviors of EPDM (ethylene-propylene diene monomer) rubbers used for automotive radiator hoses subjected to thermo-oxidative and electrochemical stresses were studied. As a result of the thermo-oxidative aging tests, the IRHD (international rubber hardness degrees) hardness of the rubber specimens increased, while their elongation at break decreased much. A slight increase in crosslink density indicated that changes in the properties were caused by the concentration of carbonyl groups in the skin layer. For the electrochemical degradation (ECD), the weight of rubber specimens increased whereas their elongation and hardness much decreased because water solution penetrated into the skin part. There was little change in crosslink density. Formation of many chain scissions and thus microvoid networks in the skin layer induced the swelling behavior leading to a linear reduction of hardness versus the weight increase.

  1. Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.

  2. Mechanical properties and tribological behavior of fullerene-like hydrogenated carbon films prepared by changing the flow rates of argon gas

    NASA Astrophysics Data System (ADS)

    Guo, Junmeng; Wang, Yongfu; Liang, Hongyu; Liang, Aimin; Zhang, Junyan

    2016-02-01

    Fullerene-like hydrogenated carbon (FL-C:H) films as carbon materials were prepared by direct current plasma enhanced chemical vapor deposition (dc-PECVD) technique. The content of FL nanostructure was confirmed by high-resolution transmission electron microscopy (HRTEM), visible Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The effect of fullerene-like nanostructure on the friction behavior of the films was studied using a reciprocating ball-on-flat tribometer in humid environment. It is concluded that the curved FL nanostructure provide the film excellent mechanical properties and friction performance. Interestingly, combining with the results of Raman analyses of the wear debris, we find that new FL nanostructure form during the friction process. These new FL nanostructure may originate from the rapid annealing and stress relaxation of unstable carbon clusters.

  3. The Usability of Rock-Like Materials for Numerical Studies on Rocks

    NASA Astrophysics Data System (ADS)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and artificial simulations. The results obtained from these laboratory tests and modelling studies were compared with the other researcher's studies in respect to failure mechanism of different type of rocks. It can be concluded that there is similar failure mechanism between concrete and rock materials. Therefore, the results obtained from concrete samples that would be prepared at different porosity and pore sizes can be used in future studies in selection micro-mechanical and physical properties to constitute synthetic rock materials for understanding failure mechanism of rocks having complex inherent structures such as vuggy rocks or heavily jointed rock masses.

  4. The Effect of Water Molecules on Mechanical Properties of Cell Walls

    NASA Astrophysics Data System (ADS)

    Rahbar, Nima; Youssefian, Sina

    The unique properties of bamboo fibers come from their natural composite structures that comprise mainly cellulose nanofibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have utilized atomistic simulations to investigate the mechanical properties and mechanisms of interactions between these materials, in the presence of water molecules. The role of hemicellulose found to be enhancing the mechanical properties and lignin found to be providing the strength of bamboo fibers. The abundance of Hbonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose nanofibrils are responsible for higher adhesion energy between LCC/cellulose nanofibrils. We also found out that the amorphous regions of cellulose nanofibrils is the weakest interface in bamboo Microfibrils. In presence of water, the elastic modulus of lignin increases at low water content and decreases in higher water content, whereas the hemicellulose elastic modulus constantly decreases. The variations of Radial Distribution Function and Free Fractional Volume of these materials with water suggest that water molecules enhance the mechanical properties of lignin by filling voids in the system and creating Hbond bridges between polymer chains. For hemicellulose, however, the effect is always regressive due to the destructive effect of water molecules on the Hbond of its dense structure.

  5. The Neurobiology of Opiate Motivation

    PubMed Central

    Ting-A-Kee, Ryan; van der Kooy, Derek

    2012-01-01

    Opiates are a highly addictive class of drugs that have been reported to possess both dopamine-dependent and dopamine-independent rewarding properties. The search for how, if at all, these distinct mechanisms of motivation are related is of great interest in drug addiction research. Recent electrophysiological, molecular, and behavioral work has greatly improved our understanding of this process. In particular, the signaling properties of GABAA receptors located on GABA neurons in the ventral tegmental area (VTA) appear to be crucial to understanding the interplay between dopamine-dependent and dopamine-independent mechanisms of opiate motivation. PMID:23028134

  6. Recent Advances in Synthetic Bioelastomers

    PubMed Central

    Shi, Rui; Chen, Dafu; Liu, Quanyong; Wu, Yan; Xu, Xiaochuan; Zhang, Liqun; Tian, Wei

    2009-01-01

    This article reviews the degradability of chemically synthesized bioelastomers, mainly designed for soft tissue repair. These bioelastomers involve biodegradable polyurethanes, polyphosphazenes, linear and crosslinked poly(ether/ester)s, poly(ε-caprolactone) copolymers, poly(1,3-trimethylene carbonate) and their copolymers, poly(polyol sebacate)s, poly(diol-citrates) and poly(ester amide)s. The in vitro and in vivo degradation mechanisms and impact factors influencing degradation behaviors are discussed. In addition, the molecular designs, synthesis methods, structure properties, mechanical properties, biocompatibility and potential applications of these bioelastomers were also presented. PMID:20057942

  7. Impact of formulation and saliva on acid milk gel friction behavior.

    PubMed

    Joyner Melito, Helen S; Pernell, Chris W; Daubert, Christopher R

    2014-05-01

    Rheological analysis is commonly used to evaluate mechanical properties in studies of food behavior. However, rheological analysis is often insufficient to describe food texture as evaluated by descriptive sensory analysis. Additionally, traditional rheometry does not account for changes in food behavior as a function of saliva incorporation into the food during mastication. The objectives of this study were to evaluate friction behavior of acid milk gels with and without the addition of saliva, and to determine relationships between frictional behaviors and mechanical and sensory behaviors. Acid milk gels were prepared with 12.5% total solids comprising nonfat dry milk, whey protein isolate, waxy maize starch, and gelatin in different ratios. The addition of starch was found to have significant impact on acid milk gel frictional behavior. Addition of saliva resulted in a change in frictional behavior over the entire sliding speed range measured. Correlations were found between rheological, tribological, and sensory behavior, suggesting that an underlying mechanism may impact both viscosity and friction behavior. Additional study is needed to further explore the links between food structure, rheology, tribology, and sensory texture. Application of tribology in food science allows measurement of friction behavior of foods. Matching both rheological and tribological behavior is important to creating reduced-fat or reduced-sugar products with similar mouthfeel to the original product. © 2014 Institute of Food Technologists®

  8. The hygroscopic behavior of plant fibres: a review

    NASA Astrophysics Data System (ADS)

    Célino, Amandine; Freour, Sylvain; Jacquemin, Frederic; Casari, Pascal

    2013-12-01

    Environmental concern has resulted in a renewed interest in bio-based materials. Among them, plant fibres are perceived as an environmentally friendly substitute to glass fibres for the reinforcement of composites, particularly in automotive engineering. Due to their wide availability, low cost, low density, high-specific mechanical properties and eco-friendly image, they are increasingly being employed as reinforcements in polymer matrix composites. Indeed, their complex microstructure as a composite material makes plant fibre a really interesting and challenging subject to study. Research subjects about such fibres are abundant because there are always some issues to prevent their use at large scale (poor adhesion, variability, low thermal resistance, hydrophilic behavior). The choice of natural fibres rather than glass fibres as filler yields a change of the final properties of the composite. One of the most relevant differences between the two kinds of fibre is their response to humidity. Actually, glass fibres are considered as hydrophobic whereas plant fibres have a pronounced hydrophilic behavior. Composite materials are often submitted to variable climatic conditions during their lifetime, including unsteady hygroscopic conditions. However, in humid conditions, strong hydrophilic behaviour of such reinforcing fibres leads to high level of moisture absorption in wet environments. This results in the structural modification of the fibres and an evolution of their mechanical properties together with the composites in which they are fitted in. Thereby, the understanding of these moisture absorption mechanisms as well as the influence of water on the final properties of these fibres and their composites is of great interest to get a better control of such new biomaterials. This is the topic of this review paper.

  9. METCAN-PC - METAL MATRIX COMPOSITE ANALYZER

    NASA Technical Reports Server (NTRS)

    Murthy, P. L.

    1994-01-01

    High temperature metal matrix composites offer great potential for use in advanced aerospace structural applications. The realization of this potential however, requires concurrent developments in (1) a technology base for fabricating high temperature metal matrix composite structural components, (2) experimental techniques for measuring their thermal and mechanical characteristics, and (3) computational methods to predict their behavior. METCAN (METal matrix Composite ANalyzer) is a computer program developed to predict this behavior. METCAN can be used to computationally simulate the non-linear behavior of high temperature metal matrix composites (HT-MMC), thus allowing the potential payoff for the specific application to be assessed. It provides a comprehensive analysis of composite thermal and mechanical performance. METCAN treats material nonlinearity at the constituent (fiber, matrix, and interphase) level, where the behavior of each constituent is modeled accounting for time-temperature-stress dependence. The composite properties are synthesized from the constituent instantaneous properties by making use of composite micromechanics and macromechanics. Factors which affect the behavior of the composite properties include the fabrication process variables, the fiber and matrix properties, the bonding between the fiber and matrix and/or the properties of the interphase between the fiber and matrix. The METCAN simulation is performed as point-wise analysis and produces composite properties which are readily incorporated into a finite element code to perform a global structural analysis. After the global structural analysis is performed, METCAN decomposes the composite properties back into the localized response at the various levels of the simulation. At this point the constituent properties are updated and the next iteration in the analysis is initiated. This cyclic procedure is referred to as the integrated approach to metal matrix composite analysis. METCAN-PC is written in FORTRAN 77 for IBM PC series and compatible computers running MS-DOS. An 80286 machine with an 80287 math co-processor is required for execution. The executable requires at least 640K of RAM and DOS 3.1 or higher. The package includes sample executables which were compiled under Microsoft FORTRAN v. 5.1. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. METCAN-PC was developed in 1992.

  10. Characterization of Thermo-Elastic Properties and Microcracking Behaviors of CFRP Laminates Using Cup-Stacked Carbon Nanotubes (CSCNT) Dispersed Resin

    NASA Astrophysics Data System (ADS)

    Yokozeki, Tomohiro; Iwahori, Yutaka; Ishiwata, Shin

    This study investigated the thermo-elastic properties and microscopic ply cracking behaviors in carbon fiber reinforced nanotube-dispersed epoxy laminates. The nanocomposite laminates used in this study consisted of traditional carbon fibers and epoxy resin filled with cup-stacked carbon nanotubes (CSCNTs). Thermo-mechanical properties of unidirectional nanocomposite laminates were evaluated, and quasi-static and fatigue tension tests of cross-ply laminates were carried out in order to observe the damage accumulation behaviors of matrix cracks. Clear retardation of matrix crack onset and accumulation was found in composite laminates with CSCNT compared to those without CSCNT. Fracture toughness associated with matrix cracking was evaluated based on the analytical model using the experimental results. It was concluded that the dispersion of CSCNT resulted in fracture toughness improvement and residual thermal strain decrease, and specifically, the former was the main contribution to the retardation of matrix crack formation.

  11. Physical properties of sediment containing methane gas hydrate

    USGS Publications Warehouse

    Winters, W.J.; Waite, W.F.; Mason, D.H.; Gilbert, L.Y.

    2005-01-01

    A study conducted by the US Geological Survey (USGS) on the formation, behavior, and properties of mixtures of gas hydrate and sediment is presented. The results show that the properties of host material influence the type and quantity of hydrates formed. The presence of hydrate during mechanical shear tests affects the measured sediment pore pressure. Sediment shear strength may be increased more than 500 percent by intact hydrate, but greatly weakened if the hydrate dissociates.

  12. Factors affecting the mechanical behavior of collagen hydrogels for skin tissue engineering.

    PubMed

    Pensalfini, Marco; Ehret, Alexander E; Stüdeli, Silvia; Marino, Daniela; Kaech, Andres; Reichmann, Ernst; Mazza, Edoardo

    2017-05-01

    The effect of the production factors yielding a functional dermal substitute was investigated by means of monotonic and cyclic uniaxial tensile tests, as well as electron microscopy visualizations. The role of (i) plastic compression, (ii) product incubation, and (iii) cell permanence in the collagenous matrix in order to achieve a skin-like behavior were characterized in terms of material and structural stiffness, in-plane kinematics, and cyclic response, as well as pore size and network density. The plastic compression resulted in a denser and stiffer material, while no corresponding change was observed in the behavior of the entire structure. This was related to the progressive reduction in product thickness and amount of excess water, rather than to formation of new crosslinks between fibers. Contrary, irrespective of the presence of human fibroblasts, the product incubation induced both material and structural stiffening, indicating the formation of a denser network. These results were confirmed by similar evolutions in the construct in-plane kinematics and cyclic stress reduction. Finally, comparison of constructs incubated in different culture media indicated a determinant contribution of the biochemical environment, rather than of the seeded cells, to the achieved mechanical properties. The observed features are relevant in terms of mechanical biocompatibility of the implant and might direct future optimizations of the production process in order to rapidly attain the desired mechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Damage Tolerance and Mechanics of Interfaces in Nanostructured Metals

    NASA Astrophysics Data System (ADS)

    Foley, Daniel J.

    The concept of interface driven properties in crystalline metals has been one of the most intensely discussed topics in materials science for decades. Since the 1980s researchers have been exploring the concept of grain boundary engineering as route for tuning properties such as fracture toughness and irradiation resistance. This is especially true in ultra-fine grained and nanocrystalline materials where grain boundary mediated properties become dominant. More recently, materials composed of hierarchical nanostructures, such as amorphous-crystalline nanolaminates, have attracted considerable attention due to their favorable properties, ease of manufacture and highly tunable microstructure. While both grain boundary engineering and hierarchical nanostructures have shown promise there are still questions remaining regarding the role of specific attributes of the microstructure (such as grain boundaries, grain/layer size and inter/intralayer morphology) in determining material properties. This thesis attempts to address these questions by using atomistic simulations to perform deformation and damage loading studies on a series of nanolaminate and bicrystalline structures. During the course of this thesis the roles of layer thickness, interlayer structure and interlayer chemistry on the mechanical properties of Ni-NiX amorphous-crystalline nanolaminates were explored using atomistic simulations. This thesis found that layer thickness/thickness ratio and amorphous layer chemistry play a crucial role in yield strength and Young's modulus. Analysis of the deformation mechanisms at the atomic scale revealed that structures containing single crystalline, crystalline layers undergo plastic deformation when shear transformation zones form in the amorphous layer and impinge on the amorphous-crystalline interface, leading to dislocation emission. However, structures containing nanocrystalline, crystalline layers (both equiaxed and columnar nanocrystalline) undergo plastic deformation through a combination of grain boundary sliding and grain boundary mediated dislocation nucleation. Since grain boundaries were found to play a critical role as sources and sinks for dislocations in amorphous-crystalline nanolaminates a follow-up study on the effect of grain boundary character on damage accumulation/accommodation in copper symmetric tilt grain boundaries was performed. This study found that grain boundaries will become saturated with damage, a state where grain boundary energy and grain boundary free volume oscillate about a plateau during continuous defect loading (vacancy, interstitial and frenkel pair loading were all considered). Further, grain boundary character (specifically equilibrium grain boundary energy) was strongly correlated to the damage accommodation behavior of grain boundaries in copper. Finally, a study that attempted to link grain boundary damage saturation behavior to variations in grain boundary mechanical properties was performed. This study found no direct relationships between grain boundary damage saturation behavior and variations in grain boundary properties. The results of this thesis provide researchers with several strategies for tuning the properties of amorphous-crystalline nanolaminates. These strategies include manipulated bulk attributes such as layer thickness and morphology as well as manipulation of microscale attributes such as grain boundary engineering. Finally, this thesis provides valuable insight into the damage loading/accommodation behavior of FCC symmetric tilt grain boundaries.

  14. Drawing dependent structures, mechanical properties and cyclization behaviors of polyacrylonitrile and polyacrylonitrile/carbon nanotube composite fibers prepared by plasticized spinning.

    PubMed

    Li, Xiang; Qin, Aiwen; Zhao, Xinzhen; Liu, Dapeng; Wang, Haiye; He, Chunju

    2015-09-14

    Drawing to change the structural properties and cyclization behaviors of the polyacrylonitrile (PAN) chains in crystalline and amorphous regions is carried out on PAN and PAN/carbon nanotube (CNT) composite fibers. Various characterization methods including Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction and thermal gravimetric analysis are used to monitor the structural evolution and cyclization behaviors of the fibers. With an increase of the draw ratio during the plasticized spinning process, the structural parameters of the fibers, i.e. crystallinity and planar zigzag conformation, are decreased at first, and then increased, which are associated with the heat exchange rate and the oriented-crystallization rate. A possible mechanism for plasticized spinning is proposed to explain the changing trends of crystallinity and planar zigzag conformation. PAN and PAN/CNT fibers exhibit various cyclization behaviors induced by drawing, e.g., the initiation temperature for the cyclization (Ti) of PAN fibers is increased with increasing draw ratio, while Ti of PAN/CNT fibers is decreased. Drawing also facilitates cyclization and lowers the percentage of β-amino nitrile for PAN/CNT fibers during the stabilization.

  15. Deformation behavior of human enamel and dentin-enamel junction under compression.

    PubMed

    Zaytsev, Dmitry; Panfilov, Peter

    2014-01-01

    Deformation behavior under uniaxial compression of human enamel and dentin-enamel junction (DEJ) is considered in comparison with human dentin. This deformation scheme allows estimating the total response from all levels of the hierarchical composite material in contrast with the indentation, which are limited by the mesoscopic and microscopic scales. It was shown for the first time that dental enamel is the strength (up to 1850MPa) hard tissue, which is able to consider some elastic (up to 8%) and plastic (up to 5%) deformation under compression. In so doing, it is almost undeformable substance under the creep condition. Mechanical properties of human enamel depend on the geometry of sample. Human dentin exhibits the similar deformation behavior under compression, but the values of its elasticity (up to 40%) and plasticity (up to 18%) are much more, while its strength (up to 800MPa) is less in two times. Despite the difference in mechanical properties, human enamel is able to suppress the cracking alike dentin. Deformation behavior under the compression of the samples contained DEJ as the same to dentin. This feature allows a tooth to be elastic-plastic (as dentin) and wear resistible (as enamel), simultaneously. © 2013 Elsevier B.V. All rights reserved.

  16. Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Rhatt, R. T.; Phillips, R. E.

    1988-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2)sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.

  17. Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Phillips, Ronald E.

    1990-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2) sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.

  18. Superstretchable, Self-Healing Polymeric Elastomers with Tunable Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Peng-Fei; Li, Bingrui; Hong, Tao

    Utilization of self-healing chemistry to develop synthetic polymer materials that can heal themselves with restored mechanical performance and functionality is of great interest. Self-healable polymer elastomers with tunable mechanical properties are especially attractive for a variety of applications. In this paper, a series of urea functionalized poly(dimethyl siloxane)-based elastomers (U-PDMS-Es) are reported with extremely high stretchability, self-healing mechanical properties, and recoverable gas-separation performance. Tailoring the molecular weights of poly(dimethyl siloxane) or weight ratio of elastic cross-linker offers tunable mechanical properties of the obtained U-PDMS-Es, such as ultimate elongation (from 984% to 5600%), Young's modulus, ultimate tensile strength, toughness, and elasticmore » recovery. The U-PDMS-Es can serve as excellent acoustic and vibration damping materials over a broad range of temperature (over 100 °C). The strain-dependent elastic recovery behavior of U-PDMS-Es is also studied. After mechanical damage, the U-PDMS-Es can be healed in 120 min at ambient temperature or in 20 min at 40 °C with completely restored mechanical performance. Lastly, the U-PDMS-Es are also demonstrated to exhibit recoverable gas-separation functionality with retained permeability/selectivity after being damaged.« less

  19. Superstretchable, Self-Healing Polymeric Elastomers with Tunable Properties

    DOE PAGES

    Cao, Peng-Fei; Li, Bingrui; Hong, Tao; ...

    2018-04-16

    Utilization of self-healing chemistry to develop synthetic polymer materials that can heal themselves with restored mechanical performance and functionality is of great interest. Self-healable polymer elastomers with tunable mechanical properties are especially attractive for a variety of applications. In this paper, a series of urea functionalized poly(dimethyl siloxane)-based elastomers (U-PDMS-Es) are reported with extremely high stretchability, self-healing mechanical properties, and recoverable gas-separation performance. Tailoring the molecular weights of poly(dimethyl siloxane) or weight ratio of elastic cross-linker offers tunable mechanical properties of the obtained U-PDMS-Es, such as ultimate elongation (from 984% to 5600%), Young's modulus, ultimate tensile strength, toughness, and elasticmore » recovery. The U-PDMS-Es can serve as excellent acoustic and vibration damping materials over a broad range of temperature (over 100 °C). The strain-dependent elastic recovery behavior of U-PDMS-Es is also studied. After mechanical damage, the U-PDMS-Es can be healed in 120 min at ambient temperature or in 20 min at 40 °C with completely restored mechanical performance. Lastly, the U-PDMS-Es are also demonstrated to exhibit recoverable gas-separation functionality with retained permeability/selectivity after being damaged.« less

  20. The effect of bacterial cellulose on the shape memory behavior of polyvinyl alcohol nanocomposite hydrogel

    NASA Astrophysics Data System (ADS)

    Pirahmadi, Pegah; Kokabi, Mehrdad

    2018-01-01

    Most research on shape memory polymers has been confined to neat polymers in their dry state, while, some hydrogel networks are known for their shape memory properties. Hydrogels have low glass transition temperatures which are below 100°C depend on the content of water. But they are usually weak and brittle, and not suitable for structural applications due to their low mechanical strengths because of these materials have large amount of water (>50%), so they could not remember original shape perfectly. Bacterial cellulose nanofibers with perfect properties such as high water holding capacity, high crystallinity, high tensile strength and good biocompatibility can dismiss all the drawbacks. In the present study, polyvinyl alcohol/bacterial cellulose nanocomposite hydrogel prepared by repetitive freezing-thawing method. The bacterial cellulose was used as reinforcement to improve the mechanical properties and stimuli response. Differential scanning calorimetry was employed to obtain the glass transition temperature. Nanocomposite morphology was characterized by field-emission scanning electron microscopy and mechanical properties were investigated by standard tensile test. Finally, the effect of bacterial cellulose nanofiber on shape memory behavior of polyvinyl alcohol/bacterial cellulose nanocomposite hydrogel was investigated. It is found that switching temperature of this system is the glass transition temperature of the nano domains formed within the system. The results also show increase of shape recovery, and shape recovery speed due to presence of bacterial cellulose.

Top