NASA Astrophysics Data System (ADS)
Khan, Mehrab; Kerr, Andrew C.; Mahmood, Khalid
2007-10-01
The Muslim Bagh ophiolitic complex Balochistan, Pakistan is comprised of an upper and lower nappe and represents one of a number of ophiolites in this region which mark the boundary between the Indian and Eurasian plates. These ophiolites were obducted onto the Indian continental margin around the Late Cretaceous, prior to the main collision between the Indian and Eurasian plates. The upper nappe contains mantle sequence rocks with numerous isolated gabbro plutons which we show are fed by dolerite dykes. Each pluton has a transitional dunite-rich zone at its base, and new geochemical data suggest a similar mantle source region for both the plutons and dykes. In contrast, the lower nappe consists of pillow basalts, deep-marine sediments and a mélange of ophiolitic rocks. The rocks of the upper nappe have a geochemical signature consistent with formation in an island arc environment whereas the basalts of the lower nappe contain no subduction component and are most likely to have formed at a mid-ocean ridge. The basalts and sediments of the lower nappe have been intruded by oceanic alkaline igneous rocks during the northward drift of the Indian plate. The two nappes of the Muslim Bagh ophiolitic complex are thus distinctively different in terms of their age, lithology and tectonic setting. The recognition of composite ophiolites such as this has an important bearing on the identification and interpretation of ophiolites where the plate tectonic setting is less well resolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dallmeyer, R.D.; Gee, D.G.; Beckholmen, M.
In central portions of the Scandinavian Caledonides, greenschist facies volcanosedimentary successions within the Koeli Nappe Complex have been thrust several hundred kilometers eastward onto the Baltoscandian platform. These were derived from eugeoclinal terranes situated outboard (west) of the Baltica continent during the early Paleozoic. The Koeli Nappe Complex is tectonically underlain by higher grade units within the Seve Nappe Complex. These are composed of amphibolite and granulite facies rocks and locally contain eclogites. The Seve Nappes tectonically separate Koeli units from structurally lower allochthons derived from more inboard environments along the Baltoscandian miogeocline. Previous mineral isotopic age-determinations from Seve andmore » Koeli units have been in the 430 to 390 Ma range and have been interpreted to presumably date cooling following Scandian (Middle Silurian to Early Devonian) metamorphism. However, incremental-release /sup 40/Ar//sup 39/Ar dates recorded by minerals within some of the Koeli and Seve Nappes exposed in Jaemtland, Sweden (Taennforsen and Are districts) provide evidence of earlier tectonothermal activity. Hornblendes from the Seve and Koeli Nappe Complexes display variably discordant age spectra as a result of low-temperature, experimental evolution of loosely bound extraneous argon components. However, in most analyses plateau ages of 510 to 475 Ma (Koeli) and 465 to 455 Ma (Seve) are defined. In contrast, muscovite and biotite from all tectonic units record Scandian cooling ages between 245 and 410 Ma. The older events recorded by hornblende within these Seve and Koeli units are evidence of early Caledonian tectonothermal activity and subsequent diachronous cooling during the Early-Middle Ordovician.« less
NASA Astrophysics Data System (ADS)
Bourgois, Jacques; Toussaint, Jean-François; Gonzalez, Humberto; Azema, Jacques; Calle, Bernardo; Desmet, Alain; Murcia, Luis A.; Acevedo, Alvaro P.; Parra, Eduardo; Tournon, Jean
1987-12-01
The Western Cordillera of Colombia was formed by intense alpine-type nappe-forming folding and thrusting. The Cretaceous (80-120 Ma B.P.) tholeiitic material of the Western Cordilleran nappes has been obducted onto the Paleozoic and Precambrian polymetamorphic micaschists and gneiss of the Central Cordillera. Near Yarumal, the Antioquia batholith (60-80 Ma B.P.) intrudes both obducted Cretaceous oceanic material and the polymetamorphic basement rock of the Central Cordillera. Therefore, nappe emplacement and obduction onto the Central Cordillera occurred during Late Senonian to Early Paleocene. The nappes travelled from northwest to southeast so that the highest unit, the Rio Calima nappe therefore has the most northwestern source, whereas the lowest units originated from a more southeastward direction. Sedimentological analysis of the volcanoclastic and sandy turbidite material from each unit suggests a marginal marine environment. During Cretaceous times the opening of this marginal sea, from now on called the "Colombia marginal basin", probably originated by detachment of a block from the South American continent related to the Farallon-South America plate convergence. In the Popayan area (southern Colombia), the Central Cordilleran basement exhibits glaucophane schist facies metamorphism. This high pressure low temperature metamorphism is of Early Cretaceous (125 Ma B.P.) age and is related to an undated metaophiolitic complex. The ophiolitic material originating from the Western Cordilleran is thrust over both the blueschist belt and the metaophiolitic complex. These data suggest that the "Occidente Colombiano" suffered at least two phases of ophiolitic obduction during Mesozoic time.
NASA Astrophysics Data System (ADS)
Faber, Carly; Stünitz, Holger; Jeřábek, Petr; Gasser, Deta; Konopásek, Jiří; Kraus, Katrin
2017-04-01
The debate about how and why continental crust is subducted is ongoing (Ingalls et al., 2016). This work uses the tectonmetamorphic history of a the Nordmannvik nappe in the northern Scandinavian Caledonides to discuss mid- to lower-crustal processes involved in the subduction of continental crust during the Caledonian Orogeny. The Nordmannvik Nappe, together with the underlying Kåfjord and Vaddas nappes, constitutes the Reisa Nappe Complex (RNC). The RNC overlies continental rocks of the Kalak Nappe Complex (KNC), and a clear oceanic suture between Baltican basement, the KNC and the RNC is missing. The RNC consists mainly of paragneisses of mostly unknown depositional age. Rare fossils in the Vaddas Nappe indicate that it at least partly consists of Ordovician-Silurian (>460 Ma) metasediments (Binns and Gayer, 1980). Both the Nordmannvik and Vaddas Nappes were intruded by gabbroic melt around 439 Ma at 9 kbar (c. 30 km) (Getsinger et al., 2013). Therefore, the host and intrusive rocks were already buried to positions far deeper than oceanic crust prior to nappe stacking. Nordmannvik nappe rocks show at least two distinct metamorphic fabrics; 1) an early high-grade kyanite-present migmatitic fabric and 2) a pervasive mylonitic fabric. Based on microstructural observations and pseudosection modeling these two fabrics are estimated to have formed at 770-800 °C and 9.4-11 kbar and 580-630 °C and 8-9.8 kbar, respectively. The presence of sillimanite in garnet cores (confirmed by Raman spectra) and garnet core compositions also suggest that an earlier, less well constrained, history exists with metamorphism around 815 °C and 8.7 kbar, similar to that recognized in the KNC, where it is dated to be pre-Caledonian. The lack of ocean floor rocks between the Nordmannvik Nappe and the Baltica basement suggests that the Nordmannvik Nappe and nappe units below were fairly proximal to Baltica prior to the Caledonian Orogeny. Their position below the Lyngen Nappe (Iapetus ocean floor) indicates they may even have been the leading edge of a pre-Scandian Baltica continent connected to Baltica-proper underneath an extensional but continental basin hosting Vaddas and Kåfjord sediments. If this is the case it may explain the lack of UHP Baltica basement rocks in northern Norway, commonly seen in the mid- and southern- Caledonian segments. The rheological weakening as a result of partial melting in these fertile rocks at the Baltica continent edge may have caused them to be obducted rather than subducted beyond c. 40 km depth. Binns, R.E., and Gayer, R.A., 1980. Silurian or Upper Ordovician fossils at Guoolasjav'ri Troms, Norway, Nature, 284, 53-55 Getsinger, A.J., Hirth, G., Stünitz, H., and Georgen, E.T., 2013. Influence of water on rheology and strain localization in the lower continental crust, Geochemistry, Geophysics, Geosystems, 14, 2247-2264 Ingalls, M., Rowley, D.B., Currie, B., and Colman, A.S. 2016. Large-scale subduction of continental crust implied by India-Asia mass balance calculation, Nature Geoscience 9, 848-853, doi:10.1038/ngeo2806
NASA Astrophysics Data System (ADS)
Bender, Hagen; Glodny, Johannes; Ring, Uwe; Almqvist, Bjarne S. G.; Grasemann, Bernhard; Stephens, Michael B.
2017-04-01
The Caledonian orogen of Scandinavia is thought to be a Himalaya-style head-on collisional orogen. However, in contrast to the Himalayas, the Caledonides are characterized by various ultrahigh-pressure belts of different ages, which make them a unique orogen on Earth. The Seve Nappe Complex (SNC) in Jämtland (Sweden) holds the key to better understanding the multi-stage tectonometamorphic evolution of a well-studied ultrahigh-pressure belt in the central Scandinavian Caledonides. Leucogranites and migmatic gneisses record an ultrahigh-pressure event at 460 Ma (Brueckner and Van Roermund, 2007; Grimmer et al., 2015), followed by migmatization at 440 Ma (Ladenberger at al. 2014). How those high-grade metamorphic events relate to the nappe structure remains elusive. We use a combined structural and geochronological approach to show that amphibolite- and greenschist-facies foreland-directed, top-to-the-ESE shearing formed the nappe pile consisting of the Köli Nappe overlying the SNC, the various nappes of the SNC, and the underlying units. Furthermore, we present new Rb-Sr internal multi-mineral isochron ages from two east-west transects in central and northern Jämtland. Most isotopic ages, complemented by a dense network of kinematic field data, range between 431 and 427 Ma. These ages are interpreted to reflect the timing of amphibolite-facies top-to-the-ESE-directed nappe stacking. Blackwall formation, i.e., in-situ chemical interaction between ultramafic rocks and felsic gneiss, at the Seve-Köli boundary occurred at 423 Ma, an age interpreted to postdate nappe emplacement. Biotite in top-to-the-ESE greenschist-facies shear bands in the Middle Köli nappe formed at 416 Ma. These new geochronological data show that the nappe assembly postdates deep subduction and subsequent decompression melting. Top-to-the-foreland directed thrusting occurred at 430 Ma and continued for several million years, while amphibolite-facies shear criteria yield older ages than retrograde structures. References: Brueckner and Van Roermund, 2007, J. Geol. Soc. 164, 117-128. Grimmer et al., 2015, Geology 43 (4), 347-350. Ladenberger et al., 2014, Geol. Soc. Spec. Publ. 390, 337-368.
NASA Astrophysics Data System (ADS)
Fassmer, Kathrin; Klonowska, Iwona; Walczak, Katarzyna; Andersson, Barbro; Froitzheim, Nikolaus; Majka, Jarosław; Fonseca, Raúl O. C.; Münker, Carsten; Janák, Marian; Whitehouse, Martin
2017-12-01
The Seve Nappe Complex of the Scandinavian Caledonides is thought to be derived from the distal passive margin of Baltica which collided with Laurentia in the Scandian Phase of the Caledonian Orogeny at 430-400 Ma. Parts of the Seve Nappe Complex were affected by pre-Scandian high- and ultrahigh-pressure metamorphism, in a tectonic framework that is still unclear, partly due to uncertainties about the exact timing. Previous age determinations yielded between 505 and 446 Ma, with a general trend of older ages in the North (Norrbotten) than in the South (Jämtland). New age determinations were performed on eclogite and garnet-phengite gneiss at Tjeliken in northern Jämtland. Thermodynamic modelling yielded peak metamorphic conditions of 25-27 kbar/680-760 °C for the garnet-phengite gneiss, similar to published peak metamorphic conditions of the eclogite (25-26 kbar/650-700 °C). Metamorphic rims of zircons from the garnet-phengite gneiss were dated using secondary ion mass spectrometry and yielded a concordia age of 458.9 ± 2.5 Ma. Lu-Hf garnet-whole rock dating yielded 458 ± 1.0 Ma for the eclogite. Garnet in the eclogite shows prograde major-element zoning and concentration of Lu in the cores, indicating that this age is related to garnet growth during pressure increase, i.e. subduction. The identical ages from both rock types, coinciding with published Sm-Nd ages from the eclogite, confirm subduction of the Seve Nappe Complex in Northern Jämtland during the Middle Ordovician in a fast subduction-exhumation cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munro, S.E.
1988-08-01
The geology of northern Morocco is dominated by the mountainous areas of the Rif and the Prerif. These mountains form the southern half of the Rif-Betic arc. The surface geology of the Prerif area is characterized by the allochthonous mass of the Prerif nappe, which is variously described as a tectonic melange, an olistostrome, or a combination of the two. It is structurally extremely complex and this fact has, in the past, deterred international companies from exploring for oil in the area. Recently acquired seismic data shed some light on the structure within the Prerif nappe; it tends to supportmore » a tectonic origin rather than one based on gravity drive. In this framework, a model is proposed for the tectonic development of the Rif/Prerif in particular and the Rif/Betic arc in general, based upon the interaction of the Iberian, Moroccan, and Alboran plates from the Triassic to the Neogene. The seismic data also show, however, that a sizeable Mesozoic trough exists beneath the mass of the Prerif nappe. In addition, several piggyback basins are developed above the nappe. Therefore, considerable potential for oil and gas discoveries exists both above and below the nappe.« less
Palaeobasement-highs in the Caledonides of northern Sweden
NASA Astrophysics Data System (ADS)
Rehnström, E. F.; Corfu, F.
2003-04-01
During the Caledonian collision between Laurentia and Baltica in Silurian times, slices of bedrock were thrust onto the Baltic craton. The Caledonian tectonic stratigraphy consists of four principal units (Lower, Middle, Upper and Uppermost Allochthon). The Middle Allochthon is a tectonostratigraphic level inferred to represent the rifted Neoproterozoic margin of Baltica and is heterogeneously composed of telescoped fault-controlled sedimentary basins and basement plinths. The Akkajaure-Sarek-Kvikkjokk area in northern Sweden is located within the Caledonian belt and is composed of three principal thrust-sheet complexes: the Lower Allochthon, the Middle Allochthon and finally the Seve Nappe Complex. The Middle Allochthon in both these areas are dominated by plutonic rocks in the Akkajaure Nappe Complex to the north and the disrupted Sarek-Kvikkjokk Magmatic Complex (SaKMaC) to the south. In order to test whether it is possible to preliminary restore the position of the palaeo-basement highs, a U-Pb geochronology study of zircons was undertaken to constrain the timing of magmatic activity in the different parts of the area. To maximise the chance of getting the original crystallisation age of the rocks we have done ID-TIMS analyses on abraded zircons. We have concentrated our efforts to the study of rocks of granitic and syenitic compositions, but in combining the isotopic results with field observations we also aim towards an interpretation of the magmatic evolution, especially from the Sarek area, where good outcrops of non-deformed rocks makes field observations much easier. The resulting ages from the mainly granitic Akkajaure Nappe Complex yield one group of ages between 1800 +/- 2 Ma and 1779 +/- 7 Ma, whereas ACMG-suite in the area intruded between 1776 +/- 3 Ma and 1761 +/- 9 Ma. The lithologies of the Sarek- Kvikkjokk area are comparable to the ACMG-suite in the Lofoten-Vesterålen area, northern Norway, but they tend to be somewhat younger. The main phases of the Lofoten-Vesterålen suite formed between 1800-1790 Ma. This is more in agreement with the ages found in the Akkajaure Nappe Complex. This indicates that it is possible to correlate the nappes with the basement present to the west and the northwest. Stretching lineations in the area indicate a Caledonian transport direction towards ESE. Furthermore, potential field data indicate that the Lofoten Complex is present also in ridges offshore and hence that it is larger than what is present onshore. Estimates on transport distances done in the region postulate a maximum distance of 600 km. The present distance between Lofoten and the study area is of the same order. This implies simple translational tectonics during the main, Silurian phase of the Caledonian orogeny.
NASA Astrophysics Data System (ADS)
Janák, Marian; Ravna, Erling; Majka, Jarosław; Klonowska, Iwona; Kullerud, Kåre; Gee, David; Froitzheim, Nikolaus
2017-04-01
During the last ten years, UHP rocks have been discovered within far-travelled allochthons of the Scandinavian Caledonides including the Seve Nappe Complex (SNC) of the Middle Allochthon and Tromsø Nappe within the Uppermost Allochthon. The first evidence for UHP conditions in the SNC was documented in a kyanite-bearing eclogite dike within the Friningen garnet peridotite. Subsequently, UHP conditions were determined for phengite eclogite and garnet pyroxenite from Stor Jougdan and pelitic gneisses from Åreskutan. Finally, diamond was found in metasedimentary rocks of the SNC at three localities (Snasahögarna, Åreskutan and most recently near Saxnäs), c. 250 km apart, confirming regional UHP conditions within this allochthon. In the Tromsø Nappe (northern Norway), evidence for UHP metamorphism comes from phengite- and kyanite-bearing eclogites from Tønsvika and Tromsdalstind, and diamond-bearing gneisses from Tønsvika. Microdiamond occurs in-situ as single and composite (mostly with Mg-Fe carbonate) inclusions within garnet and zircon. The calculated P-T conditions for the diamond-bearing samples are 4.1-4.2 GPa/830-840°C (Åreskutan), and 3.5-4.0 GPa/ 750-800°C (Tønsvika), in the diamond stability field. The UHP metamorphism in the SNC and Tromsø Nappe is probably Late Ordovician (c. 460-450 Ma), i.e. c. 40-50 Ma older than that in the Western Gneiss Region of southwestern Norway. Whereas the latter occurred during the collision between Laurentia and Baltica in the Late Silurian to Early Devonian, the processes leading to Ordovician UHP metamorphism occurred during closure of the Iapetus Ocean and are less well understood. The occurrence of two UHP metamorphic events in the Scandinavian Caledonides implies subduction, exhumation, and re-subduction of continental crust. This is an observation that could be of importance for the understanding of orogeny at convergent plate boundaries in general. The following questions remain to be answered: (1) Was UHP metamorphism in the SNC related to continent-continent or arc-continent collision? (2) Which processes lead to the emplacement of peridotite bodies with subcontinental mantle affinity into Baltican continental crust? (3) Was the Tromsø Nappe of Laurentian origin, or a part of the Baltoscandian margin emplaced by out-of-sequence thrusting, or a terrane of unknown affinity? Therefore, it is important to constrain the areal extent, pressure-temperature conditions, timing, and kinematics of UHP metamorphism in these allochthonous units.
Fritz, H; Abdelsalam, M; Ali, K A; Bingen, B; Collins, A S; Fowler, A R; Ghebreab, W; Hauzenberger, C A; Johnson, P R; Kusky, T M; Macey, P; Muhongo, S; Stern, R J; Viola, G
2013-10-01
The East African Orogen, extending from southern Israel, Sinai and Jordan in the north to Mozambique and Madagascar in the south, is the world́s largest Neoproterozoic to Cambrian orogenic complex. It comprises a collage of individual oceanic domains and continental fragments between the Archean Sahara-Congo-Kalahari Cratons in the west and Neoproterozoic India in the east. Orogen consolidation was achieved during distinct phases of orogeny between ∼850 and 550 Ma. The northern part of the orogen, the Arabian-Nubian Shield, is predominantly juvenile Neoproterozoic crust that formed in and adjacent to the Mozambique Ocean. The ocean closed during a protracted period of island-arc and microcontinent accretion between ∼850 and 620 Ma. To the south of the Arabian Nubian Shield, the Eastern Granulite-Cabo Delgado Nappe Complex of southern Kenya, Tanzania and Mozambique was an extended crust that formed adjacent to theMozambique Ocean and experienced a ∼650-620 Ma granulite-facies metamorphism. Completion of the nappe assembly around 620 Ma is defined as the East African Orogeny and was related to closure of the Mozambique Ocean. Oceans persisted after 620 Ma between East Antarctica, India, southern parts of the Congo-Tanzania-Bangweulu Cratons and the Zimbabwe-Kalahari Craton. They closed during the ∼600-500 Ma Kuungan or Malagasy Orogeny, a tectonothermal event that affected large portions of southern Tanzania, Zambia, Malawi, Mozambique, Madagascar and Antarctica. The East African and Kuungan Orogenies were followed by phases of post-orogenic extension. Early ∼600-550 Ma extension is recorded in the Arabian-Nubian Shield and the Eastern Granulite-Cabo Delgado Nappe Complex. Later ∼550-480 Ma extension affected Mozambique and southern Madagascar. Both extension phases, although diachronous,are interpreted as the result of lithospheric delamination. Along the strike of the East African Orogen, different geodynamic settings resulted in the evolution of distinctly different orogen styles. The Arabian-Nubian Shield is an accretion-type orogen comprising a stack of thin-skinned nappes resulting from the oblique convergence of bounding plates. The Eastern Granulite-Cabo Delgado Nappe Complex is interpreted as a hot- to ultra-hot orogen that evolved from a formerly extended crust. Low viscosity lower crust resisted one-sided subduction, instead a sagduction-type orogen developed. The regions of Tanzania and Madagascar affected by the Kuungan Orogeny are considered a Himalayan-type orogen composed of partly doubly thickened crust.
Fritz, H.; Abdelsalam, M.; Ali, K.A.; Bingen, B.; Collins, A.S.; Fowler, A.R.; Ghebreab, W.; Hauzenberger, C.A.; Johnson, P.R.; Kusky, T.M.; Macey, P.; Muhongo, S.; Stern, R.J.; Viola, G.
2013-01-01
The East African Orogen, extending from southern Israel, Sinai and Jordan in the north to Mozambique and Madagascar in the south, is the world́s largest Neoproterozoic to Cambrian orogenic complex. It comprises a collage of individual oceanic domains and continental fragments between the Archean Sahara–Congo–Kalahari Cratons in the west and Neoproterozoic India in the east. Orogen consolidation was achieved during distinct phases of orogeny between ∼850 and 550 Ma. The northern part of the orogen, the Arabian–Nubian Shield, is predominantly juvenile Neoproterozoic crust that formed in and adjacent to the Mozambique Ocean. The ocean closed during a protracted period of island-arc and microcontinent accretion between ∼850 and 620 Ma. To the south of the Arabian Nubian Shield, the Eastern Granulite–Cabo Delgado Nappe Complex of southern Kenya, Tanzania and Mozambique was an extended crust that formed adjacent to theMozambique Ocean and experienced a ∼650–620 Ma granulite-facies metamorphism. Completion of the nappe assembly around 620 Ma is defined as the East African Orogeny and was related to closure of the Mozambique Ocean. Oceans persisted after 620 Ma between East Antarctica, India, southern parts of the Congo–Tanzania–Bangweulu Cratons and the Zimbabwe–Kalahari Craton. They closed during the ∼600–500 Ma Kuungan or Malagasy Orogeny, a tectonothermal event that affected large portions of southern Tanzania, Zambia, Malawi, Mozambique, Madagascar and Antarctica. The East African and Kuungan Orogenies were followed by phases of post-orogenic extension. Early ∼600–550 Ma extension is recorded in the Arabian–Nubian Shield and the Eastern Granulite–Cabo Delgado Nappe Complex. Later ∼550–480 Ma extension affected Mozambique and southern Madagascar. Both extension phases, although diachronous,are interpreted as the result of lithospheric delamination. Along the strike of the East African Orogen, different geodynamic settings resulted in the evolution of distinctly different orogen styles. The Arabian–Nubian Shield is an accretion-type orogen comprising a stack of thin-skinned nappes resulting from the oblique convergence of bounding plates. The Eastern Granulite–Cabo Delgado Nappe Complex is interpreted as a hot- to ultra-hot orogen that evolved from a formerly extended crust. Low viscosity lower crust resisted one-sided subduction, instead a sagduction-type orogen developed. The regions of Tanzania and Madagascar affected by the Kuungan Orogeny are considered a Himalayan-type orogen composed of partly doubly thickened crust. PMID:27065752
NASA Astrophysics Data System (ADS)
Fritz, H.; Abdelsalam, M.; Ali, K. A.; Bingen, B.; Collins, A. S.; Fowler, A. R.; Ghebreab, W.; Hauzenberger, C. A.; Johnson, P. R.; Kusky, T. M.; Macey, P.; Muhongo, S.; Stern, R. J.; Viola, G.
2013-10-01
The East African Orogen, extending from southern Israel, Sinai and Jordan in the north to Mozambique and Madagascar in the south, is the world´s largest Neoproterozoic to Cambrian orogenic complex. It comprises a collage of individual oceanic domains and continental fragments between the Archean Sahara-Congo-Kalahari Cratons in the west and Neoproterozoic India in the east. Orogen consolidation was achieved during distinct phases of orogeny between ∼850 and 550 Ma. The northern part of the orogen, the Arabian-Nubian Shield, is predominantly juvenile Neoproterozoic crust that formed in and adjacent to the Mozambique Ocean. The ocean closed during a protracted period of island-arc and microcontinent accretion between ∼850 and 620 Ma. To the south of the Arabian Nubian Shield, the Eastern Granulite-Cabo Delgado Nappe Complex of southern Kenya, Tanzania and Mozambique was an extended crust that formed adjacent to theMozambique Ocean and experienced a ∼650-620 Ma granulite-facies metamorphism. Completion of the nappe assembly around 620 Ma is defined as the East African Orogeny and was related to closure of the Mozambique Ocean. Oceans persisted after 620 Ma between East Antarctica, India, southern parts of the Congo-Tanzania-Bangweulu Cratons and the Zimbabwe-Kalahari Craton. They closed during the ∼600-500 Ma Kuungan or Malagasy Orogeny, a tectonothermal event that affected large portions of southern Tanzania, Zambia, Malawi, Mozambique, Madagascar and Antarctica. The East African and Kuungan Orogenies were followed by phases of post-orogenic extension. Early ∼600-550 Ma extension is recorded in the Arabian-Nubian Shield and the Eastern Granulite-Cabo Delgado Nappe Complex. Later ∼550-480 Ma extension affected Mozambique and southern Madagascar. Both extension phases, although diachronous,are interpreted as the result of lithospheric delamination. Along the strike of the East African Orogen, different geodynamic settings resulted in the evolution of distinctly different orogen styles. The Arabian-Nubian Shield is an accretion-type orogen comprising a stack of thin-skinned nappes resulting from the oblique convergence of bounding plates. The Eastern Granulite-Cabo Delgado Nappe Complex is interpreted as a hot- to ultra-hot orogen that evolved from a formerly extended crust. Low viscosity lower crust resisted one-sided subduction, instead a sagduction-type orogen developed. The regions of Tanzania and Madagascar affected by the Kuungan Orogeny are considered a Himalayan-type orogen composed of partly doubly thickened crust.
NASA Astrophysics Data System (ADS)
Kelly, E. D.; Atakturk, K. R.; Catlos, E. J.; Lizzadro-McPherson, D. J.; Cemen, I.; Lovera, O. M.
2015-12-01
Pressure-temperature (P-T) paths derived from garnet chemical zoning and supported by thermal modeling record alternating burial and exhumation during Main Menderes Metamorphism in western Turkey. We studied six rocks along the Selimiye (Kayabükü) shear zone, three from the footwall (Çine nappe) and three from the hanging wall (Selimiye nappe). The shear zone bounds the southern Menderes Massif metamorphic core complex and has been suggested to record compression followed by extension. The rocks are lower-amphibolite facies garnet-bearing metapelites with nearly identical mineral suites. Retrograde overprinting hinders classical thermobarometry; to overcome this, preserved chemical zoning in garnet combined with a G-minimization approach was used to construct detailed P-T paths (e.g., 50 points in some paths). During continuous temperature increase, the Çine nappe paths show increasing, decreasing, and then increasing pressure (an N-shaped path) ending at 7-8 kbar and ~565-590 °C. The Selimiye nappe paths show a single increase in P-T ending at ~7.3 kbar and ~580 °C. Similar bulk-rock compositions in all samples and the separation by the shear zone suggest that garnets grew during distinct events in each nappe. The timing of garnet growth, and thus the P-T paths, is currently undetermined, as monazite inclusions in garnet appear secondary and complicated by excess common Pb. The Çine nappe N-shaped path describes alternations in burial and exhumation, possibly due to thrust motion along the shear zone. To demonstrate the physical plausibility of the P-T paths, a 2-D finite difference solution to the diffusion-advection equation was applied. The results of the thermal modeling suggest that thrusting, denudation, and renewed thrusting would produce similar changes in P-T to the N-shaped path. Thus, the Çine nappe N-shaped P-T path appears to record a gap in thrust motion along the Selimiye (Kayabükü) shear zone prior to ultimate unroofing of the massif.
Howard, K.A.
2003-01-01
The deep crustal rocks exposed in the Ruby-East Humboldt metamorphic core complex, northeastern Nevada, provide a guide for reconstructing Eocene crustal structure ~50 km to the west near the Carlin trend of gold deposits. The deep crustal rocks, in the footwall of a west-dipping normal-sense shear system, may have underlain the Pinon and Adobe Ranges about 50 km to the west before Tertiary extension, close to or under part of the Carlin trend. Eocene lakes formed on the hanging wall of the fault system during an early phase of extension and may have been linked to a fluid reservoir for hydrothermal circulation. The magnitude and timing of Paleogene extension remain indistinct, but dikes and tilt axes in the upper crust indicate that spreading was east-west to northwest-southeast, perpendicular to a Paleozoic and Mesozoic orogen that the spreading overprinted. High geothermal gradients associated with Eocene or older crustal thinning may have contributed to hydrothermal circulation in the upper crust. Late Eocene eruptions, upper crustal dike intrusion, and gold mineralization approximately coincided temporally with deep intrusion of Eocene sills of granite and quartz diorite and shallower intrusion of the Harrison Pass pluton into the core-complex rocks. Stacked Mesozoic nappes of metamorphosed Paleozoic and Precambrian rocks in the core complex lay at least 13 to 20 km deep in Eocene time, on the basis of geobarometry studies. In the northern part of the complex, the presently exposed rocks had been even deeper in the late Mesozoic, to >30 km depths, before losing part of their cover by Eocene time. Nappes in the core plunge northward beneath the originally thicker Mesozoic tectonic cover in the north part of the core complex. Mesozoic nappes and tectonic wedging likely occupied the thickened midlevel crustal section between the deep crustal core-complex intrusions and nappes and the overlying upper crust. These structures, as well as the subsequent large-displacement Cenozoic extensional faulting and flow in the deep crust, would be expected to blur the expression of any regional structural roots that could correlate with mineral belts. Structural mismatch of the mineralized upper crust and the tectonically complex middle crust suggests that the Carlin trend relates not to subjacent deeply penetrating rooted structures but to favorable upper crustal host rocks aligned within a relatively coherent regional block of upper crust.
Cercamondi, Colin I; Duchateau, Guus S M J E; Harika, Rajwinder K; van den Berg, Robin; Murray, Peter; Koppenol, Wieneke P; Zeder, Christophe; Zimmermann, Michael B; Moretti, Diego
2016-08-01
Fe fortification of centrally manufactured and frequently consumed condiments such as bouillon cubes could help prevent Fe deficiency in developing countries. However, Fe compounds that do not cause sensory changes in the fortified product, such as ferric pyrophosphate (FePP), exhibit low absorption in humans. Tetra sodium pyrophosphate (NaPP) can form soluble complexes with Fe, which could increase Fe bioavailability. Therefore, the aim of this study was to investigate Fe bioavailability from bouillon cubes fortified with either FePP only, FePP+NaPP, ferrous sulphate (FeSO4) only, or FeSO4+NaPP. We first conducted in vitro studies using a protocol of simulated digestion to assess the dialysable and ionic Fe, and the cellular ferritin response in a Caco-2 cell model. Second, Fe absorption from bouillon prepared from intrinsically labelled cubes (2·5 mg stable Fe isotopes/cube) was assessed in twenty-four Fe-deficient women, by measuring Fe incorporation into erythrocytes 2 weeks after consumption. Fe bioavailability in humans increased by 46 % (P<0·005) when comparing bouillons fortified with FePP only (4·4 %) and bouillons fortified with FePP+NaPP (6·4 %). Fe absorption from bouillons fortified with FeSO4 only and with FeSO4+NaPP was 33·8 and 27·8 %, respectively (NS). The outcome from the human study is in agreement with the dialysable Fe from the in vitro experiments. Our findings suggest that the addition of NaPP could be a promising strategy to increase Fe absorption from FePP-fortified bouillon cubes, and if confirmed by further research, for other fortified foods with complex food matrices as well.
Eclogite nappe-stack in the Grivola-Urtier Ophiolites (Southern Aosta Valley, Western Alps)
NASA Astrophysics Data System (ADS)
Tartarotti, Paola
2013-04-01
In the Western Alpine chain, ophiolites represent a section of the Mesozoic Tethys oceanic lithosphere, involved in subduction during the convergence between the paleo-Africa and paelo-Europe continents during the Cretaceous - Eocene. The Western Alpine ophiolites consist of several tectonic units, the most famous being the Zermatt-Saas and Combin nappes, and other major ophiolite bodies as the Voltri, Monviso, and Rocciavrè that show different rock assemblages and contrasting metamorphic imprints. The Grivola-Urtier (GU) unit is exposed in the southern Aosta Valley, covering an area of about 100 km2; it is tectonically sandwiched between the continentally-derived Pennidic Gran Paradiso Nappe below, and the Austroalpine Mount Emilius klippe above. This unit has been so far considered as part of the Zermatt-Saas nappe extending from the Saas-Fee area (Switzerland) to the Aosta Valley (Italy). The GU unit consists of serpentinized peridotites that include pods and boudinaged layers of eclogitic Fe-metagabbro and trondhjemite, rodingites and chloriteschists transposed in the main foliation together with calcschists and micaschists. All rocks preserve particularly fresh eclogitic mineral assemblages. The contact between the serpentinites and calcshists is marked by a tectonic mélange consisting of mylonitic marble and calcschist with stretched and boudinaged serpentinite blocks. Continentally-derived allochthonous blocks ranging in size from100 meters to meters are also included within the ophiolites. New field, petrographic and geochemical data reveal the complex nature of the fossil Tethyan oceanic lithosphere exposed in the southern Aosta Valley, as well as the extent and size of the continental-oceanic tectonic mélange. The geological setting of the GU unit is here inferred as a key tool for understanding the complex architecture of the ophiolites in the Western Alps.
NASA Astrophysics Data System (ADS)
Bender, H.; Ring, U.; Almqvist, B. S. G.; Glodny, J.; Grasemann, B.; Stephens, M. B.
2016-12-01
The recent COSC-1 drilling programme (Lorenz et al., 2015), discovery of microdiamonds (Majka et al., 2014) and discussion of extrusion-wedge tectonics (Grimmer et al., 2015) outline the importance of the Seve Nappe Complex (SNC) and its key role during the Caledonian orogeny. The kinematic evolution of the SNC is crucial for better understanding the entire mountain belt. Thorough structural mapping of the SNC and adjacent units was conducted in western and northern Jämtland, central Sweden. Complementary microstructural investigations strengthen the field observations and show consistent top-to-the-SE directed movement through all studied tectonic units. Amphibolite-facies deformation can be inferred from fabrics in the SNC, which are overprinted by greenschist-facies structures showing the same kinematics throughout the studied section of the nappe stack. These data indicate persistence of the same foreland-directed kinematics over a wide range of pressure-temperature conditions in space and time. Currently proposed models for exhuming high-grade metamorphic rocks in collisional orogens fail to explain these observations and highlight the need for discussing new tectonic concepts for the Scandinavian Caledonides. References: Grimmer et al., 2015, Geology 43 (4); Lorenz et al., 2015, Scientific Drilling 19; Majka et al. 2014, Geology 42 (12).
Geerts, R; van Ginkel, C G; Plugge, C M
2017-04-01
The biodegradation of N-alkyl polypropylene polyamines (NAPPs) was studied using pure and mixed cultures to enable read-across of ready biodegradability test results. Two Pseudomonas spp. were isolated from activated sludge with N-oleyl alkyl propylene diamine and N-coco alkyl dipropylene triamine, respectively. Both strains utilized all NAPPs tested as the sole source of carbon, nitrogen and energy for growth. Mineralization of NAPPs was independent of the alkyl chain length and the size of the polyamine moiety. NAPPs degraded in closed bottle tests (CBTs) using both river water and activated sludge. However, ready biodegradability of NAPPs with alkyl chain lengths of 16-18 carbon atoms and polyamine moieties with three and four nitrogen atoms could not be demonstrated. Biodegradation in the CBT was hampered by their limited bioavailability, making assessment of the true ready biodegradability of these highly adsorptive surfactants impossible. All NAPPs are therefore classified as readily biodegradable through read-across. Read-across is justified by the broad substrate specificity of NAPP-degrading microorganisms, their omnipresence and the mineralization of NAPPs.
Kinematic evolution of Internal Getic nappes (Serbian Carpathians, eastern Serbia)
NASA Astrophysics Data System (ADS)
Krstekanic, Nemanja; Stojadinovic, Uros; Toljic, Marinko; Matenco, Liviu
2017-04-01
The tectonic evolution of the Carpatho - Balkanides Mountains is less understood in the critical segment of the Serbian Carpathians due to lack of available kinematic data. We have performed a field kinematic analysis combined with existing information from previous local and regional studies by focusing on the internal part of this orogenic segment, where the three highest most units of the nappe stack are exposed and separated by large offsets thrusts, i.e. the Supragetic, Upper Getic and Lower Getic. These units expose their metamorphic basement and Permo-Mesozoic cover penetrated by syn- and post-kinematic plutons and overlain or otherwise in structural contact with the Neogene fill of intramontane basins and the one of the Morava river corridor located in the prolongation of the much larger Pannonian basin. The kinematic analysis demonstrates seven superposed tectonic events of variable magnitudes and effects. Available superposition criteria and the correlation with the regional evolution demonstrate that four events are major tectonic episodes, while three others have a more limited influence or are local effects of strain partitioning and rotations. The first deformation event observed is the late Early Cretaceous cataclastic to brittle thrusting and shearing associated with the emplacement of the Supragetic nappe over the Getic unit. The observed paleostress NW-SE to SW-NE compressional directions were affected by the subsequent Cenozoic oroclinal bending of the Carpathians nappe stack. The first event was followed by Late Cretaceous E-W compression associated with significant strike-slip and transpression, the paleostress orientation being affected by the same subsequent rotations. The Paleogene - Early Miocene activation of the Cerna - Jiu and Timok faults system that cumulates an observed offset of 100 km is associated with large strikes-slip deformation with presently observed NNE-SSW oriented compressional directions in the study area. The formation of the Pannonian Basin and its prolongation in the Morava river corridor was associated at first with Early-Middle Miocene orogen-perpendicular extension, which was followed by orogen-parallel extension and strike-slip that started in the late Middle Miocene and lasted possibly until Pliocene times. This was followed by the Pliocene-Quaternary reactivation and thrusting of the Upper Getic thrust and strike slip with NNE-SSW to NNW-SSE oriented compression. All these deformations demonstrate a complex poly-phase history characterized at first by Cretaceous nappe stacking and transpressional deformations. This nappe stacking was followed by Cenozoic oroclinal bending associated with large-offset strike slip faults during the translation and rotation associated with the gradual closure of the Carpathians embayment, which interacted in the Serbian Carpathians with the back-arc extension of the Pannonian basin. This was followed by the regional inversion of the larger Pannonian Basin often reactivating inherited major structures or nappe contacts. This complex interplay was associated with significant strain partitioning that resulted in local rotations and changes of the paleostress directions.
NASA Astrophysics Data System (ADS)
Grasemann, Bernhard; Huet, Benjamin; Schneider, David; Rice, Hugh; Lemonnier, Nicolas; Tschegg, Cornelius
2017-04-01
In the Cyclades, Miocene post-orogenic back-arc extension overprinted the exhumed syn- orogenic Eocene subduction channel. Whereas the exact geometry and kinematics of the syn-orogenic exhumation are still controversial, but must have involved a floor thrust and an apparent normal fault at the roof, the post-orogenic extension, leading to the exhumation of Cordilleran-type metamorphic core complexes, is well constrained by several major detachment systems. On the island of Milos, which is part of the South Aegean Volcanic Arc, minor outcrops of schist occur. New data indicate that these witnessed Eocene blueschist facies metamorphism at 8.5 kbar and 400°C, but escaped the Miocene extensional overprint, as they lie in the hanging wall of the West Cycladic Detachment System. In contrast, eclogite pebbles in "Green Lahars" on Milos yield metamorphic conditions of 19.5 kbar at 550°C. Both high-pressure units belong to the Cycladic Blueschist Unit and can only have been juxtaposed by thrusting. This indicates that two nappes, the newly defined Cycladic Blueschist Nappe and the overlying Cycladic Eclogite Nappe, both comprising rocks of the Cycladic Blueschist Unit, exist on Milos. These nappes probably also form the other Cycladic islands, separated by a syn-orogenic thrust, which we name the Trans Cycladic Thrust. The Trans Cycladic Thrust, which traces the orientation of the syn-orogenic exhumation channel, is partly offset by the post-orogenic Miocene extensional detachment systems. As a result of the Mid- to Late Miocene clockwise crustal block rotation, the syn-orogenic channel, and hence the Trans Cycladic Thrust, bends through 90° at Milos, changing from a W-E trending to a N-S trending extrusion-related stretching lineation. Restoration of the Miocene block-rotation and extension results in syn-orogenic thrusting kinematics (top-SSW) in the Cycladic Blueschist Nappe and along the Trans Cycladic Thrust and syn-orogenic apparent normal faulting kinematics (top-NNE) at the roof of the Cycladic Eclogite Nappe, consistent with the Eocene extrusion of the high-pressure rocks in the Cyclades.
NASA Astrophysics Data System (ADS)
Reiser, Martin Kaspar; Schuster, Ralf; Tropper, Peter; Fügenschuh, Bernhard
2017-04-01
Basement rocks from the Biharia Nappe System in the Apuseni Mountains comprise several dolomite and calcite marble sequences or lenses which experienced deformation and metamorphic overprint during the Alpine orogeny. New Sr, O and C-isotope data in combination with considerations from the lithological sequences indicate Middle to Late Triassic deposition of calcite marbles from the Vulturese-Belioara Series (Biharia Nappe s.str.). Ductile deformation and large-scale folding of the siliciclastic and carbonatic lithologies is attributed to NW-directed nappe stacking during late Early Cretaceous times (D2). The studied marble sequences experienced a metamorphic overprint under lower greenschist- facies conditions (316-370 °C based on calcite - dolomite geothermometry) during this tectonic event. Other marble sequences from the Biharia Nappe System (i.e. Vidolm and Baia de Arieș nappes) show similarities in the stratigraphic sequence and their isotope signature, together with a comparable structural position close to nappe contact. However, the dataset is not concise enough to allow for a definitive attribution of a Mesozoic origin to other marble sequences than the Vulturese-Belioara Series.
NASA Astrophysics Data System (ADS)
Gautier, Pierre; Quesnel, Benoît; Boulvais, Philippe; Cathelineau, Michel
2016-12-01
The Peridotite Nappe of New Caledonia is one of the few ophiolites worldwide that escaped collisional orogeny after obduction. Here we describe the deformation associated with serpentinization in two klippes of the nappe in northwestern New Caledonia. The klippes are flat lying and involve S/SW vergent reverse-slip shear zones which are true compressional structures in origin. Further northeast, the nappe is folded in association with the development of a steep schistosity in low-grade metasediments. This difference in structural style indicates that the Peridotite Nappe experienced compression at greater depths toward its root zone, suggesting a "push from the rear" mechanism of emplacement. This supports the view that the nappe has been emplaced through horizontal contraction sustained by plate convergence. We establish a crustal-scale cross section at the end of the obduction event, before Neogene extension. This involves a large fold nappe of high-pressure rocks bounded from below by a major thrust. Furthermore, we show that obduction in New Caledonia occurred through dextral oblique convergence. Oblique convergence probably resulted from the initial obliquity between the subduction trench and the continental ribbon that became incorporated in it. This obliquity can solve the paradox of the Peridotite Nappe seemingly being emplaced at the same time the high-pressure rocks were exhumed. Oblique convergence together with focused erosional denudation on the northeastern flank of the island led to exhumation of the metamorphic rocks in a steep fold nappe rising through the rear part of the orogen.
NASA Astrophysics Data System (ADS)
Lin, Wei; Rossi, Philippe; Faure, Michel; Li, Xian-Hua; Ji, Wenbin; Chu, Yang
2018-01-01
At the front of metamorphic Cenozoic Alpine nappe of Schistes Lustrés, Western Alpine Corsica (France) exposes non- to very low grade metamorphic nappes, such as the Piedmont nappes, Upper nappes, and the Balagne nappe. The provenance of the Balagne nappe remains still opened: an origin close to the Corsican continental margin; or an origin far East from the Corsican margin toward the "Apenninic" oceanic domain. This would constrain that the Balagne ophiolite be derived from the opposite OCT (Ocean - Continent transition), close to a microcontinent located to the East of the Mesozoic Corsican margin. A systematic U-Pb dating of 586 detrital zircon grains collected from the turbidites in the Balagne and Piedmont nappes has been performed to constrain the source of sediments. The zircon grains yield U-Pb age spectra ranging from Neoarchean to Late Paleozoic with age peaks at 2600 Ma, 2080 Ma, 1830 Ma, 910 Ma, 600 Ma, 560 Ma, 450 Ma, 330 Ma and 280 Ma with different continental model ages (TDM2) from 3.5 Ga to 1.0 Ga. The variety of composition of the Corsican batholith, unique in its present Mediterranean environment, and in spite of Alpine transcurrent movements, provide a key to analyze the detrital zircon age distribution patterns of sedimentary rocks. These new results i) confirm the lack of any Cretaceous zircon that validates absence of a magmatic arc of this age, at least in the surroundings of the turbiditic formations from the Balagne and the Piedmont nappes; ii) fully support an European provenance of detritus of the Balagne nappe, iii) put forward evidence that no ophiolitic zircon was contained neither in the Cretaceous nor in the Eocene turbidites samples, and iv) question both the deposition of the Piedmont Narbinco flysch within the ocean continent transition and its possible relationships with the Late Cretaceous Pyrenean basins.
NASA Astrophysics Data System (ADS)
Bukała, Michał; Majka, Jarosław; Walczak, Katarzyna; Barnes, Christopher; Klonowska, Iwona
2017-04-01
The Seve Nappe Complex (SNC) of the Scandinavian Caledonides has well documented history of high pressure (HP) and ultra-high pressure (UHP) metamorphism (e.g. Klonowska et al. 2014). Eclogites of the SNC occur in two areas in Sweden, namely Jämtland and Norrbotten. The Jämtland eclogites and associated rocks are well studied and provide evidence for the Late Ordovician UHP metamorphism, whereas the Norrbotten eclogites, formed during the Late Cambrian/Early Ordovician, have not been studied in detail, especially in terms of pressure-temperature (P-T) conditions of their formation. Within the SNC in Norrbotten, eclogites are limited to two tectonic lenses - Vaimok and Tsäkkok (e.g. Albrecht, 2000). Within the Vaimok Lens three nappes have been distinguished: (1) the eclogite-free Lower Seve Nappe, (2) the Grapesvåre Nappe and (3) the Maddåive Nappe. The two latter nappes are eclogite-bearing. For this study eclogites were collected from the lowermost part of the Grapesvåre Nappe (from the highly heterogeneous Daunasvagge unit dominated by garnet-bearing mica schists, quartzites and marbles). Eclogite boudins (former dolerite dikes and sills) are usually highly altered due to retrogressive recrystallization. Rare fresh eclogites occur within large boudins (>5m in diameter) and display only minor alteration limited to the scarce veinlets composed of amphibole + feldspar + garnet + zoisite + biotite + rutile + titanite. Metamorphic peak conditions mineral assemblage consists of garnet + omphacite + phengite + quartz + rutile. For P-T estimates the geothermobarometric method of Ravna & Terry (2004) has been used. The garnet-clinopyroxene Fe2+-Mg exchange thermometer and the net-transfer reaction barometer based on the garnet-phengite-omphacite equilibrium yielded a maximum pressure of 26.7 kbar and temperature of 677°C. The obtained temperature might be underestimated due to uncertainties in Fe2+/Fe3+ ratio in pyroxene. Therefore Zr-in-rutile geothermometer by Tomkins et al. (2007) has also been used and calculcated temperatures are in a 715-762°C range. The obtained results are somewhat similar to scarce former P-T estimates of eclogites from Norrbotten provided by Santallier (1988) (i.e. T=690-730°C and Pmin=18.5-19.5 kbar) and Albrecht (2000) (i.e. T=650-720°C and P=18.9-27.5 kbar). However, as Albrecht (2000) claimed, pressure values might have been largely underestimated due to limitation of the used methods. Thus our study provides for the first time an evidence for near UHP metamorphism recorded by eclogites of the Grapesvåre Nappe, hence shedding a new light on evolution of the SNC in Norrbotten. We speculate that maximum pressures of metamorphism might have been higher (even approaching coesite stability field), but further studies are required to pinpoint the maximum PT conditions. This work is financially supported by the NCN "CALSUB" research project no. 2014/14/E/ST10/00321. References: Albrecht L.G. (2000) PhD thesis, Lund University. Klonowska I., Majka J., Janák M., Gee D.G., Ladenberger A. (2014) New Perspectives on the Caledonides of Scandinavia and Related Areas. Geological Society, London, Special Publications, 390: 321-336. Ravna E.J., Terry M.P. (2004) Journal of Metamorphic Geology 22: 579-592. Santallier D.S. (1988) Geologiska Föreningen i Stockholm Förhandlingar 110: 89-98. Tomkins H.S., Powell R., Ellis J.D. (2007) Journal of Metamorphic Geology 25: 703-713.
NASA Astrophysics Data System (ADS)
da Motta, Rafael Gonçalves; Moraes, Renato
2017-10-01
The Southern Brasília Orogen is a Neoproterozoic belt that occurs along the southernmost border of the São Francisco Craton where the Andrelândia Nappe System represents the subducted sedimentary domain and is divided into three allochthonous groups, of which the ages and P-T conditions of metamorphism are studied here. The basal unit, the Andrelândia Nappe, exhibits an inverted metamorphic pattern. The base of the structure, composed of staurolite, garnet, biotite, kyanite, quartz, and muscovite, marks the metamorphic peak, whereas at the top, the association of the metamorphic peak does not contain staurolite. The Liberdade Nappe, the middle unit, presents a normal metamorphic pattern; its base, close to the Andrelândia Nappe, shows paragneiss with evidence of in situ partial melting, and towards the top, coarse-grained staurolite schist is found. The staurolite-out and melt-in isograds are coincident and parallel to the main foliation. Thus, the shear zone that limits the nappes is syn-metamorphic, reheating the underlying Andrelândia Nappe and influencing the establishment of metamorphic inversion. This suggestion is supported by the monazite chemical ages, which indicates that the Andrelândia Nappe metamorphic peak (586 ± 15 Ma) is younger than that of the Liberdade Nappe (622.3 ± 7.6 Ma). The upper unit, the Serra da Natureza Klippe, bears a typical high-pressure granulite mineral assemblage that is composed of kyanite, garnet, K-feldspar, rutile, and leucosome, as well as a metamorphic peak at 604.5 ± 6.1 Ma. This tectonic assembly, with inverted and non-inverted metamorphic patterns and generation of klippen structures, is consistent with exhumation models and a strong indentor located in the lower continental crust.
Tandon, Manuj; Johnson, James; Li, Zhihong; Xu, Shuping; Wipf, Peter; Wang, Qiming Jane
2013-01-01
The emergence of protein kinase D (PKD) as a potential therapeutic target for several diseases including cancer has triggered the search for potent, selective, and cell-permeable small molecule inhibitors. In this study, we describe the identification, in vitro characterization, structure-activity analysis, and biological evaluation of a novel PKD inhibitory scaffold exemplified by 1-naphthyl PP1 (1-NA-PP1). 1-NA-PP1 and IKK-16 were identified as pan-PKD inhibitors in a small-scale targeted kinase inhibitor library assay. Both screening hits inhibited PKD isoforms at about 100 nM and were ATP-competitive inhibitors. Analysis of several related kinases indicated that 1-NA-PP1 was highly selective for PKD as compared to IKK-16. SAR analysis showed that 1-NA-PP1 was considerably more potent and showed distinct substituent effects at the pyrazolopyrimidine core. 1-NA-PP1 was cell-active, and potently blocked prostate cancer cell proliferation by inducing G2/M arrest. It also potently blocked the migration and invasion of prostate cancer cells, demonstrating promising anticancer activities on multiple fronts. Overexpression of PKD1 or PKD3 almost completely reversed the growth arrest and the inhibition of tumor cell invasion caused by 1-NA-PP1, indicating that its anti-proliferative and anti-invasive activities were mediated through the inhibition of PKD. Interestingly, a 12-fold increase in sensitivity to 1-NA-PP1 could be achieved by engineering a gatekeeper mutation in the active site of PKD1, suggesting that 1-NA-PP1 could be paired with the analog-sensitive PKD1M659G for dissecting PKD-specific functions and signaling pathways in various biological systems. PMID:24086585
Exhumation history of the NW Indian Himalaya revealed by fission track and 40Ar/39Ar ages
Schlup, M.; Steck, A.; Carter, A.; Cosca, M.; Epard, J.-L.; Hunziker, J.
2011-01-01
New fission track and Ar/Ar geochronological data provide time constraints on the exhumation history of the Himalayan nappes in the Mandi (Beas valley) - Tso Morari transect of the NW Indian Himalaya. Results from this and previous studies suggest that the SW-directed North Himalayan nappes were emplaced by detachment from the underthrusted upper Indian crust by 55. Ma and metamorphosed by ca. 48-40. Ma. The nappe stack was subsequently exhumed to shallow upper crustal depths (<10. km) by 40-30. Ma in the Tso Morari dome (northern section of the transect) and by 30-20. Ma close to frontal thrusts in the Baralacha La region. From the Oligocene to the present, exhumation continued slowly.Metamorphism started in the High Himalayan nappe prior to the Late Oligocene. High temperatures and anatexis of the subducting upper Indian crust engendered the buoyancy-driven ductile detachment and extrusion of the High Himalayan nappe in the zone of continental collision. Late extrusion of the High Himalayan nappe started about 26. Ma ago, accompanied by ductile extensional shearing in the Zanskar shear zone in its roof between 22 and 19. Ma concomitant with thrusting along the basal Main Central Thrust to the south. The northern part of the nappe was then rapidly exhumed to shallow depth (<10. km) between 20 and 6. Ma, while its southern front reached this depth at 10-5. Ma. ?? 2010 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Wakabayashi, J.
2014-12-01
The >1000 km by >100 km Franciscan complex of California records >100 Ma of subduction history that terminated with conversion to a transform margin. It affords an ideal natural laboratory to study the rock record of subduction-interface and related processes exhumed from 10-70 km. The Franciscan comprises coherent and block-in-matrix (mélange) units forming a nappe stack that youngs structurally downward in accretion age, indicating progressive subduction accretion. Gaps in accretion ages indicate periods of non-accretion or subduction erosion. The Franciscan comprises siliciclastic trench fill rocks, with lesser volcanic and pelagic rocks and serpentinite derived from the downgoing plate, as well as serpentinite and felsic-intermediate igneous blocks derived as detritus from the upper plate. The Franciscan records subduction, accretion, and metamorphism (including HP), spanning an extended period of subduction, rather than a single event superimposed on pre-formed stratigraphy. Melanges (serpentinite and siliciclastic matrix) with exotic blocks, that include high-grade metamorphic blocks, and felsic-intermediate igneous blocks from the upper plate, are mostly/entirely of sedimentary origin, whereas block-in-matrix rocks formed by tectonism lack exotic blocks and comprise disrupted ocean plate stratigraphy. Mélanges with exotic blocks are interbedded with coherent sandstones. Many blocks-in-melange record two HP burial events followed by surface exposure, and some record three. Paleomegathrust horizons, separating nappes accreted at different times, appear restricted to narrow fault zones of <100's of m thickness, and <50 m in best constrained cases; these zones lack exotic blocks. Large-scale displacements, whether paleomegathrust horizons, shortening within accreted nappes, or exhumation structures, are accommodated by discrete faults or narrow shear zones, rather than by significant penetrative strain. Exhumation of Franciscan HP units, both coherent and mélange, was accommodated by significant extension of the overlying plate, and possibly extension within the subduction complex, with cross-sectional extrusion, and like subduction burial, took place at different times.
NASA Astrophysics Data System (ADS)
Tatu, M.
2009-04-01
Important segment of the Carpathian chain, the East Carpathians consists of several tectonic units build up during the Mesozoic and Cenozoic closure of the Tethyan Ocean. These tectonic units are composed by crystalline basements and sedimentary covers, or only by sedimentary piles and they represent a result of two compressional phases of Alpine orogenesis: one during Late Cretaceous that was responsible for thrusting of Central East Carpathian Nappes and Outher Dacian Nappes, and a second phase during Early and Middle Miocene interval that involved the Moldavian Nappes as the external nappes (Sandulescu, 1988). The Moldavian Nappes consist of cover nappes tectonically detached from the basement upon which it was deposited. From inside towards outside several units occur: Convolute Flysch Nappe, Macla Nappe, Audia Nappe, Tarcau Nappe, Marginal Folds Nappe and Subcarpathian Nappe (Sãndulescu et al., 1981). If the internal units (up to Audia Nappe) are represented by the Cretaceous sediment piles, in the external units, especially in the Tarcau Nappe and also in the Marginal Folds Nappe the lithology is dominated by the Paleogene deposits, especially by the Oligocene formations. The most particular for these units are the presence of heterogeneous composition induced by the wildflysch type sedimentation. Previous researchers have considered the piles of the both units as flyschoid deposits, and for a minor central part (Slon Facies) they accepted a wildflysch scenario. Based on our field studies between Prahova valley (Romania) and Tisa upper stream basin (Ukraine), the different sedimentary strata (the Oligocene Tarcau, Fusaru, Kliwa sandstones, dysodilic and menilitic rocks, polymictic conglomerates, marls and argillaceous deposits together with Upper Cretaceous polymictic conglomerates and green-reddish argillaceous deposits) are tectonically mixed during the late-Oligocene - Middle Miocene events. The mechanism of sedimentary mélange is supposed to be related to submarine landslide initiated by huge earthquake activity. In this way the velocity of landslide sedimentation was high and as result the spatial distribution of different rock types is inhomogeneous. On the other hand, high velocity of syn-sedimentary deformation generates synchronous shear zones. The stress field in this environment is influenced by the lithological amalgamation and local discontinuities. After sedimentary deposition and syn - deformation processes in all the area, suborizontal shear zones (SSZ) are formed along the borders of sandstone olistoliths embedded in fine-grained sand-argillaceous sediments; they are related to the Miocene tectogenesis. Taking into account that are not lithological differences in the Tarcau and the Marginal Folds units, the contact between them as all major SSZ represent the intra-formational thrusts (Sandulescu, 1984). An important characteristic of the Moldavian Nappes is the presence of the exotic rocks as clasts in conglomerates that are very different in nature (igneous, metamorphic and sedimentary), volume and size and generally green in colour. Many authors who studied this lithological aspect have suggested that a Cumanian ridge was their source. The ridge was active since Upper Creataceous till Miocene widespread from Central Dobrogea to Poland and mainly composed by "dobrogean green schist" rocks. This ridge was placed between Audia and Macla sedimentation areas, or between Audia and Tarcau sedimentation areas. According to our studies, the green clasts from various conglomerates with igneous (intrusive and extrusive aspects), metamorphic (medium to low grade) and sedimentary nature present a variable participation. The green clasts are apparently similar with the central dobrogean green schist rocks and are less than 10% in participation in all Moldavian units. For this reason we suggest that the Central Dobrogean domain wasn't the source area for the discussed clasts. After Oszczypko (2006), in the Polish Carpathians, between the Magura and Silesian basins during the Upper Cretaceous - Miocene interval the Silesian Ridge was active. Probably, the same structure was active from Polish Carpathians to the south-western end of Romanian East Carpathians also responsible for the presence of the exotic pebbles from external units of East Carpathians. Isotopic ages of exotic clasts from Polish Carpathian Flysch display the values characteristics for the late Neoproterozoic-Cambrian and the late Carboniferous - Permian intervals (Poprawa et al., 2004) which may suggests that the active ridge was a part of the Tornquist - Teisseyre Zone exhumation. Refernces Oszczypko N. 2006. Geol. Quart., 50 (1): 169-194. Poprawa P., Malata T., Pécskay Z., Bana? M., Skulich J., Paszkowski M., Kusiak M. 2004. Min. Soc. Pol. - Spec. Papers, 24: 329-332. Sandulescu M. 1984. Ed. Tehnica, Bucuresti, 336 Sandulescu, M. 1988. AAPG Memoir, vol. 45, pp. 17- 25.
NASA Astrophysics Data System (ADS)
Ragusa, Jérémy; Kindler, Pascal; Segvic, Branimir; Ospina-Ostios, Lina Maria
2017-04-01
The Chablais Prealps (Haute-Savoie, France) represent a well-preserved accretionary wedge of the Western Alpine Tethys. They comprise a stack of sedimentary nappes related to palaeogeographic realms ranging from the Ultrahelvetic to the Southern Penninic. The provenance analysis is based on the Gazzi-Dickinson method and on QEMSCAN® for heavy-minerals. The Quartzose petrofacies is the most important of the two sources, and supplied three of the four formations of the Voirons Flysch. It is similar to the sources that fed the other flyschs from the Gurnigel nappe. It is characterised by a mature, quartz-rich assemblage and a heavy-mineral population dominated by apatite and the zircon-tourmaline-rutile mineral group. These observations suggest a Clastic wedge provenance. The Feldspathic petrofacies is derived from a feldspar-rich source associated with metamorphic clasts and a heavy-mineral population dominated by garnet. This provenance characterises only one formation of the Voirons Flysch, and is related to the axial belt provenance. This provenance analysis shows that the Middle Eocene to Early Oligocene Voirons Flysch was fed by two sources, in contrast to the other flyschs of the Gurnigel nappe, and further suggests that this flysch was not deposited in the Piemont Ocean but in the Valais domain. Based on the results and comparative provenance analysis with the other flyschs of the Gurnigel nappe, we propose a generic feeding model which involves the Sesia-Dent Blanche nappe, the sedimentary nappes incorporated in the accretionary prism, and probably the Briançonnais basement.
NASA Astrophysics Data System (ADS)
Gürer, Ömer Feyzi; Sanğu, Ercan; Özburan, Muzaffer; Gürbüz, Alper; Sarica-Filoreau, Nuran
2013-11-01
Southwestern Turkey experienced a transition from crustal shortening to extension during Late Cenozoic, and evidence of this was recorded in four distinct basin types in the Muğla-Gökova Gulf region. During the Oligocene-Early Miocene, the upper slices of the southerly moving Lycian Nappes turned into north-dipping normal faults due to the acceleration of gravity. The Kale-Tavas Basin developed as a piggyback basin along the fault plane on hanging wall blocks of these normal faults. During Middle Miocene, a shift had occurred from local extension to N-S compression/transpression, during which sediments in the Eskihisar-Tınaz Basins were deposited in pull-apart regions of the Menderes Massif cover units, where nappe slices were already eroded. During the Late Miocene-Pliocene, a hiatus occurred from previous compressional/transpressional tectonism along intermountain basins and Yatağan Basin fills were deposited on Menderes Massif, Lycian Nappes, and on top of Oligo-Miocene sediments. Plio-Quaternary marked the activation of N-S extension and the development of the E-W-trending Muğla-Gökova Grabens, co-genetic equivalents of which are common throughout western Anatolia. Thus, the tectonic evolution of the western Anotolia during late Cenozoic was shifting from compressional to extensional with a relaxation period, suggesting a non-uniform evolution.
National aerial photography program as a geographic information system resource
Light, Donald L.
1991-01-01
The National Aerial Photography Program (NAPP) is jointly funded by Federal agencies and States that choose to participate in a 50-50 cost sharing cooperative arrangement. The NAPP is designed to acquire black-and-white (B&W) or color infrared (CIR) photography at a scale of 1:40,000. The status of NAPP flying, now going into the first year of its second 5-year cycle, is reviewed to inform the user community of NAPP's coverage. The resolution, geometric quality and flight parameters are used to estimate the system's cartographic potential to produce orthophotoquads, digital elevation models, topographic maps and digital information to meet national map accuracy standards at 1:12,000 and 1:24,000-scale and serve as a geographic information system resource. Also, a technique is presented to compute the optimum scanning spot size (15 ??m) and storage required for converting the B&W or CIR photography to digital, machine-readable pixel form. The resulting digital NAPP data are suitable for a wide variety of new applications, including use in geographic information systems.
NASA Astrophysics Data System (ADS)
Milovský, Rastislav; van den Kerkhof, Alfons; Hoefs, Jochen; Hurai, Vratislav; Prochaska, Walter
2012-03-01
Basal hydraulic breccias of alpine thin-skinned Muráň nappe were investigated by means of cathodoluminescence petrography, stable isotope geochemistry and fluid inclusions analysis. Our study reveals an unusual dynamic fluid regime along basal thrust plane during final episode of the nappe emplacement over its metamorphic substratum. Basal thrusting fluids enriched in 18O, silica, alumina, alkalies and phosphates were generated in the underlying metamorphosed basement at epizonal conditions corresponding to the temperatures of 400-450°C. The fluids fluxed the tectonized nappe base, leached evaporite-bearing formations in hangingwall, whereby becoming oversaturated with sulphates and chlorides. The fluids further modified their composition by dedolomitization and isotopic exchange with the host carbonatic cataclasites. Newly formed mineral assemblage of quartz, phlogopite, albite, potassium feldspar, apatite, dravite tourmaline and anhydrite precipitated from these fluids on cooling down to 180-200°C. Finally, the cataclastic mush was cemented by calcite at ambient anchizonal conditions. Recurrent fluid injections as described above probably enhanced the final motion of the Muráň nappe.
Kinematic analysis of the Migif area in the Eastern Desert of Egypt
NASA Astrophysics Data System (ADS)
Kassem, Osama M. K.
2014-11-01
The use of porphyroclasts rotating in a flowing matrix to estimate mean kinematic vorticity number (Wm) is important for quantifying the relative contributions of pure and simple shear in penetratively deformed rocks. The kinematic vorticity number determined for high temperature mylonitic gneisses in the Migif area in the Eastern Desert of Egypt range from ∼0.6 to 0.9. The results from vorticity and strain analyses indicate that deformation in the area deviated from simple shear. It is concluded that nappe stacking occurred early during the thrusting event, probably by brittle imbrications, and that ductile strain was superimposed on the nappe structure at high-pressure as shown by a penetrative subhorizontal foliation is developed subparallel to the tectonic contacts with the under- and overlying nappes. The accumulation of ductile strain during underplating was not by simple shear but involved a component of vertical shortening, which caused the subhorizontal foliation in the Migif area. In most cases, this foliation was formed during thrusting of the nappes onto each other, suggesting that nappe stacking was associated with vertical shortening.
NASA Astrophysics Data System (ADS)
Pleuger, J.; Podladchikov, Y.
2012-04-01
The Adula Nappe in the eastern Central Alps is one of the four units in the Alps from which ultrahigh-pressure rocks have been reported. Several very different models for its tectonic history have been published but none of these models is fully satisfactory. In the models of Schmid et al. (1996) and Engi et al. (2001), the main mechanism of exhumation is assumed to be extrusion. The extrusion models require top-to-the-hinterland, i.e. top-to-the-south faulting in the hanging wall of the exhuming nappe for which there is no evidence. Froitzheim et al. (2003) proposed a scenario with two different subduction zones, an internal one in which the South Penninic and Briançonnais domains were subducted, and an external one in which the North Penninc domain and the European margin, including the Adula nappe, were subducted. In this model, the exhumation of the Adula nappe results from the subduction of the overlying sub-Briançonnais and sub-South-Penninic mantle in the internal subduction zone. The Adula nappe would then have been exhumed from below into a top-to-the-north shear zone also affecting the overriding Briançonnais units. The main shortcoming of this model is that otherwise there is little evidence for two Alpine subduction zones. All the models cited above are based on the conversion of peak pressures obtained from geobarometry to depth by assuming lithostatic pressures. This results in a much greater burial depth of the Adula Nappe with respect to the surrounding units which poses major problems when trying to reconcile maximum burial depths of the Penninic nappes with their structural record. We performed a new restoration of the NFP20-East cross section (Schmid et al. 1996) without applying a lithostatic pressure-to-depth conversion but a purely geometrical restoration of deformation events in the Penninic nappe stack. The major constraints on these reconstructions are given by strain estimates for the major deformation phases in the units overlying the Adula Nappe (Mayerat Demarne 1994) and zircon fission track ages (Flisch 1986) indicating that the Austroalpine units have not been more than 10 km below surface after the Palaeocene. The maximum pressures of eclogites from the Adula nappe reported in the literature are about 1.8 times as high as the lithostatic pressures derived from our cross section restoration. Given that tectonic overpressure in an orogen may be as high as lithostatic pressure (Petrini and Podladchikov 2000), the results of our cross section restoration suggest that the exceptionally high pressures recorded by the Adula Nappe may not be due to exceptionally deep burial but, at least partly, to tectonic overpressure. Engi, M., Berger, A. & Roselle, G.T. 2001: Geology 29, 1143-1146. Flisch, M. 1986: Bull. Ver. Schweiz. Pet.-Geol.-Ing. 53, 23- 49. Froitzheim, N., Pleuger, J., Roller, S. & Nagel, T. 2003: Geology 31, 925-928. Mayerat Demarne, A.M. 1994: Beitr. Geol. Karte Schweiz, 165. Petrini, K. & Podladchikov, Yu. 2000: J. metamorphic Geol.18, 67-77. Schmid, S.M., Pfiffner, O.A., Froitzheim, N., Schönborn, G. & Kissling, E. 1996: Tectonics 15, 1036-1064.
NASA Astrophysics Data System (ADS)
Pomella, Hannah; Kövér, Szilvia; Fodor, László
2017-04-01
The anisotropy of magnetic susceptibility (AMS) has been recognized as a highly sensitive indicator of rock fabric and is widely employed in the field of structural geology. Brittle faults are often characterized by fault breccia, fault rocks with clast-in-matrix textures. A noteworthy feature of the breccia is the presence of a fabric defined by the preferred orientation of clasts and grains in the matrix. However, this fabric is often not visible in the field or in thin sections but can be detected by AMS analyses. The sample area of the present study is located within the Cretaceous thin-skinned nappe-system of the Inner Western Carpathians. This Alpine-type orogenic belt is built up by large-scale, few km thick nappes without connection to their root areas. These thin rock slices thrust over large distances without sign of mayor deformation within the nappe slice. All the deformation took place along highly strained, narrow shear zones lubricated by hot fluids. These hydrostatically pressurized zones develop on the bases of the nappes, where basal tectonic breccia was formed. Newly formed, syn-kinematic minerals are growing from the overpressured fluids. These polymict breccias have typical block-in-matrix texture with clast size vary between mm and few cm. The matrix is mainly submillimetre-scale rock fragments and cement. In spite of detailed studies about the physical conditions of nappe movements, there is no information about the tectonic transport direction. Analyses of brittle fault kinematics within the different tectonic slices suggest either NW-SE or N-S compressional stress field during the nappe-stacking. With this study we want to test if the magnetic fabric of tectonic breccia can help to determine the transport direction. The first results are very promising: Area 1 (basal tectonic breccia from Tisovec): the magnetic lineation is well defined and plunges gently towards N-NNW. The stretching lineation observable in the field within the uppermost part of the footwall dips towards ENE and is probably related to an ENE-WSW extensional event affecting the whole nappe-pile after the nappe-stacking. However, the detected magnetic foliation fits nicely into the supposed NW/N-SE/S oriented compressional stress field during the nappe-stacking, prior to the extensional event. Following this interpretation the breccia was formed during nappe stacking and its magnetic fabric was not overprinted by the following extensional event. Area 2 (basal tectonic breccia from Puste Pole): two magnetic fabrics can be measured in different sites: a well-defined magnetic lineation plunging towards NNW/SSE, and a weaker fabric with either WSW or E dipping magnetic lineation. The first fabric can be interpreted in the same way as in area 1. However, the WSW or E oriented magnetic lineation is parallel to the structural stretching lineation associated to the later extensional event. Area 3 (basal tectonic breccia from Telgárt): the magnetic lineation is well defined and dips gently to W, which is parallel to the post-stacking stretching direction. This preliminary results show, that AMS-study of the basal tectonic breccia of thin-skinned nappes can be a powerful method in the future for detecting the hidden anisotropic fabric related to the tectonic movements, even if there are several tectonic events with different directions of movement.
NASA Astrophysics Data System (ADS)
Ziemniak, Grzegorz; Kośmińska, Karolina; Majka, Jarosław; Janák, Marian; Manecki, Maciej
2016-04-01
The Kåfjord Nappe is the part of the Skibotn Nappe Complex traditionally ascribed to the Upper Allochthon of the North Norwegian Caledonides. Pressure-temperature (P-T) conditions and metamorphic age of the Kåfjord Nappe are not well constrained, geochronological data are limited to a single Rb-Sr age of c. 440 Ma (Dangla et al. 1978). Metamorphic evolution of kyanite-garnet gneisses of the Kåfjord Nappe is presented here. The kyanite-garnet gneisses are associated with a few meters thick amphibolite lenses. The gneisses mainly consist of quartz, plagioclase, biotite, muscovite, garnet, kyanite, and rutile. Retrograde minerals are represented by sillimanite and chlorite. Garnet occurs as two textural types. Garnet-I forms euhedral porphyroblasts with multiple small inclusions. Profiles through garnet-I show chemical zonation in all components. The composition varies from Alm64-68Prp11-16Grs13-18Sps2-8 in the core to Alm68-70Prp17-18Grs10-13Sps1-3 in the rim. Garnet-II is subhedral to anhedral, its core is inclusion-rich, whereas rim contains only single inclusions. Chemical composition of garnet-II is similar to that of the garnet-I rim. P-T conditions have been estimated using the garnet-biotite-muscovite-plagioclase (GBPM) geothermobarometer (Holdaway, 2001; Wu, 2014). Calculated peak P-T metamorphic conditions are 610-625 °C and 7.6-8.2 kbar corresponding to the amphibolite facies conditions. Phase equilibrium modelling in the NCKFMMnASH system yields peak metamorphic conditions of c. 620 °C at 8 kbar. Growth conditions of garnet-I core modelled in the NCKFMMnASH system are c. 570 °C at 9.7 kbar. Chemical Th-U-total Pb monazite dating has been performed. Preliminary dating results from the kyanite-garnet gneiss of the Kåfjord Nappe yield an array of dates from 468 Ma to 404 Ma. There is a correlation between an increase of yttrium content and decrease of monazite single dates. Compositional maps confirm an increase of yttrium towards the rim of the monazite. This work is partially funded by AGH research grant no 11.11.140.319. References: Dangla, P., Damange, J. C., Ploquin, A., Quarnadel, J. M., Sonet, J., 1978. Donn'es geochronlogiques sur les Caledonides Scandinaves septentrionates (Troms, Norway du Nord). C. r. Acad. Sci. Paris, 286 D, 1653-1656. Holdaway, M. J., 2001. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. American Mineralogist, 86(10), 1117-1129. Wu, C. M., 2015. Revised empirical garnet-biotite-muscovite-plagioclase geobarometer in metapelites. Journal of Metamorphic Geology, 33(2), 167-176.
Evidences of Silurian dextral transpression in the Scandinavian Caledonides
NASA Astrophysics Data System (ADS)
Torgersen, Espen; Viola, Giulio
2017-04-01
The Scandinavian Caledonides are classically interpreted as a fold and thrust belt resulting from the collision between Laurentia and Baltica during the Silurian, which involved the up-to-400 km ESE-wards translation of nappes onto the Baltoscandian platform. It has been suggested that the Caledonian fold and thrust belt formed through several distinct orogenic episodes, from early shortening in the Late Ordovician to orogenic collapse in the Devonian. The classic Caledonian, orogen-perpendicular ESE-ward nappe transport is constrained by abundant and consistently oriented stretching lineations across the entire orogen and unambiguous kinematic indicators. However, there is also a large number of NW-SE-trending and roughly orogen-parallel lineations, particularly in the upper ophiolite- and eclogite-bearing nappes, which are more challenging to interpret with the traditional orogeny evolution model. The analysis of the areal extent, spatial distribution and geometrical relationships of the Caledonian nappes in southern and central Norway, however, offers new insights and allows for new constraints on the bulk kinematic framework of the shortening history of the belt. Here we present new, first-order geological observations that demonstrate a two-fold compressional history and associated strain partitioning during Caledonian convergence. More specifically, we propose that Late Ordovician NNW-SSE shortening caused early compression, followed by WNW-ESE Early Silurian shortening, which resulted in strain partitioning along the planar fabrics and discontinuities from the earlier event. In detail, orogen-parallel dextral wrench tectonics caused significant lateral displacement along at least three, orogen-scale NE-SW striking corridors, wherein the nappes appear to be consistently displaced in a dextral fashion. We propose that the Møre-Trøndelag Fault Complex, which accommodated significant sinistral displacements during the later Devonian orogenic collapse, localized on one of these early dextral shear corridor. This is expressed by the asymptotic dragging of the nappes along it and also the significant morphological asymmetry of the central Norwegian coast line, which is not compatible with sinistral shearing. Along a southern corridor, which extends from the Hardangerfjord to the east of Folldal, the Caledonian foliation is asymptotically bent into the ENE-WSW orientation of the shear corridor, also consistent with an overall dextral kinematics. This is also confirmed by the gradual reorientation and increased strain toward these shear corridors of Ordovician to Silurian intrusive bodies, indicating that the dextral displacement is of Silurian age. Similar dextral displacements along NE-SW faults have previously been interpreted from potential field data offshore southern Norway. Large-scale dextral transpression in the Scandinavian Caledonides readily accounts for numerous geological features that are not as easily reconciled with the more classical model of only ESE-ward translation and/or sinistral transpression.
The external Rif of Morocco and its hydrocarbon potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jobidon, G.; Dakki, M.
1993-09-01
The Rif domain is a structurally complex area consisting of nappes and thrust sheets caused by the collision of the Eurasian and African plates during the Tertiary period. The structural complexity decreases southwardly. Autochthonous members are found only along the southern and southwestern periphery, while the northern units are autochthonous (internal Rif and mesorif). Recently acquired geophysical and geochemical data provide an improved understanding of the area and put the hydrocarbon potential of the prerif (south Rif) and the Rharb basin (southern foreland basin) in a new exploration perspective. The Rharb basin has a Cretaceous-to-Tertiary sedimentary evolution, with its maximummore » subsidence occurring during the Tortonian-to-Messinian with the emplacement of a thick olistrostrome (prerif nappe). Biogenic gas is found in the neritic postnappe Tortonian sediments, while a prenappe Cretaceous play now appears as a strong hydrocarbon potential. The Prerif Rides, which are separated from the Gharb basin by the northeast-southwest Sidi-Fili fault trend, are the structural consequence of salt tectonics within the Alpine compression system. Oil production occurred in thrusted Jurassic carbonates and fractured metamorphic Paleozoic rocks. The hydrocarbon potential of newly defined prospects in this area are still untapped.« less
NASA Astrophysics Data System (ADS)
Reiser, Martin; Schuster, Ralf; Fügenschuh, Bernhard
2015-04-01
New structural, thermobarometric and geochronological data allow integrating kinematics, timing and intensity of tectonic phases into a geodynamic model of the Apuseni Mountain, which provides new constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens. Strong differences in terms of deformation directions between Early and Late Cretaceous events provide new constraints on the regional geodynamic evolution during the Cretaceous. Geochronological and structural data evidence a Late Jurassic emplacement of the South Apuseni Ophiolites on top of the Biharia Nappe System (Dacia Mega-Unit), situated in an external position at the European margin. Following the emplacement of the ophiolites, three compressive deformation phases affected the Apuseni Mountains during Alpine orogeny: a) NE-directed in-sequence nappe stacking and regional metamorphic overprinting under amphibolite-facies conditions during the Early Cretaceous ("Austrian Phase"), b) NW-directed thrusting and folding, associated with greenschist-facies overprinting, during the early Late Cretaceous ("Turonian Phase") and c) E-W internal folding together with brittle thrusting during the latest Cretaceous ("Laramian Phase"). Major tectonic unroofing and exhumation at the transition from Early to Late Cretaceous times is documented through new Sm-Nd Grt, Ar-Ar Ms and Rb-Sr Bt ages from the study area and resulted in a complex thermal structure with strong lateral and vertical thermal gradients. Nappe stacking and medium-grade metamorphic overprinting during the Early Cretaceous exhibits striking parallels between the evolution of the Tisza-Dacia Mega-Units and the Austroalpine Nappes (ALCAPA Mega-Unit) and evidences a close connection. However, Late Cretaceous tectonic events in the study area exhibit strong similarities with the Dinarides. Thus, the Apuseni Mountains represent the "missing link" between the Early Cretaceous Meliata subduction (associated with obduction of ophiolites) and the Neotethys subduction during Late Cretaceous times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tewksbury, B.; Culbertson, H.; Marcoline, J.
1993-03-01
In the Beaver Creek region of the Northwest Lowlands, Brown (1989) has described Grenville-age metasedimentary and metaigneous rocks as showing a prominent regional foliation, early southeastward emplacement of a nappe complex (the North Gouverneur Nappe), 2 subsequent generations of folds, and late regional faulting along the Beaver Creek, Pleasant Lake, and Hickory-Mud Lakes faults. The authors examined a variety of units across the Beaver Creek region, including a granitic augen gneiss immediately west of the Beaver Creek Fault Zone, an alaskitic gneiss immediately below Brown's (1989) North Gouverneur Nappe Sole Fault, a biotitic granitic gneiss within the body of Brown'smore » North Gouverneur Nappe, and hornblende augen gneisses and metasediments adjacent to the granitic gneisses. Each of the granitic units has moderately well-developed to extremely well-developed quartz ribbon lineations, and all show at least 2 ductile shear fabrics. Shear fabrics are present as well in the hornblende augen gneisses but are essentially absent in most of the metasedimentary lithologies, even those immediately adjacent to well-lineated, sheared granitic gneiss. The earliest shear fabrics exhibit spectacular quartz ribbon lineations, sigma grains, and, in the hornblende augen gneiss, shear bands. Granitic gneisses in the Beaver Creek Region show shear fabrics in addition to the main fabric in the rock. A second, variably-recovered shear fabric with quartz ribbons and well-developed sigma grains with core and mantle structure overprints the main shear fabric and shows largely the same sense of shear. The authors suggest further that a regional kinematic model for the Beaver Creek region must take into account significant, protracted regional shear, perhaps including formation of sheath folds, as in the Hyde School Gneiss at Payne Lake and Dobbs Creek.« less
NASA Astrophysics Data System (ADS)
Márton, Emö; Tokarski, Antek K.
2016-04-01
The paleomagnetic and magnetic anisotropy results interpreted in this presentation in terms of tectonics were obtained on the fine grained members, mostly mudstones/claystones, of the flysch from the Magura, the Silesian and the Dukla rootless nappes. The results are the best from the Upper Oligocene Krosno beds, which were affected by compression soon after deposition. These beds were available for sampling in the Silesian and Dukla nappes, but absent in the Magura nappe. Thus, in the latter older Paleogene strata were tested. A common feature of all sampled sediments is the low susceptibility (in the range of 10-4 SI or lower), weak remanence and the presence of pyrite. AMS measurements point to quite strong and probably repeated deformation in the Magura nappe, and the remanence is of-post-folding age. The AMS of the Silesian and Dukla nappes indicate weaker deformation, the orientations of the AMS lineations reflect compression. The remanence is of pre-folding age in the western and central segments of the Silesian nappe and is a mixture of pre and post-folding magnetization in the eastern segment. All the so far mentioned areas must have been affected by about 60° CCW rotation which followed the internal deformation. The Dukla nappe also rotated in the CCW sense, but the angle is far from well-defined. This can be attributed to the complicated internal structure of the nappe (e.g. presence of olistoliths) and non-removable overprint magnetizations. The relationship between local tectonic strikes and AMS lineations seems to imply that the ductile deformation responsible for the AMS lineations were acquired first, and the map-scale structures came into being during the CCW rotation of the studied segment of the nappe. AARM measurements documented that the fabrics of the ferrimagnetic minerals are often different from the orientation of the AMS fabrics. In such cases, they either fail to define an ellipsoid or the general orientations of the maxima are different from that of the AMS and the scatter is high. It is concluded that the AARM fabric is not really sensitive to weak tectonic deformation, while the AMS fabric is. Acknowledgement: We thank Marta Rauch, Oldrich Kreijci and Daniel Kiss, our principal cooperation partners in different parts and times of our systematic studies in the Outer Western Carpathians. Financial support from OTKA project 105245 and Academy exchange program between Polish and Hungarian Academies are gratefully acknowledged.
The Alpine nappe stack in western Austria: a crustal-scale cross section
NASA Astrophysics Data System (ADS)
Pomella, Hannah; Ortner, Hugo; Zerlauth, Michael; Fügenschuh, Bernhard
2015-04-01
Based on an N-S-oriented crustal-scale cross section running east of the Rhine Valley in Vorarlberg, western Austria, we address the Alpine nappe stack and discuss the boundary between Central and Eastern Alps. For our cross section, we used surface geology, drillings and reinterpreted seismic lines, together with published sections. The general architecture of the examined area can be described as a typical foreland fold-and-thrust belt, comprising the tectonic units of the Subalpine Molasse, (Ultra-)Helvetic, Penninic and Austroalpine nappes. These units overthrusted the autochthonous Molasse along the south-dipping listric Alpine basal thrust. The European Basement, together with its autochthonous cover, dips gently towards the south and is dissected by normal faults and trough structures. The seismic data clearly show an offset not only of the top of the European Basement, but also of the Mesozoic cover and the Lower Marine Molasse. This indicates an activity of the structures as normal faults after the sedimentation of the Lower Marine Molasse. The Subalpine Molasse is multiply stacked, forming a triangle zone at the boundary with the foreland Molasse. The shortening within the Subalpine Molasse amounts to approximately 45 km (~67 %), as deduced from our cross section with the Lower Marine Molasse as a reference. The hinterland-dipping duplex structure of the Helvetic nappes is deduced from surface and borehole data. There are at least two Helvetic nappes needed to fill the available space between the Molasse below and the Northpenninic above. This is in line with the westerly located NRP20-East transect (Schmid et al., Tectonics 15(5):1047-1048, 1996; Schmid et al., The TRANSMED Atlas: the Mediterranean Region from Crust to Mantle, 2004), where the two Helvetic nappes are separated by the Säntis thrust. Yet in contrast to the Helvetic nappes in the NRP20-East transect, both of our Helvetic nappes comprise Cretaceous and Jurassic strata. This change is explained by an eastward down-stepping of the Säntis thrust along a pre-existing, approximately N-S striking lateral ramp bounding an inverted Jurassic graben structure below the Rhine Valley. This causes the Säntis thrust to detach the base Cretaceous west of the Rhine Valley and the base Jurassic units east of it. This graben-controlled change in detachment level leads to the formation of quite different nappe stacks on either side of the Rhine Valley and a "fault-controlled" appearance of the boundary between the Central and Eastern Alps.
Disinfection effect of non-thermal atmospheric pressure plasma for foodborne bacteria
NASA Astrophysics Data System (ADS)
Pervez, Mohammad Rasel; Inomata, Takanori; Ishijima, Tatsuo; Kakikawa, Makiko; Uesugi, Yoshihiko; Tanaka, Yasunori; Yano, Toshihiro; Miwa, Shoji; Noguchi, Akinori
2015-09-01
Non-thermal atmospheric pressure plasma (NAPP) exposure can be a suitable alternative for bacteria inactivation in food processing industry. Specimen placed in the enclosure are exposed to various reactive radicals produced within the discharge chamber. It is also exposed to the periodic variation of the electric field strength in the chamber. Dielectric barrier discharge is produced by high voltage pulse (Vpp = 18 kV, pulse width 20 μs, repetition frequency 10 kHz) in a polypropylene box (volume = 350 cm3) using helium as main feed gas. Inactivation efficiency of NAPP depends on the duration of NAPP exposure, applied voltage pulse strength and type, pulse duration, electrode separation and feed gas composition. In this study we have investigated inactivation of Bacillus lichenformis spore as an example of food borne bacteria. Keeping applied voltage, electrode configuration and total gas flow rate constant, spores are exposed to direct NAPP for different time duration while O2 concentration in the feed gas composition is varied. 10 minutes NAPP exposure resulted in ~ 3 log reduction of Bacillus lichenformis spores for 1% O2concentration (initial concentration ~ 106 / specimen). This work is supported by research and development promotion grant provided by the Hokuriku Industrial Advancement Center.
Mid-crustal flow during Tertiary extension in the Ruby Mountains core complex, Nevada
MacCready, T.; Snoke, A.W.; Wright, J.E.; Howard, K.A.
1997-01-01
Structural analysis and geochronologic data indicate a nearly orthogonal, late Eocene-Oligocene flow pattern in migmatitic infrastructure immediately beneath the kilometer-thick, extensional, mylonitic shear zone of the Ruby Mountains metamorphic core complex, Nevada. New U-Pb radiometric dating indicates that the development of a northward-trending lineation in the infrastructure is partly coeval with the development of a pervasive, west-northwest-trending lineation in the mylonitic shear zone. U-Pb monazite data from the leucogranite orthogneiss of Thorpe Creek indicate a crystallization age of ca. 36-39 Ma. Zircon fractions from a biotite monzogranite dike yield an age of ca. 29 Ma. The three dated samples from these units exhibit a penetrative, approximately north-south-trending elongation lineation. This lineation is commonly defined by oriented bundles of sillimanite and/or elongated aggregates of quartz and feldspar, indicating a synmetamorphic and syndeformational origin. The elongation lineation can be interpreted as a slip line in the flow plane of the migmatitic, nonmylonitic infrastructural core of the northern Ruby Mountains. A portion of this midcrustal flow is coeval with the well-documented, west-northwest sense of slip in the structurally overlying kilometer-thick, mid-Tertiary mylonitic shear zone. Lineations in the mylonitic zone are orthogonal to those in the deeper infrastructure, suggesting fundamental plastic decoupling between structural levels in this core complex. Furthermore, the infrastructure is characterized by overlapping, oppositely verging fold nappes, which are rooted to the east and west. One of the nappes may be synkinematic with the intrusion of the late Eocene orthogneiss of Thorpe Creek. In addition, the penetrative, elongation lineation in the infrastructure is subparallel to hinge lines of parasitic folds developed synchronous with the fold nappes, suggesting a kinematically related evolution. The area is evaluated in terms of a whole-crust extension model. Magmatic underplating in the lower crust stimulated the production of late Eocene-early Oligocene granitic magmas, which invaded metasedimentary and Mesozoic granitic rocks of the middle crust. The midcrustal rocks, weakened by the magmatic heat influx, acted as a low-viscosity compensating material, decoupled from an extending upper crust. The fold nappes and lineation trends suggest large-scale flow of the weakened crust into the study area. The inflow pattern in the migmatitic infrastructure can be interpreted as a manifestation of midcrustal migration into an area beneath a domain of highly extended upper trustai rocks. At present the inferred Eocene-early Oligocene phase of upper-crust extension remains unknown, but available data on relative and geochronologic timing are not inconsistent with our model of return flow into an area already undergoing large-scale upper-crustal extension.
NASA Astrophysics Data System (ADS)
Al-Doukhi, Hanadi Abulateef
The Salalah Crystalline Basement (SCB) is the largest Precambrian exposure in Oman located on the southern margin of the Arabian Plate at the Arabian Sea shore. This work used remote sensing, detailed structural analysis and the analysis of ten samples using 40Ar/39Ar age dating to establish the Precambrian evolution of the SCB by focusing on its central and southwestern parts. This work found that the SCB evolved through four deformational events that shaped its final architecture: (1) Folding and thrusting event that resulted in the emplacement of the Sadh complex atop the Juffa complex. This event resulted in the formation of possibly N-verging nappe structure; (2) Regional folding event around SE- and SW-plunging axes that deformed the regional fabric developed during the N-verging nappe structure and produced map-scale SE- and SW-plunging antiforms shaping the complexes into a semi-dome structure; (3) Strike-slip shearing event that produced a conjugate set of NE-trending sinistral and NW-trending dextral strike-slip shear zones; and (4) Localized SE-directed gravitational collapse manifested by top-to-the-southeast kinematic indicators. Deformation within the SCB might have ceased by 752.2+/-2.7 Ma as indicated by an age given by an undeformed granite. The thermochron of samples collected throughout the SCB complexes shows a single cooling event that occurred between about 800 and 760 Ma. This cooling event could be accomplished by crustal exhumation resulting in regional collapse following the prolonged period of the contractional deformation of the SCB. This makes the SCB a possible metamorphic core complex.
Exhumation history of the NW Indian Himalaya revealed by fission track and 40Ar/39Ar ages
Schlup, Micha; Steck, Albrecht; Carter, Andrew; Cosca, Michael; Epard, Jean-Luc; Hunziker, Johannes
2011-01-01
High temperatures and anatexis of the subducting upper Indian crust engendered the buoyancy-driven ductile detachment and extrusion of the High Himalayan nappe in the zone of continental collision. Late extrusion of the High Himalayan nappe started about 26 Ma ago, accompanied by ductile extensional shearing in the Zanskar shear zone in its roof between 22 and 19 Ma concomitant with thrusting along the basal Main Central Thrust to the south. The northern part of the nappe was then rapidly exhumed to shallow depth (
Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai; Genser, Johann
2013-01-01
Rechnitz window group represents a Cordilleran-style metamorphic core complex, which is almost entirely located within nearly contemporaneous Neogene sediments at the transition zone between the Eastern Alps and the Neogene Pannonian basin. Two tectonic units are distinguished within the Rechnitz metamorphic core complex (RMCC): (1) a lower unit mainly composed of Mesozoic metasediments, and (2) an upper unit mainly composed of ophiolite remnants. Both units are metamorphosed within greenschist facies conditions during earliest Miocene followed by exhumation and cooling. The internal structure of the RMCC is characterized by the following succession of structure-forming events: (1) blueschist relics of Paleocene/Eocene age formed as a result of subduction (D1), (2) ductile nappe stacking (D2) of an ophiolite nappe over a distant passive margin succession (ca. E–W to WNW–ESE oriented stretching lineation), (3) greenschist facies-grade metamorphism annealing dominant in the lower unit, and (4) ductile low-angle normal faulting (D3) (with mainly NE–SW oriented stretching lineation), and (5) ca. E to NE-vergent folding (D4). The microfabrics are related to mostly ductile nappe stacking to ductile low-angle normal faulting. Paleopiezometry in conjunction with P–T estimates yield high strain rates of 10− 11 to 10− 13 s− 1, depending on the temperature (400–350 °C) and choice of piezometer and flow law calibration. Progressive microstructures and texture analysis indicate an overprint of the high-temperature fabrics (D2) by the low-temperature deformation (D3). Phengitic mica from the Paleocene/Eocene high-pressure metamorphism remained stable during D2 ductile deformation as well as preserved within late stages of final sub-greenschist facies shearing. Chlorite geothermometry yields two temperature groups, 376–328 °C, and 306–132 °C. Chlorite is seemingly accessible to late-stage resetting. The RMCC underwent an earlier large-scale coaxial deformation accommodated by a late non-coaxial shear with ductile low-angle normal faulting, resulting in subvertical thinning in the extensional deformation regime. The RMCC was rapidly exhumed during ca. 23–18 Ma. PMID:27065502
NASA Astrophysics Data System (ADS)
Despaigne-Díaz, Ana Ibis; García Casco, Antonio; Cáceres Govea, Dámaso; Wilde, Simon A.; Millán Trujillo, Guillermo
2017-10-01
The Trinidad dome, Escambray complex, Cuba, forms part of an accretionary wedge built during intra-oceanic subduction in the Caribbean from the Late Cretaceous to Cenozoic. The structure reflects syn-subduction exhumation during thickening of the wedge, followed by extension. Field mapping, metamorphic and structural analysis constrain the tectonic evolution into five stages. Three ductile deformation events (D1, D2 and D3) are related to metamorphism in a compressional setting and formation of several nappes. D1 subduction fabrics are only preserved as relict S1 foliation and rootless isoclinal folds strongly overprinted by the main S2 foliation. The S2 foliation is parallel to sheared serpentinised lenses that define tectonic contacts, suggesting thrust stacks and underthrusting at mantle depths. Thrusting caused an inverted metamorphic structure with higher-grade on top of lower-grade nappes. Exhumation started during D2 when the units were incorporated into the growing accretionary wedge along NNE-directed thrust faults and was accompanied by substantial decompression and cooling. Folding and thrusting continued during D3 and marks the transition from ductile to brittle-ductile conditions at shallower crustal levels. The D4-5 events are related to extension and contributed to the final exhumation (likely as a core complex). D4 is associated with a regional spaced S4 cleavage, late open folds, and numerous extension veins, whereas D5 is recorded by normal and strike-slip faults affecting all nappes. The P-t path shows rapid exhumation during D2 and slower rates during D3 when the units were progressively incorporated into the accretionary prism. The domal shape formed in response to tectonic denudation assisted by normal faulting and erosion at the surface during the final stages of structural development. These results support tectonic models of SW subduction of the Proto-Caribbean crust under the Caribbean plate during the latest Cretaceous and provide insights into the tectonic evolution of accretionary wedges in an intra-arc setting.
Geologic framework of oil and gas genesis in main sedimentary basins from Romania Oprea Dicea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ionescu, N.; Morariu, C.D.
1991-03-01
Oil and gas fields located in Moldavic nappes are encompassed in Oligocene and lower Miocene formations, mostly in the marginal folds nappe, where Kliwa Sandstone sequences have high porosity, and in the Black Sea Plateau. The origin of the hydrocarbon accumulations from the Carpathian foredeep seems to be connected to the Oligocene-lower Miocene bituminous formations of the marginal folds and sub-Carpathian nappes. In the Gethic depression, the hydrocarbon accumulations originate in Oligocene and Miocene source rocks and host in structural, stratigraphical, and lithological traps. The accumulations connected with tectonic lines that outline the areal extension of the Oligocene, Miocene, andmore » Pliocene formations are in the underthrusted Moesian platform. The hydrocarbon accumulations related to the Carpathian foreland represent about 40% of all known accumulations in Romania. Most of them are located in the Moesian platform. In this unit, the oil and gas fields present a vertical distribution at different stratigraphic levels, from paleozoic to Neogene, and in all types of reservoirs, suggesting multicycles of oleogenesis, migration, accumulation, and sealing conditions. The hydrocarbon deposits known so far on the Black Sea continental plateau are confined in the Albian, Cenomanian, Turonian-Senonian, and Eocene formations. The traps are of complex type structural, lithologic, and stratigraphic. The reservoirs are sandstones, calcareous sandstones, limestones, and sands. The hydrocarbon source rocks are pelitic and siltic Oligocene formations. Other older source rocks are probably Cretaceous.« less
NASA Astrophysics Data System (ADS)
Gilio, Mattia; Clos, Frediano; Van Roermund, Herman L. M.
2013-04-01
The Scandinavian Caledonides (SC) are a deeply eroded Alpine-type orogenic belt formed by closure of the Iapetus ocean and collision between Baltica and Laurentia (500-380 Ma). The SC consists of a stack of Nappe Complexes (from bottom to top called Lower, Middle, Upper and Uppermost Allochthons) thrusted to the east over the Baltic Shield (Brueckner and Van Roermund, 2004; Gee et al., 2008). Fossil lithospheric mantle fragments, called orogenic peridotites, have been found within the (upper part of) middle, upper and uppermost Allochthons, as well as in the reworked basement gneisses (a.o Western Gneiss Complex (WGC)) along the Norwegian west coast. They occur as isolated lenses that contain diverse mineral parageneses and/or bulk rock compositions. Crustal incorporation of orogenic peridotite is classically interpreted to be the result of plate collisional processes related to orogeny (Brueckner and Medaris, 2000). The WGC and parts of the upper part of the Middle Allochthon (a.o. Seve Nappe Complex (SNC) in N Jämtland/S Västerbotten, central Sweden), are well known for the occurrence of high (HP) and ultrahigh pressure (UHP) metamorphic terranes (of Caledonian age). The (U)HPM evidence clearly demonstrates the deep metamorphic origin of these rocks interpreted to be caused by continental subduction and/or collision. Other metamorphic rocks (of Caledonian age) exposed in allochthonous nappes are solely characterised by greenschist-, amphibolite- and/or MP granulite "facies" mineral assemblages that can be interpreted, in the absence of retrogression, to have formed in less deeply subducted (and/or metamorphic) environments. This duality in metamorphic "facies" allows for a discrimination (at least theoretically) between "deep" versus "shallow" rooted nappes (in central parts of the Scandinavian Caledonides). Conform this reasoning, this duality should also be present within the Caledonian mineral assemblages (= metamorphic overprint) of orogenic peridotites (in central parts of the orogen), which, at least in the allochtonous nappes, have been interpreted to be "isofacial" with their host country rocks (Bucher, 1991). The latter strongly contrast to the interpretation of their "primary" (="protolith"- related) mineral assemblage(s) which clearly suggest a bimodal origin: here called thick (>80 km) versus thin (< 70 km) rooted lithospheric mantle protoliths. Distinction can be made on the basis of the presence of the stable (minimal Proterozoic) garnet-olivine assemblages in the protolith (i.e. much older than the Scandian collision event (Brueckner et al., 2010). For this reason orogenic garnet peridotite was first called "relict" garnet peridotite (Brueckner and Medaris, 2000), later rephrased into mantle wedge garnet peridotite (MWgp) by Van Roermund (2009). MWgp occurs in the WGC and in the SNC of the Upper Allochthon in central Sweden (Zhang et al., 2009). Most (All?) other protolith assemblages of orogenic peridotite in the CSC belong to the thin-rooted protolith subtype. No examples are known to us in which thin rooted prototypes became overprinted (during the Caledonian orogeny) by (U)HP metamorphic minerals, except for the subduction zone garnet peridotites (SZgp) in the WGC (Van Roermund, 2009). The latter can thus savely be interpreted as being enclosed within normal "MP" (or lower pressure) nappe sequences. As such it will be clear that this duality in protolith (and/or metamorphic) mineral assemblages of orogenic peridotite can be used to identify former, but now strongly retrogressed, (U)HP metamorphic terranes in other parts of the CSC (Gee et al, 2012). For this reason a comparative study has been made concerning field, (micro-)structural, mineral-chemical and/or geochemical aspects of two major orogenic peridotites from the SNC, central Sweden; here called the Friningen Garnet Peridotite (FGP) and the Kittelfjäll Spinel Peridotite (KSP), both exposed within the central belt of the SNC in central Sweden. The ultimate aim was to investigate whether the MWgp sub-type can be extended towards (Al-poor) spinel-bearing protolith assemblages or not. Results, including some hitherto unexpected mechanical effects, will be presented. References: Brueckner, H.K., Carswell, D.A., Griffin, W.L., Medaris, L.G., Van Roermund, H.L.M., Cuthbert, S.J. (2010). The mantle and crustal evolution of two garnet peridotite suites from the Western Gneiss Region, Norwegian Caledonides: An isotopic investigation. Lithos, 117, 1-19. doi:10.1016/j. Lithos.2010.01.011 Brueckner, H.K.and Medaris, L.G. (2000). A general model for the intrusion and evolution of "mantle" garnet peridotites in high-pressure and ultra-high-pressure metamorphic terranes. J. Metamorphic Geol., 18, 123-133. Brueckner H.K. and Van Roermund,H.L.M. (2004). Dunk tectonics: A multiple subduction//eduction model for the evolution of the Scandinavian Caledonides. Tectonics, 23, TC2004, doi:10.1029/2003tc001502. Bucher, K. (1991). Mantle fragments in the Scandinavian Caledonides. Tectonophysics, 190, 173-192. Gee, D.G., Fossen, H., Henriksen, N., Higgins, K. (2008). From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland. Episodes, 31, 44-51. Gee, D.G., Janak, M., Majka, J., Robinson, P., Van Roermund, H.L.M (2012). UHP metamorphism along the Baltoscandian outer margin: evidence from the Seve Nappe Complex of the Swedish Caledonides. Lithosphere, in press. Janak, M., Van Roermund, H., Majka, J., Gee, D. (2012). UHP metamorphism recorded by kyanite-bearing eclogite in the Seve Nappe Complex of northern Jämtland, Swedish Caledonides. Gondwana Research, in press. Van Roermund, H.L.M. (2009). Mantle-wedge garnet peridotites from the northernmost ultra-high pressure domain of the Western Gneiss Region, SW Norway. Eur. J. Mineralogy, 21, 1085-1096. Zhang, C., Van Roermund, H.L.M., Zhang, L.F (2011). 16 - Orogenic Garnet Peridotites: Tools to Reconstruct Paleo-Geodynamic Settings of Fossil Continental Collision Zones. In: Ultrahigh Pressure Metamorphism, 25 Years After The Discovery Of Coesite And Diamond. London. Doi:10.1016/B978-0-12-385144-4.00015-1
The Origin of The Piz Terri-Lunschania zone (Central Alps, Switzerland)
NASA Astrophysics Data System (ADS)
Galster, Federico; Stockli, Daniel
2017-04-01
The Piz Terri-Lunschania zone (PTLZ) represents a band of metasedimentary rocks embedded in a crucial knot at the NE border of the Lepontine dome, at the intersection of the Gotthard, Lucomagno, Simano, Adula and Grava nappes. Its origin and its position in the tectonostratigraphy of the Central Alps are still not completely understood. A better understanding of this sedimentary zone and its tectonic position could shed lights on the Helvetic-Penninic connection and facilitate the disentanglement of the Lepontine dome tectonics. In this study we combine structural and stratigraphic observations with detrital zircon (DZ) and detrital rutile (DR) U-Pb geochronology as well as mineral trace element data from Permian, Triassic and Jurassic sandstones. We compare these data with those from adjacent tectonic units and coeval strata in other portions of the Alpine chain. Maximal depositional ages, abrupt changes in provenances and stratigraphic correlations based on new DZ and DR U-Pb and trace element data allow for a better understanding of the sedimentary evolution of the Terri basin and its palaeogeographic position along the northern margin of the Alpine Tethys. In particular the DZ U-Pb signatures, with its abundant 260-280 Ma zircons and the scarcity of 290-350 Ma zircons, corroborates an Ultra-Adula origin of the PTLZ as proposed by Galster et al (2010; 2012) based on stratigraphic arguments and reinforces the notion of a Briançonnais influence on the stratigraphic record of this complex zone, a fact that has important tectonic and Palaeogeographic implications. Galster F, Cavargna-Sani M, Epard J-L, Masson H (2012) New stratigraphic data from the Lower Penninic between the Adula nappe and the Gotthard massif and consequences for the tectonics and the paleogeography of the Central Alps. Tectonophysics 579:37-55. doi: 10.1016/j.tecto.2012.05.029 Galster F, Epard J-L, Masson H (2010) The Soja and Luzzone-Terri nappes: Discovery of a Briançonnais element below the front of the Adula nappe (NE Ticino, Central Alps). Bulletin de la Société Vaudoise des Sciences naturelles 92:61-75.
New Headings: Navy Alcoholism Prevention Program. Third Edition.
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
This brief booklet outlines the goals and rationale behind the Navy Alcoholism Prevention Program (NAPP). The program is built upon the assumption that alcoholism is a preventable and treatable illness. More than half the directors, counselors, and support staff at NAPP are sober alcoholics whose primary objectives involve aiding other alcoholics…
Population of North American elk: effects on plant diversity
Kelley M. Stewart; R. Terry Bowyer; John G. Kier; Brian L. Dick; Roger W. Ruess
2009-01-01
We tested for indirect effects of population density of large herbivores on plant species richness and diversity in a montane ecosystem, where increased net aboveground primary productivity (NAPP) in response to low levels of herbivory has been reported. We documented a positive, linear relationship between plant-species diversity and richness with NAPP. Structural...
NASA Astrophysics Data System (ADS)
Benzaggagh, Mohamed
2011-04-01
Following the recent stratigraphic works carried out on the Jurassic-Cretaceous boundary in the external Rif chain (Mesorif area and Bou Haddoud nappe), numerous submarine volcanism traces have been discovered in Upper Oxfordian to Upper Berriasian deposits. These traces display various aspects: volcaniclastic complexes incorporated within Upper Berriasian marls; volcanic lavas and basalt clasts included in the breccias with clay matrix of Upper Oxfordian to Lower Berriasian age, or in brecciated Lower Tothonian calcareous beds of the Early Tithonian. These submarine volcanic activities took place in a carbonate platform environment during the Kimmeridgian to Early Tithonian interval or in a pelagic basin from Late Tithonian onwards. They caused an intense brecciation of Upper Jurassic carbonate formations and a general dismantling of marly calcareous alternations of Upper Tithonian-Lower Berriasian. Therefore, the Upper Tithonian-Lower Berriasian deposits are marked by frequent stratigraphic gaps in many outcrops of Mesorif, Prerif areas and in the Bou Haddoud nappe.
NASA Astrophysics Data System (ADS)
Racek, M.; Lexa, O.; Schulmann, K.; Corsini, M.; Štípská, P.; Maierová, P.
2017-03-01
A structural and geochronological 40Ar/39Ar study was performed in kilometre-scale middle and lower crustal lens-shaped domains dominated by a preserved subvertical foliation, surrounded by horizontally foliated migmatites. These domains occur within the Moldanubian nappe overlying the Brunia microcontinent at the eastern margin of the European Variscides. Three main deformation phases were recognized: subvertical S2 fabric trending NW-SE in lower crustal rocks and NE-SW in mid-crustal rocks. It is reworked by HT/MT horizontal fabric S3 along margins of crustal domains and in surrounding migmatites. S3 bears a prolate NE lineation parallel to the S2-S3 intersection in the lower crustal domain. In the middle crustal units, L3 is weak, connected to oblate strain and trends NE-SW parallel to the S2-S3 intersection. D4 non-coaxial shear deformation is mainly localized at the boundary between the Moldanubian nappe and Brunia and bears strong top to the NNE shear criteria. In order to constrain kinematics of the D3 deformation, strain modelling was performed to show that the Moldanubian hot nappe was frontally thrust over the Brunia indentor. The renewed D4 tangential movement only heterogeneously reactivates the horizontal S3. This evolution is recorded in 40Ar/39Ar amphibole cooling ages, which show two statistically significant Carboniferous peaks at 342 and 332 Ma, which are also reflected by published detrital muscovite 40Ar/39Ar ages in the adjacent foreland basin. This geochronological record is correlated with progressive erosion of the topographically elevated upper crustal part of the Moldanubian nappe during D3 frontal thrusting, followed by greenschist facies D4 transpressive reactivation and subsequent erosion of high-grade parts of the nappe.
NASA Astrophysics Data System (ADS)
Trouw, Rudolph A. J.; Peternel, Rodrigo; Ribeiro, Andre; Heilbron, Mônica; Vinagre, Rodrigo; Duffles, Patrícia; Trouw, Camilo C.; Fontainha, Marcos; Kussama, Hugo H.
2013-12-01
In southeastern Brazil, the Neoproterozoic NNW-SSE trending southern Brasília belt is apparently truncated by the ENE-WSW central Ribeira belt. Different interpretations in the literature of the transition between these two belts motivated detailed mapping and additional age dating along the contact zone. The result is a new interpretation presented in this paper. The southern Brasília belt resulted from E-W collision between the active margin of the Paranapanema paleocontinent, on the western side, now forming the Socorro-Guaxupé Nappe, with the passive margin of the São Francisco paleocontinent on the eastern side. The collision produced an east vergent nappe stack, the Andrelândia Nappe System, along the suture. At its southern extreme the Brasília belt was thought to be cut off by a shear zone, the "Rio Jaguari mylonites", at the contact with the Embu terrane, pertaining to the Central Ribeira belt. Our detailed mapping revealed that the transition between the Socorro-Guaxupé Nappe (Brasília belt) and the Embu terrane (Ribeira belt) is not a fault but rather a gradational transition that does not strictly coincide with the Rio Jaguari mylonites. A typical Cordilleran type magmatic arc batholith of the Socorro-Guaxupé Nappe with an age of ca. 640 Ma intrudes biotite schists of the Embu terrane and the age of zircon grains from three samples of metasedimentary rocks, one to the south, one to the north and one along the mylonite zone, show a similar pattern of derivation from a Rhyacian source area with rims of 670-600 Ma interpreted as metamorphic overgrowth. We dated by LA-MC-ICPMS laser ablation (U-Pb) zircon grains from a calc-alkaline granite, the Serra do Quebra-Cangalha Batholith, located within the Embu terrane at a distance of about 40 km south of the contact with the Socorro Nappe, yielding an age of 680 ± 13 Ma. This age indicates that the Embu terrane was part of the upper plate (Socorro-Guaxupé Nappe) by this time. Detailed mapping indicates that the mylonite zone is not a plate boundary because motion along it is maximum a few tens of kilometres and the same litho-stratigraphic units are present on either side. Based on these arguments, the new interpretation is that the Embu terrane is the continuation of the Socorro-Guaxupé Nappe and therefore also part of the active margin of the Paranapanema paleocontinent. The Brasília belt is preserved even further within the central Ribeira belt than previously envisaged.
NASA Astrophysics Data System (ADS)
Pleuger, Jan; Podladchikov, Yuri
2014-05-01
The Penninic Alps are the result of progressive underthrusting of oceanic and continental domains below the Adriatic microplate. Situated in the internal part of the Alpine orogen, they expose basement and thinned cover nappes which have been metamorphosed to variable degree, among them several units which were subjected to ultrahigh-pressure metamorphism. Due to the more or less strong nappe-internal deformation of these units, cross sections through the Penninic Alps cannot be restored kinematically by area or line balancing techniques. Instead, such restorations attempt to consistently reconcile geochronological and structural data and petrological pressure-temperature estimates. Pressure data are usually converted into depth assuming that they were lithostatic which puts the ultrahigh-pressure units to subcrustal depths. Tectonic exhumation of a unit from such a depth by whatever mechanism requires a large-scale normal fault with several tens of kilometres of displacement in the hanging wall of the unit. However, for all Penninic ultrahigh-pressure units (Dora Maira unit, Zermatt-Saas zone, Monviso unit, Adula-Cima Lunga nappe), the oldest mappable post-peak-pressure structures are related to top-to-the-foreland shearing, i.e. thrusting. There are two potential solutions to this dilemma. The first one is that either the exhumation was indeed accommodated by a large-scale normal fault which became completely overprinted during later deformational stages. The other one is that peak pressures were not lithostatic. To our knowledge, the first solution is applied to all kinematic models of the Alps so far. In order to explore the feasibility of the second solution, we performed a purely structural restoration of the NFP20-East cross section without lithostatic pressure-to-depth-conversions. This cross-section comprises the ultrahigh-pressure Adula nappe (up to ca. 30 kbar) and relies on quantitative strain data from the overlying units. The result shows that, in accordance with the structural record, the Adula nappe can be restored to maximum depths of up to ca. 60 km. For individual points of the Adula nappe in the restored cross section, corresponding to the sporadic occurences of (ultra)high-pressure rocks, lithostatic pressures are exceeded by petrological peak-pressure data by about 40% to 80%. Such amounts of tectonic overpressure are within the limits of theoretical considerations and numerical modelling results. For the other units comprised in the cross section, and for subsequent tectono-metamorphic stages of the Adula nappe, negligible amounts of overpressure (around 10%) are determined from the restoration. We conclude that (1) the NFP20-East cross section can be kinematically restored by using only structural data, (2) the dilemma mentioned above can be solved by admitting realisting amounts of tectonic overpressure, and (3) significant amounts of overpressure were established only locally and episodically.
Pressure variations in the Monte Rosa nappe, Western Alps
NASA Astrophysics Data System (ADS)
Luisier, Cindy; Vaughan-Hammon, Joshua; Baumgartner, Lukas; Schmalholz, Stefan
2017-04-01
The Monte Rosa nappe is part of the Penninic nappe stack of the Western Alps. It represents the southern-most European continental basement involved in the alpine orogeny. It consists of a pre-Variscan basement complex, made of mostly metapelites and paragneisses, which were intruded by a Permian-age granitic body (Pawlig, 2001). The nappe is heterogeneously deformed, with localized high strain domains separating low strain domains. The metamorphic record is tightly linked to deformation. Different thermodynamic data bases and approaches were used in the past to estimate the peak alpine metamorphic conditions. They range from 1.2 to 2.7 GPa and 490 to 650˚C, based on metagranite, metapelite, metamafic and whiteschist assemblages. The peak alpine metamorphic assemblage of zoisite, phengite and albite symplectites pseudomorphing magmatic plagioclase is preserved only in the less deformed portions of the nappe. Phengite, garnet and titanite coronas surrounding biotite, quartz and igneous K-feldspar make up the rest of the rock. The metagranite locally grades into 10 to 50 meters whiteschist bodies, consisting of talc-chloritoid-kyanite-phengite-quartz, which can contain carbonate and garnet. Their chemistry is interpreted as a metasomatic product of the late magmatic hydrothermal alteration of the granite, whereas their mineralogy results from the alpine high pressure metamorphism (Pawlig and Baumgartner, 2001; Luisier et al., 2015). We performed a phase petrology and textural study to consistently estimate peak alpine metamorphic conditions in the granite and the related whiteschists. Textural observations were used to select the best-preserved high-pressure metagranite samples. Inherited magmatic feldspar textures indicate that jadeite was never formed in these granites, confirmed independently by Si in phengite barometer (1.2 to 1.5 GPa). Note that the granite contains the phengite buffer assemblage of Massonne and Schreyer (1987). Thermodynamic calculations using internally consistent thermodynamic database on whiteschists result in a minimum P of 2.2 GPa at T of 550 to 570˚C and a water activity close to 1, unlike previous water activities proposed (Le Bayon et al., 2006). Peak alpine pressures and temperatures calculated for the metagranite and associated whiteschists hence result in significant different pressure estimates, corroborating previous results from the literature. The possible explanations for such pressure variations are i) slight underestimation of the metagranite peak pressure, due to water-undersaturation conditions, however a pressure as high as 2 GPa is unlikely, or ii) heterogeneous stress conditions, due to rheologically contrasting lithologies, consisting of weak whiteschist inclusions within strong, undeformed metagranites. References Le Bayon et al., 2006: Contrib. Mineral. Petrol. 151, 395-412 Luisier et al., 2015: GSA conference abstract Massonne and Schreyer, 1987: Contrib. Mineral. Petrol. 96, 212-224 Pawlig, S. 2001: PhD thesis, University of Mainz (Germany) Pawlig and Baumgartner, 2001: SMPM 81,329-346
NASA Astrophysics Data System (ADS)
Georgiev, Neven; Froitzheim, Nikolaus; Cherneva, Zlatka; Frei, Dirk; Grozdev, Valentin; Jahn-Awe, Silke; Nagel, Thorsten J.
2016-10-01
The Rhodope Metamorphic Complex is a stack of allochthons assembled during obduction, subduction, and collision processes from Jurassic to Paleogene and overprinted by extensional detachment faults since Middle Eocene. In the study area, the following nappes occur in superposition (from base to top): an orthogneiss-dominated unit (Unit I), garnet-bearing schist with amphibolite and serpentinite lenses (Unit II), greenschist, phyllite, and calcschist with reported Jurassic microfossils (Unit III), and muscovite-rich orthogneiss (Unit IV). U-Pb dating of zircons from a K-feldspar augengneiss (Unit I) yielded a protolith age of ca. 300 Ma. Garnet-bearing metasediment from Unit II yielded an age spectrum with distinct populations between 310 and 250 Ma (detrital), ca. 150 Ma, and ca. 69 Ma (the last two of high-grade metamorphic origin). An orthogneiss from Unit IV yielded a wide spectrum of ages. The youngest population gives a concordia age of 581 ± 5 Ma, interpreted as the age of the granitic protolith. Unit I represents the Lower Allochthon (Byala Reka-Kechros Dome), Unit II the Upper Allochthon (Krumovitsa-Kimi Unit), Unit III the Uppermost Allochthon (Circum-Rhodope Belt), and Unit IV a still higher, far-travelled unit of unknown provenance. Telescoping of the entire Rhodope nappe stack to a thickness of only a few 100 m is due to Late Eocene north directed extensional shearing along the newly defined Kulidzhik Detachment which is part of a major detachment system along the northern border of the Rhodopes. Older top-to-the south mylonites in Unit I indicate that Tertiary extension evolved from asymmetric (top-to-the-south) to symmetric (top-to-the-south and top-to-the-north), bivergent unroofing.
Population density of North American elk: effects on plant diversity.
Stewart, Kelley M; Bowyer, R Terry; Kie, John G; Dick, Brian L; Ruess, Roger W
2009-08-01
Large, herbivorous mammals have profound effects on ecosystem structure and function and often act as keystone species in ecosystems they inhabit. Density-dependent processes associated with population structure of large mammals may interact with ecosystem functioning to increase or decrease biodiversity, depending on the relationship of herbivore populations relative to the carrying capacity (K) of the ecosystem. We tested for indirect effects of population density of large herbivores on plant species richness and diversity in a montane ecosystem, where increased net aboveground primary productivity (NAPP) in response to low levels of herbivory has been reported. We documented a positive, linear relationship between plant-species diversity and richness with NAPP. Structural equation modeling revealed significant indirect relationships between population density of herbivores, NAPP, and species diversity. We observed an indirect effect of density-dependent processes in large, herbivorous mammals and species diversity of plants through changes in NAPP in this montane ecosystem. Changes in species diversity of plants in response to herbivory may be more indirect in ecosystems with long histories of herbivory. Those subtle or indirect effects of herbivory may have strong effects on ecosystem functioning, but may be overlooked in plant communities that are relatively resilient to herbivory.
NASA Astrophysics Data System (ADS)
Wendorff, Małgorzata; Rospondek, Mariusz; Kluska, Bartosz; Marynowski, Leszek
2017-04-01
During Oligocene to early Miocene time an extensive accumulation of organic-rich sedimentary rocks occurred in entire Paratethyan Basin, including its central part, i.e. the Carpathian Foredeep basin. Rocks of so-called Menilite facies formed there, burying significant amounts of organic matter (OM). These Menilite shales are now widely considered as a source of hydrocarbons throughout the Carpathian region. For the purpose of presented study, rock samples of the Menilite facies (mainly of the Lower Menilite and Bituminous Marl Members) were collected from two sections located in the different tectonic units (the Tarcău and Vrancea Nappes, Romania) of the Outer Carpathians. The main goal of the study was to assess and compare their hydrocarbon potential by examination of bulk geochemistry (total organic carbon content, pyrolysis Rock-Eval), vitrinite reflectance (Ro) and application of lipid biomarker parameters. The data show high variability in OM quantity and quality. Total organic carbon (TOC) content reaches peak values in the siliceous facies of the Lower Menilite Member (up to 8.6 wt% TOC), which contains type II kerogen represented by mainly marine OM type. Such results are confirmed by the presence of short-chain n-alkanes and hopanes. Mixed type II/III kerogen gains importance together with increasing contribution of turbiditic sedimentation. Terrigenous input is marked by occurrence of conifer aromatic biomarkers (such as simonellite, retene and 1,2,3,4-tetrahydroretene) and odd over even long chain n-alkanes predominance, characteristic for epicuticular leaf waxes. The analysed source rocks can be classified as oil-prone and subordinately mixed oil/gas-prone. OM in the inner tectonic unit (Tarcău Nappe; Tmax 430° C, Ro 0.5%) reaches onset of hydrocarbon generation, while in the outer unit (Vrancea Nappe) OM is immature (Tmax 425° C, Ro 0.4%). This maturity trend may be an effect of different burial histories of these units, as well as variation in subsequent erosion and exhumation levels resulting from the more inner position of the Tarcău Nappe within the orogen relative to the Vrancea Nappe (Wendorff et al., 2017). Based on the TOC content, S1 and S2 peak values the investigated rocks from the Vrancea Nappe reveal good to even excellent petroleum potential (especially for the siliceous facies of the Lower Menilite Mb.), although they did not attain the oil-window stage. The Tarcău Nappe source rocks have fair to good hydrocarbon potential. Hydrocarbons have been locally generated due to sufficient maturity, as also confirmed by high extractable bitumen yields and field observation of solid bitumen veins. However, hydrocarbon potential has not been exhausted as revealed by still high hydrocarbon index values. In the studied area the rocks of the Menilite facies have been suggested as a source for small gas/oil deposits, i.e. the Cuejdiu and Moineşti/Comăneşti field. References Wendorff, M., Rospondek, M., Kluska, B., Marynowski, L., 2017. Organic matter maturity and hydrocarbon potential of the Lower Oligocene Menilite facies in the Eastern Flysch Carpathians (Tarcău and Vrancea Nappes), Romania. Applied Geochemistry (in press).
NASA Astrophysics Data System (ADS)
Kamzolkin, Vladimir; Latyshev, Anton; Ivanov, Stanislav
2016-04-01
The Blyb metamorphic complex (BMC) of the Fore Range zone is one of the most high-grade metamorphosed element of the Great Caucasus fold belt. Determination of the timing and the mechanism of formation of the Fore Range fold-thrust structures are not possible without investigation of the BMC located at the basement of its section. At the same time, the conceptions about its structure and age are outdated and need revision. Somin (2011) determined the age of the protolith and metamorphism of the Blyb complex as the Late Devonian - Early Carboniferous. We have recently shown that the BMC has not the dome, as previously thought, but nappe structure (Vidjapin, Kamzolkin, 2015), and is metamorphically coherent with the peak metamorphism pressures up to 22 kbar (Kamzolkin et al., 2015; Konilov et al., 2013). Considering the age and structure of the Blyb complex it is necessary to revise the age of granitoid intrusions and their relations with gneisses and schists, which constitute the main part of the section of the complex. Most authors (Gamkrelidze, Shengelia, 2007; Lavrischev, 2002; Baranov, 1967) adheres to Early Paleozoic age of intrusives, which is doubtful, considering the younger age of metamorphic rocks. We suppose, that the intrusive bodies broke through a BMC nappe structure during the exhumation of the complex (Perchuk, 1991) at the Devonian - Carboniferous boundary. Seemingly, the massive monzodiorites body (Lavrischev, 2002), intruding garnet-muscovite schists and amphibolite gneisses of the Blyb complex and cut by the Main Caucasian fault (MCF), are younger. Given the timing of termination of the MCF movement activity as the Middle Jurassic (Greater Caucasus..., 2005), their age should be in the Early Carboniferous - Middle Jurassic interval. At the same time, on the modern geological map (Lavrischev, 2002) monzodiorites body is assigned to the Middle Paleozoic. The study of the BMC granitoids and monzodiorites will help in determining of the mechanism and age of exhumation of the Blyb metamorphic complex high-pressure rocks. The reported study was partially supported by RFBR, research projects No. 16-35-00571mol_a; 16-05-01012a
Convergent tectonics in the Huon Peninsula region, Papua New Guinea
NASA Astrophysics Data System (ADS)
Davies, H. L.; Lock, J.; Tiffin, D. L.; Honza, E.; Okuda, Y.; Murakami, F.; Kisimoto, K.
1987-09-01
The anticlinal nappe which forms the Huon Peninsula and adjacent ranges extends offshore as the Huon Ridge. The frontal thrust of the nappe is the Ramu-Markham Fault (onshore) and a deformation front along the line of the Markham Canyon (offshore). The timing and geometry of the Finisterre arc-continent collision is controversial, and the origin of the Finsch Deep is unresolved.
NASA Astrophysics Data System (ADS)
Maxelon, Michael; Mancktelow, Neil S.
2005-08-01
Continental collision during Alpine orogenesis entailed a polyphase deformation history (D 1-D 5) in the Pennine zone of the Central Alps. The regional tectonostratigraphy was basically developed during D 1 and D 2, characterised by isoclinal, typically north-closing recumbent anticlines, separated by pinched-in synclines, on the scale of tens of kilometres. Later deformation phases (D 3 and D 4) warped the stack into wavy to open folds. Exhumation of this zone resulted locally in later vertical shortening and folding of already steep fabrics (D 5). Three-dimensional models of the nappe pile were constructed, based on geostatistical assessment of the regional foliation field and considering the abundant structural field data. These models indicate the existence of five principal tectonostratigraphic levels developed during D 1 and thus equivalent to nappe units s. str.: the Gotthard, the Leventina-Antigorio, the Maggia-Simano (and probably the Monte Leone as well as the Composite Lepontine Series), Lebendun-Soja and Adula-Cima Lunga levels. All these tectonic units formed part of the passive continental margin of Europe prior to the onset of the Alpine orogenesis. Individual isoclinal post-nappe folds reflect relative displacements on the order of 40 km or more. The most prominent D 2 post-nappe structure is the Wandfluhhorn Fold, structurally equivalent to the northern closure of the Leventina-Lucomagno Antiform. The Lebendun and Monte Leone folds are of similar magnitudes and also affect the whole nappe pile, whereas the smaller Mogno and Molare synforms only refold the Maggia-Simano nappe internally. Principal D 3 and D 4 structures are the tight Mergoscia Synform directly north of the Insubric Fault between Bellinzona and Locarno (Southern Steep Belt), the Maggia Steep Zone, forming the steep western limb of the Campo Tencia Synform and subdividing the Lepontine dome into the Simplon and Ticino subdomes, the Chiéra Synform steepening the dominant foliation in the north (Northern Steep Belt) and the Vanzone and Claro Antiforms steepening the dominant foliation in the south (Southern Steep Belt). The current geometry of the Northern and Southern Steep Belts reflects an interplay between D 4 and D 3, involving both fold interference and reactivation/tightening.
NASA Astrophysics Data System (ADS)
Schenker, Filippo Luca; Schmalholz, Stefan M.; Baumgartner, Lukas P.; Pleuger, Jan
2015-04-01
The Central and Western Penninic (CWP) Alps form an orogenic wedge of imbricate tectonic nappes. Orogenic wedges form typically at depths < 60 km. Nevertheless, a few nappes and massifs (i.e. Adula/Cima Lunga, Dora-Maira, Monte Rosa, Gran Paradiso, Zermatt-Saas) exhibit High- and Ultra-High-Pressure (U)HP metamorphic rocks suggesting that they were buried by subduction to depths >60 km and subsequently exhumed into the accretionary wedge. Mechanically, the exhumation of the (U)HP rocks from mantle depths can be explained by two contrasting buoyancy-driven models: (1) overall return flow of rocks in a subduction channel and (2) upward flow of individual, lighter rock units within a heavier material (Stokes flow). In this study we compare published numerical exhumation models of (1) and (2) with structural and metamorphic data of the CWP Alps. Model (1) predicts the exhumation of large volumes of (U)HP rocks within a viscous channel (1100-500 km2 in a 2D cross-section through the subduction zone). The moderate volume (e.g. ~7 km2 in a geological cross-section of the UHP unit of the Dora-Maira) and the coherent architecture of the (U)HP nappes suggests that the exhumation through (1) is unlikely for (U)HP nappes of the CWP Alps. Model (2) predicts the exhumation of appropriate volumes of (U)HP rocks, but generally the (U)HP rocks exhume vertically in the overriding plate and are not incorporated into the orogenic wedge. Nevertheless, the exhumation through (2) is feasible either with a vertical or with an extremely viscous and dense subduction channel. Whether these characteristics are applicable to the CWP UHP nappes will be discussed in light of field observations.
Dietsch, Craig; Kunk, Michael J.; Aleinikoff, John; Sutter, John F.
2010-01-01
Level 3 nappes were emplaced over the Waterbury dome along an Acadian décollement synchronous with the formation of a D3 thrust duplex in the dome. The décollement truncates the Ky + Kfs-in (migmatite) isograd in the dome core and a St-in isograd in level 3 nappes, indicating that peak metamorphic conditions in the dome core and nappe cover rocks formed in different places at different times. Metamorphic overgrowths on zircon from the felsic orthogneiss in the Waterbury dome have an age of 387 ± 5 Ma. Rocks of all levels and the décollement are folded by D4 folds that have a strongly developed, regional crenulation cleavage and D5 folds. The Waterbury dome was formed by thrust duplexing followed by fold interference during the Acadian orogeny. The 40Ar/39Ar ages of amphibole, muscovite, biotite, and K-feldspar from above and below the décollement are ca. 378 Ma, 355 Ma, 360 Ma (above) and 340 (below), and 288 Ma, respectively. Any kilometer-scale vertical movements between dome and nappe rocks were over by ca. 378 Ma. Core and cover rocks of the Waterbury dome record synchronous, post-Acadian cooling.
NASA Astrophysics Data System (ADS)
Hamimi, Z.; Kassem, O. M. K.; El-Sabrouty, M. N.
2015-09-01
The rotation of rigid objects within a flowing viscous medium is a function of several factors including the degree of non-coaxiality. The relationship between the orientation of such objects and their aspect ratio can be used in vorticity analyses in a variety of geological settings. Method for estimation of vorticity analysis to quantitative of kinematic vorticity number (Wm) has been applied using rotated rigid objects, such as quartz and feldspar objects. The kinematic vorticity number determined for high temperature mylonitic Abt schist in Al Amar area, extreme eastern Arabian Shield, ranges from ˜0.8 to 0.9. Obtained results from vorticity and strain analyses indicate that deformation in the area deviated from simple shear. It is concluded that nappe stacking occurred early during an earlier thrusting event, probably by brittle imbrications. Ductile strain was superimposed on the nappe structure at high-pressure as revealed by a penetrative subhorizontal foliation that is developed subparallel to tectonic contacts versus the underlying and overlying nappes. Accumulation of ductile strain during underplating was not by simple shear but involved a component of vertical shortening, which caused the subhorizontal foliation in the Al Amar area. In most cases, this foliation was formed concurrently with thrust sheets imbrications, indicating that nappe stacking was associated with vertical shortening.
NASA Astrophysics Data System (ADS)
Bicca, Marcos Müller; Jelinek, Andrea Ritter; Philipp, Ruy Paulo; de Carvalho Lana, Cristiano; Alkmim, Ana Ramalho
2018-02-01
The Permian-Triassic time interval was a period of high sedimentation rates in the intracontinental Karoo rift basin of northwestern Mozambique, reflecting high exhumation rates in the surrounding high ground Precambrian-Cambrian basement and juxtaposed nappes. U-Pb LA-MC-ICPMS dating and Lu-Hf isotopic analysis of detrital zircons from the Late Permian-Early Triassic Matinde Formation of the Karoo Supergroup is used as a reliable proxy to map denudation patterns of source regions. Data allow discrimination of U-Pb age populations of ca. 1250-900 Ma, a secondary population between ca. 900-700 and a major contribution of ages around ca. 700-490 Ma. Zircon grains of the Mesoproterozoic age population present Mesoproterozoic (1000-1500 Ma) to Paleoproterozoic (1800-2300 Ma) Hf TDM ages, with positive (0 to +11) and negative εHf values (-3 to -15), respectively. The younger U-Pb age population also presents two different groups of zircon grains according to Lu-Hf isotopes. The first group comprise Paleoproterozoic (1800-2300 Ma) ages, with highly negative εHf values, between -10 and -22, and the second group exhibits Mesoproterozoic ages (1200-1500 Ma), with increased juvenile εHf values (ca. 0 to -5). These Hf isotopes reinforce the presence of unexposed ancient crust in this region. The oldest U-Pb age population resembles the late stages of Grenville Orogeny and the Rodinia Supercontinent geotectonic activity mostly represented by magmatic rocks, which are widely present in the basement of northern Mozambique. The juvenile Hf-isotope signature with an older age component is associated to rocks generated from subduction processes with crust assimilation by continental arcs, which we correlate to rocks of the Nampula Complex, south and east of the Moatize-Minjova Basin. The U-Pb ages between 900 and 700 Ma were correlated to the calc-alkaline magmatism registered in the Guro Suite, related to the breakup phase of Rodinia, and mark the western limit of the Moatize-Minjova rift basin together with the Mungari Nappe and Chacocoma Granite, also probable sources. The εHf-isotopic signature (ca. -23 to 0) with Meso- and Paleoproterozoic Hf model ages of these zircons suggest assimilation of older crust by the Guro Suite continental arc. The Late Neoproterozoic - Cambrian U-Pb ages (ca. 700-490 Ma) comprise the wide interval of high-grade metamorphism, klippen and plutonism related to the Pan-African Orogeny. Hf-isotope pattern indicate high remelting of the older Mesoproterozoic and Paleoproterozoic crust. These ages correspond to magmatic and granulite metamorphic ages of the Monapo and Mugeba klippen, Nampula Complex and Guro Suite/Mungari Nappe/Chacocoma Granite rocks. The data suggests that these units were main source areas for the sediments of the Matinde Formation. The main Cambrian ages are related to the late stages of Pan-African Orogeny, marked by crustal delamination in NE Mozambique that was responsible for an extensive crustal partial melting associated to high-grade granulitic metamorphism and generation of large granitic plutons. The Nampula Complex was probably a large geotectonic entity in the Late Mesoproterozoic and reworked during the Pan-African Orogeny. This evidence, added to the N-NW paleoflow of the Proto-Zambezi river and provenance data, suggests that the Nampula Complex, Guro Suite and its juxtaposed nappes formed a high ground source area for fluvial sediments that fills the Moatize-Minjova Basin. Permian-Triassic rifting in northern Mozambique was induced by far-field stresses transferred from Gondwana margins. This stress disrupted the Nampula Complex reactivating Precambrian structures and fabrics, while the Jurassic-Cretaceous breakup of Gondwana and latter landscape evolution led to its actual morphology and configuration.
UHT overprint of HP rocks? A case study from the Adula nappe complex (Central Alps, N Italy)
NASA Astrophysics Data System (ADS)
Tumiati, Simone; Zanchetta, Stefano; Malaspina, Nadia; Poli, Stefano
2014-05-01
The Adula-Cima Lunga nappe complex is located on the eastern flank of the Lepontine Dome and represents the highest of the Lower Penninic units of the Central Alps. The Adula nappe largely consists of orthogneiss and paragneiss of pre-Mesozoic origin, variably retrogressed eclogites preserved as boudins within paragneiss, minor ultramafic bodies and metasedimentary rocks of presumed Mesozoic age. The higher metamorphic conditions have been estimated for the peridotite lenses in the southern part of the nappe at pressure over 3.0 GPa and temperature of 800-850°C. Garnet lherzolite bodies crop out at three localities, from west to east: Cima di Gagnone, Alpe Arami and Mt. Duria. After the partial subduction of the European distal margin beneath the Africa-Adria margin, the HP rocks were overprinted by an upper amphibolite facies metamorphism that postdates the main phase of nappe stacking. In the southern sector of the Lepontine Dome, adjacent to the Insubric Fault, metamorphic conditions promoted extensive migmatization of both metasedimentary and metagranitoid rocks. In one single outcrop, at Monte Duria, garnet lherzolites occur in m-sized boudins hosted within partly granulitized amphibole-bearing and k-feldspar gneisses that contain also some decimeter-sized boudins of both mafic and metapelitic eclogites. This rock association is in turn embedded within the migmatitic gneisses that form most of the southern sector of the Adula nappe. Petrographic and chemical analyses indicate that garnet peridotite is composed of olivine (XMg=0.88), orthopyroxene, clinopyroxene and garnet (Py68; Cr2O3 up to 1.45 wt%) with inclusions of Cr-rich spinel (up to Cr/(Al+Cr)=0.55) surrounded by kelyphitic symplectites of opx + cpx/amph + spl. These reaction produced double coronas, one composed of opx (former ol) and one composed of cpx + opx+ spl. In one kelyphite, we observed the uncommon occurrence of ZrO2 (baddeleyite) and ZrTi2O6 (srilankite). Tiny crystals of these two Zr-bearing phases (˜1 μm) are invariably located in the opx corona after ol. The cpx + opx + spl corona (after grt) contains, instead, zircon. Baddeleyite should have formed through a reaction of the type Mg2SiO4 + ZrSiO4 = MgSiO3 + ZrO2. ZrO2 and ZrTi2O6 display a low amount of solid solution. These compositions are consistent with T below 1200°C, but an improvement of the thermodynamic model is needed in order to better constrain the T of the granulitic overprint on the basis of these Zr-bearing phases. In mafic eclogites, the HP association consists of garnet (Py40Alm37Sp20), omphacite (preserved as inclusion, containing Jd30 and Mg# 0.87), kyanite and minor quartz. Omphacite is almost always replaced by cpx (Jd5) + plag (An55) symplectites. Garnet is surrounded by plag (An33) + opx (En70) symplectites. Kyanite is replaced by plag (An84) + spinel + sapphirine. The spinel-sapphirine Fe-Mg thermometer suggests T of about 850°C due to granulite-facies overprint. We observed sapphirine associated with cpx + opx + plag also in kelyphites after garnet in clinopyroxenites. In eclogitic metapelites, kyanite is replaced by a corundum + anorthite ± spinel assemblage. A corundum-rich layer occurs between eclogites and the host gneiss. Cm-sized emerald green zoisite in this layer is replaced by anorthitic plagioclase ± cpx ± spinel ± calcite. The observed assemblages point to a diffuse granulitization of both the peridotites and the hosting HP rocks of Mt. Duria, suggesting a nearly isothermal decompression from peak-pressure conditions. The surrounding migmatitic gneiss do not display evidence of such granulitic event, having been formed at T<700°C. The mechanism and timing of emplacement of the garnet peridotite and associated HP-HT rocks in the country migmatites, and whether or not the subduction event is related to the Alpine or to an older orogenic cycle are still a matter of debate.
NASA Astrophysics Data System (ADS)
Rubino, Jean-Loup; Mercier, Louison; Daghdevirenian, Laurent; Migeon, Sébastien; Bousquet, Romain; Broucke, Olivier; Raisson, Francois; Joseph, Philippe; Deschamp, Remi; Imbert, Patrice
2017-04-01
Described since a long time, the Schistes à Blocs Fm is the ultimate member of the famous tertiary Grès d'Annot Sandstones in southern alpine foredeep basin in SE France. It mainly consists of shales, silty shales, debris flows, olistoliths and a subordinate amount of sandstones. Since their introduction, and because of their location down to major thrust sheet, they have been considered as a tectono-sedimentary unit linked to the nappe's emplacement and refer as an olistostrome, (Kerckove 1964-1969). However they are separated from the underlying Annot Sandstones by a major erosional surface which deeply cuts, up to 500m, into the sandy turbidites; this surface definitively predates the infill and the nappe emplacement. This is supported by the fact that imbricates affect the upper part of the Schistes and also because of the age; the Schistes à Blocs being Upper Eocene to Lower Oligocene whilst the nappe is latest Oligocene to Lower Miocene. A detailed analysis of the erosional surface in la Bonette area reveals a complex geometry which shows obvious similarities with these observed either on submarine canyons or in slope dissected by gullies as shown by numerous seabeams or 3D seismic images. The infill is quite complex, no basal lag have been observed, however bioturbations suggest occurrence of by pass. Most commonly the lower part of the infill is made of muddy or silty sediments. In some areas, decametric to pluri hectometric olistoliths are interbedded within these deposits. Debris flows are also common with a muddy matrix and finally isolated turbidite channels including the same material than in the Annot Sandstones occur. The reworked material into the debris flows and in the olistoliths suggests that it doesn't only derived from canyon flanks (sandstones) but includes elements belonging to older tethyan series such as Triassic and Liassic carbonates which must be exposed on the sea floor on local highs in the more internal part of the Alps but much earlier than the nappe emplacement. In the forthcoming weeks, thanks to an already done drone acquisition of the cliffs, a 3D gridded model will be realize and will allow to discriminate if we are dealing with a major canyon with lateral irregularities or if, all incisions must be interpreted as numerous gullies entrenching the slope, it will also help to restore the offset of small normal faults affecting the surface. Such type of features are of primary importance in the deep sea sediment routine system; very few examples of mud filled prone canyon are published and because of the outcrop quality, this example can become a world class analog; particularly to highlight potential hydrocarbon trapping mechanism in turbidite systems. Many other outcrops, of a coeval Fm occur all along the Alps from Italy to Switzerland and can provide opportunities to analyze variation of geometrical elements and describe additional facies participating to the infill.
Coupled effects of impact and orogeny: Is the marine Lockne crater, Sweden, pristine?
NASA Astrophysics Data System (ADS)
Kenkmann, T.; Kiebach, F.; Rosenau, M.; Raschke, U.; Pigowske, A.; Mittelhaus, K.; Eue, D.
Our current understanding of marine-impact cratering processes is partly inferred from the geological structure of the Lockne crater. We present results of a mapping campaign and structural data indicating that this crater is not pristine. In the western part of the crater, pre-impact, impact, and post-impact rocks are incorporated in Caledonian thrust slices and are subjected to folding and faulting. A nappe outlier in the central crater depression is a relic of the Caledonian nappe cover that reached a thickness of more than 5 km. The overthrusted crater is gently deformed. Strike of strata and trend of fold axes deviate from standard Caledonian directions (northeast-southwest). Radially oriented crater depressions, which were previously regarded as marine resurge gullies formed when resurging seawater erosively cut through the crater brim, are interpreted to be open synclines in which resurge deposits were better preserved.The presence of the impact structure influenced orogenesis due to morphological and lithological anomalies of the crater: i) a raised crater brim zone acted as an obstacle during nappe propagation, (ii) the occurrence of a central crater depression caused downward sagging of nappes, and (iii) the lack of an appropriate detachment horizon (alum shale) within the crater led to an enhanced mechanical coupling and internal deformation of the nappe and the overthrusted foreland. Preliminary results of 3-D-analogue experiments suggest that a circular high-friction zone representing the crater locally hinders nappe propagation and initiates a circumferentially striking ramp fault that delineates the crater. Crustal shortening is also partitioned into the crater basement and decreases laterally outward. Deformation of the foreland affected the geometry of the detachment and could be associated with the activation of a deeper detachment horizon beneath the crater. Strain gradients both vertically and horizontally result in non-plane strain deformation in the vicinity of the crater. The strain tensors in the hanging and foot walls may deviate up to 90° from each other and rotated by up to 45° with respect to the standard regional orientation. The observed deflection of strata and fold axes within the Lockne crater area as revealed by field mapping is in agreement with the pattern of strain partitioning shown in the analogue models.
NASA Astrophysics Data System (ADS)
Epin, Marie-Eva; Manatschal, Gianreto; Amann, Méderic; Lescanne, Marc
2017-04-01
Despite the fact that many studies have investigated mantle exhumation at magma-poor rifted margins, there are still numerous questions concerning the 3D architecture, magmatic, fluid and thermal evolution of these ultra-distal domains that remain unexplained. Indeed, it has been observed in seismic data from ultra-distal magma-poor rifted margins that top basement is heavily structured and complex, however, the processes controlling the morpho-tectonic and magmatic evolution of these domains remain unknown. The aim of this study is to describe the 3D top basement morphology of an exhumed mantle domain, exposed over 200 km2 in the fossil Platta domain in SE Switzerland, and to define the timing and processes controlling its evolution. The examined Platta nappe corresponds to a remnant of the former ultra-distal Adriatic margin of the Alpine Tethys. The rift-structures are relatively well preserved due to the weak Alpine tectonic and metamorphic overprint during the emplacement in the Alpine nappe stack. Detailed mapping of parts of the Platta nappe enabled us to document the top basement architecture of an exhumed mantle domain and to investigate its link to later, rift/oceanic structures, magmatic additions and fluids. Our observations show a polyphase and/or complex: 1) deformation history associated with mantle exhumation along low-angle exhumation faults overprinted by later high-angle normal faults, 2) top basement morphology capped by magmato-sedimentary rocks, 3) tectono-magmatic evolution that includes gabbros, emplaced at deeper levels and subsequently exhumed and overlain by younger extrusive magmatic additions, and 4) fluid history including serpentinization, calcification, hydrothermal vent, rodingitization and spilitization affecting exhumed mantle and associated magmatic rocks. The overall observations provide important information on the temporal and spatial evolution of the tectonic, magmatic and fluid systems controlling the formation of ultra-distal magma-poor rifted margins as well as the processes controlling lithospheric breakup. In this context, our field observations can help to better understand the tectono-magmatic processes associated to these, not yet drilled domains that may form in young, narrow rifted margins (e.g. Red Sea, Gulf of Aden) or may represent the Ocean-Continent Transition in more mature, magma-poor Atlantic type systems.
NASA Astrophysics Data System (ADS)
Siegesmund, S.; Oriolo, S.; Heinrichs, T.; Basei, M. A. S.; Nolte, N.; Hüttenrauch, F.; Schulz, B.
2018-03-01
New U-Pb and Lu-Hf detrital zircon data together with whole-rock geochemical and Sm-Nd data were obtained for paragneisses of the Austroalpine basement south of the Tauern Window. Geochemically immature metasediments of the Northern-Defereggen-Petzeck (Ötztal-Bundschuh nappe system) and Defereggen (Drauzug-Gurktal nappe system) groups contain zircon age populations which indicate derivation mainly from Pan-African orogens. Younger, generally mature metasediments of the Gailtal Metamorphic Basement (Drauzug-Gurktal nappe system), Thurntaler Phyllite Group (Drauzug-Gurktal nappe system) and Val Visdende Formation (South Alpine Basement) were possibly derived from more distant sources. Their significantly larger abundances of pre-Pan-African zircons record a more advanced stage of downwearing of the Pan-African belts and erosion of older basement when the Austroalpine terrane was part of the Early Palaeozoic Northern Gondwana passive margin. Most zircon age spectra are dominated by Ediacaran sources, with lesser Cryogenian, Tonian and Stenian contributions and subordinate Paleoproterozoic and Neoarchean ages. These age patterns are similar to those recorded by Cambro-Ordovician sedimentary sequences in northeastern Africa between Libya and Jordan, and in some pre-Variscan basement inliers of Europe (e.g. Dinarides-Hellenides, Alboran microplate). Therefore, the most likely sources seem to be in the northeastern Saharan Metacraton and the Northern Arabian-Nubian Shield (Sinai), further supported by whole-rock Sm-Nd and zircon Lu-Hf data.
NASA Astrophysics Data System (ADS)
Kassem, Osama M. K.
2011-05-01
Finite-strain was studied in the mylonitic granitic and metasedimentary rocks in the northern thrust in Wadi Mubarak belt to show a relationship to nappe contacts between the old granitic and metavolcano-sedimentary rocks and to shed light on the heterogeneous deformation for the northern thrust in Wadi Mubarak belt. We used the Rf/ϕ and Fry methods on feldspar porphyroclasts, quartz and mafic grains from 7 old granitic and 7 metasedimentary samples in the northern thrust in Wadi Mubarak belt. The finite-strain data shows that old granitic rocks were moderate to highly deformed and axial ratios in the XZ section range from 3.05 to 7.10 for granitic and metasedimentary rocks. The long axes (X) of the finite-strain ellipsoids trend W/WNW and E/ENE in the northern thrust in Wadi Mubarak belt. Furthermore, the short axes (Z) are subvertical associated with a subhorizontal foliation. The value of strain magnitudes mainly constants towards the tectonic contacts between the mylonitic granite and metavolcano-sedimentary rocks. The data indicate oblate strain symmetry (flattening strain) in the mylonitic granite rocks. It is suggested that the accumulation of finite strain was formed before or/and during nappe contacts. The penetrative subhorizontal foliation is subparallel to the tectonic contacts with the overlying nappes and foliation was formed during nappe thrusting.
Lian, Jijian; Zhang, Wenjiao; Ma, Bin; Liu, Dongming
2017-01-01
As excess water is discharged from a high dam, low frequency noise (air pulsation lower than 10 Hz, LFN) is generated and propagated in the surrounding areas, causing environmental hazards such as the vibration of windows and doors and the discomfort of local residents. To study the generation mechanisms and key influencing factors of LFN induced by flood discharge and energy dissipation from a high dam with a ski-jump type spillway, detailed prototype observations and analyses of LFN are carried out. The discharge flow field is simulated and analyzed using a gas-liquid turbulent flow model. The acoustic response characteristics of the air cavity, which is formed between the discharge nappe and dam body, are analyzed using an acoustic numerical model. The multi-sources generation mechanisms are first proposed basing on the prototype observation results, vortex sound model, turbulent flow model and acoustic numerical model. Two kinds of sources of LFN are studied. One comes from the energy dissipation of submerged jets in the plunge pool, the other comes from nappe-cavity coupled vibration. The results of the analyses reveal that the submerged jets in the plunge pool only contribute to an on-site LFN energy of 0–1.0 Hz, and the strong shear layers around the high-velocity submerged jets and wall jet development areas are the main acoustic source regions of LFN in the plunge pool. In addition, the nappe-cavity coupled vibration, which is induced when the discharge nappe vibrates with close frequency to the model frequency of the cavity, can induce on-site LFN energy with wider frequency spectrum energy within 0–4.0 Hz. By contrast, the contribution degrees to LFN energy from two acoustic sources are almost same, while the contribution degree from nappe-cavity coupled vibration is slightly higher. PMID:29189750
NASA Astrophysics Data System (ADS)
Ulrich, Marc; Picard, Christian; Guillot, Stéphane; Chauvel, Catherine; Cluzel, Dominique; Meffre, Sébastien
2010-03-01
The origin of the New Caledonia ophiolite (South West Pacific), one of the largest in the world, is controversial. This nappe of ultramafic rocks (300 km long, 50 km wide and 2 km thick) is thrust upon a smaller nappe (Poya terrane) composed of basalts from mid-ocean ridges (MORB), back arc basins (BABB) and ocean islands (OIB). This nappe was tectonically accreted from the subducting plate prior and during the obduction of the ultramafic nappe. The bulk of the ophiolite is composed of highly depleted harzburgites (± dunites) with characteristic U-shaped bulk-rock rare-earth element (REE) patterns that are attributed to their formation in a forearc environment. In contrast, the origin of spoon-shaped REE patterns of lherzolites in the northernmost klippes was unclear. Our new major element and REE data on whole rocks, spinel and clinopyroxene establish the abyssal affinity of these lherzolites. Significant LREE enrichment in the lherzolites is best explained by partial melting in a spreading ridge, followed by near in-situ refertilization from deeper mantle melts. Using equilibrium melting equations, we show that melts extracted from these lherzolites are compositionally similar to the MORB of the Poya terrane. This is used to infer that the ultramafic nappe and the mafic Poya terrane represent oceanic lithosphere of a single marginal basin that formed during the late Cretaceous. In contrast, our spinel data highlights the strong forearc affinities of the most depleted harzburgites whose compositions are best modeled by hydrous melting of a source that had previously experienced depletion in a spreading ridge. The New Caledonian boninites probably formed during this second stage of partial melting. The two melting events in the New Caledonia ophiolite record the rapid transition from oceanic accretion to convergence in the South Loyalty Basin during the Late Paleocene, with initiation of a new subduction zone at or near the ridge axis.
Driessen, A J; Hellingwerf, K J; Konings, W N
1987-09-15
The energetics of neutral and branched chain amino acid transport by membrane vesicles from Streptococcus cremoris have been studied with a novel model system in which beef heart mitochondrial cytochrome c oxidase functions as a proton-motive force (delta p) generating system. In the presence of reduced cytochrome c, a large delta p was generated with a maximum value at pH 6.0. Apparent H+/amino acid stoichiometries (napp) have been determined at external pH values between 5.5 and 8.0 from the steady state levels of accumulation and the delta p. For L-leucine napp (0.8) was nearly independent of the pH. For L-alanine and L-serine napp decreased from 0.9-1.0 at pH 5.5 to 0-0.2 at pH 8.0. The napp for the different amino acids decreased with increasing external amino acid concentration. At pH 6.0, first order rate constants for amino acid exit (kex) under steady state conditions for L-leucine, L-alanine, and L-serine were 1.1-1.3, 0.084, and 0.053 min-1, respectively. From the pH dependence of kex it is concluded that amino acid exit in steady state is the sum of two processes, pH-dependent carrier-mediated amino acid exit and pH-independent passive diffusion (external leak). The first order rate constant for passive diffusion increased with increasing hydrophobicity of the side chain of the amino acids. As a result of these processes the kinetic steady state attained is less than the amino acid accumulation ratio predicted by thermodynamic equilibrium. The napp determined from the steady state accumulation represents, therefore, a lower limit. It is concluded that the mechanistic stoichiometry (n) for L-leucine, L-alanine, and L-serine transport most likely equals 1.
NASA Astrophysics Data System (ADS)
Mogk, D. W.
1984-12-01
Six major rock units in the North Snowy Block in an Archean mobile belt are recognized between all units representing discontinuities in metamorphic grade, structural style, geochemistry, and isotopic ages. Four of the units occur in NE trending linear belts; the Basement Gneiss; the phyllitic Davis Creek Schist; the mount cowen augen gneis; the Paragneiss unit. Overlying the linear units is the 3.2 Ga old Pine Creek Nappe Complex, an isoclinally folded, middle to upper amphibolite facies, thrust nappe consisting of the Barney Creek Amphibolite, George Lake Marble and Jewel Quartzite. The highest structural units, including a thick sequence of upper amphibolite grade supracrustal rocks and a lower section of injected 3.4 Ga old granitic to tonalitic migmatitic rocks were emplaced on the Columbine Thrust. It is shown that there was secular variation in tectonic style in the Archean of southwest Montana. Three stages are recognized: (1) melting of ancient matic crust produced trondhjemitic continental nuclei; (2) numerous ensialic basins were created and destroyed, resulting in high grade metamorphism and mignatization of supracrustal rocks; and (3) contemporary style plate tectonics resulted in generation of large volumes of andesities and calc-alkaline granitic rocks, transcurrent faulting, and thrust faulting.
NASA Astrophysics Data System (ADS)
Gasiński, M. Adam; Olshtynska, Alexandra; Uchman, Alfred
2013-12-01
Gasiński, M.A., Olshtynska, A. and Uchman, A. 2013. Late Maastrichtian foraminiferids and diatoms from the Polish Carpathians (Ropianka Formation, Skole Nappe): a case study from the Chmielnik-Grabowka composite section. Acta Geologica Polonica, 63
NASA Astrophysics Data System (ADS)
Clos, Frediano; Gilio, Mattia; van Roermund, Herman L. M.
2014-04-01
Formation conditions of olivine microstructures are investigated in the Kittelfjäll spinel peridotite (KSP), a fragment of lithospheric mantle which occurs as an isolated body within high grade metamorphic crustal rocks of the Seve Nappe Complex (SNC), southern Västerbotten, central Sweden. The KSP is an orogenic peridotite containing a well developed penetrative compositional layering, defined by highly depleted dunite with olivine Mg# (100 × Mg/Mg + Fe) of 92.0-93.5 and harzburgite with lower Mg# (91.0-92.5). Dunite is characterized by three contrasting olivine microstructures formed in response to different tectonometamorphic events: Coarse-grained, highly strained olivine porphyroclasts (M1) up to 20 cm long are surrounded by dynamically recrystallized olivine grains (M2) defining a characteristic olivine "foam" microstructure (grain size: 200-2000 μm). An olivine "mortar" (M3) microstructure (10-50 μm) forms a penetrative fabric element only in strongly localized, cm-to-m sized shear zones that crosscut earlier structures/foliations. Olivine fabric analysis in synergy, with mineralogical and chemical analyses, reveals that the KSP body represents old, possibly Archean, sub-continental lithospheric mantle that was crustally emplaced into the Caledonian tectonic edifice from the hanging wall mantle during exhumation of the subducted Seve Nappe Complex (Jämtlandian orogeny ~ 454 Ma). Olivine porphyroclasts (M1) grew at high temperature during dominant isobaric cooling after extensive polybaric melt extraction (> 40%) and subsequent refertilization. The onset of the early Caledonian deformation is interpreted to be related to the crustal emplacement of the KSP during eduction of the SNC. This phase is characterized by the development of the olivine M2 foam microstructure, formed at 650-830 °C/1-2 GPa by dislocation creep processes producing an E-type CPO's by the operation of the [100](001) and subordinate [001](100) slip systems with operating flow stress levels around 8-48 MPa. In contrast the M3 olivine "mortar" microstructure formed at 550-600 °C/0.45-0.6 GPa and represents deformation after the subducted slab had returned to shallow crustal levels. It is proposed here that the presence of a penetrative olivine M2 "foam" microstructure can be used as an easy tool in the field to discriminate between mantle wedge (i.e. sub-continental affinity), ophiolite (i.e. sub-oceanic affinity), and/or hyper-extensional peridotite in the Scandinavian Caledonides. The latter two peridotite subtypes may have similar M2 microstructures, but exclusively restricted to the structural base of the bodies. Alternatively in basal parts of ophiolites, M3 microstructures directly overprint coarser grained proto-granular olivine microstructures.
Schorn, Anja; Neubauer, Franz; Genser, Johann; Bernroider, Manfred
2013-01-11
For the reconstruction of Alpine tectonics of the Eastern Alps, the evaporitic Permian to Lower Triassic Haselgebirge Formation plays a key role in (1) the origin of Haselgebirge bearing nappes, (2) the inclusion of magmatic and metamorphic rocks revealing tectonic processes not preserved in other units, and (3) the debated mode of emplacement of the nappes, namely gravity-driven or tectonic. Within the Moosegg quarry of the central Northern Calcareous Alps gypsum/anhydrite bodies are tectonically mixed with lenses of sedimentary rocks and decimeter- to meter-sized tectonic clasts of plutonic and subvolcanic rocks and rare metamorphics. We examined various types of (1) widespread biotite-diorite, meta-syenite, (2) meta-dolerite and rare ultramafic rocks (serpentinite, pyroxenite) as well as (3) rare metamorphic banded meta-psammitic schists and meta-doleritic blueschists. The apparent 40 Ar/ 39 Ar biotite ages from three biotite-diorite, meta-dolerite and meta-doleritic blueschist samples with variable composition and fabrics range from 248 to 270 Ma (e.g., 251.2 ± 1.1 Ma) indicating a Permian age of cooling after magma crystallisation or metamorphism. The chemical composition of biotite-diorite and meta-syenite indicates an alkaline trend interpreted to represent a rift-related magmatic suite. These, as well as Permian to Jurassic sedimentary rocks, were incorporated during Cretaceous nappe emplacement forming the sulphatic Haselgebirge mélange. The scattered 40 Ar/ 39 Ar white mica ages of a meta-doleritic blueschist (of N-MORB origin) and banded meta-psammitic schist are ca. 349 and 378 Ma, respectively, proving the Variscan age of pressure-dominated metamorphism. These ages are similar to detrital white mica ages reported from the underlying Rossfeld Formations, indicating a close source-sink relationship. According to our new data, the Haselgebirge bearing nappe was transported over the Lower Cretaceous Rossfeld Formations, which include many clasts derived from the Haselgebirge Formation and its exotic blocks deposited in front of the incoming nappe comprising the Haselgebirge Formation.
NASA Astrophysics Data System (ADS)
Beltrando, Marco; Zibra, Ivan; Montanini, Alessandra; Tribuzio, Riccardo
2013-05-01
Rift-related thinning of continental basement along distal margins is likely achieved through the combined activity of ductile shear zones and brittle faults. While extensional detachments responsible for the latest stages of exhumation are being increasingly recognized, rift-related shear zones have never been sampled in ODP sites and have only rarely been identified in fossil distal margins preserved in orogenic belts. Here we report evidence of the Jurassic multi-stage crustal thinning preserved in the Santa Lucia nappe (Alpine Corsica), where amphibolite facies shearing persisted into the rift to drift transition. In this nappe, Lower Permian meta-gabbros to meta-gabbro-norites of the Mafic Complex are separated from Lower Permian granitoids of the Diorite-Granite Complex by a 100-250 m wide shear zone. Fine-grained syn-kinematic andesine + Mg-hornblende assemblages in meta-tonalites of the Diorite-Granite Complex indicate shearing at T = 710 ± 40 °C at P < 0.5 GPa, followed by deformation at greenschist facies conditions. 40Ar/39Ar step-heating analyses on amphiboles reveal that shearing at amphibolite facies conditions possibly began at the Triassic-Jurassic boundary and persisted until t < 188 Ma, with the Mafic Complex cooling rapidly at the footwall of the Diorite-Granite Complex at ca. 165.4 ± 1.7 Ma. Final exhumation to the basin floor was accommodated by low-angle detachment faulting, responsible for the 1-10 m thick damage zone locally capping the Mafic Complex. The top basement surface is onlapped at a low angle by undeformed Mesozoic sandstone, locally containing clasts of footwall rocks. Existing constraints from the neighboring Corsica ophiolites suggest an age of ca. 165-160 Ma for these final stages of exhumation of the Santa Lucia basement. These results imply that middle to lower crustal rocks can be cooled and exhumed rapidly in the last stages of rifting, when significant crustal thinning is accommodated in less than 5 Myr through the consecutive activity of extensional shear zones and detachment faults. High thermal gradients may delay the switch from ductile shear zone- to detachment-dominated crustal thinning, thus preventing the exhumation of middle and lower crustal rocks until the final stages of rifting.
Stille, P.; Tatsumoto, M.
1985-01-01
Major element, trace element and Sm-Nd isotope analyses were made of polymetamorphic hornblendefelses, plagioclase amphibolites and banded amphibolites from the Berisal complex in the Simplon area (Italy, Switzerland) to determine their age, origin and genetic relationships. In light of major and rare earth element data, the hornblendefelses are inferred to have originally been pyroxene-rich cumulates, the plagioclase amphibolites and the dark layers of the banded amphibolites to have been tholeiitic basalts and the light layers dacites. The Sm-Nd isotope data yield isochron ages of 475??81 Ma for the hornblendefelses, 1,018??59 Ma for the plagioclase amphibolites and 1,071??43 Ma for the banded amphibolites. The 1 Ga magmatic event is the oldest one ever found in the crystalline basement of the Pennine nappes. The Sm -Nd isotope data support the consanguinity of the tholeiitic dark layers and the dacitic light layers of the banded amphibolites with the tholeiitic plagioclase amphibolites and the ultramafic hornblendefelses. The initial e{open}Nd values indicate that all three rock types originated from sources depleted in light rare earth elements. We suggest that plagioclase and banded amphibolites were a Proterozoic tholeiite-dacite sequence that was strongly deformed and flattened during subsequent folding. The hornblendefelses are thought to be Cambrian intrusions of pyroxene-rich material. ?? 1985 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Stephenson, R.; Bocin, A.; Tryggvason, A.
2003-12-01
The DACIA-PLAN (Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics) deep seismic reflection survey was performed in August-September 2001, with the objective of obtaining of new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basins developed within and adjacent to the seismically-active Vrancea Zone, including the rapidly subsiding Focsani Basin. The DACIA-PLAN profile is about 140 km long, having a roughly NW-SE direction, from near the southeast Transylvanian Basin, across the mountainous southeastern Carpathians and their foreland to near the Danube Dalta. A high resolution 2D velocity model of the upper crust along the seismic profile has been determined from a first-arrival tomographic inversion of the DACIA-PLAN data. The shallowing of Palaeozoic-Mesozoic basement, and related structural heterogeneity within it, beneath the eastern flank of the Focsani Basin is clearly seen. Velocity heterogeneity within the Carpathian nappe belt is also evident and is indicative of internal structural complexity, including the presence of salt bodies and basement involvement in thrusting, thus favouring some current geological models over others. The presence of basement involvement implies the compressional reactivation of pre-existing basement normal faults. Members of the DACIA-PLAN/TomoSeis Working Group (see poster) should be considered as co-authors of this presentation.
NASA Astrophysics Data System (ADS)
Stille, P.; Tatsumoto, M.
1985-04-01
Major element, trace element and Sm-Nd isotope analyses were made of polymetamorphic hornblendefelses, plagioclase amphibolites and banded amphibolites from the Berisal complex in the Simplon area (Italy, Switzerland) to determine their age, origin and genetic relationships. In light of major and rare earth element data, the hornblendefelses are inferred to have originally been pyroxene-rich cumulates, the plagioclase amphibolites and the dark layers of the banded amphibolites to have been tholeiitic basalts and the light layers dacites. The Sm-Nd isotope data yield isochron ages of 475±81 Ma for the hornblendefelses, 1,018±59 Ma for the plagioclase amphibolites and 1,071±43 Ma for the banded amphibolites. The 1 Ga magmatic event is the oldest one ever found in the crystalline basement of the Pennine nappes. The Sm -Nd isotope data support the consanguinity of the tholeiitic dark layers and the dacitic light layers of the banded amphibolites with the tholeiitic plagioclase amphibolites and the ultramafic hornblendefelses. The initial ɛ Nd values indicate that all three rock types originated from sources depleted in light rare earth elements. We suggest that plagioclase and banded amphibolites were a Proterozoic tholeiite-dacite sequence that was strongly deformed and flattened during subsequent folding. The hornblendefelses are thought to be Cambrian intrusions of pyroxene-rich material.
NASA Astrophysics Data System (ADS)
Epin, Marie-Eva; Manatschal, Gianreto; Amann, Méderic
2016-04-01
Studies in the Alps suggest that remnants of former Ocean-Continent Transitions (OCT) can be preserved, even in internal parts of mountain belts. In the past, these units have been erroneously interpreted as either mélanges related to subduction channels or polyphase penetrative Alpine deformation. Good examples have been described from the eclogitic Piemonte units in the Western Alps and in Corsica [Beltrando et al., 2014], leading to the question of what may have controlled the preservation of these structures. In our study we used the example of the Err-Platta nappes that expose remnants of the OCT of the former Alpine Tethys. The aim of our presentation is to: 1) define the characteristic features of an OCT across a fossil magma-poor rifted margin, and 2) show the control of the rift-inherited structures during the subsequent reactivation of the OCT. The characteristics of OCTs at magma-poor rifted margins are the juxtaposition of serpentinized mantle and crustal rocks and pre-rift sediments limited by brittle extensional detachment faults sealed by syn- and post-tectonic sediments locally associated with magmatic rocks. Thus, in contrast to proximal margins, where lithologies are continuous layer cakes, OCTs are characterized by non-continuous layers and isolated blocks. To identify extensional detachment faults in mountain belts, different fingerprints can be found such as fault rocks (gouges and cataclasites) that bear a mantle derived fluid signature, or the occurrence of massive breccias that contain clasts of the underlying exhumed basement. Using field examples, we will show how Alpine structures selectively reactivated some inherited structures of the OCT, while others remained undeformed and were preserved in the nappe stack. How far the complex morphology, fault architecture and rheology of OCTs control the reactivation is still unclear, however, it appears that serpentinization fronts, or former extensional detachment faults may have played a key role during the reactivation of the margin. This study allows us to reconsider "mélange zone" described in many collisional orogens, and to test, using diagnostic criteria and field observations, if they could represent former OCTs. Beltrando et al. Earth Science Reviews (2014)
NASA Astrophysics Data System (ADS)
Wenning, Q. C.; Almqvist, B. S. G.; Zappone, A. S.
2015-12-01
The COSC-1 scientific borehole was drilled in the summer of 2014 to ~2.5 km depth to study the structure and composition of the Middle Allochthon of the Central Scandinavian Caledonides. It crosscuts the amphibolite-grade lower part of the Seve nappe and intersects a mylonite zone in the lower 800 m of the borehole. We selected six core samples representing the primary lithologies in the COSC-1 borehole for laboratory investigation of elastic properties. The cores consisted of two amphibolites with differing grain sizes, a calc-silicate gneiss, a felsic gneiss, a coarse grained amphibole bearing gneiss, and a garnet bearing mylonitic schist from the basal shear zone. Both P- and S-waves were measured at ultrasonic frequency (1 MHz), and room temperature hydrostatic pressure conditions up to 260 MPa. Measurements were made along three mutually perpendicular directions, one perpendicular to foliation and two parallel to the foliation with one aligned with mineral lineation. Vp and Vs, anisotropy, and elastic properties are reported as an extrapolation of the high-pressure portion of the ultrasonic measurements back to the intersection with the zero pressure axis. The Vp and Vs in the direction perpendicular to foliation ranges from 5.51-6.67 km/s and 3.18-4.13 km/s, respectively. In the direction parallel to foliation the Vp and Vs ranges from 6.31-7.25 km/s and 3.52-4.35 km/s, respectively. Vp anisotropy ranges from 3% in the calc-silicate gneiss to 18% in mylonitic schist. Acoustic impedance estimations at lithostatic pressure conditions at base of the borehole (70 MPa) show that acoustic impedance contrast generating reflection coefficients between the basal shear zone and overlying units are significant enough to cause seismic reflections. Above the mylonite zone/shear zone, the reflectivity within the lower Seve nappe is due to the impedance contrast between the felsic gneiss and the amphibolite. This result fits with 3D seismic reflection imaging in the area of the borehole. Layered anisotropic mica-schists of metasedimentary origin are suitable candidates for reflections in the middle crust of orogens.
Magma-poor and magma-rich segments along the hyperextended, pre-Caledonian passive margin of Baltica
NASA Astrophysics Data System (ADS)
Andersen, Torgeir B.; Alsaif, Manar; Corfu, Fernando; Jakob, Johannes; Planke, Sverre; Tegner, Christian
2015-04-01
The Scandinavian Caledonides constitute a more than 1850 km long 'Himalayan-type' orogen, formed by collision between Baltica-Avalonia and Laurentia. Subduction-related magmatism in the Iapetus ended at ~430 Ma and continental convergence continued for ~30 Myr until ~400 Ma. The collision produced a thick orogenic wedge comprising the stacked remnants of the rifted to hyperextended passive Baltican margin (Andersen et al. 2012), as well as suspect, composite and outboard terranes, which were successively emplaced as large-scale nappe complexes onto Baltica during the Scandian collision (see Corfu et al. 2014 for a recent review). Large parts (~800 km) of the mountain-belt in central Scandinavia, particularly in the Särv and Seve Nappes and their counterparts in Troms, are characterised by spectacular dyke complexes emplaced into continental sediments (e.g. Svenningsen 2001, Hollocher et al. 2007). These constitute a magma-rich segment formed along the margin of Baltica or within hyperextended continental slivers outboard of Baltica. The intensity of the pre-Caledonian magmatism is comparable to that of the present NE-Atlantic and other volcanic passive margins. The volumes and available U-Pb ages of 610-597 Ma (Baird et al. 2014 and refs therein) suggest that the magmatism was short lived, intense and therefore compatible with a large igneous province (LIP). By analogy with present-day margins this LIP may have been associated with continental break-up and onset of sea-floor spreading. The remnants of the passive margin both north and south of the magma-rich segment have different architectures, and are almost devoid of rift/drift related magmatic rocks. Instead, these magma-poor segments are dominated by heterogeneous sediment-filled basins characterised by the abundant presence of solitary bodies of variably altered mantle peridotites, also commonly present as detrital serpentinites. These basins are interpreted to have formed by hyperextension. We suggest that the pre-Caledonian margin of Baltica underwent hyperextension until break-up, which was associated with emplacement of a LIP at ~600 Ma in the central segment. Andersen, T.B., Labrousse, L., Corfu, F. and Osmundsen, P.T., 2012: Evidence for hyperextension along the pre-Caledonian margin of Baltica. Jl. Geol. Soc. London, 601-612 Baird, G.B., Figg, SA. and Chamberlain, K.R., 2014: Intrusive age and geochemistry of the Kebne Dyke Complex in the Seve Nappe Complex, Kebnekaise Massif, arctic Sweden Caledonides, GFF, doi: 10.1080/11035897.2014.924553 Corfu, F., Andersen, T.B. and Gasser, D., 2014: The Scandinavian Caledonides: main features, conceptual advances and critical questions. Geol. Soc. London Spec. Publ. 390 doi:10.1144/SP390.25 Hollocher. K, Robinson, P., Walsh, E. and Terry M.P., 2007:The Neoproterozoic Ottfjellet dike swarm of the Middle Allochthon, traced geochemically into the hinterland, Western Gneiss Region, Norway. Am. Jl. Sci. 307, 901-953 Svenningsen, O., 2001: Onset of seafloor spreading in the Iapetus Ocean at 608Ma: precise age of the Sarek Dyke Swarm, northern Swedish Caledonides. Precambrian Res., 110, 241-254.
NASA Astrophysics Data System (ADS)
Weber, Sebastian; Martinez, Raul
2016-04-01
The Western Alpine Penninic domain is a classical accretionary prism that formed after the closure of the Penninic oceans in the Paleogene. Continental and oceanic nappes were telescoped into the Western Alpine stack associated with continent-continent collision. Within the Western Alpine geologic framework, the ophiolite nappes of the Zermatt-Saas Zone and the Tsate Unit are the remnants of the southern branch of the Piemonte-Liguria ocean basin. In addition, a series of continental basement slices reported as lower Austroalpine outliers have preserved an eclogitic high-pressure imprint, and are tectonically sandwiched between these oceanic nappes. Since the outliers occur at an unusual intra-ophiolitic setting and show a polymetamorphic character, this group of continental slices is of special importance for understanding the tectono-metamorphic evolution of Western Alps. Recently, more geochronological data from the Austroalpine outliers have become available that make it possible to establish a more complete picture of their complex geological history. The Lu-Hf garnet-whole rock ages for prograde growth of garnet fall into the time interval of 52 to 62 Ma (Weber et al., 2015, Fassmer et al. 2015), but are consistently higher than the Lu-Hf garnet-whole rock ages from several other locations throughout the Zermatt-Saas zone that range from 52 to 38 Ma (Skora et al., 2015). This discrepancy suggests that the Austroalpine outliers may have been subducted earlier than the ophiolites of the Zermatt-Saas Zone and therefore have been tectonically emplaced into their present intra-ophiolite position. This points to the possibility that the Zermatt-Saas Zone consists of tectonic subunits, which reached their respective pressure peaks over a prolonged time period, approximately 10-20 Ma. The pressure-temperature estimates from several members of the Austroalpine outliers indicate a complex distribution of metamorphic peak conditions, without ultrahigh-pressure indications. By contrast, the peak conditions derived from the ophiolites of the Zermatt-Saas Zone are uniform, and close to or inside the coesite stability field. These results further underline that the oceanic lithosphere, which experienced its geodynamic evolution as a relatively coherent unit, may contain slices of continental rocks, which in turn show differences in the metamorphic evolution compared to the surrounding ophiolites. Faßmer, K., Obermüller, G., Nagel, T.J., Kirst, F., Froitzheim, N., Sandmann, S., Miladinova, I., Fonseca, R.O.C., Münker, C. (2015): Coherent vs. non-coherent subduction of ophiolite complexes - new insights from the Zermatt-Saas Zone in the Western Alps. GeoBerlin 2015, Berlin, Germany. Skora, S., Mahlen, N. J., Johnson, C. M., Baumgartner, L. P., Lapen, T. J., Beard, B. L., Szilvagyi, E. T., 2015. Evidence for protracted prograde metamorphism followed by rapid exhumation of the Zermatt-Saas Fee ophiolite. Journal of Metamorphic Geology, 33, 711-734. Weber, S., Sandmann, S., Fonseca, R. O. C., Froitzheim, N., Mu¨ nker, C., Bucher, K., 2015. Dating the beginning of Piemonte-Liguria Ocean subduction: Lu-Hf garnet chronometry of eclogites from the Theodul Glacier Unit (Zermatt-Saas Zone, Switzerland). Swiss Journal of Geosciences, 108, 183-199.
Alpine Palaeogeography: new constraints from detrital zircon geochronology
NASA Astrophysics Data System (ADS)
Galster, Federico; Stockli, Daniel
2017-04-01
Schardt's (1898) discovery of the "allochtony" of the Préalpes Médianes and its exotic character, provided Alpine geologist with a first picture of Alpine palaeogeography: a Middle Jurassic sea divided in two branches by the rise of an emerged island. Later on, Schardt's island had been recognized at the scale of the Alpine belt and took the name of Briançonnais "geoanticline". In many Alpine palaeogeographic reconstructions, the Briançonnais and its exotic character have played a crucial role (e.g. Stampfli 1993; Manatschal et al., 2006;). In particular some of them explained the exotic character of the Briançonnais facies by proposing a pre-Cretaceous position located far from the Helvetic domain. In this view, the Briançonnais terrain was related to the Iberian plate and entered the Central Alpine system only after a Lower Cretaceous eastward drift associated with anticlockwise rotation of Iberia, opening of the northern Atlantic and closure of the Vardar ocean. In the Central Alps, the remnants of the northern Jurassic margin of the Alpine Tethys (sensu Stampfli) are contained in the Helvetic (s.l.) and Lower Penninic units. The basements and original substrate of these nappes are exposed in the crystalline external massifs and in the gneissic Lepontine dome. The highest, more internal, gneissic units within this dome are the Monte Leone, the Maggia and the Adula nappe. Theses units, as well as the autochthonous basement of the European margin, are characterized by large "Variscan" granitoids with ages between 290 and 330 Ma. The "ophiolite-bearing" units thrust on top of the Adula nappe are composed of Cretaceous and younger sedimentary rocks, with thin soles of Triassic and Jurassic strata. In addition to Variscan, Cambro-Ordovician and Proterozoic ages, detrital zircons in these soles show a peak at 260-280 Ma accompanied by a cluster of ca. 230 Ma zircons, similarly to what is observed in the Schams and Préalpes Médianes nappes (Briançonnais s.l.). This is particularly evident in the Tomul nappe, located at the top of the Lower Penninic pile below Briançonnais-derived units and in the Piz Terri-Lunschania zone (PTLZ), tectonically located between the Adula nappe and the "ophiolite-bearing" Grava nappe. In the PTLZ a Permo-Triassic of Briançonnais type is in stratigraphic contact with a Lower Jurassic of Helvetic type. Detrital zircon signatures in the Lower Jurassic sandstones of the PTLZ are very similar to those of the Helvetic. In contrast, locally sourced Permian and Middle Jurassic strata of the PTLZ show two remarkable features: a peak at 260-280Ma and the scarcity or absence of Variscan zircons (gap between 290 and 350Ma). Considering the basement of the different alpine domains, this characteristic is best explained by a Briançonnais-type basemet source that lacks widespread Variscan intrusions and is characterized by large "mid Permian" intrusions. The occurrence of different types of Briançonnais DZ U-Pb signatures in the pre-Cretaceous stratigraphic record of the distal Helvetic-North Penninic margin favors a Jurassic palaeogeography with the Briançonnais domain located south of the Helvetic domain and not directly related to the Iberian plate and its Cretaceous tectonic juxtaposition.
NASA Astrophysics Data System (ADS)
Kuśmierek, Jan; Baran, Urszula
2016-08-01
The discrepant arrangement of the Carpathian nappes and syntectonic deposits of the Carpathian Foredeep reveals the oroclinal migration of the subduction direction of the platform margin during the Late Cenozoic. Formation of the nappes was induced by their detachment from disintegrated segments of the European Platform; the segments were shortened as a result of their vertical rotation in zones of compressional sutures. It finds expression in local occurrence of the backward vergence of folding against the generally forward vergence toward the Carpathian Foredeep. The precompressional configuration of sedimentation areas of particular nappes was reconstructed with application of the palinspastic method, on the basis of the hitherto undervalued model which emphasizes the influence of the subduction and differentiated morphology of the platform basement on the tectonic evolution of the fold and thrust belt. Superposition of the palaeogeographic representations and the present geometry of the orogen allows understanding of the impact of the magnitudes of tectonic displacements on the differentiation of the geological structure in the NE segment of the Carpathians. The differentiation has inspired different views of Polish and Ukrainian geologists on structural classification and evolution of the frontal thrusts.
NASA Astrophysics Data System (ADS)
Márton, Emö; Madzin, Jozef; Bučová, Jana; Grabowski, Jacek; Plašienka, Dušan; Aubrecht, Roman
2017-04-01
The Hronic (Choč) units form the highest cover nappe system of the Central Western Carpathians which was emplaced over the Fatric (Krížna) nappe system during the Late Cretaceous. The Permian (red beds and lava flows) and Triassic (sediments) rocks, the main targets of our study, were affected only by diagenetic or very low-grade, burial-related recrystallization and were tilted and transported together. The pre-late Cretaceous sequence is overlapped by Paleogene mainly flysch sequences. Three laboratories (Bratislava, Budapest and Warsaw) were involved in standard paleomagnetic processing and AMS measurements of the samples, while Curie-points were determined in Budapest. The site/locality mean paleomagnetic directions obtained were significantly different from the local direction of the present Earth magnetic field, indicating the long term stability of the paleomagnetic signal. The magnetic fabrics varied from un-oriented to dominantly schistose with well-defined lineations. The latter were normally subhorizontal, although subvertical maxima also occurred among the Triassic sediments. Shallow inclinations, after tilt corrections, suggest near-equatorial position for most of the Permian and Lower Triassic, while around 20°N for the Middle-Upper Triassic localities. The paleomagnetic declinations are interpreted in terms of CW tectonic rotations, which are normally larger for the Permian than for the Triassic samples, although there are some differences within the same age groups. This may be attributed to differential movements during nappe emplacement or subsequent tectonic disturbances. For two localities from the Paleogene cover sequence of the Hronic units, close to the main sampling area (Low Tatra Mts) of the present study documented fairly large CCW rotations, thus obtained additional evidence for the general CCW rotation of the Central Western Carpathians during the Cenozoic. Thus, we conclude that the Cenozoic CCW rotation was pre-dated by large CW rotations, probably connected to the nappe emplacement. In addition, a pre-Jurassic moderate CW rotation is inferred from the difference in declinations between Triassic and Permian palaeomagnetic declinations. Acknowledgement: This work was financially supported by the Slovak Research and Development Agency under the contract No. APVV-0212-12 and by the Hungarian Scientific Research Fund OTKA K105245.
NASA Astrophysics Data System (ADS)
Erak, Dalibor; Matenco, Liviu; Toljić, Marinko; Stojadinović, Uroš; Andriessen, Paul A. M.; Willingshofer, Ernst; Ducea, Mihai N.
2017-07-01
Reactivation of inherited nappe contacts is a common process in orogenic areas affected by back-arc extension. The amount of back-arc extension is often variable along the orogenic strike, owing to the evolution of arcuated mountain chains during stages of rapid slab retreat. This evolution creates low rates of extension near rotation poles, where kinematics and interplay with the pre-existing orogenic structure are less understood. The amount of Miocene extension recorded by the Pannonian Basin of Central Europe decreases SE-wards along the inherited Cretaceous - Paleogene contact between the Dinarides and Carpathian Mountains. Our study combines kinematic data obtained from field and micro-structural observations assisted with fission track thermochronological analysis and U-Pb zircon dating to demonstrate a complex poly-phase evolution in the key area of the Jastrebac Mountains of Serbia. A first event of Late Cretaceous exhumation was followed by latest Cretaceous - Eocene thrusting and magmatism related to a continental collision that sutured the accretionary wedge containing contractional trench turbidites. The suture zone was subsequently reactivated and exhumed by a newly observed Miocene extensional detachment that lasted longer in the Jastrebac Mountains when compared with similar structures situated elsewhere in the same structural position. Such extensional zones situated near the pole of extensional-driven rotation favour late stage truncations and migration of extension in a hanging-wall direction, while directions of tectonic transport show significant differences in short distances across the strike of major structures.
NASA Astrophysics Data System (ADS)
Scharf, A.; Handy, M. R.; Favaro, S.; Schmid, S. M.; Bertrand, A.
2013-09-01
The Tauern Window exposes a Paleogene nappe stack consisting of highly metamorphosed oceanic (Alpine Tethys) and continental (distal European margin) thrust sheets. In the eastern part of this window, this nappe stack (Eastern Tauern Subdome, ETD) is bounded by a Neogene system of shear (the Katschberg Shear Zone System, KSZS) that accommodated orogen-parallel stretching, orogen-normal shortening, and exhumation with respect to the structurally overlying Austroalpine units (Adriatic margin). The KSZS comprises a ≤5-km-thick belt of retrograde mylonite, the central segment of which is a southeast-dipping, low-angle extensional shear zone with a brittle overprint (Katschberg Normal Fault, KNF). At the northern and southern ends of this central segment, the KSZS loses its brittle overprint and swings around both corners of the ETD to become subvertical, dextral, and sinistral strike-slip faults. The latter represent stretching faults whose displacements decrease westward to near zero. The kinematic continuity of top-east to top-southeast ductile shearing along the central, low-angle extensional part of the KSZS with strike-slip shearing along its steep ends, combined with maximum tectonic omission of nappes of the ETD in the footwall of the KNF, indicates that north-south shortening, orogen-parallel stretching, and normal faulting were coeval. Stratigraphic and radiometric ages constrain exhumation of the folded nappe complex in the footwall of the KSZS to have begun at 23-21 Ma, leading to rapid cooling between 21 and 16 Ma. This exhumation involved a combination of tectonic unroofing by extensional shearing, upright folding, and erosional denudation. The contribution of tectonic unroofing is greatest along the central segment of the KSZS and decreases westward to the central part of the Tauern Window. The KSZS formed in response to the indentation of wedge-shaped blocks of semi-rigid Austroalpine basement located in front of the South-Alpine indenter that was part of the Adriatic microplate. Northward motion of this indenter along the sinistral Giudicarie Belt offsets the Periadriatic Fault and triggered rapid exhumation of orogenic crust within the entire Tauern Window. Exhumation involved strike-slip and normal faulting that accommodated about 100 km of orogen-parallel extension and was contemporaneous with about 30 km of orogen-perpendicular, north-south shortening of the ETD. Extension of the Pannonian Basin related to roll-back subduction in the Carpathians began at 20 Ma, but did not affect the Eastern Alps before about 17 Ma. The effect of this extension was to reduce the lateral resistance to eastward crustal flow away from the zone of greatest thickening in the Tauern Window area. Therefore, we propose that roll-back subduction temporarily enhanced rather than triggered exhumation and orogen-parallel motion in the Eastern Alps. Lateral extrusion and orogen-parallel extension in the Eastern Alps have continued from 12 to 10 Ma to the present and are driven by northward push of Adria.
Adriatic indentation of the Eastern Alps - nature vs. analogue models
NASA Astrophysics Data System (ADS)
Favaro, S.; Scharf, A.; Schuster, R.; Handy, M. R.
2013-12-01
The Eastern Alps underwent late Oligocene-Miocene indentation by the Adriatic microplate, followed by rapid Miocene exhumation in the Tauern Window and orogen-parallel escape. Analogue models of indentation in the Eastern Alps indicate that exhumation of orogenic crust in front of the Adriatic indenter was coeval, with faults and post-nappe folds forming an asymmetrical conjugate pattern in front of the indenting block (Ratschbacher et al 1991, Rosenberg et al 2007). The amount and rate of exhumation is greatest at this location, but decrease laterally towards an unconfined boundary of the models that represents the retreating Carpathian subduction orogen. In nature, however, isotopic age patterns of deeply buried and exhumed basements rocks in the Tauern Window of the Eastern Alps indicate that cooling and possibly also exhumation were diachronous along strike of the orogen. In the westernmost Tauern Window, previous thermal modeling of fission-track ages (Fügenschuh et al 1997) revealed that rapid exhumation (≥ 1mm/a) lasted from 20-13 Ma and appears to have been triggered by sinistral transpression along the Guidicarie Belt beginning in Late Oligocene time. Rapid cooling (≥25°C/Ma) from 550 to 270°C lasted from 18-12 Ma (von Blanckenburg et al 1989; Fügenschuh et al 1997). In the easternmost part, however, rapid cooling from a similar peak temperature lasted from 23-20 Ma and ended no later than 17 Ma. Thus, rapid exhumation cannot have begun later than 23-21 Ma. Cooling patterns in the eastern central part of the Tauern Window are more complex and reflect the combined effects of doming and extensional exhumation. New Rb-Sr mica ages in post-nappe basement domes generally decrease from NW (muscovite: 26 Ma; biotite: 22 Ma) to SE (muscovite: 22 Ma; biotite: 18 Ma). We interpret these trends to show that doming began in the south-central part of the Tauern Window and then migrated to the SE while the entire basement nappe pile underwent orogen-parallel stretching. Tectonic thinning and excision of nappe units is greatest in the footwalls of low-angle normal faults at either end of the Tauern Window, indicating that the contribution of tectonic unroofing to the total amount of denudation increased going from the center to the ends of the Tauern Window. Although the map pattern of folding, faulting and exhumation looks similar in nature as in analogue models of Adriatic indentation, the actual timing of deformation in front of the indenter is not coeval. We attribute this discrepancy to one or a combination of two factors: (1) counterclockwise N-ward subduction of Adriatic lithosphere below the Tauern Window such that indentation migrated from E to W; (2) the irregular geometry of the leading edge of the indenter, with more rigid crustal units in the east leading to earlier strain localization than in the west.
NASA Astrophysics Data System (ADS)
Gruber, K.; Scholger, R.; Pueyo, E. L.
2010-05-01
Measurements of anisotropy of magnetic susceptibility (AMS) were carried out on samples from more than seventy sites collected in the Eastern Alps. The sites were taken alongside a North-South transect (about 15°30` East Longitude) from Scheibbs in the North to Kapfenberg in the South, comprising most of the Northern Calcareous Alps (NCA) nappes, Helvetic and Penninic Flysh units as well as the greywacke zone. Samples were taken in detail mostly in Mesozoic rocks of the NCA, from North to South: Bajuvaric (Frankenfels, Lunz, Sulzbach and Reisalpen nappes), Tirolic (Ötscher, Göller, Rotwald-Gindelstein nappes) and Juvavic (Mürzalpen nappe) system. Two to six sites per thrust sheet or nappe were analysed for a structural investigation of the relationship between magnetic fabric and tectonic strain. Standard paleomagnetic drill cores were taken. All measurements were performed in the Petrophysics and Paleomagnetic laboratories of the University of Leoben using AGICO MFK1-Kappabridge susceptibility system and a 2-G cryogenic magnetometer. Statistical evaluation of the AMS data was perfomed using the software package AGICO ANISOFT 4.2. (Chadima et al., 2009). Throughout the Eastern Alps transect distinct changes of the magnetic fabric are observed. Primary sedimentary fabrics and very low susceptibility values are dominant in most cases in the northernmost and southernmost part of the transect. Some inverse fabrics were found in few sites of the nappes and the percentage increases towards the south which might be related to tectonic events. Contrastingly, isotropic fabrics dominate in the middle part. The Helvetic and Penninic Flysh units yield in general weak oblate fabrics. A few sites show a tendency to inverse fabrics which indicate the presence of a certain amount of strain within this unit. The oblate fabrics of the Helvetic and Flysh units show either shallow NE dipping or slightly steeper SW dipping k1-axis orientation. Within the inverse fabrics, even steeper NE or SW dipping k1-axis are present. In a previous paleomagnetic study of the same samples (Pueyo et al., 2002) both, primary and secondary remanent magnetization vectors were observed. No significant rotations were detected in the Flysh units. All samples from the Bajuvaric system show dominantly very low susceptibility values and isotropic fabrics and were therefore excluded from further investigations. Bajuvaric nappes hardly show any significant rotations based on paleomagnetic data (Pueyo et al., 2002). The nappes of the Tirolic and Juvavic systems have very low susceptibility values but they increase slightly towards the south. The shape of the anisotropy ellipsoid remains oblate (group A) in most cases and the degree of anisotropy is very weak. Also more prolate fabrics (group B) are present. Group A and B show a trend to shallow N or S dipping k1-axis in the North. Further in the south the k1-axis of group A tend to dip steeply NE. Shallow NE or SW dipping and slightly steeper NE or SW dipping oriented prolate susceptibility ellipsoids are dominant in group B. Tirolic and Juvavic units display clockwise rotation ranging between 30 and more than 100° (Pueyo et al., 2002), which was assigned to block rotation. Shallow E dipping and NNW dipping oblate susceptibility ellipsoids are dominant in the Basement. A general increase of the degree of rotation (Pueyo et al., 2002) as well as better defined susceptibility ellipsoids with mainly oblate fabrics towards the south can be observed. Six Tertiary deviatoric paleostress tensor groups are described by Peresson & Decker (1997). The new AMS data will be presented and correlated to the young tectonic history of the Eastern Alps. The study was funded by the Austrian Academy of Sciences (ÖAW) in the frame of the Geophysics of the Earths Crust Programme. Peresson, H. and Decker, K., 1997. The Tertiary dynamics of the northern Eastern Alps (Austria): Changing palaeostresses in a collisional plate boundary, Tectonophysics, 272, 125 - 157. Pueyo, E.L., Schneider, M., Mauritsch, H.J., Scholger, R., Lein, R., 2002. A paleomagnetic cross section through the Eastern Northern Calcareous Alps: preliminary data in the Mariazell meridian. Pangeo poster.
NASA Astrophysics Data System (ADS)
Menant, A.; Angiboust, S.; Gerya, T.; Lacassin, R.; Simoes, M.; Grandin, R.
2017-12-01
Study of now-exhumed ancient subduction systems have evidenced km-scale tectonic units of marine sediments and oceanic crust that have been tectonically underplated (i.e. basally accreted) from the downgoing plate to the overriding plate at more than 30-km depth. Such huge mass transfers must have a major impact, both in term of long-term topographic variations and seismic/aseismic deformation in subduction zones. However, the quantification of such responses to the underplating process remains poorly constrained. Using high-resolution visco-elasto-plastic thermo-mechanical models, we present with unprecedented details the dynamics of formation and destruction of underplated complexes in subductions zones. Initial conditions in our experiments are defined in order to fit different subduction systems of the circum-Pacific region where underplating process is strongly suspected (e.g. the Cascadia, SW-Japan, New Zealand, and Chilean subduction zones). It appears that whatever the subduction system considered, underplating of sediments and oceanic crust always occur episodically forming a coherent nappe stacking at depths comprised between 10 and 50 km. At higher depth, a tectonic mélange with a serpentinized mantle wedge matrix developed along the plates interface. The size of these underplated complexes changes according to the subduction system considered. For instance, a 15-km thick nappe stacking is obtained for the N-Chilean subduction zone after a series of underplating events. Such an episodic event lasts 4-5 Myrs and can be responsible of a 2-km high uplift in the forearc region. Subsequent basal erosion of these underplated complexes results in their only partial preservation at crustal and mantle depth, suggesting that, after exhumation, only a tiny section of the overall underplated material can be observed nowadays in ancient subduction systems. Finally, tectonic underplating in our numerical models is systematically associated with (1) an increasing thickness of the high-strained subduction channel and (2) an accumulation of fluid-rich materials that serve as an environment for episodic tremor and slip events assisted by tectonic shearing and fluid release and percolation.
NASA Astrophysics Data System (ADS)
Wenning, Quinn; Almquist, Bjarne; Ask, Maria; Schmitt, Douglas R.; Zappone, Alba
2015-04-01
The Caledonian orogeny, preserved in Scandinavia and Greenland, began with the closure of the Iapetus Ocean and culminated in the collision of Baltica and Laurentia cratons during the middle Paleozoic. The COSC scientific drilling project aims at understanding the crustal structure and composition of the Scandinavian Caledonides. The first well of the dual phase drilling program, completed in Summer of 2014, drilled through ~2.5 km of the Seve Nappe Complex near the town of Åre, Sweden. Newly acquired drill core and borehole logs provide fresh core material for physical rock property measurements and in-situ stress determination. This contribution presents preliminary data on compressional and shear wave ultrasonic velocities (Vp, Vs) determined from laboratory measurements on drill cores, together with in-situ stress orientation analysis using image logs from the first borehole of the Collisional Orogeny in the Scandinavian Caledonides project (COSC-1). An hydrostatically oil pressurized apparatus is used to test the ultrasonic Vp and Vs on three orthogonally cut samples of amphibolite, calcium bearing and felsic gneiss, meta-gabbro, and mylonitic schist from drill core. We measure directional anisotropy variability for each lithology using one sample cut perpendicular to the foliation and two additional plugs cut parallel to the foliation with one parallel to the lineation and the other perpendicular. Measurements are performed using the pulse transmission technique on samples subjected to hydrostatic pressure from 1-350 MPa at dry conditions. We present preliminary results relating Vp and Vs anisotropy to geologic units and degree of deformation. Additionally, we use acoustic borehole televiewer logs to estimate the horizontal stress orientation making use of well developed techniques for observed borehole breakouts (compressive failure) and drilling induced fractures (tensile failure). Preliminary observations show that very few drilling-induced tensile fractures are produced, and that borehole breakouts are episodic and suggests a NE-SW minimum horizontal stress direction
NASA Astrophysics Data System (ADS)
Săbău, Gavril; Negulescu, Elena
2014-05-01
Monazite U-Th-Pb chemical dating reaches an acceptable compromise between precision and accuracy on one side, and spatial resolution and textural constraints on the other side. Thus it has a powerful potential in testing the coherence of individual metamorphic basement units, and enabling correlations among them. Yet, sensitivity and specificity issues in monazite response to thermotectonic events, especially in the case of superposed effects, remain still unclear. Monazite dating at informative to detailed scale in the main metamorphic basement units of the Carpathians resulted in complex age spectra. In the main, the spectra are dominated by the most pervasive thermal and structural overprint, as checked against independent geochronological data. Post-peak age resetting is mostly present, but statistically subordinate. Resetting in case of superposed events is correlated with the degree of textural and paragenetic overprinting, inheritances being always indicated by more or less well-defined age clusters. The lack of relict ages correlating with prograde structural and porphyroblast zonation patterns is indicative for juvenile formations. Age data distribution in the Carpathians allowed distinction of pre-Variscan events, syn-metamorphic Variscan tectonic stacking of juvenile and reworked basement, post-Variscan differential tectonic uplift, as well as prograde metamorphic units ranging down to Upper Cretaceous ages. In the South Carpathians, the Alpine Danubian domain consists of several Variscan and Alpine thrust sheets containing a metamorphic complex dominated by Upper Proterozoic to Lower Cambrian metamorphic and magmatic ages (Lainici-Păiuş), and several complexes with metamorphic overprints ranging from Carboniferous to Lower Permian. Any correlation among these units, as well as geotectonic models placing a Lower Paleozoic oceanic domain between pre-existing Lainici-Păiuş and Drăgşan terranes are precluded by the age data. Other basement of the South Carpathians contain lower Paleozoic or older units intruded by Ordovician granitoids, imbricated with juvenile Variscan slivers, the structural sequence differing in individual basement complexes. So, in the Leaota Massif the lowermost term of the sequence is prograde Variscan, tectonically overlain by reworked lower Paleozoic gneisses, supporting thrust sheets with very low- to low-grade Variscan schists. In the Făgăraş Massif a lower Paleozoic (Cumpăna) complex bearing a strong Variscan overprint, straddles Variscan juvenile rocks, and the lowermost visible structural level is assumed by upper Carboniferous to Permian juvenile medium-grade metamorphic schists. In the Lotru Metamorphic Suite of the Alpine Getic Nappe, the Variscan stacking is overprinted by post-orogenic differential uplift, documented by the correlation among younging ages, structural and metamorphic low-pressure overprints, recording often higher metamorphic temperatures. The most spectacular structure is Upper Jurassic in age, contains high-grade metamorphic rocks and peraluminous anatectic granitoids, is outlined by a deformed boundary evolving from ductile to brittle regime during cooling, and induces a thermal overprint in the neighbouring rocks. In the basement units thrust over the Getic Nappe, the Sibişel unit yielded Permian prograde peak metamorphic ages and Triassic post-peak overprints, while an adjacent gneissic unit (Laz) delivered an exclusively Cretaceous age pattern. Unexpectedly young metamorphic ages resulted also for the East Carpathians and the Apuseni Mountains. While most of the ages obtained so far correspond to Variscan retrogression of older basement units, the lowermost structural unit of the infra-Bucovinian nappe system in the East Carpathians yielded Upper Cretaceous metamorphic ages in apparently monometamorphic medium-grade schists. In the Apuseni Mountains, schists of the Baia de Arieş Unit display an Upper Jurassic age spectrum, corresponding to a clearly prograde medium-grade event. The ages recorded not only question some of the currently accepted correlations among basement units, but urge to reconsideration of the way in which the basement-cover relationships are interpreted and extrapolated.
The nappes of the Lepontine dome: the influence of tectonic inheritance on their deformation style
NASA Astrophysics Data System (ADS)
Schenker, Filippo Luca; Ambrosi, Christian; Scapozza, Cristian; Czerki, Dorota; Castelletti, Claudio; Maino, Matteo; Gouffon, Yves
2017-04-01
The Lepontine dome exposes the tectonostratigraphy of the Central Alps, from bottom-to-top, the subpenninic gneissic nappes of the Leventina, Simano, Adula/Cima-Lunga and Maggia. These units were part of a post-Variscan gneissic crust, which was intensely intruded by several generations of granitoids forming laccoliths and dikes of different shapes and sizes within paragneisses, augengneisses and amphibolites. During the Alpine orogenic cycle this initial and complex geological architecture was reshaped into a fold and thrust belt. We present the effect of these initial rheological anomalies along the Leventina, Simano and Adula/Cima-Lunga units through the geological map of the Osogna sheet (Swiss National Map no. 1293,1:25'000) together with structural and metamorphic data. The geological map shows that the Simano and Adula/Cima-Lunga units have an internal and lateral lithological variation at different scales as illustrated by the geological cross-sections. All lithologies present a penetrative amphibolite-facies foliation, which can vary in intensity among the rock-types. On the foliation plane a mineral and stretching lineation is visible dipping NW or SE, depending on the plane dip direction. The kinematic analysis indicates a top-to-the NW shearing. Despite this consistent structural data showing a regional dominant fabric, the folds (generally with a fold-axis parallel to the lineation) show different styles, depending on the thickness and the rock-type of the folded horizon and matrix, do not form laterally continuous structures and often are not cylindrical. As a consequence, such structures are interpreted as local perturbation rather than structures of regional importance. Furthermore, the Leventina and the Simano boundary is locally incongruent with the tectonic contact of the published maps. The amphibolite and paragneisses, used in the past as nappe divider, result to be deformed magmatic xenoliths. Therefore we present evidence (i) of a bottom-to-top top-to-the-foreland deformation gradient between the Leventina and Adula/Cima-Lunga units, (ii) within this shearing, the inherited rheological heterogeneities in the units lead to non-coaxial ductile deformation complicating the tectonic understanding and (iii) the boundary between the Leventina and the Simano units was a magmatic contact, questioning the allochthonous character of the Simano unit.
NASA Astrophysics Data System (ADS)
Zhimulev, Fedor; de Grave, Johan; Travin, Aleksey; Buslov, Mikhail
2010-05-01
The Kokchetav metamorphic belt (KMB) is part of the Early Paleozoic orogenic belt of Northern Kazakhstan and constitutes one of the most famous, classical ultra-high pressure (UHP) metamorphic terranes. The KMB mainly consists of gneisses, mica schists and eclogites. These were formed by Cambrian continental subduction and associated metamorphism of the Precambrian Kokchetav microcontinent and subsequent exhumation of fragments of this metamorphosed continental crust. Several subterranes can be distinguished in the KMB: Barchi, Kumdi-Kol, Sulu-Tube, Enbek-Berlyk, Kulet and Borovoe. These subterranes differ not only in rock composition or in genetic pT conditions, but also in the age of the individual metamorphic events, including the timing of peak, and regressive stages. Most geochronological data indicate a Cambrian age of UHP and HP metamorphism and subsequent exhumation of the KMB. However, there is no field evidence of Cambrian geodynamic processes in the region: Cambrian sediments, volcanic rocks, or large magmatic bodies are completely absent in the KMB setting. The youngest geochronological information in the KMB was obtained on the garnet-mica schists from the Enbek-Berlyk subterrane. The 40Ar/39Ar ages of the muscovite from these schists lies in the range of 490 to 475 Ma (mainly 480-485 Ma). All 40Ar/39Ar stepwise heating experiments yield well-defined plateau and isochron ages. This age is considered to represent the time of emplacement of various heterogeneous nappes, including nappes that consist of HP - UHP metamorphic rocks, to upper crustal levels. To the north, the Kokchetav HP - UHP metamorphic belt is bounded by the Northern Kokchetav tectonic zone (NKTZ). This zone includes thin nappes of (1) Palaeo-Mesoproterozoic gneiss of the metamorphic basement of the Kokchetav microcontinent and Neoproterozoic meta-sandstones and dolomites of its deformed sedimentary cover, (2) pre-Ordovician volcanic rocks of island-arc affinity, (3) Early Ordovician turbidities with olistostrome lenses, and (4) gneiss with eclogite boudins. These nappes are tectonically juxtaposed distinctly against unmetamorphosed rocks. The fault zones between the different tectonic units are formed by quartz-muscovite schists. The 40Ar/39Ar ages of the muscovite from these schists cluster between 492-476 Ma (mainly about 490 Ma). The NKTZ was formed by the Early Ordovician collision between the Kokchetav microcontinent, including the Kokchetav metamorphic belt, and the Stepnyak island-arc. Late Ordovician and Silurian granites cross-cut the internal structural architecture of both the KMB and NKTZ, providing a relative upper age limit. As a consequence, only the youngest stage of the formation of the metamorphic belt is directly related to a collision event. Comparison of the structural-metamorphic history of the KMB with the regional geological context, indicates that tectonic exhumation of the Kokchetav HP - UHP rocks must be precollisional. In this model, the individual nappes, detached from the underthrusting slab during progressive continental subduction, were exhumated before subduction cessation. The observed imbricated-nappe structure in the field, where UHP and HP rocks are juxtaposed against unmetamorphosed Ordovician sediments and volcanic deposits was formed during subsequent Ordovician collisional deformation events.
NASA Astrophysics Data System (ADS)
Faber, C.; Rowe, C. D.; Miller, J. A.; Backeberg, N.; Sylvester, F.
2009-12-01
The apparently low frictional strength of faults during earthquake slip is not sufficiently well explained. Dynamic weakening has been observed in recent laboratory experiments at seismic slip rates, even if materials are strong at slow slip rates. Di Toro et al. (2004) performed experiments on crystalline rocks at slip rates of 1m/s and observed frictional strength drops to near zero. Examination of the slip surface revealed an amorophous silica had formed during fast slip and interpreted this as a solidified silica gel. If similar silica gel forms during earthquakes, and solidifies to amorphous silica, it would be expected to slowly crystallize over time. Ujiie et al (2007) reported a microcrystalline silica fault vein from the Shimanto Complex (Japan) which contains colloidal microspheres of silica, consistent with its origin as a silica gel. This vein may have been created during seismic slip, although other explanations are possible. No other natural examples of this potentially important coseismic weakening mechanism have been reported. To investigate whether silica gel actually forms during seismic slip, it will be necessary to discover and fully characterize additional natural examples. The Naukluft Nappe Complex in central Namibia is a foreland thrust stack at the distal southern margin of the Pan-African Damara Orogen (active at ~ 550Ma). A fault vein of microcrystalline silica has been found in an intra-nappe thrust fault . The vein occurs as a mostly continuous, planar, 0.1-1.0cm-thick fault vein within dolomite breccias of the Olive Fault. There are no other veins of silica associated with the fault. The hanging wall and footwall are dolomite and calcareous shales, respectively. The layer is petrographically similar to the microcrystalline silica described by Ujiie et al. (2007). The silica layer is purple-blue to white in color cathodoluminescence, in contrast to the bright turquoise typical of quartz. Although X-ray diffraction spectra show only silica and minor dolomite in the fault vein, SEM revealed the presence of small grains of Ti-oxides which have not been observed in the host rock. The cathodoluminescence has also revealed primary textures in the dolomite breccias which are overprinted by recrystallization and invisible in transmitted light . Transmission Electron Microscopy will be used to determine whether colloidal silica particles are present. The possible finding of the solidified silica gel in the Olive Fault is significant because it may represent a new way to identify fault surfaces which have slipped seismically in the past. In particular, the presence of this unusual silica vein in a carbonate-dominated environment is consistent with the experiments of Di Toro et al (2004) who suggested that quartz need not be present in the source rocks in order to form silica gel. Di Toro, G. et al. (2004) Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature, 427, 436-439 Ujie, K. et al. (2007) Fluidization of granular material in a subduction thrust at seismogenic depths. EPSL, 259, 307-318
Tectonic significance of Kibaran structures in Central and Eastern Africa
NASA Astrophysics Data System (ADS)
Rumvegeri, B. T.
Tectonical movements of the Kibaran belt (1400-950 Ma) can be subdivided into two major deformation events, corresponding to tight, upright or recumbent folds, thrust faults, nappes and stretching lineation with a general plunging southwards. At the regional scale, the stretching lineation, associated with thrust faults and nappes is interpreted as an indication of a northwards moving direction. The shear zone with mafic-ultramafic rocks across Burundi, MW-Tanzania, SW-Uganda and NE-Zaïre is the suture zone of the Kibaran belt. Kibaran metamorphism is plurifacial and has four epizodes. The second, syn-D2, is the most important and constitutes the climax; it reached the granulite facies. The succession of tectonic, metamorphic and magmatic features suggests geotectonic evolution by subduction-collision.
1956-12-01
34- 25 I I I POOL I I \\ 1 I v Alt VrTS I 0 f TAILWJ.J v GATE COf!TACTS NAPPE I z Q 20 >- ~ w _J 15 w / c_ r- 1-1-- [/> NlPPE OVERTOPS GATE...Q. 40 • 0 ... 0 35 Q. J 0:: 30 w ~ 0 ...J ... 25 0 z 0 20 I\\ POOL [5 "A;t VrTS jTAILWJJ t= ~ w ...J 15 r== == / GATE CONTACT...vGATE CONTACT,S NAPPE 30 w ~ 0 ..1 "- 25 0 z 0 20 ;::: ~ w ..1 15 w 10 ~ [> A’l VrTS 1\\ ~~ !iTAILWAt) 1\\ 0 z "- 1-=:1=:- 1\\ < w ..1
NASA Astrophysics Data System (ADS)
Mandl, Magdalena; Kurz, Walter; Hauzenberger, Christoph; Fritz, Harald; Klötzli, Urs; Schuster, Ralf
2018-01-01
The Variscan European Belt is a complex orogen with its southern margin partly obscured by Alpine tectonics and metamorphism. We present a study of one of the units, the Seckau Complex, that constitute the southern part of the Variscan European Belt in the Eastern Alps in order to clarify its origin, age and lithostratigraphy. The magmatic and geochronological evolution of this Complex in the northwestern part of the Seckau Nappe (as part of the Austroalpine Silvretta-Seckau Nappe System) was investigated by zircon Usbnd Pb dating of paragneisses and metagranitoids coupled with petrological and geochemical data. This reveals the distinction of three newly defined lithostratigraphic/lithodemic sub-units: (1) Glaneck Metamorphic Suite, (2) Hochreichart Plutonic Suite and (3) Hintertal Plutonic Suite. The Glaneck Metamorphic Suite is mainly composed of fine-grained paragneisses that yield Usbnd Pb zircon ages in the range between 2.7 Ga and 2.0 Ga, as well as concordia ages from 572 ± 7 Ma to 559 ± 11 Ma. All of these ages are interpreted as detrital zircon ages originating from an igneous source. The paragneisses are the host rock for the large volumes of metagranitoids of the Hochreichart Plutonic Suite and the Hintertal Plutonic Suite. The Hochreichart Plutonic Suite comprises highly fractionated melts with mainly S-type characteristics and late Cambrian to Early Ordovician Usbnd Pb zircon ages (508 ± 9 Ma to 486 ± 9 Ma), interpreted as magmatic protolith ages. The Hintertal Plutonic Suite is composed of metagranitoids with Late Devonian to early Carboniferous (365 ± 11 Ma and 331 ± 10 Ma) protolith ages, that intruded during an early phase of the Variscan tectonometamorphic event. The metagranitoids of the Hintertal Plutonic Suites define a magmatic fractionation trend, seen in variable Rb/Sr ratios. On this base they can be further subdivided into (a) the Griessstein Pluton characterized by S-type metagranitoids and (b) the Pletzen Pluton distinguished by intermediate to acidic metagranitoids with I-type affinity. The detrital zircon age spectra suggest a Neoproterozoic ancestry of the Glaneck Metamorphic Suite, which was located west of the Arabian Nubian Shield, probably next to the Trans-Saharan Belt. The early Paleozoic evolution of the recent Seckau Complex shows similarities to basement units of the Southalpine Unit, parts of the Austroalpine Unit and the Tatric and Veporic units of the Central Western Carpathians.
NASA Astrophysics Data System (ADS)
Łapcik, Piotr
2018-02-01
Deep-sea channels are one of the architectonic elements, forming the main conduits for sand and gravel material in the turbidite depositional systems. Deep-sea channel facies are mostly represented by stacking of thick-bedded massive sandstones with abundant coarse-grained material, ripped-up clasts, amalgamation and large scale erosional structures. The Manasterz Quarry of the Ropianka Formation (Upper Cretaceous, Skole Nappe, Carpathians) contains a succession of at least 31 m of thick-bedded high-density turbidites alternated with clast-rich sandy debrites, which are interpreted as axial deposits of a deep-sea channel. The section studied includes 5 or 6 storeys with debrite basal lag deposits covered by amalgamated turbidite fills. The thickness of particular storeys varies from 2.5 to 13 m. Vertical stacking of similar facies through the whole thickness of the section suggest a hierarchically higher channel-fill or a channel complex set, with an aggradation rate higher than its lateral migration. Such channel axis facies cannot aggrade without simultaneous aggradation of levee confinement, which was distinguished in an associated section located to the NW from the Manasterz Quarry. Lateral offset of channel axis facies into channel margin or channel levee facies is estimated at less than 800 m. The Manasterz Quarry section represents mostly the filling and amalgamation stage of channel formation. The described channel architectural elements of the Ropianka Formation are located within the so-called Łańcut Channel Zone, which was previously thought to be Oligocene but may have been present already in the Late Cretaceous.
NASA Astrophysics Data System (ADS)
Yeh, Meng-Wan
2007-05-01
The NE-SW trending gneiss domes around Baltimore, Maryland, USA, have been cited as classic examples of mantled gneiss domes formed by diapiric rise of migmatitic gneisses [Eskola, P., 1949. The problem of mantled gneiss domes. Quarterly Journal of Geological Society of London 104/416, 461-476]. However, 3-D analysis of porphyroblast-matrix foliation relations and porphyroblast inclusion trail geometries suggests that they are the result of interference between multiple refolding of an early-formed nappe. A succession of six FIA (Foliation Intersection Axes) sets, based upon relative timing of inclusion texture in garnet and staurolite porphyroblasts, revealed 6 superposed deformation phases. The successions of inclusion trail asymmetries, formed around these FIAs, document the geometry of deformation associated with folding and fabric development during discrete episodes of bulk shortening. Exclusive top to NW shear asymmetries of curvature were recorded by inclusion trails associated with the vertical collapsing event within the oldest FIA set (NE-SW trend). This strongly indicates a large NE-SW-striking, NW-verging nappe had formed early during this deformation sequence. This nappe was later folded into NE-SW-trending up-right folds by coaxial shortening indicated by an almost equal proportion of both inclusion trail asymmetries documented by the second N-S-trending FIA set. These folds were then amplified by later deformation, as the following FIA sets showed an almost equal proportion of both inclusion trail asymmetries.
NASA Astrophysics Data System (ADS)
Xypolias, P.; Iliopoulos, I.; Chatzaras, V.; Kokkalas, S.
2012-04-01
Detailed geological mapping, structural investigation and amphibole chemistry analyses in southern Evia (Aegean Sea, Greece) allow us to place new constraints on the internal structural architecture and tectonic evolution of the Cycladic Blueschists. We show that the early deformation history was related to ESE directed thrusting resulting in the stacking of the Styra and Ochi nappes, which constitute the Cycladic Blueschist unit in Evia. These early thrust movements initiated just before and proceeded at peak conditions of the Eocene high-pressure metamorphism. Subsequent constrictional deformation gave rise to E-W trending upright folding accomplished at the early exhumation stage. The main ductile-stage exhumation occurred during a single deformation phase associated with the decompression of blueschist rocks from the stability field of crossite to that of actinolite. This phase was characterized by localization of ductile deformation into a series of major, tens of meters thick, ENE directed shear zones, which cut up-section in their transport direction and restack the early thrust and fold sequence, locally bringing the structurally lower Styra nappe over the higher Ochi nappe. It is suggested that these zones operated as thrusts rather than normal sense shear zones as has been previously argued and were possibly formed during the Oligocene ENE-ward extrusion of the blueschists. Brittle-ductile NE dipping normal faulting of post-early Miocene age was probably responsible for the final exhumation of rocks.
Tectonic setting and strain analysis of Halaban Area, Eastern Arabian Shield, Saudi Arabia
NASA Astrophysics Data System (ADS)
Alamri, Y. A., II; Kassem, O. M. K.
2016-12-01
Finite strain technique was applied for Abt schist, sheared granitoids and volcanosedimentary rocks exposed at Halaban area, Eastern Arabian Shield. This study aims to attempt to decipher the relationship of these lithologies to nappe contacts and to clarify the nature of subhorizontal foliation pervasively recorded in the Halaban area. The Rf/φ and Fry methods are utilized on quartz and feldspar porphyroclasts, as well as on mafic crystals, such as hornblende and biotite, in eighteen samples. The X/Z axial ratios range from 1.12 to 4.99 for Rf/φ method and from 1.65 to 4.00 for Fry method. The direction of finite strain for the long axes displays clustering along the WNW trend (occasionally N) with slight plunging. The Z axes are subvertical and associated with a subhorizontal foliation. The data reveal oblate strain symmetry (flattening) and the strain magnitudes show no considerable increase towards the tectonic contacts. The obtained finite-strain data demonstrate that the sheared granitoids are mildly to moderately deformed. It is suggested that the accumulation of finite strain was not associated with any significant volume change. The penetrative subhorizontal foliation was concurrent with thrusting and shows nearly the same attitudes of tectonic contacts with the overlying nappes. Field relations and observations, together with finite stain data, are inconsistent with the proposed idea that nappes in orogens resulted from simple-shear deformation.
Blake, M. Clark; Moore, D.E.; Jayko, A.S.; Coleman, Robert G.
1995-01-01
The ultrahigh pressure metamorphic rocks (UHPM) of the Dora-Maira continental massif are overlain by a stack of oceanic nappes. Metamorphic grade appears to increase downward but with marked discontinuities between each of the nappes, suggesting that section has been removed along the bounding faults. This apparent omission of section is greatest in the lowest oceanic unit where a serpentinite melange containing blocks and slabs of eclogite, metamorphosed at 12–19 kbar, lies on the UHPM rocks. We suggest that this serpentinite melange represents a highly attenuated upper mantle section that structurally overlay the UHP rocks during subduction. Similar serpentinite melanges are known from other high-pressure (HP) and UHPM areas and may have a similar origin.
NASA Astrophysics Data System (ADS)
Shakerardakani, Farzaneh; Neubauer, Franz; Genser, Johann; Liu, Xiaoming; Dong, Yunpeng; Monfaredi, Behzad; Benroider, Manfred; Finger, Fritz; Waitzinger, Michael
2016-04-01
The Dorud-Azna region in the central Sanandaj-Sirjan metamorphic belt plays a key role in promoting the tectonic evolution of Zagros orogen, within the frame of the Arabia-Eurasia collision zone. From footwall to hangingwall, structural data combined with the U-Pb zircon and extensive 40Ar-39Ar mineral dating survey demonstrate three metamorphosed tectonic units, which include: (1) The Triassic June complex is metamorphosed within greenschist facies conditions, overlain by (2) the amphibolite-grade metamorphic Galeh-Doz orthogneiss, which is intruded by mafic dykes, and (3) the Amphibolite-Metagabbro unit. To the east, these units were intruded by the Jurassic Darijune gabbro. We present U-Pb detrital zircon ages of a garnet-micaschist from the Amphibolite-Metagabbro unit, which yield six distinctive age groups, including a previously unrecognized Late Grenvillian age population at ~0.93 to 0.99 Ga. We speculate that this unique Late Grenvillian group coupled with biogeographic evidence suggests either relationship with the South China craton or to the "Gondwana superfan". The laser ablation ICP-MS U-Pb zircon ages of 608 ± 18 Ma and 588 ± 41 Ma of the granitic Galeh-Doz orthogneiss reveals a Panafrican basement same as known from the Yazd block of Central Iran. Geochemistry and Sr-Nd isotopes of alkaline and subalkaline mafic dykes within the Galeh-Doz orthogneiss show OIB-type to MORB-type and indicate involvement of both depleted and enriched sources for its genesis. The new 40Ar-39Ar amphibole age of ca. 322.2 ± 3.9 Ma from the alkaline mafic dyke implies Carboniferous cooling age after intrusion. The metagabbros (including the Dare-Hedavand metagabbro with a 206Pb/238U age of 314.6 ± 3.7 Ma) and amphibolites with E-MORB geochemical signature of the Amphibolite-Metagabbro unit represent an Upper Paleozoic rift. The geochemical composition of the Triassic greenschist facies metamorphosed June complex, implying formation in a same, but younger tectonic environment. The Darijune gabbro with the mean U-Pb zircon age of 170.2 ± 3.1 Ma postdates greenschist facies-grade metamorphism. This age marks the beginning of the initial subduction of Neotethyan oceanic in a continental arc setting. The best average P-T estimates for the metamorphic mineral assemblages of the Galeh-Doz orthogneiss range between 600 ± 50 °C at 2 ± 0.8 kbar. The subsequent cooling history after an amphibolite facies-grade metamorphism has been constrained with 40Ar-39Ar amphibole ages of plateau ages between 240-260 Ma. The estimate P-T conditions for the Carboniferous metagabbro from core (580 ± 50 °C, 4.0 ± 0.8 kbar) to rim (700 ± 20 °C, 7.5 ± 0.7 kbar) are in favor of a prograde P-T path. The new 40Ar-39Ar mineral ages integrated with structural field and microfabric studies reveals that the amphibolite-grade Carboniferous metagabbro indicate a Late Carboniferous age of amphibolite-grade metamorphism associated with ductile deformation of the new-detected Galeh-Doz nappe (Galeh-Doz orthogneiss and Amphibolite-Metagabbro unit). In the same unit, two lenses of metapelite including a garnet-muscovite-biotite schist give a P-T estimate of garnet cores from 640 ± 20 °C at 6.2 ± 0.8 kbar and garnet rims from 680 ± 20 °C at 7.2 ± 1.0 kbar, as well as garnet-biotite schist that yield lower P-T conditions, which vary from 620 °C at 5.5 ± 0.5 kbar in garnet cores to 600 ± 30 °C at 4.0 ± 1.0 kbar in garnet rims. Chemical monazite ages from garnet micaschists are at 322 ± 28 Ma. 40Ar-39Ar experiments on white mica in the first and second types yield staircase patterns from ca. 36 to 170 Ma and a plateau age of 137.84 ± 0.65 Ma, respectively. Taking all data together, we suggest that amphibolite-grade metamorphism is Carboniferous and is overprinted by two events: (1) during Late Jurassic- Cretaceous during ductile dextral transpressive nappe emplacement of the Galeh-Doz nappe over the June complex (peak conditions of greenschist facies metamorphism at ca. 107 Ma followed by an overprint at 50 Ma) and (2) in ca. 50-32 Ma during shortening and emplacement of the metamorphic nappe complexes over unmetamorphic units of the Zagros orogen.
NASA Astrophysics Data System (ADS)
Çelebi, E. Ender; Öncel, M. Salim
2016-12-01
Weathering of sulfide minerals is a major source of acid production in nature and especially in mining territories. Pyrite is not the only principal mineral that generates acid drainage: other sulfide minerals (sphalerite, galena, chalcopyrite, etc.) may also be responsible for acid production. In addition to massive sulfide minerals, sulfide-bearing mine tailings may also produce acid drainage due to oxidation and hydrolysis reactions in waste dumps. The lead/zinc (Pb/Zn) mining region in Balya and Balıkesir, in Turkey, has operated mines intensively since the 1860s; so that characterization of the sulfide minerals and tailings situated and formed around the mining site is of great importance to secure a sustainable environment. For this purpose, acid production and neutralization potentials of massive sulfide ores of the region, and in the Pb/Zn process facility mine tailings from ten different points of tailings dam, have been determined by applied conventional Acid-Base Accounting (ABA) and Net Acid Generation (NAG) static tests after chemical and mineralogical analysis. The NAG pH and net acid production potential (NAPP) values were compared on a chart in order to classify the samples as either acid generating or non-acid generating. According to the comparisons, the sulfide minerals were classified as potentially acid forming (PAF). Massive pyrite had the highest NAPP and NAG pH value of 1966.6 kg H2SO4/ton and 1.91, respectively and the galena had the lowest NAPP value of 558.9 kg H2SO4/ton. However, the sphalerite NAG leachate pH value of 4.30 was the highest in sulfide minerals so that the sphalerite plotted near the uncertainty reference border in the PAF zone. In the mine tailings, NAPP values of 105.9 kg H2SO4/ton on average and the NAG pH values of over 7.5 were determined. In addition to these tests, water leaching (agitation test) was carried out on tailings in order to generate more information. The tailings did not generate acidic leachates as they lie on limestone bed rock which neutralized the acidity.
NASA Astrophysics Data System (ADS)
Gawlick, Hans-Jürgen; Aubrecht, Roman; Schlagintweit, Felix; Missoni, Sigrid; Plašienka, Dušan
2015-12-01
The causes for the Middle to Late Jurassic tectonic processes in the Northern Calcareous Alps are still controversially discussed. There are several contrasting models for these processes, formerly designated "Jurassic gravitational tectonics". Whereas in the Dinarides or the Western Carpathians Jurassic ophiolite obduction and a Jurassic mountain building process with nappe thrusting is widely accepted, equivalent processes are still questioned for the Eastern Alps. For the Northern Calcareous Alps, an Early Cretaceous nappe thrusting process is widely favoured instead of a Jurassic one, obviously all other Jurassic features are nearly identical in the Northern Calcareous Alps, the Western Carpathians and the Dinarides. In contrast, the Jurassic basin evolutionary processes, as best documented in the Northern Calcareous Alps, were in recent times adopted to explain the Jurassic tectonic processes in the Carpathians and Dinarides. Whereas in the Western Carpathians Neotethys oceanic material is incorporated in the mélanges and in the Dinarides huge ophiolite nappes are preserved above the Jurassic basin fills and mélanges, Jurassic ophiolites or ophiolitic remains are not clearly documented in the Northern Calcareous Alps. Here we present chrome spinel analyses of ophiolitic detritic material from Kimmeridgian allodapic limestones in the central Northern Calcareous Alps. The Kimmeridgian age is proven by the occurrence of the benthic foraminifera Protopeneroplis striata and Labyrinthina mirabilis, the dasycladalean algae Salpingoporella pygmea, and the alga incertae sedis Pseudolithocodium carpathicum. From the geochemical composition the analysed spinels are pleonastes and show a dominance of Al-chromites (Fe3+-Cr3+-Al3+ diagram). In the Mg/(Mg+ Fe2+) vs. Cr/(Cr+ Al) diagram they can be classified as type II ophiolites and in the TiO2 vs. Al2O3 diagram they plot into the SSZ peridotite field. All together this points to a harzburgite provenance of the analysed spinels as known from the Jurassic suprasubduction ophiolites well preserved in the Dinarides/Albanides. These data clearly indicate Late Jurassic erosion of obducted ophiolites before their final sealing by the Late Jurassic-earliest Cretaceous carbonate platform pattern.
NASA Astrophysics Data System (ADS)
Li, Botao; Massonne, Hans-Joachim
2017-04-01
The orogenic belt of the Betic Cordillera in southern Spain resulted from the collision of the African plate with the southwestern edge of the Eurasian plate in Alpine times. This belt can be considered as a large nappe stack with the Nevado-Filabride Complex in the eastern Betic Cordillera representing the lowest nappe, in which high-pressure (HP > 10 kbar) rocks such as eclogites occur. We have studied two metapelites from the Ragua (former Veleta) unit, which is the lowest unit of the Nevado-Filabride Complex. These rocks were sampled at Cerro de los Machos (sample 23085) and c. 3 km east of this locality at the Laguna de la Caldera (sample 23098) and contain quartz, potassic white-mica, paragonite, chlorite, garnet, biotite, tourmaline, epidote, rutile, ilmenite, apatite, zircon and monazite and titanite (23085) or calcite and albite (23098). Garnet in both rocks is similarly zoned. An inclusion-rich core shows a prograde metamorphic zonation with high and low Mn contents in the center (e.g. for 23085: Alm64.5Grs27Py2.5Sps6) and at the rim (Alm84Grs8Py6Sps2), respectively, of the core domain. After corrosion of this domain a garnet mantle formed with an inner zone being again relatively rich in Mn and an outermost rim being poor in Mn. This mantle is significantly richer in Mg and poorer in Ca compared to the core domain. Potassic white-mica in the samples also shows a considerable compositional spread (Si = 3.05-3.20 in 23085 and 3.13-3.33 in 23098) with the highest Si contents in the core of potassic white-mica grains. To elucidate the metamorphic evolution of the rocks we calculated various P-T pseudosections for different H2O-CO2 contents and Fe3+/Fe2+ ratios with PERPLE_X. On the basis of the compositions of the garnet inner core and the highest Si content in potassic white mica contrasting peak pressures at c. 535˚ C resulted for the rocks (23085: 12.8 kbar, 23098: 18.3 kbar). A subsequent pressure release to about 8 (23085) or 5 kbar (23098) at slightly enhanced temperatures followed. A second P-T loop was derived from the garnet mantle compositions reaching peak temperatures close to 600˚ C, supported by Zr-in-rutile thermometry, at pressures of about 10 kbar. Nearly 100 electron microprobe analyses of small relics of corroded monazite yielded ages between 50 and 11 Ma. Y2O3 contents in monazite were between 0 and 1 wt.%. Monazite relics included in the garnet mantle gave an average age of 24.2 ± 3.2 Ma. We suppose that the peak pressures in the HP range of the early metamorphic loop were attained already in Eocene times, whereas the rocks experienced peak temperatures in the Late Oligocene. The exhumation of the rocks in the Eocene might have happened in an exhumation channel being located between the colliding continental plates. The material in the exhumation channel consisted mainly of previously subducted oceanic crust (eclogite) and sediments deposited at the margin of the plates. The Late Oligocene event is related to nappe stacking forming the Betic Cordillera.
NASA Astrophysics Data System (ADS)
Balen, Dražen; Lihter, Iva; Massonne, Hans-Joachim
2016-04-01
The internal structure of the Tisia (Tisza) Mega-Unit in the Alpine-Carpathian-Dinaridic orogenic system encompasses large Alpine nappe systems brought to its present-day position by complex regional-scale movements. The Slavonian Mountains are part of the Bihor nappe system which is below the Codru and above the Mecsek nappe systems. The low-grade metamorphic schist unit of the Slavonian Mountains includes numerous rocks which were previously related to Precambrian and/or Lower Paleozoic orogeneses. However, recent studies (e.g. Balen, 2014, European Geosciences Union General Assembly, EGU 2014-6122) show that the metapelites of this unit should be attributed to the Alpine orogeny and the poorly known P-T conditions, which they experienced, should be refined. Although metapelites can be sensitive to changes of metamorphic conditions and, therefore, be suitable for the P-T estimation of metamorphic event(s), the extraction of mineral assemblages, being in equilibrium, and associated microtectonic data for particular low-grade metamorphic rocks is not straightforward. On the contrary, due to lack of suitable minerals and complex mictotectonic features, one can be faced with a severe problem concerning (dis)equilibrium. To avoid this, the observation scale in the research was set to the sub-mm level taking into account microtectonic positions of minerals. The investigated samples from the Slavonian Mountains are fine-grained schists consisting of chlorite (15-30 vol. %), white mica (15-25 vol. %), quartz (10-25 vol. %), feldspars (albite 10-15 vol. %; some K-feldspar), biotite (<5 vol. %), opaques (<5 vol. %), and accessory minerals (zircon, monazite, xenotime, apatite, chalcopyrite, pyrite, barite, parisite-(Ce), rutile). The schists show complex microtectonic fabric including well-developed foliations, pervasive folding, crenulation and cleavage. Foliations are defined by the preferred orientation of phyllosilicates and thin quartz and feldspar ribbons. Chlorite and white mica oriented along the S1 foliation are up to 50 μm long grains whereas those oriented along the S2 foliation are as large as 500 μm. Chlorite is ripidolite; potassic white mica is muscovite to phengite. Both minerals show a systematic variation in chemical composition such as higher Si contents in white mica and lower XFe in chlorite of the S1 assemblage compared to the S2 assemblage. The application of classical chlorite thermometers, based on Si, Al, Fe, and Mg contents of chlorite, and phengite gave P-T conditions of 325-350 °C around 4.6 kbar and 315-330 °C around 3.8 kbar for the S1 and S2 minerals, respectively. Constructions of pseudosections in the system MnNCKFMASHTO with PERPLEX confirmed these P-T ranges yielding 3.1-4.7 kbar and 300-360 °C based on intersections of XFe (chlorite) and Si (phengite) isopleths. The P-T range is in accordance with the critical reaction chlorite + K-feldspar = biotite + K-white mica in the presence of quartz and H2O. The presented refinement of the P-T data for the studied metapelites combined with two sets of known monazite ages (113±20 and 82±23 Ma; Balen, 2014) has a significance in clarifying details of the geodynamic evolution during the Alpine orogeny. Financial support by the Croatian Science Foundation (IP-2014-09-9541) and T. Theye's help during microprobe work is greatly acknowledged.
Remote sensing of biomass and annual net aerial primary productivity of a salt marsh
NASA Technical Reports Server (NTRS)
Hardisky, M. A.; Klemas, V.; Daiber, F. C.; Roman, C. T.
1984-01-01
Net aerial primary productivity is the rate of storage of organic matter in above-ground plant issues exceeding the respiratory use by the plants during the period of measurement. It is pointed out that this plant tissue represents the fixed carbon available for transfer to and consumption by the heterotrophic organisms in a salt marsh or the estuary. One method of estimating annual net aerial primary productivity (NAPP) required multiple harvesting of the marsh vegetation. A rapid nondestructive remote sensing technique for estimating biomass and NAPP would, therefore, be a significant asset. The present investigation was designed to employ simple regression models, equating spectral radiance indices with Spartina alterniflora biomass to nondestructively estimate salt marsh biomass. The results of the study showed that the considered approach can be successfully used to estimate salt marsh biomass.
NASA Astrophysics Data System (ADS)
Bastida, F.; Brime, C.; García-López, S.; Sarmiento, G. N.
The palaeotemperature distribution in the transition from diagenesis to metamorphism in the western nappes of the Cantabrian Zone (Somiedo, La Sobia and Aramo Units) are analysed by conodont colour alteration index (CAI) and illite crystallinity (IC). Structural and stratigraphic control in distribution of CAI and IC values is observed. Both CAI and IC value distributions show that anchizonal conditions are reached in the lower part of the Somiedo Unit. A disruption of the thermal trend by basal thrusts is evidenced by CAI and IC values. There is an apparent discrepancy between the IC and CAI values in Carboniferous rocks of the Aramo Unit; the IC has mainly anchizonal values, whereas the CAI has diagenetic values. Discrepant IC values are explained as a feature inherited from the source area. In the Carboniferous rocks of the La Sobia Unit, both IC and CAI indicate diagenetic conditions. The anchimetamorphism predated completion of emplacement of the major nappes; it probably developed previously and/or during the early stages of motion of the units. Temperature probably decreased when the metamorphosed zones of the sheets rose along ramps and were intensely eroded. In the context of the Iberian Variscan belt, influence of tectonic factors on the metamorphism is greater in the internal parts, where the strain and cleavage are always present, than in the external parts (Cantabrian Zone), where brittle deformation and rock translation are dominant, with an increasing role of the burial on the metamorphism.
Potential cretaceous play in the Rharb basin of northern Morocco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jobidon, G.P.
1993-09-01
The autochthonous Cretaceous in the Rharb basin of northern Morocco is located underneath a cover of neogene sediments and of the Prerif nappe olistostrome, which was emplaced during the Tortonian 7 m.y. The presence of infranappe Cretaceous sediments is documented in a few onshore wells in the Rharb basin and in the adjacent Prerif Rides area, as well as in the Rif Mountains. Their presence in the deeper portion of the Rharb basin is difficult to detail because of poor seismic resolution data beneath dispersive prerif nappe. A recent study of offshore seismic data acquired by PCIAC in 1987 indicatesmore » that the infranappe interval can be more than 1500 m thick in some of the offshore Kenitra area. These sediments have seismic signatures that would correspond to Middle Cretaceous transgressions, culminating with a Turonian highstand. Their deposition systems were located on the northern and western flanks of the Meseta and were followed by a hiatus lasting until the Miocene. Regional studies of gravity and magnetic data provide and additional understanding of the Rif province, its evolution, and the possible presence of autochthonous Cretaceous sediments below the prerif nappe cover. The infranappe of Rharb basin has a good potential to develop into a major hydrocarbon play with the presence of middle Cretaceous reservoir rocks, Turonian-Cenomanian black shale source rocks, as well as the timely combination of trap formation, source rock maturation, and hydrocarbon migration.« less
Tectonic setting and hydrocarbon habitat of external Carpathian basins in Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dicea, O.; Morariu, D.C.
1993-09-01
During the Alpine evolution of Romania, two distinct depositional areas evolved in the external zones of the Carpathians: the Paleogene flysch and Neogene Molasse basin of the eastern Carpathians, and the Paleogene and Neogene Molasse basin of the southern Carpathians. Both basins were compressionally deformed during the Neogene, giving rise to the development of a succession of nappes and thrust sheets. The internal elements of the external Carpathians corresponding to the Tarcau and marginal folds nappes and the external elements forming the sub-carpathian nappe and foredeep were thrusted over significant distances onto the European platform. Intense exploration of the externalmore » Carpathian thrustbelt has led to the discovery of more than 100 oil and gas pools. Reservoirs are provided by Oligocene, Burdigalian, Sarmatian, and Pliocene clastic rocks. A prolific hydrocarbon charge is derived from regionally distributed Oligocene oil source rocks. Traps are mainly of the structural type and involve faulted anticlines, [open quotes]scale folds,[close quotes] and compressional structures modified by salt; stratigraphic pinch-out and unconformity related traps play a secondary role. On the basis of selected examples, the development and distribution of hydrocarbon pools will be discussed in terms of thrust kinematics and the structure of different platform blocks. The philosophy of past exploration activities will be reviewed, and both success cases and failures will be discussed. Remaining oil and gas plays, aimed at shallow as well as at deep objectives, will be highlighted.« less
NASA Astrophysics Data System (ADS)
Bergomi, M. A.; Dal Piaz, G. V.; Malusà, M. G.; Monopoli, B.; Tunesi, A.
2017-12-01
The continental crust involved in the Alpine orogeny was largely shaped by Paleozoic tectono-metamorphic and igneous events during oblique collision between Gondwana and Laurussia. In order to shed light on the pre-Alpine basement puzzle disrupted and reamalgamated during the Tethyan rifting and the Alpine orogeny, we provide sensitive high-resolution ion microprobe U-Pb zircon and geochemical whole rock data from selected basement units of the Grand St Bernard-Briançonnais nappe system in the Western Alps and from the Penninic and Lower Austroalpine units in the Central Alps. Zircon U-Pb ages, ranging from 459.0 ± 2.3 Ma to 279.1 ± 1.1 Ma, provide evidence of a complex evolution along the northern margin of Gondwana including Ordovician transtension, Devonian subduction, and Carboniferous-to-Permian tectonic reorganization. Original zircon U-Pb ages of 371 ± 0.9 Ma and 369.3 ± 1.5 Ma, from calc-alkaline granitoids of the Grand Nomenon and Gneiss del Monte Canale units, provide the first compelling evidence of Late Devonian orogenic magmatism in the Alps. We propose that rocks belonging to these units were originally part of the Moldanubian domain and were displaced toward the SW by Late Carboniferous strike-slip faulting. The resulting assemblage of basement units was disrupted by Permian tectonics and by Mesozoic opening of the Alpine Tethys. Remnants of the Moldanubian domain became either part of the European paleomargin (Grand Nomenon unit) or part of the Adriatic paleomargin (Gneiss del Monte Canale unit), to be finally accreted into the Alpine orogenic wedge during the Cenozoic.
Tertiary plate tectonics and high-pressure metamorphism in New Caledonia
Brothers, R.N.; Blake, M.C.
1973-01-01
The sialic basement of New Caledonia is a Permian-Jurassic greywacke sequence which was folded and metamorphosed to prehnite-pumpellyite or low-grade greenschist facies by the Late Jurassic. Succeeding Cretaceous-Eocene sediments unconformably overlie this basement and extend outwards onto oceanic crust. Tertiary tectonism occurred in three distinct phases. 1. (1) During the Late Eocene a nappe of peridotite was obducted onto southern New Caledonia from northeast to southwest, but without causing significant metamorphism in the underlying sialic rocks. 2. (2) Oligocene compressive thrust tectonics in the northern part of the island accompanied a major east-west subduction zone, at least 30 km wide, which is identified by an imbricate system of tectonically intruded melanges and by development of lawsonite-bearing assemblages in adjacent country rocks; this high-pressure mineralogy constituted a primary metamorphism for the Cretaceous-Eocene sedimentary pile, but was overprinted on the Mesozoic prehnite-pumpellyite metagreywackes. 3. (3) Post-Oligocene transcurrent faulting along a northwest-southeast line (the sillon) parallel to the west coast caused at least 150 km of dextral offset of the southwest frontal margin of the Eocene ultramafic nappe. At the present time, the tectonics of the southwest Pacific are related to a series of opposite facing subduction (Benioff) zones connected by transform faults extending from New Britain-Solomon Islands south through the New Hebrides to New Zealand and marking the boundary between the Australian and Pacific plates. Available geologic data from this region suggest that a similar geometry existed during the Tertiary and that the microcontinents of New Guinea, New Caledonia and New Zealand all lay along the former plate boundary which has since migrated north and east by a complex process of sea-floor spreading behind the active island arcs. ?? 1973.
Schermer, Elizabeth R.; Gillaspy, J.R.; Lamb, R.
2007-01-01
Structural analysis of the Lopez Structural Complex, a major Late Cretaceous terrane-bounding fault zone in the San Juan thrust system, reveals a sequence of events that provides insight into accretionary wedge mechanics and regional tectonics. After formation of regional ductile flattening and shear-related fabrics, the area was crosscut by brittle structures including: (1) southwest-vergent thrusts, (2) extension veins and normal faults related to northwest-southeast extension, and (3) conjugate strike-slip structures that record northwest-southeast extension and northeast-southwest shortening. Aragonite-bearing veins are associated with thrust and normal faults, but only rarely with strike-slip faults. High-pressure, low-temperature (HP-LT) minerals constrain the conditions for brittle deformation to ???20 km and <250 ??C. The presence of similar structures elsewhere indicates that the brittle structural sequence is typical of the San Juan nappes. Sustained HP-LT conditions are possible only if structures formed in an accretionary prism during active subduction, which suggests that these brittle structures record internal wedge deformation at depth and early during uplift of the San Juan nappes. The structures are consistent with orogen-normal shortening and vertical thickening followed by vertical thinning and along-strike extension. The kinematic evolution may be related initially to changes in wedge strength, followed by response to overthickening of the wedge in an unbuttressed, obliquely convergent setting. The change in vein mineralogy indicates that exhumation occurred prior to the strike-slip event. The pressure and temperature conditions and spatial and temporal extent of small faults associated with fluid flow suggest a link between these structures and the silent earthquake process. ?? 2007 Geological Society of America.
NASA Astrophysics Data System (ADS)
Fréville, Kévin; Trap, Pierre; Faure, Michel; Melleton, Jérémie; Li, Xian-Hua; Lin, Wei; Blein, Olivier; Bruguier, Olivier; Poujol, Marc
2018-02-01
A structural and petrochronological study was carried out in the southern part of the Belledonne crystalline massif. A first tectonometamorphic event, Dx, corresponds to the eastward thrusting of the Chamrousse ophiolitic complex characterized by a low-temperature-moderate-pressure metamorphism reaching 0.535 ± 0.045 GPa and 427.5 ± 17.5 °C. A subsequent D1 deformation is defined by a penetrative S1 foliation that mostly dips toward the west and displays an E-W- to NE-SW-trending mineral and stretching lineation L1. D1 is associated with a top-to-the east shearing and is responsible for the crustal thickening accommodated by the eastward nappe stacking and the emplacement of the Chamrousse ophiolitic complex upon the Rioupéroux-Livet unit. This event is characterized by an amphibolite facies metamorphism (0.58 GPa ± 0.06; 608 ± 14 °C) that attains partial melting at the base of the nappe pile (0.78 ± 0.07 GPa; 680.5 ± 11.5 °C). LA-ICP-MS U-Pb dating of monazite grains from the mica schists of the Rioupéroux-Livet unit constrain the age of D1 to 337 ± 7 Ma. The D2 tectono-metamorphic event is characterized by NE-SW trending, upright to NE-verging synfolial folding. Folding associated with D2 is pervasively developed in all lithotectonic units with the development of a steeply-dipping S2 foliation. In particular, D2 involves the uppermost weakly metamorphosed Taillefer unit. LA-ICP-MS U-Pb dating performed on detrital zircon grains shows that the Taillefer conglomerates was deposited during the Visean. A zircon SIMS U-Pb age of 352 ± 1 Ma from a plagioglase-rich leucocratic sill of the Rioupéroux-Livet unit is interpreted as the age of magmatic emplacement. Our results suggest that the D2 event took place between 330 Ma and 310 Ma. We propose a new interpretation of the tectonometamorphic evolution of the southern part of the Belledonne massif, focusing on the Middle Carboniferous stages of the Variscan orogeny.
NASA Astrophysics Data System (ADS)
Lloyd, M. K.; Akker, V.; Herwegh, M.; Eiler, J. M.
2017-12-01
Shallow-water carbonates are the principal archive of ancient earth-surface conditions, but all have been subjected to subsurface modification in the intervening time. In order to extract primary depositional signals in carbonate minerals, it is necessary to understand the mechanisms by which they are overprinted during post-depositional recrystallization. Open questions inlcude: Do carbonate grains grow continously when residing at elevated temperatures, or episodically, in response to discrete events? In addition to T, P, and t, how do confounding variables such as strain, lithology, mineralogy, or fluid content affect this process? We measured phase-specific clumped isotope (Δ47) temperatures from carbonate-bearing units in the Helvetic nappes and Infrahelvetic complex of the Glarus alps, Switzerland. Here, Mesozoic carbonates were metamorphosed to at most lower-greenschist facies in the Late Eocene, and discordantly thrust over Mesozoic-Tertiary flysch along the Oligocene-Miocene-aged Glarus fault. In broad agreement with conventional thermal maturity proxies, calcite Δ47-based temperatures increase to the south and with stratigraphic depth, from 45 °C at the northenmost terminus of the nappes to 210 °C in the southermost exposures of the Infrahelvetic complex. Within the colder sections, however, calcite Δ47 temperatures are highly heterogeneous and vary by up to 50 °C across m-scale lithological transitions. A strong positive correlation between crystallization temperature and fluid d18O values at these scales suggests that local fluid content is a primary control on the suceptability of carbonates grains to recrystallization and coarsening in shallow burial environments. The loss of outcrop-scale calcite Δ47 heterogeneity with increasing metamorphic grade suggests that variable fluid-rock ratios do not preclude pervasive recystallization in calcite above 100 °C. Dolomite Δ47-based temperatures are 50-150 °C colder than coexisting calcite temperatures in flysch units where peak conditions exceeded 200 °C. Barring a late addition of cold, retrograde dolomite, these discrepancies indicate that carbonate recrystallization is also phase-specific, and that dolomite is uniquely resistant to recrystallization during low-grade metamorphism in major fold-and-thrust belts.
Multi-scale Onland-Offshore Investigations of the New Caledonia Ophiolite, SW Pacific
NASA Astrophysics Data System (ADS)
Clerc, C. N.; Collot, J.; Sevin, B.; Patriat, M.; Etienne, S.; Iseppi, M.; Lesimple, S.; Jeanpert, J.; Mortimer, N. N.; Poli, S.; Pattier, F.; Juan, C.; Robineau, B.; Godard, M.; Cluzel, D.
2017-12-01
The Peridotite Nappe of New Caledonia is one of the largest ultramafic ophiolite in the World: it represents about one quarter of the 500 x 80 km island of Grande Terre. This extensive upper mantle unit was tectonically emplaced during the Eocene onto the northeastern edge of Zealandia continent. It is weakly deformed because it was not involved in a collision belt after obduction. A dome-shaped Eocene HP/LT metamorphic complex was exhumed across the fore-arc mantle lithosphere in the northern tip of the island. Post-obduction Miocene to Present coral reefs developed in shallow waters around Grande Terre and surrounding islands. In the perspective of a possible onshore/offshore drilling project (IODP/ICDP), we present recent advances in our understanding of offshore extensions of this ophiolite. To the south of New Caledonia, the offshore continuation of the ultramafic allochthon has been identified by dredges and by its geophysical signature as a continuous linear body that extends over a distance of more than 400 km at about 2000m bsl. Such water depths allow an unprecedented seismic reflection imaging of a drowned and well-preserved ophiolite. Seismic profiles show that the nappe has a flat-top, and is capped by carbonate reefs and dissected by several major normal faults. To the east of this presumed ultramafic body, Felicité Ridge is a 30 km wide, 350 km long, dome-shaped ridge, which may be interpreted as the possible southern extension of the HP/LT metamorphic complex observed onshore. Onshore, several 150 to 200 m long cores were drilled in the ophiolite and airborne electromagnetic allowed high-resolution imaging down to 400 m depth. These recent results allow identification of internal thrusts within the peridotite body and more superficial landslides. The analysis of polyphase fracturation and associated serpentinization brings new constraints on the tectonic evolution of the ophiolite and its subsequent weathering pattern. We integrate these data and discuss the chronology of pre-, syn-, and post-obduction tectonic events. But our limited access to the deep parts of the ophiolite calls for the necessity of planning an onshore/offshore deep drilling project.
NASA Astrophysics Data System (ADS)
Gasser, D.; Mancktelow, N. S.
2009-04-01
The Helvetic nappes in the Swiss Alps form a classic fold-and-thrust belt related to overall NNW-directed transport. In western Switzerland, the plunge of nappe fold axes and the regional distribution of units define a broad depression, the Rawil depression, between the culminations of Aiguilles Rouge massif to the SW and Aar massif to the NE. A compilation of data from the literature establishes that, in addition to thrusts related to nappe stacking, the Rawil depression is cross-cut by four sets of brittle faults: (1) SW-NE striking normal faults that strike parallel to the regional fold axis trend, (2) NW-SE striking normal faults and joints that strike perpendicular to the regional fold axis trend, and (3) WNW-ESE striking normal plus dextral oblique-slip faults as well as (4) WSW-ENE striking normal plus dextral oblique-slip faults that both strike oblique to the regional fold axis trend. We studied in detail a beautifully exposed fault from set 3, the Rezli fault zone (RFZ) in the central Wildhorn nappe. The RFZ is a shallow to moderately-dipping (ca. 30-60˚) fault zone with an oblique-slip displacement vector, combining both dextral and normal components. It must have formed in approximately this orientation, because the local orientation of fold axes corresponds to the regional one, as does the generally vertical orientation of extensional joints and veins associated with the regional fault set 2. The fault zone crosscuts four different lithologies: limestone, intercalated marl and limestone, marl and sandstone, and it has a maximum horizontal dextral offset component of ~300 m and a maximum vertical normal offset component of ~200 m. Its internal architecture strongly depends on the lithology in which it developed. In the limestone, it consists of veins, stylolites, cataclasites and cemented gouge, in the intercalated marls and limestones of anastomosing shear zones, brittle fractures, veins and folds, in the marls of anastomosing shear zones, pressure solution seams and veins and in the sandstones of coarse breccia and veins. Later, straight, sharp fault planes cross-cut all these features. In all lithologies, common veins and calcite-cemented fault rocks indicate the strong involvement of fluids during faulting. Today, the southern Rawil depression and the Rhone Valley belong to one of the seismically most active regions in Switzerland. Seismogenic faults interpreted from earthquake focal mechanisms strike ENE-WSW to WNW-ESE, with dominant dextral strike-slip and minor normal components and epicentres at depths of < 15 km. All three Neogene fault sets (2-4) could have been active under the current stress field inferred from the current seismicity. This implies that the same mechanisms that formed these fault zones in the past may still persist at depth. The Rezli fault zone allows the detailed study of a fossil fault zone that can act as a model for processes still occurring at deeper levels in this seismically active region.
A transect through the base of the Bronson Hill Terrane in western New Hampshire
Walsh, Gregory J.; Valley, Peter M.; Sicard, Karri R.; Thompson, Thelma Barton; Thompson, Peter J.
2012-01-01
This trip will present the preliminary results of ongoing bedrock mapping in the North Hartland and Claremont North 7.5-minute quadrangles in western New Hampshire. The trip will travel from the Lebanon pluton to just north of the Sugar River pluton (Fig. 1) with the aim of examining the lower structural levels of the Bronson Hill anticlinorium (BHA), and the nature of the boundary with the rocks of the Connecticut Valley trough (CVT). Spear and others (2002, 2003, 2008) proposed that western New Hampshire was characterized by five major faults bounding five structural levels including, from lowest to highest, the “chicken yard line”, Western New Hampshire Boundary Thrust, Skitchewaug nappe, Fall Mountain nappe, and Chesham Pond nappe. Lyons and others (1996, 1997) showed the lowest level cored by the Cornish nappe and floored by the Monroe fault. Thompson and others (1968) explained the geometry of units by folding without major thrust faults, and described the second level as the Skitchewaug nappe. This trip will focus on the two lowest levels which we have revised to call the Monroe and Skitchewaug Mountain thrust sheets. Despite decades of geologic mapping in the northeastern United States at various scales, little 1:24,000-scale (or larger scale) modern bedrock mapping has been published for the state of New Hampshire. In fact, of the New England states, New Hampshire contains the fewest published, modern bedrock geologic maps. Conversely, adjacent Vermont has a relatively high percentage of modern bedrock maps due to focused efforts to create a new state-wide bedrock geologic map over the last few decades. The new Vermont map (Ratcliffe and others, 2011) has identified considerable gaps in our knowledge of the bedrock geology in adjacent New Hampshire where published maps are, in places, more than 50 years old and at scales ranging from 1:62,500 to 1:250,000. Fundamental questions remain concerning the geology across the Connecticut River, especially in regards to the stratigraphy of the BHA and CVT, and the distribution, or even existence, of faults ranging in age from Devonian to Mesozoic (e.g., Spear and others, 2008; McWilliams and others, 2010; Walsh and others, 2010). Questions to ponder on this trip include, but are not limited to: 1) Is the Bronson Hill anticlinorium allochthonous? 2) What is the crust beneath the Bronson Hill anticlinorium? 3) Is there a “Big Staurolite nappe” as proposed by Spear and others (2002, 2003, 2008)? 4) What is the role of Taconic, Acadian, and Alleghanian orogenesis in the tectonic development of the region? Modern 1:24,000-scale mapping is the first step towards answering these questions. Mapping will be supplemented by modern geochronology and geochemistry as this project develops. We plan to share some of our provisional results during this field trip.
The Pan-African nappe tectonics in the Shackleton Range
Buggisch, W.; Kleinschmidt, G.
2007-01-01
In memory of Campbell Craddock: When J. Campbell Craddock (1972) published his famous 1:5 000 000 map of the Geology of Antarctica, he established major units such as the East Antarctic Craton, the early Palaeozoic Ross, the Mesozoic Ellsworth, and the Cenozoic Andean orogens. It is already evident from this map, that the strike of the Ellsworth Mountains and the Shackleton Range is perpendicular to palaeo-Pacific and modern Pacific margins. While the Ellsworth-Whitmore block is classified as a rotated terrane, the Ross-aged orogen of the Shackleton Range requires another interpretation. The discovery of extended tectonic nappes with south directed transport in the southern Shackleton Range and west transport in the north established a plate tectonic scenery with a subduction dominated Ross Orogen in the Transantarctic Mountains and a transpressive tectonic regime in the Shackleton Range during the final closing of the Mozambique Ocean.
NASA Astrophysics Data System (ADS)
Gutiérrez-Alonso, Gabriel
1996-10-01
The Somiedo Nappe is a major thrust unit in the Cantabrian Zone, the external foreland fold and thrust belt of the North Iberian Variscan orogen. Exposed at the Narcea Tectonic Window are Precambrian rocks below the basal decollement of the Somiedo Nappe, which exhibit a different deformation style than the overlying Paleozoic rocks above the basal decollement. During Variscan deformation, folding and widespread subhorizontal, bedding-parallel decollements were produced in the hanging wall within the Paleozoic rocks. Vertical folding, with related axial-planar cleavage at a high angle to the decollement planes, developed simultaneously in the upper Proterozoic Narcea Slates of the footwall, below the detachment. The relative magnitude of finite strain, measured in the footwall rocks, diminishes towards the foreland. These observations indicate that (1) significant deformation may occur in the footwall of foreland fold and thrust belts, (2) the shortening mechanism in the footwall may be different from that of the hanging wall, and (3) in this particular case, the partitioning of the deformation implies the existence of a deeper, blind decollement surface contemporaneous with the first stages of the foreland development, that does not crop out in the region. This implies a significant shortening in the footwall, which must be taken into account when restoration and balancing of cross-sections is attempted. A sequential diagram of the evolution of the Narcea Tectonic Window with a minimum shortening of 85 km is proposed, explaining the complete Variscan evolution of the foreland to hinterland transition in the North Iberian Variscan orogen.
NASA Astrophysics Data System (ADS)
Kassem, Osama M. K.; Abd El Rahim, Said H.
2010-09-01
Finite strain was estimated in the metavolcano-sedimentary rocks, which surround by serpentinites of Gabel El Mayet area. Finite strain shows a relationship to nappe contacts between the metavolcano-sedimentary rocks and serpentinite and sheds light on the nature of the subhorizontal foliation typical for the Gable Mayet shear zone. We used the Rf/ ϕ and Fry methods on feldspar porphyroclasts and mafic grains from 10 metasedimentary and six metavolcanic samples in Gabel El Mayet region. Our finite-strain data show that the metavolcano-sedimentary rocks were moderately deformed and axial ratios in the XZ section range from 1.9 to 3.9. The long axes of the finite-strain ellipsoids trend W/WNW in the north and W/WSW in the south of the Gabel El Mayet shear zone. Furthermore, the short axes are subvertical to a subhorizontal foliation. The strain magnitudes increase towards the tectonic contacts between the metavolcano-sedimentary rocks and serpentinite. The data indicate oblate strain symmetry in the metavolcano-sedimentary rocks. Hence, our strain data also indicate flattening strain. We assume that the metasedimentary and metavolcanics rocks have similar deformation behaviour. The fact that finite strain accumulated during the metamorphism indicates that the nappe contacts formed during the accumulation of finite strain and thus during thrusting. We conclude that the nappe contacts formed during progressive thrusting under brittle to semi-brittle deformation conditions by simple shear and involved a component of vertical shortening, which caused the subhorizontal foliation in the Gabel El Mayet shear zone.
NASA Astrophysics Data System (ADS)
Chitu, Zenaida; Bogaard, Thom; Busuioc, Aristita; Burcea, Sorin; Adler, Mary-Jeanne; Sandric, Ionut
2015-04-01
Like in many parts of the world, in Romania, landslides represent recurrent phenomena that produce numerous damages to infrastructure every few years. Various studies on landslide occurrence in the Curvature Subcarpathians reveal that rainfall represents the most important triggering factor for landslides. Depending on rainfall characteristics and environmental factors different types of landslides were recorded in the Ialomita Subcarpathians: slumps, earthflows and complex landslides. This area, located in the western part of Curvature Subcarpathians, is characterized by a very complex geology whose main features are represented by the nappes system, the post tectonic covers, the diapirism phenomena and vertical faults. This work aims to investigate hydrological pre-conditions and rainfall characteristics which triggered slope failures in 2014 in the Ialomita Subcarpathians, Romania. Hydrological pre-conditions were investigated by means of water balance analysis and low flow techniques, while spatial and temporal patterns of rainfalls were estimated using radar data and six rain gauges. Additionally, six soil moisture stations that are fitted with volumetric soil moisture sensors and temperature soil sensors were used to estimate the antecedent soil moisture conditions.
NASA Astrophysics Data System (ADS)
Abdelmalak, Mansour M.; Planke, Sverre; Andersen, Torgeir B.; Faleide, Jan Inge; Corfu, Fernando; Tegner, Christian; Myklebust, Reidun
2015-04-01
The continental breakup and initial seafloor spreading in the NE Atlantic was accompanied by widespread intrusive and extrusive magmatism and the formation of conjugate volcanic passive margins. These margins are characterized by the presence of seaward dipping reflectors (SDR), an intense network of mafic sheet intrusions of the continental crust and adjacent sedimentary basins and a high-velocity lower crustal body. Nevertheless many issues remain unclear regarding the structure of volcanic passive margins; in particular the transitional crust located beneath the SDR.New and reprocessed seismic reflection data on the Mid-Norwegian margin allow a better sub-basalt imaging of the transitional crust located beneath the SDR. Different high-amplitude reflections with abrupt termination and saucer shaped geometries are identified and interpreted as sill intrusions. Other near vertical and inclined reflections are interpreted as dykes or dyke swarms. We have mapped the extent of the dyke reflections along the volcanic margin. The mapping suggests that the dykes represent the main feeder system for the SDR. The identification of saucer shaped sills implies the presence of sediments in the transitional zone beneath the volcanic sequences. Onshore exposures of Precambrian basement of the eroded volcanic margin in East Greenland show that, locally, the transitional crust is highly intruded by dykes and intrusive complexes with an increasing intensity of the plumbing and dilatation of the continental crust ocean-ward. Another well exposed analogue for a continent-ocean transitional crust is located within the Seve Nappe Complex (SNC) of the Scandinavian Caledonides. The best-preserved parts of SNC in the Pårte, Sarek, Kebnekaise, Abisko, and Indre Troms mountains are composed mainly of meta-sandstones and shales (now hornfelses) truncated typically by mafic dykes. At Sarek and Pårte, the dykes intrude the sedimentary rocks of the Favoritkammen Group, with a dyke density up to 70-80%. This complex was photographed in a regional helicopter survey and sampled for the study of the different dyke generations, their geochemistry and ages in 2014. Extending for at least 800 km within the SNC, the mafic igneous rocks most probably belonged to a volcanic system with the size of a large igneous province (LIP). This volcanic margin is suggested to have formed along the Caledonian margin of Baltica or within hyperextended continental slivers outboard of Baltica during the breakup of Rodinia. The intensity of the pre-Caledonian LIP-magmatism is comparable to that of the NE Atlantic volcanic margins. The SNC-LIP is considered to represent a potential onshore analogue to the deeper level of the Mid-Norwegian margin transitional crust, and permits direct observation, sampling and better understanding of deeper levels of magma-rich margins.
NASA Astrophysics Data System (ADS)
Bauernhofer, A.; Wallbrecher, E.; Hauzenberger, C.; Fritz, H.; Loizenbauer, J.; Hoinkes, G.; Muhongo, S.; Mathu, E.
2003-04-01
In the Voi Area of Southern Kenya, the granulite facies rocks of the Taita Hills and the Tsavo East National Park (Galana River) can be divided into three structural domains: The Galana-East unit consists of an intercalation of flat lying metapelites and marbles of continental margin origin. These metasediments can be traced further east to the Umba Steppe (Between Mombasa and Tanga). Galana-West consists of a N-S oriented wrench fault zone with vertical foliation planes and horizontal stretching lineation. Numerous shear sense indicators always show sinistral shear sense. Amphibolites of MORB affinity are involved in this wrench fault zone. To the west, this zone is bordered by calc-alkaline metatonalites of the Sagala Hills. The westernmost unit consists of the Taita Hills. They form an imbricated pile of southwestward thrusted nappe sheets containing metapelites, marbles, and ultramafics. The Taita Hills may be explained as part of an accretionary wedge. Southwestward nappe thrusting is also the prominent structure in the Pare and Usambara Mountains of Northern Tanzania. The following model may may explain these observations: The Southern Kenya -- Northern Tanzania section of the Mozambique Belt is the result of continental collision tectonics. Remnants of an island arc and of an accretionary wedge that occur at least in the Voi area may be part of a former subduction zone. An oceanic domain between an eastern passive continental margin and a western terrane, now represented by the Tanzanian granulite belt has been closed incorporating island arc and accretionary wedge material. Oblique convergence of two continental blocks is suggested from wrench tectonics. The age of convergent tectonics is 530 -- 580 Ma, dated by Sm-Nd garnet-whole rock analysis. This is interpreted as the age of peak metamorphism.
Permian age from radiolarites of the Hawasina nappes, Oman Mountains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wever, P.D.; Grissac C.B.; Bechennec, F.
1988-10-01
The Hawasina napper of the Oman Mountains yielded Permian radiolarians from cherts stratigraphically overlying a thick volcanic basement (Al Jil Formation) at the base of the Hamrat Duru Group. This fauna represents the first Permian radiolarians and radiolarites in the central and western Tethyan realm. A Permain age for pelagic sequences within the Hawasina Complex of Oman has major significance for regional paleogeographic reconstruction. A clear differentiation between platform (reefal sediments) and basin (radiolarites) from the base of the Late Permian (255 Ma) is implied. It suggests a flexure of the platform during Permian time; the present data implies thatmore » a zone of rifting was already developed adjacent to the northeast Gondwana platform margin during the Late Permian. The Hamrat Duru Basin corresponds to an opening intracontinental rift area (sphenochasm) between Arabia and northeast Gondwana, a reentrant of the paleo-Tethys.« less
NASA Astrophysics Data System (ADS)
Ondrejka, Martin; Li, Xian-Hua; Vojtko, Rastislav; Putis, Marian; Uher, Pavel; Sobocký, Tomas
2018-04-01
Three representative A-type rhyolitic rock samples from the Muráň Nappe of the inferred Silicic Unit of the Inner Western Carpathians (Slovakia) were dated using the high-precision SIMS U-Pb isotope technique on zircons. The geochronological data presented in this paper is the first in-situ isotopic dating of these volcanic rocks. Oscillatory zoned zircon crystals mostly revealed concordant Permian (Guadalupian) ages: 266.6 ± 2.4 Ma in Tisovec-Rejkovo (TIS-1), 263.3 ± 1.9 Ma in Telgárt-Gregová Hill (TEL-1) and 269.5 ± 1.8 Ma in Veľká Stožka-Dudlavka (SD-2) rhyolites. The results indicate that the formation of A-type rhyolites and their plutonic equivalents are connected to magmatic activity during the Permian extensional tectonics and most likely related to the Pangea supercontinent break-up.
What can blueschists tell about the Deep? High Pressure in the Anatolide - Taurid Belt
NASA Astrophysics Data System (ADS)
Oberhaensli, R.
2011-12-01
High-pressure metamorphic terranes in the Anatolide - Taurid belt document the complex distribution of paleo-sutures in the Tethyan realm. Field based petrologic studies of metapelites in the Anatolide-Taurid realm allow to trace HP-LT metamorphism not only in the well known ophiolitic Tavsanli Zone (2.4 GPa/500 °C) but also in the Afyon Zone (0.9 GPa/350 °C), the Menderes Massif (1.2 Gpa/500 °C;) and in the Lycian Nappes (1.0 Gpa/400 °C) - all situated north of the so called Taurid Platform. While the HP metamorphism is dated to 90-80 Ma (Rb/Sr; Ar/Ar) in the Tavsanli Zone, it ranges from 60-70 Ma (Ar/Ar) in the Afyon Zone and its tectonic equivalent, the Lycian Nappes. The Afyon Zone s.l. is closely related to the glaucophane- lawsonite-bearing rocks of the Tavsanli Zone and its eastward extension. Blueschist-facies metamorphism is documented by Fe,Mg-carpholite in regionally distributed metapelites and glaucophane in sparse mafic rocks (Afyon, Menderes, Lycia). Since observations of HP are based on Fe,Mg-carpholite bearing metasediments and not on mafic blueschists new thermodynamic data and petrologic modelling was elaborated to match P-T data and field-based observations. Moreover, newly formed phengitic mica allows precise dating. Both, Tavsanli and Afyon Zones can be followed along strike over more than 600 km and around the southern edge of the Central Anatolian Crystalline Complex. The two zones are situated north of the Taurid Platform and correlate with the Amasia Zone in Armenia. To the extreme East the Bitlis Complex underwent a LT - HP metamorphic blueschist evolution (1,1 GPa/ 350 °C; glaucophane, Fe,Mg-carpholite) in its sedimentary cover while the basement is eclogitic. Depending on the structural position and mineral association of phengitic mica metamorphic ages of the Bitlis blueschists scatter around 70-80 Ma. Eclogites from the basement are slightly older. These LT-HP units cannot be correlated with the Tavsanli - Afyon blueschist belts since they occur south of the Taurid Platform. Thus the Bitlis Complex represents a terrane detached from the Arabian Platform that subsequently collided with the Taurus Platform during closure of the Neo-Tethys. In SW Anatolia, south of the Taurus Platform, the Alanya Zone documents a Late Cretaceous HP evolution with blueschists and eclogites. Together with the Bitlis Complex the two Late Cretaceous HP-LT regions represent a suture south of the Taurid Platform but still north of the Hatay - Güleyman - Zagros ophiolites separating the Arabian Platform from the Anatolide-Taurid realm. The dissection of the Anatolide-Taurid realm into several paleo-subduction zones of Late Cretaceous age impacts on the lithospheric structure and has consequences for the Tertiary plateau formation in Central and Eastern Anatolia. Geophysical data and observations from the East Anatolian Plateau can be explained with petrologic modelling when hydration of the lithospheric lids above subduction zones is considered.
Description of sorbing tracers transport in fractured media using the lattice model approach
NASA Astrophysics Data System (ADS)
Jiménez-Hornero, Francisco J.; Giráldez, Juan V.; Laguna, Ana
2005-12-01
The transport of contaminants in fractured media is a complex phenomenon with a great environmental impact. It has been described with several models, most of them based on complex partial differential equations, that are difficult to apply when equilibrium and nonequilibrium dynamics are considered in complex boundaries. With the aim of overcoming this limitation, a combination of two lattice Bathnagar, Gross and Krook (BGK) models, derived from the lattice Boltzmann model, is proposed in this paper. The fractured medium is assumed to be a single fissure in a porous rock matrix. The proposed approach permits us to deal with two processes with different length scales: advection-dispersion in the fissure and diffusion within the rock matrix. In addition to the mentioned phenomena, sorption reactions are also considered. The combined model has been tested using the experimental breakthrough curves obtained by Garnier et al. (Garnier, J.M., Crampon, N., Préaux, C., Porel, G., Vreulx, M., 1985. Traçage par 13C, 2H, I - et uranine dans la nappe de la craie sénonienne en écoulement radial convergent (Béthune, France). J. Hidrol. 78, 379-392.) giving acceptable results. A study on the influence of the lattice BGK models parameters controlling sorption and matrix diffusion on the breakthrough curves shape is included.
Perspectives in Peer Programs. Volume 28, Number 1, Winter 2018
ERIC Educational Resources Information Center
Tindall, Judith, Ed.; Black, David R., Ed.; Routson, Sue, Ed.
2018-01-01
This issue of "Perspectives in Peer Programs," the official journal of the National Association of Peer Program Professionals (NAPP), includes: (1) Introduction to this Issue on NAPPP Programmatic Standards Checklist, Programmatic Standards, Ethics, and Rubric; (2) NAPPP Programmatic Standards Checklist; (3) NAPPP Programmatic Standards;…
NASA Astrophysics Data System (ADS)
Bertrand, Audrey; Pomella, Hannah; Fügenschuh, Bernhard; Zerlauth, Michael; Ortner, Hugo
2013-04-01
The study area in the westernmost part of Austria is marked by the limit between the Western and the Eastern Alps that takes place along the Rhine Valley, south of the Lake Constance. The area is composed, form the north to the south and from lowermost to uppermost structural position, by the European basement together with its autochthonous Mesozoic cover, autochthonous Molasse, subalpine Molasse, the Helvetic and Ultra-Helvetic, the Penninic and the Austroalpine nappes. These units are stacked in a succession of nappes separated by large south-trending overthrusts. This study presenting new apatite and zircon fission track ages, together with a crustal-scale cross-section (Pomella et al., this session) addresses the thermotectonic evolution of this nappe stack. In comparison with similar studies from eastern Switzerland the boundary between Western and Eastern Alps should be enlightened. Zircon fissions track ages from the lower freshwater Molasse reveal different age populations. Since all zircon fission track ages are older than the stratigraphic age this clearly indicates that post-depositional temperatures were well below the zircon partial annealing zone (i.e. below 200 °C) and the different age populations can be attributed to different source areas derived from the coevally forming and eroding alpine chain. Preliminary fission track results on apatite from the lower freshwater Molasse indicate a strong dependence of apatite fission track single-grain ages on their annealing kinetics as inferred from Dpar analyses (Gleadow and Duddy, 1981). F-rich apatites systematically yielded younger ages compared to the Cl-rich grains. The younger ages derived from the F-rich apatites are consistently younger than the stratigraphic age and thus fully annealed while Cl-rich apatites display older ages than the stratigraphic one. The difference in annealing temperatures between Cl- and F-rich apatites (Ravenhurst and Donelick, 1992) thus constrains the maximum temperature to < 100 °C, most likely reached between 20 Ma and 14 Ma by combined sediment and tectonic overburden. References Gleadow, A.J.W., and Duddy, I.R., 1981, A natural long-term annealing experiment for apatite. Nuclear Tracks Radiation Experiments, 5, 169-174. Pomella et al., this session. Alpine nappe stack in western Austria: A crustal-scale cross-section. Ravenhurst, C.E., and Donelick, R.A., 1992. Fission track thermochronology. In Short Course. Handbook on Low Temperature Thermochronology, ed. M. Zentilli & P.H. Reynolds. pp.21-42.
NASA Astrophysics Data System (ADS)
Boehm, Katharina; Schuster, Ralf; Wagreich, Michael; Koller, Friedrich; Wimmer-Frey, Ingeborg
2014-05-01
The investigated serpentinites are present in an ENE-WSW orientated tectonic zone at the base of Juvavic nappes (Northern Calcareous Alps), situated at the eastern margin of the Eastern Alps (Lower Austria). They form small tectonically squeezed slices, which are embedded in Permotriassic schists and Middle to Upper Triassic limestones. These serpentinites play an important, but not yet understood role in reconstructing Neotethys evolution, Alpine Orogeny and the correlation of Dinarides and Alps. The largest serpentinite body near to Unterhöflein is 400 to 100 meters in size and was investigated by mineralogical (XRD) and petrological/geochemical (XRF) methods. The primary mineral composition is olivine + orthopyroxene + clinopyroxene + chrome spinel. Pseudomorphs of pyroxenes are visible macroscopically, but almost all primary minerals are replaced by serpentine minerals. Former olivine is converted to chrysotile minerals, which show typical reticulate textures, orthopyroxene turned into lizardite pseudomorphs and chrome spinel is almost completely altered to magnetite. Major contents of chrysotile-α, chrysotile-γ and lizardite and minor antigorite, as well as secondary minerals like talc, chlorite and hydrogrossular were identified with XRD. Results from whole rock geochemistry indicate harzburgitic precursor rocks for the serpentinites. According to the low antigorite content, the rocks have only a weak metamorphic imprint and therefore an obduction rather than a subduction history is likely. This leads to the assumption that these serpentinites possibly originate from the Neotethys and not from the Penninic oceanic realm. Further, the tectonic position of the serpentinite slices is in close vicinity to sediments of the Meliata unit which also occur between Juvavic and underlying Tirolic nappe system (Mandl & Ondrejickova, 1993). Additionally, remnants from ophiolite nappes are found reworked into the surrounding Upper Cretaceous Gosau Group. In the latter also chrome spinel detritus is present. In contrast to the altered chrome spinels in the investigated serpentinites, the spinels from Gosau Group are well preserved and they show similarities to those of Dinaric Cretaceous basins, concerning their harzburgitic and lherzolitic sources (Stern & Wagreich, 2013). If the investigated serpentinites belong to obducted material from Neothetys oceanic realm, a tectonic model of a slab-tearing induced sinistral strike-slip zone could explain the position in the Eastern Alps. However, the relationship to other basic magmatic rocks from several other localities in similar positions, mostly occurring within evaporitic sediments of Permian Haselgebirge (Schorn et al., 2013), has to be clarified.
Isotopic composition of sulfate accumulations, Northern Calcareous Alps, Austria
NASA Astrophysics Data System (ADS)
Bojar, Ana-Voica; Halas, Stanislaw; Bojar, Hans-Peter; Trembaczowski, Andrzej
2015-04-01
The Eastern Alps are characterised by the presence of three main tectonic units, such as the Lower, Middle and Upper Austroalpine, which overlie the Penninicum (Tollmann, 1977). The Upper Austroalpine unit consists of the Northern Calcareous Alps (NCA) overlying the Greywacke zone and corresponding to the Graz Paleozoic, Murau Paleozoic and the Gurktal Nappe. Evaporitic rocks are lacking in the later ones. The Northern Calcareous Alps are a detached fold and thrust belt. The sedimentation started in the Late Carboniferous or Early Permian, the age of the youngest sediments being Eocene. The NCA are divided into the Bajuvaric, Tirolic and Juvavic nappe complexes. The evaporitic Haselgebirge Formation occurs in connection with the Juvavic nappe complex at the base of the Tirolic units (Leitner et al., 2013). The Haselgebirge Formation consists mainly of salt, shales, gypsum and anhydrite and includes the oldest sediments of the NCA. The age of the Haselgebirge Formation, established by using spors and geochronological data, is Permian to Lower Triassic. For the Northern Calcareous Alps, the mineralogy of sulphate accumulations consists mainly of gypsum and anhydrite and subordonates of carbonates. The carbonates as magnesite, dolomite and calcite can be found either as singular crystals or as small accumulations within the hosting gypsum. Sulfides (sphalerite, galena, pyrite), sulfarsenides (enargite, baumhauerite) and native sulphur enrichments are known from several deposits (Kirchner, 1987; Postl, 1990). The investigated samples were selected from various gypsum and halite rich deposits of the Northern Calcareous Alps. A total of over 20 samples were investigated, and both oxygen and sulfur isotopic composition were determined for anhydrite, gyps, polyhalite, blödite and langbeinite. The sulfur isotopic values vary between 10.1 to 14 ‰ (CDT), with three values higher than 14 ‰. The Oxygen isotopic values show a range from 9 to 23 ‰ (SMOW). The sulfur isotopic compositon of 14 sulfides as galena, sphalerite, pyrite and native sulfure were determined as well, with values ranging between -17.5 and 2.8 ‰ (CDT). For the investigated sulfates, the sulfur isotopic values show generally low values, which are characteristic for the late Permian. The broad distribution of sulfide values point toward bacterial reduction, fact also reflected by some higher isotopic values of sulfates. The oxygen values show a larger scatter from 9 to 23‰, which is even larger than that found for the Zechstein anhydrites of northern Germany, north-eastern Italian Alps or western Poland. The associated carbonates, as calcite, dolomite and magnesite are in disequilibrium with the sulfates indicating rather primary marine isotopic signature than re-equlibration with the sulfates at higher temperatures. References Leitner, C., Neubauer, F., Genser, J., Borojevic-Sostaric, B., Rantitsch, G., 2013. 40Ar/39Ar ages of recrystallization of rock-forming polyhalite in Alpine rocksalt deposits. In Jordan, F., Mark, D.F., Verati C. (eds.) Advances in 40Ar/39Ar Dating: from Archaeology to Planetary Sciences. Geological Society, London, Special Publications, 378, 207-244. Kirchner, E., 1987: Die Mineral- und Gesteinsvorkommen in den Gipslagerstätten der Lammermasse, innerhalb der Hallstattzone, Salzburg. Jahrbuch Haus der Natur. 10, 156-167. Postl, W., 1990. Enargit und Parnauit aus dem Gips- und Anhydritbergbau Tragöß-Oberort, Steiermark. In: Niedermayr, G. et al. (1990): Neue Mineralfunde aus Österreich XXXIX. Carinthia II, 180/100, 277. Tollmann, A., 1977. Geologie von Österreich. Band 1. Die Zentralalpen. Deuticke, Wien, 766 pp.
NASA Astrophysics Data System (ADS)
Juhlin, Christopher; Anderson, Mark; Dopson, Mark; Lorenz, Henning; Pascal, Christophe; Piazolo, Sandra; Roberts, Nick; Rosberg, Jan-Erik; Tsang, Chin-Fu
2016-04-01
The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project employs two fully cored boreholes for investigating mountain building processes at mid-crustal levels in a deeply eroded Paleozoic collisional orogen of Alpine-Himalayan size. The two COSC boreholes will provide a unique c. 5 km deep composite section from a hot allochthon through the underlying 'colder' nappes, the main décollement and into the basement of the collisional underriding plate. COSC's unprecedented wealth of geophysical field and borehole data combined with the petrology, geochronology and rock physics information obtained from the drill cores will develop into an integrated model for a major collisional mountain belt. This can be utilized as an analogue to better understand similar modern tectonic settings (Himalaya, Izu-Bonin-Mariana, amongst others) and, thus, advance our understanding of such complex systems and how they affect the (human) environment. COSC investigations and drilling activities are focused in the Åre-Mörsil area (Sweden) of central Scandinavia. The first drill hole, COSC-1, was completed in late August 2014 with near 100% core recovery down to 2.5 km. It targeted the high-grade metamorphic Seve Nappe Complex (SNC) and its contact with the underlying allochthon, investigating how this metasedimentary unit, that was initially deeply subducted during orogeny, was exhumed and then, still hot, emplaced as an allochthon onto the foreland of the underriding plate. COSC-2 will investigate the main Caledonian décollement, which is the major detachment that separates the Caledonian allochthons from the autochthonous basement of the Fennoscandian Shield, and the character of the deformation in the basement. Combined seismic, magnetotelluric (MT) and magnetic data provide control on the basement structure and the depth to the main décollement, believed to be hosted in the carbon-rich highly conductive Alum Shale. Key targets are to understand the geometry, stress distribution and rheology of the main décollement and associated fault systems in the foreland of one of the Earth's largest orogens, and to determine the relationship between the basement deformation and the thrust tectonics in the nappes above. COSC-2 will provide insights into the evolution of Baltica near the Ordovician-Silurian boundary by providing a new, distal section from the Early Paleozoic sedimentary basin. High-quality, high-resolution temperature profiles will allow the reconstruction of the ground surface temperature history and its variations for up to 100000 years and gather new knowledge about the Weichselian glaciation and climate evolution in northern Europe during the Holocene, including industrial age trends. Furthermore, research will address the hydrogeological and geothermic characteristics of the mountain belt and investigate the geological energy sources utilized by the deep biosphere. The drilling program and on-site science will build on the experience from drilling COSC-1. Applications for drilling related costs have been made to ICDP and the Swedish Research Council and if funded, drilling can be performed in 2017 at the earliest. Researchers interested in any aspect of the COSC project are invited to join and provide parallel funding for drilling, on-site science, and studies on core and downhole geophysics.
NASA Astrophysics Data System (ADS)
Mints, M. V.; Berzin, R. G.; Babayants, P. S.; Konilov, A. N.; Suleimanov, A. K.; Zamozhniaya, N. G.; Zlobin, V. L.
2003-04-01
The 1-EU and 4B CDP transects worked out during 1998-2002 years by "Spetsgeophyzica", together with previously developed CDP profiles, have crossed most of the main tectonic units of the eastern Fennoscandian Shield and central part of the East-European platform. They provide seismic images of the Early Precambrian crust and upper mantle from the surface to about 80 km depth (25 s). The Neoarchaean granite-greenstone complexes of the Karelia craton along the 4B profile form a series of the tectonic slices descending eastward, some of which can be traced to the Moho. The Palaeoproterozoic structures presented by two main types: (1) volcano-sedimentary (VS) and (2) granulite-gneiss (GN) belts. The Pechenga-Varzuga VS belt has been identified as overthrust-underthrust southward-dipping package. Tectonic slices formed by the Palaeoproterozoic VS belts alternating with slices of the Neoarchaean granite-gneisses form the imbricated crustal unit that extends along the eastern margin of the Neoarchaean Karelia craton. The slices dip steeply northeastward flattening and partially juxtaposing at 20 km depth at the 1-EU cross-section. This level, which can be understood as the surface of main detachment, ascends westward. An imbrication and related thickening of the crust was caused by displacement of crustal slices in western and southwestern directions because of the Palaeoproterozoic collision event. The Palaeoproterozoic Onega unit comprising VS assemblages originated in a setting of the rifted passive margin forms the northwestward displaced thrust nappe complex. It is considered initially belonging to the southern edge of the Svecofennian passive margin. The Lapland GN belt has been transected by the Polar and EGGI profiles. Both cross-sections demonstrated that it constitutes thick composite crustal-scale tectonic slice. According to geophysical data, the continuation of the Lapland GN belt beneath the platform cover of the East European Craton forms an extended arch-shaped system of the belts approximately 2000 km long. In the vicinity of Moscow the thrust-nappe structure of these belts was recently recognized from reflection seismic profiling along 1-EU profile. The work has been developed in frames of the MPR RF Program and The SVEKALAPKO project and supported by the RFBR, grant No.00-05-64241.
About the age of the Neoproterozoic Lainici-Paius terrane (South Carpathians, Romania)
NASA Astrophysics Data System (ADS)
Balica, C.; Balintoni, I.; Ducea, M. N.; Berza, T.; Stremtan, C.
2009-12-01
The pre-Alpine basement of the Danubian domain nappes from South Carpathians consists of high grade metamorphic groups and late Neoproterozoic plutons, underlying low grade metamorphosed Ordovician to early Carboniferous formations (e.g. Seghedi et al., 2005). Two types of pre-Ordovician metamorphic complexes with contrasting protoliths petrology, metamorphism and associated igneous activity, involved in a pre-Permian nappe structure are separated: Lainici-Paius group, dominated by HT-LP metasediments and Dragsan group, dominated by medium grade metabasites. Based on their distinct lithologic compositions, geologic histories and clear boundaries, we consider these two groups as parts of two different terranes (i.e. Lainici-Paius and Dragsan terranes). The southern part of Lainici-Paius terrane is intruded by elongated plutons up to 100 km long and 15 km wide. Based on the geochemical composition, the plutons are assigned to two distinct suites, (i) medium K, calc-alkaline, mostly granodioritic-tonalitic suite (i.e. Susita type) and (ii) very high K, calc-alkaline and mostly granitic (i.e. Tismana type). The first suite comprises Susita and Oltet granitoid bodies and the second suite consists of Tismana and Novaci granitic plutons. Previous age dating was carried out only on Tismana (567±3 Ma upper intercept, Liégeois et al., 1996) and Novaci (588±5 Ma, Grünenfelder et al., 1983 recalculated by Liégeois et al., 1996) granites. In situ zircon U/Pb LA-ICP-MS analyses performed on all four granitoid plutons yielded 596.3±5.7 Ma for Tismana granite, 592.0±5.1 Ma for Novaci granite, 591.0±3.5 Ma for Susita granite and 588.7±3 Ma for Oltet granite. The same method has been additionally applied for detrital zircons from a metasandstone sequence comprised by the Lainici-Paius complex. Fifty-five ages out of 78 dated grains are ranging between 690.1±5.5 Ma and 811.4±12,7 Ma. Therefore, considering the protolith ages of the four dated granites and the youngest age within the mentioned detrital age distribution we can constrain the formation of the sedimentary protoliths of the Lainici-Paius group to 690-600 Ma span.
Seismotectonic zoning of Azerbaijan territory
NASA Astrophysics Data System (ADS)
Kangarli, Talat; Aliyev, Ali; Aliyev, Fuad; Rahimov, Fuad
2017-04-01
Studying of the space-time correlation and consequences effect between tectonic events and other geological processes that have created modern earth structure still remains as one of the most important problems in geology. This problem is especially important for the East Caucasus-South Caspian geodynamic zone. Being situated at the eastern part of the Caucasian strait, this zone refers to a center of Alpine-Himalayan active folded belt, and is known as a complex tectonic unit with jointing heterogeneous structural-substantial complexes arising from different branches of the belt (Doburja-Caucasus-Kopetdag from the north and Pyrenean-Alborz from the south with Kura and South Caspian zone). According to GPS and precise leveling data, activity of regional geodynamic processes shows intensive horizontal and vertical movements of the Earth's crust as conditioned by collision of the Arabian and Eurasian continental plates continuing since the end of Miocene. So far studies related to the regional of geology-geophysical data, periodically used for the geological and tectonic modeling of the environment mainly based on the fixing ideology. There still remains a number of uncertainties in solution of issues related to regional geology, tectonics and magmatism, structure and interrelation of different structural zones, space-time interrelations between onshore and offshore complexes, etc. At the same time large dataset produced by surface geological surveys, deep geological mapping of on- and offshore areas with the use of seismic and electrical reconnaissance and geophysical field zoning methods, deep well drilling and remote sensing activities. Conducted new studies produced results including differentiation of formerly unknown nappe complexes of the different ages and scales within the structure of mountain-fold zones, identification of new zones containing ophiolites in their section, outlining of currently active faulting areas, geophysical interpretation of the deep structure of Greater and Lesser Caucasus, detailed description of the deep structure of Caspian zone, Kur and Caspian megadepressions, identification of nappe-folded structure of the Absheron Peninsula and the Absheron threshold at the border of Middle and South Caspian, justification of the possible hydrocarbon concentration at the tectonically stratified substantial complexes of mountain and foothill areas, etc. Based on the outcomes of implemented researches, some general conclusions and schemes were drawn for some parts of the project region within the plate tectonics conceptual frameworks, to include the territories of Lesser Caucasus and South Caspian. Analysis and comparison of these data with macroseismic and instrumental data allowed us to conduct seismotectonic studies in a region and develop a new scheme of seismotectonic map with outlined recent and forecasted seismic activity. There also correlated foci zones of earthquakes with subhorizontal and subvertical borders in earth crust, which shows their structure-dynamic relationship. In the one hand, the earthquake foci zones belong to the faults of the basement which extend to sedimentary cover and their intersection knots. On the other hand, there appearing inner-block seismogenic levels, namely, in seismic generation acts all the earth crust: tectonic stress results on movements along fault zones, as well as lateral displacements along non-stable contacts of the structure-substance complexes of different competency.
Aspiring Principal Development Programme Evaluation in New Zealand
ERIC Educational Resources Information Center
Piggot-Irvine, Eileen; Youngs, Howard
2011-01-01
Purpose: The New Zealand Ministry of Education has constructed a wide-ranging "Professional Development Plan" providing a four-stage national pathway for progression to principalship; the first stage has been the conduction of the National Aspiring Principals Pilot (NAPP) programme in five regional locations. The purpose of this paper is…
Prediction of seasonal water-table fluctuations in La Pampa and Buenos Aires, Argentina
NASA Astrophysics Data System (ADS)
Tanco, Raúl; Kruse, Eduardo
2001-07-01
The fluctuation of the water table east of La Pampa province and northwest of Buenos Aires province, Argentina, influences agricultural production in the region because it is closely related to the alternation of dry and wet periods. Sea-surface temperature (SST) anomalies have been used as predictors to forecast atmospheric variables in different regions of the world. The objective of this work is to present a simple model to forecast seasonal rainfall using SST distribution in the Pacific Ocean as a predictor. Once the relationship between precipitation and water-table fluctuations was established, a methodology for the prediction of water-table fluctuations was developed. A good agreement between observed and predicted water-table fluctuations was found when estimating water-table fluctuations in the summer and autumn seasons. Résumé. Les fluctuations de la nappe à l'est de la province de La Pampa et au nord-ouest de la province de Buenos Aires (Argentine) influence la production agricole de la région parce qu'elle est étroitement liée à l'alternance de saisons sèches et humides. Les anomalies de la température de surface de l'océan (SST) ont été utilisées comme prédicteurs pour prévoir les variables atmosphériques dans différentes régions du monde. L'objectif de ce travail est de présenter un modèle simple de prévision des précipitations saisonnières en utilisant comme prédicteur la distribution des SST dans l'Océan Pacifique. Une fois que la relation entre les fluctuations des précipitations et celles de la nappe a été établie, une méthodologie de prédiction des variations de la nappe a été mise au point. Un bon accord entre les variations de la nappe observées et celles prédites a été trouvé pour les estimations des variations de nappe en été et en automne. Resumen. La fluctuación del nivel freático al este de la provincia de La Pampa y al nordeste de la de Buenos Aires (Argentina) repercute en la producción agrícola de la región, ya que está íntimamente relacionada con la alternancia de períodos secos y húmedos. Se ha utilizado las anomalías de la temperatura superficial del mar (TSM) para predecir las variables atmosféricas en diferentes áreas del mundo. El objetivo de este trabajo es presentar un modelo sencillo para pronosticar la precipitación estacional por medio de la distribución de TSM en el Océano Pacífico. Una vez establecida la relación entre la precipitación y las fluctuaciones del nivel freático, se desarrolló una metodología para predecir las fluctuaciones de éste. Se obtuvo un buen ajuste entre las fluctuaciones predichas y observadas del nivel freático en las estaciones de verano y otoño.
Launching biosimilar rituximab: an industry opinion on biosimilar uptake in Europe.
Trollope, Richard; Johnson, Sue; Ireland, Henry
2017-06-01
Richard Trollope and Sue Johnson talk with Henry Ireland, Senior Editor about the recent approval of biosimilar rituximab (Truxima ® ) & the current state of biosimilar uptake across Europe Richard Trollope, Head of Biosimilars, Mundipharma International Limited, qualified as a biochemist before joining Wyeth's commercial operations, prior to its acquisition by Pfizer. Richard later joined Yamanouchi Pharmaceuticals (now Astellas Pharma). His fascination with oncology led him to join Mundipharma in Europe and after joining the company's UK arm (Napp Pharmaceuticals Limited), Richard began his journey in biosimilars. He now heads up the biosimilar franchise at Mundipharma International as it launches biosimilar rituximab (Truxima ® ) - the first biosimilar monoclonal antibody for the treatment of cancer, which will be distributed by Napp Pharmaceuticals in the UK. Sue Johnson, PhD, Medical Insights at Mundipharma International Limited, is a scientist by background and completed her postdoc fellowship at Harvard Medical School. On returning to the UK, she began her career in the pharmaceutical industry, working in UK Medical Affairs before transitioning to a European role with Mundipharma 2 years ago, where she leads on Medical Insights for the biosimilars franchise.
Lake, B.C.; Schmutz, J.A.; Lindberg, M.S.; Ely, Craig R.; Eldridge, W.D.; Broerman, F.J.
2008-01-01
We studied body mass of prefledging Emperor Geese Chen canagica at three locations across the Yukon-Kuskokwim Delta, Alaska, during 1990-2004 to investigate whether large-scale variation in body mass was related to interspecific competition for food. From 1990 to 2004, densities of Cackling Geese Branta hutchinsii minima more than doubled and were c. 2-5?? greater than densities of Emperor Geese, which were relatively constant over time. Body mass of prefledging Emperor Geese was strongly related (negatively) to interspecific densities of geese (combined density of Cackling and Emperor Geese) and positively related to measures of food availability (grazing lawn extent and net above-ground primary productivity (NAPP)). Grazing by geese resulted in consumption of ??? 90% of the NAPP that occurred in grazing lawns during the brood-rearing period, suggesting that density-dependent interspecific competition was from exploitation of common food resources. Efforts to increase the population size of Emperor Geese would benefit from considering competitive interactions among goose species and with forage plants. ?? 2008 The Authors.
Mueller, P.A.; Wooden, J.L.; Mogk, D.W.; Nutman, A.P.; Williams, I.S.
1996-01-01
The Beartooth-Bighorn magmatic zone (BBMZ) and the Montana metasedimentary province (MMP) are two major subprovinces of the Archean Wyoming province. In the northwestern Beartooth Mountains, these subprovinces are separated by a structurally, lithologically and metamorphically complex assemblage of lithotectonic units that include: (1) a strongly deformed complex of trondhjemitic gneiss and interlayered amphibolites; and (2) an amphibolite facies mafic unit that occurs in a nappe that structurally overlies the gneiss complex. Zircons from a trondhjemitic blastomylonite in the gneiss complex yield concordant U-Pb ages of 3.5 Ga, establishing it as the oldest rock yet documented in the Wyoming province. Two younger events are also recorded by zircons in this rock: (1) an apparently protracted period of high-grade metamorphism and/or intrusion of additional magmas at ??? 3.25 Ga; and (2) growth of hydrothermal zircon at ??? 2.55 Ga, apparently associated with ductile deformation that immediately preceded structural emplacement of the gneiss. Although this latter event appears confined to areas along the BBMZ-MMP boundary, evidence of ??? 3.25 Ga igneous activity is found in the overlying amphibolite (3.24 Ga) and throughout the MMP. These data suggest that this boundary first developed as a major intracratonic zone of displacement at or before 3.25 Ga. The limited occurrences of 2.8 Ga magmatic activity in the MMP suggest that it had a controlling influence on late Archean magmatism as well.
Basement diapirism associated with the emplacement of major ophiolite nappes: Some constraints
NASA Astrophysics Data System (ADS)
Andrews-Speed, C. P.; Johns, C. C.
1985-09-01
The association of basement uplifts with major ophiolite nappes in some Phanerozoic orogenic belts suggests that gravitational instability results in the local diapiric uplift of the basement following ophiolite emplacement. In previous analyses of diapirism in crustal silicate rocks, viscous behaviour of rocks has been assumed. It is argued that this assumption is not valid. An alternative analysis is offered to determine whether or not the stress would be sufficient for diapirism to occur. The negative buoyancy stress resulting from the emplacement of an ophiolite nappe 5-15 km thick onto continental basement may be in the range 10-50 MPa. If the horizontal deviatoric stress is zero, this will be the maximum principal compressive stress. After ophiolite emplacement the thermal profile through the ophiolite and the basement will relax from a saw-tooth form to an equilibrium profile. If the ophiolite is young and thick there will be a zone of ductile strain in the lower part of the ophiolite and in the upper part of the continental basement. Results from steady-state creep experiments suggest that temperatures in this zone may be high enough for a short time after ophiolite emplacement (3 Ma or more) for the rocks in this zone to deform at geologically significant strain rates (10 -14 or greater) in response to the negative buoyancy stress. A thin ophiolite or rapid erosion will result in this ductile zone being absent or too short-lived for significant strain. Aquaeous fluids may reduce the strength of brittle rocks by decreasing the effective normal stress or by encouraging pressure solution creep. Evidence suggests that the deviatoric stress across presently active faults may be as low at 10 MPa. Thus diapirism in response to ophiolite emplacement may occur through brittle strain. Gravity spreading within the ophiolite is an alternative mechanism for accommodating the gravitational instability. The critical evidence lies in the field.
Metamorphic sole genesis at the base of ophiolite nappes: Insights from numerical models
NASA Astrophysics Data System (ADS)
Yamato, Philippe; Agard, Philippe; Duretz, Thibault
2015-04-01
Obduction emplaces oceanic lithosphere on top of continental lithosphere. Although a number of studies have focused on this enigmatic process, the initial stages of obduction remain poorly understood. Field, petrological, and geochronological data reveal that during the first stages of the obduction (i.e., during the first 1-2 Myrs) a HT-LP metamorphic sole (~700-800 ° C and ~1 GPa) is systematically welded at the base of ophiolite nappes. However, the reason why such welding of the ophiolite soles occurs at these particular P-T conditions, and only at the onset of obduction, is still an open issue. The aim of this study is to explore the conditions required to explain the genesis of metamorphic soles. For this, we employ two-dimensional numerical modelling, constrained by the wealth of available data from the Oman ophiolite. We first present a thermo-kinematic model in which the velocity field is prescribed in order to simulate obduction initiation. The heat advection-diffusion equation is solved at each time step. The model is intentionally kept simple in order to control each parameter (e.g., convergence rate, dip angle, thermal age) and to test its influence on the resulting P-T conditions obtained through time along the obduction interface. Results show that the key factor allowing the formation of metamorphic soles is the age of the oceanic lithosphere involved. Moreover, we speculate that the reason why metamorphic soles are always welded at the same P-T conditions is due to the fact that, at these particular conditions, strength jumps occur within the oceanic lithosphere. These jumps lead to changes in strain localisation and allow the spalling of oceanic crust and its juxtaposition to the ophiolite nappe. This hypothesis is further tested using thermo-mechanical models in which the obduction initiates dynamically (only initial and boundary conditions are prescribed). The interplay between the temperature evolution and the mechanical behaviour is then discussed.
NASA Astrophysics Data System (ADS)
Sayit, K.; Göncüoglu, M. C.; Tekin, U. K.
2015-12-01
The Lycian Nappes, SW Anatolia, are represented by a stack of thrust sheets derived from the northern branch of Neotethys (i.e. Izmir-Ankara Ocean) and the northern margin of the Tauride-Anatolide platform. The Turunç Unit, which is now preserved within a tectonic slice of the Lycian Nappes, includes among others the Neotethys-derived basalt blocks with pelagic intra-pillow carbonate infillings of middle Carnian age (early Late Triassic). Here, we focus on the geochemistry of the Turunç basalts to shed light into their petrogenetic evolution within the Neotethyan framework. Immobile trace element systematics indicate that the Turunç lavas are sub-alkaline basalts, with geochemical signatures resembling to those generated above subduction zones. Detailed examination of the Turunç volcanics reveals two chemical groups. Both groups are variably enriched in Th and La relative to Nb, and exhibit depleted Zr and Hf contents relative to N-MORB. Of the two groups, however, Group 2 is more enriched in Th, but with a similar Nb content, which results in higher Th/Nb ratios (0.21-0.27) compared to those of Group 1 (0.08-0.11). Both groups reflect similar REE systematics; they display marked enrichment in LREE relative to HREE ([La/Yb]N = 4.8-8.9). Trace element characteristics of the Turunç basalts indicate that their mantle source has been modified by slab-derived component(s). Taking into account that the Turunc Unit includes no continent-derived detritus, we suggest that the Turunç lavas represent fragments of a Late Triassic island arc formed on the Neotethyan oceanic lithosphere. This may further imply that the Neotethyan oceanic lithosphere had already been formed by the early Late Triassic, thus suggesting a pre-early Late Triassic oceanization of the northern branch of Neotethys.
NASA Astrophysics Data System (ADS)
Anderson, Mark; Hames, Willis; Stokes, Alison
2010-05-01
Within the stack of Caledonian crystalline thrust sheets of northern Scandinavia, a single amphibolite facies lithotectonic unit, the Småtinden nappe, is identified as a major, basement-coupled ("stretching") shear zone. This dominantly pelitic unit achieved peak metamorphic conditions of 535-550°C and 8-9kbars, and the stretching geometry suggests that this most likely occurred in response to overthrusting of a hot, pre-assembled Caledonian thrust stack. Along-strike variations in microstructural geometries and patterns of mineral zoning in widely developed porphyroblast phases suggest, however, subsequent strain partitioning within the zone during late-stage decoupling of the thrust stack from the basement along major out-of-sequence thrusts. Large parts of the nappe are characterised by relatively late, static growth preserving concordant Si-Se relationships, and typically symmetrical external fabrics consistent with formation under dominantly pure shear conditions. In the Salangen area, however, the nappe is characterised by early garnet growth, with discordant Si-Se relationships and asymmetric external fabric geometries consistent with formation during ESE-directed simple shear. Remarkably consistent thermometric estimates from chlorites in both regimes (post- and syn-shearing) suggest that out-of-sequence ramping occurred at temperatures in the range 370-400 ̊C, within the typical range of blocking temperatures for argon retention in muscovite. 40Ar-39Ar dating of muscovites from S-C fabrics in the out-of-sequence shear zone suggest that late-stage thrusting occurred during the middle-late Devonian (ca. 395-375 Ma). Hanging-wall and footwall geometries coupled with these radiometric dates indicate that the development of these late thrusts closely relates to reactivation of pre-Caledonian Baltic basement during the Devonian (400-370 Ma). East-west contraction during the upper end of this time frame is peculiar considering that this was the period of large magnitude and rapid extension in western Norway.
NASA Astrophysics Data System (ADS)
Essid, El Mabrouk; Kadri, Ali; Inoubli, Mohamed Hedi; Zargouni, Fouad
2016-07-01
The northern Tunisia is occupied by the Tellian domain constituent the eastern end of the Maghrebides, Alpine fold-thrust belt. Study area includes partially the Tellian domain (Mogodos belt) and its foreland (Bizerte region). Most of this region outcrops consist of Numidian thrust sheet flysch attributed to the lower Oligocene-Burdigalian. In the study area, the major fault systems are still subject of discussion. The Numidian nappe structure, the distribution of basalt and Triassic outcrops within and at the front of this Tellian domain deserve more explanation. In this work we intend to update the structural scheme and the tectonic evolution of the northern Tunisia, taking into account salt tectonics and magmatism. The updated tectonic evolution will be integrated in the geodynamic framework of the Central Mediterranean. For this purpose, we have analyzed morphologic, seismic and structural data. The compilation of the results has allowed the identification of new regional NE-trending faults dipping towards the NW: the Bled el Aouana-Bizerte, the Sejnane-Ras Enjla and the Oued el Harka faults. They correspond to the reactivation of deep-seated normal faults splaying on the Triassic evaporites. This fault system constitutes the main component of the northern Tunisia structural scheme and has influenced its tectonic evolution marked by the main following stages. The Tellian thrust-sheets were immobilized at the uppermost Langhian. During the major Tortonian NW-trending compressive phase, these faults were reactivated with reverse kinematics and controlled the distribution of the post-nappes Neogene continental deposits. At the early Pleistocene, a compressive NNW-trending event has reactivated again these faults with sinistral-reverse movements and deformed the post-nappes Neogene series. Late Quaternary to Actual, the tectonic regime continues to be compressive with a NNW-trending maximum horizontal stress.
NASA Astrophysics Data System (ADS)
Basson, I. J.; Watkeys, M. K.; Phillips, D.
2005-11-01
The Mesoproterozoic Natal Metamorphic Province of Kwazulu-Natal in South Africa is an assemblage of several tectonic units, including accreted oceanic island arcs, obducted oceanic crust and deformed basin material. The highly deformed Mfongosi Group occurs at the leading edge of collision (the Natal thrust front), against and directly overlying the southern margin of the Kaapvaal Craton. Structures within the Mfongosi Group record "local" D1 and D2 events, the first of which was "oblique obduction", with predominantly N- to NNE-verging thrusting ( D1). This was followed by sinistral transpression combined with vertical constriction, forming SW-plunging kink folds and SW-plunging prolate pillow basalts ( D2). The third and final event ( D3) was E-W to ESE-WNW extension in a post-thrusting phase, defined by fibrous antitaxial quartz-calcite veining. The westernmost portion of the Mfongosi Group, the Ngubevu area, shows significantly higher finite strains (up to Rf = 12) compared to central Mfongosi and eastern Nkandlha areas ( Rf = 1.5 and less), suggesting highly oblique, largely NE-directed initial collision. Deformation of the NTF in the context of nappe emplacement is constrained by 40Ar/ 39Ar dating of post-cataclastic nematoblastic/porphyroblastic hornblende of the Manyane amphibolite close to the thrust between the Tugela nappe and the Mfongosi Group in the Mfongosi area. Hornblende overgrew the products of low-temperature deformation during the "local" D1 and D2. A minimum age of 1171 ± 16 Ma (95% conf., including J-error; weighted by √MSWD; MSWD = 4.3) is obtained for the tectonic juxtaposition of the Tugela nappe against the southern portions of the "Mfongosi Basin". This "local" D1 and D2 of the Mfongosi Group pre-dates the regional "oblique D1" and "left-lateral D2" previously determined for the central and southern terranes of the Natal Metamorphic Province by other researchers. Comparison of the 1171 ± 16 Ma age, with ages for shearing and intrusion, suggests that thrusting and/or mylonite-forming events migrated southwards throughout the Natal Metamorphic Province, being separated by approximately 25 million years. Thrusting and/or mylonite-forming events occurred in the nappe zone from ca. 1135 Ma to 1077 Ma, followed by a period of "quiescence" during which granites intruded, in turn followed by late-tectonic deformation of the southern Mzumbe and Margate terranes from ca. 1004 Ma to 970 Ma. Such a scenario supports previously-proposed indentation models with their implications of oblique convergence and late-tectonic escape of island arcs to the E/ENE (African azimuths).
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, K.H.
A prolific hydrocarbon province extends across the northern margin of South America from Colombia to east of Trinidad. Two key components are a world-class source rock, formed on a regional Late Cretaceous passive margin, and a complex tectonic setting in which a variety of structural and stratigraphic traps, reservoirs, seals and hydrocarbon kitchens have evolved through time. Convergence between the Farallon and Caribbean plates with South America culminated in the late Cretaceous-early Palaeogene with emplacement of Colombia`s Central Cordillera in the west and a nappe-foreland basin system in the north. Regional hydrocarbon generation probably occurred below associated basins. Subsequent obliquemore » convergence between the Caribbean and South America, partitioned into strike-slip and compressional strain, generated an eastward migrating and ongoing uplift-foredeep (kitchen) system from central Venezuela to Trinidad. Similarly, oblique interaction of western Colombia with the Nazca Plate caused segmentation of the earlier orogen, northward extrusion of elements such as the Maracaibo Block, and eastward migration of uplift progressively dividing earlier kitchens into localized foredeeps.« less
NASA Astrophysics Data System (ADS)
Eichhorn, Roland; Loth, Georg; Kennedy, Allen
2001-08-01
The U-Pb SHRIMP age determinations of zircons from the Habach terrane (Tauern Window, Austria) reveal a complex evolution of this basement unit, which is exposed in the Penninic domain of the Alpine orogen. The oldest components are found in zircons of a metamorphosed granitoid clast, of a migmatitic leucosome, and of a meta-rhyolitic (Variscan) tuff which bear cores of Archean age. The U-Pb ages of discordant zircon cores of the same rocks range between 540 and 520 Ma. It is assumed that the latter zircons were originally also of Archean origin and suffered severe lead loss, whilst being incorporated into Early-Cambrian volcanic arc magmas. The provenance region of the Archean (2.64-2.06 Ga) zircons is assumed to be a terrane of Gondwana affinity: i.e., the West African craton (Hoggar Shield, Reguibat Shield). The Caledonian metamorphism left a pervasive structural imprint in amphibolite facies on rocks of the Habach terrane; it is postdated by discordant zircons of a migmatitic leucosome at <440 Ma (presumably ca. 420 Ma). Alpine and Variscan upper greenschist- to amphibolite-facies conditions caused partial lead loss in zircons of a muscovite gneiss ('white schist') only, where extensive fluid flow and brittle deformation due to its position near a nappe-sole thrust enhanced the grains' susceptibility to isotopic disturbance. The Habach terrane - an active continental margin with ensialic back-arc development - showed subduction-induced magmatic activity approx. between 550 and 507 Ma. Back-arc diorites and arc basalts were intruded by ultramafic sills and subsequently by small patches of mantle-dominated unaltered and (in the vicinity of a major tungsten deposit) altered granitoids. Fore-arc (shales) and back-arc (greywackes, cherts) basin sediments as well as arc and back-arc magmatites were not only nappe-stacked by the Caledonian compressional regime closing the presumably narrow oceanic back-arc basin and squeezing mafic to ultramafic cumulates out of high-level magma chambers (496-482 Ma). It also induced uplift and erosion of deeply rooted crystalline complexes and triggered the development of a successor basin filled with predominantly clastic greywacke-arkosic sediments. The study demonstrates that the basement rocks exposed in the Habach terrane might be the 'missing link' between similar units of the more westerly positioned External domain (i.e., Aar, Aiguilles Rouges, Mont Blanc) and the Austroalpine domain to the east (Oetztal, Silvretta).
Large scale magmatic event, magnetic anomalies and ore exploration in northern Norway
NASA Astrophysics Data System (ADS)
Pastore, Z.; Church, N. S.; ter Maat, G. W.; Michels, A.; McEnroe, S. A.; Fichler, C.; Larsen, R. B.
2016-12-01
More than 17000 km3of igneous melts intruded into the deep crust at ca. 560-580 Ma and formed the Seiland Igneous Province (SIP), the largest complex of mafic and ultramafic intrusions in northern Fennoscandia. The original emplacement of the SIP is matter of current discussion. The SIP is now located within the Kalak Nappe Complex (KNC), a part of the Middle Allochthon of the North Norwegian Caledonides. The province is believed to represent a cross section of the deep plumbing system of a large igneous province and it is known for its layered intrusions sharing geological features with large ore-forming exploration provinces. In this study we investigate one of the four major ultramafic complexes of the province, the Reinfjord Complex. This was emplaced during three magmatic events in a time span of 4 Ma, and consists in a cylindrically zoned complex with a slightly younger dunite core (Central Series) surrounded by wehrlite and lherzolite dominated series (Upper and Lower Layered Series). Sulphides are present throughout the complex, and an electromagnetic survey identified a Ni-Cu-and a PGE reef deposit within the dunite, 100 meters below the surface. This discovery increased the ore potential of the complex and subsequently 4 deep drill cores were made. High-resolution magnetic helicopter survey was later followed up with ground magnetic and gravity surveys. Extensive sampling of surface rocks and drill cores were made to measure the rock-magnetic and physical properties of the samples and to explore the subsurface structure of the complex. Here, we developed a magnetic model for the Reinfjord complex integrating petrophysical data from both oriented surface samples and from the deep drill cores, with the new ground magnetic, and helicopter data (SkyTEM survey). A 3D model of the geometry of the ultramafic intrusion is presented and a refinement of the geological interpretation of the Reinfjord ultramafic intrusion.
Kinematic stratification in the hinterland of the central Scandinavian Caledonides
Gilotti, J.A.; Hull, J.M.
1993-01-01
A transect through west-central Norway illustrates the changing geometry and kinematics of collision in the hinterland of the central Scandinavian Caledonides. A depth section through the crust is exposed on Fosen Peninsula, comprising three tectonic units separated by two shear zones. The lowest unit, exposed in the Roan window, is a modestly deformed, Caledonian granulite complex framed by a subhorizontal de??collement, with NW-SE oriented lineations and kinematic indicators showing top-to-the-northwest transport. The middle unit, the Vestranden gneiss complex, contains relict granulites, but was penetratively deformed at amphibolite facies to produce an orogen-parallel family of structures during translation on the de??collement. Shallow plunging lineations on steep schistosities are subparallel to fold axes of the dominant, upright, non-cylindrical folds. A small component of sinistral strike slip is also recorded. In contrast, southernmost Fosen Peninsula contains an abundance of cover rocks infolded with Proterozoic basement in a fold nappe, with shallow, E-dipping schistosities, down-dip lineations, and orogen-oblique, top-to-the-west shear sense indicators. A NE-striking, sinistral shear zone separates the gneisses from southern Fosen. Deformation in the Scandian hinterland was partitioned both in space and time, with orogen-parallel extension and shear at middle structural levels and orogen-oblique transport at shallower levels. ?? 1993.
NASA Astrophysics Data System (ADS)
Kassem, Osama M. K.; Rahim, Said H. Abd El; Nashar, El Said R. El
2012-09-01
The estimation of finite strain in rocks is fundamental to a meaningful understanding of deformational processes and products on all scales from microscopic fabric development to regional structural analyses. The Rf/φ and Fry methods on feldspar porphyroclasts and mafic grains from 5 granite, 1 metavolcanic, 3 metasedimentary and 1 granodiorite samples were used in Wadi El Falek region. Finite-strain data shows that a high to moderate range of deformation of the granitic to metavolcano-sedimentary samples and axial ratios in the XZ section range from 1.60 to 4.10 for the Rf/φ method and from 2.80 to 4.90 for the Fry method. Furthermore, the short axes are subvertical associated with a subhorizontal foliation. We conclude that finite strain in the deformed granite rocks is of the same order of magnitude as that from metavolcano-sedimentary rocks. Furthermore, contacts formed during intrusion of plutons with some faults in the Wadi El Falek area under brittle to semi-ductile deformation conditions. In this case, finite strain accumulated during superimposed deformation on the already assembled nappe structure. It indicates that the nappe contacts formed during the accumulation of finite strain.
NASA Astrophysics Data System (ADS)
Sang, Miao; Xiao, Wenjiao; Orozbaev, Rustam; Bakirov, Apas; Sakiev, Kadyrbek; Pak, Nikolay; Ivleva, Elena; Zhou, Kefa; Ao, Songjian; Qiao, Qingqing; Zhang, Zhixin
2018-03-01
The anatomy of an ancient accretionary complex has a significance for a better understanding of the tectonic processes of accretionary orogens and complex because of its complicated compositions and strong deformation. With a thorough structural and geochronological study of a fossil accretionary complex in the Atbashi Ridge, South Tianshan (Kyrgyzstan), we analyze the structure and architecture of ocean plate stratigraphy in the western Central Asian Orogenic Belt. The architecture of the Atbashi accretionary complex is subdivisible into four lithotectonic assemblages, some of which are mélanges with "block-in-matrix" structure: (1) North Ophiolitic Mélange; (2) High-pressure (HP)/Ultra-high-pressure (UHP) Metamorphic Assemblage; (3) Coherent & Mélange Assemblage; and (4) South Ophiolitic Mélange. Relationships between main units are tectonic contacts presented by faults. The major structures and lithostratigraphy of these units are thrust-fold nappes, thrusted duplexes, and imbricated ocean plate stratigraphy. All these rock units are complicatedly stacked in 3-D with the HP/UHP rocks being obliquely southwestward extruded. Detrital zircon ages of meta-sediments provide robust constraints on their provenance from the Ili-Central Tianshan Arc. The isotopic ages of the youngest components of the four units are Late Permian, Early-Middle Triassic, Early Carboniferous, and Early Triassic, respectively. We present a new tectonic model of the South Tianshan; a general northward subduction polarity led to final closure of the South Tianshan Ocean in the End-Permian to Late Triassic. These results help to resolve the long-standing controversy regarding the subduction polarity and the timing of the final closure of the South Tianshan Ocean. Finally, our work sheds lights on the use of ocean plate stratigraphy in the analysis of the tectonic evolution of accretionary orogens.
Plate collision and mounting building separated by long periods of time. Possible causes
NASA Astrophysics Data System (ADS)
Artyushkov, Eugene; Chekhovich, Peter; Massonne, Hans-Joachim
2017-04-01
According to a popular scheme of orogenesis, superposition of thick nappe on continental crust results in concomitant mountain building. In many cases plate collision was not accompanied by mountain building which actually occurred 10-100 Myr later. Thus in East Carpathians 12 Ma ago thick nappe was superimposed on the western margin of the East European Craton. The nappe remained near to sea level and mountain building began only 3 myr ago. In the Middle Urals collision developed in a number of phases during 70 Myr since the Late Devonian and until the earliest Permian; however, this produced no high topography. The formation of orogenic granitoids took place at the main stage of collision 306-300 Ma ago. High mountains were formed in the earliest Permian 10 Myr after the end of collision. In the Northern Tien Shan collision with intrusion of large granitic plutons occurred in the Late Ordovician-Middle Devonian. In the Southern Tien Shan these phenomena refer to the Late Carboniferous and Late Jurassic. In both regions collision was not accompanied by mountain building. High mountains were formed in the Tien Shan quite recently. Shortening of strong lithospheric layer becomes possible only at short epochs of its softening under infiltration of fluids from the mantle. The absence of large uplift during shortening and thickening of the crust indicates a concomitant density increase in this layer. As follows from the analysis of typical phase diagrams of crustal rocks this can be explained by metamorphic reactions taking place in a presence of fluids under the pressure increase due to the nappe emplacement. As follows from the absence of large crustal uplift in shortened regions mantle lithosphere remains preserved in them after plate collision. At the epochs of infiltration from the mantle of large volumes of fluids it becomes softened. This ensures a possibility of convective replacement by the asthenosphere of fertile and dense mantle lithosphere of the Phanerozoic age which should result in a strong isostatic crustal uplift. Pronounced asthenospheric upwelling is indeed observed under high mountains in many Phanerozoic fold belts. New temperature distribution arises in the thickened crust after its shortening. As a result retrograde metamorphism with expansion became possible in dense rocks which underwent deep metamorphism at the preceding epochs of collision. This is another mechanism of mountain building. Analysis of the data on the Tien Shan shows that both these mechanisms are responsible for its uplift by 2 km and more during the last 2 Myr. In the gravity field the force acting along the lithospheric layer that necessary to shorten the crust increases with the altitude of topography. Termination of shortening after reaching only a very low altitude indicates that the forces which ensure collision are not large. They can be estimated as 3 × 1012 N m which is comparable with the plate driving force of ridge push.
Fuenzalida, H.; Rivera, L.; Haessler, H.; Legrand, D.; Philip, H.; Dorbath, L.; McCormack, D.; Arefiev, S.; Langer, C.; Cisternas, A.
1997-01-01
The Racha-Dzhava earthquake (Ms = 7.0) that occurred on 1991 April 29 at 09:12:48.1 GMT in the southern border of the Great Caucasus is the biggest event ever recorded in the region, stronger than the Spitak earthquake (Ms = 6.9) of 1988. A field expedition to the epicentral area was organised and a temporary seismic network of 37 stations was deployed to record the aftershock activity. A very precise image of the aftershock distribution is obtained, showing an elongated cloud oriented N105??, with one branch trending N310?? in the western part. The southernmost part extends over 80 km, with the depth ranging from 0 to 15 km, and dips north. The northern branch, which is about 30 km long, shows activity that ranges in depth from 5 to 15 km. The complex thrust dips northwards. A stress-tensor inversion from P-wave first-motion polarities shows a state of triaxial compression, with the major principal axis oriented roughly N-S, the minor principal axis being vertical. Body-waveform inversion of teleseismic seismograms was performed for the main shock, which can be divided into four subevents with a total rupture-time duration of 22 s. The most important part of the seismic moment was released by a gentle northerly dipping thrust. The model is consistent with the compressive tectonics of the region and is in agreement with the aftershock distribution and the stress tensor deduced from the aftershocks. The focal mechanisms of the three largest aftershocks were also inverted from body-wave records. The April 29th (Ms = 6.1) and May 5th (Ms = 5.4) aftershocks have thrust mechanisms on roughly E-W-oriented planes, similar to the main shock. Surprisingly, the June 15th (Ms = 6.2) aftershock shows a thrust fault striking N-S. This mechanism is explained by the structural control of the rupture along the east-dipping geometry of the Dzirula Massif close to the Borzhomi-Kazbeg strike-slip fault. In fact, the orientation and shape of the stress tensor produce a thrust on a N-S oriented plane. Nappe tectonics has been identified as an important feature in the Caucasus, and the source mechanism is consistent with this observation. A hidden fault is present below the nappe, and no large surface breaks were observed due to the main shock. The epicentral region is characterized by sediments that are trapped between two crystalline basements: the Dzirula Massif, which crops out south of Chiatoura, and the Caucasus Main Range north of Oni. Most, if not all, of the rupture is controlled by the thrusting of overlapping, deformed and folded sediments over the Dzirula Massif. This event is another example of blind active faults, with the distinctive feature that the fault plane dips at a gentle angle. The Racha Range is one of the surface expressions of this blind thrust, and its growth is the consequence and evidence of similar earthquakes in the past.
Axial Belt Provenance: modern river sands from the core of collision orogens
NASA Astrophysics Data System (ADS)
Resentini, A.; Vezzoli, G.; Paparella, P.; Padoan, M.; Andò, S.; Malusà, M.; Garzanti, E.
2009-04-01
Collision orogens have a complex structure, including diverse rock units assembled in various ways by geodynamic processes. Consequently, orogenic detritus embraces a varied range of signatures, and unravelling provenance of clastic wedges accumulated in adjacent foreland basins, foredeeps, or remnant-ocean basins is an arduous task. Dickinson and Suczek (1979) and Dickinson (1985) recognized the intrinsically composite nature of orogenic detritus, but did not attempt to establish clear conceptual and operational distinctions within their broad "Recycled Orogenic Provenance". In the Alpine and Himalayan belts, the bulk of the detritus is produced by focused erosion of the central backbone of the orogen, characterized by high topography and exhumation rates (Garzanti et al., 2004; Najman, 2006). Detritus derived from such axial nappe pile, including slivers of thinned continental-margin lithosphere metamorphosed at depth during early collisional stages, has diagnostic general features, which allows us to define an "Axial Belt Provenance" (Garzanti et al., 2007). In detail, "Axial Belt" detrital signatures are influenced by metamorphic grade of source rocks and relative abundance of continental versus oceanic protoliths, typifying distinct subprovenances. Metasedimentary cover nappes shed lithic to quartzolithic detritus, including metapelite, metapsammite, and metacarbonate grains of various ranks; only amphibolite-facies metasediments supply abundant heavy minerals (e.g., almandine garnet, staurolite, kyanite, sillimanite, diopsidic clinopyroxene). Continental-basement nappes shed hornblende-rich quartzofeldspathic detritus. Largely retrogressed blueschist to eclogite-facies metaophiolites supply albite, metabasite and foliated antigorite-serpentinite grains, along with abundant heavy minerals (epidote, zoisite, clinozoisite, lawsonite, actinolitic to barroisitic amphiboles, glaucophane, omphacitic clinopyroxene). Increasing metamorphic grade and deeper tectonostratigraphic level of source rocks are reflected by: a) increasing rank of metamorphic rock fragments (as indicated by progressive development of schistosity and growth of micas and other index minerals; MI index of Garzanti and Vezzoli, 2003); b) increasing feldspars; c) increasing heavy-mineral concentration (HMC index); d) increasing hornblende, changing progressively in color from blue/green to green/brown (HCI index); e) successive appearance of chloritoid, staurolite, kyanite, fibrolitic and prismatic sillimanite (MMI index; Garzanti and Andò, 2007). Dickinson W.R. 1985. Interpreting provenance relations from detrital modes of sandstones. In: Zuffa G.G. (ed.), Reidel, NATO ASI Series 148: 333-361. Dickinson W.R. and C.A. Suczek. 1979. Plate tectonics and sandstone composition. Am. Assoc. Pet. Geol. Bull. 63: 2164-2172. Garzanti E. and S. Andò. 2007, Plate tectonics and heavy-mineral suites of modern sands. In: Mange M. and D. Wright (eds.), Elsevier, Developments in Sedimentology Series 58: 741-763. Garzanti E. and G. Vezzoli. 2003. A classification of metamorphic grains in sands based on their composition and grade. J. Sedimentary Res. 73: 830-837. Garzanti E., C. Doglioni, G. Vezzoli and S. Andò. 2007. Orogenic Belts and Orogenic Sediment Provenances. J. Geology 115: 315-334. Garzanti E., G. Vezzoli, S. Andó, C. France-Lanord, S.K. Singh and G. Foster. 2004. Sediment composition and focused erosion in collision orogens: the Brahmaputra case. Earth Planet. Sci. Lett. 220: 157-174. Najman Y. 2006. The detrital record of orogenesis: a review of approaches and techniques used in the Himalayan sedimentary basins. Earth Sci. Rev. 74: 1-72.
Geochemical signature of permanent and ephemeral thermal springs in Val di Cornia, Central Italy
NASA Astrophysics Data System (ADS)
Pierotti, Lisa; Pennisi, Maddalena; Muti, Antonio; Gherardi, Fabrizio
2014-05-01
In the Val di Cornia area, several permanent thermal springs outflow. They belong to the hydrothermal system of Campiglia Marittima and have been exploited since longtime for the therapeutic properties of the discharged waters. With an average outflow of 250 L/sec, Calidario (36.3±0.2° C) is the most important permanent spring of the area. Periodically, i.e. about every 10 years, a number of ephemeral thermo-mineral springs in Bagnarello (46±0.2° C) and Monte Peloso (42.2±0.3° C) area, spontaneously reactivate over short time periods (several weeks to few months), with a maximum discharge of 150±20 L/sec. This phenomenon is generally induced by intensive rainfall events. In this contribution, we present new geochemical analyses of waters discharged from Calidario and the ephemeral springs reactivated at the beginning of 2001 and at the end of 2010. These new data are then compared to previous analyses to investigate geochemical variations over a 30-years period. Both ephemeral and permanent thermal springs have Ca-SO4 geochemical signature, typical of groundwaters circulating through the carbonate-evaporitic complexes of the Tuscan Nappe (Mesozoic age). Clear salinity trends are identified, with TDS increasing from Calidario to Monte Peloso and Bagnarello springs, up to a maximum of about 3000 ppm. Chemical speciation indicates that most of the thermal waters are close to saturation with respect to fluorite and gypsum/anhydrite, with solute geothermometers indicating possible equilibrium temperature of 50-55° C for Monte Peloso and Bagnarello waters, respectively. Higher temperatures, up to 75° C, were inferred by assuming equilibrium at depth with the aluminosilicates of the regional Basement (phyllitic formations of Paleozoic age), below the evaporites of the Tuscan Nappe (Triassic age). With δ18O and δ2H values of -6.4 (±0.2)o and -38.9 (±2.9)o respectively, the ephemeral springs have a steady stable isotope composition, comparable to permanent thermal springs. Based on these data, the main recharge area has been hypothesized in correspondence of outcropping carbonate formations in the hilly region NE of the area under study. The lack of tritium (3H) at Bagnarello suggests the existence of long underground residence times for the hydrothermal component, whereas the presence of measurable amounts of tritium at Calidario indicate the contribution of rapidly infiltrating meteoric waters. The 87Sr/86Sr ratio of ephemeral and permanent thermal springs (below 0.70804), significantly lower than local Ca-HCO3 groundwaters (0.70889), indicates a prolonged interaction with Mesozoic carbonate and evaporitic formations (0.70789). The δ34S-SO4 signature (+15.4o) mirrors the isotopic composition of local evaporites, reinforcing on the hypothesis of extensive thermal circulation through the Tuscan Nappe. Overall, the geochemical signature of the thermal springs of the Campiglia Marittima hydrothermal spring appears stable over the period 1984-present. Geochemical data support a regional groundwater circulation scheme where thermal waters move along a preferential NE-SW direction, flow at different depths within Mesozoic carbonate and evaporite formations, and emerge in correspondence of main faults.
NASA Astrophysics Data System (ADS)
Monopoli, Bruno; Bistacchi, Andrea; Bertolo, Davide; Dal Piaz, Giovanni; Gouffon, Yves; Massironi, Matteo; Sartori, Mario; Vittorio Dal Piaz, Giorgio
2016-04-01
We know since the beginning of the 20th century, thanks to mapping and structural studies by the Italian Regio Servizio Geologico (Franchi et al., 1908) and Argand's work (1909; 1911; 1916), that the Austroalpine-Penninic collisional wedge of the NW Alps is spectacularly exposed across the Aosta Valley and Valais ranges (Italy and Switzerland). In the 150th anniversary of the first ascent to Ruskin's "most noble cliff in Europe" - the Cervino/Matterhorn (Whymper, July 14th 1865), first described in a geological profile by Giordano (1869) and in a detailed map by Gerlach (1869; 1871), we have seen the conclusion of very detailed mapping projects carried out in the last years over the two regions, with collaborative efforts across the Italy-Switzerland border, constellated by 4000 m-high peaks. These projects have pictured with an unprecedented detail (up to 1:10.000 scale) the geology of this complex region, resulting from pre-Alpine events, Alpine subduction- and collision-related ductile deformations, and finally late-Alpine brittle deformations from the Oligocene to the Present. Based on this dataset, we use up-to-date technology and software to undertake a 3D modelling study aimed at: i) reconstructing the 3D geometry of the principal tectonic units, ii) detecting and unravelling problems and incongruences in the 2D geometrical models, iii) modelling the kinematics of the Oligocene and Miocene brittle fault network using 2D and 3D balancing and palinspastic restoration techniques. In this contribution we mainly discuss the prerequisites of the project. Common geomodelling paradigms (mainly developed for the hydrocarbon industry) cannot be applied in this project due to (i) the little scale, (ii) the source of the data - fieldwork, and (iii) the polyphase ductile and brittle deformations in the metamorphic nappe stack. Our goals at the moment are to model the post-metamorphic fault network and the boundaries of the principal tectonic units, which will be considered as a sort of pseudo-stratigraphy, since they are the oldest feature that can be traced continuously at the map scale. For this reason we have developed a set of attributes identifying the tectonic and lithological units (a "legend"), implemented both in the GIS database and in the 3D models, which at the same time is compatible with the data structure of 3D modelling packages like Move and Skua/Gocad, and allows tracing the complex hierarchic classification of the units mapped in the GIS. This allows for the almost automatic and consistent two-way transfer of data between the GIS and geomodelling environments. E.g. results of 3D modelling, which is based on input data originally stored in the GIS, will eventually be transferred back to the GIS. The results of this study, which are preliminarily presented here, will open new opportunities to study the collision- and subduction-related nappe architecture and kinematics with younger deformations removed, and will eventually lead (with additional studies) to a step-by-step retrodeformation supported by modern technologies, following the path traced by Argand at the beginning of the 20th century. Argand E. 1909. L'exploration géologique des Alpes pennines centrales. Bull. Soc. Vaudoise Sci. Nat., 45, 217-276. Argand A. 1911. Les nappes de recouvrement des Alpes pennines et leurs prolongements structuraux. Mat. Carte Géol. Suisse, 31, 25. Argand A. 1916. Sur l'arc des Alpes occidentales. Eclogae Geol. Helv., 14, 145-191. Franchi S., Mattirolo E., Novarese V., Stella A. & Zaccagna D. 1908. Carta geologica delle Alpi Occidentali alla scala 1:400.000. Regio Ufficio Geologico, Roma. Gerlach H. 1869. Die Penninischen Alpen. N. Denkschr. Schweiz. Natf. Ges., 23, 132. Gerlach H. 1871. Das Suedwestliche Wallis. Beitraege Geol. Karte Schweiz, 9, 175. Giordano F. 1869. Sulla orografia e sulla geologica costituzione del Gran Cervino. Atti R. Acc. Sci. Torino, 4, 304-321.
NASA Astrophysics Data System (ADS)
Zhang, S.; Jiang, D., Sr.; Ding, R.; Li, W.; Gomez, F. G.
2017-12-01
The Longmen Shan is known for both the steep topography and the absence of Cenozoic foreland deposition. The 2008 Wenchuan Mw 7.9 earthquake, which ruptured the thrust faults along the range front, inspires vigorous debates about topography origin and seismic hazard. Two end-member models, crustal shortening and lower crustal flow, have been proposed. However, both of them need further verification. The Minjiang river and the Qingyijiang river run through the middle and the southern Longmen Shan respectively, which make it possible to study the strain distribution by relict river terraces. Longitudinal profiles of river terraces were restored by detailed field survey, high-precision measurement, sediment dating and chemical analyses. Deformed fluvial terraces shows that most thrust faults are active in the late Quaternary, and crust shortening dominates the fold-and-thrust belt, but the strain distributions are quite different between the south and north segments. In the north, thrust slips are mainly accommodated along the range front, the crustal shortening rate is 1.4 to 2.0 mm/yr, and only 25% of crust shortening are absorbed by the foreland. In the south, thrust slips are distributed among the thrust belt, the crustal shortening rate is 2.9 to 4.6mm/yr, and up to 83% of crustal shortening are absorbed by the foreland. Compared with other margins of the Tibetan Plateau, the Longmen Shan has much narrower thrust belt and nappe. The Himalayas, the Karakoram and the Qilian Shan thrust nappes are about 3 to 5 times wider than the Longmen Shan. However, all of these belts have comparable elevations above their foreland, respectively. Comparable altitude difference distributed across a narrow belt makes a greater topographic relief in the Longmen Shan, where narrow thrust nappe exerts less tectonic loading on the footwall which doesn't favor the formation of foreland basin. Our research results favor the model of crustal shortening, and reveal that all basement-involved thrust faults have potentials to strong earthquakes with recurrent intervals about three to six thousand years.
NASA Astrophysics Data System (ADS)
Ebert, A.; Herwegh, M.; Karl, R.; Edwin, G.; Decrouez, D.
2007-12-01
In the upper crust, shear zones are widespread and appear at different scales. Although deformation conditions, shear zone history, and displacements vary in time and space between shear zones and also within them, in all shear zones similar trends in the evolution of large- to micro-scale fabrics can be observed. The microstructural analyses of calcite mylonites from Naxos and various Helvetic nappes show that microstructures from different metamorphic zones vary considerably on the outcrop- and even on the sample- scale. However, grain sizes tend to increase with metamorphic degree in case of Naxos and the Helvetic nappes. Although deformation conditions (e.g. deformation temperature, strain rate, and shear zone geometry, i.e. shear zone width and rock type above/below thrust) vary between the different tectonic settings, microstructural trends (e.g. grain size) correlate with each other. This is in contrast to many previous studies, where no corrections for second phase contents have been applied. In an Arrhenius-type diagram, the grain growth trends of calcite of all studied shear zones fit on a single trend, independent of the dimensions of localized large-scale structures, which is in the dm to m- and km-range in case of the Helvetic thrusts and the marble suite of Naxos, respectively. The calcite grain size increases continuously from few μm to >2mm with a temperature increase from <300°C to >700°C. In a field geologist's point of view, this is an important observation because it shows that natural dynamically stabilized steady state microfabrics can be used to estimate temperature conditions during deformation, although the tectonic settings are different (e.g. strain rate, fluid flow). The reason for this agreement might be related to a scale-dependence of the shear zone dimensions, where the widths increase with increasing metamorphic conditions. In this sense, the deformation volumes affected by localization must closely be linked to the strength of the affected rocks. In comparison to experiments, similar microstructural trends are observed. Here, however, shifts of these trends occur due to the higher strain rates.
Structural evolution of Halaban Area, Eastern Arabian Shield, Saudi Arabia
NASA Astrophysics Data System (ADS)
Al-Amri, Yousef; Kassem1, Osama M. K.
2017-04-01
Neoproterozoic basement complex comprises a metamorphic/igneous suite (Abt schist and sheared granitoids) with syn-accretionary transpressive structures, unconformably overlain by a post-amalgamation volcanosedimentary sequence. This study aims to attempt to exposed post-accretionary thrusting and thrust-related structures at Halaban area, Eastern Arabian Shield. The Rf/ϕ and Fry methods are utilized on quartz and feldspar porphyroclasts, as well as on mafic crystals, such as hornblende and biotite, in eighteen samples. The X/Z axial ratios range from 1.12 to 4.99 for Rf/ϕ method and from 1.65 to 4.00 for Fry method. The direction of finite strain for the long axes displays clustering along the WNW trend (occasionally N) with slight plunging. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It indicates that the contacts between various lithological units in the Halaban area were formed under brittle to semi-ductile deformation conditions. The penetrative subhorizontal foliation was concurrent with thrusting and shows nearly the same attitudes of tectonic contacts with the overlying nappes. Keywords: Finite strain analysis, volcanosedimentary sequence, Halaban area, Eastern Arabian Shield, Saudi Arabia.
Modelling of Time-Variant Flows Using Vortex Dynamics.
1987-02-01
eopennage.... ) avec nappes enroul~es et d~ chir ~cs. REFERENCES Ji .T. BEALE, A. MAJDA "Nigh order accurate vortex methods with explicit velocity kernel...discrete vortices. Two papers, Longuet- Higgins (37) and Smith and Stansby (38) deal with the problem. In (37) conformal transformation is used for the...Longuet- Higgins (37). Most experiments on separated flows undoubtedly contain three-dimensional effects and again vortex decay is occasionally put into the
NASA Astrophysics Data System (ADS)
Favaro, S.; Handy, M. R.; Scharf, A.; Schuster, R.
2017-06-01
The changing shape of indenting crustal blocks during northward motion of the Adriatic microplate induced migration of Miocene doming and orogen-parallel extension of orogenic crust in the Tauern Window. New structural and kinematic data indicate that initial shortening of the Penninic nappe pile in the Tauern Window by upright folding and strike-slip faulting was transitional to coeval north-south shortening and east-west extension; the latter was accommodated by normal faulting at the eastern and western margins of the window. Retrodeforming these post-nappe structures in map view yields a map-view reconstruction of the orogenic crust back to 30 Ma, including the onset of pronounced indentation at 21 Ma. This model supports the notion that indentation involved approximately equal amounts of north-south shortening and orogen-parallel stretching and extrusion toward the Pannonian Basin, as measured from the indenter tip to the European foreland in the north and Austroalpine units in the east. Comparison of areal denudation of the orogenic crust before and after indentation indicates that erosion associated with upright folding was the primary agent of denudation, whereas extensional unroofing and limited erosion along normal faults at the eastern and western ends of the Tauern Window accounted for only about a third of the total denudation.
Chen, Xin; Jiang, Xue-Mei; Zhao, Lin-Jing; Sun, Lin-Lin; Yan, Mei-Ling; Tian, You; Zhang, Shuai; Duan, Ming-Jing; Zhao, Hong-Mei; Li, Wen-Rui; Hao, Yang-Yang; Wang, Li-Bo; Xiong, Qiao-Jie; Ai, Jing
2017-01-01
Impaired synaptic plasticity and neuron loss are hallmarks of Alzheimer’s disease and vascular dementia. Here, we found that chronic brain hypoperfusion (CBH) by bilateral common carotid artery occlusion (2VO) decreased the total length, numbers and crossings of dendrites and caused neuron death in rat hippocampi and cortices. It also led to increase in N-terminal β-amyloid precursor protein (N-APP) and death receptor-6 (DR6) protein levels and in the activation of caspase-3 and caspase-6. Further study showed that DR6 protein was downregulated by miR-195 overexpression, upregulated by miR-195 inhibition, and unchanged by binding-site mutation and miR-masks. Knockdown of endogenous miR-195 by lentiviral vector-mediated overexpression of its antisense molecule (lenti-pre-AMO-miR-195) decreased the total length, numbers and crossings of dendrites and neuron death, upregulated N-APP and DR6 levels, and elevated cleaved caspase-3 and caspase-6 levels. Overexpression of miR-195 using lenti-pre-miR-195 prevented these changes triggered by 2VO. We conclude that miR-195 is involved in CBH-induced dendritic degeneration and neuron death through activation of the N-APP/DR6/caspase pathway. PMID:28569780
Paleostress analysis of the upper-plate rocks of Anafi Island (Cyclades, Greece)
NASA Astrophysics Data System (ADS)
Soukis, Konstantinos; Lozios, Stylianos
2017-04-01
The Attic Cycladic complex (Aegean Sea, Greece) is an area where profound extension, as a result of the Hellenic trench retreat due to slab-rollback, has exhumed mid-crustal rocks to the surface. The remnants of the upper plate are observed in the form of clippen scattered throughout the complex, occupying a very small percentage of the area. Anafi Island, located at the southeastern rim of the Attic-Cycladic complex, represents one of the few areas where a significant part of the upper plate units can be observed and studied. The complex tectonostratigraphy of Anafi Island is characterized by inverted metamorphism and includes a series of medium to high-grade metamorphic rocks that are thrusted onto a non-metamorphosed Paleogene flysch. The uppermost amphibolitic-facies thrust sheets were intruded in the late Cretaceous by intermediate to felsic magmatic rocks. The nappe pile was later destroyed in the late Miocene - Pliocene through successive stages of normal faulting that included both low- and high-angle normal faults. During that stage, supra-detachment syn-extensional sedimentation has taken place thus giving the opportunity to put some age constraints on the fault activity. Paleostress analysis with the separation and stress inversion method TRM revealed two stress tensors that can explain the fault-slip data-set of Anafi Island related to NE-SW and N-S extension, respectively. The older NE-SW trend is related to the late Miocene stress field whereas the N-S is likely related to the present day stress field. These results show that there was a gradual rotation to the trend of least principal stress axis (σ3), that could be associated with regional events such as the escape of Anatolia towards the Aegean and fastest retreat of the Hellenic subduction zone.
The East Falcon Basin: Its Caribbean roots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartok, P.; Boesi, T.
1996-08-01
The East Falcon Basin has been described persistently in the context of the Maracaibo Basin tectonic framework. It is the objective of the present study to demonstrate that the Falcon Basin is, in effect, a Caribbean basin juxtaposed on South America and affected by Caribbean tectonics. The oldest rocks outcropping in the region are Late Paleozoic metamorphic and igneous rocks rafted from northcentral Colombia, Middle Jurassic ophiolite complexes, sediments and metasediments and Cretaceous ophiolites transported by a melange of late Cretaceous to early Tertiary sediments. The south vergence of the Caribbean Nappe province has been documented and extends to themore » present limit of the Andean uplift and to the southern limit of the Coastal Range. The migrating foredeep that developed during the Paleocene-Eocene deposited dominantly basinal shales and thin sandstones. During the Oligocene the Caribbean faults of the Oca system and conjugates began with a dominantly transtensional regime becoming progressively transpressional by Miocene time. The facies development of the Oligocene-Miocene documents the tectonic history. Unique blocks remained as resistant blocks creating ramparts and modifying the basin configuration. During transpression northward-verging thrusting progressively migrated towards the present coastline. The most evident structures of the region are Caribbean in affinity and combined with the sedimentary history of the region can serve to unravel the complex Caribbean-South American plate interaction.« less
NASA Astrophysics Data System (ADS)
Cuthbert, Simon
2017-04-01
The Scandinavian Caledonides (SC) represents a plate collision zone of Himalayan style and scale. Three fundamental characteristics of this orogen are: (1) early foreland-directed, tectonic transport and stacking of nappes; (2) late, wholesale reversal of tectonic transport; (3) ultrahigh pressure metamorphism of felsic crust derived from the underthrusting plate at several levels in the orogenic wedge and below the main thrust surface, indicating subduction of continental crust into the mantle. The significance of this for crustal evolution is the profound remodeling of continental crust, direct geochemical interaction of such crust and the mantle and the opening of accommodation space trapping large volumes of clastic detritus within the orogen. The orogenic wedge of the SC was derived from the upper crust of the Baltica continental margin (a hyper-extended passive margin), plus terranes derived from an assemblage of outboard arcs and intra-oceanic basins and, at the highest structural level, elements of the Laurentian margin. Nappe emplacement was driven by Scandian ( 430Ma) collision of Baltica with Laurentia, but emerging Middle Ordovician ages for diamond-facies metamorphism for the most outboard (or rifted) elements of Baltica suggest prior collision with an arc or microcontinent. Nappes derived from Baltica continental crust were subducted, in some cases to depths sufficient to form diamond. These then detached from the upper part of the down-going plate along major thrust faults, at which time they ceased to descend and possibly rose along the subduction channel. Subduction of the remaining continental margin continued below these nappes, possibly driven by slab-pull of the previously subducted Iapetus oceanic lithosphere and metamorphic densification of subducted felsic continental margin. 3D numerical modelling based upon a Caledonide-like plate scenario shows that if a continental corner or promontory enters the subduction zone, the continental margin descends to greater depths than for a simple orthogonal collision and its modelled thermal evolution is consistent with UHP metamorphic assemblages recorded in the southern part of the SC. Furthermore, a tear initiates at the promontary tip along the ocean-continent junction and propagates rapidly along the orogen. The buoyant upthrust of the subducted margin can then lead to reversal of the motion vector of the entire subducting continent, which withdraws the subducted lithospheric margin out of the subduction channel ("eduction"). Because of the diachroneity of slab failure, the continent also rotates, which causes the eduction vector to change azimuth over time. These model behaviours are consistent with the late orogenic structural evolution of the southern SC. However, during the final exhumation stage the crust may not have acted entirely coherently, as some eduction models propose: There is evidence that some inboard Baltica crust experienced late, shallow subduction before detaching as giant "flakes" that carried the orogenic wedge piggyback, forelandwards. Eduction and flake-tectonics could have operated coevally; the model system does not preclude this. Finally, the traction of a large educting (or extruding) mass of continental margin against the overlying orogenic wedge may have stretched and ruptured the wedge, resulting in opening of the late-orogenic Old Red Sandstone molasse basins.
CUMULATE ROCKS ASSOCIATED WITH CARBONATE ASSIMILATION, HORTAVÆR COMPLEX, NORTH-CENTRAL NORWAY
NASA Astrophysics Data System (ADS)
Barnes, C. G.; Prestvik, T.; Li, Y.
2009-12-01
The Hortavær igneous complex intruded high-grade metamorphic rocks of the Caledonian Helgeland Nappe Complex at ca. 466 Ma. The complex is an unusual mafic-silicic layered intrusion (MASLI) because the principal felsic rock type is syenite and because the syenite formed in situ rather than by deep-seated partial melting of crustal rocks. Magma differentiation in the complex was by assimilation, primarily of calc-silicate rocks and melts with contributions from marble and semi-pelites, plus fractional crystallization. The effect of assimilation of calcite-rich rocks was to enhance stability of fassaitic clinopyroxene at the expense of olivine, which resulted in alkali-rich residual melts and lowering of silica activity. This combination of MASLI-style emplacement and carbonate assimilation produced three types of cumulate rocks: (1) Syenitic cumulates formed by liquid-crystal separation. As sheets of mafic magma were loaded on crystal-rich syenitic magma, residual liquid was expelled, penetrating the overlying mafic sheets in flame structures, and leaving a cumulate syenite. (2) Reaction cumulates. Carbonate assimilation, illustrated by a simple assimilation reaction: olivine + calcite + melt = clinopyroxene + CO2 resulted in cpx-rich cumulates such as clinopyroxenite, gabbro, and mela-monzodiorite, many of which contain igneous calcite. (3) Magmatic skarns. Calc-silicate host rocks underwent partial melting during assimilation, yielding a Ca-rich melt as the principal assimilated material and permitting extensive reaction with surrounding magma to form Kspar + cpx + garnet-rich ‘cumulate’ rocks. Cumulate types (2) and (3) do not reflect traditional views of cumulate rocks but instead result from a series of melt-present discontinuous (peritectic) reactions and partial melting of calc-silicate xenoliths. In the Hortavær complex, such cumulates are evident because of the distinctive peritectic cumulate assemblages. It is unclear whether assimilation of ‘normal’ silicate rocks results in peritectic assemblages, or whether they could be identified as such if they exist.
NASA Astrophysics Data System (ADS)
Andersen, T. B.
2013-12-01
The Scandinavian segment (~2000 km) of the Caledonian-Appalachian orogen formed by a head-on collision of Baltica and Laurentia. The collision followed rapid (>10 cm/yr) convergence, subduction and closure of the Iapetus Ocean in the Ordovician to the Middle Silurian. The collision culminated in a Himalayan type continental collision at 430 Ma, after which the continental subduction/convergence continued for 20 Myr. The terminal stage was characterized by syn- and post-orogenic extension and exhumation, which produced a template used in opening of the present-day Norwegian Sea. The Scandian collision produced a 'layer-cake' tectono-stratigraphy, but correlation of individual nappe units along strike is not trivial. The vestiges of the Iapetus can, however, be traced along the entire Scandinavian Peninsula and constitute the Iapetus suture. Rocks of assumed Laurentian origin structurally overlie the suture. The outboard units underwent several orogenic events that pre-date the Scandian collision and which took place outboard of Baltica. These will not be discussed further here. The Caledonian passive margin of Baltica was very wide, consisting of non-volcanic hyperextended segments as well as passive volcanic margin domains. Basement-cover pairs, in places with mafic dyke-swarms constitute most of these units. The Baltican and assumed Baltican units below the suture have evidence of diachronous and relatively locally developed pre-Scandian deformation and metamorphic events. In S. Norway large basement-cover units are separated by a melange with numerous solitary mantle peridotites and a number of detrital serpentinites. The melange can be traced along strike across S. Norway. Locally, an island-type ';Celtic' fauna is preserved in detrital serpentinite. Some mantle rocks were structurally emplaced, exhumed, eroded and juxtaposed with continental clastics and crust before the Early Ordovician. The melange was recently interpreted to represent an oceanic to transitional crust basin with mantle exhumed by hyperextension during the Caledonian Wilson cycle ';kick-off'. Islands formed by serpentinite and clastic serpentinites suggest that hydrated mantle diapirs rose above sea level in the Early Ordovician. A number of solitary peridotites and detrital serpentinites are also typical elements in Seve nappe complex in north-central Sweden and Norway. The Pre-Scandian events affecting the passive Baltican margin show a range of ages and characteristics, but most important are the eclogites of Ordovician age. The oldest (~482 Ma) occur in the northern part of the Seve (Nordbotn). UHP eclogites in Jämtland formed at 446 Ma, and both these occurrences in the Seve are associated with mantle peridotites. In SW Norway, 470-460 Ma eclogites are preserved in continental nappes immediately below the suture near Stavanger. Finally, a lower grade HP-LT Ordovician event (~450 Ma) also dated by unconformable Middle Silurian (Wenlock) sediments has been identified. These pre-Scandian events demonstrate that the margin of Baltica underwent a sequence of geographic and time-separated events in the Ordovician before the Iapetus closed in the Middle Silurian. In this presentation it is suggested that the extension and hyperextension geometry inherited from the Caledonian Wilson-cycle ';kick-off' controlled the sequence of short-lived and local HP-LT events in the Scandinavian Caledonides.
Estimation of groundwater recharge using the chloride mass-balance method, Pingtung Plain, Taiwan
NASA Astrophysics Data System (ADS)
Ting, Cheh-Shyh; Kerh, Tienfuan; Liao, Chiu-Jung
Due to rapid economic growth in the Pingtung Plain of Taiwan, the use of groundwater resources has changed dramatically. Over-pumping of the groundwater reservoir, which lowers hydraulic heads in the aquifers, is not only affecting the coastal area negatively but has serious consequences for agriculture throughout the plain. In order to determine the safe yield of the aquifer underlying the plain, a reliable estimate of groundwater recharge is desirable. In the present study, for the first time, the chloride mass-balance method is adopted to estimate groundwater recharge in the plain. Four sites in the central part were chosen to facilitate the estimations using the ion-chromatograph and Thiessen polygon-weighting methods. Based on the measured and calculated results, in all sites, including the mountain and river boundaries, recharge to the groundwater is probably 15% of the annual rainfall, excluding recharge from additional irrigation water. This information can improve the accuracy of future groundwater-simulation and management models in the plain. Résumé Du fait de la croissance économique rapide de la plaine de Pingtung à Taiwan, l'utilisation des ressources en eau souterraine s'est considérablement modifié. La surexploitation des aquifères, qui a abaissé le niveau des nappes, n'affecte pas seulement la région côtière, mais a de sérieuses répercutions sur l'agriculture dans toute la plaine. Afin de déterminer les ressources renouvelables de l'aquifère sous la plaine, une estimation précise de la recharge de la nappe est nécessaire. Dans cette étude, le taux de recharge de la nappe a d'abord été estimé au moyen d'un bilan de matière de chlorure. Quatre sites de la partie centrale ont été sélectionnés pour réaliser ces estimations, à l'aide d'un chromatographe ionique et de la méthode des polygones de Thiessen. A partir des résultats mesurés et calculés, à chaque site, et en prenant comme limites les montagnes et les rivières, la recharge de la nappe a étéévaluée à environ 15% des précipitations annuelles, sans tenir compte de la recharge par le retour d'irrigation. Ce résultat doit permettre de tester la précision de la simulation de nappe qui va être faite, ainsi que les modèles de gestion de la plaine. Resumen Debido al rápido crecimiento económico de la zona de la Llanura de Pingtung, Taiwan, el uso de los recursos de agua subterránea ha cambiado radicalmente. La sobreexplotación, con el consiguiente descenso de los niveles piezométricos en los acuíferos, no sólo afecta las áreas costeras, sino que está teniendo consecuencias importantes para la agricultura de la zona. Para determinar la extracción sostenible en el acuífero, es deseable una buena estimación de la recarga. En este estudio se adopta por primera vez el método de balance de cloruros para estimar la recarga en el llano. Se seleccionaron cuatro puntos en la parte central para facilitar las estimaciones mediante los métodos de cromatógrafo iónico y de polígonos de Thiessen. A partir de los resultados medidos y calculados en toda la zona, e incluyendo los contornos de montañas y ríos, la recarga subterránea es de cerca del 15% de la precipitación anual, excluyendo la recarga que se produce por riego adicional. Este dato permitirá mejorar la precisión de los modelos de simulación de flujo y de gestión que se realizarán en el futuro.
NASA Astrophysics Data System (ADS)
Stutenbecker, Laura; Schlunegger, Fritz
2015-04-01
The Rhône River in the Central Swiss Alps drains a 5380 km2 large basin that shows a high spatial variability of bedrock lithology, exhumation rate, glacial conditioning and climate. All of these factors were recently discussed to control erosion rates in orogenic settings in general, and particularly in the Alps (e.g. Wittmann et al. 2007, Vernon et al. 2008, Norton et al. 2010a). Thanks to various and densely distributed data, the upper Rhône basin located between the Aar massif and Lake Geneva is a suitable natural laboratory to analyze the landscape's geomorphological state and controlling factors at a basin-scale. In this study, we extract geomorphological parameters along the channels of ca. 50 tributary basins of various sizes that contribute to the sediment budget of the Rhône River either through sediment supply by torrents or debris flows. Their catchments are located in either granitic basement rocks (External Massifs), oceanic meta-sedimentary and ophiolitic rocks (Penninic nappes) or fine-grained continental-margin sediments (Helvetic nappes). The analysis of longitudinal river profiles from DEMs and slope/area relationships show that all tributary rivers within the Rhône basin are in topographic transient state that is expressed by mainly convex or concave-convex channel shapes with several knickpoints of either tectonic-lithological or glacial origin. Furthermore, the frequency distribution of elevations (hypsometry) along the river channel allows identifying glacially inherited morphologies and the recent erosional front. The combination of those different geomorphological data yields to a categorization of the tributary rivers into three endmember groups: (1) streams with highly convex profiles, testifying to a strong glacial inheritance, (2) concave-convex channels with several knickzones and inherited morphologies of past glaciations, (3) predominantly concave, relatively steep rivers with minor knickpoints and inner gorges. Assuming that increasing concavity is an expression of advancing topographic equilibration (Wobus et al. 2006, and others), tributaries within the Rhône basin are in different states of equilibrium. Interestingly, the three groups correspond with distinct litho-tectonic units: Tributaries of group 1 are frequently found in the External Massifs, whereas channels of group 2 and 3 are located in the Penninic and Helvetic nappes, respectively. Fission-track data from the Alps (Vernon et al. 2008) also suggest a spatially variable exhumation history closely related to the different litho-tectonic units, ranging from youngest exhumation in the External Massifs, intermediate in the Helvetic units and oldest in the Penninic units. Non-equilibrated river profiles in the External Massifs can be explained by a combination of recent glaciation and exhumation. In contrast, river profiles in the Helvetic nappes appear to be closer to topographic steady state. Rivers located in the Penninic nappes, which show much older exhumation ages, were probably perturbed mainly by multiple glaciations and have not equilibrated yet. These observations suggest that differences in response times of river channels are probably conditioned by the differences in lithologies and tectonic histories of the three litho-tectonic domains. Norton, K.P., Abbühl, L.M. and Schlunegger, F., 2010a, Glacial conditioning as an erosional driving force in the Central Alps: Geology, v.38, p. 655-658 Vernon, A.J., van der Beek, P.A., Sinclair, H.D., Rahn, M.K., 2008, Increase in late Neogene denudation of the European Alps confirmed by analysis of a fission-track thermochronology database. EPSL, v. 270, p. 316-329. Wittmann, H., von Blanckenburg, F., Kruesmann, T., Norton, K.P., and Kubik, P.W., 2007, Relation between rock uplift and denudation from cosmogenic nuclides in river sediment in the Central Alps of Switzerland: J. Geophys. Res., v. 112, p. F04010 Wobus, C., Whipple, K.X, Kirby, E., Snyder, E., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D., 2006, Tectonics from topography: Procedures, promise, and pitfalls, in Willett, S.D. et al., eds., Tectonics, climate, and landscape evolution: GSA Spec. Paper 398, p. 55-74
Low temperature thermochronology in the Easter Alps. New data, interpretations and perspectives.
NASA Astrophysics Data System (ADS)
Wölfler, Andreas
2015-04-01
The aim of this study is to evaluate new and published low temperature thermochronological data of the Eastern Alps in terms of its Mesozoic and Cenozoic tectonic evolution and the possible connection with deep seated lithospheric processes. In the Eastern Alps, the tectonic units that originate from the Penninic domain are buried beneath the Austroalpine nappe stack. Overthrusting of the Austroalpine nappes over the Penninic units occurred throughout the Cretaceous and lasted until the Eocene. During lateral tectonic extrusion in Oligocene to Miocene times the footwall penninic units exposed in the Tauern Window, were tectonically exhumed from below the Austroalpine hanging wall. This is well documented by Miocene to Pliocene zircon- and apatite fission track (ZFT, AFT) and (U-Th)/He data. However, the Austroalpine hanging wall shows a more complex age pattern. Late Cretaceous ZFT data reflect post-metamorphic exhumational cooling after Eo-Alpine metamorphism that goes along with an extensional phase that affected large parts of the Eastern Alps. Paleogene AFT and apatite (U-Th)/He data of the Austroalpine units to the east of the Tauern Window reflect exhumation of this area that supplied clastic material, the so-called Augenstein formation. Exhumation and erosion of the area left a probably hilly surface in Early Miocene times that was only moderately uplifted since then. These areas are well known for paleosurfaces exposed in the Gurktal- Kor- and Seckauer Alps to the east of the Tauern Window and in the central and eastern Northern Calcareous Alps. However, distinct parts of the Austroalpine hanging wall experienced substantial exhumation and surface uplift in the Miocene, contemporaneous to the exhumation of Penninic units and lateral extrusion of the Eastern Alps. These areas are restricted to the south and northeast of the Tauern Window and are characterized by steep and rugged reliefs that contrast the hilly and moderately shaped reliefs of the paleosurfaces. To summarize, low temperature thermochronological data of the Eastern Alps display at least three different exhumation scenarios during Cretaceous, Paleogene and Neogene times. Recent studies suggest that these time frames mark substantial changes in the lithosphere beneath the European Alps. Therefore exhumation in the Eastern Alps may reflect processes like lithsopheric thinning, changes in slab polarities and the formation of slab gaps.
NASA Astrophysics Data System (ADS)
Shu, Liangshu; Yin, Hongwei; Faure, Michel; Chen, Yan
2017-06-01
The Xu-Huai thrust-and-fold belt, located in the southeastern margin of the North China Block, consists mainly of thrust and folded pre-Mesozoic strata. Its geodynamic evolution and tectonic setting are topics of long debate. This paper provides new evidence from geological mapping, structural analysis, and making balance cross-sections, with restoration of cross-sections. Results suggest that this belt was subjected to two-phase deformation, including an early-phase regional-scale NW-ward thrust and fold, and a late-phase extension followed by the emplacement of dioritic, monzodioritic porphyrites dated at 131-135 Ma and locally strike-slip shearing. According to the mapping, field observations and drill-hole data, three structural units were distinguished, namely, (1) the pre-Neoproterozoic crystalline basement in the eastern segment, (2) the nappe unit or the thrust-and-fold zone in the central segment, which is composed of Neoproterozoic to Ordovician carbonate rocks and Carboniferous-Permian coal-bearing rocks, about 2600 m thick, and (3) the western frontal zone. A major decollement fault has also been identified in the base of the nappe unit, on which dozen-meter to km-scale thrust-and-fold bodies were commonly developed. All pre-Mesozoic depositional sequences were involved into a widespread thrust and fold event. Six uncompetent-rock layers with biostratigraphic ages (Nanjing University, 1996) have been recognized, and each uncompetent-rock layer occurred mainly in the top of the footwall, playing an important role in the development of the Xu-Huai thrust-and-fold belt. Geometry of the major decollement fault suggests that the nappe unit of this belt was rooted in its eastern side, near the Tan-Lu Fault Zone. Two geological cross-sections were chosen for structural balancing and restoration. From the balanced cross-sections, ramp-flat and imbricated faults as well as fault-related folds were identified. A shortening of 20.6-29.6 km was obtained from restoration of balanced sections, corresponding to a shortening rate of 43.6-46.4%. This shortening deformation was likely related to the SE-ward intracontinental underthrust of the North China Block beneath the South China Block during the Mesozoic.
NASA Astrophysics Data System (ADS)
Stutenbecker, L. A.; Costa, A.; Schlunegger, F.
2015-10-01
The development of topography is mainly dependent on the interplay of uplift and erosion, which are in term controlled by various factors including climate, glaciers, lithology, seismic activity and short-term variables such as anthropogenic impact. While most studies have focused on the role of tectonics and climate on the landscape form and underlying processes, less attention has been paid on exploring the controls of lithology on erosion. The Central European Alps are characterized by a large spatial variability in exposed lithologies and as such offer an ideal laboratory to investigate the lithological controls on erosion and landscape form. Here, we focus on the ca. 5400 km2-large upper Rhône basin situated in the Central Swiss Alps to explore how the lithological architecture of the bedrock conditions the Alpine landscape. To this extent, we extract geomorphological parameters along the channels of ca. 50 tributary basins, whose catchments are located in either granitic basement rocks (External massifs), oceanic meta-sedimentary and ophiolitic rocks (Penninic nappes) or fine-grained continental-margin sediments (Helvetic nappes). The analysis of longitudinal river profiles show that all tributary rivers within the Rhône basin are in topographic transient state as testified by mainly convex or concave-convex longitudinal stream channel profiles with several knickpoints of either tectonic or glacial origin. In addition, although the entire Rhône basin shows a strong glacial inheritance (and is still partly glaciated) and some of the highest uplift rates recently measured in the Alps, the river network has responded differently to those perturbations as revealed by the morphometric data. In particular, tributary basins in the Helvetic nappes are the most equilibrated (concave river profiles, overall lower elevations, less steep slope gradients and lowest hypsometric integrals), while the tributaries located in the External massifs are least equilibrated, where streams yield strong convex long profiles, and where the tributary basins have the highest hypsometric integral and reveal the steepest hillslopes. We interpret this pattern to reflect differences in response times of the fluvial erosion in tributary streams towards glacial and tectonic perturbations, where the corresponding lengths strongly depend on the lithology and therefore on the bedrock erodibility.
NASA Astrophysics Data System (ADS)
Essid, El Mabrouk; Kadri, Ali; Balti, Hadhemi; Gasmi, Mohamed; Zargouni, Fouad
2018-03-01
The Nefza-Bizerte region, eastern part of the Tunisian Alpine chain, covers the thrust sheets domain called the Tell and its Atlassic foreland. The deep structures under the Tellian thrust sheets are not enough explored. The structural interpretation of magmatic rocks, Triassic outcrops and the depressions are still a subject of discussion. In this work, we intend to investigate deep faults and their eventual role in magmatism and Triassic salt setting up and to explain the depression genesis. Analysis of the Bouguer anomaly map and its derivatives reveals the main gravity lineaments, organized in major NE- and NW-trending systems. The NE-trending system, dipping towards the NW, is the main component of the structural scheme and has controlled the tectonic evolution of this area. After the immobilization of the Tellian thrust sheets during the uppermost Langhian, the Tell and its Atlassic foreland were affected by the Tortonian compressive event with a NW-trending maximum horizontal stress. The reverse kinematics of the NE-trending deep-seated faults created at their front continental environments filled later by post-nappes Neogene deposits. After the early Pleistocene, a NNW-directed compressional stress regime deformed the post-nappes Neogene series and generated NW-trending grabens. This coexistence of compression-extension continues until present day.
Contrasting serpentinization processes in the eastern Central Alps
Burkhard, D.J.M.; O'Neil, J.R.
1988-01-01
Stable isotope compositions have been determined for serpentinites from between Davos (Arosa-Platta nappe, Switzerland) and the Valmalenco (Italy). ??D and ??18O values (-120 to -60 and 6-10???, respectively) in the Arosa-Platta nappe indicate that serpentinization took place on the continent at relatively low temperatures in the presence of limited amounts of metamorphic fluids that contained a component of meteoric water. One sample of chrysotile has a ??18O value of 13??? providing evidence of high W/R ratios and low formation temperature of lizardite-chrysotile in this area. In contrast, relatively high ??D values (-42 to -34???) and low ??18O values (4.4-7.4???) for serpentine in the eastern part of the Valmalenco suggest a serpentinization process that took place at moderate temperatures in fluids that were dominated by ocean water. The antigorite in the Valmalenco is the first reported example of continental antigorite with an ocean water signature. An amphibole sample from a metasomatically overprinted contact zone to metasediments (??D=-36???) indicates that the metasomatic event also took place in the presence of ocean water. Lower ??D values (-93 to -60???) of serpentines in the western part of the Valmalenco suggest a different alteration history possibly influenced by fluids associated with contact metamorphism. Low water/rock ratios during regional metamorphism (and metasomatism) have to be assumed for both regions. ?? 1988 Springer-Verlag.
Contrasting serpentinization processes in the eastern Central Alps
NASA Astrophysics Data System (ADS)
Burkhard, Dorothee J. M.; O'Neil, James R.
1988-08-01
Stable isotope compositions have been determined for serpentinites from between Davos (Arosa-Platta nappe, Switzerland) and the Valmalenco (Italy). δD and δ 18O values (-120 to -60 and 6 10‰, respectively) in the Arosa-Platta nappe indicate that serpentinization took place on the continent at relatively low temperatures in the presence of limited amounts of metamorphic fluids that contained a component of meteoric water. One sample of chrysotile has a δ 18O value of 13‰ providing evidence of high W/R ratios and low formation temperature of lizardite-chrysotile in this area. In contrast, relatively high δD values (-42 to -34‰) and low δ 18O values (4.4 7.4‰) for serpentine in the eastern part of the Valmalenco suggest a serpentinization process that took place at moderate temperatures in fluids that were dominated by ocean water. The antigorite in the Valmalenco is the first reported example of continental antigorite with an ocean water signature. An amphibole sample from a metasomatically overprinted contact zone to metasediments ( δD=-36‰) indicates that the metasomatic event also took place in the presence of ocean water. Lower δD values (-93 to -60‰) of serpentines in the western part of the Valmalenco suggest a different alteration history possibly influenced by fluids associated with contact metamorphism. Low water/rock ratios during regional metamorphism (and metasomatism) have to be assumed for both regions.
NASA Astrophysics Data System (ADS)
Kassem, Osama M. K.; Abd El Rahim, Said H.; El Nashar, EL Said R.; AL Kahtany, Kaled M.
2016-11-01
The use of porphyroclasts rotating in a flowing matrix to estimate mean kinematic vorticity number (Wm) is important for quantifying the relative contributions of pure and simple shear in wall rocks alterations of shear zone at Dungash gold mine. Furthermore, it shows the relationship between the gold mineralization and deformation and also detects the orientation of rigid objects during progressive deformation. The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures which are attributed to various deformational stages of the Neoproterozoic basement rocks. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. The kinematic vorticity number for the metavolcanic and metasedimentary samples in the Dungash area range from 0.80 to 0.92, and together with the strain data suggest deviations from simple shear. It is concluded that nappe stacking occurred early during the underthrusting event probably by brittle imbrication and that ductile strain was superimposed on the nappe structure during thrusting. Furthermore, we conclude that disseminated mineralization, chloritization, carbonatization and silicification of the wall rocks are associated with fluids migrating along shearing, fracturing and foliation of the metamorphosed wall rocks.
NASA Astrophysics Data System (ADS)
Cornish, Sam; Searle, Mike
2017-08-01
The Wadi Mayh sheath fold in north-eastern Oman is one of the largest and best-exposed sheath folds known, and presents a unique opportunity to better understand this somewhat enigmatic style of deformation. We undertook high-resolution photographic surveying along Wadi Mayh to document the sheath fold in 61 georeferenced panoramic photomerges. Here we present ten such images that provide a structural interpretation of the sheath fold and surrounding structure. We resolve this structure in a simplified three-dimensional model and in two orthogonal cross sections, and propose a kinematic evolution to explain the geometry. The Wadi Mayh sheath fold is the most prominent example within what we suggest is a composite sequence of sheath folds, which is itself enclosed within a SSW-closing recumbent syncline at the base of the major Saih Hatat nappe. Sheath folding is accommodated within Permian Saiq Formation limestones showing carpholite assemblages (6-8 kbar; 275-375 °C). A major discontinuity separates this sequence from enveloping older rock units. The sequence formed during progressive top-to-north, ductile shearing as the overlying nappe migrated northwards with respect to the underthrusting Hulw unit. This process occurred during SSW-directed exhumation of partially subducted continental crust in NE Oman, approximately 15 Ma after obduction of the Oman ophiolite initiated.
Aquifer overexploitation: what does it mean?
NASA Astrophysics Data System (ADS)
Custodio, Emilio
2002-02-01
Groundwater overexploitation and aquifer overexploitation are terms that are becoming common in water-resources management. Hydrologists, managers and journalists use them when talking about stressed aquifers or some groundwater conflict. Overexploitation may be defined as the situation in which, for some years, average aquifer ion rate is greater than, or close to the average recharge rate. But rate and extent of recharge areas are often very uncertain. Besides, they may be modified by human activities and aquifer development. In practice, however, an aquifer is often considered as overexploited when some persistent negative results of aquifer development are felt or perceived, such as a continuous water-level drawdown, progressive water-quality deterioration, increase of ion cost, or ecological damage. But negative results do not necessarily imply that ion is greater than recharge. They may be simply due to well interferences and the long transient period that follow changes in the aquifer water balance. Groundwater storage is depleted to some extent during the transient period after ion is increased. Its duration depends on aquifer size, specific storage and permeability. Which level of "aquifer overexploitation" is advisable or bearable, depends on the detailed and updated consideration of aquifer-development effects and the measures implemented for correction. This should not be the result of applying general rules based on some indirect data. Monitoring, sound aquifer knowledge, and calculation or modelling of behaviour are needed in the framework of a set of objectives and policies. They should be established by a management institution, with the involvement of groundwater stakeholders, and take into account the environmental and social constraints. Aquifer overexploitation, which often is perceived to be associated with something ethically bad, is not necessarily detrimental if it is not permanent. It may be a step towards sustainable development. Actually, the term aquifer overexploitation is mostly a qualifier that intends to point to a concern about the evolution of the aquifer-flow system in some specific, restricted points of view, but without a precise hydrodynamic meaning. Implementing groundwater management and protection measures needs quantitative appraisal of aquifer evolution and effects based on detailed multidisciplinary studies, which have to be supported by reliable data. Resumé. La surexploitation de l'eau souterraine et la surexploitation des nappes sont des termes qui deviennent d'usage commun en gestion de l'eau. Plusieurs hydrologues, aménageurs et journalistes en font usage quand on parle d'une nappe exploitée intensivement et qui présente des situations conflictives. On peut définir la surexploitation comme étant la situation dans laquelle l'extraction moyenne d'eau souterraine est plus grande ou proche de la recharge moyenne pendant quelques années. Mais le taux ansi que la surface de cette recharge sont souvent tres incertains et peuvent changer dûs a des activitées humaines et à l'exploitation de la nappe elle-méme. Du point de vue pratique on souvent considère qu'il y a surexploitation quand on observe or on s'aperçoit de certains résultats négatifs de l'exploitation, tels qu'une diminution continue du niveau de l'eau, une detérioration de sa qualité, une augmentation du coût d' extraction, ou dommages écologiques. Mais ces effets négatifs n' impliquent pas nécessairement que l'extraction soit plus grande que la recharge. Ils peuvent étre simplement le résultat d'interférences ou d'une longue période transitoire qui suivent les changements dans les termes du bilan hydrique. Cette période transitoire a une durée que dépend de la taille de la nappe, et de son coefficient d' emmagasinement et de sa perméabilité. Les extractions d'eau de la nappe comportent une diminution de l'emmagasinement d'eau souterraine pendant le période transitoire. A fin de pouvoir décider du degré de "surexploitation de la nappe" conseillé ou admisible on a besoin de la description detaillée et à jour des effets de l'exploitation et des mesures de correction adoptées. Cette décision ne peut pas étre prise uniquement à partir de regles générales et l'appui de quelques observations indirectes. On a besoin de controle, d'une bonne connaissance de la nappe, et de calculer ou modeliser le comportement, en faisant appel à l'ensemble des objectifs et politiques établies par une institution de gestion, avec l'implication des personnes qui sont intéressées par l'eau souterraine, et tenant compte des conditions environmentales et sociales. La surexploitation de nappes, qui souvent est associée a quelque chose éthiquement nocive, n'est pas necessairement ainsi pendant un certain temps, et peut être une étape dans l'évolution vers un développement durable. Réellement la designation de surexploitation de nappes est surtout un adjectif que a pour but de qualifier une évolution préoccupante sous certains points de vue, mais sans une signification hydrodynamique précise. Pour adopter des mesures de gestion et protection, on a besoin de l'évaluation quantitative de l'évolution de la nappe et de ses effets, ce qui doit déboucher sur des études detaillées dans un contexte multidisciplinaire, et sur de bonnes données. Resumen. La sobreexpolotación del agua subterránea y la sobreexplotacion de acuíferos son conceptos que se están convirtiendo en términos de uso común en gestión hídrica. Muchos hidrólogos, gestores y periodistas las usan para referirse a un acuífero explotado intensamente o que presenta situaciones conflictivas. La sobreexplotación se puede definir como la situación en la que durante varios años la extracción media de agua subterránea de un acuífero supera o se aproxima a la recarga media. Pero la tasa y también la superficie sobre la que se realiza esta recarga son a menudo muy inciertas, y pueden cambiar por actividades humanas y por la propia explotación del acuífero. Sin embargo, en la práctica se suele considerar que hay sobreexplotación cuando se observan o se perciben ciertos resultados negativos de la explotación, tales como un descenso continuado del nivel del agua, un deterioro de su calidad, un encarecimiento del agua extraída, o daños ecológicos. Pero estos efectos no están necesariamente relacionados con el hecho de que la extracción sea mayor que la recarga, puesto que pueden ser simplemente el resultado de interferencias o del dilatado período transitorio que sigue a los cambios en los términos del balance de agua, y cuya duración depende del tamaño del acuífero, y de su permeabilidad y coeficiente de almacenamiento. Las extracciones del acuífero suponen una disminución del almacenamiento de agua subterránea durante este periodo transitorio. Para decidir que grado de "sobreexplotación del acuífero" es aconsejable o admisible hace falta la consideración detallada y actualizada de los efectos de la explotación y las medidas de corrección que se adopten. Para esa decisión no basta con reglas generales y el apoyo de algunas observaciones indirectas. Se necesitan observaciones de control, buen conocimiento del acuífero y cálculos o modelación del comportamiento, y todo ello en el marco de un conjunto de objetivos y políticas establecidas por una institución de gestión, con la implicación de aquellos que tienen un interés en el agua subterránea, y teniendo en cuenta los condicionantes ambientales y sociales. La sobreexplotación de acuíferos, que con frecuencia suele asociarse a algo éticamente malo, no tiene por qué ser necesariamente así durante cierto tiempo, sino una etapa en la evolución hacia un desarrollo sustentable. En la realidad la designación de sobreexplotación de acuíferos es principalmente un adjetivo que trata de calificar a una evolución preocupante bajo determinados puntos de vista, sin que tenga una significación hidrodinámica precisa. Para adoptar medidas de gestión y de protección se necesita la evaluación cuantitativa de la evolución del acuífero y sus efectos, que se derivan de estudios de detalle en un contexto multidisciplinar y de datos fiables.
NASA Astrophysics Data System (ADS)
Ragusa, Jérémy; Kindler, Pascal
2016-04-01
A coupled analysis of modal composition, grain size and sedimentary features of gravity-flow deposits in the Gurnigel nappe shows that the transition from coarse proximal to fine distal deposits is accompanied by a change in composition from siliciclastic to calcareous. Such compositional variation should be taken into account when interpretating deep-sea deposits if sampling is restricted to a single part of the fan. The Chablais Prealps (Haute-Savoie, France) represent a well-preserved accretionary wedge in the Western Alps. They comprise a stack of northward-thrusted sedimentary cover nappes originating from the Ultrahelvetic realm (distal part of the European margin) to the southern part of the Piemont Ocean. The present study focuses on the Voirons Flysch, belonging to the Gurnigel nappe, which includes four formations consisting of gravity-flow deposits (from bottom to top): (1) the Voirons Sandstone Fm., composed of channel to lobe deposits; (2) the Vouan Conglomerate Fm., represented by the proximal part of a channel system; (3) the Boëge Marls Fm., constituted by distal lobe deposits; finally, (4) the Bruant Sandstone Fm., which consists in channel to lobe deposits. Recent biostratigraphic results using planktonic foraminifers attributed a Middle to Late Eocene age to the Voirons Flysch, which was formerly believed to range from the Paleocene to the Middle Eocene (based on calcareous nannofossils). A total of 270 thin sections with stained feldspars were prepared, representing the four formations of the Voirons Flysch. Circa 300 extrabasinal grains were counted per thin section using the classic Indiana method. In addition, the quantity of intrabasinal grains (i.e. bioclasts, glauconite), cement and porosity was analysed. Cement was stained with alizarine and potassium ferrocyanide. 200 grain-size measurements on ca. 100 samples were performed using 3D conversion and statistical moment analysis. Sedimentary observations for each sampled bed were categorized following Mutti's turbiditic facies scheme. Cluster analysis on the composition of major grains discriminated 10 clusters which are merged into seven petrofacies (P1 - P7) following optical observations under the microscope: P1: poorly cemented porous arenite; P2: all porosity are filled by calcitic cement; P3: well-cemented volcano-clastic arenite; P4: red algae-rich highly cemented arenite to calcarenite; P5: highly cemented arenite; P6: globigerina-rich laminated calcarenite and P7: glauconitic quartzarenite. Grain-size distribution is grouped following the petrofacies. They provide a homogeneous distribution within each petrofacies with a gradual fining and progressively increasing sorting from P1 to P7. Moreover, Mutti's facies distribution indicates a progressive change towards more distal environments: from channel facies (F2 to F5) in P1-P3 to lobe facies (F8 to F9) in P4-P6. The washed composition of the P7 petrofacies is interpreted as distal turbidites that were reworked by bottom currents. The results presented here reveal a link between sand composition, grain size and gravity-flow facies. They highlight that composition of gravity flows is modified during their basinward transport. Consequently, coarse proximal deposits are more siliciclastic with limited filling of voids due to low carbonate contents. On the contrary, carbonate content increases significantly in the fine-grained calcarenites of the distal petrofacies. In distal settings, the segregation of light and porous foraminifera from the heavier siliciclastic fraction occurs under the increasing importance of traction currents.
Lash, Gary George
1978-01-01
The Pen Argyl Member, the upper claystone slate member of the Martinsburg Formation, was studied in three quadrangles in Lehigh and Berks Counties, Pennsylvania. Graptolites collected from the Pen Argyl Member at Lehigh Gap indicate a lower Upper Ordovician (Edenian-Maysvillian) age for the Pen Argyl Member. The Pen Argyl Member in this area is located on the normal limb and in the brow of the large, recumbent Musconetcong nappe. It is a deep water flysch deposit emplaced by turbidity currents from a southeasterly source. Sedimentologic and structural evidence show that the Pen Argyl member overlies the sandy middle Ramseyburg Member, thus supporting the tripartite subdivision of the Martinsburg Formation. Field and thin section study indicates that the penetrative slaty cleavage formed in an indurated rock probably by pressure solution and neocrystallization under lower greenschist facies metamorphism. Strain-slip cleavage formed as a result of a stress couple operating parallel to the slaty cleavage that transposed the slaty cleavage into a more spaced cleavage. Both cleavages are believed to have formed within the same stress continuum and in close succession. Analysis of the folds in the Pen Argyl Member indicate six phases of major and minor folding. The earliest folding, F1, resulted in the development of the recumbent nappe. F2 folds can only be determined statistically; these axes plunge either northeast or southwest Asymmetric folds, F3, and associated F4 crenulations formed within the same stress continuum. F5 folds are large open folds and are exemplified by the Mosservi!le anticline. Kink folds, F6 and associated crenulations are fault related and were the last folds to form. Faults in the Pen Argyl Member range from small displacements along slaty cleavage to large reverse faults. The largest of these, the Eckville fault, is recognized throughout the three quadrangle area. It is a high angle reverse fault that separates the Shochary sequence from the Pen Argyl member to the north. Detailed fabric analysis of the Pen Argyl Member indicates that (1) the strike of the slaty cleavage is consistent throughout the study area, (2) bedding strikes are undulose indicating that the rocks were folded prior to slaty cleavage development, (3) slaty cleavage-bedding intersections indicate an early northeast-southwest fold set and a later east-west trend of fold axes, and (4) slaty cleavage-strain-slip cleavage intersections indicate two periods of strain-slip cleavage development, the later period being fault related. Synthesis of field work and fabric data suggest that the Pen Argyl Member was deposited in the waning stages of flysch deposition during the Taconic orogeny. The nappe, F1, was formed at this time as a result of stress generated by plate convergence to the southeast. Further Taconian deformation of the normal limb of the nappe resulted in the northeast-southwest plunging F2 folds. Initial Alleghenian deformation resulted in the F3 asymmetric folds and slaty cleavage, S1. Later in the same stress continuum the F4 crenulations and strain-slip cleavage, S2, formed. Subsequently, F5 open folding occurred. Kink folds and crenulations, F6, and strain-slip cleavage, S3, formed in conjunction with late Alleghenian reverse faults such as the Eckville fault.
Zhang, Can; Browne, Andrew; Kim, Doo Yeon; Tanzi, Rudolph E
2010-02-01
Alzheimer's disease (AD) is an insidious and progressive disease with a genetically complex and heterogenous etiology. More than 200 fully penetrant mutations in the amyloid beta-protein precursor (APP), presenilin 1 (or PSEN1), and presenilin 2 (PSEN2) have been linked to early-onset familial AD (FAD). 177 PSEN1 FAD mutations have been identified so far and account for more than approximately 80% of all FAD mutations. All PSEN1 FAD mutations can increase the Abeta42:Abeta40 ratio with seemingly different and incompletely understood mechanisms. A recent study has shown that the 286 amino acid N-terminal fragment of APP (N-APP), a proteolytic product of beta-secretase-derived secreted form of APP (sAPPbeta), could bind the death receptor, DR6, and lead to neurodegeneration. Here we asked whether PSEN1 FAD mutations lead to neurodegeneration by modulating sAPPbeta levels. All four different PSEN1 FAD mutations tested (in three mammalian cell lines) did not alter sAPPbeta levels. Therefore PS1 mutations do not appear to contribute to AD pathogenesis via altered production of sAPPbeta.
NASA Astrophysics Data System (ADS)
Naugolnykh, Serge V.; Uranbileg, L.
2018-04-01
Well-preserved leaves conforming to the fossil genus Glossopteris are found in the Permian deposits of southeastern Gobi, Khatan-Bulag locality, Mongolia. These leaves have many features in common with Glossopteris communis Feistmantel described from India. The locality Khatan-Bulag belongs to Sulinkheer nappe-fold tectonic megazone. The Glossopteris sp. cf. G. communis specimens from the Khatan-Bulag suggest that there was effective migration gateway between Gondwana and southern regions of Asia in the mid-Permian.
Liberty Complex: polygenetic melange in the central Maryland Piedmont
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, P.D.; Candela, P.A.; Wylie, A.G.
1985-01-01
A polydeformed, medium-grade assemblage of pelitic to psammitic flyschoid rocks with intercalated mafic and ultramafic ophiolitic rocks forms a major tectonic unit, the Liberty Complex (LC), within the central Maryland Piedmont. The LC outcrops in a NE-NNE-trending synformal belt bordered on the west by phyllonitic rocks of the Pleasant Grove zone, a regional tectonic boundary between eastern and western Piedmont terranes, and on the east by structurally lower basement-cored nappes of the lower Glenarm Supergroup. The LC is composed of two basic units, the Morgan Run melange (MRm) and the Skyesville Formation (SFm). The MRm is composed of metagreywacke andmore » micaschist with decimeter to tens of meter-thick lensoidal blocks of quartzite and amphibolite and a variety of ultramafic material ranging from thin sedimentary ultramafite lenses to kilometer-sized serpentine bodies. The SFm is schistose to massive metadiamictite containing granule to boulder-sized detritus of the same lithologies as comprise the MRm. Metamorphic foliation within many clasts is discordant to the matrix foliation. The LC is interpreted as a polygenetic melange which originated in a Cambro-Ordovician accretionary wedge and continued to develop during emplacement onto the continental margin of eastern North America. The MRm may represent underplated material deformed and metamorphosed in a subduction zone. Rapid uplift and erosion of the MRm during obduction supplied debris to the olistostromal SFm. Both units were complexly folded and cleaved, metamorphosed, and intruded by granitoids during medial (.) Ordovician suturing of an island arc to the continent.« less
NASA Astrophysics Data System (ADS)
Bocin, A.; Stephenson, R.; Matenco, L.; Mocanu, V.
2013-11-01
A 2D gravity and magnetic data model has been constructed along a 71 km densely observed profile, called DACIA PLAN GRAV MAN's. The profile crosses part of the nappe pile of the south-eastern Carpathians and includes the seismically active Vrancea Zone and was acquired with the objective to illuminate the basement structure and affinity in this area. The modelling approach was to create an initial model from well constrained geological information, integrate it with previous seismic ray tracing and tomographic models and then alter it outside the a priori constraints in order to reach the best fit between observed and calculated potential field anomalies. The results support a realignment of the position of the TTZ (Tornquist-Teisseyre Zone), the profound tectonic boundary within Europe that separates Precambrian cratonic lithosphere of the East European Craton (EEC) from younger accreted lithosphere of Phanerozoic mobile belts to its west. The TTZ is shown to lie further to the south-west than was previously inferred within Romania, where it is largely obscured by the Carpathian nappes. The crust of the EEC beneath the south-eastern Carpathians is inferred to terminate along a major crustal structure lying just west of the Vrancea seismogenic zone. The intermediate depth seismicity of the Vrancea Zone therefore lies within the EEC lithosphere, generally supporting previously proposed models invoking delamination of cratonic lithosphere as the responsible mechanism.
Film cameras or digital sensors? The challenge ahead for aerial imaging
Light, D.L.
1996-01-01
Cartographic aerial cameras continue to play the key role in producing quality products for the aerial photography business, and specifically for the National Aerial Photography Program (NAPP). One NAPP photograph taken with cameras capable of 39 lp/mm system resolution can contain the equivalent of 432 million pixels at 11 ??m spot size, and the cost is less than $75 per photograph to scan and output the pixels on a magnetic storage medium. On the digital side, solid state charge coupled device linear and area arrays can yield quality resolution (7 to 12 ??m detector size) and a broader dynamic range. If linear arrays are to compete with film cameras, they will require precise attitude and positioning of the aircraft so that the lines of pixels can be unscrambled and put into a suitable homogeneous scene that is acceptable to an interpreter. Area arrays need to be much larger than currently available to image scenes competitive in size with film cameras. Analysis of the relative advantages and disadvantages of the two systems show that the analog approach is more economical at present. However, as arrays become larger, attitude sensors become more refined, global positioning system coordinate readouts become commonplace, and storage capacity becomes more affordable, the digital camera may emerge as the imaging system for the future. Several technical challenges must be overcome if digital sensors are to advance to where they can support mapping, charting, and geographic information system applications.
Macias-Montero, Manuel; Lopez-Santos, Carmen; Filippin, A Nicolas; Rico, Victor J; Espinos, Juan P; Fraxedas, Jordi; Perez-Dieste, Virginia; Escudero, Carlos; Gonzalez-Elipe, Agustin R; Borras, Ana
2017-07-05
One-dimensional (1D) nanostructured surfaces based on high-density arrays of nanowires and nanotubes of photoactive titanium dioxide (TiO 2 ) present a tunable wetting behavior from superhydrophobic to superhydrophilic states. These situations are depicted in a reversible way by simply irradiating with ultraviolet light (superhydrophobic to superhydrophilic) and storage in dark. In this article, we combine in situ environmental scanning electron microscopy (ESEM) and near ambient pressure photoemission analysis (NAPP) to understand this transition. These experiments reveal complementary information at microscopic and atomic level reflecting the surface wettability and chemical state modifications experienced by these 1D surfaces upon irradiation. We pay special attention to the role of the water condensation mechanisms and try to elucidate the relationship between apparent water contact angles of sessile drops under ambient conditions at the macroscale with the formation of droplets by water condensation at low temperature and increasing humidity on the nanotubes' surfaces. Thus, for the as-grown nanotubes, we reveal a metastable and superhydrophobic Cassie state for sessile drops that tunes toward water dropwise condensation at the microscale compatible with a partial hydrophobic Wenzel state. For the UV-irradiated surfaces, a filmwise wetting behavior is observed for both condensed water and sessile droplets. NAPP analyses show a hydroxyl accumulation on the as-grown nanotubes surfaces during the exposure to water condensation conditions, whereas the water filmwise condensation on a previously hydroxyl enriched surface is proved for the superhydrophilic counterpart.
NASA Astrophysics Data System (ADS)
Bocin, A.; Stephenson, R.; Mocanu, V.
2007-12-01
The DACIA PLAN (Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics) deep seismic reflection survey was performed in August-September 2001, with the proposed objective of obtaining new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basin developed within and adjacent to the Vrancea zone, including the rapidly subsiding Focsani Basin. The DACIA-PLAN profile is about 140 km long, having a roughly NW-SE direction, from near the southeast Transylvanian Basin, across the mountainous southeastern Carpathians and their foreland to near the Danube River. A high resolution 2.5D velocity model of the upper crust along the seismic profile has been determined from a tomographic inversion and a 2D ray tracing forward modelling of the DACIA PLAN first arrival data. Peculiar shallow high velocities indicate that pre-Tertiary basement in the Vrancea Zone (characterised by velocities greater than 5.6 km/s) is involved in Carpathian thrusting while rapid alternance, vertically or horizontally, of velocity together with narrowingly contemporary crustal events suggests uplifting. Further to the east, at the foreland basin-thrust belt transition zone (well defined within velocity values), the velocity model suggests a nose of the Miocene Subcarpathians nappe being underlain by Focsani Basin units. A Miocene and younger Focsani Basin sedimentary succession of ~10 km thickness is ascertained by a gradual increase of velocities and strongly defined velocity boundaries.
2.5D seismic velocity modelling in the south-eastern Romanian Carpathians Orogen and its foreland
NASA Astrophysics Data System (ADS)
Bocin, Andrei; Stephenson, Randell; Tryggvason, Ari; Panea, Ionelia; Mocanu, Victor; Hauser, Franz; Matenco, Liviu
2005-12-01
The DACIA-PLAN (Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics) deep seismic reflection survey was performed in August-September 2001, with the objective of obtaining new information on the deep structure of the external Carpathians nappe system and the architecture of the Tertiary/Quaternary basins developed within and adjacent to the Vrancea zone, including the rapidly subsiding Focsani Basin. The DACIA-PLAN profile is about 140 km long, having a roughly WNW-ESE direction, from near the southeast Transylvanian Basin, across the mountainous south-eastern Carpathians and their foreland to near the Danube River. A high resolution 2.5D velocity model of the upper crust along the seismic profile has been determined from a tomographic inversion of the DACIA-PLAN first arrival data. The results show that the data fairly accurately resolve the transition from sediment to crystalline basement beneath the Focsani Basin, where industry seismic data are available for correlation, at depths up to about 10 km. Beneath the external Carpathians nappes, apparent basement (material with velocities above 5.8 km/s) lies at depths as shallow as 3-4 km, which is less than previously surmised on the basis of geological observations. The first arrival travel-time data suggest that there is significant lateral structural heterogeneity on the apparent basement surface in this area, suggesting that the high velocity material may be involved in Carpathian thrusting.
Tectonics of the ophiolite belt from Naga Hills and Andaman Islands, India
NASA Astrophysics Data System (ADS)
Acharyya, S. K.; Ray, K. K.; Sengupta, S.
1990-06-01
The ophiolitic rocks of Naga Hills-Andaman belt occur as rootless slices, gently dipping over the Paleogene flyschoid sediments, the presence of blue-schists in ophiolite melange indicates an involvement of the subduction process. Subduction was initiated prior to mid-Eocene as proved by the contemporaneous lower age limit of ophiolite-derived cover sediment as against the accreted ophiolites and olistostromal trench sediment. During the late Oligocene terminal collision between the Indian and Sino-Burmese blocks, basement slivers from the Sino-Burmese block, accreted ophiolites and trench sediments from the subduction zone were thrust westward as nappe and emplaced over the down-going Indian plate. The geometry of the ophiolites and the presence of a narrow negative gravity anomaly flanking their map extent, run counter to the conventional view that the Naga-Andaman belt marks the location of the suture. The root-zone of the ophiolite nappe representing the suture is marked by a partially-exposed eastern ophiolite belt of the same age and gravity-high zone, passing through central Burma-Sumatra-Java. The ophiolites of the Andaman and Naga Hills are also conventionally linked with the subduction activity, west of Andaman islands. This activity began only in late Miocene, much later than onland emplacement of the ophiolites; it further developed west of the suture in its southern part. Post-collisional northward movement of the Indian plate subparallel to the suture, also developed leaky dextral transcurrent faults close to the suture and caused Neogene-Quatemary volcanism in central Burma and elsewhere.
NASA Astrophysics Data System (ADS)
Duchesne, Jean-Clair; Laurent, Oscar; Gerdes, Axel; Bonin, Bernard; Liégeois, Jean-Paul; Tatu, Mihai; Berza, Tudor
2017-12-01
The pre-Alpine basement of the Lower Danubian nappes in the South Carpathians is made up of two Precambrian terranes (Drăgşan and Lainici-Păiuş) that were intruded by Pan-African/Cadomian and Variscan granitoid massifs. We focus on the major and trace element geochemistry (1) in the Drăgşan terrane, of the Variscan Retezat and Parâng intrusions; (2) in the Lainici-Păiuş terrane, of the Variscan Furcǎtura, Petreanu and Frumosu intrusions and of the Pan-African Vârful Pietrii, Şuşiţa and Olteţ granites and granitic leucosomes of migmatites; and (3) in the Upper Danubian nappes basement, of the Variscan Muntele Mic, Sfârdin, Cherbelezu and Ogradena intrusions. For each intrusion, in which a range of composition is observed, we decipher the differentiation mechanisms (fractional crystallization, hybridization, melt laden with restite minerals, etc.) in order to define the parental liquid compositions. The latter are calc-alkaline to alkali-calcic (except Olteţ that is calcic) and medium to high-K in composition. With [La/Yb]N > 10 and Sr/Y > 15, most melts display the so-called "continental adakite" affinities. The parental melt compositions are compared with experimental data to determine the melting conditions and the nature of the source rock. When the P-T conditions can be estimated, the temperatures range between 850 °C and 875 °C and the pressure between 5 and 15 kbar regardless of the ages of the granites and the terrane in which they have intruded. The source rock composition is dominated by a variety of mafic igneous compositions or metasediments rich in volcanic components. Clay-rich (pelitic) protoliths have not been identified. We confirm a Variscan age (c. 300 Ma) for the Frumosu intrusion granite and inherited Precambrian ages (c. 1.7-1.9 and 2.6-2.9 Ga) for the Motru dyke swarm. Thus, both Drăgşan and Lainici-Păiuş together with the Upper Danubian basement terranes were affected by Variscan post-collisional granitic plutonism. In the South Carpathians, both Pan-African and Variscan granites were generated in a crust thickened by stacking of terranes. The source of the Pan-African granites in Lainici-Păiuş is different from that of the Variscan granites (from Lainici-Păiuş and Drăgşan terranes and from the Upper Danubian nappe basement), but all these sources were notably depleted in metapelite component.
NASA Astrophysics Data System (ADS)
Favaro, Silvia; Schuster, Ralf; Scharf, Andrea; Handy, Mark R.
2013-04-01
Neogene orogen-parallel extensional in the Tauern and Rechnitz Windows and eastward lateral extrusion of the Eastern Alps are manifested, respectively, by exhumation and cooling and by subsidence of pull-apart basins. These events overlap in time, giving rise to the question of their relationship. The Tauern Window exposes relics of the European continental margin (Subpenninic units) and Alpine Tethys Ocean (Penninic units) beneath units derived from the Adriatic microplate (Austroalpine nappes). In the eastern part of the Tauern Window, the Subpenninic and Penninic nappes are deformed by two domes (Sonnblick and Hochalm domes) and the intervening tight Mallnitz synform. Reddy et al. (1996) proposed that the Sonnblick dome cooled first based on a trend of decreasing Rb-Sr and Ar-Ar white mica and biotite ages from the northwestern part of the Sonnblick Dome to the southeastern part of the Hochalm dome. When combined with this existing dataset, new Rb/Sr biotite ages point to simultaneous cooling of the domes to below the closure temperature of this isotopic system. Rb-Sr muscovite ages decrease from 26-30 Ma in the northwest to 20-25 Ma in the southeast. Rb-Sr biotite ages young in the same direction from 20-23 Ma to 16-19 Ma. The biotite ages do not vary in a transect of the Mallnitz synform and are therefore inferred to post-date this structure. Apatite fission track data follow this same NW to SE trend. A SE increase in intensity of mylinitic shearing along strike of the Mallnitz synform is interpreted to be a manifestation of stretch faulting related to normal faulting along the central part of the Katschberg Shear Zone system at the eastern end of the Tauern Window (Scharf et al., submitted). We attribute the SE decrease of the biotite cooling ages to an increased component of tectonic unroofing towards the eastern margin of the Tauern Window. Three new Rb-Sr biotite ages in the range of 16-26 Ma from the lowermost Austroalpine units (Wechsel and Semmering nappes) immediately above the Rechnitz Window are also interpreted to reflect cooling during extensional exhumation. This age range overlaps with that of rapid subsidence and sedimentation in pull-apart basins of the Eastern Alps (17-12 Ma) and opening of the Pannonian Basin (21-15 Ma) behind the retreating Carpathian subduction orogen. This suggests that exhumation in the Rechnitz Window and lateral escape of the Eastern Alps were broadly coeval with both Adriatic indentation and Carpathian rollback subduction.
Howard, Keith A.; Wooden, J.L.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.; Lee, S.-Y.
2011-01-01
Gneissic pegmatitic leucogranite forms a dominant component (>600 km3) of the midcrustal infrastructure of the Ruby Mountains–East Humboldt Range core complex (Nevada, USA), and was assembled and modified episodically into a batholithic volume by myriad small intrusions from ca. 92 to 29 Ma. This injection complex consists of deformed sheets and other bodies emplaced syntectonically into a stratigraphic framework of marble, calc-silicate rocks, quartzite, schist, and other granitoids. Bodies of pegmatitic granite coalesce around host-rock remnants, which preserve relict or ghost stratigraphy, thrusts, and fold nappes. Intrusion inflated but did not disrupt the host-rock structure. The pegmatitic granite increases proportionally downward from structurally high positions to the bottoms of 1-km-deep canyons where it constitutes 95%–100% of the rock. Zircon and monazite dated by U-Pb (sensitive high-resolution ion microprobe, SHRIMP) for this rock type cluster diffusely at ages near 92, 82(?), 69, 38, and 29 Ma, and indicate successive or rejuvenated igneous crystallization multiple times over long periods of the Late Cretaceous and the Paleogene. Initial partial melting of unexposed pelites may have generated granite forerunners, which were remobilized several times in partial melting events. Sources for the pegmatitic granite differed isotopically from sources of similar-aged interleaved equigranular granites. Dominant Late Cretaceous and fewer Paleogene ages recorded from some pegmatitic granite samples, and Paleogene-only ages from the two structurally deepest samples, together with varying zircon trace element contents, suggest several disparate ages of final emplacement or remobilization of various small bodies. Folded sills that merge with dikes that cut the same folds suggest that there may have been in situ partial remobilization. The pegmatitic granite intrusions represent prolonged and recurrent generation, assembly, and partial melting modification of a batholithic volume even while the regional tectonic environment varied dramatically from contractile thickening to extension and mafic underplating.
NASA Astrophysics Data System (ADS)
Barnes, Chris; Majka, Jaroslaw; Schneider, David; Bukala, Michal; Walczak, Katarzyna
2017-04-01
Recent discoveries of ultra-high pressure (UHP) metamorphism in the Seve Nappe Complex (SNC) of the Scandinavian Caledonides provide the basis for new investigations into the subduction - exhumation dynamics of the Baltoscandian margin during Caledonian tectonism. Specifically, exhumation of (U)HP complexes during subduction remains enigmatic. The recently proposed 'vacuum-cleaner' model details a method of exhumation for the SNC driven by conditions of underpressure within the subduction channel. This model, however, still requires extensive testing. Metasedimentary rocks hosting eclogite boudins of the SNC in Norrbotten, Sweden, preserve both metre-scale folding and a pervasive foliation which were developed during exhumation, as purposed by previous studies. Thus, the SNC host-rock offers an excellent region to test the vacuum-cleaner exhumation model. Preliminary investigation of the host-rock reveals a regional mineral assemblage of Qz + Ms + Grt + Bt + Ksp + Pl + Czo + Aln + Ttn (+ Tur + St). Garnet inclusions (Qz + Rt + Ms) are interpreted to represent the peak pressure assemblage. Chemical profiles of Grt show homogenization of the cores with thin retrogressive rims. Homogenization of Grt requires temperatures >700°C, interpreted to represent peak temperature conditions. Field observations of exhumation-related folds uncovered an axial-planar alignment of mica within the fold hinges, and an abundance of Aln and Czo requires upper-greenschist to lower-amphibolite facies conditions and presence of fluids. The current host-rock mineral assemblage is representative of retrogressive metamorphism at <550-600°C contemporaneous with deformation. Microstructures of the metasedimentary rocks are variable and strongly correlated with competency of the rock. Competent domains abundant in e.g. Qz, Grt, Czo, Ksp etc. exhibit coarse-grained subgrain and bulging-grain recrystallized Qz and development of micrometer-scale shear bands. Less competent domains, dominated by micas, are characterized by very fine-grained recrystallized Qz, mica (Ms) fish bundles and rotated, pre-kinematic Grt and Tur, illustrating strain localization which accommodated the exhumation of eclogite boudins. Kinematic orientations determined from mica-rich shear zones are variable; rigid eclogite boudins are likely controlling local shear sense. Compositional mapping of white mica reveals a narrow range of composition (61-73% XMs/27-39% XCel) regardless of degree of deformation experienced by the crystal. However, individual grains show patchy Mg-depleted/Al-enriched zones (70-84% XMs/16-30% XCel), which are spatially correlated with Bt-after-Ms reactions. Graphical representation of total Mg + Fe-content vs. excess Si-content of white mica illustrates a strong Tschermak substitution towards Ms end-member composition, with moderate Prl and Ti substitutions also contributing to the overall excess Si-content. Growth of Bt-after-Ms and the associated Tschermak substitution towards Ms-composition suggests a decrease in temperature during retrogressive metamorphism, perhaps marking the transition from lower-amphibolite to upper-greenschist facies. Future work on resolving the timing of exhumation of the SNC will involve in-situ 40Ar/39Ar dating of white mica and U-Pb depth profiling of zircon. This preliminary study regarding the petrology, mineral chemistry, and microstructures of the SNC host-rock in Norrbotten will be crucial for interpreting the geo/thermochronological results and will be instrumental for evaluating the vacuum-cleaner model. This work is financially supported by NCN "CALSUB" research project no. 2014/14/E/ST10/00321.
A detrital garnet fingerprint of the Central Swiss Alps
NASA Astrophysics Data System (ADS)
Stutenbecker, Laura; Berger, Alfons; Schlunegger, Fritz
2017-04-01
Detrital garnet is a promising candidate to reliably fingerprint sediment sources in the Alps, which has so far been complicated by the wide range and similarity of some of the lithologies. Garnet is present in most Alpine sediments, is easy to identify, is fairly stable and, most importantly, reflects the type and the metamorphic grade of its source rock in its chemical composition. This study aims to establish fingerprints based on detrital garnet composition for the most important tectonic units of the Central Alps, including European, Penninic and Adriatic basement rocks and their respective meta-sedimentary cover. Sediments collected from modern rivers, which drain representative portions of the individual tectonic units, contain a natural mixture of the various garnet populations present in each unit. We selected six catchments in southwestern Switzerland draining the External Massifs, Helvetic sediments and the Penninic nappe stack at the transition of Alpine greenschist- to amphibolite-facies metamorphism in order to test the variability of Alpine garnets and the role of inherited (pre-Alpine) garnets. Extraordinary grossular- and spessartine-rich garnets of the External massifs, which experienced greenschist facies metamorphism, are clearly distinguishable from generally almandine-rich garnets supplied by the higher-grade metamorphic Penninic nappe stack. The variable pyrope-, grossular- and spessartine-components of these almandine-rich garnets can be used to further distinguish pre-Alpine, Alpine eclogite-facies and low-grade metasedimentary garnets. This fingerprint has the potential to be used for reconstructing sediment sources, transport and dispersal patterns in a variety of settings throughout the Alpine sedimentary record.
The potential of detrital garnet as a provenance proxy in the Central Swiss Alps
NASA Astrophysics Data System (ADS)
Stutenbecker, Laura; Berger, Alfons; Schlunegger, Fritz
2017-04-01
Detrital garnet is a promising candidate to reliably fingerprint sediment sources in the Alps, which has so far been complicated by the wide range and similarity of some of the lithologies. Garnet is present in most Alpine sediments, is easy to identify, is fairly stable and, most importantly, reflects the type and the metamorphic grade of its source rock in its chemical composition. This study aims to establish fingerprints based on detrital garnet composition for the most important tectonic units of the Central Alps, including European, Penninic and Adriatic basement rocks and their respective metasedimentary covers. Sediments collected from modern rivers, which drain representative portions of the individual tectonic units, contain a natural mixture of the various garnet populations present in each unit. We selected six catchments in southwestern Switzerland draining the External massifs, Helvetic sediments and the Penninic nappe stack at the transition of Alpine greenschist- to amphibolite-facies metamorphism in order to test the variability of Alpine garnets and the role of inherited (pre-Alpine) garnets. Extraordinary grossular- and spessartine-rich garnets of the External massifs, which experienced greenschist facies metamorphism, are clearly distinguishable from generally almandine-rich garnets supplied by the higher-grade metamorphic Penninic nappe stack. The variable pyrope, grossular and spessartine components of these almandine-rich garnets can be used to further distinguish pre-Alpine, Alpine eclogite-facies and low-grade metasedimentary garnets. This provenance proxy has the potential to be used for reconstructing sediment sources, transport and dispersal patterns in a variety of settings throughout the Alpine sedimentary record.
NASA Astrophysics Data System (ADS)
Giusti, Christian
2014-05-01
The starting point of this essay is a question from a school teacher who came in contact with me via my photo gallery online. His question, "What is the origin of the Roc de Murviel?" actually covers three or four separate problems, and requires to devise simple and specific comparisons in order to help children of 8 years old to understand a bunch of difficult and abstract concepts. But, in contrast, Carboniferous marine sedimentary deposits of the so-called unit "Klippen of Cabrières" are known of geologists worldwide, due to the presence of a Global boundary Stratotype Section and Point (GSSP) located not far from the "Roc de Murviel", the "La Serre" section, where is defined the base of the Carboniferous System, Mississippian Sub-System and Tournaisien Stage. In this case, to remind how the conceptions about the formation of the "Klippen of Cabrières" evolved may serve as an introduction to the explanation of syntectonic sedimentation and to the history of the concept of thrust nappe for the well-trained public as well as academics or engineers not experts in the specificities of regional geology. Difficulty (at least in France) will come from the scarcity of naturalists, a species in danger of extinction, and from the small number of historians concerned by the natural sciences. At the public school, the first method is to decompose the problem into independent issues (Cartesian reductionism) such as: nature and age of the rock? mode of sedimentation? part of an ancient mountain chain? existence as a landform in the current landscape? Concerning the specific question of geological time, because most children of this age do not yet know how to read the time, a second method is to replace the model of the clock (the entire history of the planet Earth reduced to one year) by the metaphor of either the staircase or the ladder, both adapted from the international stratigraphic scale. A third method is to use the concept of "toolbox" for each sub-disciplines or specialties required: inorganic chemistry, paleontology, structural geology, geomorphology. For the public of motivated adults, it may be helpful to remember the key milestones of one century of regional geology: first detailed geological mapping by Paul Gervais de Rouville in the 1870s, Jules Bergeron's "nappe de recouvrement" inspired by the work of Marcel Bertrand in Provence and Switzerland, Bernard Gèze's "nappe-pli couché" derived on Pierre Termier's "nappe du premier genre" in the Alps, the widespread use of sedimentological and micro-tectonic criteria after Second World War (though formerly implemented by André Demay in the Cévennes before 1939), with the studies of Lamoraal Ulbo Sitter, Rodolphe Trümpy and John Rodgers in the 1950s up to those of Maurice Mattauer, François Proust and François Arthaud in the early 1970s. Regarding the teaching of geological time, the issue will be addressed ex situ with the help of the clock model defined above, and could be completed by fieldwork with the observation in situ of one of the real "bars" of the stratigraphic "ladder", i.e. the GSSP's of La Serre section. Two other points are situated nearby: the Coumiac quarry near Cessenon (base of the Famennian Stage) and the Col du Puech de la Suque (base of the Frasnian Stage and Upper Devonian Sub-System). Fieldwork is aimed to link the study of geodiversity to that of biodiversity, in addition to paleontology, paleogeography and the reconstruction of palaeoenvironments.
Metrically preserving the USGS aerial film archive
Moe, Donald; Longhenry, Ryan
2013-01-01
Since 1972, the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, has provided fi lm-based products to the public. EROS is home to an archive of 12 million frames of analog photography ranging from 1937 to the present. The archive contains collections from both aerial and satellite platforms including programs such as the National High Altitude Program (NHAP), National Aerial Photography Program (NAPP), U.S. Antarctic Resource Center (USARC), Declass 1(CORONA, ARGON, and LANYARD), Declass 2 (KH-7 and KH-9), and Landsat (1972 – 1992, Landsat 1–5).
Houska, Treva R.; Johnson, A.P.
2012-01-01
The Global Visualization Viewer (GloVis) trifold provides basic information for online access to a subset of satellite and aerial photography collections from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center archive. The GloVis (http://glovis.usgs.gov/) browser-based utility allows users to search and download National Aerial Photography Program (NAPP), National High Altitude Photography (NHAP), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Earth Observing-1 (EO-1), Global Land Survey, Moderate Resolution Imaging Spectroradiometer (MODIS), and TerraLook data. Minimum computer system requirements and customer service contact information also are included in the brochure.
A preliminary view on adsorption of organics on ice at temperatures close to melting point
NASA Astrophysics Data System (ADS)
Kong, Xiangrui; Waldner, Astrid; Orlando, Fabrizio; Artiglia, Luca; Ammann, Markus; Bartels-Rausch, Thorsten
2016-04-01
Ice and snow play active roles in the water cycle, the energy budget of the Earth, and environmental chemistry in the atmosphere and cryosphere. The uptake of trace gases from the atmosphere may induce changes in the structure of the surface layer of ice crystals and has important consequences for atmospheric chemistry and the climate system. However, a molecular-level understanding of trace gas adsorption on ice is still missing, and also little is known about the impurity-induced ice-surface disorder in the context of environmental relevance. It is a general challenge to apply highly sensitive experimental approaches to ambient air conditions, e.g. studies of volatile surfaces, because of the strict requirements of vacuum experimental conditions. In this study, we employed synchrotron-based X-ray Photoelectron Spectroscopy (XPS) and partial electron yield Near Edge X-ray Absorption Fine Structure (NEXAFS) in a state-of-the-art Near-Ambient Pressure Photoelectron (NAPP) spectroscopy end station. The NAPP enables to utilize the surface sensitive experimental methods, XPS and NEXAFS with electron detection, on volatile surfaces, i.e. ice at temperatures approaching zero degree Celsius. XPS and NEXAFS provide unique information of hydrogen bonding network, surface concentration of organic adsorbates, depth profile of dopants in the ice, and acid-base dissociation on the surfaces. For instance, a few carboxylic acids, e.g. acetic acid and formic acid, have been recently studied by XPS and NEXAFS in NAPP. Amines are a group of nitrogen-containing basic organics with atmospheric relevance. Only few studies have been focused on amines, and atmospheric models rarely take account of them due to the limitation of knowledge. Several amines have been found to play active roles in the processes of aerosol formation, e.g. dimethylamine (DMA), trimethylamine (TMA) and 1-propanamine. In this study, we will focus on one of these three amines after pre-tests, and perform core-level spectroscopies to reveal the behaviour of adsorption and dissociation on ice. Additionally, pure ice and amine doped ice will be compared for their surface structure change at different temperatures, which will indicate the differences of surface disordering caused by different factors. For instance, we will have a chance to know better if impurities will cause local disordering, i.e. forming hydration shell, which challenges the traditional picture of a homogenous disordered doped ice surface. The findings of this study could not only improve our understanding of how acidic organics adsorb to ice, and of their chemical properties on ice, but also have potentials to know better the behaviour of pure ice at temperatures approaching to the melting point.
Post-depositional tectonic modification of VMS deposits in Iberia and its economic significance
NASA Astrophysics Data System (ADS)
Castroviejo, Ricardo; Quesada, Cecilio; Soler, Miguel
2011-07-01
The original stratigraphic relationships and structure of VMS deposits are commonly obscured by deformation. This can also affect their economic significance, as shown by several Iberian Pyrite Belt (IPB, SW Iberia) examples. The contrasting rheologic properties of the different lithologies present in an orebody (massive sulphide, feeder stockwork, alteration envelope, volcanic and sedimentary rocks) play a major role in determining its overall behaviour. Variscan thin-skinned tectonics led to stacking of the massive pyrite and stockwork bodies in duplex structures, resulting in local thickening and increased tonnage of minable mineralization. Furthermore, differential mechanical behaviour of the different sulphide minerals localised the detachments along relatively ductile sulphide-rich bands. The result was a geochemical and mineralogical reorganisation of most deposits, which now consist of barren, massive pyrite horses, bounded by base metal-rich ductile shear zones. Metal redistribution was enhanced by mobilisation of the base metal sulphides from the initially impoverished massive pyrite, through pressure-solution processes, to tensional fissures within the already ductile shear zones. In NW Iberia, VMS deposits were also strongly overprinted by the Variscan deformation during emplacement of the Cabo Ortegal and Órdenes allochthonous nappe complexes, but no stacking of the orebodies was produced. Original contacts were transposed, and the orebodies, their feeder zones and the country rock acquired pronounced laminar geometry. In lower-grade rocks (greenschist facies, Cabo Ortegal Complex), solution transfer mechanisms are common in pyrite, which remains in the brittle domain, while chalcopyrite shows ductile behaviour. In higher-grade rocks (amphibolite facies, Órdenes Complex), metamorphic recrystallisation overprints earlier deformation textures. The contrasting behaviour of the IPB and NW Iberian deposits is explained by key factors that affect their final geometry, composition and economics, such as pre-deformation structure, size and mineralogical composition of the orebody and associated lithologies, temperature, crustal level, deviatoric stress and availability of a fluid phase during deformation and the style and rate of deformation.
Snoke, A.W.; Howard, K.A.; McGrew, A.J.; Burton, B.R.; Barnes, C.G.; Peters, M.T.; Wright, J.E.
1997-01-01
The purpose of this geological excursion is to provide an overview of the multiphase developmental history of the Ruby Mountains and East Humboldt Range, northeastern Nevada. Although these mountain ranges are commonly cited as a classic example of a Cordilleran metamorphic core complex developed through large-magnitude, mid-Tertiary crustal extension, a preceding polyphase Mesozoic contractional history is also well preserved in the ranges. An early phase of this history involved Late Jurassic two-mica granitic magmatism, high-temperature but relatively low-pressure metamorphism, and polyphase deformation in the central Ruby Mountains. In the northern Ruby Mountains and East Humboldt Range, a Late Cretaceous history of crustal shortening, metamorphism, and magmatism is manifested by fold-nappes (involving Archean basement rocks in the northern East Humboldt Range), widespread migmatization, injection of monzogranitic and leucogranitic magmas, all coupled with sillimanite-grade metamorphism. Following Late Cretaceous contraction, a protracted extensional deformation partially overprinted these areas during the Cenozoic. This extensional history may have begun as early as the Late Cretaceous or as late as the mid-Eocene. Late Eocene and Oligocene magmatism occurred at various levels in the crust yielding mafic to felsic orthogneisses in the deep crust, a composite granitic pluton in the upper crust, and volcanic rocks at the surface. Movement along a west-rooted, extensional shear zone in the Oligocene and early Miocene led to core-complex exhumation. The shear zone produced mylonitic rocks about 1 km thick at deep crustal levels, and an overprint of brittle detachment faulting at shallower levels as unroofing proceeded. Megabreccias and other synextensional sedimentary deposits are locally preserved in a tilted, upper Eocene through Miocene stratigraphic sequence. Neogene magmatism included the emplacement of basalt dikes and eruption of rhyolitic rocks. Subsequent Basin and Range normal faulting, as young as Holocene, records continued tectonic extension.
NASA Astrophysics Data System (ADS)
Booth-Rea, Guillermo; Gaidi, Seif; Melki, Fetheddine; Pérez-Peña, Vicente; Marzougui, Wissem; Azañón, Jose Miguel; Galve, Jorge Pedro
2017-04-01
Recent work has proposed the delamination of the subcontinental mantle lithosphere under northern Tunisia during the late Miocene. This process is required to explain the present location of the Tunisian segment of the African slab, imaged by seismic tomography, hanging under the Gulf of Gabes to the south of Tunisia. Thus, having retreated towards the SE several hundred km from its original position under the Tellian-Atlas nappe contact that crops out along the north of Tunisia. However, no tectonic structures have been described which could be related to this mechanism of lithospheric mantle peeling. Here we describe for the first time extensional fault systems in northern Tunisia that strongly thinned the Tellian nappes, exhuming rocks from the Tunisian Atlas in the core of folded extensional detachments. Two normal fault systems with sub-orthogonal extensional transport occur. These were active during the late Miocene associated to the extrusion of 13 Ma granodiorite and 9 Ma rhyodacite in the footwall of the Nefza detachment. We have differentiated an extensional system formed by low-angle normal faults with NE- and SW-directed transport cutting through the Early to Middle Miocene Tellian nappen stack and a later system of low and high-angle normal faults that cuts down into the underlying Tunisian Atlas units with SE-directed transport, which root in the Nefza detachment. Both normal fault systems have been later folded and cut by thrusts during Plio-Quaternary NW-SE directed compression. These findings change the interpretation of the tectonic evolution of Tunisia that has always been framed in a transpressive to compressive setting, manifesting the extensional effects of Late Miocene lithospheric mantle delamination under northern Tunisia.
NASA Astrophysics Data System (ADS)
Dallanave, Edoardo; Kirscher, Uwe; Hauck, Jürgen; Hesse, Reinhard; Bachtadse, Valerian; Wortmann, Ulrich Georg
2018-06-01
The Rhenodanubian Flysch zone (RDF) is a Lower Cretaceous-lower Palaeocene turbidite succession extending for ˜500 km from the Danube at Vienna to the Rhine Valley (Eastern Alps). It consists of calcareous and siliciclastic turbidite systems deposited in a trench abyssal plain. The age of deposition has been estimated through micropalaeontologic dating. However, palaeomagnetic studies constraining the age and the palaeolatitude of deposition of the RDF are still missing. Here, we present palaeomagnetic data from the Early Cretaceous Tristel and Rehbreingraben Formations of the RDF from two localities in the Bavarian Alps (Rehbrein Creek and Lainbach Valley, southern Germany), and from the stratigraphic equivalent of the Falknis Nappe (Liechtenstein). The quality of the palaeomagnetic signal has been assessed by either fold test (FT) or reversal test (RT). Sediments from the Falknis Nappe are characterized by a pervasive syntectonic magnetic overprint as tested by negative FT, and are thus excluded from the study. The sediments of the Rehbreingraben Formation at Rehbrein Creek, with positive RT, straddle magnetic polarity Chron M0r and the younger M΄-1r΄ reverse event, with an age of ˜127-123 Ma (late Barremian-early Aptian). At Lainbach Valley, no polarity reversals have been observed, but a positive FT gives confidence on the reliability of the data. The primary palaeomagnetic directions, after correction for inclination shallowing, allow to precisely constrain the depositional palaeolatitude of the Tristel and Rehbreingraben Formations around ˜28°N. In a palaeogeographic reconstruction of the Alpine Tethys at the Barremian/Aptian boundary, the RDF is located on the western margin of the Briançonnais terrain, which was separated from the European continent by the narrow Valais Ocean.
NASA Astrophysics Data System (ADS)
Tremblay, Alain; Meshi, Avni; Deschamps, Thomas; Goulet, François; Goulet, Normand
2015-02-01
The Dinarides-Hellenides result from underthrusting of the Adriatic margin during Africa-Europe convergence. In Albania, they consist of (1) a western zone of nappes derived from Adria; (2) a central belt made up of the Mirdita ophiolites; and (3) an eastern zone, the Korabi-Pelagonia zone, of Variscan basement overlain by Permian to Mesozoic rift deposits and carbonates. Some authors interpret the Korabi-Pelagonia zone as a microcontinent between the Mirdita-Pindos oceanic basin to the west and the eastern Vardar oceanic basin to the east; other regard the Korabi-Pelagonia zone as a tectonic window below a single ophiolitic nappe. This contribution argues for a far-traveled thrust sheet. The Mirdita ophiolites are 165-160 Ma. The metamorphic sole yielded 40Ar/39Ar ages of 171 to 162 Ma. The Korabi-Pelagonia zone is subdivided into the Korabi and Gjegjan subzones. The structural analysis of these rocks supports the rooting of the Mirdita ophiolites in the Western Vardar zone. The post-Variscan cover sequence of the Korabi subzone records two phases of deformation: D1 is associated with a SE dipping to flat-lying schistosity axial planar to NW verging folds and thrust faults, related to ophiolite obduction; D2 is a postobduction NNE trending crenulation cleavage. Published zircon fission track analyses yielded 150-125 Ma, suggesting that regional metamorphism is Early Cretaceous or older. K-Ar mica ages from correlative rocks of Macedonia cluster between 148 and 130 Ma, indicating that D1 is Late Jurassic. A west directed obduction is favored, as is a rooting east of the Mirdita ophiolites because of the top-to-the-west structural polarity of obduction-related deformation.
NASA Astrophysics Data System (ADS)
D'el-Rey Silva, Luiz José Homem; Wolf Klein, Percy Boris; Walde, Detlef Hans-Gert
2004-10-01
The Caldas Novas dome (Goiaás state, central Brazil) lies in the southern segment of the Neoproterozoic Brasília belt (center of the Tocantins Province) between the Goiás magmatic arc and the margin of the ancient São Francisco plate. The core of the dome comprises rocks of the Meso-Neoproterozoic Paranoá group (passive margin psamitic-pelitic sediments and subgreenschist facies) covered by a nappe of the Neoproterozoic Araxá group (backarc basin pelitic-psamitic sediments and volcanics of greenschist facies, bitotite zone). Hot underground waters that emerge along fractures in the Paranoá quartzite and wells in the Araxá schist have made the Caldas Novas dome an international tourist attraction. A recent detailed structural analysis demonstrates that the dome area was affected by a D 1-D 3 Brasiliano cycle progressive deformation in the ˜750-600 Ma interval (published U-Pb and Sm-Nd data). During event D 1, a pervasive layer-parallel foliation developed coeval the regional metamorphism. Event D 2 (intense F 2 isoclinal folding) was responsible for the emplacement of the nappe. D 1 and D 2 record a regime of simple shear (top-to-SE relative regional movement) due to a WNW-ESE subhorizontal compression ( σ1). Event D 3 records a WSW-ENE compression, during which the dome rose as a large-scale F 3 fold, possibly associated with a duplex structure at depth. During the dome's uplift, the layers slid back and down in all directions, giving way to gravity-slide folds and an extensional crenulation cleavage. A set of brittle fractures and quartz veins constitutes the record of a late-stage D 4 event important for understanding the thermal water reservoir.
NASA Astrophysics Data System (ADS)
Kirst, Frederik; Leiss, Bernd
2017-01-01
Kinematic analyses of shear zones at Lago di Cignana in the Italian Western Alps were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin zones) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin zone along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas zone and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear zones exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.
NASA Astrophysics Data System (ADS)
Tekin, U. Kagan; Bedi, Yavuz; Okuyucu, Cengiz; Göncüoglu, M. Cemal; Sayit, Kaan
2016-12-01
The Mersin Ophiolitic Complex located in southern Turkey comprises two main structural units; the Mersin Mélange, and a well-developed ophiolite succession with its metamorphic sole. The Mersin Mélange is a sedimentary complex including blocks and tectonic slices of oceanic litosphere and continental crust in different sizes. Based on different fossil groups (Radiolaria, Conodonta, Foraminifera and Ammonoidea), the age of these blocks ranges from Early Carboniferous to early Late Cretaceous. Detailed fieldwork in the central part of the Mersin Mélange resulted in identification of a number of peculiar blocks of thick basaltic pillow-and massive lava sequences alternating with pelagic-clastic sediments and radiolarian cherts. The oldest ages obtained from the radiolarian assemblages from the pelagic sediments transitional to the volcano-sedimentary succession in some blocks are middle to late Late Anisian. These pelagic sediments are overlain by thick sandstones of latest Anisian to middle Early Ladinian age. In some blocks, sandstones are overlain by clastic and pelagic sediments with lower Upper to middle Upper Ladinian radiolarian fauna. Considering the litho- and biostratigraphical data from Middle Triassic successions in several blocks in the Mersin Mélange, it is concluded that they correspond mainly to the blocks/slices of the Beysehir-Hoyran Nappes, which were originated from the southern margin of the Neotethyan Izmir-Ankara Ocean. As the pre-Upper Anisian basic volcanics are geochemically evaluated as back-arc basalts, this new age finding suggest that a segment of the Izmir-Ankara branch of the Neotethys was already open prior to Middle Triassic and was the site of intraoceanic subduction.
NASA Astrophysics Data System (ADS)
Hirano, N.; Dilek, Y.
2015-12-01
Seamounts and seamount chains are common in both the upper and lower plates of active subduction zones. Their OIB-type volcanic products are distinctly different from suprasubduction zone (arc, forearc and backarc) generated volcanic rocks in terms of their compositions and mantle sources. Tectonic accretion of such seamounts into the Japanese archipelago in the NW Pacific and into subduction-accretion complexes and active margins of continents/microcontinents within the Tethyan realm during the Cretaceous played a significant role in continental growth. Seamount assemblages comprise alkaline volcanic rocks intercalated with radiolarian and hemipelagic chert, and limestone, and may also include hypabyssal dolerite and gabbro intrusions. In the Tethyan orogenic belts these seamount rocks commonly occur as km-scale blocks in mélange units beneath the late Jurassic - Cretaceous ophiolites nappes, whereas on the Japanese islands they form discrete, narrow tectonic belts within the late Jurassic - Cretaceous accretionary prism complexes. We interpret some of these OIB occurrences in the Japanese and Tethyan mountain belts as asperities in downgoing oceanic plates that formed in <10 million years before their accretion. Their magmas were generated by decompressional melting of upwelling asthenosphere, without any significant mantle plume component, and were brought to the seafloor along deep-seated brittle fractures that developed in the flexed, downgoing lithosphere as it started bending near a trench. The modern occurrences of these "petit-spot volcanoes" are well established in the northwestern Pacific plate, off the coast of Japan. The proposed mechanism of the formation of these small seamounts better explains the lack of hotspot trails associated with their occurrence in the geological record. Magmatic outputs of such flexural bending-induced plumelets should be ubiquitious in the accretionary (Japanese-style) and collisional (Tethyan-style) orogenic belts.
Barbados: Architecture and implications for accretion
NASA Astrophysics Data System (ADS)
Speed, R. C.; Larue, D. K.
1982-05-01
The island of Barbados exposes the crestal zone of the remarkably broad accretionary prism of the Lesser Antilles foreacrc. The architecture of Barbados is three-tiered: an upper arched cap of Pleistocene reefs that record rapid and differential uplift of the island, an intermediate zone of nappes of mainly abyssal or deep bathyal pelagic rocks, and a basal complex whose lithotypes extend to substantial depth and may be representative of the bulk of the western or inner accretionary prism. The exposed basal complex consists of generally steeply dipping ENE to NE-striking fault-bounded packets which contain rocks of one of three lithic suites: terrigenous (quartzose turbidite and mudstone), debris flow, and hemipelagic (chiefly radiolarite). Present but imcomplete rock dating indicates that the terrigenous and hemipelagic suites and the pelagic rocks of the intermediate zone are age overlapping in Early and Middle Eocene time. Deformation within packets of the basal complex is systematic, pre- or synfault, and indicative of shortening that is generally normal to packet boundaries. A unit of terrigenous materials that probably underwent local resedimentation in the Miocene is recognized in wells, but its relationship to exposed rocks is uncertain. The packet-bounding faults of the basal complex are interpreted to have been primary accretionary surfaces which may have been reactivated by later intraprism movements. Exposed sedimentary rocks of Barbados can be successfully assigned to contemporaneous depositional sites associated with an accretionary prism: terrigenous beds to a trench wedge that was connected to South American sediment sources, debris flow to trench floor or slope basin accumulations of material derived from the lower slope, hemipelagic to Atlantic plain strata, and pelagic rocks of the intermediate zone to deep outer forearc basin sites. The decollement at the base of the intermediate zone is probably due to uplift and arcward motion of the crestal zone of the accretionary prism with respect to the forearc basin during progressive prism growth. Principal uplift of the prism seems to have started, apparently abruptly, in the Miocene. Quaternary uplift of Barbados may be due partly to local diapirism. Paleogene subduction that created the arcward region of the prism probably occurred in a differently configured zone from the present one.
Snow, C.A.; Wakabayashi, J.; Ernst, W.G.; Wooden, J.L.
2010-01-01
We present new U/Pb ages for detrital zircons separated from six quartzose metagraywackes collected from different Franciscan Complex imbricate nappes around San Francisco Bay. All six rocks contain a broad spread of Late Jurassic-Cretaceous grains originating from the Klamath-Sierra Nevada volcanic-plutonic arc. Units young structurally downward, consistent with models of progressive underplating and offscraping within a subduction complex. The youngest specimen is from the structurally lowest San Bruno Mountain sheet; at 52 Ma, it evidently was deposited during the Eocene. None of the other metagraywackes yielded zircon ages younger than 83 Ma. Zircons from both El Cerrito units are dominated by ca. 100-160 Ma grains; the upper El Cerrito also contains several grains in the 1200-1800 Ma interval. These samples are nearly identical to 97 Ma metasedimentary rock from the Hunters Point shear zone. Zircon ages from this m??lange block exhibit a broad distribution, ranging from 97 to 200 Ma, with only a single pre-Mesozoic age. The Albany Hill specimen has a distribution of pre-Mesozoic grains from 1300 to 1800 Ma, generally similar to that of the upper El Cerrito sheet; however, it contains zircons as young as 83 Ma, suggesting that it is significantly younger than the upper El Cerrito unit. The Skaggs Spring Schist is the oldest studied unit; its youngest analyzed grains were ca. 144 Ma, and it is the only investigated specimen to display a significant Paleozoic detrital component. Sedimentation and subduction-accretion of this tract of the trench complex took place along the continental margin during Early to early-Late Cretaceous time, and perhaps into Eocene time. Franciscan and Great Valley deposition attests to erosion of an Andean arc that was active over the entire span from ca. 145 to 80 Ma, with an associated accretionary prism built by progressive underthrusting. We use these new data to demonstrate that the eastern Franciscan Complex in the northern and central Coast Ranges is a classic accretionary prism, where younger, structurally lower allochthons are exposed on the west, and older, structurally higher allochthons occur to the east, in the heavily studied San Francisco Bay area. ?? 2009 Geological Society of America.
NASA Astrophysics Data System (ADS)
Basu, A. R.; Weaver, K. L.; Sengupta, S.
2001-12-01
Although the 116-113 Ma-old Rajmahal-Sylhet Traps of the Bengal basin, potentially covering an area > 2x105 km2, can be directly linked via Ninetyeast Ridge to the Kerguelen Plume, more than 5,000 kms away, it is generally believed that this flood basalt volcanism originated from a normal MORB-type mantle at the boundary of a mantle plume. This model, primarily based on geochemical analysis of a limited number of Rajmahal basalts, requires initiation of rifting of the eastern Indian margin by a smaller thermal flux than necessary for creating a large igneous province. Here we show that the extent of volcanism associated with the Rajmahal-Sylhet Traps is far greater than usually assumed, thus requiring a direct involvement of the Kerguelen Plume. In addition to the surface exposures of the flood basalts in Rajmahal-Sylhet, the basaltic rocks have been encountered in many parts of the Bengal Basin in bore holes reaching a maximum thickness of 600 m in the western margin of the Basin (Sengupta, Bull. AAPG, 1966) Most importantly, several suites of ultrapotassic and alkalic intrusive complexes, similar to those associated with the Deccan and Siberia Traps, occur over wide areas within and outside the Basin: i) southwest of the surface exposures of Rajmahal basalts, distance 200km, intrusive in Lower Gondwana coalbeds, Ar-Ar age 114 Ma (P.R. Renne, personal communication), ii) 400 km north of Rajmahal, exposed in Sikkim, intrusive into metamorphic crystalline nappes of the Himalayas; distance here is not real and must be a minimum as the nappes have been transported from the north, iii) northeast of Rajmahal in Meghalaya State, distance 550 km, intrusive into metamorphic Precambrian basement rocks. Nd-Sr isotopic ratios and trace element characteristics of these above ultrapotassic and alkaline rocks are consistent with their origin associated with the Kerguelen Plume. The wide range in Nd-Sr array for these rocks, including the Sylhet and Rajmahal basalts, shows initial \\epsilonNd(T) values of +4 to -8 and 87Sr/86Sr of 0.7045 to 0.7100, which are similar to Kerguelen transitional and alkaline basalts, Bunburry Gosselin lavas and Naturaliste plateau basalts. Therefore, the zone of influence of the plume head with Rajmahal at the center would be at least 700 km in diameter, and such a large area would require direct involvement of the Kerguelen Plume head for magma genesis in the Bengal basin. Recognition of associated volcanism in the northeast of Sylhet Traps allows Nintyeast Ridge to be the appropriate hotspot track in the Bay of Bengal.
Targinact--opioid pain relief without constipation?
2010-12-01
Targinact (Napp Pharmaceuticals Ltd) is a modified-release combination product containing the strong opioid oxycodone plus the opioid antagonist naloxone. It is licensed for "severe pain, which can be adequately managed only with opioid analgesics".1 The summary of product characteristics (SPC) states that "naloxone is added to counteract opioid-induced constipation by blocking the action of oxycodone at opioid receptors locally in the gut". Advertising for the product claims "better pain relief", "superior GI [gastrointestinal] tolerability" and "improved quality of life" "compared to previous treatment in a clinical practice study (n=7836)". Here we consider whether Targinact offers advantages over using strong opioids plus laxatives where required.
Transpression as the main deformational event in an Archaean greenstone belt, northeastern Minnesota
NASA Technical Reports Server (NTRS)
Hudleston, P. J.; Schultz-Ela, D.; Bauer, R. L.; Southwick, D. L.
1986-01-01
Deformed and metamorphosed sedimentary and volcanic rocks of the Vermilion district constitute an Archean greenstone belt trending east-west between higher grade rocks of the Vermilion Granitic Complex to the north and the Giants Range batholith to the south. Metamorphic grade is low throughout, being lowest in the center of the belt (chlorite zone of the greenschist facies). All the measured strain, a cleavage or schistosity, and a mineral lineation in this belt are attributed to the main phase of deformation D sub 2 that followed an earlier nappe-forming event D sub 1, which left little evidence of penetrative fabric. Previous work assumed that the D sub 2 deformation resulted from north-south compression across the district. It is now believed that a significant component of this deformation resulted from dextral shear across the whole region. Thus the Vermilion fault, a late-state largely strike-slip structure that bounds the Vermilion district to the north, may simply be the latest, most brittle expression of a shear regime that was much more widespread in space and time. Features that are indicative of shear include ductile shear zones with sigmoidal foliation patterns, highly schistose zones with the development of shear bands, feldspar clasts or pyrite cubes with asymmetric pressure shadows, and the fact that the asymmetry of the F sub 2 folds is predominantly Z for at least 15 km south of the Vermilion fault.
NASA Astrophysics Data System (ADS)
Cluzel, Dominique; Jourdan, Fred; Meffre, SéBastien; Maurizot, Pierre; Lesimple, StéPhane
2012-06-01
Amphibolite lenses that locally crop out below the serpentinite sole at the base of the ophiolite of New Caledonia (termed Peridotite Nappe) recrystallized in the high-temperature amphibolite facies and thus sharply contrast with blueschists and eclogites of the Eocene metamorphic complex. Amphibolites mostly display the geochemical features of MORB with a slight Nb depletion and thus are similar to the youngest (Late Paleocene-Eocene) BABB components of the allochthonous Poya Terrane. Thermochronological data from hornblende (40Ar/39Ar), zircon, and sphene (U-Pb) suggest that these mafic rocks recrystallized at ˜56 Ma. Using various geothermobarometers provides a rough estimate of peak recrystallization conditions of ˜0.5 GPa at ˜800-950°C. The thermal gradient inferred from the metamorphic assemblage (˜60°C km-1), geometrical relationships, and geochemical similarity suggest that these mafic rocks belong to the oceanic crust of the lower plate of the subduction/obduction system and recrystallized when they subducted below young and hot oceanic lithosphere. They were detached from the down-going plate and finally thrust onto unmetamorphosed Poya Terrane basalts. This and the occurrence of slab melts at ˜53 Ma suggest that subduction inception occurred at or near to the spreading ridge of the South Loyalty Basin at ˜56 Ma.
Polyphase thrust tectonic in the Barberton greenstone belt
NASA Technical Reports Server (NTRS)
Paris, I. A.
1986-01-01
In the circa 3.5 by-old Barberton greenstone belt, the supracrustal rocks form a thick and strongly deformed thrust complex. Structural studies in the southern part of the belt have shown that 2 separate phases of over-thrusting (D sub 1 and D sub 2) successively dismembered the original stratigraphy. Thrust nappes were subsequently refolded during later deformations (D sub 3 and D sub 4). This report deals with the second thrusting event which, in the study region appears to be dominant, and (unlike the earlier thrusting), affects the entire supracrustal pile. The supracrustal rocks form a predominantly NE/SW oriented, SE dipping tectonic fan (the D sub 2 fan) in which tectonic slices of ophiolitic-like rocks are interleaved with younger sedimentary sequences of the Diepgezet and malalotcha groups. Structural and sedimentological data indicate that the D sub 2 tectonic fan was formed during a prolonged, multi-stage regional horizontal shortening event during which several types of internal deformation mechanisms were successively and/or simultaneously active. Movement appears to have been predominantly to the NW and to the N. During D sub 2, periods of quiescence and sedimentation followed periods of thrust propagation. Although the exact kinematics which led to the formation of this fan is not yet known, paleoenvironmental interpretations together with structural data suggest that D sub 2 was probably related to (an) Archean collision(s).
NASA Astrophysics Data System (ADS)
Stańczak, Grażyna; Rembiś, Marek; Figarska-Warchoł, Beata; Toboła, Tomasz
The complex pore space considerably affects the unique properties of diatomite and its significant potential for many industrial applications. The pore network in the diatomite from the Lower Miocene strata of the Skole nappe (the Jawornik deposit, SE Poland) has been investigated using a fractal approach. The fractal dimension of the pore-space volume was calculated using the Menger sponge as a model of a porous body and the mercury porosimetry data in a pore-throat diameter range between 10,000 and 10 nm. Based on the digital analyses of the two-dimensional images from thin sections taken under a scanning electron microscope at the backscattered electron mode at different magnifications, the authors tried to quantify the pore spaces of the diatomites using the box counting method. The results derived from the analyses of the pore-throat diameter distribution using mercury porosimetry have revealed that the pore space of the diatomite has the bifractal structure in two separated ranges of the pore-throat diameters considerably smaller than the pore-throat sizes corresponding to threshold pressures. Assuming that the fractal dimensions identified for the ranges of the smaller pore-throat diameters characterize the overall pore-throat network in the Jawornik diatomite, we can set apart the distribution of the pore-throat volume (necks) and the pore volume from the distribution of the pore-space volume (pores and necks together).
Hackley, P.C.; Martinez, M.
2007-01-01
About 7??Mt of high volatile bituminous coal are produced annually from the four coal zones of the Upper Paleocene Marcelina Formation at the Paso Diablo open-pit mine of western Venezuela. As part of an ongoing coal quality study, we have characterized twenty-two coal channel samples from the mine using organic petrology techniques. Samples also were analyzed for proximate-ultimate parameters, forms of sulfur, free swelling index, ash fusion temperatures, and calorific value. Six of the samples represent incremental benches across the 12-13??m thick No. 4 bed, the stratigraphically lowest mined coal, which is also mined at the 10??km distant Mina Norte open-pit. Organic content of the No. 4 bed indicates an upward increase of woody vegetation and/or greater preservation of organic material throughout the life of the original mire(s). An upward increase in telovitrinite and corresponding decrease in detrovitrinite and inertinite illustrate this trend. In contrast, stratigraphically higher coal groups generally exhibit a 'dulling upward' trend. The generally high inertinite content, and low ash yield and sulfur content, suggest that the Paso Diablo coals were deposited in rain-fed raised mires, protected from clastic input and subjected to frequent oxidation and/or moisture stress. However, the two thinnest coal beds (both 0.7??m thick) are each characterized by lower inertinite and higher telovitrinite content relative to the rest of Paso Diablo coal beds, indicative of less well-established raised mire environments prior to drowning. Foreland basin Paleocene coals of western Venezuela, including the Paso Diablo deposit and time-correlative coal deposits of the Ta??chira and Me??rida Andes, are characterized by high inertinite and consistently lower ash and sulfur relative to Eocene and younger coals of the area. We interpret these age-delimited coal quality characteristics to be due to water availability as a function of the tectonic control of subsidence rate. It is postulated that slower subsidence rates dominated during the Paleocene while greater foreland basin subsidence rates during the Eocene-Miocene resulted from the loading of nappe thrust sheets as part of the main construction phases of the Andean orogen. South-southeastward advance and emplacement of the Lara nappes during the oblique transpressive collision of the Caribbean and South American tectonic plates in the Paleocene was further removed from the sites of peat deposition, resulting in slower subsidence rates. Slower subsidence in the Paleocene may have favored the growth of raised mires, generating higher inertinite concentrations through more frequent moisture stress. Consistently low ash yield and sulfur content would be due to the protection from clastic input in raised mires, in addition to the leaching of mineral matter by rainfall and the development of acidic conditions preventing fixation of sulfur. In contrast, peat mires of Eocene-Miocene age encountered rapid subsidence due to the proximity of nappe emplacement, resulting in lower inertinite content, higher and more variable sulfur content, and higher ash yield.
NASA Astrophysics Data System (ADS)
Griesmeier, Gerit; Iglseder, Christoph; Konstantin, Petrakakis
2016-04-01
The Moldanubian superunit is part of the internal zone of the Variscan Orogen in Europe and borders on the Saxothuringian and Sudetes zones in the north. In the south, it is blanketed by the Alpine foreland molasse. Tectonically it is subdivided into the Moldanubian Nappes (MN), the South Bohemian Batholith (SBB) and the Bavarian Nappes. This work describes the ~ 500 m thick Freyenstein shear zone, which is located at the southern border of the Bohemian Massif north and south of the Danube near Freyenstein (Strudengau, Lower Austria). The area is built up by granites of Weinsberg-type, which are interlayered by numerous dikes and paragneisses of the Ostrong nappe system. These dikes include medium grained granites and finegrained granites (Mauthausen-type granites), which form huge intrusions. In addition, smaller intrusions of dark, finegrained diorites und aplitic dikes are observed. These rocks are affected by the Freyenstein shear zone und ductily deformed. Highly deformed pegmatoides containing white mica crystals up to one cm cut through the deformed rocks and form the last dike generation. The Freyenstein shear zone is a NE-SW striking shear zone at the eastern edge of the SBB. The mylonitic foliation is dipping to the SE with angles around 60°. Shear-sense criteria like clast geometries, SĆ structures as well as microstructures show normal faulting top to S/SW with steep (ca. 50°) angles. The Freyenstein shear zone records a polyphase history of deformation and crystallization: In a first phase, mylonitized mineral assemblages in deformed granitoides can be observed, which consist of pre- to syntectonic muscovite-porphyroclasts and biotite as well as dynamically recrystallized potassium feldspar, plagioclase and quartz. The muscovite porphyroclasts often form mica fishes and show top to S/SW directed shear-sense. The lack of syntectonic chlorite crystals points to metamorphic conditions of lower amphibolite-facies > than 450° C. In a later stage fluid infiltration under lower greenschist-facies conditions locally lead to sericitization of feldspar and development of pseudomorphs after it. In addition, syn-mylonitic biotite has been chloritized mimetically. Chlorite growth across the mylonitic foliation occurs rarely. Brittle faulting, overprinting the shear zone features, is documented by the occurrence of numerous harnish planes. They show normal faulting to the N with angles around 30° and locally sinistral shear-sense. The Freyenstein shear zone belongs to a system of NE-SW striking shear zones and faults in the Moldanubian superunit and is located at the border between the SBB and MN ductily deforming both. Therefore, it plays an important role in exhumation processes of last stage SBB (synkinematic) intrusions during Late Variscan orogenic extension. According to cooling ages in other shear zones and (synkinematic) intrusions an age of ca. 320-290 Ma for the ductile deformation can be assumed.
Topography of the Central Alps in the light of Tertiary collisional tectonics
NASA Astrophysics Data System (ADS)
Rosenberg, Claudio; Garcia, Sebastian
2013-04-01
Collisional shortening in the Central Alps is partitioned very differently between the upper and lower plates along the strike of the orogen. North of the Insubric Line, the amount of post-nappe shortening accommodated in the wedge of accreted lower crustal material, increases westwards, whereas south of the Insubric Line, post-nappe shortening accommodated in the upper plate increases eastward (Rosenberg and Kissling, 2013). Taking the Bergell pluton as a time marker, the age of these deformations is inferred to be post 30 Ma. We investigate the present-day topography of the Central Alps, in order to test whether the systematic, along-strike changes, in the amounts of post-nappe shortening are associated to a systematic change in the topographic signature. In order to do so, the maximum and minimum elevations, and the local relief along a series of N-S sections are analysed and compared. The analysis of these topographic sections shows that the local relief varies following two along-strike trends: 1. North of the Insubric Line, i.e. in the wedge of accreted lower crust, the relief decreases from west to east, showing the transition from a highly incised topography in the west to a plateau-like topography in the East. 2. South of the Insubric Line, i.e. in the lower plate, the relief increases from East to West. These trends point to a positive correlation between the amount of shortening and the intensity of local relief. Linear correlations between local relief and uplift rate (e.g. Hurtez et al., 1999), and between local relief and shortening rates (Champagnac et al., 2012) have been inferred for different, tectonically active areas. Areas of larger finite shortening in the Central Alps, characterized by higher local relief, probably correspond to areas of higher shortening (and uplift) rates during Alpine collision. Considering the very slow, present-day, convergent movements across the Central Alps (Noquet and Calais, 2004) it is not clear whether the observed correlation between shortening and relief is the result of past, but still active tectonics or a well preserved relict of Miocene teconic activity. References: Champagnac, J.-D., P. Molnar, C. Sue, and F. Herman (2012), Tectonics, climate, and mountain topography, J. Geophys. Res., 117, B02403, doi:10.1029/2011JB008348. Hurtez, J._E., Lucazeau, F., Lavé, J., and Avouac, J.-P. (1999), Investigation of the relationships between basin morphology, tectonic uplift, and denudation from the study of an active fold belt in the Siwalik Hills, central Nepal. J. Geophys. Res., 104, NO. B6, PAGES 12,779-12,796 Nocquet, J.-M. and Calais, E. (2004), Geodetic measurements of crustal deformation in the Western Mediterranean and Europe. Pure and Applied Geophysics, 161, 661-681, doi:10.1007/s00024-003-2468-z Rosenberg, C.L. and Kissling, E. (2013), 3D Structure of collision in the Central Alps: lower-plate or upper-plate indentation? EGU Abstract volume, EGU2013-ASC-2013-7946.
First-order similarities and differences between Alps, Dinarides, Hellenides and Anatolides-Taurides
NASA Astrophysics Data System (ADS)
Schmid, Stefan M.; Bernoulli, Daniel; Fügenschuh, Bernhard; Matenco, Liviu; Schefer, Senecio; Oberhänsli, Roland; van Hinsbergen, Douwe; Ustaszewski, Kamil
2013-04-01
We correlated tectonic units across several circum-Mediterranean orogen strands between the Alps, Carpathians, the Balkan Peninsula, the Aegean and Western Turkey. Our compilation allows discussing fundamental along-strike similarities and differences. One first-order difference is that Dinarides-Hellenides, Anatolides and Taurides represent orogens of opposite subduction polarity and age with respect to the Alps and Carpathians. The internal Dinarides are linked to the Alps and Western Carpathians along the Mid-Hungarian fault zone, a suspected former trench-trench transform fault; its lithospheric root was obliterated during Neogene back-arc extension that formed the Pannonian Basin. Dinarides and Hellenides alike consist of far-travelled nappes detached from the Adriatic continental margin along décollement horizons in Paleozoic or younger stratigraphic levels during Cretaceous and Cenozoic orogeny. The more internal nappes (i.e. Jadar-Kopaonik, Drina-Ivanjica, East Bosnian-Durmitor and their Pelagonian and Almopias equivalents in the Hellenides) are composite nappes whereby the allochthonous Adriatic margin sequences passively carry ophiolites (Western Vardar Ophiolitic Unit) obducted during the latest Jurassic-earliest Cretaceous. These obducted ophiolitic units, as well as ophiolites obducted onto Europe-derived units presently found in the East Carpathians (Eastern Vardar Ophiolitic Unit obducted onto the Dacia continental block), root in one single Neotethys ocean that started closing with the initiation of obduction in the latest Jurassic; final suturing occurred during Cretaceous times, terminating with the formation of the Sava-Izmir-Ankara suture in the latest Cretaceous. Ophiolitic "massifs" found outside the Sava-Izmir-Ankara suture zone do not mark oceanic sutures, nor do the Drina-Ivanjica and Pelagonian "massifs" represent independent continental fragments (terranes). The same logic applies to Western Turkey with the difference that the ophiolites were obducted in Late Cretaceous rather than Late Jurassic times. Also, the Sakarya zone and Cretaceous ophiolites of Turkey cannot be traced far into the Aegean region. The widespread existence of obducted ophiolites in the East Carpathians, Dinarides-Hellenides and Western Turkey thus represents a first-order difference to the Alps and Western Carpathians, where oceanic units derived from the Alpine Tethys occur invariably within accretionary prisms. Important lateral changes are also observed when comparing the present-day lithospheric configuration of the Dinarides with that of the Hellenides. In the Dinarides the Adriatic lithospheric slab can only be traced down to a depth of c. 200 km. In the Hellenides an over 2100 km long slab is still preserved below the Aegean part of the Hellenides, indicating long-lasting subduction of a coherent lithospheric slab that initiated during the onset of closure of Neotethys in Late Jurassic times. Some 1500 km of this total slab length became subducted after the closure of Neotethys and formation of the Sava-Izmir-Ankara suture zone. Out of this total some 800 km result from plate convergence while some 700 km are a consequence of massive back-arc extension and rollback.
NASA Astrophysics Data System (ADS)
Di Vincenzo, Gianfranco; Grande, Antonietta; Prosser, Giacomo; Cavazza, William; DeCelles, Peter G.
2016-10-01
The island of Corsica (France) plays a central role in any reconstruction of Western Mediterranean geodynamics and paleogeography but several key aspects of its geological evolution are still uncertain. The most debated topics include the interpretation of the Corsican orogen as the result of an east- or west-directed subduction, and the actual involvement of the Variscan basement of Corsica in the Alpine orogenic cycle. This study integrates 40Ar-39Ar laserprobe, mesostructural, microtextural, and microchemical analyses and places relevant constraints on the style, P-T conditions, and timing of Alpine-age, pervasive ductile shear zones which affected the Variscan basement complex of central Corsica, a few kilometers to the west of the present-day front of the Alpine nappes. Shear zones strike NNE-SSW, dip at a high angle, and are characterized by a dominant sinistral strike-slip component. Two of the three investigated shear zones contain two texturally and chemically resolvable generations of white mica, recording a prograde (burial) evolution: (1) deformed celadonite-poor relicts are finely overgrown by (2) a celadonite-rich white mica aligned along the main foliation. White mica from a third sample of another shear zone, characterized by a significantly lower porphyroclast/matrix ratio, exhibits a nearly uniform high-celadonite content, compositionally matching the texturally younger phengite from the nearby shear zones. Mineral-textural analysis, electron microprobe data, and pseudosection modeling constrain P-T conditions attained during shearing at 300 °C and minimum pressures of 0.6 GPa. In-situ 40Ar-39Ar analyses of coexisting low- and high-celadonite white micas from both shear zones yielded a relatively wide range of ages, 45-36 Ma. Laser step-heating experiments gave sigmoidal-shaped age profiles, with step ages in line with in-situ spot dates. By contrast, the apparently chemically homogenous high-celadonite white mica yielded concordant in-situ ages at 34 Ma, but a hump-shaped age spectrum, with maximum ages of 35 Ma and intermediate- to high-temperature steps as young as 33-32 Ma. Results indicate that the studied samples consist of an earlier celadonite-poor white mica with a minimum age of 46 Ma, overgrown by a synshear high-celadonite white mica, developed at greater depth between 37 and 35 Ma; faint late increments in shearing occurred at ≤ 33-32 Ma, when white mica incipiently re-equilibrated during exhumation. Results suggest that ductile shearing with a dominant strike-slip component pervasively deformed the Corsican basement complex during the emplacement and progressive thickening of the Alpine orogenic wedge and broaden the extent of the domain affected by the Alpine tectonometamorphic events. Integration of petrological modeling and geochronological data shows that the Variscan basement of central Corsica, close to the Alpine nappes, was buried during the late Eocene by ≥ 18 km of Alpine orogenic wedge and foreland deposits. Our results, combined with previously published apatite fission-track data, imply an overburden removal ≥ 15 km from the late Eocene (Priabonian) to the early Miocene (Aquitanian), pointing to a minimum average exhumation rate of 1.3-1.5 mm/a.
NASA Astrophysics Data System (ADS)
Zouhri, Lahcen; Gorini, Christian; Lamouroux, Christian; Vachard, Daniel; Dakki, Mohammed
2003-03-01
The aquifer of the Rharb Basin is constituted by heterogeneous material. The seismic reflexion interpretation carried out in this area, highlighted a permeable device compartmentalized in raised and subsided blocks. Depressions identified in the northern and southernmost zones are characterized by Plio-Quaternary fillings that are favourable to the hydrogeological exploitation. Two mechanisms contribute to structure the Plio-Quaternary aquifer: the Hercynian reactivation in the southernmost part, and the gravitational mechanism of the Pre-Rifean nappe. The groundwater flow and the aquifer thickening are controlled by this reactivation.
NASA Astrophysics Data System (ADS)
Allen, D. M.; Mackie, D. C.; Wei, M.
The Grand Forks aquifer, located in south-central British Columbia, Canada was used as a case study area for modeling the sensitivity of an aquifer to changes in recharge and river stage consistent with projected climate-change scenarios for the region. Results suggest that variations in recharge to the aquifer under the different climate-change scenarios, modeled under steady-state conditions, have a much smaller impact on the groundwater system than changes in river-stage elevation of the Kettle and Granby Rivers, which flow through the valley. All simulations showed relatively small changes in the overall configuration of the water table and general direction of groundwater flow. High-recharge and low-recharge simulations resulted in approximately a +0.05 m increase and a -0.025 m decrease, respectively, in water-table elevations throughout the aquifer. Simulated changes in river-stage elevation, to reflect higher-than-peak-flow levels (by 20 and 50%), resulted in average changes in the water-table elevation of 2.72 and 3.45 m, respectively. Simulated changes in river-stage elevation, to reflect lower-than-baseflow levels (by 20 and 50%), resulted in average changes in the water-table elevation of -0.48 and -2.10 m, respectively. Current observed water-table elevations in the valley are consistent with an average river-stage elevation (between current baseflow and peak-flow stages). L'aquifère de Grand Forks, situé en Colombie britannique (Canada), a été utilisé comme zone d'étude pour modéliser la sensibilité d'un aquifère à des modifications de la recharge et du niveau de la rivière, correspondant à des scénarios envisagés de changement climatique dans cette région. Les résultats font apparaître que les variations de recharge de l'aquifère pour différents scénarios de changement climatique, modélisées pour des conditions de régime permanent, ont un impact sur le système aquifère beaucoup plus faible que les changements du niveau des rivières Kettle et Granby, qui coulent dans la vallée. Toutes les simulations ont montré des différences relativement faibles dans la configuration d'ensemble de la nappe et dans la direction générale des écoulements. Des simulations de conditions de recharge forte et de recharge faible produisent respectivement une remontée de 0,05 m et un abaissement de 0,025 m, approximativement, des cotes de la nappe pour l'ensemble de l'aquifère. Des changements simulés de la cote du niveau de la rivière, pour refléter des niveaux plus hauts que ceux des pics de crues (de 20 et de 50%), produisent respectivement des remontées de la nappe de 2,72 et 3,45 m en moyenne. Des changements simulés de l'altitude du niveau de la rivière, pour refléter des niveaux plus bas que ceux de basses eaux (de 20 et de 50%), produisent respectivement des abaissements de la nappe de 0,48 et 2,10 m en moyenne. Les altitudes courantes observées de la nappe dans la vallée sont cohérentes avec une cote moyenne du niveau de la rivière (entre les niveaux courants de basses eaux et de crues). El acuífero de los Grand Forks, situado al sur de la Columbia Británica central (Canadá) ha sido utilizado como lugar de estudio para modelar la sensibilidad de un acuífero a los cambios en la recarga y el caudal de los ríos de acuerdo con escenarios previstos de cambio climático en la región. Los resultados sugieren que las variaciones en la recarga al acuífero bajo los diversos escenarios, que han sido modelados en régimen estacionario, tienen un impacto mucho menor en las aguas subterráneas que los cambios en el caudal de los ríos Kettle y Granby, que discurren por el valle. Todas las simulaciones muestran diferencias relativamente pequeñas en la configuración regional de los niveles freáticos y en la dirección general del flujo subterráneo. Las simulaciones de recarga elevada y baja causan un incremento de 0,05 m y un decremento de 0,025 m, respectivamente, en los niveles del acuífero. Los cambios de la elevación del río, simulados para reflejar niveles de flujo mayores que los valores pico (en un 20% y un 50%) resultan en cambios medios de los niveles del acuífero de 2,72 m y 3,45 m, respectivamente. Los cambios simulados en la elevación del río para flujos inferiores al caudal de base (en un 20% y en un 50%) provocan descensos en los niveles de 0,48 y 2,10 m, respectivamente. Los niveles actuales del acuífero en el valle son coherentes con una elevación media del nivel en el río (entre el caudal de base actual y los picos de caudal).
Total Petroleum Systems of the Carpathian - Balkanian Basin Province of Romania and Bulgaria
Pawlewicz, Mark
2007-01-01
The U.S. Geological Survey defined the Moesian Platform Composite Total Petroleum System and the Dysodile Schist-Tertiary Total Petroleum System, which contain three assessment units, in the Carpathian-Balkanian Basin Province of Romania and Bulgaria. The Moesian Platform Assessment Unit, contained within the Moesian Platform Composite Total Petroleum System, is composed of Mesozoic and Cenozoic rocks within the Moesian platform region of southern Romania and northern Bulgaria and also within the Birlad depression in the northeastern platform area. In Romania, hydrocarbon sources are identified as carbonate rocks and bituminous claystones within the Middle Devonian, Middle Jurassic, Lower Cretaceous, and Neogene stratigraphic sequences. In the Birlad depression, Neogene pelitic strata have the best potential for generating hydrocarbons. In Bulgaria, Middle and Upper Jurassic shales are the most probable hydrocarbon sources. The Romania Flysch Zone Assessment Unit in the Dysodile Schist-Tertiary Total Petroleum System encompasses three structural and paleogeographic subunits within the Pre-Carpathian Mountains region: (1) the Getic depression, a segment of the Carpathian foredeep; (2) the flysch zone of the eastern Carpathian Mountains (also called the Marginal Fold nappe); and (3) the Miocene zone (also called the Sub-Carpathian nappe). Source rocks are interpreted to be Oligocene dysodile schist and black claystone, along with Miocene black claystone and marls. Also part of the Dysodile Schist-Tertiary Total Petroleum System is the Romania Ploiesti Zone Assessment Unit, which includes a zone of diapir folds. This zone lies between the Rimnicu Sarat and Dinibovita valleys and between the folds of the inner Carpathian Mountains and the external flanks of the Carpathian foredeep. The Oligocene Dysodile Schist is considered the main hydrocarbon source rock and Neogene black marls and claystones are likely secondary sources; all are thought to be at their maximum thermal maturation. Undiscovered resources in the Carpathian-Balkanian Basin Province are estimated, at the mean, to be 2,076 billion cubic feet of gas, 1,013 million barrels of oil, and 116 million barrels of natural gas liquids.
NASA Astrophysics Data System (ADS)
Rocha, B. C.; Moraes, R.; Möller, A.; Cioffi, C. R.; Jercinovic, M. J.
2017-04-01
The timing of partial melting and melt crystallization in granulite facies rocks of the Socorro-Guaxupé Nappe (SGN), Brazil is constrained using a combination of imaging techniques, LA-ICP-MS and EPMA dating, trace element geochemistry and thermobarometry. (Orthopyroxene)-garnet-bearing migmatite that records extensive biotite dehydration melting shows evidence for a clockwise P-T-t path. UHT peak conditions were attained at 1030 ± 110 °C, 11.7 ± 1.4 kbar, with post-peak cooling to 865 ± 38 °C, 8.9 ± 0.8 kbar. Cryogenian igneous inheritance of ca. 720-640 Ma is identified in oscillatory zoned zircon cores (n = 167) with steep HREE patterns. Resorbed, Y-rich monazite cores preserve a prograde growth stage at 631 ± 4 Ma prior to the partial melting event, providing an upper age limit for the granulite facies metamorphism in the SGN. REE-rich, Th-depleted monazite related to apatite records the initial stages of decompression at 628 ± 4 Ma. Multiple monazite growth episodes record melt crystallization events at 624 ± 3 Ma, 612 ± 5 Ma and 608 ± 6 Ma. Stubby, equant "soccer ball" zircon provide evidence for melt crystallization at 613 ± 2 Ma and 607 ± 4 Ma. The excess scatter in zircon and monazite age populations between 629 ± 4 and 601 ± 3 Ma is interpreted as discontinuous and episodic growth within this age range, characterizing a prolonged metamorphic event in the SGN lasting ca. 30 m.y. The development of Y + HREE-rich monazite rims at ca. 600 Ma documents retrograde garnet breakdown, extensive biotite growth and the final stages of melt crystallization. Th-rich, Y + HREE-poor monazite rims at ca. 590 Ma record monazite recrystallization.
NASA Astrophysics Data System (ADS)
Frassi, Chiara; Musumeci, Giovanni; Zucali, Michele; Mazzarini, Francesco; Rebay, Gisella; Langone, Antonio
2017-05-01
The ophiolite sequences in the western Elba Island are classically interpreted as a well-exposed ocean-floor section emplaced during the Apennines orogeny at the top of the tectonic nappe-stack. Stratigraphic, petrological and geochemical features indicate that these ophiolite sequences are remnants of slow-ultraslow spreading oceanic lithosphere analogous to the present-day Mid-Atlantic Ridge and Southwest Indian Ridge. Within the oceanward section of Tethyan lithosphere exposed in the Elba Island, we investigated for the first time a 10s of meters-thick structure, the Cotoncello Shear Zone (CSZ), that records high-temperature ductile deformation. We used a multidisciplinary approach to document the tectono-metamorphic evolution of the shear zone and its role during spreading of the western Tethys. In addition, we used zircon U-Pb ages to date formation of the gabbroic lower crust in this sector of the Apennines. Our results indicate that the CSZ rooted below the brittle-ductile transition at temperature above 800 °C. A high-temperature ductile fabric was overprinted by fabrics recorded during progressive exhumation up to shallower levers under temperature < 500 °C. We suggest that the CSZ may represent the deep root of a detachment fault that accomplished exhumation of an ancient oceanic core complex (OCC) in between two stages of magmatic accretion. We suggest that the CSZ represents an excellent on-land example enabling to assess relationships between magmatism and deformation when extensional oceanic detachments are at work.
New insights into typical Archaean structures in greenstone terranes of western Ontario
NASA Technical Reports Server (NTRS)
Schwerdtner, W. M.
1986-01-01
Ongoing detailed field work in selected granitoid complexes of the western Wabigoon and Wawa Subprovinces, southern Canadian Shield, has led to several new conclusions: (1) Prominent gneiss domes are composed of prestrained tonalite-granodiorite and represent dense hoods of magmatic granitoid diapirs; (2) the deformation history of the prestrained gneiss remains to be unraveled; (3) the gneiss lacked a thick cover of mafic metavolcanics or other dense rocks at the time of magmatic diaprisim; (4) the synclinoral structure of large greenstone belts is older than the late gneiss domes and may have been initiated by volcano-tectonic processes; (5) small greenstone masses within the gneiss are complexly deformed, together with the gneiss; and, (6) no compelling evidence has been found of ductile early thrusting in the gneiss terranes. Zones of greenstone enclaves occur in hornblende-rich contaminated tonalite and are apt to be deformed magmatic septa. Elsewhere, the tonalite gneiss is biotite-rich and hornblende-poor. These conclusions rest on several new pieces of structural evidence; (1) oval plutons of syenite-diorite have magmatic strain fabrics and sharp contacts that are parallel to an axial-plane foliation in the surrounding refolded gneiss; (2) gneiss domes are lithologically composite and contain large sheath-like structures which are deformed early plutons, distorted earlier gneiss domes, or early ductile nappes produced by folding of planar plutonic septa, and (3) the predomal attitudes of gneissosity varied from point to point.
Pre-Variscan evolution of the Western Tatra Mountains: new insights from U-Pb zircon dating.
Burda, Jolanta; Klötzli, Urs
In situ LA-MC-ICP-MS U-Pb zircon geochronology combined with cathodoluminescence imaging were carried out to determine protolith and metamorphic ages of orthogneisses from the Western Tatra Mountains (Central Western Carpathians). The metamorphic complex is subdivided into two units (the Lower Unit and the Upper Unit). Orthogneisses of the Lower Unit are mostly banded, fine- to medium-grained rocks while in the Upper Unit varieties with augen structures predominate. Orthogneisses show a dynamically recrystallised mineral assemblage of Qz + Pl + Bt ± Grt with accessory zircon and apatite. They are peraluminous (ASI = 1.20-1.27) and interpreted to belong to a high-K calc-alkaline suite of a VAG-type tectonic setting. LA-MC-ICP-MS U-Pb zircon data from samples from both units, from crystals with oscillatory zoning and Th/U > 0.1, yield similar concordia ages of ca. 534 Ma. This is interpreted to reflect the magmatic crystallization age of igneous precursors. These oldest meta-magmatics so far dated in the Western Tatra Mountains could be linked to the fragmentation of the northern margin of Gondwana. In zircons from a gneiss from the Upper Unit, cores with well-developed oscillatory zoning are surrounded by weakly luminescent, low contrast rims (Th/U < 0.1). These yield a concordia age of ca. 387 Ma corresponding to a subsequent, Eo-Variscan, high-grade metamorphic event, connected with the formation of crustal-scale nappe structures and collision-related magmatism.
NASA Astrophysics Data System (ADS)
Jain, A. K.; Kumar, Devender; Singh, Sandeep; Kumar, Ashok; Lal, Nand
2000-07-01
Variable exhumation rates, deduced from the Pliocene-Quaternary FT zircon-apatite ages from the Himalayan Metamorphic Belt (HMB) of the NW Himalaya along the Sutlej Valley in Himachal Pradesh, have been modelled in the tectonic framework of fast exhumed Lesser Himalayan windows, which caused lateral extensional sliding of the metamorphic nappe cover along the well-known Main Central Thrust (MCT) and differential movements along thrust zones as well. In the northern belt of the Higher Himalayan Crystallines (HHC), two distinct clusters of the FT apatite ages have been deciphered: apatite ages having a weighted mean of 4.9±0.2 Ma (1 σ) in basal parts on the hanging wall of the MCT, and 1.49±0.07 Ma (1 σ) in the hanging wall of a newly, recognized NE, dipping Chaura thrust further north. Fast exhumation of the Chaura thrust hanging wall has been inferred at a rate of 4.82±0.55 mm/yr from the zircon-apatite cogenetic pairs during 1.54 Ma and 0.97 Ma, and 2.01±0.35 mm/yr since 1.49 Ma. In comparison, its foot wall has been exhumed at a much slower rate of 0.61±0.10 mm/yr since 4.9 Ma. The overlying Vaikrita Thrust zone rocks reveal an exhumation rate of 1.98±0.34 mm/yr from 2.70±0.40 Ma to 1.31±0.22 Ma and 2.29±0.66 mm/yr since 1.31±0.22 Ma. Using these data, a vertical displacement of ca. 2.08±0.68 km has been calculated along the Chaura thrust between 4.9 and 1.50 Ma on an average rate of 0.6 mm/yr. It is of the order of 1.18 km from 2.70 Ma to 1.54 Ma along the Vaikrita Thrust, and 0.78 mm/yr from 1.31 Ma to 0.97 Ma, and has behaved as an extensional normal fault during these periods. Tectonic modelling of the exhumation rates in the NW Himalaya reveals fastest uplifting Himalayan domes and windows like the Nanga Parbat in Pakistan, Suru and Chisoti domes in Zanskar and Kishwar-Kulu-Rampur Window axis in SE Kashmir and Himachal Pradesh during Pliocene-Quaternary. These windows appear to have caused lateral extensional sliding of the Himalayan metamorphic nappes in the lower parts. The middle parts of the HHC belt have witnessed both overthrusting and extensional faulting due to complex and variable exhumation patterns within the hanging and foot walls of the MCT and Vaikrita Thrust along the Sutlej Valley, thus causing movement of upthrust crustal wedge between the extensional ones. Thus, FT zircon-apatite ages provide evidence for the presence of a number of crustal wedges having distinct tectonothermal history within the HHC.
NASA Astrophysics Data System (ADS)
Muto, Francesco; Conforti, Massimo; Critelli, Salvatore; Fabbricatore, Davide; Filomena, Luciana; Rago, Valeria; Robustelli, Gaetano; Scarciglia, Fabio; Versace, Pasquale
2014-05-01
The interaction of landslides with linear infrastructures is often the cause of disasters. In Italy landslide impact on roads, railways and buildings cause millions of Euro per year in damage and restoration as well. The proposed study is aimed to the landslide susceptibility evaluation using a multidisciplinary approach: geological and geomorphological survey, statistical analysis and GIS technique, along a section of highway "A3 (Salerno-Reggio Calabria)" between Cosenza Sud and Altilia, northern Calabria. This study is included in a wider research project, named: PON01-01503, Landslides Early Warning-Sistemi integrati per il monitoraggio e la mitigazione del rischio idrogeologico lungo le grandi vie di comunicazione - aimed at the hydrogeological risk mitigation and at the early warning along the highways. The work was first based on air-photo interpretations and field investigations, in order to realize the geological map, geomorphological map and landslide inventory map. In the study area the geomorphology is strongly controlled by its bedrock geology and tectonics. The bedrock geology consists of Neogene sedimentary rocks that cover a thick stack of allochthonous nappes. These nappes consist of crystalline rocks mainly gneiss, phyllite and schist. A total of 835 landslides were mapped and the type of movement are represented mainly by slides and complex and subordinately flow. In order to estimate and validate landslide susceptibility the landslides were divided in two group. One group (training set) was used to prepare susceptibility map and the second group (validation set) to validate the map. Then, the selection of predisposing factors was performed, according with the geological and geomorphological settings of the study area: lithology, distance from tectonic elements, land use, slope, aspect, stream power index (SPI) and plan curvature. In order to evaluate landslide susceptibility Conditional Analysis was applied to Unique Conditions Units (UCUs), that are a unique combination of the predisposing factors. Subsequently, the landslide area is determined within each UCU and the landslide density is computed. The outcome of the study was a classification of the study area into four susceptibility classes, ranked from low to very high. The results showed that the 33% of the study area is characterized by a high to very high degree of susceptibility. The validation procedure results, obtained by crossing the group of the landslide of validation set with the susceptibility map, showed that the predictive model is generally satisfactory; therefore, over 75% of the landslide of validation set is correctly classified falling in high and very high susceptibility classes. The consistency of the model is also suggested by computing the seed cell area index (SCAI) because the high and very high susceptibility classes have very low SCAI values, whereas the SCAI values of the very low and low susceptibility classes are very high. Finally, the landslide susceptibility map provides the baseline information for further evaluations of landslide hazards and related risks.
NASA Astrophysics Data System (ADS)
Beniest, Anouk; van Gelder, Inge; Matenco, Liviu; Willingshofer, Ernst; Gruic, Andrea; Tomljenovic, Bruno
2013-04-01
Quantifying the kinematics of the Miocene extension in the Pannonian Basin is of critical importance for understanding the evolution of Adria-Europe collision in particular in the transitional zone from the Alps (Adria the upper plate) to the Dinarides (Adria the lower plate). Recent studies have demonstrated that large-scale extensional unroofing and core-complex formation affected the Europe-Adria contact in the Dinarides during Miocene times. The relationship between this extensional exhumation of Adriatic units and the roughly coeval Miocene extension affecting the Alpine-derived units during their E-ward extrusion into the intra-Carpathians ALCAPA block and the formation of the Pannonian basin is still unknown. One key area situated in the transitional zone is the Medvednica Mountains of Croatia, an area that benefits from already existing and extensive petrological and structural studies. The area of the Medvednica Mountains has been targeted by the means of a field kinematic analysis complemented by low-temperature thermochronology, metamorphic petrology and sedimentological observations. The results demonstrate that two units, reflecting distinct Adriatic paleogeographical positions, make up the structural geometry of the mountains. The upper unit contains Paleozoic mostly fine clastic sequence metamorphosed in sub-greenschist facies, overlain by a proximal Adriatic facies consisting of Triassic shallow water carbonates. The lower unit is made up by a volcanic sequence overlain by gradual deepening Triassic carbonates metamorphosed in greenschist facies that bears a strong resemblance to the Triassic break-up volcanism and subsequent sedimentation affecting the distal Adriatic units observed elsewhere in the Jadar-Kopaonik unit of the Dinarides. The strong contrast between the Middle-Upper Triassic facies suggests large scale thrusting during Cretaceous nappe stacking. Subsequently, the studied area has been affected by significant extensional deformation creating the present-day turtleback geometry. This resulted in the formation of brittle normal faults in both units, locally tilted by the uplift of the mountain core, which indicate mostly NE-SW extension. The lower unit is affected by a pervasive deformation characterized by a wide mylonitic shear zone with stretching lineations indicating consistently top-NE to E sense of shear. The present-day structural geometry of the mountains was established during the Pliocene-Quaternary inversion. The exact ages of nappe-stacking and subsequent extensional exhumation will be clarified by the upcoming low-temperature thermochronology and absolute age dating study. However, available results demonstrate that the extensional geometry and sense of shear is typical for the Miocene extensional exhumation and basin formation that affected the Adria-Europe contact elsewhere in the Dinarids, e.g. Kozara-Prosara-Motajica and Fruska Gora extensional structures. By comparing similar extensional features observed in for instance the Rechnitz and Pohorje extensional structures, the combined study potentially demonstrates that the Miocene mechanism of extension and sense of shear is structurally coherent at the scale of the entire Dinaridic and Alpine margins.
Factors affecting finite strain estimation in low-grade, low-strain clastic rocks
NASA Astrophysics Data System (ADS)
Pastor-Galán, Daniel; Gutiérrez-Alonso, Gabriel; Meere, Patrick A.; Mulchrone, Kieran F.
2009-12-01
The computer strain analysis methods SAPE, MRL and DTNNM have permitted the characterization of finite strain in two different regions with contrasting geodynamic scenarios; (1) the Talas Ala Tau (Tien Shan, Kyrgyzs Republic) and (2) the Somiedo Nappe and Narcea Antiform (Cantabrian to West Asturian-Leonese Zone boundary, Variscan Belt, NW of Iberia). The performed analyses have revealed low-strain values and the regional strain trend in both studied areas. This study also investigates the relationship between lithology (grain size and percentage of matrix) and strain estimates the two methodologies used. The results show that these methods are comparable and the absence of significant finite strain lithological control in rocks deformed under low metamorphic and low-strain conditions.
Mapping Applications Center, National Mapping Division, U.S. Geological Survey
,
1996-01-01
The Mapping Applications Center (MAC), National Mapping Division (NMD), is the eastern regional center for coordinating the production, distribution, and sale of maps and digital products of the U.S. Geological Survey (USGS). It is located in the John Wesley Powell Federal Building in Reston, Va. The MAC's major functions are to (1) establish and manage cooperative mapping programs with State and Federal agencies; (2) perform new research in preparing and applying geospatial information; (3) prepare digital cartographic data, special purpose maps, and standard maps from traditional and classified source materials; (4) maintain the domestic names program of the United States; (5) manage the National Aerial Photography Program (NAPP); (6) coordinate the NMD's publications and outreach programs; and (7) direct the USGS mapprinting operations.
NASA Astrophysics Data System (ADS)
Brunel, Maurice; Lansigu, Christophe
1997-10-01
Sillimanite nodules of the Espinouse massif are imponant features for describing the strain that prevailed at the climax of metamorphism. At this stage, the Axial Zone was already an antiformal structure affected by extensional unroofing. Occurrence of the sillimanite nodules mostly in the aureole zone of a granite recently dated at 327 ± 5 Ma, implies that extensional deformation defined by sillimanite nodules and low-angle shear zones was active at the end of the Visean and consequently, contemporaneous with the latest stage of nappe overthrusting and stacking in the southern limb of the Montagne Noire.
NASA Astrophysics Data System (ADS)
Saadallah, A.; Caby, R.
1996-12-01
The Maghrebides are part of the peri-Mediterranean Alpine orogen. They expose in their inner zone inliers of high-grade crystalline rocks surrounded by Oligo-Miocene and younger Miocene cover. Detailed mapping coupled with structural and petrological investigations in the Grande Kabylie massif, and the reinterpretation of the available geochronological data, allow us to refute the traditional concept of rigid behaviour of this massif during Alpine events. We show that the dome geometry, the kinematic and metamorphic evolutions and the age pattern are typical of metamorphic core complexes exhumed by extension. A major low-angle detachment fault defined by mylonites and by younger cataclasites has been traced in the massif. The upper unit encompasses pre-Permian phyllites with Variscan {40Ar }/{39Ar } cooling ages, capped by unconformable Mesozoic to Tertiary cover of the Calcareous Range, both mainly affected by extensive Tertiary brittle deformation and normal faulting. The lower unit exposes in two half-domes a continuous tectonic pile, 6-8 km thick, of amphibolite facies rocks and orthogneisses affected by syndashmetamorphic ductile deformation, devoid of retrogression. The regular increase of paleotemperature downward and the {40Ar }/{39Ar } plateau ages around 80 Ma suggest that the high-temperature foliation and associated WNW-directed shear under a high geothermal gradient relate to extensional tectonics developed during Mesozoic lithospheric thinning of the Variscan south European margin. To the north, the Sidi Alli Bou Nab massif exposes another crustal section affected throughout by WNW-directed extensional shear during {HP }/{HT } syndashmetamorphic thinning and with overall {40Ar }/{39Ar } plateau ages of 25 Ma. The Eocene oblique collisional event responsible for crustal thickening was totally overprinted by this new extensional regime, synchronous with the beginning of the opening of the Western Mediterranean oceanic basin. This was also coeval with south-directed thrusting of foreland nappes to the south. Post-Miocene tectonic events cause significant overprinting.
NASA Astrophysics Data System (ADS)
Höhn, S.; Frimmel, H. E.; Debaille, V.; Pašava, J.; Kuulmann, L.; Debouge, W.
2017-12-01
The stratiform Cu-Zn sulfide deposit at Kupferberg in Germany represents Bavaria's largest historic base metal producer. The deposit is hosted by Early Paleozoic volcano-sedimentary strata at the margin of a high-grade allochthonous metamorphic complex. The present paper reports on the first Cu and S isotope data as well as trace element analyses of pyrite from this unusual deposit. The new data point to syn-orogenic mineralization that was driven by metamorphic fluids during nappe emplacement. Primary Cu ore occurs as texturally late chalcopyrite within stratiform laminated pyrite in black shale in two different tectonostratigraphic units of very low and low metamorphic grade, respectively, that were juxtaposed during the Variscan orogeny. Trace element contents of different pyrite types suggest the presence of at least one hydrothermal pyrite generation (mean Co/Ni = 35), with the other pyrite types being syn-sedimentary/early diagenetic (mean Co/Ni = 3.7). Copper isotope analyses yielded a narrow δ65Cu range of -0.26 to 0.36‰ for all ore types suggesting a hypogene origin for the principal chalcopyrite mineralization. The ore lenses in the two different tectonostratigraphic units differ with regard to their δ34S values, but little difference exists between poorly and strongly mineralized domains within a given locality. A genetic model is proposed in which syn-sedimentary/early diagenetic pyrite with subordinate chalcopyrite and sphalerite formed in black shale beds in the two different stratigraphic units, followed by late-tectonic strata-internal, hydrothermal mobilization of Fe, Cu, and Zn during syn-orogenic thrusting, which concentrated especially Cu to ore grade. In agreement with this model, Cu distribution in stream sediments in this region shows distinct enrichments bound to the margin of the allochthonous complex. Thus, Kupferberg can be considered a rare example of a syn-orogenic Cu deposit with the Cu probably being derived from syn-sedimentary/early diagenetic pyrite contained in Early Paleozoic shale units.
NASA Astrophysics Data System (ADS)
Carrillo-Rivera, J. J.
2000-09-01
An analysis of horizontal inflow and outflow in the groundwater-budget equation and the significance for interbasin flow are presented. Two field cases in Mexico, one in the Baja California peninsula and another in central Mexico, highlight the influence of interbasin flow. A significant proportion (approximately 70%) of the ed (thermal) groundwater probably originates outside the drainage basin. A conclusion is that a groundwater-balance study is an unsatisfactory method for determining some parameters, such as storativity (S). Specifically, the groundwater-balance approach provides unreliable results when vertical inflow is ignored or cannot be adequately defined. Vertical flow is indicated by the presence of groundwater temperatures as much as 23 °C higher than ambient temperature. Regional faults could be the pathways for upward flow. When vertical inflow is ignored, uncertainty in the estimation of the storativity through regional groundwater-balance calculation results. On the basis of the groundwater-balance equation, a value of S=0.19 appears to represent the confined condition of the developed part of the aquifer; this result is several orders of magnitude higher than would be reasonable according to the geological conditions. Findings are useful in evaluating whether a groundwater resource is being "overexploited". Conclusions are instructive in the application of transient-flow computer models, in which vertical flow of less dense water from beneath is not included. Résumé. L'article présente une analyse des entrées et des sorties horizontales dans l'équation du bilan d'une nappe et leur signification dans les écoulements entre bassins. Deux exemples provenant du Mexique, l'un dans la péninsule de Basse Californie, l'autre dans le centre du Mexique, mettent en lumière l'influence de l'écoulement entre bassins, où une proportion significative (environ 70%) de l'eau souterraine extraite, thermale, a probablement son origine hors du bassin. Une conclusion est qu'une étude par bilan de la nappe est une méthode qui n'est pas satisfaisante pour déterminer certains paramètres comme le coefficient d'emmagasinement. En particulier, l'approche par le bilan de la nappe donne des résultats qui ne sont pas fiables lorsque l'on ignore la drainance verticale ou que l'on ne peut pas la définir correctement. L'existence d'une drainance verticale est prouvée par des températures de l'eau souterraine pouvant être supérieures de 23 °C à la température ambiante. Des failles régionales peuvent permettre ces écoulements vers le haut. Lorsque l'on ignore la drainance verticale, on introduit une incertitude sur l'estimation de l'emmagasinement à partir des calculs du bilan régional de la nappe. Sur la base de l'équation du bilan de la nappe, une valeur de S=0,19 semble représenter les conditions captives de la partie développée de l'aquifère ce résultat est plus élevé, de plusieurs ordres de grandeur, que celui que l'on peut raisonnablement attendre des conditions géologiques. Ces résultats sont utiles pour évaluer si une ressource en eau souterraine est "surexploitée". Ces conclusions sont intéressantes lorsque l'on applique des modèles d'écoulement transitoire dans lesquels on ne prend pas en compte la drainance verticale d'une eau plus légère remontant. Resumen. En este trabajo, se investigan las entradas y salidas de flujo horizontal en la ecuación de balance de agua subterránea, así como el papel que desempeñan en el flujo entre cuencas. Se analizan dos ejemplos de México, uno en la Península de Baja California y otro en la parte central del país. En ambos, destaca la influencia del flujo entre cuencas, ya que se estima que una parte importante (aproximadamente el 70%) del agua termal extraída procede de una cuenca superficial externa. Se concluye que el método basado en cálculos de balance de agua subterránea no es satisfactorio para determinar algunos parámetros, como, por ejemplo, el coeficiente de almacenamiento (S). En particular, la ecuación de balance de agua subterránea proporciona resultados poco fiables cuando el flujo vertical es ignorado o no puede ser evaluado de forma adecuada. El flujo vertical se identifica por un incremento de temperatura del agua subterránea, que puede llegar a superar la temperatura ambiental en hasta 23 °C. La presencia de fallas regionales y las extracciones pueden favorecer el flujo vertical. Cuando éste es ignorado, aumenta la incertidumbre en la estimación del coeficiente de almacenamiento mediante un balance de agua subterránea. El valor obtenido con este médodo (S=0,19) es característico de acuíferos libres, pero resulta varios órdenes de magnitud mayor que el que sería esperable teniendo en cuenta las condiciones hidrogeológicas. Estos hallazgos son útiles para evaluar si los recursos de agua subterránea están siendo "sobreexplotados". Las conclusiones obtenidas son instructivas de cara a la aplicación de modelos numéricos de flujo transitorio que no consideran el flujo vertical por densidad.
Effect of crustal heterogeneities and effective rock strength on the formation of HP and UHP rocks.
NASA Astrophysics Data System (ADS)
Reuber, Georg; Kaus, Boris; Schmalholz, Stefan; White, Richard
2015-04-01
The formation of high pressure and ultra-high pressure rocks has been controversially discussed in recent years. Most existing petrological interpretations assume that pressure in the Earth is lithostatic and therefore HP and UHP rocks have to come from great depth, which usually involves going down a subduction channel and being exhumed again. Yet, an alternative explanation points out that pressure in the lithosphere is often non-lithostatic and can be either smaller or larger than lithostatic as a function of location and time. Whether this effect is tectonically significant or not depends on the magnitude of non-lithostatic pressure, and as a result a number of researchers have recently performed numerical simulations to address this. Somewhat disturbingly, they obtained widely differing results with some claiming that overpressures as large as a GPa can occur (Schmalholz et al. 2014), whereas others show that overpressures of exhumed rocks are generally less than 20% and thus insignificant (Li et al. 2010; Burov et al. 2014). In order to understand where these discrepancies come from, we reproduce the simulations of Li et al (2010) of a typical subduction and collision scenario, using an independently developed numerical code (MVEP2). For the same model setup and parameters, we confirm the earlier results of Li et al. (2010) and obtain no more than ~20% overpressure in exhumed rocks of the subduction channel. Yet, a critical assumption in their models is that the subducted crust is laterally homogeneous and that it has a low effective friction angle that is less than 7o. The friction angle of (dry) rocks is experimentally well-constrained to be around 30o, and low effective friction angles require, for example, high-fluid pressures. Whereas high fluid pressures might exist in the sediment-rich upper crust, they are likely to be much lower or absent in the lower crust from which melt has been extracted or in rocks that underwent a previous orogenic cycle. In a next step, we performed several hundred numerical simulations to understand the effects of km-scale heterogeneities and material parameters on pressure magnitudes, using a model setup that is otherwise very similar to the one of Li et al. (2010). Results show that significant non-lithostatic pressures occur if (lower) crustal rocks are dry or if km-scale (nappe-sized) heterogeneities with dryer rocks are present within the crust. Overpressure magnitudes can be up to 1 GPa or 100% and in some cases rock assemblages are temporarily in the coesite stability field at a depth of only 40 km, followed by rapid exhumation to the surface. Tectonic overpressures can vary strongly in magnitude versus time, but peak pressures are present sufficiently long for metamorphic reactions to occur. The presence of heterogeneities can affect the crustal-scaled deformation pattern, and the effective friction angle of crustal-scale rocks (or the dryness of these rocks) is a key parameter that determines the magnitude of non-lithostatic pressures. Our results thus reconcile previous findings and highlight the importance of having an accurate knowledge of the fluid-pressure, initial crustal structure and rock composition during continental collision. If rocks are dry by the time they enter a subduction zone, or are stronger/dryer than surrounding rocks, they are likely to develop significantly higher pressures than nearby rocks. This might explain the puzzling observation that some nappes have very high peak pressures, while juxtaposed nappes have much lower values, without clear structural evidence for deep burial and exhumation along a subduction channel of the high-pressure nappe. Our models might also give a partial explanation of why the reported timescales for high and ultra-high pressure stages of peak metamorphism are often very short. References: Burov, E., Francois, T., Agard, P., Le Pourhiet, L., Meyer, B., Tirel, C., Lebedev, S., Yamato, P., Brun, J.-P., 2014. Tectonophysics. Tectonophysics 631, 212-250. doi:10.1016/j.tecto.2014.04.033 Li, Z.H., Gerya, T.V., Burg, J.-P., 2010. Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: thermomechanical modelling. J Metamorph Geol 28, 227-247. doi:10.1111/j.1525-1314.2009.00864.x Schmalholz, S.M., Duretz, T., Schenker, F.L., Podladchikov, Y.Y., 2014. Tectonophysics. Tectonophysics 631, 160-175. doi:10.1016/j.tecto.2014.05.018
GIS-based hydrogeological databases and groundwater modelling
NASA Astrophysics Data System (ADS)
Gogu, Radu Constantin; Carabin, Guy; Hallet, Vincent; Peters, Valerie; Dassargues, Alain
2001-12-01
Reliability and validity of groundwater analysis strongly depend on the availability of large volumes of high-quality data. Putting all data into a coherent and logical structure supported by a computing environment helps ensure validity and availability and provides a powerful tool for hydrogeological studies. A hydrogeological geographic information system (GIS) database that offers facilities for groundwater-vulnerability analysis and hydrogeological modelling has been designed in Belgium for the Walloon region. Data from five river basins, chosen for their contrasting hydrogeological characteristics, have been included in the database, and a set of applications that have been developed now allow further advances. Interest is growing in the potential for integrating GIS technology and groundwater simulation models. A "loose-coupling" tool was created between the spatial-database scheme and the groundwater numerical model interface GMS (Groundwater Modelling System). Following time and spatial queries, the hydrogeological data stored in the database can be easily used within different groundwater numerical models. Résumé. La validité et la reproductibilité de l'analyse d'un aquifère dépend étroitement de la disponibilité de grandes quantités de données de très bonne qualité. Le fait de mettre toutes les données dans une structure cohérente et logique soutenue par les logiciels nécessaires aide à assurer la validité et la disponibilité et fournit un outil puissant pour les études hydrogéologiques. Une base de données pour un système d'information géographique (SIG) hydrogéologique qui offre toutes les facilités pour l'analyse de la vulnérabilité des eaux souterraines et la modélisation hydrogéologique a été établi en Belgique pour la région Wallonne. Les données de cinq bassins de rivières, choisis pour leurs caractéristiques hydrogéologiques différentes, ont été introduites dans la base de données, et un ensemble d'applications qui ont été développées permet dès maintenant de prochaines avancées. L'intérêt grandit pour le potentiel d'intégration de la technologie des SIG et les modèles de simulation des nappes. Un outil de couplage a été créé entre le schéma de base de données spatiales et l'interface GMS (GroundWater Modelling System, système de modélisation de nappe) du modèle numérique de nappe. Suivant les requêtes en fonction du temps et de l'espace, les données hydrogéologiques stockées dans la base de données peuvent être aisément utilisées dans différents modèles numériques de nappes. Resumen. La fiabilidad y validez de los análisis de aguas subterráneas dependen enormemente de la disponibilidad de muchos datos de alta calidad. Integrarlos en una estructura consistente y lógica mediante un entorno informático sirve para asegurar su validez y disponibilidad, y rrepresenta una herramienta muy potente para ulteriores estudios hidrogeológicos. Se ha diseñado en la región de Valonia (Bélgica) una base de datos hidrogeológica basada en un sistema de información geográfica (GIS), con el que se dispone de útiles para elaborar análisis de vulnerabilidad y modelos hidregeológicos. Se ha utilizado datos de cinco cuencas fluviales, elegidas por sus características hidrogeológicas contrastadas, así como un conjunto de aplicaciones desarrolladas con vistas al futuro. El interés por el potencial que ofrece la integración de la tecnología GIS y los modelos de simulación de aguas subterráneas está en auge. Se ha desarrollado un "emulador" que integra el esquema espacial de la base de datos y la interfaz GMS (GroundWater Modelling System) de modelación numérica de aguas subterráneas. A partir de búsquedas temporales y espaciales, los datos hidrogeológicos almacenados en la base de datos pueden ser utilizados fácilmente en modelos numéricos diferentes de aguas subterráneas.
Groundwater evolution beneath Hat Yai, a rapidly developing city in Thailand
NASA Astrophysics Data System (ADS)
Lawrence, A. R.; Gooddy, D. C.; Kanatharana, P.; Meesilp, W.; Ramnarong, V.
2000-09-01
Many cities and towns in South and Southeast Asia are unsewered, and urban wastewaters are often discharged either directly to the ground or to surface-water canals and channels. This practice can result in widespread contamination of the shallow groundwater. In Hat Yai, southern Thailand, seepage of urban wastewaters has produced substantial deterioration in the quality of the shallow groundwater directly beneath the city. For this reason, the majority of the potable water supply is obtained from groundwater in deeper semi-confined aquifers 30-50 m below the surface. However, downward leakage of shallow groundwater from beneath the city is a significant component of recharge to the deeper aquifer, which has long-term implications for water quality. Results from cored boreholes and shallow nested piezometers are presented. The combination of high organic content of the urban recharge and the shallow depth to the water table has produced strongly reducing conditions in the upper layer and the mobilisation of arsenic. A simple analytical model shows that time scales for downward leakage, from the surface through the upper aquitard to the semi-confined aquifer, are of the order of several decades. Résumé. De nombreuses villes du sud et du sud-est de l'Asie ne possèdent pas de réseaux d'égouts et les eaux usées domestiques s'écoulent souvent directement sur le sol ou dans des canaux et des cours d'eau de surface. Ces pratiques peuvent provoquer une contamination dispersée de la nappe phréatique. A Hat Yai (sud de la Thaïlande), les infiltrations d'eaux usées domestiques sont responsables d'une détérioration notable de la qualité de la nappe phréatique directement sous la ville. Pour cette raison, la majorité de l'eau potable est prélevée dans des aquifères semi-captifs plus profonds, situés entre 30 et 50 m sous la surface. Cependant, une drainance à partir de la nappe phréatique sous la ville constitue une composante significative de la recharge de l'aquifère plus profond, ce qui aura, à long terme, des implications sur la qualité de l'eau. Les résultats fournis par des forages carottés et des piézomètres peu profonds sont présentés. La combinaison entre une concentration élevée en matières organiques, provenant de la recharge par les eaux usées domestiques, et la faible profondeur de la nappe a produit des conditions fortement réductrices dans le niveau supérieur et une mobilisation de l'arsenic. Un modèle analytique simple montre que les échelles de temps pour la drainance vers le bas, à partir de la surface au travers de l'imperméable supérieur vers l'aquifère semi-captif, sont de l'ordre de quelques dizaines d'années. Resumen. Muchas ciudades en el sur y sudeste de Asia carecen de sistemas de saneamiento, por lo que las aguas residuales urbanas son a menudo vertidas bien directamente al suelo o bien a canales de aguas superficiales. Esta práctica puede provocar la contaminación difusa de las aguas subterráneas someras. En Hat Yai, al sur de Tailandia, la percolación de aguas residuales urbanas ha producido un deterioro substancial de la calidad del acuífero somero sobre el que se sitúa la ciudad. Por ello, la mayor parte del suministro de agua potable se obtiene a partir de aguas subterráneas de acuíferos semiconfinados más profundos, localizados entre 30 y 50 m bajo la superficie. No obstante, el goteo desde el acuífero freático constituye una fracción importante de la recarga al acuífero profundo, hecho que tiene implicaciones en lo que respecta a la calidad del agua a largo plazo. Se presentan en este artículo los resultados de testigos de sondeos y de multi-piezómetros someros. El alto contenido en materia orgánica de las aguas urbanas, unido a la cercanía del nivel freático, ha producido la movilización de arsénico al crearse condiciones altamente reductoras. Un modelo matemático sencillo indica que el tiempo de tránsito desde la superficie hasta el acuífero semiconfinado es del orden de varias décadas.
NASA Astrophysics Data System (ADS)
Khattab, M. M.
1993-04-01
The compiled Bouguer gravity anomaly map over parts of the ophiolite rocks of the Northern Oman Mountains suggests the existence of three partially serpentinized nappes: two along the Gulf of Oman coast with axes near Dadnah, near Fujira and the third 17 km SSE of Masafi. Modeling of the subsurface geology, beneath two gravity profiles (Diba-Kalba and Masafi-Fujira), is based on the occurrence (field evidence) of multiphase low-angle thrusting of the members of the Tethyan lithosphere in northern and Oman Mountains. An assumed crustal model at the Arabian continental margin, beneath the Masafi-Fujira profile, is made to explain an intense gravity gradient. Gravity interpretation is not inconsistent with a gliding mechanism for obduction of the ophiolite on this part of the Arabian continental margin.
NASA Astrophysics Data System (ADS)
Rice, A. Hugh N.; Grasemann, Bernhard
2017-04-01
The Pindos Zone in the Cyclades underwent Eocene high-pressure metamorphism and syn-orogenic exhumation, overprinted by Miocene low-angled extension. Although this represents a combination of likely high-strain-events, structural evidence of large-scale folding is rare. Here potential examples of such folding on Kea and Kythnos, in the Western Cyclades, are evaluated. These islands lie within the Cycladic Blueschist Nappe (lower nappe) of the Pindos Zone and in the footwall of the top-to-SSW West Cycladic Detachment System (WCDS). On Kea, no lithostratigraphy can be established in the 450 m thick greenschist facies mixed sedimentary-volcanoclastic-marble mylonite/phyllonite succession. On the east side of the island, lensoid marble layers frequently bifurcate, which might be reflecting early, sheared-out isoclinal folding, although no evidence of folded compositional layering has been found in potential fold-hinge zones and the bifurcation points are not arranged in a way suggestive of a fold axes parallel to the NNE-SSW oriented stretching lineation. However, at two localities, medium-scale recumbent isoclinal folding has been mapped, with NNE-SSW fold-axes exposed for up to 250 m and amplitudes of up to 170 m. On Kythnos, stretching lineations in greenschist facies rocks show a rotation from ENE-WSW in the north to NNE-SSW in the south, taken to represent a reorientation of the Eocene exhumation strain during block rotation coincident with top-to-SSW movement of the WCDS. The distribution of the three marble units that crop out in central/southern Kythnos suggest large-scale, likely isoclinal folding occurred. (1) Petroussa Lithodeme - a blue-grey calcite (BGC) marble with quartz-calcite-white-mica (QCWM) schists, forming a continuous outcrop around the island, thinning from >16m in the SE to <8m thick mylonites in the SW, overlain by grey sericite-albite-graphite-schists (Flabouria Lithodeme); (2) Rizou Lithodeme - massive grey to BGC marble, with abundant quartz layers, only cropping out above the Flabouria Lithodeme south of Aghios Dimitrios, directly below the WCDS; (3) Mavrianou Lithodeme - mylonitic QCWM schists with lenses of BGC mylonites cropping out above the Flabouria Lithodeme along the west coast, 2.5-9 km N of Aghios Dimitrios. Thus, offshore in the 2.5 km north of Aghios Dimitrios, the Mavrianou Lithodeme is 'replaced' by the Rizou Lithodeme; these units are lithologically quite distinct. However, mylonitic outcrops of the Petroussa Lithodeme are very similar to the Mavrianou Lithodeme mylonites. A tentative structural solution is to argue that the Mavrianou Lithodeme is a large-scale isoclinal fold repetition of the Petroussa Lithodeme; southwards the fold amplitude decreases and dies out offshore north of Aghios Dimitrios; repetition of other lithodemes supports this solution. The origin of the fold is not known but the lithological repetition persists towards the central part of the island, where the transition from ENE-WSW trending Eocene exhumation deformation has not been fully overprinted by NNE-SSW trending Miocene deformation. Hence the fold may have formed as a large-scale structure during syn-orogenic Eocene exhumation of the Cycladic Blueschist Nappe and then been flattened and rotated during Miocene deformation in the footwall of the West Cycladic Detachment System.
NASA Astrophysics Data System (ADS)
Varni, Marcelo R.; Usunoff, Eduardo J.
A three-dimensional modular model (MODFLOW) was used to simulate groundwater flow in the Azul River basin, Buenos Aires Province, Argentina, in order to assess the correctness of the conceptual model of the hydrogeological system. Simulated heads satisfactorily match observed heads in the regional water-table aquifer. Model results indicate that: (1) groundwater recharge is not uniform throughout the region but is best represented by three recharge rates, decreasing downgradient, similar to the distribution of soils and geomorphological characteristics; and (2) evapotranspiration rates are larger than previous estimates, which were made by using the Thornthwaite-Mather method. Evapotranspiration rates estimated by MODFLOW agree with results of independent studies of the region. Model results closely match historical surface-flow records, thereby suggesting that the model description of the aquifer-river relationship is correct. Résumé Un modèle modulaire tridimensionnel (MODFLOW) a été utilisé pour simuler les écoulements souterrains dans le bassin de la rivière Azul (Province de Buenos Aires, Argentine), dans le but d'évaluer la justesse du modèle conceptuel du système hydrogéologique. La piézométrie simulée s'ajuste de façon satisfaisante à celle observée pour l'ensemble de la nappe. Les résultats du modèle indiquent que: (1) la recharge de la nappe n'est pas uniforme sur toute la région, mais qu'elle est mieux approchée par trois valeurs différentes, décroissant vers l'aval-gradient, en suivant la même distribution que les sols et les caractéristiques géomorphologiques et (2) l'évapotranspiration est nettement plus importante que prévu initialement à partir de la méthode de Thornthwaite-Mather. Les valeurs d'évapotranspiration fournies par MODFLOW concordent bien avec les résultats d'autres études portant sur la région. Les résultats du modèle reproduisent convenablement les chroniques de débit des écoulements de surface, suggérant ainsi que la description par le modèle des relations rivière-nappe est correcte. Resumen Se ha utilizado el modelo MODFLOW, del Servicio Geológico de los Estados Unidos, para simular el flujo de agua subterránea en la cuenca del arroyo del Azul, Provincia de Buenos Aires, Argentina, con el objeto de evaluar el modelo hidrogeológico conceptual. Los niveles hidráulicos simulados ajustan satisfactoriamente con los niveles observados. Los resultados de la simulación indican que: (1) la recarga no es uniforme, sino que puede caracterizarse con tres zonas en las que sus valores decrecen en la medida en que decrece la pendiente, que guarda similitud con la distribución de suelos y características geomorfológicas y (2) la evapotranspiración sería mayor que la estimada en estudios previos, en los que se utilizó el método de Thornthwaite-Mather. La evapotranspiración estimada mediante la presente simulación concuerda con resultados de varios estudios independientes en la región. Respecto de la relación acuífero-río, existe un muy buen ajuste entre los aportes del acuífero al río simulados y los valores históricos de caudal base.
NASA Astrophysics Data System (ADS)
Benzaggagh, Mohamed; Mokhtari, Abdelkader; Rossi, Philippe; Michard, André; El Maz, Abdelkhader; Chalouan, Ahmed; Saddiqi, Omar; Rjimati, Ech-Cherki
2014-07-01
The aim of this paper is to describe the mafic rocks that crop out in the central-western Mesorif Zone (External Rif Belt), and discuss their geodynamic signification. Basalt flows, olistoliths and breccias occur in Oxfordian-Berriasian deposits of Mesorif units ascribed to the distal part of the African paleomargin. The climax of volcanic activity is observed at the northern border of a Kimmeridgian carbonate platform progressively dismembered during the Tithonian-Berriasian. In spite of the alteration of the basalts, their petrological and geochemical characters point to E-MORB affinities. The studied gabbro massifs (Bou Adel, Kef el Rhar west and north) occur as restricted slivers or klippes within the Senhadja nappe or mélange of the internal Mesorif, which overlies the basalt-bearing units and other, more external Mesorif units. The compositions range from troctolitic olivine gabbro to ferrogabbro with frequent ortho- to heteradcumulate textures; they display typical tholeiitic affinity. The gabbro massifs are crosscut by trondjhemite dykes and overlain by metabasalts, fault-scarp breccias, ophicalcites, marbles and radiolarites. Composition featuring initial near liquid composition, display multi elements patterns close to those of E-MORB, with a weak Eu negative anomaly and evidence of slight crustal contamination. These gabbro massifs were regarded as Jurassic-Cretaceous intrusions, locally dated (K-Ar) at 166 ± 3 Ma. Conversely, we assume they represent discrete samples of a Jurassic-Cretaceous oceanic basement (ophiolites), emplaced tectonically in the Senhadja nappe (mélange) of the central Mesorif. The correlation of both these types of mafic rock associations (paleomargin basalts and ophiolite klippes) with the serpentinites of the eastern Mesorif (Beni Malek) and Oran mountains (Algeria) is then briefly discussed. We conclude that the previous hypothesis of an intramargin “Mesorif suture zone” must be reconsidered, being challenged by that of a major, syn-collisional “Oran-Mesorif Strike-Slip Fault”. In the latter hypothesis, the newly described Mesorif oceanic klippes would represent allochthonous remnants of the Ligurian-Maghrebian (Tethyan) oceanic domain.
NASA Astrophysics Data System (ADS)
Seymour, N. M.; Stockli, D. F.; Beltrando, M.; Smye, A.
2015-12-01
Despite advances in understanding the structural development of hyperextended magma-poor rift margins, the temporal and thermal evolution of lithospheric hyperextension during rifting remains only poorly understood. In contrast to classic pure-shear models, multi-stage rift models that include depth-dependent thinning predict significant lower-crustal reheating during the necking phase due to buoyant rise of the asthenosphere. The Santa Lucia nappe of NE Corsica is an ideal laboratory to test for lower-crustal reheating as it preserves Permian lower crust exhumed from granulitic conditions during Mesozoic Tethyan rifting. This study presents the first use of apatite U-Pb depth-profile thermochronology in conjunction with novel rutile U-Pb and zircon U-Pb thermo- and geochronology to reconstruct a continuous t-T path to constrain the syn-rift thermal evolution of this exposed lower-crustal section. LASS-ICP-MS depth-profile analyses of zircon reveal thin (<10 μm) ~210-180 Ma overgrowths on 300-270 Ma cores in lower-crustal lithologies, indicative of renewed thermal activity during Mesozoic rifting. Cooling due to rapid rift margin exhumation is recorded by the topology of rutile and apatite depth profiles caused by thermally-activated volume diffusion at T >400°C. Lower-crustal rutile reveal a rounded progression from core plateaus at ~170 Ma to 150-145 Ma at the outer 8-10 μm of grains while middle-crustal apatite records 170 Ma cores grading to 140-135 Ma rims. Inverse modeling of rutile profiles suggests the lower crust cooled from 700°C at 200 Ma to 425°C at 140 Ma. Middle-crustal apatite yield a two-stage history, with rapid cooling from 500°C at 200 Ma to 420°C at ~180 Ma followed by slow cooling to 400°C by 160 Ma. Combined with zircon overgrowth ages, these data indicate the Santa Lucia nappe underwent a thermal pulse in the late Triassic-early Jurassic associated with depth-dependent thinning and hyperextension of the Corsican margin.
NASA Astrophysics Data System (ADS)
Meijers, Maud J. M.; van Hinsbergen, Douwe J. J.; Dekkers, Mark J.; Altıner, Demir; Kaymakcı, Nuretdin; Langereis, Cor G.
2011-03-01
The Turkish Anatolide-Tauride block rifted away from the northern margin of Gondwana in the Triassic, which gave way to the opening of the southern Neo-Tethys. By the late Palaeocene to Eocene, it collided with the southern Eurasian margin, leading to the closure of the northern Neo-Tethys ocean. To determine the position of the Anatolide-Tauride block with respect to the African and Eurasian margin we carried out a palaeomagnetic study in the central Taurides belt, which constitutes the eastern limb of the Isparta Angle. The sampled sections comprise Carboniferous to Palaeocene rocks (mainly limestones). Our data suggest that all sampled rocks are remagnetized during the late Palaeocene to Eocene phase of folding and thrusting event, related to the collision of the Anatolide-Tauride block with Eurasia. To further test the possibility of remagnetization, we use a novel end-member modelling approach on 174 acquired isothermal remanent magnetization (IRM) curves. We argue that the preferred three end-member model confirms the proposed remagnetization of the rocks. Comparing our data to the post-Eocene declination pattern in the central Tauride belt, we conclude that our clockwise rotations are in agreement with data from other studies. After combining our results with previously published data from the Isparta Angle (that includes our study area), we have reasons to cast doubt on the spatial and temporal extent of an earlier reported early to middle Miocene remagnetization event. We argue that the earlier reported remagnetized directions from Triassic rocks—in tilt corrected coordinates—from the southwestern Antalya Nappes (western Taurides), are in good agreement with other studies from the area that show a primary origin of their characteristic remanent magnetization. This implies that we document a clockwise rotation for the southwestern Antalya Nappes since the Triassic that is remarkably similar to the post-Eocene (˜40°) rotation of the central Taurides. For the previously published results that are clearly remagnetized, we argue that their remagnetization has occurred in the Palaeocene to Eocene.
Late Cenozoic extensional faulting in Central-Western Peloponnesus, Greece
NASA Astrophysics Data System (ADS)
Skourtsos, E.; Fountoulis, I.; Mavroulis, S.; Kranis, H.
2012-04-01
A series of forearc-dipping, orogen-parallel extensional faults are found in the central-western Peloponnesus, (south-western Aegean) which control the western margin of Mt Mainalon. The latter comprises HP/LT rocks of the Phyllites-Quartzites Unit (PQ), overlain by the carbonates and flysch of the Tripolis Unit while the uppermost nappe is the Pindos Unit, a sequence of Mesozoic pelagic sequence, topped by a Paleocene flysch. Most of the extensional structures were previously thought of as the original thrust between the Pindos and Tripolis Units. However, the cross-cutting relationships among these structures indicate that these are forearc (SW-dipping) extensional faults, downthrowing the Pindos thrust by a few tens or hundreds of meters each, rooting onto different levels of the nappe pile. In SW Mainalon the lowermost of the extensional faults is a low-angle normal fault dipping SW juxtaposing the metamorphic rocks of the PQ Unit against the non-metamorphic sequence of the Tripolis Unit. High-angle normal faults, found further to the west, have truncated or even sole onto the low-angle ones and control the eastern margin of the Quaternary Megalopolis basin. All these extensional structures form the eastern boundary of a series of Neogene-Quaternary tectonic depressions, which in turn are separated by E-W horsts. In the NW, these faults are truncated by NE to NNE-striking, NW-dipping faults, which relay the whole fault activity to the eastern margin of the Pyrgos graben. The whole extensional fault architecture has resulted (i) in the Pindos thrust stepping down from altitudes higher than 1000 m in Mainalon in the east, to negative heights in North Messinia and Southern Ilia in the west; and (ii) the gradual disappearance of the Phyllite-Quartzite metamorphics of Mainalon towards the west. The combination of these extensional faults (which may reach down to the Ionian décollement) with the low-angle floor thrusts of the Pindos, Tripolis and Ionian Units leads to additional ENE-WSW shortening, normal to the Hellenic Arc, west of the Peloponnesus.
Physical and Chemical Behaviors of HCl on Ice Surface: Insights from an XPS and NEXAFS Study
NASA Astrophysics Data System (ADS)
Kong, X.; Waldner, A.; Orlando, F.; Birrer, M.; Artiglia, L.; Ammann, M.; Bartels-Rausch, T.
2016-12-01
Ice and snow play active roles for the water cycle, the energy budget of the Earth, and environmental chemistry in the atmosphere and cryosphere. Trace gases can be taken up by ice, and physical and chemical fates of the impurities could modify surface properties significantly and consequently influence atmospheric chemistry and the climate system. However, the understanding of chemical behaviour of impurities on ice surface are very poor, which is largely limited by the difficulties to apply high sensitivity experimental approaches to ambient air conditions, e.g. studies of volatile surfaces, because of the strict requirements of vacuum experimental conditions. In this study, we employed synchrotron-based X-ray photoelectron spectroscopy (XPS) and partial electron yield Near Edge X-ray Absorption Fine Structure (NEXAFS) in a state-of-the-art near-ambient pressure photoelectron (NAPP) spectroscopy end station. The NAPP enables to utilize the surface sensitive experimental methods, XPS and NEXAFS, on volatile surfaces, i.e. ice at temperatures approaching 0°C. XPS and NEXAFS together provide unique information of hydrogen bonding network, dopants surface concentration, dopant depth profile, and acidic dissociation on the surfaces1. Taking the advantages of the highly sensitive techniques, the adsorption, dissociation and depth profile of Hydrogen Chloride (HCl) on ice were studied. In brief, two states of Chloride on ice surface are identified from the adsorbed HCl, and they are featured with different depth profiles along the ice layers. Combining our results and previously reported constants from literatures (e.g. HCl diffusion coefficients in ice)2, a layered kinetic model has been constructed to fit the depth profiles of two states of Chloride. On the other side, pure ice and doped ice are compared for their surface structure change caused by temperature and the presence of HCl, which shows how the strong acid affect the ice surface in turn. 1. Orlando, F., et al., Top Catal 2016, 59, 591-604. 2. Huthwelker, T.; Malmstrom, M. E.; Helleis, F.; Moortgat, G. K.; Peter, T., J Phys Chem A 2004, 108, 6302-6318.
A petro-structural review of the Zermatt-Saas Fee zone
NASA Astrophysics Data System (ADS)
Schenker, Filippo Luca; Markus Schmalholz, Stefan; Baumgartner, Lukas
2014-05-01
The Zermatt-Saas Fee zone (ZSZ) is an imbricate of fragments of blueschist- to eclogite-facies metabasalts and metagabbros, serpentinites and mélange zones containing blocks of the above mentioned rocks. The ZSZ is usually interpreted as a fragment of oceanic crust belonging to the Piemont-Ligurian (Tethyan) Ocean that was accreted into the Alpine nappe pile. In the last decades the discovery of several Ultra-High Pressure (UHP, >2.7 GPa at 550-600 °C from coesite bearing eclogites and diamond-bearing fluid inclusions in garnet) localities lead to the interpretation of deep subduction (> 100 km) of the ZSZ in the Eocene, and subsequent uplift from mantle depth with high exhumation rates (e.g. Amato et al., 1999). However, these high pressures are in apparent contrast to the regional metamorphic conditions that reflect pressures peaking at < 2 GPa for 550-600°C (blueschist and eclogite mineral assemblages in mafic rocks). These latter metamorphic conditions do not need anomalous high burial histories and exhumation velocities higher than the plate velocities. The magnitude and distribution of pressure in the tectonic units of the ZSZ are important for constraining dynamic models for the evolution of the ZSZ and the Western Alps. Before entering into dynamic models, we propose a petro-structural overview where the published petrological data on pressure and temperature are critically reviewed, and positioned on a geological map and cross section in order to integrate them into the proper structural and tectonic framework. The questions we seek to answer are: How is the pressure distributed within the main tectonic units and within the entire ZSZ? Do we observe sharp or gradual pressure gradients within the ZSZ? Can the UHP conditions be averaged/extended to the entire ZSZ? If not, do they correspond to conditions of observable subunits, or do they reflect anomalies in the pressure field? Answering these questions is fundamental to better understand the thermobarometric evolution patterns of the ZSZ, to properly evaluate the geodynamic mechanism of accretion of oceanic crust into orogens, and to better understand the formation of tectonic nappes in general.
NASA Astrophysics Data System (ADS)
Krimissa, Samira; Michelot, Jean-Luc; Bouchaou, Lhoussaine; Mudry, Jacques; Hsissou, Youssef
2004-11-01
The origin of chloride ions in groundwater from the Chtouka-Massa plain (Morocco) was studied by using chemical and isotopic analyses of water, and petrographic and chemical analyses of rocks. It appears that the schist formation, which forms the basement of the studied aquifer, is the main source of the high Cl - concentrations in groundwater. In these schists, chloride is, for a part, probably contained in biotites, and is released into groundwater through the weathering of these minerals. However, the exceptionally high chloride contents of these schists are difficult to explain if one does not assume that they also contain evaporitic-type minerals. To cite this article: S. Krimissa et al., C. R. Geoscience 336 (2004).
Stratigraphy and sedimentology of the K/T boundary deposit in Haiti
NASA Technical Reports Server (NTRS)
Carey, S.; Sigurdsson, H.; Dhondt, S.; Espindola, J. M.
1993-01-01
The K/T boundary sequence is exposed in uplifted carbonate sediments of the southwest peninsula of Haiti. It is found at 15 localities within the Beloc formation, a sequence of limestone and marls interpreted as a monoclinal nappe structure thrust to the north. This tectonic deformation has affected the K/T boundary deposit to varying degrees. In some cases the less competent K/T deposit has acted as a slip plane leading to extensive shearing of the boundary layer, as well as duplication of the section. The presence of glassy tektites, shocked quartz, and an Ir anomaly directly link the deposit to a bolide impact. Stratigraphic and sedimentological features of the tripartite sequence indicate that it was formed by deposition from ballistic fallout of coarse tektites, emplacement of particle gravity flows and fine grained fallout of widely dispersed impact ejecta.
Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China
NASA Astrophysics Data System (ADS)
Wu, X.; Qi, X.; Zheng, M.
2015-12-01
Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas shows. Tacheng Basin, north faulted fold belt in the Heshituoluogai basin, and Hongyan fault bench zone in north Ulungur Depression in the Junggar Basin are promising areas for hydrocarbon exploration.
NASA Astrophysics Data System (ADS)
Zajzon, Norbert; Szentpéteri, Krisztián; Szakáll, Sándor; Kristály, Ferenc
2015-10-01
The Băiţa metallogenic district in the Bihor Mountains is a historically important mining area in Romania. Uranium mining took place between 1952 and 1998 from various deposits, but very little is known about the geology and mineralogy of these deposits. In this paper, we describe geology and mineralogy of uranium mineralization of the Avram Iancu uranium mine from waste dump samples collected before complete remediation of the site. Texturally and mineralogically complex assemblages of nickeline, cobaltite-gersdorffite solid solution, native Bi, Bi-sulfosalts, molybdenite, and pyrite-chalcopyrite-sphalerite occur with uraninite, "pitchblende," and brannerite in most of the ore samples. The association of nickel, cobalt, and arsenic with uranium is reminiscent of five-element association of vein type U-Ni-Co-Bi-As deposits; however, the Avram Iancu ores appear to be more replacement-type stratiform/stratabound. Avram Iancu ore samples contain multistage complex, skarn, uranium sulfide, arsenide assemblages that can be interpreted to have been formed in the retrograde cooling stages of the skarn hydrothermal system. This mineralizing system may have built-up along Upper Cretaceous-Paleogene "Banatite" intrusions of diorite-to-granite composition. The intrusions crosscut the underlying uraniferous Permian formations in the stacked NW-verging Biharia Nappe System. The mineralization forms stacked, multilayer replacement horizons, along carbonate-rich lithologies within the metavolcanic (tuffaceous) Muncel Series. Mineral paragenesis and some mineral chemistry suggest moderate-to-high <450, i.e., 350-310 °C, formation temperatures for the uranium sulfide stage along stratigraphically controlled replacement zones and minor veins. Uranium minerals formed abundantly in this early stage and include botryoidal, sooty and euhedral uraninite, brannerite, and coffinite. Later and/or lower-temperature mineral assemblages include heterogeneous, complexly zoned arsenide-sulfarsenide solid solutions associated with minute but abundant uranium minerals. Within the later arsenide-sulfarsenide mineral assemblage, there is great variation in Ni, Co, and S content with generally increasing arsenic content. Uranium minerals in this late-stage assemblage include very fine euhedral uraninite and brannerite inclusions in arsenide-sulfarsenide minerals. Native bismuth and Bi-sulfosalt krupkaite are observed in this As-S-rich assemblage strongly associated with cobaltite.
U-Pb Data On Apatites With Common Lead Correction : Exemples From The Scottish Caledonides
NASA Astrophysics Data System (ADS)
Jewison, E.; Deloule, E.; Villeneuve, J.; Bellahsen, N.; Labrousse, L.; Rosenberg, C.; Pik, R.; Chew, D.
2017-12-01
Apatite is a widely used mineral in low-temperature thermochronology (U-Th/He and AFT). The use of apatite in U-Pb geochronology has a great potential, given its closure temperature around 450°C, for orogen thermostructural evolution studies. However, since apatite can accumulate significant amount of initial Pb in its structure, its use can be hindered by the lack of 204 Pb estimations. To work around this, two options are commonly used : either use a ploting sytem that does not require corrected ratios, or use a proxy to estimate 204Pb and use it to correct the ratios. In this study we use a SIMS to mesure 204Pb in order to compare Tera-Wasserburg diagram and corrected ages to examine the cooling pattern in the northern Highlands of Scotland. The Highlands is an extensively studied caledonian collision wedge which results from the closure of the Iapétus Ocean during the Orodivician-Silurian. Two orogenic events are related to this closing, the grampian event (480-460Ma) and the scandian event (435-415 Ma) that culminated in the stacking of major ductile thrusts. The thermal history of thoses nappes are hence complex and the cooling pattern poorly constrained. Corrected apatite U-Pb ages provide new constrains on ductile wedge building and improve our understanding of mid to lower-crustal deformation and orogenic exhumation. Thoses corrected ages yield equivalent errors and mean ages from the classic method. Those data suggest a global cooling younger than previously thought and a sequence departing from a simple forward sequence. We thus present a refined thermal evolution and conceptualize a model of ductile wedge evolution.
NASA Astrophysics Data System (ADS)
Nakapelyukh, Mykhaylo; Bubniak, Ihor; Bubniak, Andriy; Jonckheere, Raymond; Ratschbacher, Lothar
2018-01-01
The Carpathians are part of the Alpine-Carpathian-Dinaridic orogen surrounding the Pannonian basin. Their Ukrainian part constitutes an ancient subduction-accretion complex that evolved into a foreland fold-thrust belt with a shortening history that was perpendicular to the orogenic strike. Herein, we constrain the evolution of the Ukrainian part of the Carpathian fold-thrust belt by apatite fission-track dating of sedimentary and volcanic samples and cross-section balancing and restoration. The apatite fission-track ages are uniform in the inner―southwestern part of the fold-thrust belt, implying post-shortening erosion since 12-10 Ma. The ages in the leading and trailing edges record provenance, i.e., sources in the Trans-European suture zone and the Inner Carpathians, respectively, and show that these parts of the fold-thrust were not heated to more than 100 °C. Syn-orogenic strata show sediment recycling: in the interior of the fold-thrust belt―the most thickened and most deeply eroded nappes―the apatite ages were reset, eroded, and redeposited in the syn-orogenic strata closer to the fore- and hinterland; the lag times are only a few million years. Two balanced cross sections, one constructed for this study and based on field and subsurface data, reveal an architecture characterized by nappe stacks separated by high-displacement thrusts; they record 340-390 km shortening. A kinematic forward model highlights the fold-thrust belt evolution from the pre-contractional configuration over the intermediate geometries during folding and thrusting and the post-shortening, erosional-unloading configuration at 12-10 Ma to the present-day geometry. Average shortening rates between 32-20 Ma and 20-12 Ma amounted to 13 and 21 km/Ma, respectively, implying a two-phased deformation of the Ukrainian fold-thrust belt.
NASA Astrophysics Data System (ADS)
Kamzolkin, Vladimir; Latyshev, Anton; Ivanov, Stanislav; Vidjapin, Jury
2017-04-01
Clarification of the position of the granitic intrusions associated with the Blyb Metamorphic Complex is the important problem of the reconstruction of the structural evolution of the Greater Caucasus Fore Range zone. Based of the rock geochemistry we found out that the quartz diorites, granodiorites and syeno-granites of the BMC formed in suprasubduction conditions and refer to I-type granites. However, their emplacement was multistage coinciding with the various stages of the BMC evolution. We detected the mineral associations typical for the epidote-amphibolite facies in the Balkan massif, but these metamorphic features are absent in the granodiorite intrusions in the southern part of the Fore Range zone. Thus, quartz diorites of the Balkan intrusion intruded after the high-pressure metamorphism of the host rocks, but before the epidote-amphibolite stage, and the Southern granodiorite intrusions are younger. The measurements of the anisotropy of the magnetic susceptibility (AMS) in the Balkan intrusion indicated the shallow orientation of the minimal (north-eastern strike) and maximal (north-western strike) axes of the AMS ellipsoid. This result is compatible with the idea of the north-east compression fixed in the fold deformation structures of the BMC host rocks (Vidyapin, Kamzolkin, 2015). However, the macroscopic foliation in the granites dips to the east steeply. The discrepancy of the texture orientation of the granites, the host rock structure and the magnetic fabric can be explained as a result of the repeated changes of the stress field during the evolution of the Fore Range nappe structures. The reported study was partially supported by RFBR, research projects No. 16-35-00571mol_a; 16-05-01012a.
NASA Astrophysics Data System (ADS)
Meinhold, Guido
2017-04-01
This work is in honour of Franz Kossmat (1871-1938) and his esteemed paper the Gliederung des varistischen Gebirgsbaues published 1927 in Abhandlungen des Sächsischen Geologischen Landesamts, Volume 1, pages 1 to 39. It constitutes the foundation of the general subdivision of the Central European Variscides into several geotectonic zones and the idea of large-scale nappe transport of individual units. In the English translation presented here an attempt is made to provide a readable text, which should still reflect Kossmat's style but would also be readable for a non-German speaking community either working in the Variscan Mountains or having specific interests in historical aspects of geosciences. Supplementary notes provide information about Kossmat's life and the content of the text. Kossmat's work is a superb example of how important geological fieldwork and mapping are for progress in geoscientific research.
Does non-acetylated salicylate inhibit thromboxane biosynthesis in human platelets?
Danesh, B J; McLaren, M; Russell, R I; Lowe, G D; Forbes, C D
1988-08-01
Ingestion of aspirin (acetyl salicylic acid: ASA) may promote bleeding complications due to inhibition of thromboxane biosynthesis, which results in the prolongation of bleeding time. The effect is believed to be achieved by the irreversible acetylation of the enzyme cyclooxygenase by aspirin. This alteration in platelet function by aspirin prohibits its use in patients with bleeding disorders such as haemophiliacs. Choline magnesium trisalicylate (CMT; Napp Laboratories Ltd) is a non-acetylated salicylate with analgesic and anti-inflammatory effects similar to that of aspirin. However, despite a comparable salicylate absorption from the two drugs, CMT is found to have no inhibitory action in platelet aggregation and to cause less gastric mucosal damage and gastrointestinal blood loss than aspirin. To investigate the role of the acetyl moiety in the inhibition of platelet thromboxane biosynthesis, we studied the effect of CMT and ASA on bleeding time, serum thromboxane B2 (TxB2) and thromboxane (Tx) generation in healthy volunteers.
Mountain building processes in the Scandinavian Caledonides studied by COSC scientific drilling
NASA Astrophysics Data System (ADS)
Lorenz, Henning; Juhlin, Christopher
2017-04-01
The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project, located in the Caledonian foreland of Sweden, attempts to sample a continuous section from the allochthons through the basal décollement into the Baltican basement. The primary target of the project is to improve our understanding of mountain building during major continent-continent collision. COSC is located on the Central Caledonian Transect (CCT) in Jämtland, Sweden, a classical locality in the Caledonian mountain belt where nappe emplacement was proposed already 130 years ago. During this long time of research, a wealth of geological and geophysical survey data at different resolution have been acquired. Thus, the CCT is optimal for the integration of scientific work at different scales, from micro-scale investigation on high-resolution borehole sections to orogen-scale geodynamic models. With COSC-1, a first 2.5 km deep fully cored borehole was drilled during 2014 to study in detail a section from a hot allochthon into the underlying thrust zone. Located on the slopes of mountain Åreskutan, the drilled profile through the lower part of Seve Nappe Complex can be extended upwards with good field exposure to the top of Åreskutan, where micro-diamond bearing gneisses were discovered recently. This combined profile was accomplished last year and, at present, the pressure-temperature conditions along it are being established. First results are presented by Holmberg et al. (this session). Comprehensive borehole surveys and geophysical experiments facilitate the integration of borehole data with the regional data sets and provide a better physical characterisation the encountered rock bodies. Of particular interest is here a major shear zone in the lower c. 800 m of the borehole, whose base was not penetrated. It is clearly different and lower grade than the penetrative deformation in the surrounding gneisses and, thus, expected to be younger and, potentially, cutting across tectonostratigraphic boundaries. Microstructural investigations and age dating are ongoing. Results of the latter are presented by Glodny et al. (this session). Although COSC-1 research will continue for several years, planning of COSC-2 is already very advanced and the borehole will be drilled as soon as funding is secured. First, the continuously cored hole will sample the Lower Paleozoic sedimentary succession preserved in the Lower Allochthon. This will provide a unique distal section through the Baltica Shelf palaeoenvironment, which elsewhere is only known from proximal areas with high bioproductivity as they are exposed in the Baltic Sea region. The borehole will then sample a laterally extensive imbricate section of Cambrian and, most likely, Ordovician strata that developed above the main Caledonian décollement, i.e. the detachment horizon below the Caledonian allochthons that is hosted in the very organic-rich Alum shale. Finally, it will penetrate 1-1.5 km into the Baltican basement and sample the sources for several seismic basement reflections. Thus, COSC-2 will provide a unique opportunity to study in detail the deformation on and above the décollement and how the basement of the during collision underriding plate was affected by deformation. COSC-1 was supported by the International Continental Scientific Drilling Program (ICDP) and the Swedish Research Council. All data are open and distributed under a Creative Common license (CC BY 4.0). More information on the project and the data are available at http://doi.org/10.1594/GFZ.SDDB.ICDP.5054.2015. Collaboration is welcome.
The structures, stratigraphy and evolution of the Gulf of Corinth rift, Greece
NASA Astrophysics Data System (ADS)
Taylor, Brian; Weiss, Jonathan R.; Goodliffe, Andrew M.; Sachpazi, Maria; Laigle, Mireille; Hirn, Alfred
2011-06-01
A multichannel seismic and bathymetry survey of the central and eastern Gulf of Corinth (GoC), Greece, reveals the offshore fault geometry, seismic stratigraphy and basin evolution of one of Earths most active continental rift systems. Active, right-stepping, en-echelon, north-dipping border faults trend ESE along the southern Gulf margin, significantly overlapping along strike. The basement offsets of three (Akrata-Derveni, Sithas and Xylocastro) are linked. The faults are biplanar to listric: typically intermediate angle (˜35° in the centre and 45-48° in the east) near the surface but decreasing in dip and/or intersecting a low- or shallow-angle (15-20° in the centre and 19-30° in the east) curvi-planar reflector in the basement. Major S-dipping border faults were active along the northern margin of the central Gulf early in the rift history, and remain active in the western Gulf and in the subsidiary Gulf of Lechaio, but unlike the southern border faults, are without major footwall uplift. Much of the eastern rift has a classic half-graben architecture whereas the central rift has a more symmetric w- or u-shape. The narrower and shallower western Gulf that transects the >40-km-thick crust of the Hellenides is associated with a wider distribution of overlapping high-angle normal faults that were formerly active on the Peloponnesus Peninsula. The easternmost sector includes the subsidiary Gulfs of Lechaio and Alkyonides, with major faults and basement structures trending NE, E-W and NW. The basement faults that control the rift architecture formed early in the rift history, with little evidence (other than the Vrachonisida fault along the northern margin) in the marine data for plan view evolution by subsequent fault linkage. Several have maximum offsets near one end. Crestal collapse graben formed where the hanging wall has pulled off the steeper onto the shallower downdip segment of the Derveni Fault. The dominant strikes of the Corinth rift faults gradually rotate from 090-120° in the basement and early rift to 090-100° in the latest rift, reflecting a ˜10° rotation of the opening direction to the 005° presently measured by GPS. The sediments include a (locally >1.5-km-) thick, early-rift section, and a late-rift section (also locally >1.5-km-thick) that we subdivide into three sequences and correlate with seven 100-ka glacio-eustatic cycles. The Gulf depocentre has deepened through time (currently >700 mbsl) as subsidence has outpaced sedimentation. We measure the minimum total horizontal extension across the central and eastern Gulf as varying along strike between 4 and 10 km, and estimate full values of 6-11 km. The rift evolution is strongly influenced by the inherited basement fabric. The regional NNW structural fabric of the Hellenic nappes changes orientation to ESE in the Parnassos terrane, facilitating the focused north-south extension observed offshore there. The basement-penetrating faults lose seismic reflectivity above the 4-14-km-deep seismogenic zone. Multiple generations and dips of normal faults, some cross-cutting, accommodate extension beneath the GoC, including low-angle (15-20°) interfaces in the basement nappes. The thermally cool forearc setting and cross-orogen structures unaccompanied by magmatism make this rift a poor analogue and unlikely precursor for metamorphic core complex formation.
East African and Kuunga Orogenies in Tanzania - South Kenya
NASA Astrophysics Data System (ADS)
Fritz, H.; Hauzenberger, C. A.; Tenczer, V.
2012-04-01
Tanzania and southern Kenya hold a key position for reconstructing Gondwana consolidation because here different orogen belts with different tectonic styles interfere. The older, ca. 650-620 Ma East African Orogeny resulted from the amalgamation of arc terranes in the northern Arabian-Nubian Shield (ANS) and continental collision between East African pieces and parts of the Azania terrane in the south (Collins and Pisarevsky, 2005). The change form arc suturing to continental collision settings is found in southern Kenya where southernmost arcs of the ANS conjoin with thickened continental margin suites of the Eastern Granulite Belt. The younger ca. 570-530 Ma Kuunga orogeny heads from the Damara - Zambesi - Irumide Belts (De Waele et al., 2006) over Tanzania - Mozambique to southern India and clashes with the East African orogen in southern-central Tanzania. Two transitional orogen settings may be defined, (1) that between island arcs and inverted passive continental margin within the East African Orogen and, (2) that between N-S trending East African and W-E trending Kuungan orogenies. The Neoproterozoic island arc suites of SE-Kenya are exposed as a narrow stripe between western Azania and the Eastern Granulite belt. This suture is a steep, NNW stretched belt that aligns roughly with the prominent southern ANS shear zones that converge at the southern tip of the ANS (Athi and Aswa shear zones). Oblique convergence resulted in low-vorticity sinstral shear during early phases of deformation. Syn-magmatic and syn-tectonic textures are compatible with deformation at granulite metamorphic conditions and rocks exhumed quickly during ongoing transcurrent motion. The belt is typified as wrench tectonic belt with horizontal northwards flow of rocks within deeper portions of an island arc. The adjacent Eastern Granulite Nappe experienced westward directed, subhorizontal, low-vorticity, high temperature flow at partly extreme metamorphic conditions (900°C, 1.2 to 1.4 GPa) (Fritz et al., 2009). Majority of data suggest an anticlockwise P-T loop and prolonged, slow cooling at deep crustal levels without significant exhumation. Isobaric cooling is explained by horizontal flow with rates faster than thermal equilibration of the lower crust. Those settings are found in domains of previously thinned lithosphere such as extended passive margins. Such rheolgically weak plate boundaries do not produce self-sustaining one-sided subduction but large areas of magmatic underplating that enable melt enhanced lateral flow of the lower crust. Western Granulites deformed by high-vorticity westwards thrusting at c. 550 Ma (Kuunga orogeny). Rocks exhibit clockwise P-T paths and experienced significant exhumation during isothermal decompression. Overprint between Kuungan structures and 620 Ma East African fabrics resulted in complex interference pattern within the Eastern Granulites. The three orogen portions that converge in Tanzania / Southern Kenya have different orogen styles. The southern ANS formed by transcurrent deformation of an island arc root; the Eastern Granulites by lower crustal channelized flow of a hot inverted passive margin; the Western Granulites by lower to mid crustal stacking of old and cold crustal fragments. Collins, A.S., Pisarevsky, S.A. (2005). Amalgamating eastern Gondwana: The evolution of the Circum-Indian Orogens. Earth-Science Reviews, 71, 229-270. De Waele, B., Kampunzu, A.B., Mapani, B.S.E., Tembo, F. (2006). The Mesoproterozoic Irumide belt of Zambia. Journal of African Earth Sciences, 46, 36-70 Fritz, H., Tenczer, V., Hauzenberger, C., Wallbrecher, E., Muhongo, S. (2009). Hot granulite nappes — Tectonic styles and thermal evolution of the Proterozoic granulite belts in East Africa. Tectonophysics, 477, 160-173.
NASA Astrophysics Data System (ADS)
Beidinger, A.; Decker, K.; Zamolyi, A.; Hölzel, M.; Hoprich, M.; Strauss, P.
2009-04-01
The palinspastic reconstruction of the Austroalpine thrust belt is part of the project Karpatian Tectonics, which is funded by OMV Austria. The objective is to reconstruct the evolution of the thrust belt through the Early to Middle Miocene in order to obtain information on the palaeogeographic position of the Northern Calcareous Alps (NCA) in the region of the present Vienna Basin. A particular goal of the study is to constrain the position of reservoir rocks within the Rhenodanubic Flysch units and the NCA with respect to the autochthonous Malmian source rocks overlying the European basement below the Alpine-Carpathian thrust wedge, and to constrain the burial history of these source rocks. Reconstruction uses regional 2D seismic lines crossing from the European foreland into the fold-thrust belt, 3D seismic data covering the external thrust sheets, and lithostratigraphic data from a total of 51 selected wells, which were drilled and provided by OMV Austria. The main criterion, whether a well was suitable for palinspastic reconstruction or not, was its penetration of Alpine thrust sheets down to the Autochthonous Molasse of the foreland. Additional wells, which do not penetrate the entire Alpine thrust complex but include the Allochthonous Molasse or the external Alpine-Carpathian nappes (Waschberg and Roseldorf thrust unit, Rhenodanubic Flysch nappes) in their well path, were also taken into account. The well data in particular comprise stratigraphic information on the youngest overthrust sediments of the different thrust units and the underlying Autochthonous foreland Molasse. These data allow constraining the timing of thrust events in the allochthonous thrust units and overthrusting of the Autochthonous Molasse. In the particular case of overthrust Autochthonous Molasse, additionally to the timing of overthrusting, which can be derived from the youngest overthrust sediments, the palaeogeographic position of the Alpine Carpathian thrust front could directly be inferred from well data for the specific time period. By further utilization of geological maps, geological cross sections and two regional c. 80 km long composite 2D seismic sections through the external Alpine thrusts, the positions of major thrusts could be approximated for five time slices. This procedure was applied for the front of the allochthonous Molasse units, the floor thrust of the Roseldorf thrust unit, the Waschberg thrust unit and the frontal thrusts of the Rhenodanubic Flysch and the NCA. In addition, several out-of-sequence thrusts within the Waschberg unit, the Molasse unit, the Rhenodanubic Flysch and the Calcareous Alps (floor thrust of the NCA and two internal thrusts) were taken into account. The reconstruction results in 5 palinspastic maps for the time slices early Egerian (25 Ma), early Eggenburgian (20 Ma), Ottnangian (17.5 Ma), Lower Karpatian (16.5 Ma) and the Karpatian/ Badenian stage boundary (16 Ma). Convergence rates, which were calculated for the four intervening time intervals, range from about 3 mm/yr to 5 mm/yr. These values compare well with estimated convergence rates reconstructed for the Miocene in the western Eastern Alps (Schmid et al., 1996), as well as with plate tectonic constraints on Tertiary convergence rates (Dewey et al., 1989). Dewey, J., Helman, M.L., Turco, E., Hutton, D.H.W.&Knott, S.D., 1989. Kinematics of the western Mediterranean, in: N.P. Coward, D. Dietrich & R.G. Park (eds.), Alpine Tectonics, Geol. Soc. Spec. Publ., 45: 265-283. Schmid, S.M., Pfiffner, O.A., Frotzheim, N., Schönborn, G. & Kissling, E., 1996. Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics, 15: 1036-1064.
Tooker, Edwin W.
2005-01-01
The Oquirrh Mountains are located in north central Utah, in the easternmost part of the Basin and Range physiographic province, immediately south of the Great Salt Lake. The range consists of a northerly trending alignment of peaks 56 km long. Tooele and Rush Valleys flank the Oquirrh Mountains on the western side and Salt Lake and Cedar Valleys lie on the eastern side. The world class Bingham mine in the central part of the range hosts disseminated copper-bearing porphyry, skarn, base-and precious-metal vein and replacement ore deposits. The district includes the outlying Barneys Canyon disseminated-gold deposits. Disseminated gold in the Mercur mining district in the southern part of the range has become exhausted. The Ophir and Stockton base- and precious-metal mining districts in the range north of Mercur also are inactive. A geologic map of the range (Tooker and Roberts, 1998), available at a scale of 1:50,000, is a summation of U.S. Geological Survey (USGS) studies. Information about the range and its mining areas is scattered. This report summarizes map locations, new stratigraphic and structural data, and reexamined data from an extensive published record. Unresolved controversial geological interpretations are considered, and, for the first time, the complete geological evidence provides a consistent regional basis for the location of the ore deposits in the range. The geological setting and the siting of mineral deposits in the Oquirrh Mountains began with the formation of a Precambrian craton. Exposures of folded Proterozoic basement rocks of the craton, in the Wasatch Mountains east of Salt Lake City, were accreted and folded onto an Archean crystalline rock terrane. The accretion suture lies along the north flank of the Uinta Mountains. The western part of the accreted block was offset to northern Utah along a north-trending fault lying approximately along the Wasatch Front (Nelson and others, 2002), thereby creating a prominant basement barrier or buttress east of the Salt Lake area. The accretion suture along the north flank of the Uinta Anticline overlaps an earlier Precambrian east-west mobile zone, the Uinta trend (Erickson, 1976, Bryant and Nichols, 1988 and John, 1989), which extends westward across western Utah and into Nevada. A trace of the trend underlies the middle part of the Oquirrh Mountains. Its structure is recognized by disrupted Paleozoic stratigraphic units and fold and fault evidence of thrust faulting, intermittent local uplift and erosion, the alignment of Tertiary intrusives and associated ore deposits. Geologic readjustments along the trend continued intermittently through the Paleozoic, Cenozoic, Tertiary, and the development of clastic deposits along the shores of Pleistocene Lake Bonneville. Paleozoic sedimentary rocks were deposited on the craton platform shelf in westernmost Utah and eastern Nevada as the shelf subsided gradually and differentially. Debris was shed into two basins separated by the uplifted Uinta trend, the Oquirrh Basin on the south and Sublette Basin on the north. Sediments were derived from the craton to the east, the Antler orogenic zone on the west (Roberts, 1964), and locally from uplifted parts of the trend itself. Thick accumulations of clastic calcareous quartzite, shale, limestone, and dolomite of Lower and Upper Paleozoic ages are now exposed in the Oquirrh Mountains, the result of thrust faults. Evidence of decollement thrust faults in in the Wasatch Mountains during the Late Cretaceous Sevier orogeny, recognized by Baker and others (1949) and Crittenden (1961, is also recognized in the Oquirrh Mountains by Roberts and others (1965). During the late Cretaceous Sevier Orogeny, nappes were thrust sequentially along different paths from their western hinterland to the foreland. Five distinct nappes converged over the Uinta trend onto an uplifted west-plunging basement buttress east of the Oquirrh Mountains area: the Pass Canyon, Bingham,
NASA Astrophysics Data System (ADS)
Reynard, Emmanuel
2016-04-01
The Upper Rhone valley (Canton of Valais, Switzerland) is characterised by dry climatic conditions that explain the presence of an important network (about 800 km) of irrigation channels - called Bisses in the French-speaking part of the canton or Suonen in the German-speaking area - dating back to the Middle Ages. This network constitutes a cultural heritage and during the last 30 years these agricultural infrastructures have sparked a renewed interest for tourist and cultural reasons. Indeed, the paths along the channels are used as tourist trails and several abandoned channels have been renovated for tourist use. Based on an inventory of the Bisses/Suonen of Valais, the proposed communication has three aims: (1) to analyse the geomorphological context (morphometric analysis, structural geomorphology, main processes) of various types of channels and to show the impact of the geomorphological context on the building techniques; (2) to identify particularly active processes along the channels; (3) to classify the Bisses/Suonen according to their geomorphological value and to their geomorphological sensitivity, and to propose managing measures. Structural and climatic conditions influence the geomorphological context of the channels. In a structural point of view, irrigation channels are developed in three main contexts: (1) in the Aar Massif crystalline basement; (2) in the limestone and marl cover nappes of the Helvetic Alps; (3) in the metamorphic cover nappes of the Penninic domain. The Rhone River valley is boarded by two high mountain ranges: the Penninic Alps in the South and the Bernese Alps in the North. Because of rain shadow effects, the climate is relatively dry and, between Brig and Martigny, annual rainfall is not more than 600 mm at 500 m ASL and 800 mm at 1600 m ASL. Nevertheless, due to important vertical precipitation gradients annual rainfall totals are high at high altitudes. On the southern facing tributary valleys, the dry climatic conditions are accentuated by high insulation and evaporation. Finally, foehn events are quite common. In a climatic point of view, the area can be divided in three main zones: (1) Upstream of Brig, the climate is characterised by cold and wet conditions, and irrigation is not necessary; (2) between Brig and Martigny, the rain shadow effect is responsible of irrigation needs in the lower altitudes, whereas at high altitudes rainfall is sufficient for plant growing without irrigation; (3) downstream of Martigny, the climate is wetter and irrigation is not necessary. In a palaeoclimatic point of view, the Rhone River catchment was characterised by numerous glaciations during the Quaternary. Quaternary glaciers have shaped the valleys (U-shaped valleys, hanged valleys) and the postglacial hydrographical network had to adapt to the glacial valleys (presence of numerous waterfalls, hanged valleys, postglacial gorges, alluvial fans). By crossing climatic and structural contexts, three groups of geomorphological contexts of irrigation channels can be highlighted: (1) In the tributary valleys situated South of the Rhone valley (Penninic Alps) the irrigation channels are simply dug in the valley slopes; several of them are affected by landslides typical of metamorphic rocks of Penninic Alps; (2) In the short tributary valleys of the crystalline Aar Massif - in the valleys North to the city of Visp -, the geomorphological context is characterised by steep slopes both in the tributary valleys and in the south-facing slopes dominating the Rhone River valley. In this area, water channels are cut into the rocks and in some parts they are built in wood pipes hanged along the rock walls; (3) In the tributary valleys of the Helvetic domain - North of the Rhone River between Leuk and Sion - the geological context highly influences the building techniques: due to geological dipping towards Southeast, the tributary valley are dissymmetric: in the dip slopes channels are simply cut in the soil, whereas in the steep opposite sides, they are hanged on the limestone rock walls. In the south-facing slopes of the main valley, differential erosion by the Rhone glacier has formed a complex alternation of hills, depressions and gently dipping slopes very favourable to agriculture; the irrigation network had adapted to this complex geomorphological context.
NASA Astrophysics Data System (ADS)
Ewing, T. A.; Beltrando, M.; Müntener, O.
2017-12-01
U-Pb thermochronology of rutile can provide valuable temporal constraints on the exhumation history of the lower crust, given its moderate closure temperature and the occurrence of rutile in appropriate lithologies. We present an example from Alpine Corsica, in which we investigate the thermal evolution of the distal European margin during Jurassic continental rifting that culminated in the opening of the Alpine Tethys ocean. The Belli Piani unit of the Santa Lucia nappe (Corsica) experienced minimal Alpine overprint and bears a striking resemblance to the renowned Ivrea Zone lower crustal section (Italy). At its base, a 2-4 km thick gabbroic complex contains slivers of granulite facies metapelites that represent Permian lower crust. Zr-in-rutile temperatures and U-Pb ages were determined for rutile from three metapelitic slivers from throughout the Mafic Complex. High Zr-in-rutile temperatures of 850-950 °C corroborate textural evidence for rutile formation during Permian granulite facies metamorphism. Lower Zr-in-rutile temperatures of 750-800 °C in a few grains are partly associated with elongate strings of rutile within quartz ribbons, which record recrystallisation of some rutile during high-temperature shearing. Zr thermometry documents that both crystallisation and re-crystallisation of rutile occurred above the closure temperature of Pb in rutile, such that the U-Pb system can be expected to record cooling ages uncomplicated by re-crystallisation. Our new high-precision single-spot LA-ICPMS U-Pb dates are highly consistent between and within samples. The three samples gave ages from 160 ± 1 Ma to 161 ± 2 Ma, with no other age populations detected. The new data indicate that the Santa Lucia lower crust last cooled through 550-650 °C at 160 Ma, coeval with the first formation of oceanic crust in the Tethys. The new data are compared to previous depth profiling rutile U-Pb data for the Belli Piani unit1, and exploited to cast light on the tectonothermal evolution of the Santa Lucia lower crust in the Jurassic. The new data integrated with published data from the Ivrea zone allow comparison of the thermal evolution of the opposing European (Santa Lucia) and Adriatic (Ivrea) continental margins created by rifting associated with the opening of the Tethys. 1Seymour NM et al., 2016, Tectonics 35, 2439-2466
Structurally controlled 'teleconnection' of large-scale mass wasting (Eastern Alps)
NASA Astrophysics Data System (ADS)
Ostermann, Marc; Sanders, Diethard
2015-04-01
In the Brenner Pass area (Eastern Alps) , closely ahead of the most northward outlier ('nose') of the Southern-Alpine continental indenter, abundant deep-seated gravitational slope deformations and a cluster of five post-glacial rockslides are present. The indenter of roughly triangular shape formed during Neogene collision of the Southern-Alpine basement with the Eastern-Alpine nappe stack. Compression by the indenter activated a N-S striking, roughly W-E extensional fault northward of the nose of the indenter (Brenner-normal fault; BNF), and lengthened the Eastern-Alpine edifice along a set of major strike-slip faults. These fault zones display high seismicity, and are the preferred locus of catastrophic rapid slope failures (rockslides, rock avalanches) and deep-seated gravitational slope deformations. The seismotectonic stress field, earthquake activity, and structural data all indicate that the South-Alpine indenter still - or again - exerts compression; in consequence, the northward adjacent Eastern Alps are subject mainly to extension and strike-slip. For the rockslides in the Brenner Pass area, and for the deep-seated gravitational slope deformations, the fault zones combined with high seismic activity predispose massive slope failures. Structural data and earthquakes mainly record ~W-E extension within an Eastern Alpine basement block (Oetztal-Stubai basement complex) in the hangingwall of the BNF. In the Northern Calcareous Alps NW of the Oetztal-Stubai basement complex, dextral faults provide defacement scars for large rockfalls and rockslides. Towards the West, these dextral faults merge into a NNW-SSE striking sinistral fault zone that, in turn, displays high seismic activity and is the locus of another rockslide cluster (Fern Pass cluster; Prager et al., 2008). By its kinematics dictated by the South-Alpine indenter, the relatively rigid Oetztal-Stubai basement block relays faulting and associated mass-wasting over a N-S distance of more than 60 kilometers - from the Brenner Pass area located along the crestline of the Alps to mount Zugspitze near the northern fringe of the Northern Calcareous Alps. Major fault zones and intercalated rigid blocks thus can 'teleconnect' zones of preferred mass-wasting over large lateral distances in orogens. Reference: Prager, C., Zangerl, C., Patzelt, G., Brandner, R., 2008. Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Natural Hazards and Earth System Science 8, 377-407.
NASA Astrophysics Data System (ADS)
Avşar, Özgür; Avşar, Ulaş; Arslan, Şebnem; Kurtuluş, Bedri; Niedermann, Samuel; Güleç, Nilgün
2017-10-01
In this study, horizontal temperature measurements along organized grids have been used to detect subaqueous hot springs. The study area, located in the southwest of Turkey and comprised of Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay, was scanned by measuring temperatures horizontally, 2-3 m above the bottom of the lake or sea. After analyzing the temperature data along the grids, the locations with anomalous temperature values were detected, and divers headed here for further verification. Accordingly, among these anomalies, the divers confirmed seven of them as subaqueous hot springs. Three of these hot springs are located in the Köyceğiz Lake, three of them are located in the Dalyan Channel and one hot spring is located in the Fethiye-Göcek Bay. At the locations where temperature anomalies were detected, the divers collected samples directly from the subaqueous hot spring using a syringe-type sampler. We evaluated these water samples together with samples collected from hot and cold springs on land and from local rivers, lakes and the sea, with an aim to generate a conceptual hydrogeochemical model of the geothermal system in the study area. This model predicts that rainwater precipitating in the highlands percolates through fractures and faults into the deeper parts of the Earth's crust, here it is heated and ascends through the sea bottom via buried faults. Pervious carbonate nappes that are underlain and overlain by impervious rocks create a confined aquifer. The southern boundary of the Carbonate-Marmaris nappes is buried under alluvium and/or sea/lake water bodies and this phenomenon determines whether hot springs occur on land or subaqueous. The chemical and isotopic properties of the hot springs point to seawater mixing at deep levels. Thus, the mixing most probably occurs while the water is ascending through the faults and fractures. The gas geochemistry results reveal that the lowest mantle He contributions occur in the samples from Köycegiz Lake, whereas the highest ones are found in samples from the Dalaman plain. For the first time, we made use of the micro-XRF sediment core scanning (ITRAX Scanner) for exploring the relation between subaqueous geothermal occurrence and chemical properties of the surrounding sediments. The spatial elemental distribution of sea/lake bottom sediments suggests that depending on the surrounding rock units and the temperature of the hot spring, the sediments around the spring can be enriched with certain elements.
NASA Astrophysics Data System (ADS)
Aksay, Selçuk; Ivy-Ochs, Susan; Hippe, Kristina; Graemiger, Lorenz; Vockenhuber, Christof
2016-04-01
The Säntis nappe is a fold-and-thrust structure in eastern Switzerland consisting of numerous tectonic discontinuities that make rocks vulnerable to rock failure. The Sennwald landslide is one of those events that occurred due to the failure of Lower Cretaceous Helvetic limestones. This study reveals the surface exposure age of the event in relation to geological and tectonic setting, earthquake frequency of the Central Alps, and regional scale climate/weather influence. Our study comprises detailed mapping of landform features, thin section analysis of landslide boulder lithologies, landslide volume estimation, numerical DAN-3D run-out modelling, and the spatial and temporal relationship of the event. In the Sennwald landslide, 92 million m3 of limestones detached from the south-eastern wall of the Säntis nappe and slid with a maximum travel distance of ~4'500 m and a "fahrboeschung" angle of 15° along the SE-dipping sliding plane almost parallel to the orientation of the bedding plane. Numerical run-out modelling results match the extent and the thickness of landslide deposits as observed in the field. The original bedrock stratigraphy was preserved as geologically the top layer in the bedrock package travelled the farthest and the bottom layer came to rest closest to the release bedrock wall during the landslide. Velocities of maximum 90 m/s were obtained from the numerical run-out modelling. Total Cl and 36Cl were determined at ETH AMS facility with isotope dilution methods defined in the literature (Ivy-Ochs et al., 2004). Surface exposure ages of landslide deposits in the accumulation area are revealed from twelve boulders. The distribution of limestone boulders in the accumulation area, the exposure ages, and the numerical run-out modelling support the hypothesis that the Sennwald landslide was a single catastrophic event. The event is likely to have been triggered by at least light to moderate earthquakes (Mw=4.0-6.0). The historical and the last 40-year earthquake activity shows that this region is tectonically still active (Mosar, 1999) with numerous earthquakes. The exposure ages imply that the rock failure occurred during the middle Holocene, a period of increased neotectonic activity in Eastern Alps suggested by Prager et al. (2007). This time period also coincides with notably wet climate, which has been suggested as an important trigger for landslides around this age across the Alps (Zerathe et al., 2014).
Origin of the megabreccias in the Katanga Copperbelt (D.R.Congo)
NASA Astrophysics Data System (ADS)
Cailteux, Jacques L. H.; Muchez, Philippe; De Cuyper, Jana; Dewaele, Stijn; De Putter, Thierry
2018-04-01
The megabreccias in the Katanga part of the Neoproterozoic Central African Copperbelt contain up to several km-long blocks and fragments of the Mines Subgroup which host most of the stratiform Cu-Co deposits. New observations, particularly on cores from boreholes drilled at Luiswishi indicate three types of fracturing: 1) brittle post-folding in the Mines Subgroup; 2) hydraulic; and 3) ductile in soft incompetent siltstones of the R.A.T. and Dipeta subgroups. These fracturing phases dislocated the Roan succession into blocks and fragments and, in particular, clearly showed that there is an evolution from an in situ hydraulic fracturing, to a heterometric brecciation implying some movement and abrasion of the fragments. The process points to significant compression, and was accompanied by fluid expulsion and precipitation of dolomite after decompression. Fluid inclusion microthermometry in dolomite grains shows that the fluids were of high salinity and high temperature, suggesting dissolution of evaporites most likely contained in the Roan sedimentary pile. These saline fluids allowed the fluidization of the breccias, facilitating the displacement of the nappes, pinching out (extrusion-like) megabreccias along thrust-faults, and resulting in intrusion of breccias between the blocks or into large fractures. Breccias between the blocks are clearly identified as friction breccias. They contain a fine material, as part of the matrix, resulting from abrasion of the fragments during transportation. Abrasion and attrition explain the rounding of the fragments. A late cementation phase from less saline and lower temperature fluids suggests the addition of meteoric water in the system, and the mixing with the ambient fluids. The minimum burial depth of the meteoric water incursion is estimated at 2.8 km. Such under-saturated fluids may have contributed to the dissolution of residual evaporites and of the evaporitic material from the Kiubo rocks at the base of the nappes, and led to further brecciation, possibly explaining the multi-phase features of the breccia. The megabreccias occur at the base of the thrusts sheets and are marked by thrust-fault zones. Results of the study support a process of formation of the megabreccias related to a fold-and-trust event, and invalidate a syn-orogenic sedimentary origin as an olistostrome formed by subaqueous conglomeratic debris flows and clastic syn-orogenic sediments. They also contradict a pure salt tectonic hypothesis that propose the extrusions and enlargements of allochthonous evaporites-gigabreccia before the Lufilian deformation. However, the model is compatible with a "fluid behaviour" of pressured saline fluids trapped in folds and/or thrust sheets, and resulting from evaporites dissolution at variable depth.
NASA Astrophysics Data System (ADS)
Stübner, Konstanze; Grujic, Djordje; Dunkl, István; Thiede, Rasmus; Eugster, Patricia
2018-01-01
The Himalayan thrust belt comprises three in-sequence foreland-propagating orogen-scale faults, the Main Central thrust, the Main Boundary thrust, and the Main Frontal thrust. Recently, the Munsiari-Ramgarh-Shumar thrust system has been recognized as an additional, potentially orogen-scale shear zone in the proximal footwall of the Main Central thrust. The timing of the Munsiari, Ramgarh, and Shumar thrusts and their role in Himalayan tectonics are disputed. We present 31 new zircon (U-Th)/He ages from a profile across the central Himachal Himalaya in the Beas River area. Within a ∼40 km wide belt northeast of the Kullu-Larji-Rampur window, ages ranging from 2.4 ± 0.4 Ma to 5.4 ± 0.9 Ma constrain a distinct episode of rapid Pliocene to Present exhumation; north and south of this belt, zircon (U-Th)/He ages are older (7.0 ± 0.7 Ma to 42.2 ± 2.1 Ma). We attribute the Pliocene rapid exhumation episode to basal accretion to the Himalayan thrust belt and duplex formation in the Lesser Himalayan sequence including initiation of the Munsiari thrust. Pecube thermokinematic modelling suggests exhumation rates of ∼2-3 mm/yr from 4-7 to 0 Ma above the duplex contrasting with lower (<0.3 mm/yr) middle-late Miocene exhumation rates. The Munsiari thrust terminates laterally in central Himachal Pradesh. In the NW Indian Himalaya, the Main Central thrust zone comprises the sheared basal sections of the Greater Himalayan sequence and the mylonitic 'Bajaura nappe' of Lesser Himalayan affinity. We correlate the Bajaura unit with the Ramgarh thrust sheet in Nepal based on similar lithologies and the middle Miocene age of deformation. The Munsiari thrust in the central Himachal Himalaya is several Myr younger than deformation in the Bajaura and Ramgarh thrust sheets. Our results illustrate the complex and segmented nature of the Munsiari-Ramgarh-Shumar thrust system.
Basin evolution of the Paleoproterozoic Karelian Supergroup of the Fennoscandian (Baltic) Shield
NASA Astrophysics Data System (ADS)
Ojakangas, Richard W.; Marmo, Jukka S.; Heiskanen, Kim I.
2001-06-01
The peneplaned Archean craton of the Fennoscandian Shield served as a platform upon which a continental margin assemblage, the Karelian Supergroup, was deposited between ˜2.45 and ˜1.9 Ga. Major subaerial unconformities separate five sedimentary-volcanic groups of the supergroup — the Sumian, Sariolian, Jatulian (Lower and Upper), Ludicovian, and Kalevian. Second-order depositional sequences are implied. Early extension (˜2.45 Ga) resulted in localized rifts that were likely areas of later subsidence as well; they received thicker accumulations of sediments and volcanic rocks than did the adjacent platform. It is in these rifts and perhaps other downwarped areas that the sediments that were once more widespread were preserved, leading to interpretations of separate depositional basins by some workers. Seas transgressed onto the craton at least three times — in Sariolian time as evidenced by interpreted glaciomarine deposits, in Jatulian time as evidenced by widespread orthoquartzites (including tidalites) and stromatolitic carbonates, and in Ludicovian time as evidenced by organic-rich shales and turbidites. The tectonic-magmatic history is complex. Three episodes of mafic volcanism were widespread at 2.45, 2.2, and 2.1 Ga. Island arcs formed to the south of the craton and collided at ˜1.9-1.85 Ga (the Svecofennian orogeny). This collision resulted in northeastward thrusting (e.g. the Outokumpu nappe) and folding and metamorphism of the Karelian Supergroup. The primary paleoclimatic indicators are (1) glaciogenic rocks near the base of the Paleoproterozoic succession indicating ice-house conditions; (2) remnants of a major paleosol on the glaciogenic rocks, indicative of deep weathering under greenhouse conditions (subtropical or tropical?); and (3) carbonate pseudomorphs after evaporite minerals in stromatolitic dolomites, perhaps indicative of aridity. Similarities in magmatism, tectonics, sedimentary rock types and sequences, and paleoclimatic indicators have led to hypotheses that the Fennoscandian Shield and North America may have been part of the same supercontinent during Neoarchean and Paleoproterozoic time.
NASA Astrophysics Data System (ADS)
Scheffer, Christophe; Tarantola, Alexandre; Vanderhaeghe, Olivier; Voudouris, Panagiotis; Rigaudier, Thomas; Photiades, Adonis; Morin, Denis; Alloucherie, Alison
2017-10-01
The impact of lithological heterogeneities on deformation, fluid flow and ore deposition is discussed based on the example of the Lavrion low-angle detachment partly accommodating gravitational collapse of the Hellenides orogenic belt in Greece. The Lavrion peninsula is characterised by a multiphase Pb-Zn-Fe-Cu-Ag ore system with a probable pre-concentration before subduction followed by progressive remobilisation and deposition coeval with the development of a low-angle ductile to brittle shear zone. The mylonitic marble below the detachment shear zone is composed of white layers of pure marble alternating with blue layers containing impurities (SiO2, Al2O3, carbonaceous material). Ductile mylonitic deformation is more pervasive in the less competent impure blue marble. We propose that localised deformation in the impure marble is associated with fluid circulation and dolomitisation, which in turn causes an increase in competence of these layers. Mineralised cataclastic zones, crosscutting the mylonitic fabric, are preferentially localised in the more competent dolomitic layers. Oxygen and carbon isotopic signatures of marble invaded by carbonate replacement deposits during ductile to ductile-brittle deformation are consistent with decarbonation coeval with the invasion of magmatic fluids. Mineralised cataclastic zones reflecting brittle deformation evolve from low 13C to low 18O signatures, interpreted as local interaction with carbonaceous material that trends toward the contribution of a surface-derived fluid. These features indicate that the Lavrion area records a complex deposition history influenced by the evolution of fluid reservoirs induced by the thermal and mechanical evolution of the marble nappe stack. Ore remobilisation and deposition associated with the activity of the low-angle detachment is (i) firstly related to the intrusion of the Plaka granodiorite leading to porphyry-type and carbonate replacement mineralisation during ductile-brittle deformation and (ii) then marked by progressive penetration of surface-derived fluids guided by strain localisation in the more competent levels leading to epithermal mineralisation associated with brittle deformation.
NASA Astrophysics Data System (ADS)
Escuder-Viruete, Javier; Baumgartner, Peter O.; Castillo-Carrión, Mercedes
2015-08-01
The Santa Elena ophiolite (SEO) is an ultramafic nappe of more than 270 km2 overlying a tectonic serpentinite-matrix mélange in northwest Costa Rica. It is mainly composed of Cpx-rich and Cpx-poor harzburgites (~ 2.5 km-thick), with minor lherzolite, dunite and chromitite, as well as intrusive mafic sills and subvertical dikes, which coalesce into an upper Isla Negritos gabbroic sill complex. Minerals and whole-rock features of the Cpx-rich and Cpx-poor harzburgites share features of the abyssal and supra-subduction zone (SSZ) peridotites, respectively. To explain these characteristics two-stages of melting and refertilization processes are required. By means of trace element modeling, the composition of Cpx-rich harzburgites may be reproduced by up to ~ 5-10% melting of a primitive mantle source, and the composition of Cpx-poor harzburgites and dunites by ~ 15-18% melting of an already depleted mantle. Therefore, the Cpx-rich harzburgites can be interpreted as product of first-stage melting and low-degrees of melt-rock interaction in a mid-ocean ridge environment, and the Cpx-poor harzburgites and dunites as the product of second-stage melting and refertilization in a SSZ setting. The mafic sills and the Isla Negrito gabbros are genetically related and can be explained as crystallization from the liquids that were extracted from the lower SSZ mantle levels and emplaced at shallow conditions. The Murciélagos Island basalts are not directly related to the ultramafic and mafic rocks of the SEO. Their E-MORB-like composition is similar to most of the CLIP mafic lavas and suggests a common Caribbean plume-related source. The SEO represents a fragment of Pacific-derived, SSZ oceanic lithosphere emplaced onto the southern North America margin during the late Cretaceous. Because of the predominance of rollback-induced extension during its history, only a limited amount of crustal rocks were formed and preserved in the SEO.
NASA Astrophysics Data System (ADS)
Owona, Sebastien; Schulz, Bernhard; Ratschbacher, Lothar; Mvondo Ondoa, Joseph; Ekodeck, Georges E.; Tchoua, Félix M.; Affaton, Pascal
2011-01-01
Garnet-bearing micaschists and paragneisses of the Yaounde Group in the Pan-African Central African Orogenic Belt in Cameroon underwent a polyphase structural evolution with the deformation stages D 1-D 2, D 3 and D 4. The garnet-bearing assemblages crystallized in course of the deformation stage D 1-D 2 which led to the formation of the regional main foliation S 2. In XCa- XMg coordinates one can distinguish several zonation trends in the garnet porphyroblasts. Zonation trends with increasing XMg and variably decreasing XCa signalize a garnet growth during prograde metamorphism. Intermineral microstructures provided criteria for local equilibria and a structurally controlled application of geothermobarometers based on cation exchange and net transfer reactions. The syndeformational P- T path sections calculated from cores and rims of garnets in individual samples partly overlap and align along clockwise P- T trends. The P- T evolution started at ˜450 °C/7 kbar, passed high-pressure conditions at 11-12 kbar at variable temperatures (600-700 °C) and involved a marked decompression toward 6-7 kbar at high temperatures (700-750 °C). Th-U-Pb dating of metamorphic monazite by electron microprobe (EMP-CHIME method) in eight samples revealed a single period of crystallization between 613 ± 33 Ma and 586 ± 15 Ma. The EMP-monazite age populations between 613 ± 33 Ma enclosed in garnet and 605 ± 12 Ma in the matrix apparently bracket the high temperature-intermediate pressure stage at the end of the prograde P- T path. The younger monazites crystallized still at amphibolite-facies conditions during subsequent retrogression. The Pan-African overall clockwise P- T evolution in the Yaounde Group with its syndeformational high pressure stages and marked pressure variations is typical of the parts of orogens which underwent contractional crustal thickening by stacking of nappe units during continental collision and/or during subduction-related accretionary processes.
NASA Astrophysics Data System (ADS)
Scharf, Andreas; Amrouch, Khalid; Mattern, Frank
2016-04-01
Field observations, including oolite-, styolite, fracture analyses combined with laboratory measurements using calcite twin analysis show a ductile-to-brittle multiple-phase deformation history of the Arabian carbonate platform, ranging from Late Cretaceous to Neogene times. The Arabian carbonate platform, belonging to a passive continental margin since the Late Permian, was the site of the obduction of Tethyan oceanic lithosphere (Semail Ophiolite) during the Late Cretaceous, caused by the northward drift of Africa (Hanna, 1995). After or during the obduction, large parts of the entire nape pile composed of the Arabian platform and the Hawasina/Semail nappes, where folded and exhumed. This led to the exhumation of the Jabal Akhdar Dome. Our oolite samples from the Jabal Akhdar Dome and from below the ophiolite thrust reveal the strain ellipsoid related to the obduction. This strain ellipsoid shows components of pure and simple shear. In the latter case the longest axes of the strain ellipsoid are parallelly oriented to the direction of obduction (NE to SW), which is in good agreement with the direction of obduction as depicted by Hacker et al. (1996) for the study area. The pure-shear component (flattening) is interpreted to be a result of the overburden of the up to 7 km thick oceanic lithosphere. The oolites that are located approximately 200 m below the ophiolite thrust contact provide evidence for ductile deformation during the Late Cretaceous. These results are compared with strain and stress tensors obtained from styolites, calcite twins and fracture analyses, derived from the uppermost part of the Arabian platform of the Jabal Akhdar Dome. Our results show a complex and detailed structural deformation of the post-obduction history of the Jabal Akhdar Dome, including its folding and exhumation. Hanna, S. (1995) Field guide to the Geology of Oman. Ruwi (Historical Association of Oman. 178 pp. Hacker, B.R., Mosenfelder, J.L. & Gnos, E. (1996) Rapid emplacement of the Oman ophiolite: Thermal and geochronological constraints. Tectonics, 15(6), 1230-1247.
NASA Astrophysics Data System (ADS)
Schneider, Susanne; Rosenberg, Claudio; Hammerschmidt, Konrad
2010-05-01
The Tauern Window (TW) is the only domain within the Eastern Alps where deep crustal, Tertiary metamorphic rocks were exhumed to surface. The window is bounded by large-scale faults, partly considered to be responsible for its exhumation (e.g., Selverstone 1988, Fügenschuh 1997), and it is also cross cut internally by large-scale shear zones, whose significance in terms of type and timing of deformation, exhumation, and large-scale kinematic links is the subject of our investigation. These shear zones (Ahorn, Olperer, Greiner, Ahrntal) are widespread throughout the western TW, from the mm- to the km-scale. They are sinistral and located in the steep limbs of upright antiforms, forming a mylonitic foliation, that strikes parallel to the axial planes of these upright folds. We present new structural and geochronological data, obtained by in-situ dating of microstructurally defined syn- and postkinematic grains, to constrain the duration and termination of folding and sinistral shearing. Previous dating suggested initiation of shearing contemporaneous to nappe stacking between 32-and 30Ma, ongoing until 15Ma (Glodny et al., 2008). However, the fabric of the dated grains was not related to deformation phases defined from structural overprinting relationships, and the classical separation technique did not allow to separate synkinematic from pre- and post- kinematic grains. The northern margin of the western TW is pervasively overprinted by the Ahorn Shear Zone (Rosenberg & Schneider 2008), which shows S-side up kinematic indicators in addition to the sinistral ones, and a pronounced southward increase in metamorphic grade from lower greenschist facies to amphibolite facies conditions, within 2km. Phengites of the mylonitic foliation dated with the Rb/Sr in-situ technique, yield formation ages of 14-24Ma . The southern margin of the western TW is overprinted by the sinistral Ahrntal Fault (Schneider et al. 2009), which cuts discordantly several nappes from the Zentralgneiss to the Upper Austroalpine units. Within the Upper Penninic nappes N-side up kinematic indicators occur, in addition to the sinistral ones. Newly formed biotites of Zentralgneiss rocks have been dated with the Rb/Sr technique (Kitzig et al. 2009), yielding 18-20Ma for their formation during sinistral deformation. Fine-grained phengites from the axial plane foliation of the upright folds were dated with the K/Ar method, yielding 14-17Ma. Ar/Ar in-situ LA analyses of sinistral mylonites (Ahorn, Olperer and Greiner) yield formation ages of syn-kinematic phengites between 24-12Ma. These grains are overgrown by post-kinematic phengites of 12-9Ma. Northeast of the western TW, sinistral shear is accommodated by the brittle sinistral SEMP Fault system, whose activity has been dated to 17Ma (Peresson & Decker 1997). Several sinistral shear zones (Ahorn, Greiner, Ahrntal) of the western TW may coalesce into the SEMP Fault (e.g., Linzer et al., 2002). In the west, the Ahorn Shear Zone terminates nearly 10km east of the Brenner Fault, into a NW-striking fold belt. The Ahrntal Fault continues into the Jaufen Fault, which merges with the brittle sinistral Giudicarie Fault. Motion along the Giudicarie Fault initiated in the Miocene (Stipp et al., 2004), or already in the Oligocene (Müller et al 2001). Based on these results, a temporal, kinematic and geometric continuity between sinistral shearing along the Giudicarie Fault, along the SEMP Fault, and throughout the western TW, can be assessed. The sinistral shear zones of the western TW are kinematically linked to upright folds, hence to crustal thickening. Upright folding and sinistral shearing were active since 24Ma and terminated at 12Ma. In summary, the sinistral displacements of the Giudicarie System appear to be partitioned into upright folds and sinistral, transpressive shear zones in the western Tauern Window, both of which contribute to its exhumation. The coalescence of the sinistral shear zones into the SEMP Fault System coincides with the eastern termination of the ENE-striking upright folds, possibly indicating transfer of shortening into a strike-slip displacement. Therefore, the western TW as a whole, represents a Miocene, sinistral transpressive belt, accommodating sinistral displacements associated with South-Alpine indentation by folding and sinistral shearing, and transferring these into sinistral movements associated with lateral escape along the SEMP System, until 12 Ma.
Sustainable groundwater resources, Heretaunga Plains, Hawke's Bay, New Zealand
NASA Astrophysics Data System (ADS)
Brown, L. J.; Dravid, P. N.; Hudson, N. A.; Taylor, C. B.
The Heretaunga Plains, Hawke's Bay, New Zealand, is underlain by Quaternary fluvial, estuarine-lagoonal, and marine deposits infilling a subsiding syncline. Within the depositional sequence, river-channel gravels form one of the most important aquifer systems in New Zealand. An interconnected unconfined-confined aquifer system contains groundwater recharged from the Ngaruroro River bed at the inland margin of the plain, 20km from the coast. At the coast, gravel aquifers extend to a depth of 250m. In 1994-95, 66Mm3 of high quality groundwater was ed for city and rural water supply, agriculture, industry, and horticulture. Use of groundwater, particularly for irrigation, has increased in the last 5years. Concern as to the sustainability of the groundwater resource led to a research programme (1991-96). This paper presents the results and recommends specific monitoring and research work to refine the groundwater balance, and define and maintain the sustainable yield of the aquifer system. Three critical management factors are identified. These are (1) to ensure maintenance of consistent, unimpeded groundwater recharge from the Ngaruroro River; (2) to specifically monitor groundwater levels and quality at the margins of the aquifer system, where transmissivity is <5000m2/d and summer groundwater levels indicate that ion exceeds recharge; (3) to review groundwater-quality programs to ensure that areas where contamination vulnerability is identified as being highest are covered by regular monitoring. Résumé Les plaines d'Heretaunga, dans la baie d'Hawke (Nouvelle-Zélande), sont occupées par des dépôts quaternaires fluviaux, estuariens lagunaires et marins remplissant un synclinal subsident. Dans cette séquence de dépôts, des graviers de chenaux fluviatiles forment l'un des plus importants systèmes aquifères de Nouvelle-Zélande. Un système aquifère interconnecté libre et captif contient de l'eau souterraine dont la recharge est assurée à partir du lit de la rivière Ngaruroro sur la marge intérieure de la plaine, à 20km de la côte. Sur la côte, les aquifères des graviers existent à 250m de profondeur. En 1994-95, 66hm3 d'eau souterraine d'excellente qualité ont été extraits pour l'eau potable de villes et de villages, pour l'agriculture, pour l'industrie et pour l'horticulture. L'utilisation de l'eau souterraine, en particulier pour l'irrigation, s'est accrue au cours des 5 dernières années. La prise de conscience du développement durable de la ressource en eau souterraine a conduit à un programme de recherche (1991-96). Cet article présente les résultats de ce programme et recommande les contrôles spécifiques et les travaux de recherche pour affiner le bilan d'eau souterraine, et pour définir et maintenir un rendement durable du système aquifère. Trois facteurs de gestion critique ont été identifiés. Ce sont (1) l'assurance de maintenir une recharge de la nappe conséquente et sans entrave à partir de la rivière Ngaruroro, (2) le suivi spécifique des niveaux de la nappe et de la qualité aux marges du système aquifère, où la transmissivité est inférieure à 5000 m2/j et où les niveaux de la nappe en été indiquent que les prélèvements sont supérieurs à la recharge; et (3) le ré-examen des programmes de qualité de l'eau souterraine pour s'assurer que les zones où la vulnérabilité aux contaminations est identifiée comme étant la plus élevée sont couvertes par une surveillance régulière.
NASA Astrophysics Data System (ADS)
Bertle, R. J.; Götzinger, M. A.; Koller, F.
2003-04-01
Fluid inclusions studies in metamorphic rocks allow to reconstruct not only the chemistry of the fluids enabling and/or supporting metamorphic reactions but also the late metamorphic evolution of orogenesis. Therefore late, discordant quarz-calcite veins were investigated using FI-techniques. The Engadine Window which is exposed at the Swiss-Austrian-border exposes the penninic units of the Western Alps as a tectonic window within the Austroalpine nappes of the Eastern Alps. The nappes of the Engadine window underwent metamorphism and deformation during Tertiary times (THÖNI 1981, BERTLE 2000). The highest unit (Fimber unit) and the core of the window (= Zone of Pfunds) suffered HP-LT-metamorphism. P-T-conditions for parts of the Zone of Pfunds at the region of Piz Mundin are at 13-15 kbar at 380^oC (BOUSQUET et al. 2002) indicated by the occurrence of carpholite and glaucophane. The late metamorphic history is not very well constrained. There exist only a few FI-data published in an abstract by STÖCKHERT et al. 1990 and some unpublished data in RING 1989. During the ongoing mapping campaign of the first author samples from the Fimber unit and the Zone of Pfunds were collected and investigated using a LINKHAM freezing-cooling-stage. The investigated veins are discordant in respect to the main-foliation of the rocks and show nice cristalls of quarz, calcite and sometimes feldspar (adularia). Structural data implie that the investigated veins correspond to a set of ac-joints that correlate to the late updoming of the large "Engadiner Gewölbe" (Engadin anticlinal structure, MATTMÜLLER 1996). All investigated veins (from all tectonic units) show the same relationship to the anticlinal structure. FI-investigations show, that a large amount of the primary FI are decrepitated, however it was possible to find enough to provide a serious statistical data set. FI from Piz Mundin in the core of the Engadine window exhibit at the base of the vein quarz at the contact to the host rock (blueschist) epidote-clinozoisite cristalls. Futheron amphibole is visible. It is common at the base of the vein quarz and decreases towards the middle of the vein. FI are H2O-rich and indicate high pressure of trapping. Quarzes from the upper most part of the Zone of Pfunds from S of Zeblasjoch (W of Samnaun Dorf) show two main groups of primary FI which could be differentiated at room temperature: homogenous FI and such with a bubble. All FI were frozen at max. temperatures of ca. -56 ^oC. Bigger FI show cracking due to cristallisation pressure (build up of "wings"), the cracks however closed again during heating, so that the FI remained closed. Initial melting started between -20 ^oC (first recristallisation signs) and -9 ^oC, final melting was observable at -1 ^oC to 0 ^oC. Then the FI was a.) homogenous or b.) showed a bubble. Homogenisation Temp. of the inclusions with bubble were in the range of 70 to 150 ^oC , most of them between 70 and 80 ^oC and 110 - 125 ^oC. The data indicate a more or less pure H_2O-system for the FI under high pressure. Assuming a cristallisation temperature of the cristalls of about 200 to 250 ^oC and a density of the FI between 0,97 and 1,0 g/cm^3 pressures of 2,5 to 4,5 Kbar are indicated. The same P-T-conditions (same chemistry and melting & homog. Temp.) could be derived from FI in quarz from the Salaaser Kopf (Idalpe) for the late metamorphic evolution of the Fimber unit, indicating that the late metamorphic history of both units is the same. It is concluded that opening of the veins and first cristallisation of vein quarz corresponds to the first signs of updoming of the Engadine anticlinal structure. Updoming of the anticline started when the whole nappe stack was covered by the Austroalpine nappes. Therefore FI show such high pressures for trapping of the fluid. Acknowledgements: Data partly result from FWF-project P. 15278 "Bündnerschieferakkretion in the westlichen Ostalpen". Financal support is greatly acknowledged. References: BERTLE, R. J. 2000: Zur Geologie und Geochronologie um Alp Trida (Samnaun/Schweiz) einschließlich ingenieurgeologischer Fragen der Gebirgsauflösung und des Permafrosts. - Unpubl. Msc-Thesis. Univ. Wien, 395 S. BOUSQUET, R., GOFFÉ, B., VIDAL, O., OBERHÄNSLI, R. & PATRIAT, M. 2002: The tectono-metamorphic history of the Valaisan domain from the Western to the Central Alps: new constraints on the evolution of the Alps. - Geol. Soc. America Bull., 114/2, S. 207-225. KÜSTER, M. &STÖCKHERT, B. 1997: Density changes of fluid inclusions in high-pressure low-temperature metamorphic rocks from Crete: A thermobarometric approach based on the creep strength of the host minerals. Lithos, 41, S. 151-167. MATTMÜLLER, C. R. 1996: Geometrische Untersuchung des Inntalgewölbes. - Jahrb. Geol. B.-A., 139/1, S. 45-69, Wien 1996. RING, U. 1989: Tectonogenesis of the Penninic/Austroalpine Boundary Zone: The Arosa Zone (Grisons Rätikon area, Swiss-Austrian Alps). - Unpubl. Phd.-Thesis., 177 p., Tübingen. STOECKHERT, B., RÖSSNER, G., KÜSTER, M., HEIDER, M., GUNDLACH, K. &RICHTER, D.K. 1990: High-Pressure Metamorphism of the Mesozoic Sediments in the Lower Engadine Window, Eastern Alps. - Terra Abstracts, 2, S. 34, 1990. THÖNI, M. 1981: Degree and Evolution of the Alpine Metamorphism in the Austroalpine Unit W of the Hohe Tauern in the light of K/Ar and Rb/Sr Age Determinations on Micas. - Jahrb. Geol. B.-A., 124/1, S. 111-174, Wien 1981.
The Metalloprotease Meprin β Generates Amino Terminal-truncated Amyloid β Peptide Species*
Bien, Jessica; Jefferson, Tamara; Čaušević, Mirsada; Jumpertz, Thorsten; Munter, Lisa; Multhaup, Gerd; Weggen, Sascha; Becker-Pauly, Christoph; Pietrzik, Claus U.
2012-01-01
The amyloid β (Aβ) peptide, which is abundantly found in the brains of patients suffering from Alzheimer disease, is central in the pathogenesis of this disease. Therefore, to understand the processing of the amyloid precursor protein (APP) is of critical importance. Recently, we demonstrated that the metalloprotease meprin β cleaves APP and liberates soluble N-terminal APP (N-APP) fragments. In this work, we present evidence that meprin β can also process APP in a manner reminiscent of β-secretase. We identified cleavage sites of meprin β in the amyloid β sequence of the wild type and Swedish mutant of APP at positions p1 and p2, thereby generating Aβ variants starting at the first or second amino acid residue. We observed even higher kinetic values for meprin β than BACE1 for both the wild type and the Swedish mutant APP form. This enzymatic activity of meprin β on APP and Aβ generation was also observed in the absence of BACE1/2 activity using a β-secretase inhibitor and BACE knock-out cells, indicating that meprin β acts independently of β-secretase. PMID:22879596
Geology of the Windsor quadrangle, Massachusetts
Norton, Stephen A.
1967-01-01
The Windsor quadrangle lies on the boundary between the eugeosynclinal and miogeosynclinal rocks of the Appalachian geosyncline on the western flank of the metamorphic high in western New England. Precambrian rocks crop out in a north-trending belt in the central part of the quadrangle. They have been classified into 2 formations. The Stamford Granite Gneiss crops out in the eastern half of the Precambrian terrane. It is a microcline-quartz-biotite augen gneiss. Stratified Precambrian rocks (the Hinsdale Gneiss) crop out entirely the west of the Stamford Granite Gneiss. They are predominantly highly metamorphosed felsic gneisses and .quartzites with minor calc-silicate rock, amphibolite, and graphitic gneiss. Eugeosynclinal rocks (the Hoosac Formation and the Rowe Schist), .ranging in age from Lower Cambrian to Lower Ordovician, crop out in a north-trending belt east of the Precambrian terrane. They are composed predominantly of albite schist and muscovite-chlorite schist with minor garnet schist, quartz-muscovite-calcite schist, felsic granulite and gneiss, quartzite, greenschist, and carbonaceous phyllite and schist. West of the Precambrian rocks, the Hoosac Formation is overlain by a miogeosynclinal sequence (the Dalton Formation, Cheshire Quartzite, Kitchen Brook Dolomite, Clarendon Springs Dolomite, Shelburne Marble, and the Bascom Formation) ranging in age from Lower Cambrian to Lower Ordovician. These rocks are unconformably overlain by the Berkshire Schist of Middle Ordovician age that is composed of carbonaceous schist, phyllite, and quartzite. The relationships in the zone of transition between the miogeosynclinal and eugeosynclinal rocks are unknown because the rocks of this zone are no longer present. The contact between the eugeosynclinal Hoosac Formation and the Dalton Format ion is conformable and deposition. The dominant structure is a large recumbent, northwest-facing anticline (the Hoosac nappe) with a Precambrian co re. The miogeosynclinal rocks are inverted in the northwestern part of the quadrangle and upright in the southwestern part of the quadrangle. A later generation of open, post-metamorphic folds has folded the recumbent folds in the miogeosynclinal rocks. The eugeosynclinal rocks show 3 phases of folding. The earliest folds are isoclinal, have steep plunges, were synmetamorphic, and have a strong axial plane schistosity. Two post-metamorphic generations of folds are more open and have axial plane cleavage. The development of the Hoosac nappe and the isoclinal folds was accompanied by regional metamorphism of the garnet zone. The pressure exceeded the pressure for the triple point of the Al2SiO 5 polymorphs. The composition of the paragonite coexisting with muscovite suggests a period of retrograde metamorphism for the Paleozoic rocks as well as the Cambrian rocks that were originally of higher grade (sillimanite? ). Later events include high-angle faulting (Triassic?), erosion, and Pleistocene glaciation.
NASA Astrophysics Data System (ADS)
Mullis, Josef; Dubessy, Jean; Poty, Bernard; O'Neil, James
1994-05-01
Fluid evolution during neo-alpine metamorphism during late stages of the continental collision between Europe and Africa was studied by analyzing fluid inclusions in alpine fissure quartz collected in forty-nine localities along a geotraverse through the Central Alps, Switzerland. The methods employed include microthermometry, micro-Raman spectroscopy, K/Na thermometry, and stable isotope analysis. Early fluid inclusions provide evidence of close to peak metamorphic temperatures of the late Tertiary or neo-alpine metamorphic event. Fluid composition evolved along the geotraverse from north to south as follows: higher hydrocarbons were dominant in the low- and medium-grade diagenetic zones, methane was the main volatile in the high-grade diagenetic and low-grade anchizone, water dominated in the highgrade anchizone and low-grade epizone, with CO2 > 10 mol% in the high-grade epizone and in the mesozone. Higher hydrocarbons and CH 4 were the products of kerogen maturation and cracking of preexisting petroleum. Large water supplies originated from the dehydration of cooler metasedimentary rocks that were overthrust by crystalline basements of the Lepontines, Aar, and Gotthard massifs. Carbon isotope analyses suggest that the CO 2 component was derived from oxidation of graphitic matter, especially in the vicinity of sulfate-bearing metasediments and from decarbonation reactions. In the Aar and Gotthard massifs as well as in the Helvetic Axen nappe and its underlying North Helvetic flysch, high fluid pressures prevailed and favored nappe transport. By contrast, in the southern Lepontine area, very low early fluid pressures were probably related to dry rocks and scarce metasediments, and to high geothermal gradients that resulted from intense uplift and erosion between 26 and 18 Ma. Retrograde fluid evolution was recorded by a succession of fluid inclusion populations in each alpine fissure. It was controlled by uplift and cooling and characterized by decreasing contents of volatiles and an increase in δ 18O of host quartz. Tectonic activity led to episodic pressure drops of at least 0.5 to 2 kbar and promoted fluid unmixing, channelized flow, and rapid growth of skeletal quartz. Channelized rather than pervasive fluid migration at temperatures < 450° C and under conditions of brittle deformation is documented by episodic increases in salinity and by fluid flushing through the massifs. There is stable isotope evidence for involvement of meteoric water only in late-crystallizing quartz. Formation of Alpine fissures and fissure minerals was the result of a unique coincidence of late continental collision (< 450° C), fluid expulsion from overthrust metasediments, uplift, and erosion.
NASA Astrophysics Data System (ADS)
Panea, I.; Stephenson, R.; Knapp, C.; Mocanu, V.; Drijkoningen, G.; Matenco, L.; Knapp, J.; Prodehl, K.
2005-12-01
The DACIA PLAN (Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics) deep seismic sounding survey was performed in August-September 2001 in south-eastern Romania, at the same time as the regional deep refraction seismic survey VRANCEA 2001. The main goal of the experiment was to obtain new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basins developed within and adjacent to the seismically-active Vrancea zone, including the Focsani Basin. The seismic reflection line had a WNW-ESE orientation, running from internal East Carpathians units, across the mountainous south-eastern Carpathians, and the foreland Focsani Basin towards the Danube Delta. There were 131 shot points along the profile, with about 1 km spacing, and data were recorded with stand-alone RefTek-125s (also known as "Texans"), supplied by the University Texas at El Paso and the PASSCAL Institute. The entire line was recorded in three deployments, using about 340 receivers in the first deployment and 640 receivers in each of the other two deployments. The resulting deep seismic reflection stacks, processed to 20 s along the entire profile and to 10 s in the eastern Focsani Basin, are presented here. The regional architecture of the latter, interpreted in the context of abundant independent constraint from exploration seismic and subsurface data, is well imaged. Image quality within and beneath the thrust belt is of much poorer quality. Nevertheless, there is good evidence to suggest that a thick (˜10 km) sedimentary basin having the structure of a graben and of indeterminate age underlies the westernmost part of the Focsani Basin, in the depth range 10-25 km. Most of the crustal depth seismicity observed in the Vrancea zone (as opposed to the more intense upper mantle seismicity) appears to be associated with this sedimentary basin. The sedimentary successions within this basin and other horizons visible further to the west, beneath the Carpathian nappes, suggest that the geometry of the Neogene and recent uplift observed in the Vrancea zone, likely coupled with contemporaneous rapid subsidence in the foreland, is detached from deeper levels of the crust at about 10 km depth. The Moho lies at a depth of about 40 km along the profile, its poor expression in the reflection stack being strengthened by independent estimates from the refraction data. Given the apparent thickness of the (meta)sedimentary supracrustal units, the crystalline crust beneath this area is quite thin (< 20 km) supporting the hypothesis that there may have been delamination of (lower) continental crust in this area involved in the evolution of the seismic Vrancea zone.
NASA Astrophysics Data System (ADS)
Hässig, Marc; Rolland, Yann; Sosson, Marc; Hassani, Riad; Topuz, Gultekin; Faruk Çelik, Ömer; Gerbault, Muriel; Galoyan, Ghazar; Müller, Carla; Sahakyan, Lilit; Avagyan, Ara
2013-04-01
In the Lesser Caucasus three main domains are distinguished from SW to NE: (1) the South Armenian Block (SAB), a Gondwanian-derived continental terrane; (2) scattered outcrops of ophiolites coming up against the Sevan-Akera suture zone; and (3) the Eurasian plate. The Armenian ophiolites represent remnants of an oceanic domain which disappeared during Eurasia-Arabia convergence. Previous works using geochemical whole-rock analyses, 40Ar/39Ar and paleontological dating have shown that the ophiolite outcrops throughout this area were emplaced during the Late Cretaceous as one non-metamorphic preserved ophiolitic nappe of back-arc origin that formed during Middle to Late Jurassic. From these works, tectonic reconstructions include two clearly identified subductions, one related to the Neotethys subduction beneath the Eurasian margin and another to intra-oceanic subduction responsible for the opening of the back-arc basin corresponding to the ophiolites of the Lesser Caucasus. The analysis of the two stages of metamorphism of the garnet amphibolites of the ophiolite obduction sole at Amasia (M1: HT-LP peak of P = 6-7 kbar and T > 630°C; M2; MP-MT peak at P = 8-10 kbar and T = 600°C) has allowed us to deduce the onset of subduction of the SAB at 90 Ma for this locality, which age coincides with other paleontological ages at the obduction front. A preliminary paleomagnetic survey has also brought quantification to the amount of oceanic domain which disappeared by subduction between the SAB and Eurasia before collision. We propose a dynamic finite element model using ADELI to test the incidence of parameters such as the density of the different domains (or the interval between the densities), closing speed (or speeds if sporadic), the importance and interactions of mantle discontinuities with the subducting lithosphere and set a lithospheric model. Our field observations and analyses are used to validate combinations of factors. The aim is to better qualify the predominant factors and quantify the conditions leading to the onset of obduction, the paradox of dense oceanic lithosphere emplaced on top of a continental domain, after subduction and prior to collision. The results of this modeling are also compared to new observations of the assumed eastward extension of this ophiolitic nappe in NW Anatolia. Analyses of the Refahiye ophiolites show similar geochemical signatures as the Armenian ophiolites, due to a similar setting of formation (back-arc). The impact of the obduction of such a vast oceanic domain is not to be taken for granted when considering the following collision stage.
NASA Astrophysics Data System (ADS)
Tzanis, A.; Efstathiou, A.; Chailas, S.; Stamatakis, M.
2018-03-01
This work reports evidence of recent tectonically controlled plutonic magmatism related to Neogene volcanism in a broad area of Northeast Peloponnesus (Greece) that is straddled by the Hellenic Volcanic Arc and comprises the Argolid, the Argolic and Saronic gulfs and eastern Corinthia including the province of Crommyonia at the western half of Megaris peninsula (western Attica). We assess the contemporary stress field based on formal inversion of well-constrained crustal earthquake focal mechanisms and determine that it is principally extensional and NE-SW oriented, with σ1 strike and plunge being N64° and 77°, respectively and σ3 strikes and plunge N210° and 10°. This generates WNW-ESE and NW-SE faults, the former being dominant in the Saronic Gulf and the latter in the Argolic. In addition, the analysis predicts E-W and N330° faults with non-trivial right- and left-lateral heave, respectively, which are consistent with the R and R΄ directions of Riedel shear theory and explain a number of observed earthquake focal mechanisms and earthquake epicentre alignments. We also present a semi-quantitative analysis of observed aeromagnetic anomalies by performing numerical modelling of the radially averaged power spectrum with an efficient anomaly separation scheme based on a new type of 2-D Fourier domain filter introduced herein, the Radial Extended Meyer Window. This analysis identifies an extensive complex of magnetized rock formations buried at depths greater than 3 km which, given the geology and geotectonic setting of the area, can hardly be explained with anything other than calc-alkaline intrusions (plutons). At northeastern Corinthia and Crommyonia, this type of intrusive activity is unexceptional, mainly concentrated in the Gulf of Megara-Sousaki areas and consistent with the low-intensity, small-scale Pliocene dacitic volcanism observed therein. Conversely, large-scale elongate anomalies of E-W and N330° orientation have been identified in the Argolid, generally collocated with and delimited by extensional tectonic structures (grabens and major faults) of analogous orientation. These are interpreted to comprise calc-alkaline plutons whose placement has been controlled by the regional tectonic activity (syn-rift magmatism); their nature and origin is demonstrated with convergent evidence from deep magnetotelluric, seismological, seismic tomography and other investigations. A large number of shallow and superficial (less than 2 km) magnetic sources have also been identified; these are generated by a complex of distributed near-surface formations consisting of subvertically developing buried or extrusive volcanics and outcropping or shallow-buried ophiolitic formations (thin nappes of tectonic mélange and dismembered ophiolitic complexes). The joint analysis of the data facilitates the formulation of a tentative geotectonic model for Argolis peninsula, according to which the strain differential caused by the disparate extensional trends of the Argolic and Saronic gulfs is accommodated by right-lateral block motion associated with igneous intrusive activity at major block boundaries.
NASA Astrophysics Data System (ADS)
Hatipoğlu, Murat; Türk, Necdet; Chamberlain, Steven C.; Murat Akgün, A.
2010-10-01
Remobilized-origin gem diaspore and related minerals occur as infill within structurally controlled voids that developed in the upper of two distinct karst unconformity-type metabauxite (diasporite) horizons in the İlbir Mountains area of the Milas-Muğla province, SW Turkey. Colour-change diaspore (trademarked as zultanite) and associated mineral specimens (greenish muscovite, chloritoid, donbassite, specular hematite, ilmenite, goethite, and younger calcite) occur in fracture zones (veins and open structures) that cross-cut the metabauxite horizons. The mineralized fracture zones do not extend into the enclosing marbles, probably because of the ductility contrast between the brittle bauxite and relatively plastic carbonate beds. Thick, white to light gray and dark gray limestone beds were deposited in the İlbir Mountains area during the Cretaceous (146-65 Ma), and contain two stratigraphically distinct karst-fill bauxite horizons. Al-, Fe-, Si- and Ti-rich solutions that infiltrated the karstified limestone probably originated from altered schist and gneiss that surround the basin. The limestone beds (>2000 m thick) were subjected to burial metamorphism, forming marble. Subsequently, the marble block was folded during nappe emplacement toward the SSW as part of late Alpine contractional deformation during the Paleogene (65-23.8 Ma). The upper bauxite horizons within the folded block were cross-cut by fracture zones because of their relatively brittle rheology. At this time, increased pressure and temperature in the bauxite horizons resulted in remobilization of the primary constituents of the bauxite within an aqueous complex, resulting in the crystallization of coarse-grained assemblages in the cross-cutting structures. Ultimately, erosion and mineral exploration revealed the steeply dipping bauxite outcrops and mine workings evident today. This paper focuses on the mine geology of surface outcrops of diasporic bauxite, the upper bauxite horizon within underground mine galleries at elevations of 600, 632, 637, 642, 652, 657, and 702 m, and in open pits at sites in the Küçükçamlık and Büyükçamlık hills, Milas-Muğla province, SW Turkey.
NASA Astrophysics Data System (ADS)
Ravaut, P.; Bayer, R.; Hassani, R.; Rousset, D.; Yahya'ey, A. Al
1997-09-01
The obduction process in Oman during Late Cretaceous time, and continental-to-oceanic subduction along the Zagros-Makran region during the Tertiary are consequences of the Arabian-Eurasian collision, resulting in construction of complex structures composed of the Oman ophiolite belt, the Zagros continental mountain belt and the Makran subduction zone with its associated accretionary wedge. In this paper, we jointly interpret Bouguer anomaly and available petroleum seismic profiles in terms of crustal structures. We show that the gravity anomaly in northern Oman is characterized by a high-amplitude negative-positive couple. The negative anomaly is coincident with Late Cretaceous (Fiqa) and Tertiary (Pabdeh) foreland basins and with the Zagros-Oman mountain belts, whereas the positive anomaly is correlated to the ophiolite massifs. The Bouguer anomaly map indicates the presence of a post-Late Cretaceous sedimentary basin, the Sohar basin, centred north of the Batinah plain. We interpret the negative/positive couple in terms of loading of the elastic Arabian lithosphere. We estimate the different Cretaceous-to-Recent loads, including topography, ophiolite nappes, sedimentary fill and the accretionary prism of the Makran trench. A new method, using Mindlin's elastic plate theory, is proposed to model the 2D deflection of the heterogeneous elastic Arabian plate, taking into account boundary conditions at the ends of the subducted plate. We show that remnant ophiolites are isolated from Tethyan oceanic lithosphere in the Gulf of Oman by a continental basement ridge, a NW prolongation of the Saih-Hatat window. Loading the northward-limited ophiolite blocks explains the deflection of the Fiqa foredeep basin. West of the Musandam Peninsula, the Tertiary Pabdeh foredeep is probably related to the emplacement of a 8-km-thick tectonic prism located on the Musandam Peninsula and in the Strait of Hormuz. Final 2D density models along profiles through the Oman mountain belt and the Gulf of Oman are discussed in the framework of Late Cretaceous obduction of the Tethys and synchronous subduction and exhumation of the Oman margin.
Tertiary evolution of the northeastern Venezuela offshore
NASA Astrophysics Data System (ADS)
Ysaccis B., Raul
1998-12-01
On the northeastern offshore Venezuela, the pre-Tertiary basement consists of a deeply subducted accretionary complex of a Cretaceous island arc system that formed far to the west of its present location. The internal structure of this basement consists of metamorphic nappes that involve passive margin sequences, as well as oceanic (ophiolitic) elements. The Tertiary evolution of the northeastern Venezuela offshore is dominated by Paleogene (Middle Eocene-Oligocene) extension and Neogene transtension, interrupted by Oligocene to Middle Miocene inversions. The Paleogene extension is mainly an arc-normal extension associated with a retreating subduction boundary. It is limited to the La Tortuga and the La Blanquilla Basins and the southeastern Margarita and Caracolito subbasins. All of these basins are farther north of and not directly tied to the El Pilar fault system. On a reconstruction, these Paleogene extensional systems were located to the north of the present day Maracaibo Basin. By early Miocene the leading edge of the now overall transpressional system had migrated to a position to the north of the Ensenada de Barcelona. This relative to South America eastward migration is responsible for the Margarita strike-slip fault and the major inversions that began during the Oligocene and lasted into the Middle Miocene. The Bocono-El Pilar-Casanay-Warm Springs and the La Tortuga-Coche-North Coast fault systems are exclusively Neogene with major transtension occurring during the Late Miocene to Recent and act independently from the earlier Paleogene extensional system. They are responsible for the large Neogene transtensional basins of the area: the Cariaco trough, the Northern Tuy-Cariaco and the Paria sub-basins, and the Gulf of Paria Basin. This latest phase is characterized by strain-partitioning into strike slip faults, a transtensional northern domain and a transpressional southern domain that is responsible for the decollement tectonics and/or inversions of the Serrania del Interior and its associated Monagas foreland structures. Part of the latest (Middle Miocene to Recent) phase is the formation of a large arch that corresponds to the Margarita-Testigos-Grenada zone which perhaps was subject to mild lithospheric compression during the Plio-Pleistocene.
NASA Astrophysics Data System (ADS)
Simon, H.; Buske, S.; Krauß, F.; Giese, R.; Hedin, P.; Juhlin, C.
2017-09-01
The Scandinavian Caledonides provide a well-preserved example of a Palaeozoic continent-continent collision, where surface geology in combination with geophysical data provides information about the geometry of parts of the Caledonian structure. The project COSC (Collisional Orogeny in the Scandinavian Caledonides) investigates the structure and physical conditions of the orogen units and the underlying basement with two approximately 2.5 km deep cored boreholes in western Jämtland, central Sweden. In 2014, the COSC-1 borehole was successfully drilled through a thick section of the Seve Nappe Complex. This tectonostratigraphic unit, mainly consisting of gneisses, belongs to the so-called Middle Allochthons and has been ductilely deformed and transported during the collisional orogeny. After the drilling, a major seismic survey was conducted in and around the COSC-1 borehole with the aim to recover findings on the structure around the borehole from core analysis and downhole logging. The survey comprised both seismic reflection and transmission experiments, and included zero-offset and multiazimuthal walkaway Vertical Seismic Profile (VSP) measurements, three long offset surface lines centred on the borehole, and a limited 3-D seismic survey. In this study, the data from the multiazimuthal walkaway VSP and the surface lines were used to derive detailed velocity models around the COSC-1 borehole by inverting the first-arrival traveltimes. The comparison of velocities from these tomography results with a velocity function calculated directly from the zero-offset VSP revealed clear differences in velocities for horizontally and vertically travelling waves. Therefore, an anisotropic VTI (transversely isotropic with vertical axis of symmetry) model was found that explains first-arrival traveltimes from both the surface and borehole seismic data. The model is described by a vertical P-wave velocity function derived from zero-offset VSP and the Thomsen parameters ε = 0.03 and δ = 0.3, estimated by laboratory studies and the analysis of the surface seismic and walkaway VSP data. This resulting anisotropic model provides the basis for further detailed geological and geophysical investigations in the direct vicinity of the borehole.
NASA Astrophysics Data System (ADS)
Kędzior, Artur; Popa, Mihai E.
2013-06-01
Kędzior, A. and Popa, E.M. 2013. Sedimentology of the Early Jurassic terrestrial Steierdorf Formation in Anina, Colonia Cehă Quarry, South Carpathians, Romania. Acta Geologica Polonica, 63 (2), 175-199. Warszawa. The continental, coal bearing Steierdorf Formation, Hettangian - Sinemurian in age, is included in the Mesozoic cover of the Reşiţa Basin, Getic Nappe, South Carpathians, Romania. The Steierdorf Formation can be studied in Anina, a coal mining center and an exceptional locality for Early Jurassic flora and fauna, occurring in the middle of the Reşiţa Basin. This paper presents the results of sedimentological, stratigraphical and paleobotanical researches undertaken in Colonia Cehă open cast mine in Anina, where the Steierdorf Formation outcrops widely. Several sedimentary facies associations have been described, these associations permitting the reconstruction of various depositional systems such as alluvial fans, braided and meandering river systems, as well as lacustrine and coal generating marsh systems of the Steierdorf Formation. The sedimentary associations recorded within the Steierdorf Formation show a gradual fining upward trend, pointing to a rising marine water table and a decreasing relief within the source area.
Sarilumab for the treatment of rheumatoid arthritis.
Cooper, Simon
2016-01-01
Simon Cooper has >18 years of global experience in the pharmaceutical industry. He joined Sanofi in July 2014 as the Vice President, Global Project Head. In his current position at Sanofi, Dr Cooper is responsible for the clinical development of sarilumab and the worldwide submission in rheumatoid arthritis. He joined Sanofi after serving as the Global Program Medical Director at Novartis since 2012. In this role, Dr Cooper acted as the clinical lead for secukinumab psoriasis submission. Prior to Novartis, Dr Cooper held various posts at Human Genome Sciences, USA, including Executive Director of Clinical Research, Senior Director of Clinical Research and Director of Clinical Research. During his tenure at Human Genome Sciences, USA, Dr Cooper was involved in the submission of belimumab leading to its approval for SLE, and was responsible for its subsequent clinical development program. Dr Cooper has also previously held positions at MedImmune Ltd, UK, Roche, Napp Pharmaceutical Research Ltd, Wyeth Research and Medeval Ltd. In these roles, his responsibilities ranged from medical oversight of clinical trials to medical support for commercial, medical affairs and business development. He received a Bachelor of Medicine and Bachelor of Surgery from University of Newcastle upon Tyne Medical School.
NASA Astrophysics Data System (ADS)
Lee, Timothy; Diehl, Tobias; Kissling, Edi; Wiemer, Stefan
2017-04-01
Earthquake catalogs derived from several decades of observations are often biased by network geometries, location procedures, and data quality changing with time. To study the long-term spatio-temporal behavior of seismogenic fault zones at high-resolution, a consistent homogenization and improvement of earthquake catalogs is required. Assuming that data quality and network density generally improves with time, procedures are needed, which use the best available data to homogeneously solve the coupled hypocenter - velocity structure problem and can be as well applied to earlier network configurations in the same region. A common approach to uniformly relocate earthquake catalogs is the calculation of a so-called "minimum 1D" model, which is derived from the simultaneous inversion for hypocenters and 1D velocity structure, including station specific delay-time corrections. In this work, we will present strategies using the principles of the "minimum 1D" model to consistently relocate hypocenters recorded by the Swiss Seismological Service (SED) in the Swiss Alps over a period of 17 years in a region, which is characterized by significant changes in network configurations. The target region of this study is the Rawil depression, which is located between the Aar and Mont Blanc massifs in southwestern Switzerland. The Rhone-Simplon Fault is located to the south of the Rawil depression and is considered as a dextral strike-slip fault representing the dominant tectonic boundary between Helvetic nappes to the north and Penninic nappes to the south. Current strike-slip earthquakes, however, occur predominantly in a narrow, east-west striking cluster located in the Rawil depression north of the Rhone-Simplon Fault. Recent earthquake swarms near Sion and Sierre in 2011 and 2016, on the other hand, indicate seismically active dextral faults close to the Rhone valley. The region north and south of the Rhone-Simplon Fault is one of the most seismically active regions in Switzerland and therefore a prime target to study the mechanics of active fault zones in the Swiss Alps. In the presented study, existing travel-time data from the SED bulletin from the entire instrumental era (1984-today) are used to calculate a "minimum 1D" model for the region. The dataset is complemented by data of three broadband stations, recently installed to further densify the seismic network of the SED in the Rawil area. The new model is compared to previous local and regional 1D and 3D models. The derived model is used for systematic relocation of the seismicity in the Rawil region and will be used as reference model for high-resolution 3D models imaging the velocity structure of the Rawil fault zone in a next step. The presented procedure is of relevance for similar studies planned in other regions of the Alps, which have been densified by AlpArray stations.
NASA Astrophysics Data System (ADS)
Austin, N. J.; Evans, B.; Dresen, G. H.; Rybacki, E.
2009-12-01
Deformed rocks commonly consist of several mineral phases, each with dramatically different mechanical properties. In both naturally and experimentally deformed rocks, deformation mechanisms and, in turn, strength, are commonly investigated by analyzing microstructural elements such as crystallographic preferred orientation (CPO) and recrystallized grain size. Here, we investigated the effect of variations in the volume fraction and the geometry of rigid second phases on the strength and evolution of CPO and grain size of synthetic calcite rocks. Experiments using triaxial compression and torsional loading were conducted at 1023 K and equivalent strain rates between ~2e-6 and 1e-3 s-1. The second phases in these synthetic assemblages are rigid carbon spheres or splinters with known particle size distributions and geometries, which are chemically inert at our experimental conditions. Under hydrostatic conditions, the addition of as little as 1 vol.% carbon spheres poisons normal grain growth. Shape is also important: for an equivalent volume fraction and grain dimension, carbon splinters result in a finer calcite grain size than carbon spheres. In samples deformed at “high” strain rates, or which have “large” mean free spacing of the pinning phase, the final recrystallized grain size is well explained by competing grain growth and grain size reduction processes, where the grain-size reduction rate is determined by the rate that mechanical work is done during deformation. In these samples, the final grain size is finer than in samples heat-treated hydrostatically for equivalent durations. The addition of 1 vol.% spheres to calcite has little effect on either the strength or CPO development. Adding 10 vol.% splinters increases the strength at low strains and low strain rates, but has little effect on the strength at high strains and/or high strain rates, compared to pure samples. A CPO similar to that in pure samples is observed, although the intensity is reduced in samples containing 10 vol.% splinters. When 10 vol.% spheres are added to calcite, the strength of the aggregate is reduced, and a distinct and strong CPO develops. Viscoplastic self consistent calculations were used to model the evolution of CPO in these materials, and these suggest a variation in the activity of the various slip systems within pure samples and those containing 10 vol.% spheres. The applicability of these laboratory observations has been tested with field-based observations made in the Morcles Nappe (Swiss Helvetic Alps). In the Morcles Nappe, calcite grain size becomes progressively finer as the thrust contact is approached, and there is a concomitant increase in CPO intensity, with the strongest CPO’s in the finest-grained, quartz-rich limestones, nearest the thrust contact, which are interpreted to have been deformed to the highest strains. Thus, our laboratory results may be used to provide insight into the distribution of strain observed in natural shear zones.
NASA Astrophysics Data System (ADS)
Nagel, Thorsten; Fassmer, Kathrin; Froitzheim, Niko; Fonseca, Raul; Sprung, Peter
2017-04-01
The Caledonian orogen in northeastern Greenland is a 1200 km long, west-vergent nappe pile mirroring the much better explored Caledonides in Scandinavia. The Greenlandic orogen has traditionally been viewed as the retro-wedge of the Scandinavian Caledonides, which is generally accepted to be the result of west-directed subduction of the Iapetus oceanic realm and the Baltic continental margin. This concept, however, is challenged by the finding of widely distributed high-pressure metamorphism as well as the large amount of horizontal shortening accommodated in the Greenlandic nappe pile (Gasser 2014, and references therein). While eclogites in Liverpool Land in the very south have been interpreted to belong to a window into Baltica, the vast domains of eclogite-bearing basement in the central segment of the orogen are attributed to the Lauretian continental margin. Existing ages for high-pressure metamorphism in this area using U-Pb-zircon and Sm-Nd-garnet dating scatter at 420-390 Ma with an exceptionally young age of 370-330 Ma found for the so far only ultrahigh-pressure location in a very internal position of the orogen (e.g. Gilotti et al. 2004). Eclogite-facies metamorphism in Greenland seems thus coeval to or even younger than the main Scandian orogeny in Scandinavia. However, the relatively high temperatures of metamorphism leave room for the interpretation of the Sm-Nd ages as cooling ages. We present petrologic and Lu-Hf-garnet-age data from three locations in the central eclogite province in Greenland and discuss the implications for tectonic scenarios. Investigated rocks are high-temperature eclogites/high-pressure mafic granulites, and garnet pyroxenites. Samples from the well-known location Danmarkshavn record ultra-high-pressure metamorphic conditions by means of SiO2-exsolutions in clinopyroxene and thermobarometric results. An eclogite yielded a Lu-Hf garnet-whole-rock age of 360 Ma thus confirming the existing young age for ultrahigh-pressure metamorphism obtained 140 kilometers away. Samples from the two other locations (Sondre Mellemland and Store Koldewey) preserve the typical high-temperature eclogite-facies conditions and yield ages of 385 Ma and 400 Ma, respectively. Our results suggest that ultrahigh-pressure rocks in northeastern Greenland may be much wider distributed than presently known and corroborate the existence of very young isotopic ages in these rocks. They also confirm the existing Sm-Nd ages around 400 Ma in the majority of eclogites leaving us with the puzzling conclusion that the Laurentian and Baltic margins were apparently subducted at the same time in opposite directions. Gasser D (2014): The Caledonides of Greenland, Svalbard and other Arctic areas: status of research and open questions. In Corfu F et al. (2014): New Perspectives on the Caledonides of Scandinavia and Related Areas. GSL SP, 390, 93-129. Gilotti JA, et al. (2004): Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism. CMP, 148, 216 - 235.
NASA Astrophysics Data System (ADS)
Ashley, K. T.; Webb, L. E.; Spear, F. S.; Thomas, J. B.
2010-12-01
Geochemical, microstructural and petrological analyses were conducted on metapelites from the Strafford Dome, Vermont. Samples record metamorphic conditions from biotite to peak kyanite/staurolite grade and preserve microstructures related to two nappe emplacement events. The Ti-in-quartz (“TitaniQ”) thermobarometer was used on quartz in different microstructural settings throughout the Strafford Dome, where the petrologic and structural framework is well established, to examine the ability to more precisely constrain pressure-temperature-time-deformation (P-T-t-D) histories. Cathodoluminescence (CL) imaging of quartz was conducted to qualitatively assess the distribution of Ti in a single crystal and/or compare neighboring crystals. In addition to [Ti], strain in the crystal lattice also appears to influence CL intensity. Quartz inclusions in garnet porphyroblasts typically have brighter rims (typically <5 μm) when observed in CL and is attributed to diffusion of Ti from the garnet. X-ray mapping of a snowball garnet (staurolite/kyanite zone) reveals, from core to rim, increasing X_{prp}, decreasing X_{sps}, and constant X_{alm}; Ca increase is limited to near the rim. This spatial variation in chemistry suggests garnet growth during increasing pressure and slightly decreasing temperature most likely associated with nappe emplacement. Most quartz inclusions contain bright bands in CL correlating to planar defects. Preliminary analysis shows [Ti] in quartz near the core of the snowball garnet to be 10.5-13.0 ppm, ≥12.5 ppm near the garnet rim, 8.0-11.0 ppm in the matrix grains, and 17.0 ppm near foam texture triple junctions. Rotated garnets locally contain inclusions that appear brecciated in CL images (kyanite/staurolite zone). In samples where the dominant foliation is a bedding parallel schistosity (S_{1}), ribbon quartz grains and subgrains are present (kyanite/staurolite zone). The subgrains typically have sharp, dark rims with brighter mantles. Some grains contain dark cores near the center. Larger ribbon grains still have the dark rims, but are more homogeneous internally. Crenulated matrix quartz (S_{2}), where present, contains bright rims with darker mantles (garnet zone). In some cases, bright cores are found in the center of these grains. Quartz veins that post-date the foliation within the samples are typically homogeneous, with only minor patchy bright spots present and no observable zoning. Deformed quartz veins in some samples contain ribbon quartz and preserve subgrain rotation recrystallization microstructures (kyanite/staurolite zone). The ribbon quartz is very patchy where subgrains are beginning to consume the ribbon grain. Data from secondary ion mass spectrometry will be presented for spot analyses of [Ti] from locations selected based on microstructural and CL textural significance, and P-T-t-D histories evaluated in the context of previous studies. These findings will further elucidate the potential of TitaniQ for use in studies of metamorphic tectonites, continental tectonics and rheology.
NASA Astrophysics Data System (ADS)
Martin, S.; Tumiati, S.
2003-04-01
The structural and petrographic studies of the basement units in the Alpine region, independently from their present tectonic setting in the nappe pile, suggest that at the end of the Variscan orogenesis they were in such a position that they suffered relevant up-doming and cooling since Late Carboniferous (Thöni, 1981; Mottana et al., 1985; Martin et al., 1996; Bertotti et al., 1999). This up-doming has been interpreted as due to an isostatic rebound related to the detachment of the slab after the cessation of the subduction at the end of the Variscan orogenesis (Neubauer and Handler, 2000; Ranalli, 2003). The metamorphic setting of the Southalpine basement between the Tonale pass and Lake Maggiore in the Southern Alps, is due to processes which, by extension denudation and erosion, locally took to the surface portions of middle-to-high grade basement, within a horst-graben environment (Cassinis et al., 1997). The basements of the Orobic, Lake Como and Lake Maggiore areas are composed of kyanite-garnet or sillimanite-bearing schists (e.g., Gneiss di Morbegno, Scisti di Edolo, Scisti dei Laghi; Boriani et al., 1990; Siletto et al., 1993), or of low grade schists (e.g., Filladi di Ambria) intruded by Early Permian plutons, covered by continental and volcanic deposits of Late Carboniferous to Permian age, after a marked unconformity (Cadel et al., 1996). The thickness of this clastic cover ranges between a few hundreds to thousands of meters; the clast compositions suggest a low-grade basement as a dominant source; the structures indicate alternance of uplift and collapse and continue deformation during sedimentation (Cassinis et al., 1974). Most of the Upper Austroalpine units of the central and eastern Alps (e.g., Tonale nappe, Languard, Ortles and Campo units) have structural and lithological similarities with the Orobic, Lake Como and Lake Maggiore basement units confirming their appartenance to the same pre-Alpine paleogeographic environment which suffered up-doming and collapse (Martin et al., 1996). The Austroalpine units have a sedimentary cover including basal clastic sediments younger (Late Permian, Verrucano; Furrer, 1985), than the Orobic ones (Late Carboniferous-Permian) indicating erosion and sedimentation diachronous in respect to the Orobic and Lake Como areas. Most of the lower Austroalpine basement units are composed of middle-to-high grade rocks (e.g., Margna) and are covered by very thin Permian sediments, or directly by carbonatic sequences (Campo and Bernina units) typical of a rapid drowning of the passive margin after erosion (Froitzheim and Manatschal, 1996). In this picture, the Variscan basement of the central and eastern Alps suffered a relevant, even if diachronous, up-doming during Late Carboniferous-Permian time. This involved the basement which at present corresponds to the Lower Austroalpine (e.g., Err, Bernina and Margna) and to the Upper Austroalpine units (e.g.; Ortles, Languard and Campo). The up-doming is mostly evidenced by structural and petrographic observations rather than the geochronology because these basements have been thermally re-setted by intrusion of several Early Permian plutons which altered their cooling history. In some places the magmatic activity continued up to Trias with hydrothermal veins and pegmatites, which slowed the cooling evolution down to the Jurassic time. Rb-Sr cooling ages from high grade Austroalpine and Southalpine basements cumulate around Late Jurassic confirming this time as the end of the pre-alpine thermal evolution of the Variscan basement in the Alps (Sanders et al., 1996). References: BERTOTTI G., SEWARD D., WIJBRANS J., VOORDE M.TER, HURFORD A.J. (1999) - Crustal thermal regime prior to, during, and after rifting: A geochronological and modeling study of the Mesozoic South Alpine rifted margin. Tectonics, 18-2: 185-200 BORIANI A., GIOBBI ORIGONI E., BORGHI A., CAIRONI V. (1990) - The evolution of the "Serie dei Laghi" (Strona-Ceneri and Scisti dei Laghi): upper component of the Ivrea-Verbano crustal section; Southern Alps, North Italy and Ticino, Switzerland. Tectonophysics, 182: 103-118 CADEL G., COSI M., PENNACCHIONI G., SPALLA M.I. (1996) - A new map of the Permo-Carboniferous cover and Variscan metamorphic basement in the central Orobic Alps, Southern Alps, Italy: Structural and stratigraphical data. Mem. Sci. Geol., Padova, 48:1-53 CASSINIS G., MONTRASIO A., POTENZA R., VON RAUMER J.F., SACCHI R., ZANFERRARI A. (1974) - Tettonica ercinica nelle Alpi. Mem. Soc. Geol. Ital., Vol. XIII, suppl. 1, 289-318 CASSINIS G., PEROTTI C.R., VENTURINI C. (1997) - Examples of late Hercynian transtensional tectonics in the Southern Alps (Italy). In: Late Paleozoic and Early Mesozoic Circum Pacific Events and Their Global Correlation (Ed. Dickins J.M., Yang Z., Yin H., Lucas S.G., Acharyya S.K.), Cambridge University Press. DEL MORO A., NOTARPIETRO A. (1987) - Rb-Sr Geochemistry of some Hercynian granitoids overprinted by eo-Alpine metamorphism in the Upper Valtellina, Central Alps. Schweiz. Mineral. Petrogr. Mitt., 67: 295-306 FROITZHEIM N., MANATSCHAL G. (1996) - Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). GSA Bull., 108-9: 1120-1133 FURRER H. ed. (1985) - Field workshop on Triassic and Jurassic sediments in the Eastern Alps of Switzerland. Mitt. Geol. Inst. ETH u. Univ. Zürich, N.F., v. 248, 82 p. MARTIN S., ZATTIN M., DEL MORO A., MACERA P. (1996) - Chronologic constraints for the evolution of the Giudicarie belt (Eastern Alps, NE Italy). Annales Tectonicae, Vol. X, N. 1-2, 60-79 MOTTANA A., NICOLETTI M., PETRUCCIANI C., LIBORIO G., DE CAPITANI L., BOCCHIO R. (1985) - Pre-alpine and alpine eolution of the South-alpine basement of the Orobic Alps. Geol. Rundsch., 74-2: 353-366 NEUBAUER F., HANDLER R. (2000) - Variscan orogeny in the Eastern Alps and Bohemian Massif: How do these units correlate?. Mitt. Österr. Geol. Ges., 92:35-39 RANALLI G. (2003) - A model of Palaeozoic subduction and exhumation of continental crust: Ulten unit, Tonale Nappe, Eastern Austroalpine. Transalp workshop, Trieste 10-12 February. SANDERS C.A.E., BERTOTTI G., TOMMASINI S., DAVIES G.R., WIJBRANS J.R. (1996) - Triassic pegmatites in the Mesozoic middle crust of the Southern Alps (Italy): Fluid inclusions, radiometric dating and tectonic implications. Eclogae Geol. Helv., 89-1: 505-525 SILETTO G.B., SPALLA M.I., TUNESI A., LARDEAUX J.M., COLOMBO A. (1993) - Pre-Alpine structural and metamorphic histories in the Orobic Southern Alps, Italy. In: Pre-Mesozoic geology in the Alps (Ed. By von Raumer J.F. &Neubauer F.), 585-598 THÖNI M. (1981) - Degree and Evolution of the Alpine Metamorphism in the Austroalpine Unit W of the Hohe Tauern in the light of K/Ar and Rb/Sr Age Determinations on Micas. Jahrb. Geol. B.-A., 124-1: 111-174
Localized Flow of Frictional Or Creeping Materials In A Lower Flat Thrust To Ramp Transition
NASA Astrophysics Data System (ADS)
Maillot, B.; Leroy, Y.
The passage of rock through zones of localized shear deformation in the form of back- thrusts or kink planes is common in fold and thrust belts. The stationary flow through these two types of hinges is examined for the particular case of a lower flat to ramp transition of a fault-bend fold. The simple shear transformation resulting in strain lo- calization is studied both analytically and numerically. The overall equilibrium of the hanging wall, accounting for friction over the ramp, constrains the shear and normal forces acting on the hinge boundaries. For frictional materials, the localization oc- curs in the form of a velocity discontinuity, defining the backthrust, with a dip which is shown not to bissect ramp angle nor to conserve the thrust nappe thickness, if a criteria based on a minimization of the total dissipation is considered. For creeping materials, the strain localization as a kink plane is shown to require a destabilizing deformation mechanism, selected here to be flexural slip. The rotation of the stress tensor due to the gradient in pressure, the thicknening and thinning of the creeping material, the rate and amount of flexural slip through the hinge are analyzed to define potential tectonic markers.
NASA Astrophysics Data System (ADS)
Vishnevskaya, V. S.; Filatova, N. I.
2017-09-01
Jurassic-Cretaceous siliceous-volcanogenic rocks from nappes of tectonostratigraphic sequences of the East Asia Middle Cretaceous Okhotsk-Koryak orogenic belt are represented by a wide range of geodynamic sedimentation settings: oceanic (near-spreading zones, seamounts, and deep-water basins), marginal seas, and island arcs. The taxonomic compositions of radiolarian communities are used as paleolatitude indicators in the Northern Pacific. In addition, a tendency toward climate change in the Mesozoic is revealed based on these communities: from the warm Triassic to the cold Jurassic with intense warming from the Late Jurassic to the Early Cretaceous. Cretaceous warming led to heating of ocean waters even at moderately high latitudes and to the development of Tethyan radiolarians there. These data are confirmed by a global Cretaceous temperature peak coinciding with a high-activity pulse of the planetary mantle superplume system, which created thermal anomalies and the greenhouse effect. In addition, the Pacific superplume attributed to this system caused accelerated movement of oceanic plates, which resulted in a compression setting on the periphery of the Pacific and the formation of the Okhotsk-Koryak orogenic belt on its northwestern framing in the Middle Cretaceous, where Mesozoic rocks of different geodynamic and latitudinal-climate settings were juxtaposed into allochthonous units.
Vella, Laura J; Cappai, Roberto
2012-07-01
Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. The proteolytic processing of the amyloid precursor protein (APP) into the β-amyloid (Aβ) peptide is a central event in AD. While the pathway that generates Aβ is well described, many questions remain concerning general APP metabolism and its metabolites. It is becoming clear that the amino-terminal region of APP can be processed to release small N-terminal fragments (NTFs). The purpose of this study was to investigate the occurrence and generation of APP NTFs in vivo and in cell culture (SH-SY5Y) in order to delineate the cellular pathways implicated in their generation. We were able to detect 17- to 28-kDa APP NTFs in human and mouse brain tissue that are distinct from N-APP fragments previously reported. We show that the 17- to 28-kDa APP NTFs were highly expressed in mice from the age of 2 wk to adulthood. SH-SY5Y studies indicate the generation of APP NTFs involves a novel APP processing pathway, regulated by protein kinase C, but independent of α-secretase or β-secretase 1 (BACE) activity. These results identify a novel, developmentally regulated APP processing pathway that may play an important role in the physiological function of APP.
Structure, stratigraphy, and petroleum geology of the Little Plain basin, northwestern Hungary
Mattick, R.E.; Teleki, P.G.; Phillips, R.L.; Clayton, J.L.; David, G.; Pogcsas, G.; Bardocz, B.; Simon, E.
1996-01-01
The basement of the Little Plain (Kisalfo??ld) basin is composed of two parts: an eastern part comprised of folded and overthrusted Triassic and Paleozoic rocks of the Pelso block (Transdanubian Central Range) compressed in the Early Cretaceous, and a western part consisting of stacked nappes of the Austroalpine zone of Paleozoic rocks, significantly metamorphosed during Cretaceous and later compression, overriding Jurassic oceanic rift-zone rocks of the Penninic zone. The evolution of the basin began in the late Karpatian-early Badenian (middle Miocene) when the eastern part of the basin began to open along conjugate sets of northeast- and northwest-trending normal faults. Neogene rocks in the study area, on the average, contain less than 0.5 wt. % total organic carbon (TOC) and, therefore, are not considered effective source rocks. Locally, however, where TOC values are as high as 3 wt. %, significant amounts of gas may have been generated and expelled. Although potential stratigraphic traps are numerous in the Neogene section, these potential traps must be downgraded because of the small amount of hydrocarbons discovered in structural traps to date. With the exception of the Cretaceous, the Mesozoic section has not been actively explored. Large anticlinal and overthrust structures involving pre-Cretaceous strata remain undrilled.
Paleogeographic evolution of foldbelts adjacent to petroleum basins of Venezuela and Trinidad
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, E.D.; Koch, P.S.; Summa, L.L.
1996-08-01
The foldbelts of Venezuela and Trinidad have shaped the history of adjacent sedimentary basins. A set of paleogeographic maps on reconstructed bases depict the role of foldbelts in the development of the sedimentary basins of Venezuela. Some of the foldbelts are inverted, pre-Tertiary graben/passive margin systems. Other foldbelts are allochthonous nappes or parautochthons that override the Mesozoic passive margin hinge without inversion. The emergence of these foldbelts changed the course of existing river systems and provided a new source for sediments and maturation in adjacent deeps. The Merida Andes area was remobilized beginning in the Early Miocene as a zonemore » of lateral shear, along which the Bonaire Block has moved over 200 km to the northeast, dismembering the Maracaibo and Barinas basins. Late Miocene to Recent transpression and fault reactivation have driven rapid Andean uplift with thrust-related subsidence and maturation (e.g., SE Maracaibo foredeep). To the east, uplift and erosion of the Serrania del Interior (1) curtailed mid-Tertiary fluvial systems flowing northward from the igneous and sedimentary rocks of the Guyana Shield, deflecting them eastward, and (2) removed the thick early Miocene foredeep fill into a younger foredeep. Thus, the fold-thrust belts and sedimentary basins in this region are linked in their evolutionary histories.« less
Dewey, John F.
2005-01-01
In contrast to continent/continent collision, arc–continent collision generates very short-lived orogeny because the buoyancy-driven impedance of the subduction of continental lithosphere, accompanied by arc/suprasubduction-zone ophiolite obduction, is relieved by subduction polarity reversal (flip). This tectonic principle is illustrated by the early Ordovician Grampian Orogeny in the British and Irish Caledonides, in which a wealth of detailed sedimentologic, heavy mineral, and geochronologic data pin the Orogeny to a very short Arenig/Llanvirn event. The Orogeny, from the initial subduction of continental margin sediments to the end of postflip shortening, lasted ≈18 million years (my). The collisional shortening, prograde-metamorphic phase of the Orogeny lasted 8 my, extensional collapse and exhumation of midcrustal rocks lasted 1.5 my, and postflip shortening lasted 4.5 my. Strain rates were a typical plate-boundary-zone 10-15. Metamorphism, to the second sillimanite isograd, with extensive partial melting, occurred within a few my after initial collision, indicating that conductive models for metamorphic heat transfer in Barrovian terrains are incorrect and must be replaced by advective models in which large volumes of mafic/ultramafic magma are emplaced, syn-tectonically, below and into evolving nappe stacks. Arc/continent collision generates fast and very short orogeny, regional metamorphism, and exhumation. PMID:16126898
NASA Astrophysics Data System (ADS)
Kassem, Osama M. K.; Al Bassam, Abdel Aziz M.; Zaidi, Faisal K.
2013-11-01
The present study focuses on the gold mining in Mahd Ad Dahab region of Saudi Arabia. The study aims to assess the spatial relationship between tectonic contacts in Mahd Ad Dahab area and to provide a meaningful hypothesis relating gold metallogeny to the evolution of the Arabian Shield. Distribution and localization of gold occurrences in the study area was envisaged based on the different styles of microstructures and the major deformation phases affecting the area. The detailed petrographical and mineralogical investigations indicate that the metavolcanic rocks at the Mahd Ad Dahab gold mine area can be classified into metabasalt, metaandesite, and the felsic varieties (metadacite, metarhyodacite and metarhyolite) associating their metapyroclastics (conglomerate and tuffs). Furthermore, quartz forms allotriomorphic crystals which exhibit wavy extinction, deformational lamina and foliation due to subsequent deformations. Furthermore, we conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. Furthermore, contacts formed during intrusion of plutons with some faults in the Mahd Ad Dahab area under brittle to semi-ductile deformation conditions. In this case, finite strain accumulated during superimposed deformation on the already assembled nappe structure. It indicates that the contacts formed during the accumulation of finite strain.
NASA Astrophysics Data System (ADS)
Gremaud, Vivian; Goldscheider, Nico; Savoy, Ludovic; Favre, Gérald; Masson, Henri
2009-12-01
The relationships between stratigraphic and tectonic setting, recharge processes and underground drainage of the glacierised karst aquifer system ‘Tsanfleuron-Sanetsch’ in the Swiss Alps have been studied by means of various methods, particularly tracer tests (19 injections). The area belongs to the Helvetic nappes and consists of Jurassic to Palaeogene sedimentary rocks. Strata are folded and form a regional anticlinorium. Cretaceous Urgonian limestone constitutes the main karst aquifer, overlain by a retreating glacier in its upper part. Polished limestone surfaces are exposed between the glacier front and the end moraine of 1855/1860 (Little Ice Age); typical alpine karrenfields can be observed further below. Results show that (1) large parts of the area are drained by the Glarey spring, which is used as a drinking water source, while marginal parts belong to the catchments of other springs; (2) groundwater flow towards the Glarey spring occurs in the main aquifer, parallel to stratification, while flow towards another spring crosses the entire stratigraphic sequence, consisting of about 800 m of marl and limestone, along deep faults that were probably enlarged by mass movements; (3) the variability of glacial meltwater production influences the shape of the tracer breakthrough curves and, consequently, flow and transport in the aquifer.
NASA Astrophysics Data System (ADS)
Ritz, M.; Robineau, B.; Vassal, J.; Bellion, Y.; Dukhan, M.
1989-04-01
Magnetotelluric (MT) measurements were carried out at 20 sites, extending 450 km across southern Mauritania in order to study lithospheric structures related to the West African craton (WAC) margin. The MT profile starts to the west on the Senegal-Mauritania basin (S-M basin), traverses across the Mauritanides orogenic belt, and terminates on the western border of the WAC (Taoudeni basin). Distortion effects due to local shallow inhomogeneities are present in nearly all of the basin data. In such a situation, the preliminary interpretation of the data was done by using 1D inversions based upon rotationally invariant parameters. Such distortion is not apparent for the belt and craton sites, and 1D inversions were followed by 2D modeling. The models produced reveal a clear crustal subdivision into a resistive upper crust underlain by a two-layer lower crust with two conductors, one at mid-crustal depths (supposed fluid-produced) beneath the S-M basin and the second at the base of the crust beneath the WAC. The 14-km-thick conductive material below the Mauritanides belt is interpreted as large imbricated thrusts representing the deep roots of the Mauritanides nappes. The models also show that significant contrasts in resistivity extend deep in the lithosphere between the cratonic area and the Senegal microplate.
NASA Astrophysics Data System (ADS)
Acharyya, S. K.
2007-02-01
Dismembered late Mesozoic ophiolites occur in two parallel belts along the eastern margin of the Indian Plate. The Eastern Belt, closely following the magmatic arc of the Central Burma Basin, coincides with a zone of high gravity. It is considered to mark a zone of steeply dipping mafic-ultramafic rocks and continental metamorphic rocks, which are the locus of two closely juxtaposed sutures. In contrast, the Western Belt, which follows the eastern margin of the Indo-Burma Range and the Andaman outer-island-arc, broadly follows a zone of negative gravity anomalies. Here the ophiolites occur mainly as rootless subhorizontal bodies overlying Eocene-Oligocene flyschoid sediments. Two sets of ophiolites that were accreted during the Early Cretaceous and mid-Eocene are juxtaposed in this belt. These are inferred to be westward propagated nappes from the Eastern Belt, emplaced during the late Oligocene collision between the Burmese and Indo-Burma-Andaman microcontinents. Ophiolite occurrences in the Andaman Islands belong to the Western Belt and are generally interpreted as upthrust oceanic crust, accreted due to prolonged subduction activity to the west of the island arc. This phase of subduction began only in the late Miocene and thus could not have produced the ophiolitic rocks, which were accreted in the late Early Eocene.
NASA Astrophysics Data System (ADS)
Wendorff, Małgorzata; Marynowski, Leszek; Rospondek, Mariusz
2016-04-01
Studies of recent and ancient sediments revealed that the diameter distribution of pyrite framboids may be reliably used to characterise oxygen-restricted environments and distinguish ancient euxinic conditions (water column hydrogen sulphide bearing thus oxygen-free) from anoxic, non-sulfidic or dysoxic (oxygen-poor) conditions. Such diagnoses are of great importance when reconstructing palaeoenvironments in ancient basins and the processes of source rocks formation. During Oligocene to early Miocene time an extensive accumulation of organic matter (OM)-rich sediments occurred in the entire Paratethys including the Carpathian Foredeep, which was closed forming fold-thrust belt of the Outer Carpathians. These OM-rich black shales are represented by so-called Menilite shales, widely considered as hydrocarbon source rocks, which constitute as well a detailed archive for palaeoenvironmental changes. The purpose of this preliminary study is to characterise the depositional environment of the Lower Oligocene black shales basing on the pyrite framboid diameter distribution. Five samples of finely laminated black shales were selected from the Nechit section outcropping in the Bistrica half-window of the Vrancea Nappe in the Eastern Outer Carpathians, E Romania. At least 100 framboid diameters were measured on polished blocks using scanning electron microscope in a back-scattered electron mode. Framboids from four samples starting from the lowermost part of the section exhibit a narrow range of diameters from 1.0 to 11.5 μm; mean value ranges from 3.65 to 4.85 μm. Small-sized framboids (< 6 μm) account for 70% up to 91% of all framboids, while large framboids (>10 μm) are absent or rare (max. 2%). Within the sample from the uppermost part of the section framboids reveal more variable sizes, 2 - 25 μm, with mean value of 6.63 μm. Small framboids are still numerous (54%), however the amount of framboids >10 μm increases to 15%. The domination of small framboids with narrow size range in analysed samples, as well as lamination of rocks, suggest domination of anoxic / euxinic conditions during sedimentation of the Menilite shales. The transition into dysoxic bottom-water conditions can be evidenced by increased amount of larger framboids (up to 25 μm) in the upper part of the section. It has been concluded that framboids growing at interface of oxic/euxinic water column are in general smaller and less variable in size than framboids from sediments overlained by oxic or dysoxic water column. In the presented case, the prevalence of small framboids indicates that the water column euxinia could have developed, at least temporarily, during the deposition. Although the euxinia did not reached the photic zone as it reconstructed based on the occurrence of isorenieratane and its derivatives, e.g. C19 aryl isoprenoid in equivalent rocks from many locations of the Outer Carpathians. These biomarkers are derived from carotenoids biosynthesised by the photosynthetic green sulphur bacteria (Chlorobiaceae), anaerobic organisms requiring light and hydrogen sulphide for growth.
Oroclines - a century of discourse about curved mountain belts (Petrus Peregrinus Medal Lecture)
NASA Astrophysics Data System (ADS)
Van der Voo, Rob
2014-05-01
Exactly a century ago, in early 2014, a discussion appeared in the Journal of Geology by William H. Hobbs entitled "Mechanics of formation of arcuate mountains". In it, he notes how the concept of nappes "has now overcome all opposition in Switzerland" and, presumably in other countries just as much. With horizontal transport so central to the nappe concept, this must have paved the way for the idea that emplacement of trust sheets may have involved rotations. Where such rotations form a coherent regional pattern, a curved mountain belt may be the result. While the paper by Hobbs does not mention the word orocline, and while the dynamics of the situation is not yet illuminated, one must give credit to him for his foresights. The term "orocline" was introduced by S. Warren Carey of Tasmania in 1955, as part of a kinematic analysis of rhomb- and triangle-shaped basins and curved mountain belts. When the displacements involved in the analysis are undone, as he did, for instance, in the western Mediterranean, a grand scheme of simple convergent and divergent patterns emerges. Noteworthy is, of course, the fact that this mobilistic analysis preceded plate tectonics by more than a decade. From Carey (although not exactly in his words) we have inherited the definition of orocline, as "a thrust belt or orogen that is curved in map-view due to it having been bent or buckled about a vertical axis of rotation". Because oroclinal bending involves rotations, the declinations of paleomagnetic studies can be utilized to support and quantify them, and early efforts were already made in the 1960's and early 1970's to do so (e.g., Krs in the Carpathians; Ries & Shackleton in Cantabria; Roy, Opdyke & Irving in the Central Appalachians; Packer & Stone in Alaska). Curved mountain belts everywhere were subsequently investigated, and typically shown by paleomagnetists to be of the oroclinal variety. Few curved belts turned out to be curved from the start. Because these studies were generally carried out in fold- and trust-belts, the allochthony of the rotated limbs of the thin-skinned belts implied transport above a basal décollement plane located in the upper crust. Some examples of these thin-skinned oroclines will be given. However, in recent years oroclines have also been proposed as resulting from buckling of ribbon continents (e.g., Panama; D'Entrecasteaux) with the noteworthy Great Alaskan Terrane Wreck, as discussed by Stephen Johnston of the University of Victoria, as prime example. And oroclines of truly continental dimensions have been presented on the basis of paleomagnetic and structural data in Hercynian Europe and Asia (the Kazakhstan and Mongol-Okhotsk oroclines). Because most of the fold- and trust-belt oroclines contain thick carbonate formations; paleomagnetists frequently find that these have been remagnetized in geological episodes that are coeval with mountain building nearby in time and space. A connection between remagnetization and clay diagenesis is a possibility that is currently being investigated. If this is shown to be the case, the last word on oroclines will not have been printed.
NASA Astrophysics Data System (ADS)
Centrella, Stephen; Austrheim, Håkon; Putnis, Andrew
2015-04-01
The Precambrian granulite facies rocks of Lindås Nappe, Bergen Arcs, Caledonides of W.Norway are partially hydrated at amphibolites and eclogite facies conditions. The Lindås Nappe outcrop over an area of ca 1000 km2 where relict granulite facies lenses make up only ca 10%. At Hillandsvatnet, garnetite displays sharp hydration fronts across which the granulite facies assemblage composed of garnet (70%) and clinopyroxene (30%) is replaced by an amphibolite facies mineralogy defined by chlorite, epidote and amphibole. This setting allows us to assess the mechanism of fluid transport through an initially low permeability rock and how this induces changes of texture and element transport. The replacement of garnet and clinopyroxene is pseudomorphic so that the grain shapes of the garnet and clinopyroxene are preserved even if when they are completely replaced. This requires that the reactive fluids must pass through the solid crystal grains and this can be achieved by an interface coupled dissolution-precipitation mechanism. Porosity generation is a key feature of this mechanism (Putnis and Austrheim 2012). The porosity is not only a consequence of reduction in solid molar volume but depends on the relative solubilities of parent and product phases in the reactive fluid. Putnis et al. 2007 and Xia et al. 2009 have shown that even in pseudomorphic reactions where the molar volume increases, porosity may still be generated by the reaction. This is fundamental in understanding the element mobility and the mass transfer in a low permeability rock even more when the bulk rock composition of these two rocks stay unchanged; except a gain in water during amphibolitisation. The textural evolution during the replacement of garnet by pargasite, epidote and chlorite and pyroxene by hornblende and quartz in our rock sample conforms to that expected by a coupled dissolution-precipitation mechanism. SEM and Microprobe analysis coupled with the software XMapTools V 1.06.1 .(Lanari et al., 2014) were used to quantify the local mass transfer required during the replacement processes and to identify the importance of fluid in metamorphic reactions. Lanari, P., Vidal, O., Andrade, V. de, Dubacq, B., Lewin, E., Grosch, E.G., and Schwartz, S., 2014, XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. In: Computers & Geosciences, v. 62, p. 227-240. Putnis A, Austrheim H (2012) Mechanisms of metasomatism and metamorphism on the local mineral scale: The role of dissolution-reprecipitation during mineral re-equilibration. In: Metasomatism and the chemical transformation of rock; the role of fluids in terrestrial and extraterrestrial processes, Springer pp 141-170. Putnis A, Putnis CV (2007) The mechanism of reequilibration of solids in the presence of a fluid phase. J Solid State Chem 180: 1783-1786. Xia F, Brugger J, Chen G, Ngothai Y, O'Neill B, Putnis A, Pring A (2009) Mechanism and kinetics of pseudomorphic mineral replacement reactions: a case study of the replacement of pentlandite by violarite, Geochim Cosmochim Acta 73: 1945-1969. ase fill in your abstract text.
NASA Astrophysics Data System (ADS)
Schoch, Anna; Blöthe, Jan; Hoffmann, Thomas; Schrott, Lothar
2016-04-01
A large number of sediment budgets have been compiled on different temporal and spatial scales in alpine regions. Detailed sediment budgets based on the quantification of a number of sediment storages (e.g. talus cones, moraine deposits) exist only for a few small scale drainage basins (up to 10² km²). In contrast, large scale sediment budgets (> 10³ km²) consider only long term sediment sinks such as valley fills and lakes. Until now, these studies often neglect small scale sediment storages in the headwaters. However, the significance of these sediment storages have been reported. A quantitative verification whether headwaters function as sediment source regions is lacking. Despite substantial transport energy in mountain environments due to steep gradients and high relief, sediment flux in large river systems is frequently disconnected from alpine headwaters. This leads to significant storage of coarse-grained sediment along the flow path from rockwall source regions to large sedimentary sinks in major alpine valleys. To improve the knowledge on sediment budgets in large scale alpine catchments and to bridge the gap between small and large scale sediment budgets, we apply a multi-method approach comprising investigations on different spatial scales in the Upper Rhone Basin (URB). The URB is the largest inneralpine basin in the European Alps with a size of > 5400 km². It is a closed system with Lake Geneva acting as an ultimate sediment sink for suspended and clastic sediment. We examine the spatial pattern and volumes of sediment storages as well as the morphometry on the local and catchment-wide scale. We mapped sediment storages and bedrock in five sub-regions of the study area (Goms, Lötschen valley, Val d'Illiez, Vallée de la Liène, Turtmann valley) in the field and from high-resolution remote sensing imagery to investigate the spatial distribution of different sediment storage types (e.g. talus deposits, debris flow cones, alluvial fans). These sub-regions cover all three litho-tectonic units of the URB (Helvetic nappes, Penninic nappes, External massifs) and different catchment sizes to capture the inherent variability. Different parameters characterizing topography, surface characteristics, and vegetation cover are analyzed for each storage type. The data is then used in geostatistical models (PCA, stepwise logistic regression) to predict the spatial distribution of sediment storage for the whole URB. We further conduct morphometric analyses of the URB to gain information on the varying degree of glacial imprint and postglacial landscape evolution and their control on the spatial distribution of sediment storage in a large scale drainage basin. Geophysical methods (ground penetrating radar and electrical resistivity tomography) are applied on different sediment storage types on the local scale to estimate mean thicknesses. Additional data from published studies are used to complement our dataset. We integrate the local data in the statistical model on the spatial distribution of sediment storages for the whole URB. Hence, we can extrapolate the stored sediment volumes to the regional scale in order to bridge the gap between small and large scale studies.
NASA Astrophysics Data System (ADS)
Juhlin, C.; Almqvist, B. S. G.; Buske, S.; Giese, R.; Hedin, P.; Lorenz, H.
2017-12-01
Mountain belts (orogens) have influenced, and do influence, geological processes and climatic conditions considerably, perhaps more than any other natural phenomenon. The Alpine-Himalayan mountain belt is the prime example of a collisional orogen today. However, research in an active orogen is mostly constrained to observe and interpret the expression of processes at the surface, while the driving processes act at depth, often at mid-crustal levels (20 km) and deeper. About 440 million years ago, an orogen comparable in dimension and tectonic setting to today's Alpine-Himalayan orogen was developing in what is western Scandinavia today. Since then, erosion has removed much of the overburden and exposed the deep interior of the orogen, facilitating direct observation of rocks that are deep in the crust in modern orogens. In the COSC project we study how large rock volumes (allochthons) were transported during the collision of two continents and the associated deformation. The emplacement of high-grade metamorphic allochthons during orogeny has been the focus of COSC-1 research, centered on a 2.5 km deep fully cored borehole drilled in the summer of 2014 through the lower part of the high-grade Seve Nappe Complex near the town of Åre in western Sweden. The planned COSC-2 borehole (also fully cored to 2.5 km) will complement the COSC-1 borehole and allow a 5 km deep tectonostratigraphic column of the Caledonides to be constructed. The rock volume in the proximity of the COSC-2 borehole will be imaged with a combination of very-high and high-resolution geophysical experiments, such as a combination of high frequency seismics; zero offset and walk-away vertical seismic profiling (VSP); and a sparse 3D coverage around the drill site combined with 2D seismic profiles of several kilometers length in different directions. Downhole geophysical logging will provide additional information on the in-situ rock physical properties. Data from surface surveys will be calibrated against and integrated with the borehole data and the geological interpretation of the drill core. The COSC-1 and COSC-2 boreholes will provide a field laboratory for investigating mountain building processes, how plates and rock units deform, what structures and units are formed and their physical properties.
Analysing the geothermal state of the ICDP COSC-1 well bore, Central Sweden
NASA Astrophysics Data System (ADS)
Löwe, R.; Pascal, C.; Renner, J.
2017-12-01
In 2014 the first well of the ICDP project "Collisional Orogeny in the Scandinavian Caledonides (COSC)" was drilled to 2495.8 m (MD) near Åre in Central Sweden. The well penetrates the Seve Nappe complex, a result of subduction/exhumation processes during the collision of Baltica and Laurentia 400 Ma. To gain detailed understanding of the geothermal state of fossil mountain belts and cratonic areas, it is necessary to study present-day heat transfer in the Earth's crust in appropriate deep wells. Heat transfer in the crust is governed by heat conduction and hydrothermal convection. The primary aims of our study are to determine which heat transfer mechanisms dominate in the study area around COSC-1 and how much heat flows to the surface. Permeability was determined for selected samples for various confining pressures using an oscillatory pore pressure method. The determined values range from 5.8 10-19 to 1.3 10-22 m2 and an empirical permeability-pressure trend was derived. Our results imply that convection plays a negligible role for heat transfer in the study area. A modified "Ångström" device was used to determine thermal diffusivity (α) from transient (oscillatory) temperature signals. It was tested on selected COSC-1 cores in an inter-laboratory round robin involving five international research organisations. Determination of specific heat capacity, density, and α for the 105 core samples, allowed us to calculate thermal conductivity (λ). In addition, we conducted measurements to assess the anisotropy of λ and α and their temperature dependencies. For the first 2000 m λ amounts to 2.8±0.4 W/(m.K) on average and increases to 4.1±1 W/(m.K) in the lowermost section of the well. Average heat generation, as derived from spectral gamma ray logs, is as low as 0.8 µW/m3. Three temperature logs were measured about one week, one month, and one year after drilling, with the latest log measured close to thermal equilibrium below 1500 m depth. Based on the logs an uncorrected average thermal gradient of 21°C/km is advanced. Experimental results provide the input for 3D numerical modelling to predict the geothermal regime of the study area.
NASA Astrophysics Data System (ADS)
Oberhänsli, Roland; Prouteau, Amaury; Candan, Osman; Bousquet, Romain
2015-04-01
Investigating metamorphic rocks from high-pressure/low-temperature (HP/LT) belts that formed during the closure of several oceanic branches, building up the present Anatolia continental micro-plate gives insight to the palaeogeography of the Neotethys Ocean in Anatolia. Two coherent HP/LT metamorphic belts, the Tavşanlı Zone (distal Gondwana margin) and the Ören-Afyon-Bolkardağ Zone (proximal Gondwana margin), parallel their non-metamorphosed equivalent (the Tauride Carbonate Platform) from the Aegean coast in NW Anatolia to southern Central Anatolia. P-T conditions and timing of metamorphism in the Ören-Afyon-Bolkardağ Zone (>70?-65 Ma; 0.8-1.2 GPa/330-420°C) contrast those published for the overlying Tavşanlı Zone (88-78 Ma; 2.4 GPa/500 °C). These belts trace the southern Neotethys suture connecting the Vardar suture in the Hellenides to the Inner Tauride suture along the southern border of the Kirşehir Complex in Central Anatolia. Eastwards, these belts are capped by the Oligo-Miocene Sivas Basin. Another HP/LT metamorphic belt, in the Alanya and Bitlis regions, outlines the southern flank of the Tauride Carbonate Platform. In the Alanya Nappes, south of the Taurides, eclogites and blueschists yielded metamorphic ages around 82-80 Ma (zircon U-Pb and phengite Ar-Ar data). The Alanya-Bitlis HP belt testifies an additional suture not comparable to the northerly Tavşanlı and Ören-Afyon belts, thus implying an additional oceanic branch of the Neotethys. The most likely eastern lateral continuation of this HP belt is the Bitlis Massif, in SE Turkey. There, eclogites (1.9-2.4 GPa/480-540°C) occur within calc-arenitic meta-sediments and in gneisses of the metamorphic (Barrovian-type) basement. Zircon U-Pb ages revealed 84.4-82.4 Ma for peak metamorphism. Carpholite-bearing HP/LT metasediments representing the stratigraphic cover of the Bitlis Massif underwent 0.8-1.2 GPa/340-400°C at 79-74 Ma (Ar-Ar on white mica). These conditions compares to the Tavşanlı-Afyon realm. However the differences in time and P-T conditions (eclogite- vs. blueschist-facies units) in the Bitlis Massif indicate that the different metamorphic peak conditions were reached at different times in a single subduction zone. Exhumation from approx. 65 to 35 km depth occurred within <10 myr. The special relations between eclogite-blueschist are due to the fact that collision with the Arabian plate was and still is on going in the Bitlis area. The Bitlis HP rocks represent a subduction realm that separated the Bitlis-Pütürge(-Bistun?) continental block from the South-Armenian (Tauride?) block, further north. Post-Eocene blueschists south of the Bitlis Massif witness the separation of the Bitlis-Pütüre block from the Arabian plate, and the southward migration of the subduction zone from the Late Cretaceous to the Oligocene. Continuous convergence of Africa and Eurasia engendered the simultaneous consumption of several, separated branches of the Neotethys Ocean and amalgamation of different terranes. The rise of the Eastern Anatolia Plateau is related to this complex geodynamic setting. Reduced seismic velocities inferred from geophysical observations, which are interpreted as complete replacement of lithospheric- by asthenospheric mantle, can be explained by thermodynamic modelling as partial hydration of the lithospheric mantle wedge during protracted subduction. Hydrated lithospheric mantle is interpreted as result of the complex geodynamic setting in Anatolia with multiple simultaneous subduction zones.
NASA Astrophysics Data System (ADS)
Lenhart, Antje; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon; Gawthorpe, Robert L.
2016-04-01
Numerous rifts form above crystalline basement containing pervasive faults and shear zones. However, the compositional and mechanical heterogeneity within crystalline basement and the geometry and kinematics of discrete and pervasive basement fabrics are poorly understood. Furthermore, the interpretation of intra-crustal structures beneath sedimentary basins is often complicated by limitations in the depth of conventional seismic imaging, the commonly acoustically transparent nature of basement, limited well penetrations, and complex overprinting of multiple tectonic events. Yet, a detailed knowledge of the structural and lithological complexity of crystalline basement rocks is crucial to improve our understanding of how rifts evolve. Potential field methods are a powerful but perhaps underutilised regional tool that can decrease interpretational uncertainty based solely on seismic reflection data. We use petrophysical data, high-resolution 3D reflection seismic volumes, gridded gravity and magnetic data, and 2D gravity and magnetic modelling to constrain the structure of crystalline basement offshore western Norway. Intra-basement structures are well-imaged on seismic data due to relatively shallow burial of the basement beneath a thin (<3.5 km) sedimentary cover. Variations in basement composition were interpreted from detailed seismic facies analysis and mapping of discrete intra-basement reflections. A variety of data filtering and isolation techniques were applied to the original gravity and magnetic data in order to enhance small-scale field variations, to accentuate formation boundaries and discrete linear trends, and to isolate shallow and deep crustal anomalies. In addition, 2D gravity and magnetic data modelling was used to verify the seismic interpretation and to further constrain the configuration of the upper and lower crust. Our analysis shows that the basement offshore western Norway is predominantly composed of Caledonian allochthonous nappes overlying large-scale anticlines of Proterozoic rocks of the Western Gneiss Region. Major Devonian extensional brittle faults, detachments and shear zones transect those tectono-stratigraphic units. Results from structural analysis of enhanced gravity and magnetic data indicate the presence of distinct intra-basement bodies and structural lineaments at different scales and depth levels which correlate with our seismic data interpretation and can be linked to their onshore counterparts exposed on mainland Norway. 2D forward models of gravity and magnetic data further support our interpretation and quantitatively constrain variations in magnetic and density properties of principal basement units. We conclude that: i) enhanced gravity and magnetic data are a powerful tool to constrain the geometry of individual intra-basement bodies and to detect structural lineaments not imaged in seismic data; ii) insights from this study can be used to evaluate the role of pre-existing basement structures on the evolution of rift basins; and iii) the integration of a range of geophysical datasets is crucial to improve our understanding of the deep subsurface.
Soapstones from the Ossola Valley (Piedmont, northern Italy)
NASA Astrophysics Data System (ADS)
Cavallo, Alessandro
2017-04-01
The term "soapstones" is referred to "soft", easily workable stones (talc and/or chlorite-rich metamorphic rocks, deriving from mafic - ultramafic protoliths), typically used for jars, pots and pipes. The term has been also improperly extended to "harder" varieties (e.g. serpentinites), mostly suitable for roof slabs and millstones. These rocks are characterized by easy workability and fire-resistance, and they had a remarkable historical, artistic and archaeological importance. In the Ossola region (Piedmont, northern Italy), the soapstones are traditionally known as "Pietra Laugera", "Pietra Lavizzaria" or "Pietra Ollare", and represent one of the oldest stony raw materials used since the Bronze Age (archaeological find in the Toceno surroundings, Vigezzo Valley). The discovery of archaeological handmade objects in the surroundings of the Ossola Valley testifies a massive use of green stones during the I century A.D., even for cinerary urns and grave outfits. A lot of two handles pots and milk vessels date back to the Middle Ages, as well as millstones and water pipes. Artistic and ornamental uses are documented in churches and civil buildings: for example, columns, capitals, pilasters and bas-reliefs (Sacro Monte del Calvario chapels, now UNESCO heritage, and the Collegiale Church in Domodossola) as well as fireplaces (e.g. Silva Palace in Domodossola), sculptures, ornaments and balustrades. The productivity reached the top in the XIX century and stopped in the twenties; nowadays the extraction occurs only in the Loana Valley, with a very limited production. The historical soapstones derive both from ophiolitic complexes (Antrona and Zermatt-Saas Zones) and from the ultramafic complexes within the Orselina-Moncucco-Isorno Zone, Monte Leone nappe and Sesia-Lanzo Zone. The historical quarries are usually small (even erratic boulders), and scattered over many lateral valleys, such as Brevettola, Antrona, Bognanco and Loana. A total of 52 representative samples were selected from all the abandoned quarries and analyzed, in order to highlight differences and relations among mineralogy and microstructures (PLOM, quantitative XRPD, SEM-EDS, WDS), whole-rock geochemistry (ICP-AES and ICP-MS) and porosity (Hg-intrusion porosimetry - MIP). The mineralogical and petrographic investigations evidenced a marked mineralogical and textural heterogeneity, ranging from talc-olivine-chlorite felses, talc-amphibole-carbonate felses, serpentinized peridotites up to talc-bearing serpentinites. The microstructures range from massive, coarse grained talc-bearing peridotites, to mylonitic serpentinites with non-pseudomorphic textures. From a geochemical point of view, there is a marked variability in major and trace-elements, due to the lithological heterogeneity and the variable serpentinization and carbonation degree. The total porosity values (MIP) range between 0.07% (Bognanco mylonitic serpentinite) and 1.06% (Moncucco talc-amphibole-carbonate fels). This research represents a first attempt of archaeometric study for the soapstones from the Ossola Valley: it evidences the usefulness of a combined mineralogical, petrographical and geochemical approach in order to identify the exploitation and provenance sites.
NASA Astrophysics Data System (ADS)
Baroň, Ivo; Bíl, Michal; Bábek, Ondřej; Smolková, Veronika; Pánek, Tomáš; Macur, Lukáš
2014-06-01
Landslides are important geomorphic agents in various mountainous settings. We document here a case of river piracy from the upper part of the Malá Brodská Valley in the Vsetínské Mts., Czech Republic (Rača Unit of the flysch Magura Group of Nappes, flysch belt of the Outer Western Carpathians) controlled by mass movement processes. Based on the field geological, geomorphological and geophysical data, we found out that the landslide accumulations pushed the more active river of out of two subparallel river channels with different erosion activity westwards and forced intensive lateral erosion towards the recently abandoned valley. Apart from the landslide processes, the presence of the N-striking fault, accentuated by higher flow rates of the eastern channel as a result of its larger catchment area, were the most critical factors of the river piracy. As a consequence of the river piracy, intensive retrograde erosion in the elbow of capture and also within the upper portion of the western catchment occurred. Deposits of two landslide dams document recent minimum erosion rates to be 18.8 mm.ky- 1 in the western (captured) catchment, and 3.6 mm.ky- 1 in the eastern catchment respectively. The maximum age of the river piracy is estimated to be of the late Glacial and/or the early Holocene.
Seismic signature of the Alpine indentation, evidence from the Eastern Alps
Bianchi, I.; Bokelmann, G.
2014-01-01
The type of collision between the European and the Adriatic plates in the easternmost Alps is one of the most interesting questions regarding the Alpine evolution. Tectonic processes such as compression, escape and uplift are interconnected and shape this area. We can understand these ongoing processes better, if we look for signs of the deformation within the Earth's deep crust of the region. By collecting records from permanent and temporary seismic networks, we assemble a receiver function dataset, and analyze it with the aim of giving new insights on the structure of the lower crust and of the shallow portion of the upper mantle, which are inaccessible to direct observation. Imaging is accomplished by performing common conversion depth stacks along three profiles that crosscut the Eastern Alpine orogen, and allow isolating features consistently persistent in the area. The study shows a moderately flat Moho underlying a seismically anisotropic middle-lower crust from the Southern Alps to the Austroalpine nappes. The spatial progression of anisotropic axes reflects the orientation of the relative motion and of the stress field detected at the surface. These observations suggest that distributed deformation is due to the effect of the Alpine indentation. In the shallow upper mantle right below the Moho interface, a further anisotropic layer is recognized, extended from the Bohemian Massif to the Northern Calcareous Alps. PMID:26525181
Kinematics and Ophiolite obduction in the Gerania and Helicon Mountains, central Greece
NASA Astrophysics Data System (ADS)
Kaplanis, A.; Koukouvelas, I.; Xypolias, P.; Kokkalas, S.
2013-06-01
New structural, petrofabric and palaeostress data from the Beotia area (central Greece) were used to investigate the tectonic evolution of the suture zone between the External (Parnassus microplate) and Internal Hellenides (Pelagonian microplate). Petrofabric studies of ultramafic rocks were done using conventional U-stage analysis and the electron backscatter diffraction (EBSD) technique. Detailed structural analysis enabled us to distinguish three main deformation phases that took place from the Triassic to the Eocene. Triassic-Jurassic deformation is related to continental rifting and the progressive formation of an ocean basin. Ophiolites formed above a westward-dipping supra-subduction zone (SSZ) in the Early-Late Jurassic. Trench-margin collision resulted in the southeastward emplacement of the ophiolite nappe over the Pelagonian margin. There is also evidence for a north-westward thrusting of ophiolitic rocks over the Gerania and Helicon units during Berriasian time. This latter tectonic process is closely related to the deposition of "Beotian flysch" into a foreland basin. An extensional phase of deformation accompanied by shallow-water carbonate sedimentation is documented in the Upper Cretaceous. Later, during Paleocene the area was subjected to a compressional deformation phase characterised by SW-directed thrusting and folding, as well as NE-verging backthrusts and backfolds. Our proposed geotectonic model suggests the consumption of the ocean between the Parnassus and Pelagonian microplates. This model includes Late Jurassic eastward ophiolite obduction followed by Early Cretaceous west directed ophiolite thrusting.
NASA Astrophysics Data System (ADS)
Price, Jason B.; Wernicke, Brian P.; Cosca, Michael A.; Farley, Kenneth A.
2018-03-01
Fifty-one new and 309 published thermochronometric ages (nine systems with closure temperatures ranging from 450 to 70°C) from the Graubünden region of the Central Alps demonstrate that a pronounced thermal mismatch between the Austroalpine allochthon (Alpine "orogenic lid") and the Pennine zone persisted until at least 29 Ma and, allowably, until circa 18 Ma. The observed mismatch supports previous suggestions that the famous "overthrust" between the Austroalpine allochthon and the Pennine zone, historically regarded as primarily an Eocene top-north thrust fault, is in fact primarily an Oligocene-Miocene normal fault that has a minimum of 60 km of displacement with top-south or top-southeast sense of shear. Two hallmarks of Alpine geology, deposition of the foredeep Molasse and emplacement of the Helvetic nappes, appear to be coeval, peripheral manifestations of crustal thickening via the interposition of the Pennine zone as a northward intruding wedge between the Austroalpine "lid" and the European cratonic margin, with the Helvetic system (European margin) acting as the "floor" of the wedge. We presume the Penninic wedge is driven by the buoyant rise of subducted crust no longer able to remain attached to the descending slab. If so, emplacement of the Pennine wedge could have occurred mainly after Adria was juxtaposed against cratonic Europe.
NASA Astrophysics Data System (ADS)
Lezzerini, Marco; Antonelli, Fabrizio; Gallello, Gianni; Ramacciotti, Mirco; Parodi, Luca; Alberti, Antonio; Pagnotta, Stefano; Legnaioli, Stefano; Palleschi, Vincenzo
2017-05-01
The aim of this study is to investigate the provenance of marbles used as architectural elements (bases, shafts and capitals of columns) for building the internal spiral staircase of the medieval bell tower of St. Nicholas Church at Pisa, Italy. Accordingly, the 45 collected marble samples have been analysed by optical microscopy, X-ray powder diffraction and mass spectroscopy for carbon and oxygen stable isotope ratio analysis; additionally, SEM-EDS analysis have been performed to complement data about accessory minerals. By comparison with literature data on the main sources of the white Mediterranean marbles used in ancient times, the results show that the analysed samples are mainly white crystalline marbles from Carrara (Italy) and, subordinately, from other Tuscan and Eastern Mediterranean quarrying areas. In fact, Mt. Pisano and Campiglia M.ma (Tuscany, Italy) and Marmara (Turkey), Paros, Mt. Penteli, Thasos (Greece) are minor sources. The other coloured stones identified on the strength of their macroscopic features are quartzites from Mt. Pisano area and granitoids from Sardinia and Island of Elba (Italy). Occasionally, a very limited number of architectonical elements made up of Acquabona limestone from Rosignano Marittimo (Livorno, Italy), red limestone with ammonites (the so-called "Rosso Ammonitico") and black limestone belonging to the Tuscan Nappe sequence, outcropping at northwest of Pisa in the nearby Monti d'Oltre Serchio area, are present.
Duplex thrusting in the South Dabashan arcuate belt, central China
NASA Astrophysics Data System (ADS)
Li, Wangpeng; Liu, Shaofeng; Wang, Yi; Qian, Tao; Gao, Tangjun
2017-10-01
Due to later tectonic superpositioning and reworking, the South Dabashan arcuate belt extending NW to SE has experienced several episodes of deformation. The earlier deformational style and formation mechanism of this belt remain controversial. Seismic interpretations and fieldwork show that the curved orogen can be divided into three sub-belts perpendicular to the strike of the orogen, the imbricate thrust fault belt, the detachment fold belt and the frontal belt from NE to SW. The imbricate thrust fault belt is characterized by a series of SW-directed thrust faults and nappes. Two regional detachment layers at different depths have been recognized in the detachment fold and frontal belts, and these detachment layers divide the sub-belts into three structural layers: the lower, middle, and upper structural layers. The middle structural layer is characterized by a passive roof duplex structure, which is composed of a roof thrust at the top of the Sinian units, a floor thrust in the upper Lower Triassic units, and horses in between. Apatite fission track dating results and regional structural analyses indicate that the imbricate thrust fault belt may have formed during the latest Early Cretaceous to earliest Paleogene and that the detachment fold belt may have formed during the latest Late Cretaceous to earliest Neogene. Our findings provide important reference values for researching intra-continental orogenic and deformation mechanisms in foreland fold-thrust belts.
NASA Astrophysics Data System (ADS)
Ait El Mekki, Ouassil; Laftouhi, Nour-Eddine; Hanich, Lahoucine
2017-07-01
Located in the extreme northwest of Africa, the Kingdom of Morocco is increasingly affected by drought. Much of the country is characterised by an arid to semi-arid climate and the demand for water is considerably higher than the supply, particularly on the Haouz Plain in the centre of the country. The expansion of agriculture and tourism, in addition to industrial development and mining, have exacerbated the stress on water supplies resulting in drought. It is therefore necessary to adopt careful management practices to preserve the sustainability of the water resources in this region. The aquifer recharge rate in the piedmont region that links the High Atlas and the Central Haouz Plain was estimated using the chloride mass balance hydrochemical method, which is based on the relationship between the chloride concentrations in groundwater and rainwater. The addition of a geographical information system made it possible to estimate the recharge rate over the whole 400 km2 of the study area. The results are presented in the form of a map showing the spatialized recharge rate, which ranges from 13 to 100 mm/year and the recharge percentage of the total rainfall varies from 3 to 25 % for the hydrological year 2011-2012. This approach will enable the validation of empirical models covering areas >6200 km2, such as the Haouz nappe.
Price, Jason B.; Wernicke, Brian P.; Cosca, Michael A.; Farley, Kenneth A.
2018-01-01
Fifty‐one new and 309 published thermochronometric ages (nine systems with closure temperatures ranging from ~450 to 70°C) from the Graubünden region of the Central Alps demonstrate that a pronounced thermal mismatch between the Austroalpine allochthon (Alpine “orogenic lid”) and the Pennine zone persisted until at least 29 Ma and, allowably, until circa 18 Ma. The observed mismatch supports previous suggestions that the famous “overthrust” between the Austroalpine allochthon and the Pennine zone, historically regarded as primarily an Eocene top‐north thrust fault, is in fact primarily an Oligocene‐Miocene normal fault that has a minimum of 60 km of displacement with top‐south or top‐southeast sense of shear. Two hallmarks of Alpine geology, deposition of the foredeep Molasse and emplacement of the Helvetic nappes, appear to be coeval, peripheral manifestations of crustal thickening via the interposition of the Pennine zone as a northward intruding wedge between the Austroalpine “lid” and the European cratonic margin, with the Helvetic system (European margin) acting as the “floor” of the wedge. We presume the Penninic wedge is driven by the buoyant rise of subducted crust no longer able to remain attached to the descending slab. If so, emplacement of the Pennine wedge could have occurred mainly after Adria was juxtaposed against cratonic Europe.
NASA Astrophysics Data System (ADS)
Wang, L.; Kusky, T.
2009-12-01
High-precision 1:1,000 mapping of Yangkou Bay, eastern Sulu orogen, defines the structural geometry and history of the world’s most significant UHP (Ultrahigh Pressure) rock exposures. Four stages of folds are recognized in the UHP rocks and associated quartzo-feldspathic gneiss. Eclogite facies rootless F1 and isoclinal F2 folds are preserved locally in coesite-eclogite. Mylonitic to ultramylonitic cosesit-eclogite shear zones separate 5-10-meter-thick nappes of ultramafic-mafic UHP rocks from banded quartzo-feldspathic gneiss. These shear zones are folded, and progressively overprinted by amphibolite and greenschist facies shear zones that become wider with lower grade. The deformation sequences is explained by deep subduction of offscraped thrust slices of oceanic or lower continental crust, caught between the colliding North and South China cratons in the Mesozoic. After these slices were structurally isolated along the plate interface, they were rolled like ball-bearings, in the subduction channel during their exhumation, forming several generations of folds, sequentially lower-grade foliations and lineations, and intruded by several generations of in situ and exotically derived melts. The shear zones formed during different generations of deformation are wider with lower grades, suggesting that deep-crustal/upper mantle deformation operates efficiently (perhaps with more active crystallographic slip systems) than deformation at mid to upper crustal levels.
The Variscan evolution in the External massifs of the Alps and place in their Variscan framework
NASA Astrophysics Data System (ADS)
von Raumer, Jürgen F.; Bussy, François; Stampfli, Gérard M.
2009-02-01
In the general discussion on the Variscan evolution of central Europe the pre-Mesozoic basement of the Alps is, in many cases, only included with hesitation. Relatively well-preserved from Alpine metamorphism, the Alpine External massifs can serve as an excellent example of evolution of the Variscan basement, including the earliest Gondwana-derived microcontinents with Cadomian relics. Testifying to the evolution at the Gondwana margin, at least since the Cambrian, such pieces took part in the birth of the Rheic Ocean. After the separation of Avalonia, the remaining Gondwana border was continuously transformed through crustal extension with contemporaneous separation of continental blocks composing future Pangea, but the opening of Palaeotethys had only a reduced significance since the Devonian. The Variscan evolution in the External domain is characterised by an early HP-evolution with subsequent granulitic decompression melts. During Visean crustal shortening, the areas of future formation of migmatites and intrusion of monzodioritic magmas in a general strike-slip regime, were probably in a lower plate situation, whereas the so called monometamorphic areas may have been in an upper plate position of the nappe pile. During the Latest Carboniferous, the emplacement of the youngest granites was associated with the strike-slip faulting and crustal extension at lower crustal levels, whereas, at the surface, detrital sediments accumulated in intramontaneous transtensional basins on a strongly eroded surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, P.R.; Johns, C.C.; Clark-Lowes, D.D.
Western Turkey consists of a number of tectonic terranes joined together by a network of suture zones. The terranes originated as microcontinental plates that rifted away from the continental margins forming the northern and southern boundaries of the Tethyan sea. These micro-continents were united by a series of collisions beginning in the Late Triassic and ending in the Miocene, with the final closure of the Tethyan sea. The sedimentary cover of the microcontinents consists of Paleozoic and Mesozoic passive margin and rift basin sequences containing numerous potential source and reservoir intervals. Most of these sequences show affinities with Gondwanaland, withmore » the notable exception of the Istanbul nappe, which is strongly Laurasian in character. Forearc basin sequences were also deposited on the margins of the microcontinents during early Tertiary plate convergence. Ensuing continental collisions resulted in compressional deformation of sedimentary cover sequences. The intensity of deformation ranged from basin inversion producing numerous potential hydrocarbon traps, to large-scale overthrusting. Following continental suturing, continued compression in eastern Turkey has been accommodated since the Miocene by westward escape of continental lithosphere between the North and South Anatolian transform faults. Neotectonic pull-apart basins formed in response to these movements, accumulating large thicknesses of Miocene-Pliocene carbonates and clastic sediments. Potential reservoirs in the Neotectonic basins may be sourced either in situ or from underlying Paleozoic and Mesozoic source rocks that remain within the hydrocarbon generating window today.« less
NASA Astrophysics Data System (ADS)
Bąk, Krzysztof; Bąk, Marta; Górny, Zbigniew; Wolska, Anna
2015-01-01
Hemipelagic green clayey shales and thin muddy turbidites accumulated in a deep sea environment below the CCD in the Skole Basin, a part of the Outer Carpathian realm, during the Middle Cenomanian. The hemipelagites contain numerous radiolarians, associated with deep-water agglutinated foraminifera. These sediments accumulated under mesotrophic conditions with limited oxygen concentration. Short-term periodic anoxia also occurred during that time. Muddy turbidity currents caused deposition of siliciclastic and biogenic material, including calcareous foramini-fers and numerous sponge spicules. The preservation and diversity of the spicules suggests that they originate from disarticulation of moderately diversified sponge assemblages, which lived predominantly in the neritic-bathyal zone. Analyses of radiolarian ecological groups and pellets reflect the water column properties during the sedimentation of green shales. At that time, surface and also intermediate waters were oxygenated enough and sufficiently rich in nutri-ents to enable plankton production. Numerous, uncompacted pellets with nearly pristine radiolarian skeletons inside show that pelletization was the main factor of radiolarian flux into the deep basin floor. Partly dissolved skeletons indicate that waters in the Skole Basin were undersaturated in relation to silica content. Oxygen content might have been depleted in the deeper part of the water column causing periodic anoxic conditions which prevent rapid bacterial degra-dation of the pellets during their fall to the sea floor.
Seismic signature of the Alpine indentation, evidence from the Eastern Alps.
Bianchi, I; Bokelmann, G
2014-12-01
The type of collision between the European and the Adriatic plates in the easternmost Alps is one of the most interesting questions regarding the Alpine evolution. Tectonic processes such as compression, escape and uplift are interconnected and shape this area. We can understand these ongoing processes better, if we look for signs of the deformation within the Earth's deep crust of the region. By collecting records from permanent and temporary seismic networks, we assemble a receiver function dataset, and analyze it with the aim of giving new insights on the structure of the lower crust and of the shallow portion of the upper mantle, which are inaccessible to direct observation. Imaging is accomplished by performing common conversion depth stacks along three profiles that crosscut the Eastern Alpine orogen, and allow isolating features consistently persistent in the area. The study shows a moderately flat Moho underlying a seismically anisotropic middle-lower crust from the Southern Alps to the Austroalpine nappes. The spatial progression of anisotropic axes reflects the orientation of the relative motion and of the stress field detected at the surface. These observations suggest that distributed deformation is due to the effect of the Alpine indentation. In the shallow upper mantle right below the Moho interface, a further anisotropic layer is recognized, extended from the Bohemian Massif to the Northern Calcareous Alps.
Relation of streams, lakes, and wetlands to groundwater flow systems
NASA Astrophysics Data System (ADS)
Winter, Thomas C.
Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surface-water bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains. Résumé Les eaux de surface sont parties intégrantes des systèmes aquifères. Les eaux souterraines interagissent avec les eaux de surface dans presque tous les types d'environnements, depuis les petits ruisseaux, les lacs et les zones humides jusqu'aux bassins versants des vallées des grands fleuves et aux lignes de côte. Il est en général admis que les zones topographiquement hautes sont des lieux de recharge des aquifères et les zones basses des lieux de décharge, ce qui est le cas des grands systèmes aquifères régionaux. La superposition de systèmes locaux, associés à des eaux de surface, à l'organisation régionale d'écoulements souterrains résulte d'interactions complexes entre les eaux souterraines et les eaux de surface dans tous les environnements, quelle que soit la situation topographique régionale. Les processus hydrologiques associés aux eaux de surface elles-mêmes, tels que des niveaux d'eau de surface saisonnièrement hauts et l'évaporation et la transpiration de l'eau souterraine à la périphérie des eaux de surface, sont les causes essentielles de la dynamique complexe et saisonnière des nappes associées aux eaux de surface. Ces processus ont été mis en évidence sur des sites de recherche dans des formations glaciaires, dunaires, littorales, fluviales et de karst couvert. Resumen Los cuerpos de aguas superficiales son partes integrales de los sistemas de flujo subterráneo. El agua subterránea interactúa con la superficial en prácticamente todo tipo de paisajes, desde pequeños torrentes, lagos y humedales, hasta grandes valles fluviales y costas. Aunque se suele asumir que las áreas topográficamente elevadas son zonas de recarga de aguas subterráneas, mientras las áreas topográficamente más bajas lo son de descarga, esto es cierto básicamente para los sistemas de flujo regional. Al superponer los sistemas de flujo local, asociados a los cuerpos de agua superficial, a las condiciones regionales, resultan interacciones complejas, y esto ocurre independientemente de su posición topográfica. Los procesos hidrológicos asociados con los propios cuerpos de agua superficial, como los niveles superficiales máximos estacionales y la evapotranspiración de agua subterránea en los perímetros de cuerpos superficiales, son una de las principales causas de la complejidad y de las variaciones dinámicas de las interacciones entre aguas subterráneas y superficiales. Estos procesos se han documentado en distintas zonas investigadas, incluyendo depósitos glaciares, dunas, áreas costeras, karsts y terrazas fluviales.
Structure and deformation history of the northern range of Trinidad and adjacent areas
NASA Astrophysics Data System (ADS)
Algar, S. T.; Pindell, J. L.
1993-08-01
Conflicting models have been proposed for both the evolution of northern South America and the neotectonics of the south Caribbean plate boundary zone. The Trinidadian portion of the margin is particularly controversial, but surprisingly it has been little studied. We present a structural analysis of Trinidad's Northern Range, pertinent updates of the island's stratigraphy and sedimentology, and new zircon fission track age determinations, and use them to constrain Trinidad's geologic history, and to better understand the controlling tectonic processes. In our interpretation Trinidad's three E-ENE striking ranges, which are separated by late Neogene-Recent depocenters, expose (1) the Northern Range Group, generally greenschist-metamorphosed Upper Jurassic to Cretaceous north facing continental slope sediments of the Northern Range, deposited on the northern South American passive margin 200-400 km to the WNW, and (2) the Trinidad Group, Cretaceous-Paleogene shelf slope sediments of the central and southern Trinidad deposited less than 100 km WNW of their present location. A small allochthon composing the Sans Souci Group Cretaceous tholeiitic volcaniclastic, basaltic, and gabbroic rocks (Sans Souci Formation) and sediments (Toco Formation) now in the northeastern Northern Range, has been transported hundreds of kilometers from the west with the Caribbean Plate. Despite earlier references to Cretaceous orogenesis, all deformation in Trinidad is of Cenozoic age. The first deformation in the Northern Range (D1) formed north vergent nappes and induced greenschist metamorphism, probably in the Late Eocene or Oligocene. The nappes developed either by the underthrusting of the Proto-Caribbean crust beneath South America due to convergence between North and South America, or as gravity slides caused by oversteepening induced by this convergence and/or the passage of the Caribbean Plate's peripheral bulge and arrival of its foredeep. Northern Range D2 deformation is south vergent and represents the incorporation of Northern Range metasediments into the Caribbean accretionary prism. The transition to D3 brittle transpressive right-lateral strike-slip faulting is interpreted to be due to the uplift and east-southeastward transpressive emplacement of Northern Range/Caribbean prism rocks onto the South American stepped shelf. This emplacement formed the Miocene transpressive thrust belts and foreland basin in central and southern Trinidad. In the final phase of Northern Range deformation (D4) ˜E-W normal faults and shear zones and conjugate NNW-SSE and NE-SW normal faults developed, and displacement on preexisting ˜E-W right-lateral strike-slip faults continued. The 11 Ma Northern Range zircon fission track ages suggest rapid uplift from the Late Miocene to Recent. Late Miocene subsidence of the Tobago platform immediately to the north of the Northern Range, and greater than 3 km of normal, down to the north, displacement indicated for the North Coast Fault Zone separating the Northern Range and Tobago platform, leads us to postulate that the rapid uplift of the Northern Range was in response to the northward detachment of the Tobago platform from above the Northern Range, along the north-dipping transtensional North Coast Fault Zone. This Late Miocene change in deformation style can be explained by a change from Caribbean/South American right-lateral transpression to right-lateral strike-slip generally striking 080°. This has generally induced a component of extension on pre-existing faults striking at greater than 080°, and a component of compression on faults striking at less than 080°.
NASA Astrophysics Data System (ADS)
Gluszynski, Andrzej; Aleksandrowski, Pawel
2017-04-01
Structural geometry of the Miocene (Badenian-Sarmatian) Carpathian orogenic front between Tarnów and Pilzno was investigated, using borehole and 2D and 3D seismic data. In line with some earlier studies by other authors, but in much more comprehensive way, our study reveals details of the alongstrike changing structural geometry of the Carpathian orogenic front and offers a model of its tectonic evolution. At places the frontal thrust of the Carpathians is blind and accompanied by well developed wedge tectonics phenomena. Elsewhere it is emergent at the surface and shows an apparently simple structure. The base of the fold-thrust zone rests on a substratum with highly variable palaeotopography, which includes a major palaeovalley incised in the Mesozoic basement to a depth exceeding 1 km. The palaeovalley floor was covered with salt-bearing evaporites at the time when the thrusting took place. The wedge tectonics phenomena include backthrusts and a prominent crocodile structure. The tectonic wedge is formed by stacked thrust-slices of the Cretaceous-to-Oligocene flysch of the Skole nappe. This wedge has forced a basal Miocene evaporitic layer (including salt) to split into two horizons (1) the lower one, which acted as a tectonic lubricant along the floor thrust of the forward-moving flysch wedge, and (2) the upper one, along which the Miocene sediments of the Carpathian foredeep were underthrusted by the flysch wedge. This resulting crocodile structure has the flysch wedge in its core, a passive roof of Miocene sediments at the top and tilted Miocene strata at its front, defining a frontal homocline. A minor triangle zone, cored with deformed evaporites, has formed due to backthrust branching at the rear of the frontal monocline. At other places, the Carpathian flysch and its basal thrust, emerge at the surface. The flysch must have once also formed a wedge there, but was mostly removed by erosion following its elevation above the present-day topographic surface on the frontal thrust. The Skole flysch units overlie a relatively thin zone of deformed Miocene evaporitic series that covers autochthonous clastic Miocene sediments of the inner parts of the Carpathian foredeep. The sediments are southerly dipping at a shallow angle below the Outer Carpathian nappe structure. Our study indicates that the lateral variations in the structural geometry at the thrust front of the Carpathian orogen are due to different levels of erosional truncation that were controlled mainly by a predeformational palaeotopography of the base of the Carpathian foredeep. At the same time, the wedge tectonics phenomena owe their formation to the limited lateral extent of the evaporitic layer and its facies changes. At erosionally lowered locations of the foredeep's base, represented by the deep palaeovalley of Pogórska Wola, the Carpathian thrust front is a fully preserved, subsurface structure, concealed below the Miocene molasse of the foredeep. In areas where the pre-thrusting erosion was not so efficient (outside the palaeovalley), the Carpathian orogenic front is emergent at the surface. We infer that the originally existent flysch tectonic wedge, splitting the evaporites at its front, was thrusted to upper levels and then eroded at such locations.
Öztürk, Hüseyin; Hein, James R.; Hanilçi, Nurullah
2002-01-01
The Taurides region of Turkey is host to a number of important bauxite, Al-rich laterite, and Mn deposits. The most important bauxite deposits, Doğankuzu and Mortaş, are karst-related, unconformity-type deposits in Upper Cretaceous limestone. The bottom contact of the bauxite ore is undulatory, and bauxite fills depressions and sinkholes in the footwall limestone, whereas its top surface is concordant with the hanging-wall limestone. The thickness of the bauxite varies from 1 to 40 m and consists of böhmite, hematite, pyrite, marcasite, anatase, diaspore, gypsum, kaolinite, and smectite. The strata-bound, sulfide- and sulfate-bearing, low-grade lower part of the bauxite ore bed contains pyrite pseudomorphs after hematite and is deep red in outcrop owing to supergene oxidation. The lower part of the bauxite body contains local intercalations of calcareous conglomerate that formed in fault-controlled depressions and sinkholes. Bauxite ore is overlain by fine-grained Fe sulfide-bearing and calcareous claystone and argillaceous limestone, which are in turn overlain by massive, compact limestone of Santonian age. That 50-m-thick limestone is in turn overlain by well-bedded bioclastic limestone of Campanian or Maastrichtian age, rich with rudist fossils. Fracture fillings in the bauxite orebody are up to 1 m thick and consist of bluish-gray-green pyrite and marcasite (20%) with böhmite, diaspore, and anatase. These sulfide veins crosscut and offset the strata-bound sulfide zones. Sulfur for the sulfides was derived from the bacterial reduction of seawater sulfate, and Fe was derived from alteration of oxides in the bauxite. Iron sulfides do not occur within either the immediately underlying or overlying limestone. The platform limestone and shale that host the bauxite deposits formed at a passive margin of the Tethys Ocean. Extensive vegetation developed on land as the result of a humid climate, thereby creating thick and acidic soils and enhancing the transport of large amounts of organic matter to the ocean. Alteration of the organic matter provided CO2 that contributed to formation of a relatively 12C-rich marine footwall limestone. Relative sea-level fall resulted from strike-slip faulting associated with closure of the ocean and local uplift of the passive margin. That uplift resulted in karstification and bauxite formation in topographic lows, as represented by the Doğankuzu and Mortaş deposits. During stage 1 of bauxite formation, Al, Fe, Mn, and Ti were mobilized from deeply weathered aluminosilicate parent rock under acidic conditions and accumulated as hydroxides at the limestone surface owing to an increase in pH. During stage 2, Al, Fe, and Ti oxides and clays from the incipient bauxite (bauxitic soil) were transported as detrital phases and accumulated in the fault-controlled depressions and sinkholes. During stage 3, the bauxitic material was concentrated by repeated desilicification, which resulted in the transport of Si and Mn to the ocean through a well-developed karst drainage system. The transported Mn was deposited in offshore muds as Mn carbonates. The sulfides also formed in stage 3 during early diagenesis. Transgression into the foreland basin resulted from shortening of the ocean basin and nappe emplacement during the latest Cretaceous. During that time bioclastic limestone was deposited on the nappe ramp, which overlapped bauxite accumulation.
NASA Astrophysics Data System (ADS)
Karkalis, Christos; Magganas, Andreas; Koutsovitis, Petros
2014-05-01
The island of Skyros is located in the Sporades-Aegean region. It includes an ophiolitic mélange sequence consisting of serpentinites, gabbroic and doleritic rocks, and also lavas which mostly appear in massive form, but in rare cases as deformed pillows. The ophiolitic mélange sequence also includes rodingites, ophicalcites, as well as radiolarites. This formation belongs to the Eohellenic tectonic nappe, which encompasses marbles, sandstones and schists and was emplaced onto the Pelagonian Zone during Early Cretaceous [1, 2]. Serpentinites were most likely formed after serpentinization of harzburgitic protoliths and consist of serpentine, bastite, spinel and magnetite. The chemistry of spinels (TiO2=0.14-0.25 wt.%, Al2O3=35.1-35.21 wt.%, Cr#=37.38-38.87), shows that the harzburgitic protoliths plausibly resemble back-arc basin peridotites [3]. Gabbros and dolerites present mostly subophitic textures, between the hornblende/clinopyroxene and plagioclase grains. Based upon their petrography and on their mineral chemistry hornblendes have been distinguished into magmatic and metamorphic hornblendes, with the first occurring mostly in gabbroic rocks. Magmatic hornblendes exhibit relatively high TiO2 (1.42-1.62 wt.%), Al2O3 (5.11-5.86 wt.%) and Na2O (1.01-1.09 wt.%) contents, with their presence implying that the magma was at least to some degree hydrous. Lavas are tholeiitic basalts with relatively high FeOt≡12 wt.% and low K2O and Th contents, consisting mostly albite, altered clinopyroxene and devitrified glass. Tectonomagmatic discrimination diagrams [4, 5] illustrate that the studied gabbros and lavas of Skyros are most likely associated with SSZ processes. Gabbroic rocks, subvolcanic dolerites and lavas have been subjected to greenschist/subgreenschist metamorphic processes, as confirmed by the presence of secondary amphiboles (metamorphic hornblende, actinolite/tremolite), epidote, pumpellyite and chlorite in all of the studied samples. On the other hand, the occurrence of rodingites and ophicalcites clearly point to interaction of the gabbroic rocks and serpentinites with hydrothermal fluids, which most probably took place during the stage of exhumation and tectonic emplacement. Ophicalcites contain serpentine, calcite, magnetite, as well as rare pyroxene and spinel. Rodingites on their behalf include hydroandradite (Alm0.00Adr61.33-67.43Grs28.25-35.18Prp0.10-2.49Sps0.00-0.33Uv0.41-2.75), vesuvianite (MgO=2.78-3.33 wt.%; TiO2=0.02-0.59 wt.%) diopside neoblasts (En48.53-49.89Wo47.56-48.10Fs2.32-3.33; Mg#=93.96-96.28), chlorite and also accessory prehnite. Some small-sized Cr-bearing hydrogarnet crystals (Cr2O3=10.34 wt.%) were most likely formed at the expense of spinel. The types of hydrogarnet and vesuvianite crystals are highly indicative for the involvement of subduction-related fluids during the formation of the rodingites [6]. References: [1] Jacobshagen & Wallbrecher 1984: Geol. Soc., London, Sp. Pub. 17, 591-602, [2] Pe-Piper 1991: Ofioliti, 16, 111 - 120, [3] Kamenetsky Sobolev, Joron & Semet 2001: J Petrol 42, 655-671, [4] Agrawal, Guevara & Verma 2008: Intern. Geol. Rev. 50, 1057-1079, [5] Pearce & Cann 1973: Earth Plan. Sci. Lett. 19, 290-300, [6] Koutsovitis, Magganas, Pomonis & Ntaflos 2013. Lithos 172-173, 139-157.
NASA Astrophysics Data System (ADS)
Carboni, Filippo; Barchi, Massimiliano; Brozzetti, Francesco; Cruciani, Francesco; Ercoli, Maurizio; Mirabella, Francesco; Porreca, Massimiliano
2017-04-01
Fold-and-Thrust Belts occur worldwide in a variety of tectonic settings. Most of them develop in a deepwater environment (Deep Water Fold-and-Thrust Belts, DWFTBs), at both continental passive and active margins, driven by gravity (near-field stresses) and tectonic forces (far-field stresses) respectively. Here we present a multidisciplinary geological study of the Outer Tuscan Nappe (OTN), an imbricate thrust system in the Northern Apennines of Italy, emplaced in Early Miocene times in deep water environment. Despite the wide scientific literature, the geometry and the kinematic evolution of the OTN were never reconstructed in detail. Furthermore, its total amount of shortening and then its shortening rate, were never measured and calculated through proper restoration techniques. The OTN involves a 2000 m thick, Late Cretaceous-Tertiary "Tuscan" succession, consisting of arenaceous turbidites (Macigno Fm.), overlying a thick level of marls and calcarenites (Scaglia Toscana Fm.), which form the major basal décollement of the imbricate system. Along this basal décollement, the OTN overthrusts eastward younger turbidite units (Mt. Rentella and Marnoso-Arenacea successions). In this study we interpreted a set of 2D seismic reflection profiles calibrated with a deep borehole, crossing transversally (WSW-ENE) and longitudinally (NNW-SSE) the OTN. To better constrain the interpretation, selected controls of key outcrops was performed, mainly aimed at reconstructing: i) the actual transport direction during the OTN emplacement; ii) the position of the subsequent, NNW-SSE trending, extensional faults dissecting the tectonic wedge; iii) the role of transversal faults, longitudinally segmenting the thrust system. Combining the aforesaid data, we drew an integrated 20 km long geological cross section showing the internal geometry of the imbricate thrust system, down to the main basal décollement. The integrated section was successively restored in 2D using the software MOVE (Midland Valley). The integrated section shows a thin-skinned deformation, where the basal thrust becomes progressively shallower from W to E, from a depth of about 5 km to 1 km. Correspondingly, the reconstructed OTN tectonic wedge is up to 5 km thick in its western part, and tapers progressively eastward: these values are consistent with previous estimates, based on thermal burial data. The total measured shortening of the OTN imbricate thrust system is about 43 km, including 19 km of internal imbrication and, at least, 24 km of horizontal ENE-ward transport along the basal décollement. To this, we have to add 13 km of passive transport caused by the subsequent deformation of the underlying units (e.g., Mt. Rentella and Marnoso-Arenacea successions). The total percentage of internal shortening is 42 % (measured as an average value between the Macigno and the Scaglia Toscana formations). Finally, we discuss the possible role of gravity in the evolution of this DW-FTB, generated in convergent settings, in an early collisional stage. The OTN geometry (e.g., high taper angle, close-range internal thrusts) and the high percentage of shortening are not characteristic of an exclusively gravity driven DWFTB therefore we think it should be interpreted as a Type 2b DWFTB (exclusively far-field stress-driven) based on the Morley's DWFTBs classification.
NASA Astrophysics Data System (ADS)
Lapen, T. J.; Johnson, C. M.; Baumgartner, L. P.; Skora, S.; Mahlen, N. J.; Beard, B. L.
2006-12-01
Subduction of continental crust to HP-UHP metamorphic conditions requires overcoming density contrasts that are unfavorable to deep burial, whereas exhumation of these rocks can be reasonably explained through buoyancy-assisted transport in the subduction channel to more shallow depths. In the western Alps, both continental and oceanic lithosphere has been subducted to eclogite-facies metamorphic conditions. The burial and exhumation histories of these sections of lithosphere bear directly on the dynamics of subduction and the stacking of units within the subduction channel. We address the burial history of the continental crust with high precision U-Pb rutile and Lu-Hf garnet geochronology of the eclogite-facies Monte Rosa nappe (MR), western Alps, Italy. U-Pb rutile ages from quartz-carbonate-white mica-rutile veins that are hosted within eclogite and schist of the MR, Gressoney Valley, Italy, indicate that it was at eclogite-facies metamorphic conditions at 42.6 +/- 0.6 Ma. The sample area (Indren glacier, Furgg zone; Dal Piaz, 2001) consists of eclogite boudins that are surrounded by micaceous schist. Associated with the eclogite and schist are quartz-carbonate-white mica-rutile veins that formed in tension cracks in the eclogite and along the contact between eclogite and surrounding schist. Intrusion of the veins occurred at eclogite-facies metamorphic conditions (480-570°C, >1.3-1.4 GPa) based on textural relations, oxygen isotope thermometry, and geothermobarometry. Lu-Hf geochronology of garnet from a chloritoid-talc-garnet-phengite-quartz-calcite-pyrite - chalcopyrite bearing boudin within talc-chloritoid whiteschists of the MR, Val d'Ayas, Italy (Chopin and Monie, 1984; Pawlig, 2001) yields an age of 40.54 +/- 0.36 Ma. The talc-chloritoid whiteschists from the area record pressures and temperatures of 1.6-2.4 GPa and 500-530°C (Chopin and Monie, 1984; Le Bayon et al., 2006) indicating near UHP metamorphic conditions. Based on the age, P-T, and textural data, the rutile age likely represents the prograde-leg of the eclogite-facies P-T path whereas the Lu-Hf garnet age likely represents higher grade metamorphic conditions. The timing of eclogite-facies metamorphism in the MR is within the same time interval as the duration of prograde metamorphism (~55-40) recorded in the structurally overlying Zermatt-Saas ophiolite (ZSO; e.g., Amato et al., 1999; Lapen et al., 2003; Mahlen et al., this meeting). In particular, the Lu-Hf garnet age from the MR is identical within error to a relatively young 40.8 +/- 1.8 Ma Lu-Hf garnet-whole rock-cpx age from a structurally low slice of the ZSO at Saas-Fee, Switzerland (Mahlen et al., this meeting). Not only do the ages of eclogite-facies metamorphism overlap between the MR and ZSO, but so do the P-T conditions (e.g., between 1.6-2.8 GPa; 500-600°C). These data, combined with the relative structural positions of the MR and ZSO in the western Alps, suggest that the MR and ZSO were likely juxtaposed within the subduction channel through underplating of the MR beneath the ZSO. The strong negative buoyancy of the MR has likely aided in the exhumation of sections of the ZSO. Therefore, coupling of continental and oceanic terranes in a subduction channel, perhaps a general feature in the western Alps, may be critical in preventing permanent loss of oceanic crust to the mantle.
NASA Astrophysics Data System (ADS)
Schulze-Makuch, Dirk; Cherkauer, Douglas S.
Previous studies have shown that hydraulic conductivity of an aquifer seems to increase as the portion of the aquifer tested increases. To date, such studies have all relied on different methods to determine hydraulic conductivity at each scale of interest, which raises the possibility that the observed increase in hydraulic conductivity is due to the measurement method, not to the scale. This study analyzes hydraulic conductivity with respect to scale during individual aquifer tests in porous, heterogeneous carbonate rocks in southeastern Wisconsin, USA. Results from this study indicate that hydraulic conductivity generally increases during an individual test as the volume of aquifer impacted increases, and the rate of this increase is the same as the rate of increase determined by using different measurement methods. Thus, scale dependence of hydraulic conductivity during single tests does not depend on the method of measurement. This conclusion is supported by 22 of 26 aquifer tests conducted in porous-flow-dominated carbonate units within the aquifer. Instead, scale dependency is probably caused by heterogeneities within the aquifer, a conclusion supported by digital simulation. All of the observed types of hydraulic-conductivity variations with scale during individual aquifer tests can be explained by a conceptual model of a simple heterogeneous aquifer composed of high-conductivity zones within a low-conductivity matrix. Résumé Certaines études ont montré que la conductivité hydraulique d'un aquifère semble augmenter en même temps que la partie testée de l'aquifère s'étend. Jusqu'à présent, ces études ont toutes reposé sur des méthodes de détermination de la conductivité hydraulique différentes pour chaque niveau d'échelle, ce qui a conduit à penser que l'augmentation observée de la conductivité hydraulique pouvait être due aux méthodes de mesure et non à l'effet d'échelle. Cette étude analyse la conductivité hydraulique par rapport au niveau d'échelle au cours d'essais de nappe individuels, dans des roches carbonatées poreuses, hétérogènes du sud-est du Wisconsin (Etats-Unis). Les résultats obtenus indiquent que la conductivité hydraulique augmente en général au cours d'un essai individuel en même temps que le volume d'aquifère concerné augmente, et que le taux d'augmentation est le même que celui déterminé en utilisant différentes méthodes de mesures. Ainsi, le fait que la conductivité hydraulique dépende de l'échelle d'observation au cours d'essais uniques ne résulte pas de la méthode de mesure. Cette conclusion est confirmée par 22 essais de nappe sur 26 entrepris dans des unités carbonatées àécoulement poreux dominant dans l'aquifère. En revanche, cette dépendance du niveau d'échelle est probablement due aux hétérogénéités existant dans l'aquifère, conclusion confortée par une simulation. Tous les types de variations de conductivité hydraulique en fonction de l'échelle au cours d'essais de nappe peuvent être expliqués par un modèle conceptuel d'aquifère hétérogène simple constitué par des zones à forte conductivitéà l'intérieur d'une matrice à faible conductivité. Resumen Estudios previos han mostrado que la conductividad hidráulica (K) de un acuífero parece crecer con el volumen ensayado. Hasta ahora, estos estudios se han basado en la utilización de métodos distintos para la determinación de la conductividad hidráulica a cada escala de interés, lo que hace pensar en la posibilidad de que este aumento observado sea debido a la variación en el método de medida y no al cambio de escala. Este estudio analiza el valor de K en función de la escala a partir de ensayos individuales en rocas carbonatadas heterogéneas y porosas al sudeste de Wisconsin, EEUU. Los resultados de este estudio indican que la K obtenida en ensayos individuales crece generalmente al aumentar el volumen de acuífero implicado en el ensayo, y que la tasa de crecimiento es la misma que se determinaría usando diferentes métodos. Por tanto, la dependencia de la conductividad hidráulica con la escala en ensayos aislados no depende del método de medida. Esta conclusión está refrendada por 22 de los 26 ensayos llevados a cabo en las unidades carbonatadas más porosas del acuífero. Por el contrario, la dependencia con la escala está causada probablemente por las heterogeneidades en el propio acuífero, lo que se corrobora con simulaciones digitales. Todos los tipos de variaciones de K con la escala observados para los ensayos individuales se pueden explicar mediante un modelo conceptual simple que supone un acuífero heterogéneo compuesto por zonas de alta conductividad embebidas en una matriz poco conductiva.
Biotransformation of pesticides in saturated-zone materials
NASA Astrophysics Data System (ADS)
Hoyle, Blythe L.; Arthur, Ellen L.
Many studies have been conducted to evaluate pesticide contamination of groundwater in the United States, but investigations of pesticide biotransformation in saturated zones are much less numerous than in surface soils. Because results of studies using soils are not directly applicable to the subsurface, the purpose of this paper is to illustrate examples of pesticide biotransformation in saturated-zone materials. Although it must be considered with caution, the US Environmental Protection Agency's (EPA) "Pesticides in Ground Water Database" was used to focus the discussion on the biotransformation potential of dibromoethane (EDB), atrazine, acetanilide herbicides, and aldicarb, all of which have been detected in groundwater in the United States. Results of more than two dozen studies indicate that a biotransformation potential for these pesticides exists in saturated-zone materials, although for any given pesticide substantial differences in biotransformation occurred. These variations were due both to differences in experimental methods and to heterogeneities in the subsurface materials under investigation. However, because biotransformation mechanisms were not well investigated, it is generally not possible to extrapolate predictions of biotransformation potential beyond the specific sites investigated. These results highlight the need to better understand microbial genetic regulation of biotransformation processes so that genetic information may be effectively incorporated into future investigations of biotransformation potential in the subsurface. Résumé De nombreuses études ont été réalisées pour évaluer le degré de pollution des aquifères par les pesticides aux États-Unis, mais les recherches concernant la biotransformation des pesticides dans les eaux souterraines sont beaucoup moins nombreuses que dans les sols. Du fait que les résultats des études concernant les sols ne sont pas directement applicables au milieu souterrain, le propos de cet article est d'illustrer par des exemples la biotransformation des pesticides dans les nappes. Bien qu'il faille la considérer avec précaution, la base de données sur les pesticides dans les eaux souterraines de l'Agence américaine pour la protection de l'environnement a été utilisée pour centrer la discussion sur le potentiel de biotransformation du dibromoéthane (EDB), de l'atrazine, des désherbants acétanildés et de l'aldicarb, qui tous ont été détectés dans les nappes des États-Unis. Les résultats de plus de deux douzaines d'études indiquent qu'il existe un potentiel de biotransformation de ces pesticides dans les nappes, bien qu'entre chacun de ces pesticides il existe des différences très nettes dans la biotransformation. Ces variations sont en fait dues à la fois à des différences dans les méthodes expérimentales et dans les hétérogénéités dans les matériaux étudiés. Cependant, parce que les mécanismes de la biotransformation ne sont pas bien étudiés, il est en général impossible d'extrapoler les prédictions du potentiel de biotransformation à des sites d'étude spécifiques. Ces résultats soulignent la nécessité de mieux comprendre la régulation génétique microbienne des processus de biotransformation, pour que l'information génétique puisse être efficacement prise en compte dans les futures recherches sur le potentiel de biotransformation dans le sous-sol. Resumen Se han llevado a cabo un gran número de estudios para evaluar la contaminación por pesticidas en los acuíferos de los Estados Unidos de América. Sin embargo, las investigaciones sobre biotransformación de pesticidas en la zona saturada son mucho menos numerosas que en suelos. Como los resultados obtenidos en suelos no son directamente transladables a la zona saturada, el objetivo de este artículo es mostrar ejemplos de biotransformación de pesticidas en la zona saturada. Aunque debe tomarse con cautela, la base de datos "Pesticides in Ground Water Database (Base de Datos de Pesticidas en Aguas Subterráneas)" perteneciente a la US EPA (Agencia de Protección Ambiental de los EEUU) se usó para centrar la discusión en la biotransformación potencial de diversos compuestos orgánicos detectados en diversos acuíferos de los EEUU. Los resultados de más de dos docenas de estudios indican que la biotransformación potencial de estos pesticidas en la zona saturada es posible, aunque para un pesticida dado pueden presentarse grandes diferencias, debidas tanto a diferencias en los métodos experimentales como a la heterogeneidad de los materiales. Sin embargo, no es posible en general extrapolar las predicciones de biotransformación potencial más allá de las zonas específicas estudiadas, al no haberse investigado en detalle sus mecanismos. Los resultados del estudio indican la necesidad de entender mejor la regulación genética de los procesos de biotransformación, para que la información genética pueda incorporarse de manera efectiva en las investigaciones futuras de biotransformación potencial en acuíferos.
The First Evidence of the Precambrian Basement in the Fore Range Zone of the Great Caucasus.
NASA Astrophysics Data System (ADS)
Latyshev, A.; Kamzolkin, V.; Vidjapin, Y.; Somin, M.; Ivanov, S.
2017-12-01
Within the Great Caucasus fold-thrust belt, the Fore Range zone has the most complicated structure, and the highest degree of metamorphism was found there. This zone consists of several salients with the different composition and the structural and metamorphic evolution. The largest Blyb salient includes the metamorphic basement covered by the pack of thrusts. According to the recent isotopic data the upper levels of the Blyb metamorphic complex (BMC) are supposed to be Middle-Paleozoic (Somin, 2011). We studied zircons from the granitic intrusions located in the metamorphic rocks of the BMC. The U-Pb dating (SHRIMP II, VSEGEI, Russia) of zircons from the large Balkan metadiorite massif yielded the ages of 549±7,4, 574,1±6,7, and 567,9±6,9 Ma. All studied zircons show the high Th/U ratios and likely have the magmatic origin. This data is the first confirmation of the presence of the Precambrian basement and Vendian magmatic activity in the Fore Range zone. Zircons from the Unnamed granodiorite massif from the south of the Blyb salient yielded the age of 319±3.8 Ma (the Early Carboniferous). This fact taken together with the low grade of metamorphism in this intrusion reveals the Late Paleozoic magmatic event in the Fore Range zone. We also suggest that the Precambrian basement of the BMC, including the Balkan intrusion, is covered by so-called Armovsky nappe. This is confirmed by the field data, Middle-Paleozoic U-Pb ages and the higher degree of metamorphism of the Armovsky gneisses and schists. Thus, the BMC is not uniform but includes the blocks of the different age and metamorphic grades. Finally, we measured the anisotropy of magnetic susceptibility (AMS) of the Balkan metadiorites. The axes of AMS ellipsoid fix the conditions of the north-east compression, as well as the strain field reconstructed from the macrostructures orientation, which corresponds to the thrusts propagation. Therefore, the emplacement of the Balkan massif happened before the thrust sheets formation. Thus, the first reliable evidence of the Precambrian basement in the Fore Range zone was obtained. Besides, our U-Pb data suggest that in the end of Precambrian the Fore Range zone could be related to Gondwana, where the Vendian granitic magmatism is widely known. This work was funded by RFBR (projects № 16-35-00571, 16-05-01012, 17-05-01121).
Robinson, J.; Beck, R.; Gnos, E.; Vincent, R.K.
2000-01-01
The remote Waziristan region of northwestern Pakistan includes outcrops of the India-Asia suture zone. The excellent exposure of the Waziristan ophiolite and associated sedimentary lithosomes and their inaccessibility made the use of Landsat Thematic Mapper (TM) data desirable in this study. Landsat TM data were used to create a spectral ratio image of bands 3/4, 5/4, and 7/5, displayed as red, green, and blue, respectively, and a principal component analysis image of bands 4, 5, and 7 (RGB). These images were interpreted in the context of available geologic maps, limited field work, and biostratigraphic, lithostratigraphic, and radiometric data. They were used to create a coherent geologic map of Waziristan and cross section of the area that document five tectonic units in the region and provide a new and more detailed tectonic history for the region. The lowest unit is comprised of Indian shelf sediments that were thrust under the Waziristan ophiolite. The ophiolite has been tectonically shuffled and consists of two separate tectonic units. The top thrust sheet is a nappe comprised of distal Triassic to Lower Cretaceous Neotethyan sediments that were underthrust during the Late Cretaceous by the ophiolite riding on Indian shelf strata. The uppermost unit contains unconformable Tertiary and younger strata. The thrust sheets show that the Waziristan ophiolite was obducted during Late Cretaceous time and imply that the Paleocene and Eocene deformation represents collision of India with the Kabul block and/or Asia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harms, T.A.; Coney, P.J.
1988-04-01
Within the large-scale geometry of the Brooks Range, the Angayucham terrane occurs as a vast overthrust sheet. From the north flank of the Ruby terrane it underlies the Koyukuk basin and stretches north as the roof thrust to the various nappe terranes of the Brooks Range. The tectonic relationship of the Ruby terrane to the south flank of the Brooks Range lies largely obscured beneath the Angayucham in the eastern apex of the Koyukuk basin. The Mosquito terrane occurs as a window through the Angayucham at this juncture. The composition and structures of the Mosquito terrane reveal that is themore » result of shear along a sub-horizontal step or flange within the prominent, through-going dextral strike-slip fault system which cuts across the eastern Koyukuk basin and southeastern Brooks Range. Units of the Mosquito were derived from both the Angayucham and Ruby terranes. A consistent tectonic fabric imposed upon them is kinematically linked to the strike-slip system and indicates a northeasterly direction of transport across the terrane. The presence of Ruby-correlative units within the Mosquito suggests the Ruby underlies the Angayucham and that it is in contact with terrances of the southern Brooks Range at that structural level along high-angle strike-slip faults. These relationships demonstrate that an episode of dextral transpression is the latest in the history of terrane accretion and tectonic evolution of the Brooks Range. 35 refs.« less
Thick-skinned tectonics closing the Rifian Corridor
NASA Astrophysics Data System (ADS)
Capella, Walter; Matenco, Liviu; Dmitrieva, Evelina; Roest, Wilmer M. J.; Hessels, Suzanne; Hssain, Mohamed; Chakor-Alami, Abdelwahid; Sierro, Francisco J.; Krijgsman, Wout
2017-07-01
Tectonic processes in the Gibraltar region are associated with Africa-Iberia convergence and the formation of the Betic-Rif orogenic system. The Late Miocene shortening recorded in the Rif orogen resulted in gradual shallowing and eventual closure of the Rifian Corridor, a narrow marine gateway connecting the Atlantic Ocean with the Mediterranean Sea. This closure is associated with paleoenvironmental changes that ultimately led to the Mediterranean Messinian Salinity Crisis. Here we present a structural analysis based on a combination of field kinematic data and interpretation of reflection seismic lines acquired for petroleum exploration to understand the deformational phases associated with the closure of the Rifian Corridor. We show the succession of three Late Miocene to present day events, an initial thin-skinned nappe thrusting, followed by regional subsidence and continued by thick-skinned contraction. The transition from in sequence thin-skinned tectonics during subduction to thick-skinned contraction during continental collision resulted in significant acceleration of tectonic uplift and associated exhumation. This is related to a change in the regional deformation linked to plate convergence, but possibly also coupled with deep lithospheric or dynamic topography processes. Such a mechanism is also common for other Mediterranean orogens during late stages of slab retreat, where accelerated tectonics resulted in rapid sedimentation and associated basins evolution. We conclude that the thick-skinned contraction in the Rif orogeny initiated in the late Tortonian, has created a cumulative uplift in the order of 1 km, and provided high enough uplift rates to close the Rifian Corridor.
Tectonic setting for ophiolite obduction in Oman.
Coleman, R.G.
1981-01-01
The Samail ophiolite is part of an elongate belt in the Middle East that forms an integral part of the Alpine mountain chains that make up the N boundary of the Arabian-African plate. The Samail ophiolite represents a portion of the Tethyan ocean crust formed at a spreading center of Middle Cretaceous age (Cenomanian). During the Cretaceous spreading of the Tethyan Sea, Gondwana Land continued its dispersal, and the Arabian-African plate drifted northward about 10o. These events, combined with the opposite rotation of Eurasia and Africa, initiated the closing of the Tethyan during the Late Cretaceous. At the early stages of closure, downwarping of the Arabian continental margin, combined with the compressional forces of closure from the Eurasian plate, initiated obduction of the Tethyan oceanic crust along preexisting transform faults and still-hot oceanic crust was detached along oblique NE dipping thrust faults. Plate configurations combined with palinspastic reconstructions show that subduction and attendant large-scale island arc volcanism did not commence until after the Tethyan sea began to close and the Samail ophiolite was emplaced southward across the Arabian continental margin. The Samail ophiolite nappe now rests upon a melange consisting mainly of pelagic sediments, volcanics and detached fragments of the basal amphibolites, which in turn rest on autochthonous shelf carbonates of the Arabian platform. Following emplacement (Eocene) of the Samail ophiolite, the Tethyan oceanic crust began northward subduction, and active arc volcanism started just N of the present Jaz Murian depression in Iran.-Author
Stratigraphic and structural distribution of reservoirs in Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefanescu, M.O.
1991-08-01
In Romania, there are reservoirs at different levels of the whole Cambrian-Pliocene interval, but only some of these levels have the favorable structural conditions to accumulate hydrocarbons in commercial quantities. These levels are the Devonian, Triassic, Middle Jurassic, Lower Cretaceous (locally including the uppermost Jurassic), Eocene, Oligocene-lower Miocene, middle and upper Miocene, and Pliocene. The productive reservoirs are represented either by carbonate rocks (in Devonian, Middle Triassic and uppermost Jurassic-Lower Cretaceous) or by detrital rocks (in Lower and Upper Triassic, Middle Jurassic, Eocene, Oligocene, Miocene, and Pliocene). From the structural point of view, the Romanian territory is characterized by themore » coexistence both of platforms (East European, Scythian, and Moesian platforms) and of the strongly tectonized orogenes (North Dobrogea and Carpathian orogenes). Each importance crust shortening was followed by the accumulation of post-tectonic covers, some of them being folded during subsequently tectonic movements. The youngest post-tectonic cover is common both for the platforms (foreland) and Carpathian orogene, representing the Carpathian foredeep. Producing reservoirs are present in the East European and Moesian platforms, in the outer Carpathian units (Tarcau and Marginal folds nappes) and in certain post-tectonic covers which fill the Carpathian foredeep and the Transylvanian and Pannonian basins. In the platforms, hydrocarbons accumulated both in calcareous and detrital reservoirs, whereas in the Carpathian units and in their reservoirs, whereas in the Carpathian units and in their post-tectonic covers, hydrocarbons accumulated only in detrital reservoirs.« less
Merschat, Arthur J.; Hatcher, Robert D.; Byars, Heather E.; Gilliam, William G.; Eppes, Martha Cary; Bartholomew, Mervin J.
2012-01-01
The Inner Piedmont extends from North Carolina to Alabama and comprises the Neoacadian (360–345 Ma) orogenic core of the southern Appalachian orogen. Bordered to west by the Blue Ridge and the exotic Carolina superterrane to the east, the Inner Piedmont is cored by an extensive region of migmatitic, sillimanite-grade rocks. It is a composite of the peri-Laurentian Tugaloo terrane and mixed Laurentian and peri-Gondwanan affinity Cat Square terrane, which are exposed in several gentle-dipping thrust sheets (nappes). The Cat Square terrane consists of Late Silurian to Early Devonian pelitic schist and metagraywacke intruded by several Devonian to Mississippian peraluminous granitoids, and juxtaposed against the Tugaloo terrane by the Brindle Creek fault. This field trip through the North Carolina Inner Piedmont will examine the lithostratigraphies of the Tugaloo and Cat Square terranes, deformation associated with Brindle Creek fault, Devonian-Mississippian granitoids and charnockite of the Cat Square terrane, pervasive amphibolite-grade Devonian-Mississippian (Neoacadian) deformation and metamorphism throughout the Inner Piedmont, and existence of large crystalline thrust sheets in the Inner Piedmont. Consistent with field observations, geochronology and other data, we have hypothesized that the Carolina superterrane collided obliquely with Laurentia near the Pennsylvania embayment during the Devonian, overrode the Cat Square terrane and Laurentian margin, and squeezed the Inner Piedmont out to the west and southwest as an orogenic channel buttressed against the footwall of the Brevard fault zone.
NASA Astrophysics Data System (ADS)
Kassem, Osama M. K.; Abd El Rahim, Said H.
2014-11-01
The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures, which are attributed to various deformational stages of the Neoproterozoic basement rocks. Field geology, finite strain and microstructural analyses were carried out and the relation-ships between the lithological contacts and major/minor structures have been studied. The R f/ϕ and Fry methods were applied on the metavolcano-sedimentary and metapyroclastic samples from 5 quartz veins samples, 7 metavolcanics samples, 3 metasedimentary samples and 4 metapyroclastic samples in Dungash area. Finite-strain data show that a low to moderate range of deformation of the metavolcano-sedimentary samples and axial ratios in the XZ section range from 1.70 to 4.80 for the R f/ϕ method and from 1.65 to 4.50 for the Fry method. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. Furthermore, the contact between principal rock units is sheared in the Dungash area under brittle to semi-ductile deformation conditions. In this case, the accumulated finite strain is associated with the deformation during thrusting to assemble nappe structure. It indicates that the sheared contacts have been formed during the accumulation of finite strain.
NASA Astrophysics Data System (ADS)
Eva, Elena; Pastore, Stefania; Deichmann, Nicholas
1998-09-01
To verify the discordant orientations of P- and T-axes found by earlier studies in the Penninic domain of the southern Valais, Switzerland, and in the surrounding regions of France and Italy, we have evaluated the focal mechanisms of 11 of the best-recorded earthquakes that occurred in this area between 1985 and 1990. By employing two-dimensional ray-tracing techniques, we have made use of what is known about the lateral variations of the crustal structure to obtain constraints on the possible focal-depth range of the hypocenters and on the take-off angles at the source. In addition, we have been able to identify one of the two nodal planes as the actual fault plane of one of the events, based on high-resolution relative locations of its aftershocks. The resulting normal faulting and oblique-slip focal mechanisms show that, down to depths of about 10 km, the compressional structures of the Penninic nappes, which were formed during the Alpine orogeny, are presently undergoing extensional deformation and that a significant component of this extension is perpendicular to the Alpine arc. Thrust faulting focal mechanisms from events at the northwestern margin of the Po plain, however, indicate that the southern Alpine foreland is still subject to compressional deformation consistent with the large-scale stress field expected from the convergence of the African and European plates. Thus, our results lend support to geodynamic models that predict extensional deformation across the crest of a mountain range, while the flanks and lowlands continue to undergo crustal shortening.
NASA Astrophysics Data System (ADS)
Decarlis, Alessandro; Beltrando, Marco; Manatschal, Gianreto; Ferrando, Simona; Carosi, Rodolfo
2017-11-01
The Alpine Tethys rifted margins were generated by a Mesozoic polyphase magma-poor rifting leading to the opening of the Piedmont-Ligurian "Ocean." This latter developed through different phases of rifting that terminated with the exhumation of subcontinental mantle along an extensional detachment system. At the onset of simple shear detachment faulting, two margin types were generated: an upper and a lower plate corresponding to the hanging wall and footwall of the final detachment system, respectively. The two margin architectures were markedly different and characterized by a specific asymmetry. In this study the detailed analysis of the Adriatic margin, exposed in the Serie dei Laghi, Ivrea-Verbano, and Canavese Zone, enabled to recognize the diagnostic elements of an upper plate rifted margin. This thesis contrasts with the classic interpretation of the Southalpine units, previously compared with the adjacent fossil margin preserved in the Austroalpine nappes and considered as part of a lower plate. The proposed scenario suggests the segmentation and flip of the Alpine rifting system along strike and the passage from a lower to an upper plate. Following this interpretation, the European and Southern Adria margins are coevally developed upper plate margins, respectively resting NE and SW of a major transform zone that accommodates a flip in the polarity of the rift system. This new explanation has important implications for the study of the pre-Alpine rift-related structures, for the comprehension of their role during the reactivation of the margin and for the paleogeographic evolution of the Alpine orogen.
NASA Astrophysics Data System (ADS)
Varol, Baki; Koşun, Erdal; Ünal Pinar, Neslihan; Ayranci, Korhan
2011-03-01
This paper is the first study of pyritized mudstones (PM) in the Permian-Triassic (P-T) boundary section of the Çürük Dağ (Taurus, Antalya Nappes, Turkey). The mudstones were generally formed as lensoidal-shaped layers or infill materials within nodular platform limestones (hardground). Normal marine fauna is diminished in the pyritized limestones, whereas tube-like microorganisms are apparently increased with the association of pyrite crystals consisting of both framboidal and cubic crystals. The total rock volumes are up to 50-60% clay minerals and are mainly made up of in situ kaolinite and subordinate mixed layer clays (illite-vermiculite). Kaolinite preferentially developed on feldspar crystals, sometimes covering ostracoda bivalves together with gypsum micronodules composed of fan-shaped gypsum crystals. The origin of the kaolinite is, in situ, directly related to feldspar dissolution via heterotrophic bacteria. Thus, kaolinite is found along with bacterial structures. Other mineralogical compositions include established quartz (mostly β-quartz), gypsum crystals (100-200 μm) glauconite and magnetite. Magnetite grains comprise a minor amount (1-2%) and show some bacterial-induced crystal orientations. Glauconite is formed as an accessory mineral that occurs as infill material in biogenic grains. On the other hand, some microspheres represented by a silica-dominated composition are only observed in scanning electron microscopes (SEM) studies under high magnification. Isotope values (d34S) obtained from the pyritized mudstones show an isotopic heterogeneity that suggests that the pyritized mudstone consists of at least two components, with different sulphur-concentrations and d34S values.
Alpine thermal events in the central Serbo-Macedonian Massif (southeastern Serbia)
NASA Astrophysics Data System (ADS)
Antić, Milorad D.; Kounov, Alexandre; Trivić, Branislav; Wetzel, Andreas; Peytcheva, Irena; von Quadt, Albrecht
2016-07-01
The Serbo-Macedonian Massif (SMM) represents a crystalline belt situated between the two diverging branches of the Eastern Mediterranean Alpine orogenic system, the northeast-vergent Carpatho-Balkanides and the southwest-vergent Dinarides and the Hellenides. We have applied fission-track analysis on apatites and zircons, coupled with structural field observations in order to reveal the low-temperature evolution of the SMM. Additionally, the age and geochemistry of the Palaeogene igneous rocks (i.e. Surdulica granodiorite and dacitic volcanic rocks) were determined by the LA-ICPMS U-Pb geochronology of zircons and geochemical analysis of main and trace elements in whole-rock samples. Three major cooling stages have been distinguished from the late Early Cretaceous to the Oligocene. The first stage represents rapid cooling through the partial annealing zones of zircon and apatite (300-60 °C) during the late Early to early Late Cretaceous (ca. 110-ca. 90 Ma). It is related to a post-orogenic extension following the regional nappe-stacking event in the Early Cretaceous. Middle to late Eocene (ca. 48-ca. 39 Ma) cooling is related to the formation of the Crnook-Osogovo-Lisets extensional dome and its exhumation along low-angle normal faults. The third event is related to regional cooling following the late Eocene magmatic pulse. During this pulse, the areas surrounding the Surdulica granodiorite (36 ± 1 Ma) and the slightly younger volcanic bodies (ca. 35 Ma) have reached temperatures higher than the apatite closure temperature (120 °C) but lower than ca. 250 °C. The geochemistry of the igneous samples reveals late- to post-orogenic tectonic setting during magma generation.
NASA Astrophysics Data System (ADS)
Dumont, Thierry; Schwartz, Stéphane; Matthews, Steve; Malusa, Marco; Jouvent, Marine
2017-04-01
The tectonic contact separating continental and oceanic units is preserved at outcrop in many locations within the Western Alps. The contact has experienced prolonged and progressive deformation during Oligocene collision and subsequent 'extrusive' contraction which is approximately westerly-directed (Dumont et al., 2012). Despite variable metamorphic grade, this tectonic contact displays a relative consistency of tectonostratigraphic and structural characteristics. Removal of the Oligocene and younger deformation is a critical requirement to allow assessment of the kinematic evolution during the Eocene continental subduction phase. The best preserved relationships are observed near the base of the Helminthoid Flysch nappes, in the footwall of the Penninic thrust, or in the external part of the Briançonnais zone. Here, the oceanic units are composed of detached Cretaceous sediments, but they are underlain locally by an olistostrome containing basaltic clasts. Further to the east, the internal boundary of the Briançonnais zone s.l. (including the 'Prepiedmont units'), is frequently marked by breccia or megabreccia, but is strongly affected by blueschist-facies metamorphism and by approximately easterly directed backfolding and backthrusting. At one locality, there is compelling evidence that the oceanic and continental units were already tectonically stacked and metamorphosed (together) 32Ma ago. Some megabreccias of mixed continental/oceanic provenance can be interpreted as a metamorphic equivalent of the external olistostrome, products of the initial pulses of tectonic stacking. The overlying units are composed dominantly of metasediments, containing distributed ophiolitic megaboudins (Tricart & Schwartz, 2006). Further east again, the tectonic contact separates the Dora-Maira continental basement from the Mt. Viso units which are predominantly composed of oceanic lithosphere. Both the Dora-Maira and Mt. Viso units are eclogitic, but the HP peak is apparently older in the oceanic rocks (Malusà et al. 2015). Finally, further SE, the Voltri massif shows a huge volume of serpentinized mantle which locally overlies continental basement (strongly metamorphosed), and is interpreted as an exhumed remnant of the subduction channel (Federico et al., 2007). In all these localities the transport directions during initial pulses of stacking were consistently oriented generally towards the NW to N, taking into account the subsequent Oligocene and younger collision-related deformation (complex folds, thrusts, backfolds and backthrusts, and block-rotations). It is thus possible to attempt reconstructing an early stage continental subduction wedge involving these different elements from the subduction channel to the most frontal part of the accretionary complex. However, this early Alpine orogen which was active throughout the Eocene is interpreted to have propagated generally towards the NW to N, prior to subsequent pulses of more westerly directed deformation from the Oligocene onwards within the southern part of the Western Alps arc. It is therefore essential to continually improve high-resolution 3D geophysical imaging to facilitate a better understanding of the complex western termination of the Alpine orogen. References: Dumont T., Schwartz S., Guillot S., Simon-Labric S., Tricart P. & Jourdan S. (2012), Structural and sedimentary record of the Oligocene revolution in the Western Alpine arc. Jour. Geodynamics, doi:10.1016/j.jog.2011.11.006 Federico L., Crispini L., Scambelluri M. & Capponi G. (2007), Ophiolite mélange zone records exhumation in a fossil subduction channel. Geology, 35, p. 499-502 Malusà M.G., Faccenna C., Baldwin S.L., Fitzgerald P.G., Rossetti F., Balestrieri M.L., Danišík M., Ellero A., Ottria G. & Piromallo C. (2015), Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica). Geochem. Geophys. Geosyst. ,16, p. 1786-1824 Tricart P. & Schwartz S. (2006), A north-south section across the Queyras Schistes Lustrés (Piedmont zone, western Alps): Syn-collision refolding of a subduction wedge. Eclogae Geol. Helv., 99, 3, p. 429-442
NASA Astrophysics Data System (ADS)
Papanikolaou, I.; Migiros, G.; Stamatis, G.; Yoxas, G.
2009-04-01
The storage capacity of fractured hard rocks is lower than porous media and karst formations, though they can yield groundwater of sufficiently good quality for drinking purposes and may host important water resources, even if they are often of low permeability. In particular, for countries like Greece, where water needs for the local population and the tourist industry are excessive and waterfall limited, these reservoirs are of strategic importance. The mountain Range in Eastern Thessaly comprises an extensive nappe of metamorphic rocks, consisting of schists, gneisses, involving partly some ophiolithic rocks and marble intercalations. The thickness of the nappe exceeds 600 m in Ossa, whereas in the area of Pelion is estimated up to 3.000 m. This nappe rests on top of the Autochthonous Olympus- Ossa unit, which forms a massive Mesozoic carbonate sequence. Extensive fieldwork data supported by the analysis of the physical and chemical properties of a large number of springs and combined by the study of the geological structure both local and regional, resulted in important outcomes regarding the fissured rocks permeability, water flow and springs distribution. Schists are characterized by heterogeneity regarding their permeability features. They are divided into hard-rocks where quartz, epidote and amphiboles prevail, displaying higher permeability and soft-rocks where clay minerals prevail, exhibiting low permeability features, because the presence of clay blocks the fissures and prevent any infiltration process. The marbles are of high permeability, but are of limited extent. A few springs are located in marbles, but the vast majority of the springs are associated to the hard-rock schists, are scattered and characterized by high seasonal discharges. In the area of Ossa in particular, the most important reservoirs exist at the bordering zones of the metamorphic and the post-alpine formations due to the enrichment of the sedimentary post-alpine formations. In the area of NE Pelion, 93 springs were recorded and 47 have been analyzed regarding their hydrochemical properties, whereas in the area of Ossa 126 springs have been recorded and 49 have been sampled. The large number of springs implies that water recharge and percolation occurs mainly via the fracture network, forming preferential flow paths. Tectonic deformation has proved to have a fundamental role in the hydrogeological pattern in both localities, because water flow either follows or is severely influenced by the major tectonic structures, such as mega-anticlines and faults. It is interesting to note that this fracturing pattern does vary spatially and in all scales, involving the microscopic (foliation, lineation), the mesoscopic (fractures) and the macroscopic scale (faults). In the microscopic scale the clay/platy minerals in the schists recrystalized perpendicular to the applied stresses, forming foliation features towards the NE, promoting flow parallel to foliation. In the mesoscopic scale, two main set of fractures were observed. The intrabedded longintudinal NE-SW fractures and the transverse NW-SE trending fractures, which are highly penetrative. In the macroscopic scale, faults are several km in length and dominate the groundwater flow, forming preferential pathways. Springs are aligned to the faults and in the area of Pelion, three dominant sets of faults are observed. Two of them are NE-SW trending (N 030o ± 10o and N 050o ± 10o), forming a 20o angle of tectonic wedge, whereas the third set is NW-SE trending (N 320o ± 5o). The geometry of faults in the area of Ossa (striking at N 035o ± 25o and N 325o ± 5o) is similar to the area of Pelion and exerts a similar influence to the distribution of springs. This should be the case in other domains of the Hellenic region with similar lithology that experienced the same deformation phase and features. In the area of Pelion the low conductivity values (90% of the springs display less than 300 µS/cm) and the substantial variability in the discharge rates throughout the year are attributed to a decrease in fracture connectivity with depth, indicating that the aquifers are surficial, of limited capacity and have short residence times. Water physical properties also show that as elevation decreases, conductivity and water temperature values gradually increase. Water in lower altitudes is getting warmer as it flows from higher elevations so that is enriched by the constant input of warmer surficial waters. Moreover, it follows a longer path within the metamorphic rocks, obtaining also higher number of dissolved solids, increasing its conductivity values. Moreover, springs in higher elevations experience a significantly higher drop in the discharge rates during summer, compared to springs in lower elevations, suggesting that there is a time delay mechanism, so that springs in higher elevations recharge the ones in lower elevations. PH values range from slightly acid 6.7 up to alkaline 8.8. The relatively high values of Na+ (0.01 up to 3.94 meq) and Cl- (0.3 to 1.00meq) indicate the influence from sea aerosols. Hydrochemical analysis has also revealed the host rocks. Two hydrochemical types are extracted in Pelion, the Mg-Ca-HCO3 (indicating schists and gneisses influence) and Ca-HCO3 (Marbles influence), and three types in Ossa, Mg-Ca- HCO3 (Schists), Ca-Mg-HCO3 (Marbles) and Mg-HCO3 (mainly peridotites). In conclusion, the thickness, the hydraulic gradient, the physical and chemical properties and the overall pattern of these heterogeneous aquifers change spatially over short distances not only due to lithology, but also due to the tectonic deformation.
Lower Oligocene Alpine geodynamic change: tectonic and sedimentary evidences in the western arc
NASA Astrophysics Data System (ADS)
Dumont, T.; Rolland, Y.; Simon-Labric, T.
2009-04-01
The formation of the western Alpine arc started during the earliest Oligocene, after a drastic kinematic change in the collisional regime. (A) Previously, south-southeast dipping subduction of the European lithosphere (including Briançonnais) underneath Adria resulted in an underfilled flexural basin propagating towards the north-northwest on the European foreland, which had already been moderately deformed due to the Iberian microplate motion. This propagation appears consistent with the Africa-Europe relative motion (Rosenbaum et al., 2002). During this early stage of collision, some oceanic units were obducted over the southern part of European continent (Corsica, Briançonnais). (B) From the early Oligocene on, the western Alps kinematics were dominated by lateral (westward) escape of the Internal Alps indenter, whose displacement with anticlockwise rotation progressively formed the arc. The structures of this mature stage of collision crosscut the buildup issued from (A), and its kinematics were probably more driven by local lithospheric forces of the Mediterranean domain (Jolivet et al., 1999) than by Africa-Europe convergence. The western and southern parts of the western Alpine arc display many evidences for this major syn-collisional change: - Structural interferences are found at various scales. For example, the circular-shape Pelvoux massif resulted in part from crossed shortening stages (SE-NW and E-W; Dumont et al., 2008). It is located in the footwall of two nappes stacks having propagated northwestwards and west- to southwestwards, respectively. The latter crosscuts the former south of Briançon city. - Tectonic transport directions are strongly variable both in the external and in the internal zones, but they consistently display anticlockwise rotation through time. The most important changes are found in the southern part of the western Alps, giving birth to a radial distribution propagating into the external zone. - Instead of beeing gradual, the propagation of syn-orogenic basins changed abruptly in earliest Oligocene times. In the southern Subalpine domain, previously SE-NW gradients (sedimentary transport, onlaps, thickness changes) shifted to westwards or southwestwards ones. This major syn-collisional change must have occurred in a short time interval bracketed between thrusting of the earliest, gravity-driven nappes over the Paleogene flexural basin, whose youngest sediments are dated as lowermost Oligocene, and eastwards underthrusting of the Pelvoux basement in the footwall of the Internal Alps indenter, having yielded Ar39/Ar40 ages of 31,2 ± 0,3 Ma to 33,7 ± 0,2 Ma (Simon-Labric et al. et al., in press). This 32 to 34 Ma old event can be traced all over the Alpine chain through its kinematic, structural, metamorphic and magmatic consequences. It played a key role in the generation of the modern, arcuate shape of the Western Alps. References: Dumont T., Champagnac J.D., Crouzet C. & Rochat P. (2008). Multistage shortening in the Dauphiné zone (French Alps): the record of Alpine collision and implications for pre-Alpine restoration. Swiss J. Geosci., 101, suppl. 1, p. 89-110. Jolivet L., Frizon De Lamothte D., Mascle A. & Séranne M. (1999). The Mediterranean Basins : Tertiary extension within the Alpine orogen - an introduction. In: Durand B., Jolivet L., Horwath F. & Séranne M. (eds.), Geological Soc. Spec. Publication, 156, p. 1-34. Simon-Labric T., Rolland Y., Dumont T., Heymes T., Authemayou C., Corsini M. & Fornari M. (in press). Ar39/Ar40 dating of Penninic Front tectonic displacement (W. Alps) during the Lower Oligocene (31-34 Ma). Terra Nova, in press. Rosenbaum G. & Lister G.S (2005). The Western Alps from the Jurassic to Oligocene: spatio-temporal constraints and evolutionary reconstructions. Earth-Sc. Rev., 69, p. 281-306.
The Pyrenean Hercynian Keirogen and the Cantabrian Orocline as genetically coupled structures
NASA Astrophysics Data System (ADS)
Şengör, A. M. Celâl
2013-04-01
The two most enigmatic structures of the western European Hercynian orogenic system are the (late Palaeozoic parts of the) Pyrenean mountain range and the extremely tight (in some estimates more than 180°) Cantabrian Orocline, the innermost section of the Ibero-Armorican Arc. They have developed coevally in close proximity to one another and any hypothesis proposed to explain the evolution of the western European Hercynides must explain both in terms of a single model. The Pyrenees have both a peculiar position in the Hercynian architecture and a strange evolution if viewed from the viewpoint of the development of orogens. They sit on the 'hinterland', south of the main orogenic body, the 'innermost' edge of which is marked by the south-vergent Montaigne Noire Helvetic-type nappes. They have a possible minor and local early shortening (D1) accompanied by Barrovian metamorphism followed by a major ESE-WNW-directed stretching that created a pervasive flat foliation and recumbent gneissic nappes of the first genre (D2) accompanied by a major Buchan-type metamorphism. This latter phase also displays porphyroblasts indicating dextral motion along the range. It was followed by later shortening nearly 90° to the stretching creating mostly upright structures with an E-W striking foliation and a following crenulation cleavage also with indication of continuing right-handed slip along the entire system (D3 and its subphases). The Visean to Bashkirian 'flysches' developed from north to south across the entire mountain range plus its bounding plains to the north and south and no flysch production accompanied any later deformation. All the major structures of the late Palaeozoic range face upwards. Such an architecture and sequence of events create a picture that is odd in terms of an orogenic development leading one to suspect the presence here of what John F. Dewey called 'spoof orogeny', but seems in accord with a keirogen that created, in addition to extension, a high geothermal gradient and associated Buchan-type HT/LP metamorphism. It was during the later episodes of the strike-slip in the Pyrenees that the Cantabrian Orocline formed. It seems clear that a westerly escaping fragment between the Pyrenean keirogen and the left-later shear systems of inner Iberia indented the formerly N-S Iberian segment of the Hercynides and produced the extreme curvature of the orogen similar to the tectonic evolution of the Appenninic/Alpine/Dinaride Orocline around the Apulian indenter (Argand's African promontory), the Carpathian/Balkan Orocline around the Moesian indenter, Hazara and the Assam Oroclines around the Indian indenter (Argand's Indian promontory). Such a model is not in itself inconsistent with models involving lithospheric delamination, but I find it hard to see how the highest supracrustal sedimentary rocks in the core of the Cantabrian Orocline could have been preserved if a lithosphere-detaching thickening had taken place here. Contrary to the earlier models of lithospheric detachment by thickening, even much of Tibet still preserves its thick lithospheric root. The Hazara and the Assam oroclines are so tight that they have been classified also as syntaxes by Suess. But not all syntaxes are also oroclines: For example, the NE Greenland syntaxis joins two branches of early Palaeozoic orogens that formed along margins that meet at a right angle. The active Aleutian and the Kuril/Kamchatka arcs also meet at a syntaxis that is not an orocline. Oroclines are also different from simple deflections (Bucher, 1933, fig. 18; note here, however, that the fixist Bucher used at least four oroclines, namely those of Calabria, western Alps, Carpathians and the Balkans, and only one true deflection, the Alpine-Carpathian passage, to illustrate the concept of deflection in this figure; also in the same figure his concept of syntaxis is entirely wrong) that form around curved margins. Oroclines must show strain indicating bending synchronously with or postdating orogeny.
NASA Astrophysics Data System (ADS)
Brouyère, Serge; Carabin, Guy; Dassargues, Alain
An integrated hydrological model (MOHISE) was developed in order to study the impact of climate change on the hydrological cycle in representative water basins in Belgium. This model considers most hydrological processes in a physically consistent way, more particularly groundwater flows which are modelled using a spatially distributed, finite-element approach. Thanks to this accurate numerical tool, after detailed calibration and validation, quantitative interpretations can be drawn from the groundwater model results. Considering IPCC climate change scenarios, the integrated approach was applied to evaluate the impact of climate change on the water cycle in the Geer basin in Belgium. The groundwater model is described in detail, and results are discussed in terms of climate change impact on the evolution of groundwater levels and groundwater reserves. From the modelling application on the Geer basin, it appears that, on a pluri-annual basis, most tested scenarios predict a decrease in groundwater levels and reserves in relation to variations in climatic conditions. However, for this aquifer, the tested scenarios show no enhancement of the seasonal changes in groundwater levels. Un modèle hydrologique intégré (MOHISE) a été développé afin d'étudier l'impact du changement climatique sur le cycle hydrologique de bassins versants représentatifs de Belgique. Ce modèle prend en compte tous les processus hydrologiques d'une manière physiquement consistante, plus particulièrement les écoulements souterrains qui sont modélisés par une approche spatialement distribuée aux éléments finis. Grâce à cet outil numérique précis, après une calibration et une validation détaillées, des interprétations quantitatives peuvent être réalisées à partir des résultats du modèle de nappe. Considérant des scénarios de changements climatiques de l'IPCC, l'approche intégrée a été appliquée pour évaluer l'impact du changement climatique sur le cycle de l'eau du bassin du Geer en Belgique. Le modèle de nappe est décrit en détail et les résultats sont discutés en terme d'impact du changement climatique sur l'évolution des réserves souterraines. Les premiers résultats indiquent que des déficits d'eau souterraine peuvent apparaître dans le futur en Belgique. Se ha desarrollado un modelo hidrológico integrado (MOHISE) para estudiar el impacto del cambio climático en el ciclo hidrológico de cuencas representativas en Bélgica. Este modelo considera todos los procesos hidrológicos de forma coherente, especialmente en relación con los flujos de aguas subterráneas, que son modelados por medio de un enfoque de elementos finitos espacialmente distribuidos. Gracias a esta herramienta numérica precisa, y tras una calibración y validación detalladas, se puede obtener interpretaciones cuantitativas de los resultados del modelo del acuífero. Considerando escenarios de cambio climático IPCC, se ha aplicado el enfoque integrado a la evaluación del impacto de dicho cambio climático en el ciclo hidrológico de la cuenca del Geer. Se describe los detalles y resultados del modelo de las aguas subterráneas en términos del impacto del cambio climático en la evolución de las reservas de los acuíferos. Los resultados preliminares indican que es posible esperar déficits de aguas subterráneas en un futuro en Bélgica.
Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China
NASA Astrophysics Data System (ADS)
Wu, Xiaozhi; He, Dengfa; Qi, Xuefeng
2016-04-01
Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas shows, and oil and gas fields have also been discovered in the Zaysan Basin in adjacent Kazakhstan and in adjacent Junggar, Tuha and Santanghu Basins. Drilling data, geochemical analysis of outcrop data, and the disection of ancient Bulongguoer oil reservoir at the south margin of the Hefeng Basin show there developed two sets of good transitional source rocks, the lower Hujierste Formation in the Middle Devonian (D2h1) and the Hebukehe Formation in the Upper Devonian and Lower Carboniferous (D3-C1h) in this area, which, 10 to 300 m thick, mainly distribute in the shoal water zone along Tacheng-Ertai Late Paleozoic island arc belt. Reservoirs were mainly formed in the Jurassic and then adjusted in two periods, one from the end of the Jurassic to middle Cretaceous and the other in early Paleogene. Those early oil reservoirs might be destroyed in areas such as Bulongguoer with poor preservation conditions, but in an area with good geologic and preserving conditions, oil and gas might accumulate again to form new reservoirs. Therefore, a potential Middle Devonian-Lower Carboniferous petroleum system may exist in Tacheng-Ertai island arc belt, which may become a new domain for exploration, north faulted fold belt in the Heshituoluogai basin, and Hongyan fault bench zone in north Ulungur Depression in the Junggar Basin are promising areas for hydrocarbon exploration.
Arribas , Antonio; Tosdal, Richard M.
1994-01-01
The Betic Cordillera in southern Spain is a complex Alpine fold belt that resulted from the Cretaceous through Cenozoic collision of Africa with Europe. The region is illustrative of one of the characteristics of the Alpine-Mediterranean orogen: the occurrence over a limited area of mineral deposits with a wide variety of host rocks, mineralization ages, and styles. The metamorphic basement in the Betic zone is characterized by a nappe structure of superimposed tectonostratigraphic units and consists of lower Paleozoic to Lower Triassic clastic metasedimentary rocks. This is overlain by Middle to Upper Triassic platform carbonate rocks with abundant strata-bound F-Pb-Zn-(Ba) deposits (e.g., Sierra de Gador, Sierra Alhamilla). Cretaceous to Paleogene subduction-related compression in southeastern Spain was followed by Miocene postcollisional extension and resulted in the formation of the Almeria-Cartagena volcanic belt and widespread hydrothermal activity and associated polymetallic mineralization. Typical Miocene hydrothermal deposits include volcanic-hosted Au (e.g., Rodalquilar) and Ag-rich base metal (e.g., Cabo de Gata, Mazarron) deposits as well as complex polymetallic veins, mantos, and irregular replacement bodies which are hosted by Paleozoic and Mesozoic metamorphic rocks and Neogene sedimentary and volcanic rocks (e.g., Cartagena, Sierra Almagrera, Sierra del Aguilon, Loma de Bas).Lead isotope compositions were measured on sulfide samples from nine ore districts and from representative fresh samples of volcanic and basement rock types of the region. The results have been used to evaluate ore-forming processes in southeastern Spain with emphasis on the sources of metals. During a Late Triassic mineralizing event, Pb was leached from Paleozoic clastic metasedimentary rocks and incorporated in galena in strata-bound F-Pb-Zn-(Ba) deposits ( 206 Pb/ 204 Pb = 18.332 + or - 12, 207Pb/ 204 Pb = 15.672 + or - 12, 208 Pb/ 204 Pb = 38.523 + or - 46). The second episode of mineralization was essentially contemporaneous (late Miocene) throughout the region and did not involve remobilization of less radiogenic Triassic ore Pb. Lead isotope data indicate a dominantly Paleozoic metasedimentary source for polymetallic vein- and manto-type deposits that formed by hydrothermal circulation through the Betic basement, driven by Miocene intrusions ( 206 Pb/ 204 Pb = 18.747 + or - 20, 207 Pb/ 204Pb = 15.685 + or - 9, 208 /Pb/ 204 Pb = 39.026 + or - 37). Lead in Au-(Cu-Te-Sn) ores is isotopically indistinguishable from that of the calc-alkalic volcanic host ( 206 Pb/ 204 Pb = 18.860 + or - 9, 207 Pb/ 204 Pb = 15.686 + or - 8, 208 Pb/ 204 Pb = 38.940 + or - 27). In contrast, the Pb in volcanic-hosted Pb-Zn-Cu-(Ag-Au) veins was derived from Paleozoic metamorphic and Miocene volcanic rocks ( 206 Pb/ 204 Pb = 18.786 + or - 5, 207 Pb/ 204 Pb = 15.686 + or - 2, 208 Pb/ 204 Pb = 38.967 + or - 9).A comparison of the Pb isotope data from southeastern Spain with published data from selected Pb-Zn deposits in southern Europe (including Les Malines, L'Argentiere, and the Alpine, Iglesiente-Sulcis, and Montagne Noire districts) indicates the importance of a metasedimentary basement as a common source of ore Pb.
ICDP drilling in the Scandinavian Caledonides: the SDDP-COSC project
NASA Astrophysics Data System (ADS)
Lorenz, Henning; Juhlin, Christopher; Gee, David; Pascal, Christophe; Tsang, Chin-Fu; Pedersen, Karsten; Rosberg, Jan-Erik
2013-04-01
The Swedish Deep Drilling Program (SDDP) Collisional Orogeny in the Scandinavian Caledonides (COSC) project is a multidisciplinary investigation of the Scandian mountain belt. Cenozoic uplift of the Scandes has exposed a lower- to middle-crustal level section through this Himalaya-type orogen, providing unique opportunities to better understand not only the Caledonides, but also on-going orogeny and the earthquake-prone environments of modern mountains belts. COSC will also contribute to our knowledge of mountain belt hydrology, provide the first information about deep thermal gradients for paleoclimate modeling and potential geothermal energy resources, contribute new information about the deep biosphere, and improve our understanding of the Cenozoic uplift history of the Scandes. The drilling program targets the far-traveled (> 400 km) allochthons of the Scandinavian Caledonides and their emplacement across the Baltoscandian foreland basin onto the platform of continent Baltica. Two 2.5 km deep holes are planned. COSC-1, to be drilled in the summer of 2013, will target the high-grade metamorphic complex of the Seve Nappes (SNC) and its contact to underlying allochthons. COSC-2 will start in the lower thrust sheets, pass through the basal décollement and investigate the character of the deformation in the underlying basement. An international science team, including expertise on Himalaya-Tibet and other young orogens, is running the science program. New high-resolution reflection seismic data provide excellent images of the upper crust. Alternative interpretations of the reflectors' origin, particularly those in the basement, will be tested. The site of COSC-1 is based on a 3D geological model, constructed from surface geology, recent and vintage regional reflection seismic profiles, regional and local gravity data, and high-resolution aeromagnetics, acquired recently by the Geological Survey of Sweden. The drilling will be carried out utilising the new Swedish scientific drilling infrastructure, located at Lund University, an Atlas Copco CT20 diamond core-drilling rig, with versatile drilling equipment (see EGU2012-7379), providing the ideal platform for core-drilling to 2.5 km depths. Existing drilling, sampling and testing techniques (e.g. triple-tube core drilling for best core quality) will need to be adapted to highly variable lithologies and new techniques will be developed, as necessary. COSC-1 drilling operations and the directly related on-site investigations are financed by ICDP and the Swedish Research Council. All drill cores will be transferred to the core repository of the Geological Survey of Sweden, and a sampling party will be announced later this year. Researchers who want to participate in COSC and contribute their expertise are encouraged to inform us of their interests.
NASA Astrophysics Data System (ADS)
Quinn, D. P.; Saleeby, J.; Ducea, M. N.; Luffi, P. I.
2013-12-01
We present the first petrogenetic analysis of a suite of peridotite xenoliths from the Crystal Knob volcanic neck in the Santa Lucia Range, California. The neck was erupted during the Plio-Pleistocene through the Salinia terrane, a fragment of the Late Cretaceous southern Sierra-northwest Mojave supra-subduction core complex that was displaced ~310 km in the late Cenozoic along the dextral San Andreas fault. The marginal tectonic setting makes these xenoliths ideal for testing different models of upper-mantle evolution along the western North American plate boundary. Possible scenarios include the early Cenozoic underplating of Farallon-plate mantle lithosphere nappes (Luffi et al., 2009), Neogene slab window opening (Atwater and Stock, 1998), and the partial subduction and stalling of the Monterey microplate (Pisker et al., 2012). The xenoliths from Crystal Knob are spinel lherzolites, which sample the mantle lithosphere underlying Salinia, and dunite cumulates apparently related to the olivine-basalt host. Initial study is focused on the spinel lherzolites: these display an allotriomorphic granular texture with anisotropy largely absent. However, several samples exhibit a weak shape-preferred orientation in elongate spinels. Within each xenolith, the silicate phases are in Fe-Mg equilibrium; between samples, Mg# [molar Mg/(Mg+Fe)*100] ranges from 87 to 91. Spinels have Cr# [molar Cr/(Cr+Al)*100] ranging from 10 to 27. Clinopyroxene Rb-Sr and Sm-Nd radiogenic isotope data show that the lherzolites are depleted in large-ion lithophile (LIL) elements, with uniform enrichment in 143Nd (ɛNd from +10.3 to +11.0) and depletion in 87Sr (87/86Sr of .702). This data rules out origin in the continental lithosphere, such as that observed in xenoliths from above the relict subduction interface found at at Dish Hill and Cima Dome in the Mojave (Luffi et al., 2009). The Mesozoic mantle wedge, which is sampled by xenoliths from beneath the southern Sierra Nevada batholith (Ducea and Saleeby, 1998), is also ruled out as a source locale. The isotopic data are consistent with oceanic mantle originating from either the Farallon plate (underplated during Paleocene shallow subduction) or the Monterey plate (partially subducted during the Miocene). Ascended asthenosphere, presumably of slab-window origin, is also a possible source. Pyroxene Ca-Mg exchange geothermometry is in progress and will enable thermal modeling and comparisons with contemporary heat flow data. These results, along with trace-element analysis of clinopyroxene crystals, will be used to distinguish between the possible sources of LIL-depleted mantle in the sub-Salinia mantle lithosphere. The full petrogenetic survey of these xenoliths adds a distal constraint to the makeup of the mantle lithosphere beneath the western North American margin.
NASA Astrophysics Data System (ADS)
Ashworth, J. R.; Birdi, J. J.; Emmett, T. F.
1992-01-01
Retrograde coronas of Caledonian age, between clinopyroxene and plagioclase in the Jotun Nappe Complex, Norway, illustrate the effects of diffusion kinetics on mineral distributions among layers and on the compositions of hornblende-actinolite. One corona type comprises a symplectite of epidote + quartz adjacent to plagioclase, and a less well-organized intergrowth of amphibole + quartz replacing clinopyroxene. The observed mineral proportions imply an open-system reaction, but the similarity of Al/Si ratios in reactant plagioclase and product symplectite indicates approximate conservation of Al2O3 and SiO2. The largest inferred open-system flux is a loss of CaO, mostly derived from consumption of clinopyroxene. The approximate layer structure, Pl|Ep + Qtz|Hbl + Qtz|Act±Hbl + Qtz|Cpx, is modelled using the theory of steady-state diffusion-controlled growth with local equilibrium. To obtain a solution, it is necessary to use a reactant plagioclase composition which takes into account aluminous (epidote) inclusions. The results indicate that, in terms of Onsager diffusion coefficients L ii , Ca is more mobile than AL ( L CaCa/ L AlAl≳3.) (where ≳ means greater than or approximately equal to). This behaviour of Ca is comparable with that of Mg in previously studied coronas around olivine. Si is non-diffusing in the present modelling, because of silica saturation. Oxidation of some Fe2+ to Fe3+ occurs within the corona. Mg diffuses towards its source (clinopyroxene) to maintain local equilibrium. Other coronas consist of two layers, hornblende adjacent to plagioclase and zoned amphibole + quartz adjacent to clinopyroxene. In the zoned layer, actinolitic hornblende forms relict patches, separated from quartz blebs by more aluminous hornblende. A preliminary steady-state, local-equilibrium model of grain-boundary diffusion explains the formation of low-Al and high-Al layers as due to Al immobility. Zoning and replacement are qualitatively explained in terms of evolution of actinolite to more stable aluminous compositions. This is modelled by a non-steady-state modification of the theory, retaining local equilibrium in grain boundaries while relatively steep zoning profiles develop in grain interiors through slow intracrystalline diffusion. Replacement of actinolite by hornblende does not require a change in P- T conditions if actinolite is a kinetically determined, non-equilibrium product. The common preservation of a sharp contact between hornblende and actionolite layers may be explained by ineffectiveness of intracrystalline diffusion: according to the theory, given sufficient grain-boundary Al flux, a metastable actinolite + quartz layer in contact with hornblende may be diffusionally stable and may continue to grow in a steady state.
NASA Astrophysics Data System (ADS)
Hurai, Vratislav; Huraiová, Monika; Gajdošová, Michaela; Konečný, Patrik; Slobodník, Marek; Siegfried, Pete R.
2018-06-01
Zirconolite is documented from the Evate apatite-magnetite-carbonate deposit in the circular Monapo Klippe (eastern Mozambique)—a relic of Neoproterozoic nappe thrusted over the Mesoproterozoic basement of the Nampula block. Zirconolite enriched in rare earth elements—REE = Y + Lu+ΣLa-Yb (up to 24.11 wt% REE2O3, 0.596 apfu REE) creates thin rims around spinel and magnetite grains, whereas zirconolite enriched in U and Th (up to 18.88 wt% ThO2 + UO2, 0.293 apfu Th + U) replace the Late Ediacaran ( 590 Ma) zircon and baddeleyite along contacts with pyrrhotite and magnetite. Both types of zirconolite contain locally increased Nb and Ta concentrations (up to 7.58 wt% Nb2O5 + Ta2O5, 0.202 apfu Nb + Ta). Typical substitutions in zirconolite from Evate involve REE + U,Th → Ca, and M 2++ M 5+→Ti + M 3+ ( M 2+ = Fe2++Mg, M 3+ = Fe3+, M 5+ = Nb5++Ta5+). In addition, REE-zirconolite is typical of the REE + M 2+ → Ca + M 3+ substitution ( M 2+ = Mg, M 3+ = Fe3++Al3+). Hence, Fe3+ predominates over Fe2+ in all types of zirconolite, thus enabling the high REE content in Nb-poor zirconolites to be stored in locally dominant REEZrTiFe3+O7 component known so far only as a synthetic analogue of natural zirconolite. Other types of zirconolite from Evate are dominated by the common CaZrTi2O7 end member, but the aforementioned "synthetic" REEZrTiFe3+O7 accompanied by another `synthetic' (U,Th)ZrFe3 + 2O7 component are also abundant. The U,Pb,Th concentrations in U,Th-zirconolites plot discordantly to theoretical isochrons, thus indicating 440 ppm of non-radiogenic excess lead in earlier Nb-rich zirconolite contrasting with secondary Pb loss from later Nb-poor zirconolite. The non-radiogenic Pb-corrected age of the early zirconolite corresponded to 485 ± 9 Ma, within uncertainty limit identical with the 493 ± 10 Ma age of the associated uranothorianite. The variegated chemical composition of zirconolites reflects the complex history of the Evate deposit. Compositional and substitution trends of the REE-zirconolite overlaps that genetically linked with carbonatites, syenites and mafic igneous rocks, whereas the U,Th-zirconolite is reminiscent of hydrothermal-metasomatic deposits. The predominance of trivalent iron in zirconolite most likely reflects strongly oxidizing parental fluids that percolated during episodic Late Ordovician to Late Cambrian rifting of Gondwana.
A field-guide to the geology of Kythnos, Western Cyclades, Greece
NASA Astrophysics Data System (ADS)
Rice, A. Hugh N.; Grasemann, Bernhard
2017-04-01
This poster advertises a new field-guide to the island of Kythnos, within the Western Cyclades: kmz files of the outcrop descriptions etc. can be downloaded from the QR-code. Kythnos comprises schists and marbles of the Cycladic Blueschist Nappe in the footwall of the Miocene West Cycladic Detachment System, with a small outcrop of the hanging wall (Pelagonian Zone) in the southwest of the island. Stretching lineations change from ENE-WSW in the north to NNE-SSW in the south, reflecting a reorientation of Eocene exhumation strains towards the West Cycladic Detachment System extension direction; overall, finite strains increase towards the south and west. The guide is divided into six day-long excursions, with a total of 63 stops; for several excursions more outcrops than can be reasonably visited in one day are given, allowing some choice in the outcrops seen. However, the island is so small (20 x 11 km) that almost any selection of outcrops can be included in a day, since most lie beside or close to a road and require little walking. Descriptions of six outcrops as seen from the local ferries are also given. The guide documents both the dominant and unusual lithologies on the island as well as the major structural features of the island. In particular; deformation associated with the emplacement of the Pelagonian Zone hanging wall along the West Cycladic Detachment System; the development of an intermediate-scale low-angled detachment linking higher-angled Riedel fractures (Ag. Ioannis Detachment); the pervasive thinning and down-faulting of the rocks to the west, with contemporary ductile deformation in blue-grey marble and brittle deformation in quartz-rich layers within the blue-grey marble; and the possibility that a very large-scale recumbent isoclinal fold forms the island.
NASA Astrophysics Data System (ADS)
Varela, Ricardo; Basei, Miguel A. S.; González, Pablo D.; Sato, Ana M.; Naipauer, Maximiliano; Campos Neto, Mario; Cingolani, Carlos A.; Meira, Vinicius T.
2011-04-01
A comprehensive review of the geological, geochronological, and isotopic features of the Mesoproterozoic Grenvillian terranes attached to the southwest of the Río de la Plata craton in Early Paleozoic times is presented in this paper. They are grouped into the northern (sierras de Umango, Maz and del Espinal and surroundings), central (Sierra de Pie de Palo, southern Precordillera and Frontal Cordillera), and southern (San Rafael and Las Matras Blocks) segments. The Mesoproterozoic basement consists mainly of arc related, intermediate to acidic and mafic-ultramafic rocks of 1,244-1,027 Ma, with juvenile, Laurentian affinity. Exception to it is the Maz Group, with a protracted history and reworked character. They are affected by 846-570 Ma, extensional magmatism in the northern and central segments, which represents the Neoproterozoic breakup of the Rodinia supercontinent. Successive passive margin sedimentation is registered in Late Neoproterozoic (~640-580 Ma) and Cambro-Ordovician (~550-470 Ma) times. The southern segment is noted for the younger sedimentation alone, and for showing the exclusive primary unconformable relationship between the Mesoproterozoic basement and Early Ordovician cover. The effects of Early Paleozoic Famatinian orogeny, associated with the collisions of Cuyania and Chilenia terranes, are recorded as main phase (480-450 Ma), late phase (440-420 Ma), and Chanic phase (400-360 Ma). Among them, the tectonothermal climax is the Ordovician main phase, to which klippe and nappe structures typical of collisional orogens are related in the northern and central segments. Preliminary data allow us to suggest a set of paired metamorphic belts, with an outboard high-P/T belt, and an inboard Barrowian P/T belt.
NASA Astrophysics Data System (ADS)
Gao, R.; Wang, H.; Li, W.; Li, H.
2014-12-01
The Minshan region, located along the eastern margin of the Tibetan Plateau north of the Sichuan Basin, provides an important natural laboratory in which to study the patterns of deformation and their relationship to mountain building at the margin of the plateau. The Minshan range is bounded by the Minjiang fault to the west and Huya fault to the east. Evidence from the Neotectonics sediments suggests that deformation along the western Min Shan may reflect the surface response to thickening of a weak lower crust at the margin of the Tibetan Plateau (Kirby et al., 2000). In 2014, two deep seismic profiles was carried out across the Minjiang fault (55 km long) and Huya fault (45 km long) respectively, supported by China geological survey project (No.1212011220260) and Crust Probe Project of China (SinoProbe-02-01). The recording of seismic waves from 4 big shots (500kg), 100 middle shots (120 kg) and 400 small shots (36 kg) were employed. The geophones spacing is 50 m. The preliminary stack sections provide us a detailed deformation mechanism of the Minshan region for the first time. The result shows that: (1) The Huya fault section shows different reflection characteristics on the west and east flank. (2) The Moho reflection beneath the Huya fault, which appeared at 12-13 s two-way time, tilts from the east to the west. (3) The Minjiang fault shows as a series of thrust nappe in the upper crust. (4) A strong reflector appears in the middle crust of the Minjiang section at 8-9 s two-way times, and it dips down to the lower crust from west to east.
Collision in the Central Alps: 2. Exhumation of high-pressure fragments
NASA Astrophysics Data System (ADS)
Brouwer, F. M.; Burri, T.; Berger, A.; Engi, M.
2003-04-01
In the Central Alps high-pressure metamorphic rocks are confined to but a few tectonic units. In the Adula nappe pressures range from about 12 kbar in the north, to 20 kbar in the south [1]. The Southern Steep Belt (SSB) is a high-strain zone at the contact between rocks deriving from Apulia and Eurasia. The SSB contains a tectonic composite of ortho and paragneisses, with widespread bands and lenses of mafic and ultramafic composition. Many of the mafic fragments are garnet-amphibolites or eclogites, with a highly variable degree of retrogression. Our petrological studies indicate that the HP rocks in the SSB show extensive variation in metamorphic pressure. In mafic fragments, pressures retained by assemblages predating the amphibolite facies overprint range from 8 to 21 kbar, while pressure estimates for some peridotites are >30 kbar. Some HP fragments show evidence of substantial heating during decompression. New Lu-Hf and Sm-Nd geochronology, in conjunction with previously published data, indicates a spread in ages obtained from the high-pressure metamorphic assemblage. Thermal models based on simplified kinematics produce computed PTt histories that resemble those documented in individual HP fragments [2]. The SSB is interpreted to represent an exhumed part of a Tectonic Accretion Channel (TAC, cf. [3]), assembled of numerous, relatively small fragments which reflect a variety of paths. The different residence times and exhumation rates reflect a protracted history of subduction and extrusion, in which the fragments moved independently from their current neighbours. Combination of thermal modelling and field-based studies improve our conceptual thinking on the dynamics of exhumation of high-pressure rocks in a convergent orogen. [1] Heinrich (1986) J. Pet. 27: 123-154 [2] Roselle et al. (2002) Amer. J. Sci. 302: 381-409 [3] Engi et al. (2001) Geology 29: 1143-1146
NASA Astrophysics Data System (ADS)
Glotzbach, C.; van der Beek, P. A.; Spiegel, C.
2011-04-01
The Pliocene-Quaternary exhumational and topographic evolution of the European Alps and its potential climatic and tectonic controls remain a subject of controversy. Here, we apply inverse numerical thermal-kinematic modelling to a spatially dense thermochronological dataset (apatite fission-track and (U-Th)/He) of both tunnel and surface samples across the Mont Blanc massif in the Western Alps, complemented by new zircon fission-track data, in order to better quantify its Neogene exhumation and relief history. Age-elevation relationships and modelling results show that an episodic exhumation scenario best fits the data. Initiation of exhumation in the Mont Blanc massif at 22 ± 2 Ma with a rate of 0.8 ± 0.15 km/Myr is probably related to NW-directed thrusting during nappe emplacement. Exhumation rates decrease at 6 ± 2 Ma to values of 0.15 ± 0.65 km/Myr, which we interpret to be the result of a general decrease in convergence rates and/or extensive exposure of less erodible crystalline basement rocks from below more easily erodible Mesozoic sediments. Finally, local exhumation rates increase up to 2.0 ± 0.6 km/Myr at 1.7 ± 0.8 Ma. Modelling shows that this recent increase in local exhumation can be explained by valley incision and the associated increase in relief at 0.9 ± 0.8 Ma, leading to erosional unloading, isostatic rebound and additional rock uplift and exhumation. Given the lack of tectonic activity as evidenced by constant thermochronological ages along the tunnel transect, we suggest that the final increase in exhumation and relief in the Mont Blanc massif is the result of climate change, with the initiation of mid-Pleistocene glaciations leading to rapid valley incision and related local exhumation.
NASA Astrophysics Data System (ADS)
Bourgois, Jacques; Calle, Bernardo; Tournon, Jean; Toussaint, Jean-François
1982-02-01
A structural study of the Buga-Buenaventura transverse in the central part of the Western Cordillera of Colombia, has shown the presence of three structural units which, from bottom to top and from west to east, are: the Rio Dagua unit, the Rio Calima unit, and the Loboguerrero window unit. All three units comprise strata between 120 and 80 m.y. old overlying a basement of green rocks showing the characteristics of submarine flows. The Bolivar ultrabasic and basic massif is geographically linked to the Rio Calima unit, in which green rocks predominate, and is separated from it by a tectonic contact. The upper part of the massif, on the other hand, shows high-temperature metamorphic rocks formed during its emplacement. The Rio Dagua unit shows two tectonic phases with isoclinal folding and development of schistosity. The first phase is contemporaneous with low-grade metamorphism equivalent to lower greenschist facies conditions. The Loboguerrero window unit shows a large recumbent fold oriented towards the southeast. Deformation in the Rio Calima unit is weaker and appears to correspond to a higher structural level than in the two other units. As the attitudes of the S1, schistosity in the Rio Dagua unit and of the shear zones located at the green rocks-sediments contact in this same unit are similar to that of the overthrust at the base of the Rio Calima unit, we are led to postulate that the overthrust belongs to the first phase of deformation, as also does the recumbent fold in the Loboguerrero window unit. We are thus led to propose a southeastward direction of emplacement for the nappes in the Western Cordillera of Colombia. In conclusion, the authors extend their observations and propose a new structural interpretation of the "Occidente Colombiano".
NASA Astrophysics Data System (ADS)
Kneuker, Tilo; Dörr, Wolfgang; Petschick, Rainer; Zulauf, Gernold
2015-03-01
The present study is dealing with the emplacement and deformation of diorite and quartz diorite exposed along new road cuts between Agios Nikolaos and Sitia (Uppermost Unit, eastern Crete). Mingling of both melt types is indicated by enclaves of diorite inside quartz diorite and vice versa. The diorite and quartz diorite intruded into coarse-grained white marble, which is in lateral contact to, but also forms the roof of, the intrusive body. Evidence for contact metamorphism is indicated by increasing grain size of calcite in the marble with decreasing distance from the diorite. U-Pb (TIMS) dating of zircons, separated from quartz diorite, yielded a concordant age at 74.0 ± 0.25 Ma, which is interpreted as emplacement age. As this age is close to published K-Ar cooling ages of hornblende and biotite, the melt should have intruded and cooled down rapidly at upper structural levels, which is not common for granitoids of the Uppermost Unit of Crete. Upper crustal melt emplacement is also documented by stoped blocks and by the lack of any ductile (viscous) deformation. The diorite and quartz diorite, however, are affected by strong post-Oligocene brittle faulting. Paleostress analysis, based on these faults, revealed a change in stress field from N-S and NNW-SSE shortening by thrusting (convergence between African and European plates) to NNE-SSW and NE-SW shortening accommodated by strike-slip (SW-ward extrusion of the Anatolian microplate). Calcite-twin density indicates high differential stress (260 ± 20 MPa) related to these phases of crustal shortening.
NASA Astrophysics Data System (ADS)
Mohammed, Nabaz; Celle-Jeanton, Hélène; Batisson, Isabelle; Bardot, Corinne; Colombet, Jonathan; Huneau, Frédéric; Le Coustumer, Philippe; Clauzet, Marie-Laure; Lavastre, Véronique
2013-04-01
Hydrogeology is an intrinsically multi-disciplinary field because of the critical role water plays in both human health and natural ecosystems. The NAA (Nappe Alluviale de l'Allier) project proposes an integrated research (hydrodynamic, hydrochemistry and biology) on the shallow aquifer of the Allier River (one of the main tributaries of the Loire River). This aquifer plays an important role in the regional water supply for it represents more than 60% of the total water abstraction. As an example, the sampling site, located near the city of Clermont-Ferrand (France) constitutes the major source of drinking water supply for more than 100 000 inhabitants and then plays a major role on the local socio-economy. A biweekly following sampling, that concerns hydrodynamical parameters, major ions and isotopes (oxygen-18, deuterium and carbon-13), has been achieved during two years on 2 rivers, 1 pond, 2 springs and 17 boreholes with the aim of defining the functioning of the aquifer in terms of quality and quantity of the water resources and then on the main processes that governs hydrodynamic and hydrochemistry. Preliminary results allowed discriminating different origins of groundwater with a part due to surface waters/groundwater interactions and a secondary origin that implies water circulating from the surrounding hills. A monthly following sampling of pesticides, pharmaceuticals and traces ions provides information on contaminants sources. In parallel, the dynamics of the microbial communities (bacteria, pico-cyanobacteria and pico-eukaryotes) was followed by flow cytometer. The bacterial diversity has been measured through PCR-DGGE analysis in order to evaluate the impact of the occurrence of contaminants.
Fault distribution in the Precambrian basement of South Norway
NASA Astrophysics Data System (ADS)
Gabrielsen, Roy H.; Nystuen, Johan Petter; Olesen, Odleiv
2018-03-01
Mapping of the structural pattern by remote sensing methods (Landsat, SPOT, aerial photography, potential field data) and field study of selected structural elements shows that the cratonic basement of South Norway is strongly affected by a regular lineament pattern that encompasses fault swarms of different orientation, age, style, attitude and frequency. Albeit counting numerous fault and fracture populations, the faults are not evenly distributed and N-S to NNE-SSW/NNW-SSE and NE-SE/ENE-WSW-systems are spatially dominant. N-S to NNW-SSE structures can be traced underneath the Caledonian nappes to the Western Gneiss Region in western and central South Norway, emphasizing their ancient roots. Dyke swarms of different ages are found within most of these zones. Also, the Østfold, Oslo-Trondheim and the Mandal-Molde lineament zones coincide with trends of Sveconorwegian post-collision granites. We conclude that the N-S-trend includes the most ancient structural elements, and that the trend can be traced back to the Proterozoic (Svecofennian and Sveconorwegian) orogenic events. Some of the faults may have been active in Neoproterozoic times as marginal faults of rift basins at the western margin of Baltica. Remnants of such fault activity have survived in the cores of many of the faults belonging to this system. The ancient systems of lineaments were passively overridden by the Caledonian fold-and-thrust system and remained mostly, but note entirely inactive throughout the Sub-Cambrian peneplanation and the Caledonian orogenic collapse in the Silurian-Devonian. The system was reactivated in extension from Carboniferous times, particularly in the Permian with the formation of the Oslo Rift and parts of it remain active to the Present, albeit by decreasing extension and fault activity.
NASA Astrophysics Data System (ADS)
Liu, Kai; Zhang, Jinjiang; Wilde, Simon A.; Liu, Shiran; Guo, Feng; Kasatkin, Sergey A.; Golozoubov, Vladimir V.; Ge, Maohui; Wang, Meng; Wang, Jiamin
2017-11-01
The Sikhote-Alin orogenic belt in Russian Far East is comprised of several N-S trending belts, including the Late Jurassic to Early Cretaceous accretionary prisms and turbidite basin which are now separated by thrusts and strike-slip faults. The origin and collage of the belts have been studied for decades. However, the provenance of the belts remains unclear. Six sandstone samples were collected along a 200 km long east-west traverse across the major belts in the southern Sikhote-Alin for U-Pb dating and Lu-Hf isotope analysis to constrain the provenance and evaluate the evolution of the northwest Pacific margin at this time. The result reveals that the sediments from the main Samarka belt was mainly from the adjacent Bureya-Jiamusi-Khanka Block (BJKB); the eastern Samarka belt and the Zhuravlevka turbidite basin were supplied by detritus from both the North China Craton (NCC) and the BJKB; the Taukha belt was mainly fed by sediments from the NCC; whereas the data from the Sergeevka nappes are insufficient to resolve their provenance. In the Late Jurassic to Early Cretaceous, collision and subduction was important in the initial collage of most belts in Sikhote-Alin. However, merely E-W trending collage cannot explain the increasing importance of the NCC provenance from west to east. It is proposed that the main Samarka belt was located adjacent to the BJKB when deposited, whereas the other belts were farther south to accept the materials from the NCC. Sinistral strike-slip faulting transported the eastern belts northward after their initial collage by thrusting.
NASA Astrophysics Data System (ADS)
Gutscher, M. A.; Dellong, D.; Graindorge, D.; Le Roy, P., Sr.; Dominguez, S.; Barreca, G.; Cunarro, D.; Petersen, F.; Urlaub, M.; Krastel, S.; Gross, F.; Kopp, H.
2016-12-01
The marine geophysical survey entitled CRACK (Catania margin, Relief, ACtive faults and historical earthquaKes) aims to investigate active faults offshore eastern Sicily. Several faults have been mapped onshore on the SE flank of Mt. Etna and recently a major strike-slip fault system was mapped in the deeper offshore area. The purpose of this study is to perform shallow water bathymetric mapping and a high-resolution sparker seismic survey in the shelf zone between the deep offshore and the onshore areas, a zone less well studied. Aside from the two fault systems mentioned above, there is also the Malta escarpment, the onshore (but buried) blind-thrust of the Gela Nappe and the lateral ramp thrust of the Calabrian accretionary wedge. Somehow all these structures connect offshore Catania, though exactly how is still unknown. The study will take place between 18 Aug. and 4 Sept. 2016 using the 25m long coastal research vessel Tethys2 and will consist of three 5-day legs. The first leg (zone 2) will be purely sparker seismics and legs 2 and 3 will be combined seismics and bathymetry along the shallow submarine SE flank of Mt. Etna (zone 1) and shallow continental shelf SE of Catania (zone 3). Some time during the first leg will also be devoted to submarine geodesy. Five submarine geodetic stations were deployed along the dextral strike-slip "North Alfeo - Etna" fault by the German GEOMAR Helmholtz Centre for Ocean Research Kiel in April 2016 (R/V Poseidon). The long-term monitoring campaign should help indicate in the future if this fault is slowly creeping or not currently moving. The first five months of data will be downloaded during the CRACK cruise.
NASA Astrophysics Data System (ADS)
Liu, Li-Ping; Li, Zheng-Xiang; Danišík, Martin; Li, Sanzhong; Evans, Noreen; Jourdan, Fred; Tao, Ni
2017-08-01
The thermal history of the Dabie-Sulu orogenic belt provides important constraints on the collision process between the South China and North China blocks during the Mesozoic, and possible lithospheric thinning event(s) in the eastern North China Block. This study reports on the thermal evolution of the Sulu ultrahigh-pressure metamorphic (UHP) terrane using zircon U-Pb geochronology and multiple thermochronology methods such as mica and hornblende 40Ar/39Ar, zircon and apatite fission track, and zircon and apatite (U-Th)/He dating. 40Ar/39Ar and zircon (U-Th)/He data show that the UHP terrane experienced accelerated cooling during 180-160 Ma. This cooling event could be interpreted to have resulted from extensional unroofing of an earlier southward thrusting nappe, or, more likely, an episode of northward thrusting of the UHP rocks as a hanging wall. A subsequent episode of exhumation took place between ca. 125 Ma and 90 Ma as recorded by zircon (U-Th)/He data. This event was more pronounced in the northwest section of the UHP terrane, whereas in the southeast section, the zircon (U-Th)/He system retained Jurassic cooling ages of ca. 180-160 Ma. The mid-Cretaceous episode of exhumation is interpreted to have resulted from crustal extension due to the removal of thickened, enriched mantle. A younger episode of exhumation was recorded by apatite fission track and apatite (U-Th)/He ages at ca. 65-40 Ma. Both latter events were linked to episodic thinning of lithosphere along the Sulu UHP terrane in an extensional environment, likely caused by the roll-back of the Western Pacific subduction system.
NASA Astrophysics Data System (ADS)
Whitney, D.; Radwany, M.; Brocard, G. Y.; Umhoefer, P. J.
2016-12-01
Anatolia is festooned with ophiolitic rocks derived from Tethyan seaways; they mark sutures between Eurasia, Gondwana/Arabia, and continental ribbons and island arcs. Ophiolites are also dispersed between sutures, indicating tectonic transport of possibly 100s of kms. In Central Anatolia, isolated fragments of a Late-K ophiolite (Central Anatolian Ophiolite, CAO) have been assigned to northern (Izmir-Ankara-Erzincan) or southern (Inner-Tauride) sutures, with implications for the magnitude and direction of transport and relation of ophiolite obduction to regional metamorphism. Ophiolitic clasts (primarily gabbro) are widespread in sedimentary basins and alluvial terraces, suggesting that one or several erosional events almost completely removed a formerly extensive ophiolitic nappe. We have obtained petrologic and geochemical data from gabbro outcrops, gabbro clasts in conglomerates and gabbro cobbles on alluvial terraces near the Niĝde metamorphic dome to locate the paleosources and reconstruct ophiolite emplacement, erosion, and dispersal. Our new data show that gabbro currently cropping out at the northern margin of the Niĝde dome is geochemically similar to the CAO: Niĝde and CAO gabbro both have Ti/V <10 and depleted HFSE, typical of boninitic (forearc) magma, although Niĝde gabbro was metamorphosed at mid/upper amphibolite facies and the rest of the CAO at (sub)greenschist facies conditions. Whole-rock trace element data for gabbro clasts indicate that early-middle Miocene sediments were at least partly derived from Tauride ophiolites, whereas later Mio/Pliocene sediments - even those south of the topographic high of the Niĝde dome - were sourced entirely from the CAO to the north. These results show that the Miocene rise of the Central Anatolian plateau drove reorganization of sediment dispersal and topographic disconnection of Miocene depocenters from their CAO sources.
NASA Astrophysics Data System (ADS)
Schefer, Senecio; Egli, Daniel; Missoni, Sigrid; Bernoulli, Daniel; Fügenschuh, Bernhard; Gawlick, Hans-Jürgen; Jovanović, Divna; Krystyn, Leopold; Lein, Richard; Schmid, Stefan M.; Sudar, Milan N.
2010-04-01
Strongly deformed and metamorphosed sediments in the Studenica Valley and Kopaonik area in southern Serbia expose the easternmost occurrences of Triassic sediments in the Dinarides. In these areas, Upper Paleozoic terrigenous sediments are overlain by Lower Triassic siliciclastics and limestones and by Anisian shallow-water carbonates. A pronounced facies change to hemipelagic and distal turbiditic, cherty metalimestones (Kopaonik Formation) testifies a Late Anisian drowning of the former shallow-water carbonate shelf. Sedimentation of the Kopaonik Formation was contemporaneous with shallow-water carbonate production on nearby carbonate platforms that were the source areas of diluted turbidity currents reaching the depositional area of this formation. The Kopaonik Formation was dated by conodont faunas as Late Anisian to Norian and possibly extends into the Early Jurassic. It is therefore considered an equivalent of the grey Hallstatt facies of the Eastern Alps, the Western Carpathians, and the Albanides-Hellenides. The coeval carbonate platforms were generally situated in more proximal areas of the Adriatic margin, whereas the distal margin was dominated by hemipelagic/pelagic and distal turbiditic sedimentation, facing the evolving Neotethys Ocean to the east. A similar arrangement of Triassic facies belts can be recognized all along the evolving Meliata-Maliac-Vardar branch of Neotethys, which is in line with a ‘one-ocean-hypothesis’ for the Dinarides: all the ophiolites presently located southwest of the Drina-Ivanjica and Kopaonik thrust sheets are derived from an area to the east, and the Drina-Ivanjica and Kopaonik units emerge in tectonic windows from below this ophiolite nappe. On the base of the Triassic facies distribution we see neither argument for an independent Dinaridic Ocean nor evidence for isolated terranes or blocks.
Aksu-Dinar Fault System: Its bearing on the evolution of the Isparta Angle (SW Turkey)
NASA Astrophysics Data System (ADS)
Kaymakci, Nuretdin; Özacar, Arda; Langereis, Cornelis G.; Özkaptan, Murat; Gülyüz, Erhan; van Hinsbergen, Douwe J. J.; Uzel, Bora; McPhee, Peter; Sözbilir, Hasan
2017-04-01
The Isparta Angle is a triangular structure in SW Turkey with NE-SW trending western and NW-SE trending eastern flanks. Aksu Fault is located within the core of this structure and have been taken-up large E-W shortening and sinistral translation since the Late Miocene. It is an inherited structure which emplaced Antalya nappes over the Beydaǧları Platform during the late Eocene to Late Miocene and was reactivated by the Pliocene as a high angle reverse fault to accommodate the counter-clockwise rotation of Beydaǧları and SW Anatolia. On the other hand, the Dinar Fault is a normal fault with slight sinistral component has been active since Pliocene. These two structures are collinear and delimit areas with clockwise and counter-clockwise rotations. The areas to the north and east of these structures rotated clockwise while southern and western areas are rotated counter-clockwise. We claim that the Dinar-Aksu Fault System facilitate rotational deformation in the region as a scissor like mechanism about a pivot point north of Burdur. This mechanism resulted in the normal motion along the Dinar and reverse motion along the Aksu faults with combined sinistral translation component on both structures. We claim that the driving force for the motion of these faults and counter-clockwise rotation of the SW Anatolia seems to be slab-pull forces exerted by the east dipping Antalya Slab, a relic of Tethys oceanic lithosphere. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Dinar Fault, Aksu Fault, Isparta Angle, SW Turkey, Burdur Pivot, Normal Fault, Reverse Fault
NASA Astrophysics Data System (ADS)
Grobe, A.; Virgo, S.; von Hagke, C.; Urai, J. L.; Littke, R.
2018-03-01
The structural evolution of the carbonate platform in the footwall of the Semail ophiolite emplaced onto the passive continental margin of Arabia helps to better understand the early stages of obduction-related orogens. These early stages are rarely observable in other orogens as they are mostly overprinted by later mountain building phases. We present an extensive structural analysis of the Jebel Akhdar anticline, the largest tectonic window of the Oman Mountains, and integrate it on different scales. Outcrop observations can be linked to plate motion data, providing an absolute timeframe for structural generations consistent with radiometric dating of veins. Top-to-S overthrusting of the Semail ophiolite and Hawasina nappes onto the carbonate platform during high plate convergence rates between Arabia and Eurasia caused rapid burial and overpressure, generation and migration of hydrocarbons, and bedding-confined veins, but no major deformation in the carbonate platform. At reduced convergence rates, subsequent tectonic thinning of the ophiolite took place above a top-to-NNE, crustal-scale ductile shear zone, deforming existing veins and forming a cleavage in clay-rich layers in early Campanian times. Ongoing extension occurred along normal- to oblique-slip faults, forming horst-graben structures and a precursor of the Jebel Akhdar dome (Campanian to Maastrichtian). This was followed by NE-SW oriented ductile shortening and the formation of the Jebel Akhdar dome, deforming the earlier structures. Thereafter, exhumation was associated with low-angle normal faults on the northern flank of the anticline. We correlate the top-to-NNE crustal-scale shear zone with a similar structure in the Saih Hatat window to develop a unified model of the tectonic evolution of the Oman Mountains.
NASA Astrophysics Data System (ADS)
Quesnel, Benoît; de Veslud, Christian Le Carlier; Boulvais, Philippe; Gautier, Pierre; Cathelineau, Michel; Drouillet, Maxime
2017-10-01
Resulting from the weathering of the Peridotite Nappe, laterites are abundant in New Caledonia and host one of the largest nickel deposits worldwide. This work presents a 3D model of the Koniambo nickel laterite ore deposit. It shows that the laterites are located along the ridges of the massif and organized as hectometric-sized patches obliquely cut by the topography and distributed at various elevations. Three kinds of geometry were observed: (i) a thick laterite cover (between 20 and 40 m) overlying saprolite and mainly localized on topographic highs, (ii) a thin laterite cover (from a few meters to 20 m) mainly localized on areas with gentle slopes, and (iii) exposure of saprolite without laterite cover. Our data show that Ni-rich and Ni-poor areas are organized as hectometric-sized patches which broadly correlate with the distribution of the laterite thickness. The highest Ni areas are localized on slopes where laterite cover is thin or absent. The areas with lowest Ni are located in topographic highs under the thickest laterite cover. The vertical Ni mass balance for each borehole shows that, in areas with thick laterite cover, Ni is sub-equilibrated to slightly depleted whereas in areas with thin laterite cover, Ni is enriched. This suggests the existence of lateral infiltration of water rich in dissolved Ni, from areas such as topographic highs to downstream slope areas, in a process leading to enrichment of saprolite in Ni in slope areas. Mechanical transport and leaching of laterite material on slopes, including Ni-bearing material, could also contribute to local enrichment of Ni in the saprolite.
NASA Astrophysics Data System (ADS)
Simon, H.; Buske, S.; Hedin, P.; Juhlin, C.; Krauß, F.; Giese, R.
2017-12-01
The Scandinavian Caledonides represent a well preserved deeply eroded Palaeozoic orogen, formed by the collision of the two palaeocontinents Baltica and Laurentia. Today, after four hundred million years of erosion along with uplift and extension during the opening of the North Atlantic Ocean, the geological structure in central western Sweden consists of allochthons, underlying autochthonous units, and the shallow west-dipping décollement that separates the two and is associated with Cambrian black shales. The project Collisional Orogeny in the Scandinavian Caledonides (COSC) aims to investigate these structures and their physical conditions with two approximately 2.5 km deep fully cored scientific boreholes in central Sweden. The first borehole COSC-1 was successfully drilled in 2014 and obtained a continuous cored section through the highly deformed Seve Nappe. After drilling was completed several surface and borehole based seismic experiments were conducted. The data from a multi-azimuthal walkaway VSP in combination with long offset surface lines was used to image the structures in the vicinity of the borehole. Clear differences in vertical and horizontal P-wave velocities made it necessary to also account for anisotropy. The resulting VTI velocity model provides the basis for subsequent application of seismic imaging approaches. An anisotropic eikonal solver was used to calculate the traveltimes needed for Kirchhoff-based pre-stack depth migration methods. The resulting images were compared to the corresponding migration results based on an isotropic velocity model. Both images are dominated by strong and clear reflections, however, they appear more continuous and better focused in the anisotropic result. Most of the dominant reflections originate below the bottom of the borehole and therefore they are probably situated within the Precambrian basement. They might represent dolerite intrusions or deformation zones of Caledonian or pre-Caledonian age.
NASA Astrophysics Data System (ADS)
Ferriday, T.; Montenari, M.
2012-04-01
The Silurian black shale deposits of the peri-Gondwanan region are one of the most important Palaeozoic source rocks for hydrocarbons world-wide. Despite intensive research, questions regarding the genesis and the palaeoenvironmental and palaeogeographic factors controlling the deposition of these shales are a matter of ongoing debate. The area investigated lies within the Cantabria-Asturias Arc of Northern Spain in the autonomous region of Castilla y León. The Cantabrian Arc formed as a result of the collision between Gondwana and Laurussia during the formation of the supercontinent Pangea and has been divided into five major tectonostratigraphic units. The 'Folds and Nappes' unit is of particular interest, especially the contained Somiedo-Corecillas thrust system, as here the best preserved Formigoso-sections and exposures can be found. This study focuses on the deposition of the L-Silurian black shales of the Formigoso Formation (Fm) within the Somiedo-Corecillas thrust system at Aralla, approximately 10km east-southeast of San Emiliano. A high resolution geochemical analysis of major and trace elements has been utilised on a 25cm scale throughout the section. A total of 241 samples were prepared and analysed using a NITON XL3t X-ray fluorescence instrument. The data obtained have provided new insights into the sedimentation patterns and the prevailing environmental conditions during deposition of the Formigoso Fm. Initial results show prominent regular cycles within the concentrations of red/ox-sensitive chemical elements, starting from the very onset of the anoxic black shales; these repetitions become less apparent towards to top of the formation. Eight cyclic pulses are clearly evident in the concentrations of the elements Uranium (U), Thorium (Th), Vanadium (V) and Chromium (Cr) and apparent in Rubidium (Rb), Zinc (Zn), Copper (Cu), Nickel (Ni), Titanium (Ti), Sulphur (S) and Barium (Ba). The cyclic behaviour of U4+ between 'Anoxia'-U enriched (18ppm)- and 'Dysoxia' -U depleted (8ppm)-, is here interpreted as the result of regular perturbations of the overlying oxygen-depleted water column during deposition, leading to rhythmic oxygenation of the bottom-water masses. These regular perturbations are seen here as the result of a complex interplay between orbital-forced sea-level changes and tectonically induced subsidence; the latter, a result of the widening Rheic Ocean. The basal black shales of the Formigoso Fm represent a duration of approx. 4 Myrs, spanning from the Aeronian/Telychian boundary (436Ma) to the mid-Telychian Monoclimacis Graptolite Zone (~ 432Ma). Therefore, each single cycle seem to represent approximately 500 kyr. This consistent cyclic signal is tentatively interpreted to represent the dynamic sedimentological response to the Earth's 413ka eccentricity. The cyclic geochemical patterns observed within the Lower Silurian Formigoso Fm shall be used for future stratigraphic correlations on an intrabasinal and interbasinal scale for the peri-Gondwanan margins.
The "granite pump": LP/HT metamorphism and exhumation in the Montagne Nore (S-France)
NASA Astrophysics Data System (ADS)
Franke, W.; Doublier, M. P.; Doerr, W.; Stein, E.
2003-04-01
The Montagne Noire at the southern margin of the French Massif Central represents an exceptional case of a hot metamorphic core complex evolved from a thrust stack in a foreland position. The core of the structure (Zone Axiale) exposes granites and LP/HT gneisses up to anatectic grade. The hot core is encased by ENE-trending shear zones, which define a dextral pull-apart structure. Ductile extension is documented by top WSW shearing in the W, and ENE shearing in the E part of the Zone Axiale (eg, MATTE et al., 1998). Extension in ENE and reduction of the metamorphic profile are accompanied by NNW-directed contraction ("pinched pull-apart"). Palaeozoic sediments on the southern flank of the Zone Axiale exhibit only greenschist to diagenetic grades of metamorphism. Conodont alteration index (WIEDERER et al., 2002) and illite crystallinity (Doublier, this meeting) reveal a decrease of metamorphic temperature away from the hot core. Metamorphic isograds cut across the axial planes of D1 nappes. These features suggest that metamorphism was imposed by the rising hot core. Accordingly, the palaeozoic sediments show a tectonic evolution which closely resembles that of the gneissic core (extension top ENE, contraction in NNW). Structures relating to stacking (D1) have survived at the southern margin of the Montagne Noire. U-Pb studies (TIMS on single zircon and monazite) reveal peak metamorphism and magmatism already at c. 315 Ma (KLAMA et al., 2001), i.e., only <10 Ma after the end of flysch deposition in latest Visean/Early Namurian time (<= 323 Ma). The coincidence, within error, of the U-Pb ages and earlier Ar/Ar ages (MALUSKI et al., 1991) suggest rapid cooling. Synchronous granite emplacement and metamorphism is best explained by advective heating. Since granites are not generated in foreland settings, we propose derivation of the melts from areas of thickened crust adjacent to the N. Transport and emplacement of granites was essentially driven by the hydraulic gradient between the locus of melt generation in the orogenic root, and the opening pull-apart window. Such a pumping model may also be applied to other thermal anomalies in the Variscan Belt, e.g., in the SW-Bohemian Transverse Zone (FRANKE 2000), or in the Saxonian Granulites (FRANKE and STEIN 2000). Hydraulic expulsion of hot, low viscously materials has played an important role in the transport of heat for the hot Variscan root to higher and more external parts of the crust. FRANKE (2000); Geol. Soc. Spec. Publ. No. 179, 35-63. FRANKE and STEIN (2000); Geol. Soc. Spec. Publ. No. 179, 337-355. KLAMA et al. (2001); J. Conf. Abs.,6, 235. MALUSKI et al. (1991); Lithos, 26: 287-304. MATTE et al. (1998); Geodynamica Acta: 13-22. WIEDERER et al. (2002); Schweiz. Mineral. Petrogr. Mitt. 82, 393-407.
White Macael marble: a key element in the architectonic heritage of Andalusia for over 25 centuries
NASA Astrophysics Data System (ADS)
Navarro, Rafael; Sol Cruz, Ana; Arriaga, Lourdes; Baltuille, José Manuel
2013-04-01
Marble from Macael (Andalusia) is one of the most important natural stones in the architectonic heritage of Andalusia; in particular the variety commercially known as "White Macael". This natural stone has been used outdoors as well as indoors for decorative, ornamental or structural purposes. During the 7th century (B.C.) the Phoenicians began to systematically extract these quarries to be used in their more social important elements such as sarcophagus. During the Roman period this rock had a greater importance in construction; we find columns, pavements, tombstones… in many historical buildings such as the Roman amphitheatre in Mérida (1st century B.C.) and the city of Itálica in Seville (3rd century B.C.). But it is during the Muslim period when marble from Macael is more widely used: the Mosque of Córdoba (8th century), the Lions Court in the Alhambra palace, the Alcazaba in Almería, the Medina-Azahara palace in Córdoba (10th century). Other important buildings using the white marble are: Carlos V palace or the Royal Chapel in Granada (15th century), the Almería cathedral or El Escorial monastery in Madrid (16th century), San Telmo palace in Seville (17th century) or The Royal Palace in Madrid (18th century). Uncountable number of buildings, both historical and contemporary, show different elements made of this marble. From a geological point of view, the quarries are located in the upper part of the Nevado-Filábride Complex, the lowest nappe of the Internal Zones of the Betic Chains. Under the "White Macael" name is also possible to include another commercial denominations such "White Macael Río" or "White Macael Río Veteado". It is a clear white coloured, calcitic marble (up than 97% calcite), with average grain size between 0,16 y 3,2 mm in a mosaic texture with a very homogenous aspect. Regarding the main physical and mechanical properties, this rock has an open porosity value between 0,1-0,6%, bulk density 2,50-2,75 g/cm3, water absorption at atmospheric pressure between 0,1-0,2%, compressive strength (dry) between 81,1-87,4 MPa, flexural resistance (dry) between 12,1-14,2 MPa and salt crystallization loss of mass of 1,25-2,20%. We suggest to consider this natural stone as Global Heritage Stone Resource because of its aesthetic characteristics, its optimal behaviour when emplaced in construction as can be evident throughout the more than 25 centuries of use of this rock all over the country, and because the volume of international trade and exploitation. Macael white marble can be considered the main ornamental rock in Andalusia. This is a contribution of the Spanish network CONSTRUROCK.
Co-seismic thermal dissociation of carbonate fault rocks: Naukluft Thrust, central Namibia
NASA Astrophysics Data System (ADS)
Rowe, C. D.; Miller, J. A.; Sylvester, F.; Backeberg, N.; Faber, C.; Mapani, B.
2009-12-01
Frictional heating has been shown to dissociate carbonate minerals in fault rocks and rock slides at high velocities, producing in-situ fluid pressure spikes and resulting in very low effective friction. We describe the textural and geochemical effects of repeated events of frictional-thermal dissociation and fluidization along a low-angle continental thrust fault. The Naukluft Thrust in central Namibia is a regional décollement along which the Naukluft Nappe Complex was emplaced over the Nama Basin in the southern foreland of the ~ 550Ma Damara Orogen. Fault rocks in the thrust show a coupled geochemical and structural evolution driven by dolomitization reactions during fault activity and facilitated by fluid flow along the fault surface. The earliest developed fault rocks are calcite-rich calcmylonites which were progressively dolomitized along foliation. Above a critical dolomite/calcite ratio, the rocks show only brittle deformation fabrics dominated by breccias, cataclasites, and locally, a thin (1-3cm) microcrystalline, smooth white ultracataclasite. The fault is characterized by the prevalence of an unusual “gritty dolomite” yellow cataclasite containing very well rounded clasts in massive to flow-banded fine dolomitic matrix. This cataclasite, locally known as the “gritty dolomite”, may reach thicknesses of up to ~ 10m without evidence of internal cross-cutting relations with randomly distributed clasts (an “unsorted” texture). The gritty dolomite also forms clastic injections into the hanging wall of the fault, frequently where the fault surface changes orientation. Color-cathodoluminescence images show that individual carbonate grains within the “gritty dolomite” have multiple layers of thin (~10-100 micron) dolomite coatings and that the grains were smoothed and rounded between each episode of coating precipitation. Coated grains are in contact with one another but grain cores are never seen in contact. CL-bright red dolomite which forms the coatings is never observed as pore-fill between grains or other geometries typical of cement precipitates. Smoothness and radial symmetry of the coatings suggest that the grains were coated in suspension by very fine material, potentially analogous to the frictionally-generated CaO developed on the base of some landslides in carbonate rocks (Hewitt, 1988). The very thick layers of cataclasite without internal crosscutting suggest free particle paths associated with fluidization at high fluid pressure and low effective normal stress. We suggest that co-seismic frictional heating along the Naukluft Thrust caused dissociation of dolomite fault rock, producing in-situ spikes in fluid pressure (CO2) and very fine caustic CaO which chemically attacked the carbonate grains in suspension causing the smoothing and rounding. These residues then coated individual grains prior to loss of fluid pressure and settling in the fault zone. Such an event would have been associated with near total strength drop along the Naukluft Thrust. Hewitt, K., 1988 Science, v. 242, no. 4875, p. 64-67.
NASA Astrophysics Data System (ADS)
Bianchetti, Matteo; Agliardi, Federico; Villa, Alberto; Battista Crosta, Giovanni; Rivolta, Carlo
2015-04-01
Rockfall risk analysis require quantifying rockfall onset susceptibility and magnitude scenarios at source areas, and the expected rockfall trajectories and related dynamic quantities. Analysis efforts usually focus on the rockfall runout component, whereas rock mass characterization and block size distribution quantification, monitoring and analysis of unstable rock volumes are usually performed using simplified approaches, due to technological and site-specific issues. Nevertheless, proper quantification of rock slope stability and rockfall magnitude scenarios is key when dealing with high rock walls, where widespread rockfall sources and high variability of release mechanisms and block volumes can result in excessive modelling uncertainties and poorly constrained mitigation measures. We explored the potential of integrating field, remote sensing, structural analysis and stability modelling techniques to improve hazard assessment at the Gallivaggio sanctuary site, a XVI century heritage located along the State Road 36 in the Spluga Valley (Italian Central Alps). The site is impended by a subvertical cliff up to 600 m high, made of granitic orthogneiss of the Truzzo granitic complex (Tambo Nappe, upper Pennidic domain). The rock mass is cut by NNW and NW-trending slope-scale structural lineaments and by 5-6 fracture sets with variable spatial distribution, spacing and persistence, which bound blocks up to tens of cubic meters and control the 3D slope morphology. The area is characterised by widespread rock slope instability from rockfalls to massive failures. Although a 180 m long embankment was built to protect the site from rockfalls, concerns remain about potential large unstable rock volumes or flyrocks projected by the widely observed impact fragmentation of stiff rock blocks. Thus, the authority in charge started a series of periodical GB-InSAR monitoring surveys using LiSALabTM technology (12 surveys in 2011-2014), which outlined the occurrence of unstable spots spread over the cliff, with cm-scale cumulative displacements in the observation period. To support the interpretation and analysis of these data, we carried out multitemporal TLS surveys (5 sessions between September 2012 and October 2014) using a Riegl VZ-1000 long-range laser scanner. We performed rock mass structural analyses on dense TLS point clouds using two different approaches: 1) manual discontinuity orientation and intensity measurement from digital outcrops; 2) automatic feature extraction and intensity evaluation through the development of an original Matlab tool, suited for multi-scale applications and optimized for parallel computing. Results were validated using field discontinuity measurements and compared to evaluate advantages and limitations of different approaches, and allowed: 1) outlining the precise location, geometry and kinematics of unstable blocks and block clusters corresponding to radar moving spots; 2) performing stability analyses; 3) quantifying rockwall changes over the observation period. Our analysis provided a robust spatial characterization of rockfall sources, block size distribution and onset susceptibility as input for 3D runout modelling and quantitative risk analysis.
Microbial degradation of chloroethenes in groundwater systems
NASA Astrophysics Data System (ADS)
Bradley, Paul M.
The chloroethenes, tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common contaminants detected in groundwater systems. As recently as 1980, the consensus was that chloroethene compounds were not significantly biodegradable in groundwater. Consequently, efforts to remediate chloroethene-contaminated groundwater were limited to largely unsuccessful pump-and-treat attempts. Subsequent investigation revealed that under reducing conditions, aquifer microorganisms can reductively dechlorinate PCE and TCE to the less chlorinated daughter products dichloroethene (DCE) and vinyl chloride (VC). Although recent laboratory studies conducted with halorespiring microorganisms suggest that complete reduction to ethene is possible, in the majority of groundwater systems reductive dechlorination apparently stops at DCE or VC. However, recent investigations conducted with aquifer and stream-bed sediments have demonstrated that microbial oxidation of these reduced daughter products can be significant under anaerobic redox conditions. The combination of reductive dechlorination of PCE and TCE under anaerobic conditions followed by anaerobic microbial oxidation of DCE and VC provides a possible microbial pathway for complete degradation of chloroethene contaminants in groundwater systems. Résumé Les chloroéthanes, tétrachloroéthane (PCE) et trichloroéthane (TCE) sont parmi les polluants les plus communs trouvés dans les aquifères. Depuis les années 1980, on considère que les chloroéthanes ne sont pas significativement biodégradables dans les aquifères. Par conséquent, les efforts pour dépolluer les nappes contaminées par des chloroéthanes se sont limités à des tentatives de pompage-traitement globalement sans succès. Des travaux ultérieurs ont montré que dans des conditions réductrices, des micro-organismes présents dans les aquifères peuvent, par réduction, dégrader les PCE et TCE en composés moins chlorés, comme le dichloréthane (DCE) et le chlorure de vinyl (VC). Bien que des études de laboratoire réalisées avec des micro-organismes adaptés aux composés halogénés montrent que la réduction complète en éthane est possible, dans la plupart des nappes la réaction de déchloration par réduction s'arrête apparemment au DCE et au VC. Cependant, des recherches récentes menées sur des sédiments d'un aquifère et d'alluvions ont démontré que l'oxydation microbienne de ces descendants réduits peut se produire de manière significative dans des conditions de redox anérobies. La déchloration par réduction de PCE et de TCE dans des conditions anérobies suivie par une oxydation microbienne anérobie des DCE et VC fournit une piste microbienne possible pour obtenir une dégradation complète des chloroéthanes polluants dans les aquifères. Resumen Los cloroetanos (tetracloroetano PCE y tricloroetano TCE) son contaminantes muy habituales en los acuíferos. Hasta 1980 se consideraba que los cloroetanos no eran biodegradables y, por tanto, los métodos de rehabilitación en acuíferos contaminados con cloroetanos se limitaban al pump-and-treat, generalmente con poco éxito. Posteriormente se vio que, en condiciones reductoras, algunos microorganismos pueden reducir PCE y TCE a unos subproductos menos clorados, como el dicloroetano (DCE) y el cloruro de vinilo (VC). Aunque estudios de laboratorio recientes sugieren que la reducción completa a etano es posible, en la mayoría de los sistemas acuíferos la decloración suele detenerse en los DCE o VC. Sin embargo, investigaciones más recientes en acuíferos y sedimentos fluviales demuestran que la oxidación microbiana de estos subproductos puede ser importante bajo condiciones redox anaerobias. La combinación de la reducción de PCE y TCE en condiciones anaerobias seguida de la oxidación microbiana anaerobia de DCE y VC proporciona un método potencial para la degradación total de los cloroetanos en los sistemas acuíferos.
NASA Astrophysics Data System (ADS)
Bingen, Bernard; Viola, Giulio; Engvik, Ane K.; Solli, Arne
2013-04-01
The Grenville orogen of Laurentia and the Sveconorwegian orogen of Baltica are generally interpreted as long-lived, hot, collisional orogens resulting from collision of a possibly joined Laurentia-Baltica margin with another major plate, possibly Amazonia. Here we report new mapping, petrologic and SIMS U-Pb geochronological data from S Norway, to address the pre- to early-Sveconorwegian evolution between 1220 and 1130 Ma. The Sveconorwegian belt includes from west to east the Telemarkia terrane characterized by 1520-1480 Ma magmatism and the Idefjorden terrane characterized by Gothian active margin 1660-1520 Ma magmatism. The Idefjorden terrane is thrusted eastwards onto the parauthochthonous Eastern Segment. The Kongsberg and Bamble are two small terranes between the Idefjorden and Telemarkia terranes. They have a strong N-S and NE-SW structural grain, respectively, and are thrust westwards on top of the Telemarkia terrane. Basement metavolcanic and metaplutonic rocks in the Kongsberg terrane range from c. 1534 to 1500 Ma (5 new samples) and in Bamble from c. 1572 to 1460 Ma, overlapping with both the Telemarkia and Idefjorden terranes. New and published data show the following: (1) In Telemark, a c. 1200 Ma granitoid from the Flåvatn complex and a c. 1195 Ma granite sheet in the bimodal Nissedal supracrustals demonstrate that 1220-1180 Ma comparatively juvenile magmatism is the dominant rock type over much of southern part of Telemark. (2) A rhyolite dated at 1155 Ma complement available data showing low grade bimodal mafic-felsic volcanism interlayered with immature clastic sediments in central Telemark between 1169 and 1145 Ma (the ex-Bandak group). These supracrustals are intruded by c. 1153-1144 Ma A-type granite plutons. (3) Ten samples of foliated commonly porphyritic ganitoid and one granite dyke in gabbro collected in Kongsberg and along the Kongsberg-Telemark boundary demonstrate that c. 1171-1147 Ma bimodal plutonism occurred in Kongsberg. This indicates that Kongsberg was linked to Telemarkia, before 1147 Ma and before their final tectonic juxtaposition. A similar pattern is known between the Bamble and Telemarkia terranes, indicating similar relations. (4) The classical medium pressure granulite-facies metamorphism in Tromøy-Arendal, Bamble, was redated. Three granulite samples show metamorphic zircon at 1147 +/-18 and 1132 +/-7 Ma. Protolith ages between c. 1553 and 1544 Ma demonstrate a Gothian low-K calc-alkaline orthogneiss protolith and question recent interpretations representing the Tromøy complex as an early Sveconorwegian oceanic volcanic arc accreted to the Bamble terrane. (5) A granulite-facies domain was discovered north of Kragerø in Bamble, in an area generally assigned to amphibolites-facies metamorphism. Geothermobarometry and pseudosection calculation using the Grt +Opx +/-Cpx +Pl +Qtz assemblage yield an estimate of about 1.15 GPa and 800°C for peak granulite facies metamorphism. Late clinopyroxene and garnet zoning are consistent with an anticklockwise P-T path and suggest magma loading and heating of the crust. Soccer ball zircon dates this metamorphism at 1144 ±6 Ma. (6) C. 1193-1183 Ma A-type granite plutonism is reported in the Caledonian Middle-Allochthon Risberget Nappe and c. 1221-1204 Ma syenite plutons are known along the Sveconorwegian Frontal Deformation Zone. C. 1220-1130 Ma magmatism is however entirely lacking in the Idefjorden terrane. Using these constraints, we envisage the 1220-1130 Ma pre- to early-Sveconorwegian event in a trans(?)-tensional continental setting at the margin of Baltica, before final continental collision. The Telemarkia terrane was possibly located in a back arc position above an east dipping subduction system. Abundant magmatism is possibly a consequence of subduction of an oceanic ridge. Inversion took place after 1130 Ma leading to westwards thrusting of the Bamble and Kongsberg terranes.
NASA Astrophysics Data System (ADS)
Yan, Dan-Ping; Zhou, Mei-Fu; Song, Hong-Lin; Wang, Xin-Wen; Malpas, John
2003-01-01
In the Yangtze Block (South China), a well-developed Mesozoic thrust system extends through the Xuefeng and Wuling mountains in the southeast to the Sichuan basin in the northwest. The system comprises both thin- and thick-skinned thrust units separated by a boundary detachment fault, the Dayin fault. To the northwest, the thin-skinned belt is characterized by either chevron anticlines and box synclines to the northwest or chevron synclines to the southeast. The former structural style displays narrow exposures for the cores of anticlines and wider exposures for the cores of synclines. Thrust detachments occur along Silurian (Fs) and Lower Cambrian (Fc) strata and are dominantly associated with the anticlines. To the southeast, this style of deformation passes gradually into one characterized by chevron synclines with associated principal detachment faults along Silurian (Fs), Cambrian (Fc) and Lower Sinian (Fz) strata. There are, however, numerous secondary back thrusts. Therefore, the thin-skinned belt is like the Valley and Ridge Province of the North American Applachian Mountains. The thick-skinned belt structurally overlies the thin-skinned belt and is characterized by a number of klippen including the Xuefeng and Wuling nappes. It is thus comparable to the Blue Ridge Province of Appalachia. The structural pattern of this thrust system in South China can be explained by a model involving detachment faulting along various stratigraphic layers at different stages of its evolution. The system was developed through a northwest stepwise progression of deformation with the earliest delamination along Lower Sinian strata (Fz). Analyses of balanced geological cross-sections yield about 18.1-21% (total 88 km) shortening for the thin-skinned unit and at least this amount of shortening for the thick-skinned unit. The compressional deformation from southeast to northwest during Late Jurassic to Cretaceous time occurred after the westward progressive collision of the Yangtze Block with the North China Block and suggests that the orogenic event was intracontinental in nature.
Spotl, C.; Kunk, Michael J.; Ramseyer, K.; Longstaffe, F.J.
1998-01-01
This paper is included in the Special Publication entitled 'Dating and duration of fluid flow and fluid-rock interaction', edited by J. Parnell. Feldspar is a common authigenic constituent in Permian carbonate rocks which occur as tectonically isolated blocks within the evaporitic Haselgebirge melange in the Northern Calcareous Alps (NCA). Coexisting with pyrite, anhydrite, (saddle) dolomite, magnesite, fluorite and calcite, K-feldspar and minor albite record an event of regionally extensive interaction of hot brines with carbonate rocks. Detailed petrographic, crystallographic and geochemical studies reveal a variability in crystal size and shape, Al-Si ordering, elemental and stable isotopic compositions of the K-feldspar, which is only partially consistent with the traditional view of authigenic feldspar as a well-ordered, compositionally pure mineral. 40Ar-39Ar step- heating measurements of authigenic potassium feldspar from several localities yield two age populations, an older one of 145-154 Ma, and a younger one of c.90-97 Ma. Most age spectra reflect cooling through the argon retention temperature interval, which was rapid in some localities (as indicated by plateau ages) and slower in others. Rb-Sr isotope data are more difficult to interpret, because in many K-feldspar samples they are controlled largely by Sr-bearing inclusions. The Jurassic 40Ar-39Ar dates are interpreted as minimum ages of feldspar growth and hence imply that fluid-rock interaction is likely to be simultaneous with or to slightly predate melange formation. Deformation associated with the closure and subduction of the Meliata-Hallstatt ocean south of the NCA during the Upper Jurassic is regarded as the principal geodynamic driving force for both enhanced fluid circulation and melange formation. Some localities were reheated beyond the argon retention temperature for microcline during mid-Cretaceous nappe stacking of the NCA, thus obliterating the older signal.
Do ungulates accelerate or decelerate nitrogen cycling?
Singer, F.J.; Schoenecker, K.A.
2003-01-01
Nitrogen (N) is an essential nutrient for plants and animals, and N may be limiting in many western US grassland and shrubland ungulate winter ranges. Ungulates may influence N pools and they may alter N inputs and outputs (losses) to the ecosystem in a number of ways. In this paper we compare the ecosystem effects of ungulate herbivory in two western national parks, Rocky Mountain National Park (RMNP), Colorado, and Yellowstone National Park (YNP), Wyoming. We compare ungulate herbivory effects on N pools, N fluxes, N yields, and plant productivity in the context of the accelerating and decelerating nutrient cycling scenarios [Ecology 79 (1998) 165]. We concluded that the YNP grasslands fit the accelerating nutrient cycling scenario for ungulate herbivory: in response to grazing, grassland plant species abundance was largely unaltered, net annual aboveground primary productivity (NAPP) was stimulated (except during drought), consumption of key N-rich forages by ungulates was moderate and their abundance was sustained, soil N mineralization rates doubled, N pools increased, aboveground N yield increased, and N concentrations increased in most grassland plant species. Grazing in grasslands in RMNP resulted in no consistent detectable acceleration or deceleration of nutrient cycling. Grazing effects in short willow and aspen vegetation types in RMNP fit the decelerating nutrient cycling scenario of Ritchie et al. [Ecology 79 (1998) 165]. Key N-rich forages declined due to herbivory (willows, aspen, herbaceous vegetation). Aboveground production declined, soil N mineralization rates declined, N pools declined (NO3− pools were 30% that of ungrazed controls), and aboveground N yield declined. We believe that the higher ungulate densities and rates of plant consumption in RMNP, large declines in N-rich forage plants, and possibly a tendency of ungulates to move N from willow and aspen vegetation types to other types in RMNP, contributed to deceleration of nutrient cycling in two vegetation types in RMNP compared to acceleration in grasslands in YNP.
Accretion and exhumation at a Variscan active margin, recorded in the Saxothuringian flysch
NASA Astrophysics Data System (ADS)
Schäfer, J.; Neuroth, H.; Ahrendt, H.; Dörr, W.; Franke, W.
The Saxothuringian flysch basin, on the north flank of the Central European Variscides, was fed and eventually overthrust by the northwestern, active margin of the Tepla-Barrandian terrane. Clast spectra, mineral composition and isotopic ages of detrital mica and zircon have been analyzed in order to constrain accretion and exhumation of rocks in the orogenic wedge. The earliest clastic sediments preserved are of early Famennian age (ca. 370Ma). They are exposed immediately to the NW of the suture, and belong to the par-autochthon of the foreland. Besides ultramafic (?ophiolite) material, these rocks contain clasts derived from Early Paleozoic continental slope sediments, originally deposited at the NW margin of the Saxothuringian basin. These findings, together with the paleogeographic position of the Famennian clastics debris on the northwestern passive margin, indicate that the Saxothuringian narrow ocean had been closed by that time. Microprobe analyses of detrital hornblendes suggest derivation from the ``Randamphibolit'' unit, now present in the middle part of the Saxothuringian allochthon (Münchberg nappes). Detrital zircons of metamorphic rocks formed a little earlier (ca. 380Ma) indicate rapid recycling at the tectonic front. The middle part of the flysch sequence (ca. early to middle Viséan), both in the par-autochthon and in the allochthon, contains abundant clasts of Paleozoic rocks derived from the northwestern slope and rise, together with debris of Cadomian basement, 500-Ma granitoids and 380Ma (early Variscan) crystalline rocks. All of these source rocks were still available in the youngest part of the flysch (c. middle to late Viséan), but some clasts record, in addition, accretion of the northwestern shelf. Our findings permit deduction of minimum rates of tectonic shortening well in excess of 10-30mm per year, and rates of exhumation of ca. 3mm/a, and possibly more.
NASA Astrophysics Data System (ADS)
Folcher, Nicolas; Ricordel-Prognon, Caroline; Sevin, Brice; Maurizot, Pierre; Cluzel, Dominique; Quesnel, Florence
2014-05-01
Iron-rich sediments that fill up karst-like depressions and paleo-valleys in southern New Caledonia are mainly composed of re-sedimented laterite and saprolite. These fluvial sediments come from the erosion of an older regolith that developed upon peridotites and gabbros of the Peridotite Nappe during Late Oligocene times. At the bottom, conglomeratic facies fill incised valleys and contain some metre-size cobbles of ferricrete that record dissection of pre-existing weathering profiles and were deposited in alluvial fan environment. The basal conglomerate is overlain by sand, then dominantly silty fluvial sediments 40 to 50 m thick, with a few thin conglomerate channels. Brutal grain size reduction suggests that erosion was short-lived and followed by quiescence. Multiple interbedded ferruginous duricrusts and rhizocretions made of goethite (and secondary hematite) and liesegang rings reveal iron mobility and several iron oxi-hydroxides concretion/ cementation episodes alternating with sedimentation, probably as a consequence of water table variations. The top of the succession is overlain by a weathering profile and capped by a nodular lateritic ferricrete. Finally, reactivated erosion profoundly incised the fluvial succession and locally reached the bedrock which today crops out upstream along the main river beds. In southern New Caledonia some ferricretes and ferruginous duricrusts have been dated at -25 Ma and -20 to -10 Ma by paleomagnetic method (in progress). They could be correlated to some warming events of the Late Oligocene and Early Miocene or to the Middle Miocene Climatic Optimum. Erosion that predates the accumulation of terrestrial sediments may be tentatively correlated to the uplift that accompanied the emplacement of the Saint-Louis and Koum plutons, and some internal dissection episodes could be related to the Lower Miocene post-obduction slab break off. The final erosion is most probably related to the southward tilt of New Caledonia due to Recent SW Pacific tectonics and to sea level drops during the Quaternary as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boettcher, S.S.
1993-04-01
Mesozoic polyphase contractile and superposed ductile extensional structures affect Proterozoic augen gneiss, Paleozoic metasedimentary rocks, and Jurassic granitoids in the Boyer Gap area of the northern Dome Rock Mtns, W-central Arizona. The nappe-style contractile structures are preserved in the footwall of the Tyson Thrust shear zone, which is one of the structurally lowest thrust faults in the E-trending Jurassic and Cretaceous Maria fold and thrust belt. Contractile deformation preceded emplacement of Late Cretaceous granite (ca 80 Ma, U-Pb zircon) and some may be older than variably deformed Late Jurassic leucogranite. Specifically, detailed structural mapping reveals the presence of a km-scalemore » antiformal syncline that apparently formed as a result of superposition of tight to isoclinal, south-facing folds on an earlier, north-facing recumbent fold. The stratigraphic sequence of metamorphosed Paleozoic cratonal strata is largely intact in the northern Dome Rock Mtns, such that overturned and upright stratigraphic units can be distinguished. A third phase of folding in the Boyer Gap area is distinguished by intersection lineations that are folded obliquely across the hinges of open to tight, sheath folds. The axial planes of the sheet folds are subparallel to the mylonitic foliation in top-to-the-northeast extensional shear zones. The timing of ductile extensional structures in the northern Dome Rock is constrained by [sup 40]Ar/[sup 39]Ar isochron ages of 56 Ma and 48 Ma on biotite from mylonitic rocks in both the hanging wall and footwall of the Tyson Thrust shear zone. The two early phases of folding are the dominant mechanism by which shortening was accommodated in the Boyer Gap area, as opposed to deformation along discrete thrust faults with large offset. All of the ductile extensional structures are spectacularly displayed at an outcrop scale but are not of sufficient magnitude to obliterate the km-scale Mesozoic polyphase contractile structures.« less
Neogene deformation of thrust-top Rzeszów Basin (Outer Carpathians, Poland)
NASA Astrophysics Data System (ADS)
Uroda, Joanna
2015-04-01
The Rzeszów Basin is a 220 km2 basin located in the frontal part of Polish Outer Carpathians fold-and-thrust belt. Its sedimentary succession consist of ca. 600 m- thick Miocene evaporates, litoral and marine sediments. This basin developed between Babica-Kąkolówka anticline and frontal thrust of Carpathian Orogen. Rzeszów thrust-top basin is a part of Carpathian foreland basin system- wedge-top depozone. The sediments of wedge -top depozone were syntectonic deformed, what is valuable tool to understand kinematic history of the orogen. Analysis of field and 3D seismic reflection data showed the internal structure of the basin. Seismic data reveal the presence of fault-bend-folds in the basement of Rzeszów basin. The architecture of the basin - the presence of fault-releated folds - suggest that the sediments were deformed in last compressing phase of Carpathian Orogen deformation. Evolution of Rzeszów Basin is compared with Bonini et.al. (1999) model of thrust-top basin whose development is controlled by the kinematics of two competing thrust anticlines. Analysis of seismic and well data in Rzeszów basin suggest that growth sediments are thicker in south part of the basin. During the thrusting the passive rotation of the internal thrust had taken place, what influence the basin fill architecture and depocentre migration opposite to thrust propagation. Acknowledgments This study was supported by grant No 2012/07/N/ST10/03221 of the Polish National Centre of Science "Tectonic activity of the Skole Nappe based on analysis of changes in the vertical profile and depocentre migration of Neogene sediments in Rzeszów-Strzyżów area (Outer Carpathians)". Seismic data by courtesy of the Polish Gas and Oil Company. References Bonini M., Moratti G., Sani F., 1999, Evolution and depocentre migration in thrust-top basins: inferences from the Messinian Velona Basin (Northern Apennines, Italy), Tectonophysics 304, 95-108.
Heat flow and hydrocarbon generation in the Transylvanian basin, Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cranganu, C.; Deming, D.
1996-10-01
The Transylvanian basin in central Romania is a Neogene depression superimposed on the Cretaceous nappe system of the Carpathian Mountains. The basin contains the main gas reserves of Romania, and is one of the most important gas-producing areas of continental Europe; since 1902, gas has been produced from more than 60 fields. Surface heat flow in the Transylvanian basin as estimated in other studies ranges from 26 to 58 mW/m{sup 2}, with a mean value of 38 mW/m{sup 2}, relatively low compared to surrounding areas. The effect of sedimentation on heat flow and temperature in the Transylvanian basin was estimatedmore » with a numerical model that solved the heat equation in one dimension. Because both sediment thickness and heat flow vary widely throughout the Transylvanian basin, a wide range of model variables were used to bracket the range of possibilities. Three different burial histories were considered (thin, average, and thick), along with three different values of background heat flow (low, average, and high). Altogether, nine different model permutations were studied. Modeling results show that average heat flow in the Transylvanian basin was depressed approximately 16% during rapid Miocene sedimentation, whereas present-day heat flow remains depressed, on average, about 17% below equilibrium values. We estimated source rock maturation and the timing of hydrocarbon generation by applying Lopatin`s method. Potential source rocks in the Transylvanian basin are Oligocene-Miocene, Cretaceous, and Jurassic black shales. Results show that potential source rocks entered the oil window no earlier than approximately 13 Ma, at depths of between 4200 and 8800 m. Most simulations encompassing a realistic range of sediment thicknesses and background heat flows show that potential source rocks presently are in the oil window; however, no oil has ever been discovered or produced in the Transylvanian basin.« less
NASA Astrophysics Data System (ADS)
Hässig, Marc; Duretz, Thibault; Rolland, Yann; Sosson, Marc
2016-05-01
The ophiolites of NE Anatolia and of the Lesser Caucasus (NALC) evidence an obduction over ∼200 km of oceanic lithosphere of Middle Jurassic age (c. 175-165 Ma) along an entire tectonic boundary (>1000 km) at around 90 Ma. The obduction process is characterized by four first order geological constraints: Ophiolites represent remnants of a single ophiolite nappe currently of only a few kilometres thick and 200 km long. The oceanic crust was old (∼80 Ma) at the time of its obduction. The presence of OIB-type magmatism emplaced up to 10 Ma prior to obduction preserved on top of the ophiolites is indicative of mantle upwelling processes (hotspot). The leading edge of the Taurides-Anatolides, represented by the South Armenian Block, did not experience pressures exceeding 0.8 GPa nor temperatures greater than ∼300 °C during underthrusting below the obducting oceanic lithosphere. An oceanic domain of a maximum 1000 km (from north to south) remained between Taurides-Anatolides and Pontides-Southern Eurasian Margin after the obduction. We employ two-dimensional thermo-mechanical numerical modelling in order to investigate obduction dynamics of a re-heated oceanic lithosphere. Our results suggest that thermal rejuvenation (i.e. reheating) of the oceanic domain, tectonic compression, and the structure of the passive margin are essential ingredients for enabling obduction. Afterwards, extension induced by far-field plate kinematics (subduction below Southern Eurasian Margin), facilitates the thinning of the ophiolite, the transport of the ophiolite on the continental domain, and the exhumation of continental basement through the ophiolite. The combined action of thermal rejuvenation and compression are ascribed to a major change in tectonic motions occurring at 110-90 Ma, which led to simultaneous obductions in the Oman (Arabia) and NALC regions.
Distributed deformation in the Zagros fold-and-thrust belt: insights from geomorphology
NASA Astrophysics Data System (ADS)
Obaid, Ahmed; Allen, Mark
2017-04-01
The Zagros fold-and-thrust belt is part of the active Arabia-Eurasia collision zone, and is an excellent region to study the interactions of tectonics and landscape. In this work we present results of a geomorphic analysis covering the entire range, coupled with more detailed analysis of the Kirkuk Embayment, Iraq. This particular region is a low elevation, low relief region of the Zagros, important for the enormous oil and gas reserves held in late Cenozoic anticlinal traps. Constraints from published earthquake focal mechanisms and hydrocarbon industry sub-surface data are combined with original fieldwork observations in northern Iraq, to produce a new regional cross-section and structural interpretation for the Kirkuk Embayment. We find that overall late Cenozoic shortening across the Embayment is on the order of 5%, representing only a few km. This deformation takes place on a series of anticlines, which are interpreted as overlying steep, planar, basement thrusts. These thrusts are further interpreted as reactivated normal faults, on the basis of (rare) published seismic data. The regional earthquake record confirms the basement involvement, although detachments within the sedimentary succession are also important, especially within the Middle Miocene Fat'ha Formation. Overall, the Zagros is sometimes represented as having a few major thrusts each persistent for 100s of km along the strike of the range. However, these faults are very rarely associated with major structural relief and/or surface fault ruptures during earthquakes. We have analysed the hypsometry of the range and find only gradational changes in the hypsometric integral of drainage basins across strike. This contrasts with regions such as the eastern Tibetan Plateau, where published analysis has revealed abrupt changes, correlating with the surface traces of active thrusts. Our interpretation is that the hypsometry of the Zagros reflects distributed deformation on numerous smaller faults, rather than major uplift on a small number of laterally continuous nappes.
Interaction of acidic trace gases with ice from a surface science perspective
NASA Astrophysics Data System (ADS)
Waldner, A.; Kong, X.; Ammann, M.; Orlando, F.; Birrer, M.; Artiglia, L.; Bartels-Rausch, T.
2016-12-01
Acidic trace gases, such as HCOOH, HCl and HONO, play important roles in atmospheric chemistry. The presence of ice is known to have the capability to modify this chemistry (Neu et al. 2012). The molecular level processes of the interaction of acidic trace gases with ice are still a matter of debate and a quantification of the uptake is difficult (Dash et al. 2006, Bartels-Rausch et al. 2014, Huthwelker et al. 2006). This hampers a proper inclusion of ice as a substrate in models of various scales as for example in global chemistry climate models that would among others allow predicting large-scale effects of ice clouds. So far, direct observations of the ice surface and of the interaction with trace gases at temperatures and concentrations relevant to the environment are very limited. In this study, we take advantage of the surface and analytical sensitivity as well as the chemical selectivity of photoemission and absorption spectroscopy performed at ambient pressure using the near ambient pressure photoemission endstation (NAPP) at Swiss Light Source to overcome this limitation in environmental science (Orlando et al. 2016). Specifically, ambient pressure X-ray Photoelectron Spectroscopy (XPS) allows us to get information about chemical state and concentration depth profiles of dopants. The combination of XPS with auger electron yield Near-Edge X-ray Absorption Fine Structure (NEXAFS) enables us to locate the dopant and analyse wheather the interaction leads to enhanced surface disorder and to what extent different disorders influences the uptake of the trace gas. For the first time, this study looks directly at the interaction of HCOOH, the strongest organic acid, with ice at 2 different temperatures (233 and 253 K) relevant for environmental science by means of electron spectroscopy. XPS depth profiles indicate that the HCOOH basically remains within the topmost ice layers and O K-edge NEXAFS analysis show that the interaction ice-HCOOH does not lead to enhanced surface disorder at environmentally relevant conditions.
NASA Astrophysics Data System (ADS)
Schantl, Philip; Hauzenberger, Christoph; Linner, Manfred
2016-04-01
A detailed petrological investigation has been undertaken in leucocratic kyanite-garnet bearing and mesocratic orthopyroxene bearing granulites from the Dunkelsteiner Wald, Pöchlarn-Wieselburg and Zöbing granulite bodies from the Moldanubian Zone in the Bohemian Massif (Austria). A combination of textural observations, conventional geothermobarometry, phase equilibrium modelling as well as major and trace element analyses in garnet enables us to confirm a multistage Variscan metamorphic history. Chemically homogenous garnet cores with near constant grossular-rich plateaus are considered to reflect garnet growth during an early HP/UHP metamorphic evolution. Crystallographically oriented rutile exsolutions restricted to those grossular-rich garnet cores point to a subsequent isothermal decompression of the HP/UHP rocks. Overgrowing garnet rims show a pronounced zonation and are interpreted as the result of dehydration melting reactions during an isobaric heating phase which could have taken place near the base of an overthickened continental crust, where the previously deeply subducted rocks were exhumed to. For this HP granulite facies event maximum PT conditions of ~1050 °C and 1.6 GPa have been estimated from leucocratic granulites comprising the peak mineral assemblage quartz, ternary feldspar, garnet, kyanite and rutile. The pronounced zoning of garnet rims indicates that the HP granulite facies event must have been short lived since diffusion in this temperature region is usually sufficient fast to homogenize a zoning pattern in garnet. A retrogressive metamorphic stage is documented in these rocks by the replacement of kyanite to sillimanite and the growth of biotite. This retrograde event took place within the granulite facies but at significantly lower pressures and temperatures with ~0.8 GPa and ~760 °C. This final stage of re-equilibration is thought to be linked with a second exhumation phase into middle crustal levels accompanied by intensive mylonitization. Keywords: Bohemian Massif; Moldanubian; granulite; HP/UHP, HP granulite facies, LP granulite facies overprint; Andes type geodynamic model.
NASA Astrophysics Data System (ADS)
Roban, R. D.; Krézsek, C.; Melinte-Dobrinescu, M. C.
2017-06-01
The mid Cretaceous is characterized by high eustatic sea-levels with widespread oxic conditions that made possible the occurrence of globally correlated Oceanic Red Beds. However, very often, these eustatic signals have been overprinted by local tectonics, which in turn resulted in Lower Cretaceous closed and anoxic basins, as in the Eastern Carpathians. There, the black shale to red bed transition occurs in the latest Albian up to the early Cenomanian. Although earlier studies discussed the large-scale basin configuration, no detailed petrography and sedimentology study has been performed in the Eastern Carpathians. This paper describes the Hauterivian to Turonian lithofacies and interprets the depositional settings based on their sedimentological features. The studied sections crop out only in tectonic half windows of the Eastern Carpathians, part of the Vrancea Nappe. The lithofacies comprises black shales interbedded with siderites and sandstones, calcarenites, marls, radiolarites and red shales. The siliciclastic muddy lithofacies in general reflects accumulation by suspension settling of pelagites and hemipelagites in anoxic (black shale) to dysoxic (dark gray and gray to green shales) and oxic (red shales) conditions. The radiolarites alternate with siliceous shales and are considered as evidence of climate changes. The sandstones represent mostly low and high-density turbidite currents in deep-marine lobes, as well as channel/levee systems. The source area is an eastern one, e.g., the Eastern Carpathians Foreland, given the abundance of low grade metamorphic clasts. The Hauterivian - lower Albian sediments are interpreted as deep-marine, linear and multiple sourced mud dominated systems deposited in a mainly anoxic to dysoxic basin. The anoxic conditions existed in the early to late Albian, but sedimentation changed to a higher energy mud/sand-dominated submarine channels and levees. This coarsening upwards tendency is interpreted as the effect of the Aptian to Albian compressional tectonics of the Carpathians. The deepening of the Moldavide Basin from the Cenomanian is most probably linked to a significant sea-level rise.
Frictional processes of bimaterial interfaces at seismic slip rates.
NASA Astrophysics Data System (ADS)
Passelegue, F. X.; Fabbri, O.; Leclère, H.; Spagnuolo, E.; Di Toro, G.
2017-12-01
Large subduction earthquakes ruptures propagate from crustal rock toward the sea floor along frictional interfaces of different lythologies. Up to now, frictional processes of rocks were mainly investigated along single material experimental faults. Here, we present the results of high velocity friction experiments coupled with high frequency acoustic monitoring system on biomaterial interfaces including gabbro, pyroxenite and serpentinized peridotite (>95%), following a recent field investigation highlighting bimaterial contacts in the Corsica ophiolitic nappe. We first studied the frictional processes of single materials which result in a mechanical behaviour comparable to previous studies. Both gabbro and pyroxenite exhibit two weakening stages. The first one corresponds to flash heating and the second stage occurs concomitantly with complete melting of the interface. In the case of serpentinite, only one weakening stage is observed, after a weakening slip distance of only few centimeters. We then conducted bimaterial experiments. The two couples tested were gabbro/pyroxenite and gabbro/serpentinite, as observed along natural fault zones (Corsica, France). In the case of gabbro/serpentinite, we observe that frictional processes are controlled by serpentinite. Mechanical curves replicate the behaviour of single serpentinite friction experiments. We observe that few melting occurs, and that the product of experiments consists in fine grained cataclasite, as observed in the field. The case of gabbro/pyroxenite is more complicated. The first weakening is controlled by the lithology of the sample installed on the static part of the rotary apparatus. However, the second weakening is controlled by the gabbro and mechanical curves are identical than those obtained in the case of single gabbro experiments. Supported by microstructural analysis and acoustic activity, our results suggest that frictional processes of bimaterial interfaces are controlled by the material presenting the lower weakening temperature. Finally, we show that bimaterial interfaces are expected to affect locally the rate of the stress transfer during large earthquakes, and induce accelerations or decelerations of the rupture front, explaining local emissions of high frequencies recorded during large ruptures.
NASA Astrophysics Data System (ADS)
Caputo Neto, V.; Ribeiro, A.; Nepomuceno, F. O.; Dussin, I. A.; Trouw, R. A. J.
2018-07-01
The Pico do Itapeva Formation is a key metasedimentary unit to the understanding of the extensional events that occurred between the late stage of the southern Brasília Orogen collision and the main collision in the central Ribeira Orogen. The formation crops out in a 20 km long NE-trending narrow belt in the Mantiqueira mountain range in eastern São Paulo State, Brazil. It is located in the interference zone of the southern Brasília and the central Ribeira orogens and records deformation and greenschist facies metamorphism (biotite zone) related to the Brasiliano orogeny. The Pico do Itapeva Formation rests unconformably on a metaigneous substratum of the Socorro-Guaxupé Nappe/Embu Terrane and, on the southern side, is truncated by a steep SE-dipping dextral reverse shear zone. It consists of a coarsening- and thickening-upward succession, with minimum thickness of 800 m, composed of lutite, arkose and conglomerate. These rocks constitute three distinct lithofacies associations: LAI- arkose, arkose-lutite composite beds, lutite and fine conglomerate beds; LAII- arkose, pebbly arkose and scarce lutite and; LAIII- conglomerate and pebbly arkose. Most of the beds are massive; graded beds, dish and convolute structures occur locally. Bed thickness varies from thin to very thick and amalgamated bodies constitute up to 30m thick strata. Three mappable units at scale 1:20,000 were recognized based on different proportions of the three lithofacies associations. The deposits are interpreted as the record of mass flows and associated processes in a fan delta setting developed in an intermontane rift basin. U-Pb LA-ICP-MS detrital zircon ages suggest the maximum depositional age at ca. 611 Ma and the basin evolution is interpreted in the range between 611 and 580 Ma during an inter-orogenic stage between the Brasília and Ribeira orogenies.
Kastrup, U.; Zoback, M.L.; Deichmann, N.; Evans, Kenneth F.; Giardini, D.; Michael, A.J.
2004-01-01
This study is devoted to a systematic analysis of the state of stress of the central European Alps and northern Alpine foreland in Switzerland based on focal mechanisms of 138 earthquakes with magnitudes between 1 and 5. The most robust feature of the results is that the azimuth of the minimum compressive stress, S3, is generally well constrained for all data subsets and always lies in the NE quadrant. However, within this quadrant, the orientation of S3 changes systematically both along the structural strike of the Alpine chain and across it. The variation in stress along the mountain belt from NE to SW involves a progressive, counterclockwise rotation of S3 and is most clear in the foreland, where it amounts to 45??-50??. This pattern of rotation is compatible with the disturbance to the stress field expected from the indentation of the Adriatic Block into the central European Plate, possibly together with buoyancy forces arising from the strongly arcuate structure of the Moho to the immediate west of our study area. Across the Alps, the variation in azimuth of S3 is defined by a progressive, counterclockwise rotation of about 45?? from the foreland in the north across the Helvetic domain to the Penninic nappes in the south and is accompanied by a change from a slight predominance of strike-slip mechanisms in the foreland to a strong predominance of normal faulting in the high parts of the Alps. The observed rotation can be explained by the perturbation of the large-scale regional stress by a local uniaxial deviatoric tension with a magnitude similar to that of the regional differential stress and with an orientation perpendicular to the strike of the Alpine belt. The tensile nature and orientation of this stress is consistent with the "spreading" stress expected from lateral density changes due to a crustal root beneath the Alps. Copyright 2004 by the American Geophysical Union.
Preserved organic matter in the Serpentinized Ocean-Continent Transition of Alpine Tethys
NASA Astrophysics Data System (ADS)
Mateeva, T.; Wolff, G. A.; Kusznir, N.; Manatschal, G.; Wheeler, J.
2017-12-01
Serpentinization occurs at slow-spreading ocean ridges and magma-poor rifted continental margins. At modern hydrothermal vents, serpentinization has been observed to support hydrogen-driven microbial environments including methanotrophic biosystems. An important question is: "Are such bio-systems locally restricted to hydrothermal vents or are they more pervasive, being linked with the exhumation of serpentinized mantle at the seafloor?" Fieldwork sampling of km scale exposures of orogenically exhumed serpentinized mantle in the Alps allows 3D mantle sampling that is not possible at ocean ridges and provides an opportunity to investigate the organic matter in an ophiolite sequence relative to the seafloor. Samples from the fossil Tethyan OCT, exhumed during Alpine collisional orogeny, have been examined for the presence or absence of biomarkers typical of methanotrophy within serpentinized exhumed mantle. Samples from the Totalp unit, Tasna nappe and Platta unit of the Eastern Swiss Alps and Chenaillet in the Western Alps from the Tethyan magma-poor OCT were selected for analysis because they have little Alpine deformation and underwent only low-grade Alpine metamorphism. Hand specimens and cores taken from these locations have been analysed to search for the presence or absence of biomarkers in the serpentinite and its overlying lithologies. Thin sections of samples from these OCT locations reveal multiple serpentinization events and calcification phases. All the lithologies sampled show the presence of hydrocarbons such as n-alkanes, low molecular weight polynuclear aromatic hydrocarbons (PAHs, of mixed petrogenic and pyrogenic source), hopanes, steranes (of marine origin), and branched alkanes (pristane and phytane, non-specific marine origin). The identifiable biomarkers and the isotopic data are consistent with organic matter of a marine origin and do not provide any evidence for a methanotrophic bio-system. It is noteworthy that basement mantle rocks still contain marine organic matter 160My after their formation at a rifted margin despite having experienced Alpine obduction.
NASA Astrophysics Data System (ADS)
Wölfler, Anke; Prochaska, Walter; Henjes-Kunst, Friedhelm; Fritz, Harald
2010-05-01
The study aims to investigate the role of hydrothermal fluids in the formation of talc and magnesite deposits. These deposits occur in manifold geological and tectonical settings such as stockworks and veins within ultramafite hostrocks and monomineralic lenses within marine platform sediments. Along shear zones talc mineralizations may occur as a result of tectonical and hydrothermal activity. To understand the role of the fluids for the genesis of the mineralization, deposits in different geological and tectonical settings are investigated: Talc mineralization within in magnesite in low-grade palaeozoic nappe complexes (Gemerska Poloma, Slovakia): The magnesite body lies within the Gemer unit of the Inner Carpathians consisting of Middle Triassic metacarbonates and Upper Triassic pelagic limestones and radiolarites. The talc mineralization is bound to crosscutting veins. Two metamorphic events can be distinguished, one during Variscan orogeny and one related to the Alpine orogeny leading to the formation of talc along faults in an Mg carbonate body (Radvanec et al, 2004).The origin of the fluids as well as the tectonic events leading to the mineralization is still widely unknown. Talc mineralization in shearzones within Palaeozoic meta sedimentary rocks (Sa Matta, Sardinia): Variscan granitoids intruded Palaeozoic meta sedimentary rocks and were overprinted be NE striking tectonic structures that host talc mineralizations. The origin of Mg and fluids leading to the mineralization is still not answered satisfactorily (Grillo and Prochaska, 2007) and thus a tectonic model for the genesis of the talc deposit is missing. Talc mineralization within UHP pre-Alpine continental crust (Val Chisone, Italy): The talc deposit forms part of the Dora-Maira Massif. Geologicaly the massif derived from a Variscan basement that includes post-Variscan intrusions. The talc mineralization occurs as a sheetlike, conformable body. A possible tectonic emplacement of talc along shear surfaces was proposed by Sandrone & Zucchetti, 1988. Magnesite and talc bearing shearzones in ultramafic hostrocks (Lahnaslampi & Horsmanaho, Finland): Both deposits are situated in the Proterozoic schist belt where the talc-magnesite rocks at Lahnaslampi are associated with minor serpentine breccias. The steatitization took place in two different stages: During prograde metamorphism with H2O-dominated solutions and at declining temperature and pressure in the presence of CO2-bearing fluids that resulted in the main steatitization along tectonic structures. A combined geological, petrological and geochronological is chosen to resolve mechanism of mineralisation within the different tectonic setting. Different phases of mineral formation are first distinguished by pertrological and structural field work and then dated by radiometric techniques. Fluid species and chemical environment during mineralisation is resolved by geochemical techniques and stable isotope studies. References Grillo, S., Prochaska, W. (2007): Fluid Chemistry and Stable Isotope Evidence of Shearzone related Talc and Chlorite Mineralizations in Central Sardinia-Italy, In: Conference Abstracts SGA-Meeting. Radvanec, M., Koděra, P., Prochaska, W. (2004): Mg replacement of the Gemerska Poloma talk-magnesite deposit, Western Carpathians, Slovakia. Acta Petrologica Sinica, 20, 773-790. Sandrone, Zucchetti (1988): Geology of the Italian high-quality cosmetic talc from the Pinerolo district (Western Alps). Zuffar' Days - Symposium held in Cagliari, 10-15
NASA Astrophysics Data System (ADS)
Rajabi, Sareh; Forster, Marnie; Ahmad, Talat; Lister, Gordon
2017-04-01
Here we report the results of step-heating experiments that allow the first direct dating of the timing of movement on the Himalayan Main Central Thrust (MCT). Timing of MCT operation has, until now, been inferred based on specific tectonic models, or with data not directly attributable to MCT movement, e.g., the debatable assertion that leucogranite formation is invariably related to crustal shortening, and therefore that the MCT must already have been in operation. However the tectonic evolution may have been more complex, e.g., at times involving horizontal extension. In any case, many different thrust systems operated during India-Asia convergence, and the MCT is only one of them. It is time to move away from models and to bring geology back into the equation. Here we apply 40Ar/39Ar geochronology to directly date highly strained, phyllonitized, muscovite in the MCT above the Kullu-Rampur tectonic window (NW Indian Himalaya), showing that the timing of the shear movement lasted from 15-9 Ma. We show that these ages have been preserved because the white mica was sufficiently retentive of argon to be able to inhibit its diffusional loss at the temperatures and pressures in question. Arrhenius data from ultra-high-vacuum diffusion experiments show that deformation occurred below the closure temperature of this muscovite, for moderate cooling rates. Furthermore, we demonstrate that microscopic shear bands associated with MCT operation overprinted an earlier decussate mica growth. This decussate growth had taken place prior to ˜ 18 Ma. The decussate microstructure, together with foam textures in the host deformed quartzite, demonstrate that low deviatoric stress conditions applied during a prior period of static annealing under middle- to upper-greenschist facies conditions. In this region, therefore, the Greater Himalayan Crystalline had therefore already been significantly exhumed prior to the onset of MCT operation. The foam textures in quartzite and the decussate intergrowths of mica match in age and character the effects of the Oligo-Miocene metamorphic event that had widespread effects across this region, coeval with the operation of extensional ductile shear zones and faults of the South Tibetan Detachment (STD) system. This means that regional exhumation of the crystalline series most-likely occurred as the result of extreme extension during STD time. The MCT at this location is a relatively late structure that overprinted STD fabrics and microstructures at least five million years after the main exhumation of the crystalline series. It is widely agreed that the MCT had a pivotal role in the evolution and exhumation of the Greater Himalaya crystalline sequences. This aspect is central to models involving fold-nappes, channel flow, and wedge extrusion. All of these models imply that the crystalline core of the Himalaya was exhumed as the result of it being thrust southward by the MCT. However, there is no evidence that this is the case, and these data allow rebuttal of such models, at least in terms of the structures currently defined as representing the MCT in NW India.
NASA Astrophysics Data System (ADS)
Gilio, Mattia; Clos, Frediano; van Roermund, Herman L. M.
2015-08-01
We present pseudosections of Cr-bearing garnet peridotite that together with new mineral-chemical data allow quantification of the early PT conditions of the original lithospheric mantle assemblage (M1) of the Friningen Garnet Peridotite (FGP) located in the central/middle belt of the Seve Nappe Complex in central Sweden. Results indicate that the early, coarse grained, olivine + orthopyroxene + clinopyroxene + "high Cr" garnet assemblage (M1a) was formed at 1100 ± 100 °C and 5.0 ± 0.5 GPa. These metamorphic conditions were followed by an inferred late Proterozoic exhumation event down to 850-900 °C and 1.5 GPa (M1b). The latter PT estimate is based on the breakdown of high-Cr M1a garnet (Cr# = 0.065) + olivine into an orthopyroxene + clinopyroxene + spinel (Cr# = 0.15-0.25) ± pargasite kelyphite (M1b) and the exsolution of garnet from Al-rich orthopyroxene and clinopyroxene. The M1b kelyphite is overprinted by an early-Caledonian UHPM mineral assemblage (M2; T = 800 °C and P = 3.0 GPa), equivalent to the earlier discovered UHP assemblage within an eclogitic dyke that cross-cuts FGP. In the garnet peridotite M2 is displayed by low-Cr garnet (Cr# = 0.030) growing together with spinel (Cr# = 0.35-0.45), both these minerals form part of the olivine + orthopyroxene + clinopyroxene + garnet + spinel + pargasite M2 assemblage. The formation of plagioclase + diopside symplectites after omphacite and breakdown of kyanite to sapphirine + albite in internal eclogite and the breakdown of M2 olivine + garnet to amphibole + orthopyroxene + spinel assemblages (M3) in garnet peridotite indicate post-UHP isothermal decompression down to 750-800 °C and 0.8-1.0 GPa (= M3). Multiphase solid-and fluid inclusion assemblages composed of Sr-bearing magnesite, dolomite or carbon decorate linear defect structures within M1a-b minerals and/or form subordinate local assemblages together with M2 minerals. The latter are interpreted as evidence for infiltration of early-Caledonian COH-bearing subduction zone fluids. The well-defined PTt-deformation path of the FGP resembles that of a mantle wedge garnet peridotite. The M1 assemblage originates from the base of a cold, old and thick subcontinental lithospheric mantle that is inferred to extend asymmetrically leading to extreme exhumation of FGP down to lithospheric conditions around 1.5 GPa and 850-900 °C. After that the FGP became incorporated into the subducting continental crust of the SNC during "early-Caledonian" subduction (M2) down to UHPM conditions (800 °C/3.0 GPa), subsequently followed by eduction back to sub-crustal levels. As such, FGP is the first locality in the Swedish Caledonides from which two UHP metamorphic events are described, the first event can be related to the formation of an ancient (> 1.0 Ga) lithosphere underneath a craton (Rodinia) and the second is of early-Caledonian age.
NASA Astrophysics Data System (ADS)
Sciarra, Alessandra; Quattrocchi, Fedora; Cantucci, Barbara; Mazzarini, Francesco
2014-05-01
Earthquakes can be associated with non-seismic phenomena which may manifest many weeks before and after the main shock. These phenomena are characterized by ground fractures and soil liquefactions at surface often coupled with degassing events, chemical alterations of water and soils, changes in temperature and/or waters level in the epicentral area. Further manifestations include radio disturbances and light emissions. On the other hand, anomalous behavior of animals has been reported to occur before environmental changes. The co-occurrence of several phenomena may be considered as a signal of subsurface changes, and their analysis may be used as possible forecast indicators for seismic events, landslides, damages in infrastructure (e.g., dam) and groundwaters contamination. In order to obtain an accurate statistical analysis of these factors, a pre-crisis large database over a prolonged period of time is a pre-requisite. To this end, we elaborated a questionnaire for the population to pick up signs about anomalous phenomena like as: animal behavior, geological manifestations, effect on vegetation, degassing, changes on aquifers, wells and springs. After the January 25, 2013, mainshock (ML 4.8) in the Garfagnana seismic district, the Bagni di Lucca Municipality was selected as pilot site for testing this questionnaire. The complexity, variety and extension of this territory (165 kmq) sound suitable for this project. Bagni di Lucca is located in the southern border of the Garfagnana seismogenic source, characterized by the carbonate Mesozoic sequences and the Tertiary terrigenous sedimentary deposits of the Tuscan Nappe. The questionnaire was published on Bagni di Lucca web site (https://docs.google.com/file/d/0Bzw3vOYX47XoTGltTVJRbkJuajA/edit) in collaboration with Municipal Commitee, Local Civil Protection and Local Red Cross, and sent by ordinary mail to the citizenry. It is possible to answer to the questionnaire, also anonymously, direct on line (https://docs.google.com/forms/d/1LVNVQFzMoJJfNxp2eSPAc4pcwj4_qIdbAnvbCWGyXy8/viewform?pli=1), calling the Local Civil Protection or Local Red Cross, and by mail. In a second time, an application for Smartphone and Tablets will be developed to allow a faster reply. The questionnaire, constituted by eleven questions and organized in four macro-themes (i.e. animal behavior, geological factors, vegetation anomalies and hydrogeological changes) has been published in June 2013 and will remain on-line for several years. Indeed, the social perception is not fully trustworthy during and soon after an earthquake. So far this is the first attempt to acquire data during quiescent times for comparison with post-seismic ones. This approach may provide clues to identify phenomena properly linked to the event. This questionnaire can be a useful tool to educate population not only about earthquake precursors but also to recognize the "Earth language". Submitted testimonies will be statistically analyzed evidencing the specific responses to the different phenomena in space and time. On the basis of obtained results the questionnaire project could be extended to national level.
Field technique of permeability tests in highly fissured limestone strata
NASA Astrophysics Data System (ADS)
Al-Salihi, Adnan; Asaad, Abdulah
2002-05-01
Résumé.L'étude de dispositifs de dénoyage est nécessaire pour l'amélioration de sites avant la construction de certaines structures. L'étude de dispositifs de dénoyage efficaces exige d'estimer la valeur du coefficient de perméabilité in situ. Les relations disponibles pour estimer le coefficient de perméabilité ont été développées sur la base de mesures et de conditions de terrain limitées, et les prédictions varient de plusieurs ordres de grandeur. C'est pourquoi il est nécessaire de réaliser des mesures de perméabilité sur le terrain et de déterminer la relation qui permet le meilleur ajustement de ces mesures avant l'étude du dispositif de dénoyage pour des conditions locales et géologiques spécifiques. Ce papier présente des mesures de perméabilité sur le terrain dans des niveaux calcaires complexes chaotiques et diagénétisés. Il propose également une analyse comparative de plusieurs relations disponibles dans la littérature destinées à prédire le coefficient de perméabilité in situ. L'analyse est faite en conditions permanentes et non permanentes. Les résultats montrent que la valeur du coefficient de perméabilité dépend du niveau de la nappe, qui est affecté par le régime de marées. On montre que l'équation de l'US Navy donne la meilleure corrélation avec les mesures de terrain. Resumen.El diseño de sistemas de desecado es necesario para mejorar las condiciones de un emplazamiento antes de la construcción de determinadas estructuras. El diseño de un sistema eficiente de desecado requiere de la estimación del valor de la permeabilidad in-situ. Las relaciones disponibles para tal fin han sido desarrolladas bajo condiciones y medidas de campo limitadas; sus predicciones varían en algunos órdenes de magnitud. Por tanto, es necesario tomar medidas de permeabilidad en campo y determinar la relación que reproduce mejor dichas medidas como paso previo al diseño de un sistema de desecado en condiciones geológicas y de emplazamiento específicas. Este artículo presenta medidas de permeabilidad en campo para estratos de calcita caóticos y diagenéticos. También ofrece un análisis comparativo de diversas relaciones disponibles en la bibliografía con el fin de predecir el valor de la permeabilidad in-situ. El análisis se ha hecho tanto en régimen permanente como en estacionario. Los resultados demuestran que la permeabilidad depende del nivel freático, el cual está afectado por las mareas. La ecuación de la Marina estadounidense es la que proporciona una mejor correlación con las medidas de campo.
Groundwater capture processes under a seasonal variation in natural recharge and discharge
NASA Astrophysics Data System (ADS)
Maddock, Thomas, III.; Vionnet, Leticia Beatriz
"Capture" is the increase in recharge and the decrease in discharge that occurs when pumping is imposed on an aquifer system that was in a previous state of approximate dynamic equilibrium. Regional groundwater models are usually used to calculate capture in a two-step procedure. A steady-state solution provides an initial-head configuration, a set of flows through the boundaries for the modeled region, and the initial basis for the capture calculation. The transient solutions provide the total change in flows through the boundaries. A difference between the transient and steady-state solutions renders the capture calculation. When seasonality is a modeling issue, the use of a single initial hydraulic head and a single set of boundary flows leads to miscalculations of capture. Instead, an initial condition for each season should be used. This approach may be accomplished by determining steady oscillatory solutions, which vary through the seasons but repeat from year to year. A regional groundwater model previously developed for a portion of the San Pedro River basin, Arizona, USA, is modified to illustrate the effect that different initial conditions have on transient solutions and on capture calculations. Résumé Les "prélèvements" sont constitués par l'augmentation de la recharge et par la diminution de l'écoulement qui se produit lorsqu'un pompage est imposéà un système aquifère qui était auparavant dans un état proche de l'équilibre dynamique. Les modèles régionaux de nappe sont en général utilisés pour calculer les prélèvements dans une procédure à deux étapes. Une solution en régime permanent donne la configuration piézométrique initiale, un jeu de conditions aux limites pour la région modélisée et les données de base pour le calcul des prélèvements. Les solutions transitoires donnent les modifications globales des conditions aux limites. Lorsque des variations saisonnières sont produites en sortie du modèle, le recours à une piézométrie initiale unique et à un seul jeu de données de conditions aux limites conduit à un mauvais calcul des prélèvements. Il faut alors utiliser une condition de recharge initiale pour chaque saison. Cette approche peut être réalisée en déterminant des solutions permanentes périodiques, variantes au cours des saisons, mais se répétant d'année en année. Un modèle de nappe régional, précédemment mis au point pour une partie du bassin de la rivière San Pedro (Arizona, États-Unis), a été modifié pour illustrer l'effet de conditions initiales différentes sur des solutions transitoires et sur le calcul des prélèvements. Resumen Se define como "captura" al aumento de recarga y descenso de descarga que tiene lugar cuando se impone un bombeo en un acuífero en estado de equilibrio dinámico. Se suelen utilizar modelos regionales de agua subterránea para calcular la captura en un procedimiento que consta de dos etapas. Una solución en régimen estacionario proporciona la distribución inicial de niveles piezométricos, los flujos a través de los contornos de la región modelada y el punto de partida para el cálculo de la captura. Las soluciones transitorias proporcionan los cambios en los flujos a través de los contornos. La diferencia entre las soluciones estacionaria y transitoria da el valor de la captura. Cuando los cambios estacionales son importantes, la utilización de un único estado inicial de niveles y de flujos en los contornos da lugar a errores en el cálculo de la captura. En este caso debe usarse una condición inicial para cada una de las estaciones. Esto se puede conseguir obteniendo soluciones periódicas estacionarias, que varíen a lo largo de las estaciones, pero que se repitan año a año. Un modelo regional desarrollado previamente para el estudio de una parte de la cuenca del Río San Pedro, en Arizona (EE.UU.) se modificó para ilustrar el efecto que las distintas condiciones iniciales tienen en el cálculo de la captura.
The significance of microbial processes in hydrogeology and geochemistry
NASA Astrophysics Data System (ADS)
Chapelle, Francis H.
Microbial processes affect the chemical composition of groundwater and the hydraulic properties of aquifers in both contaminated and pristine groundwater systems. The patterns of water-chemistry changes that occur depend upon the relative abundance of electron donors and electron acceptors. In many pristine aquifers, where microbial metabolism is limited by the availability of electron donors (usually organic matter), dissolved inorganic carbon (DIC) accumulates slowly along aquifer flow paths and available electron acceptors are consumed sequentially in the order dissolved oxygen >nitrate>Fe(III)>sulfate>CO2 (methanogenesis). In aquifers contaminated by anthropogenic contaminants, an excess of available organic carbon often exists, and microbial metabolism is limited by the availability of electron acceptors. In addition to changes in groundwater chemistry, the solid matrix of the aquifer is affected by microbial processes. The production of carbon dioxide and organic acids can lead to increased mineral solubility, which can lead to the development of secondary porosity and permeability. Conversely, microbial production of carbonate, ferrous iron, and sulfide can result in the precipitation of secondary calcite or pyrite cements that reduce primary porosity and permeability in groundwater systems. Les processus microbiologiques peuvent affecter la composition chimique de l'eau souterraine et les propriétés hydrauliques des nappes aussi bien dans les systèmes aquifères pollués que dans les systèmes indemnes de pollution. Les changements de chimisme des eaux qui se produisent dépendent de l'abondance relative des donneurs et des accepteurs d'électrons. Dans les aquifères non contaminés, où le métabolisme microbien est limité par la disponibilité des donneurs d'électrons (en général la matière organique), le carbone minéral dissous (CMD) s'accumule lentement le long des axes d'écoulement souterrain et les accepteurs d'électrons disponibles sont consommés de façon séquentielle, dans l'ordre oxygène dissous>nitrate>fer (III)>sulfate>CO2 (méthanogenèse). Dans les aquifères pollués par des contaminants d'origine humaine, il existe un excès de carbone organique disponible et le métabolisme microbien est limité par la disponibilité des accepteurs d'électrons. En plus des modifications du chimisme des eaux souterraines, la matrice encaissante de l'aquifère est affectée par des processus microbiens. La production de dioxyde de carbone et d'acides organiques peut conduire à accroître la solubilité de minéraux, ce qui peut produire un développement de la porosité secondaire et de la perméabilité. Inversement, la production microbienne de carbonate, de fer ferreux et de sulfure peut provoquer la précipitation de ciments de calcite secondaire ou de pyrite qui réduisent la porosité primaire et la perméabilité dans les nappes. Los procesos microbianos afectan la composición química y las propiedades hidráulicas de los acuíferos, independientemente de su grado de contaminación. Los cambios en la química de las aguas dependen de la abundancia relativa entre donantes y receptores de electrones. En muchos acuíferos no contaminados, donde el metabolismo de los microbios está limitado por la disponibilidad de donantes de electrones (normalmente materia orgánica), el carbono inorgánico disuelto (CID) se acumula lentamente a lo largo de las líneas de flujo y los receptores de electrones se consumen sucesivamente en el siguiente orden: oxígeno disuelto>nitrato>Fe (III)>sulfato>CO2 (metanogénesis). En los acuíferos que presentan contaminación antrópica, existe un exceso de carbono orgánico disponible y entonces el metabolismo de los microbios se encuentra limitado por la disponibilidad de receptores de electrones. Además de los cambios en la química de las aguas, los procesos microbianos afectan también a la matriz sólida del acuífero la producción de CO2 y de ácidos orgánicos puede dar lugar a una mayor solubilidad del mineral, lo que supone un aumento en porosidad secundaria y permeabilidad. Por el contrario, los procesos microbianos pueden dar lugar a la producción de carbonato, ión ferroso y sulfuro, precipitando calcita o pirita y reduciendo la porosidad primaria y la permeabilidad.
Premo, Wayne R.; Castineiras, Pedro; Wooden, Joseph L.
2008-01-01
New SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) data confirm the existence of Archean components within zircon grains of a sample from the orthogneiss of Angel Lake, Nevada, United States, previously interpreted as a nappe of Archean crust. However, the combined evidence strongly suggests that this orthogneiss is a highly deformed, Late Cretaceous monzogranite derived from melting of a sedimentary source dominated by Archean detritus. Zircon grains from the same sample used previously for isotope dilution-thermal ionization mass spectrometry (ID-TIMS) isotopic work were analyzed using the SHRIMP-RG to better define the age and origin of the orthogneiss. Prior to analysis, imaging revealed a morphological variability and intragrain, polyphase nature of the zircon population. The SHRIMP-RG yielded 207Pb/206Pb ages between ca. 2430 and 2580 Ma (a best-fit mean 207Pb/206Pb age of 2531 ± 19 Ma; 95% confidence) from mostly rounded to subrounded zircons and zircon components (cores). In addition, several analyses from rounded to subrounded cores or grains yielded discordant 207Pb/206Pb ages between ca. 1460 and ca. 2170 Ma, consistent with known regional magmatic events. All cores of Proterozoic to latest Archean age were encased within clear, typically low Th/U (206Pb/238U ages between 72 and 91 Ma, consistent with magmatic ages from Lamoille Canyon to the south. An age of ca. 90 Ma is suggested, the younger 206Pb/238U ages resulting from Pb loss. The Cretaceous and Precambrian zircon components also have distinct trace element characteristics, indicating that these age groups are not related to the same igneous source. These results support recent geophysical interpretations and negate the contention that the Archean-Proterozoic boundary extends into the central Great Basin area. They further suggest that the world-class gold deposits along the Carlin Trend are not underlain by Archean cratonal crust, but rather by the Proterozoic Mojave province and Neoproterozoic and Paleozoic metasedimentary sequences dominated by detritus derived from Late Archean sources rather than Proterozoic sources, as is evident farther to the south in the Ruby Mountains.
Collision in the Central Alps: 1. Thermal Modelling
NASA Astrophysics Data System (ADS)
Engi, M.; Roselle, G. T.; Brouwer, F. M.; Berger, A.
2003-04-01
Recent tectonic reconstructions for the Central Alps, based in part on seismic profiles across of the orogen, have produced fairly robust kinematic scenarios for the Tertiary evolution. We have used these to set up 2D finite element models [1] to simulate the thermal evolution at orogenic scales. Results are helpful to understand the metamorphic and geochronological record in the Central Alps. Several features recognized as crucial in collisional orogens have been incorporated in our models: Adaptive grids are used to accommodate tectonic mass flow; properties of a tectonic accretion channel (TAC), situated near the footwall of the upper (Apulian) plate, are incorporated (TAC: 5-10 km wide [2]); a mobile fragment (pit: 5-10 km thick, 25-50 km long) at the plate interface is allowed to first be subducted, then to be extruded along the subduction channel to mid-crustal levels during the nappe stacking phase, and finally to be exhumed by backthrusting and erosion; partial melting and its thermal effects are computed. The thermal evolution in crucial parts of the model orogen is depicted in P-T and T-t trajectories, and in time slices showing the evolution of metamorphic facies and degrees of late partial melting. Comparison of simulation results with the regional distribution of (Eocene) high pressure fragments in the Lepontine Alps and of their (Oligo/Miocene) Barrovian overprint indicate that (a) decompression is near-isothermal along a very imited part of the path only; (b) the highest temperatures attained following collision do not reach the observed ˜700^oC unless the TAC is fairly radiogenic (heat production ge˜2 μW/m^3) or there is substantial heat advected by asthenospheric melts migrating up the subduction channel; (c) moderate amounts of partial melting occurred within the the TAC during decompression, following the assembly (at mid-crustal levels) of various crustal and mantle fragments with very diverse P-T-t histories. [1] Roselle et al. (2002) Amer. J. Sci. 302: 381-409 [2] Engi et al. (2001) Geology 29: 1143-1146
Marble-hosted ruby deposits of the Morogoro Region, Tanzania
NASA Astrophysics Data System (ADS)
Balmer, Walter A.; Hauzenberger, Christoph A.; Fritz, Harald; Sutthirat, Chakkaphan
2017-10-01
The ruby deposits of the Uluguru and Mahenge Mts, Morogoro Region, are related to marbles which represent the cover sequence of the Eastern Granulites in Tanzania. In both localities the cover sequences define a tectonic unit which is present as a nappe structure thrusted onto the gneissic basement in a north-western direction. Based on structural geological observations the ruby deposits are bound to mica-rich boudins in fold hinges where fluids interacted with the marble-host rock in zones of higher permeability. Petrographic observations revealed that the Uluguru Mts deposits occur within calcite-dominated marbles whereas deposits in the Mahenge Mts are found in dolomite-dominated marbles. The mineral assemblage describing the marble-hosted ruby deposit in the Uluguru Mts is characterised by corundum-dolomite-phlogopite ± spinel, calcite, pargasite, scapolite, plagioclase, margarite, chlorite, tourmaline whereas the assemblage corundum-calcite-plagioclase-phlogopite ± dolomite, pargasite, sapphirine, titanite, tourmaline is present in samples from the Mahenge Mts. Although slightly different in mineral assemblage it was possible to draw a similar ruby formation history for both localities. Two ruby forming events were distinguished by textural differences, which could also be modeled by thermodynamic T-XCO2 calculations using non-ideal mixing models of essential minerals. A first formation of ruby appears to have taken place during the prograde path (M1) either by the breakdown of diaspore which was present in the original sedimentary precursor rock or by the breakdown of margarite to corundum and plagioclase. The conditions for M1 metamorphism was estimated at ∼750 °C at 10 kbar, which represents granulite facies conditions. A change in fluid composition towards a CO2 dominated fluid triggered a second ruby generation to form. Subsequently, the examined units underwent a late greenschist facies overprint. In the framework of the East African Orogen we assume that the prograde ruby formation occurred at the commonly observed metamorphic event around 620 Ma. At the peak or during beginning of retrogression the fluid composition changed triggering a second ruby generation. The late stage greenschist facies overprint could have occurred at the waning stage of this metamorphic episode which is in the range of ∼580 Ma.
NASA Astrophysics Data System (ADS)
Leloup, P. H.; Arnaud, N.; Lacassin, R.; Kienast, J. R.; Harrison, T. M.; Trong, T. T. Phan; Replumaz, A.; Tapponnier, P.
2001-04-01
New structural, petrographic, and 40Ar/39Ar data constrain the kinematics of the ASRR (Ailao Shan-Red River shear zone). In the XueLong Shan (XLS), geochronological data reveal Triassic, Early Tertiary, and Oligo-Miocene thermal events. The latter event (33-26 Ma) corresponds to cooling during left-lateral shear. In the FanSiPan (FSP) range, thrusting of the SaPa nappe, linked to left-lateral deformation, and cooling of the FSP granite occurred at ≈35 Ma. Rapid cooling resumed at 25-29 Ma as a result of uplift within the transtensive ASRR. In the DayNuiConVoi (DNCV), foliation trends NW-SE, but is deflected near large-scale shear planes. Stretching lineation is nearly horizontal. On steep foliations, shear criteria indicate left-lateral shear sense. Zones with flatter foliations show compatible shear senses. Petrographic data indicate decompression from ≈6.5 kbar during left-lateral shear (temperatures >700°C). 40Ar/39Ar data imply rapid cooling from above 350°C to below 150°C between 25 and 22 Ma without diachronism along strike. Along the whole ASRR cooling histories show two main episodes: (1) rapid cooling from peak metamorphism during left-lateral shear; (2) rapid cooling from greenschist conditions during right-lateral reactivation of the ASRR. In the NW part of the ASRR (XLS, Diancang Shan), we link rapid cooling 1 to local denudations in a transpressive environment. In the SW part (Ailao Shan and DNCV), cooling 1 resulted from regional denudation by zipper-like tectonics in a transtensive regime. The induced cooling diachronism observed in the Ailao Shan suggests left-lateral rates of 4 to 5 cm/yr from 27 Ma until ≈17 Ma. DNCV rocks always stayed in a transtensive regime and do not show cooling diachronism. The similarities of deformation kinematics along the ASRR and in the South China Sea confirms the causal link between continental strike-slip faulting and marginal basin opening.
Initiation of continental accretion: metamorphic conditions
NASA Astrophysics Data System (ADS)
Clement, Conand; Frederic, Mouthereau; Gianreto, Manatschal; Adbeltif, Lahfid
2017-04-01
The physical processes involved at the beginning of the continental collision are largely unknown because they are transient and therefore hardly identifiable from the rock record. Despite the importance of key parameters for understanding mountain building processes, especially the formation of deep mountain roots and their impacts on earthquakes nucleation, rock/fluid transfers and oil/gas resources in the continental crust, observations from the earliest collision stages remain fragmentary. Here, we focus on the example of Taiwan, a young and active mountain belt where the transition from oceanic subduction, accretion of the first continental margin to mature collision can be followed in space and time. We present preliminary results and provide key questions regarding the reconstruction of time-pressure-temperature paths of rocks & fluids to allow discriminating between rift-related thermal/rheological inheritance and burial/heating phases during convergence. Previous studies have focused on peak temperatures analyzed by Raman Spectrometry of Carbonaceous Matter from the deeper structural layers exposed in the Central Range of Taiwan. In the pre-rift sediments, these studies reported a positive gradient from West to Est, and values from <330 to 520 °C. We detect from our preliminary analyses of the Miocene "post-rift" sediments, a trend of increasing temperature from 170 to 340 °C northwards. These temperature data are discussed against key structural features recognized in the field and available low-temperature thermochronological constraints. We show that our RSCM temperatures cannot directly be interpreted in terms of syn-convergence nappe stacking only and must reflect a component of initial (pre-collisional) high-geothermal gradients (up to 60°C/km) known in the region, and higher temperature closer to the pre-rift units. Cross sections and maps with high resolution peak temperatures are in process as well as pressure estimations to determine how the sediments were metamorphosed. In addition to this work, we report a few inherited temperatures in the 390-570 °C range, indicating recycling of organic matter from metasediments that recorded HT events, likely originated from higher grade metamorphic units of mainland China, which have been eroded and deposited in the post-rift sediments.
NASA Astrophysics Data System (ADS)
Rutte, D.; Ratschbacher, L.; Stübner, K.; Schneider, S.
2015-12-01
The gneisses of the Central Pamir Domes and their cover document crustal stacking of a ~10 km thick Ediacaran-Paleogene succession to a thickness of >35 km and their exhumation along bi-vergent, top-to-N and top-to S, normal-sense shear zones. The giant South Pamir Shakhdara-Alichur gneiss-dome system formed similarly by N-S extension along bivergent detachments. Prograde amphibolite-facies metamorphism in the domes and low-grade metamorphism in their hanging wall is dated at ~40 Ma (Lu-Hf garnet, U-Pb titanite) [Smit et al., 2014; Stearns et al., 2015] and ~33 Ma (K/Ar sericite). Retrograde metamorphism―driven by crustal extension―started at ~21 Ma (multi-method thermochronology; Stearns et al.[2013]). These Gneiss Domes offer a unique window into the Eocene-Miocene state of the Asian middle crust of the Pamir-Tibet Plateau. Top-to-N thrust stacking accommodated thickening in the upper crust, with displacements of single thrust sheets of > 30 and > 19 km. At depth, ductile flow formed km-scale recumbent fold nappes. We reconstruct their geometry by structural mapping and U-Pb zircon dating, documenting repetition of metatuffite, and paragneiss layers. In the interior of the domes, amphibolite-facies deformation fabrics with prograde kyanite define an E-W stretching lineation. Associated microstructures indicate top-to-E and top-to-W shear senses. Chocolate tablet boudinage indicate vertical flattening during bulk crustal thickening. We suggest that prograde E-W stretching relates to an early orogen-parallel flow component in the middle crust, contemporaneous with crustal stacking during bulk top-to-N convergence prior to ~21 Ma. Material likely evaded laterally out of the Pamir, contributing to >60 km thick crust in the Hindu Kush, west of the India-Asia frontal collision. In the Neogene crust extruded laterally from the Pamir Plateau to the west by dextral wrenching and E-W extension; this component of deformation is accommodated by E-W shortening in the Afghan-Tajik Depression.
Geomorphic and hydraulic Analyses of In-stream Step-pool Structures (I)
NASA Astrophysics Data System (ADS)
Kuo, W. C.; Hu, Y. L.; Wang, H. W.
2016-12-01
Longitudinal stair-like structures, such as alternating steps and pools, are found commonly in steep mountain streams. In a way to mimic the natural characteristics, many implementations of constructing artificial step structures have long been found in field practice to stabilize streambeds and enhance aquatic systems. To better understand how constructed step-pool systems form and function, this paper discusses the hydraulic and geomorphic factors based on flume experiments, and further compare to our field observations in Chijiawan Creek in Taiwan. We constructed a 2.9-m-long, 0.15-wide, and 0.3-m-high acrylic walled recirculating channel and conducted experiments to understand the formation, hydraulic features, and channel stability of step-pools of scenarios considering different channel slopes, discharges, feeding sediments. The results indicated that the keystones played a crucial role in stabilizing step-pool structures. The grain sizes of keystones from the experiments ranged approximately from one-third to one-tenth of channel width, while those from the field observations were about one-ninth to two-ninths. While the experimental discharge increased from 0.0012 cms to 0.006 cms, the flow transformed from nappe flow to skimming flow and the difference of average velocity between steps and pools reduced 30%. Besides, experiments showed that the step-pool structures failed immediately after keystones destroyed at a sediment transportation rate about 1.5 times of sediment feeding rate. It highlights the step-pools and channel stability is highly related to keystones. We further found the step-pools were buried at the experimental cases with coarse sediment fed upstream, similar to our field observations in Chijiawan Creek, with an approximately 1 3m deposition after Typhoon Soudelor, a 5-year event. The results obtained in this study would serve as a basis for ongoing discussions on how constructed step-pool structures would function and fail. More efforts of field investigations, flume experiments, and field experiments in helping developing specific recommendations and providing scientific insights for not only in Taiwan but around the world are still in need.
Randomized Controlled Trial of Antiseptic Hand Hygiene Methods in an Outpatient Surgery Clinic.
Therattil, Paul J; Yueh, Janet H; Kordahi, Anthony M; Cherla, Deepa V; Lee, Edward S; Granick, Mark S
2015-12-01
Outpatient wound care plays an integral part in any plastic surgery practice. However, compliance with hand hygiene measures has shown to be low, due to skin irritation and lack of time. The objective of this trial was to determine whether single-use, long-acting antiseptics can be as effective as standard multiple-use hand hygiene methods in an outpatient surgical setting. A prospective, randomized controlled trial was performed in the authors' outpatient plastic surgery clinic at Rutgers New Jersey Medical School, Newark, NJ to compare the efficacy of an ethyl alcohol-based sanitizer (Avagard D Instant Hand Aniseptic, 3M Health Care, St. Paul, MN), a benzalkonium chloride-based sanitizer (Soft & Shield, Bioderm Technologies, Inc, Trenton, NJ, distributed by NAPP Technologies, Hackensack, NJ ), and soap and- water handwashing. Subjects included clinic personnel, who were followed throughout the course of a 3-hour clinic session with hourly hand bacterial counts taken. During the course of the trial, 95 subjects completed the clinic session utilizing 1 of the hand hygiene methods (36 ethyl alcohol-based sanitizer, 38 benzalkonium chloride-based sanitizer, and 21 soap-and-water handwashing). There was no difference between hand bacterial counts using the different methods at 4 hourly time points (P greater than 0.05). Hand bacterial counts increased significantly over the 3-hour clinic session with the ethyl alcohol-based sanitizer (9.24 to 21.90 CFU, P less than 0.05), benzalkonium chloride-based sanitizer (6.69 to 21.59 CFU, P less than 0.05), and soap-and-water handwashing (8.43 to 22.75 CFU, P less than 0.05). There does not appear to be any difference in efficacy between single-use, long-acting sanitizer, and standard multiple-use hand hygiene methods. Hand bacterial counts increased significantly over the course of the 3-hour clinic session regardless of the hand hygiene measure used. Hand condition of subjects was improved with the ethyl alcohol-based sanitizer and the benzalkonium chloride-based sanitizer compared with soap-and-water handwashing.
NASA Astrophysics Data System (ADS)
Whattam, Scott A.; Malpas, John; Ali, Jason R.; Smith, Ian E. M.
2008-03-01
Various reconstructions of the SW Pacific for the Late Cretaceous and Cenozoic suggest that northeast dipping subduction began in the South Loyalty Basin (SLB) at 55-50 Ma and that subsequent closure of the SLB resulted in the diachronous emplacement of Cretaceous-Paleocene ophiolitic nappes onto the Norfolk Ridge in New Caledonia at 40-34 Ma and in Northland, New Zealand, around 24-21 Ma. A fundamental problem with these models is that they do not account for the fact that NE dipping subduction had already been established offshore Papua New Guinea by at least 65-60 Ma which resulted in the emplacement of the Papuan Ultramafic Belt (PUB) ophiolite at 59-58 Ma. A second issue is that the reconstructions are based largely upon unfounded assumptions as to the age and nature of the basement beneath the Loyalty arc and Three Kings Ridge. Finally, reconstructions of the Northland region are based upon the erroneous assumption that the age of the majority of the igneous component comprising the Northland allochthon is Late Cretaceous-Paleocene, when in fact it is Oligocene. A new model is presented whereby the PUB, New Caledonia, and Northland ophiolites formed and were emplaced in a cyclical fashion above an extensive NE dipping Cenozoic intraoceanic arc system which diachronously propagated (N-S) along the entire eastern margin of the Australian Plate. These "infant arc" ophiolites represent fragments of suprasubduction zone lithosphere (SSZL) generated in the earliest stages of magmatic arc formation that were emplaced shortly after (<20 m.y.) as a result of forearc-Australian Plate collision. Subduction inception was the result of subsidence of older MORB-like lithosphere generated within an extensive "back arc basin" to the east of the Norfolk Ridge during the earliest stages of SLB formation above a southwest dipping Pacific Plate. During emplacement of each ophiolite, a crustal fragment of the older lithosphere was scraped off the NE dipping slab and subsequently back-thrust beneath each ophiolite during its emplacement.
Geodiversity and Geoheritage of the Sesia-Val Grande Unesco Geopark (NW-Italy)
NASA Astrophysics Data System (ADS)
Giardino, Marco; Palomba, Mauro; Selvaggio, Ilaria; Ghiraldi, Luca; Giordano, Enrico
2015-04-01
The Sesia-Valgrande Geopark has been founded in September 2013. It is located in the northern sector of Piemonte region covering an area of almost 214000 hectares. In the northern side the Geopark includes the entire territory of the Val Grande National Park, a small portion of the Ossola Valley and the Cannobina valley, while in the south covers most of the mountain range of the Sesia Valley and portions of neighbouring territories such as Valsessera, Prealpi Biellesi, Val Strona and Alte Colline Novaresi. The present morphology of the whole area is characterized by landforms shaped by different geomorphological processes: glacial, hydrological, gravitational and in the south parts also by karstic phenomena. From the geological point of view the Sesia-Val Grande Geopark "rides" the Canavese segment of the Insubric Line, a major tectonic boundary of the Alps. North- and Westward of the Insubric Line, the Austro-Alpine domain consists of piles of nappes, which were assembled and affected by a polymetamorphic event during the Alpine orogeny. South- and Eastward of the Insubric Line, South-Alpine Rock units were not affected by this metamorphic event: they preserve an older history, despite experiencing substantial Alpine tectonic deformation. These are the original rocks of the northern margin of the Adriatic plate, an exceptional record of metamorphic and igneous events preserved with a virtually intact section of the pre-Alpine crust. Beyond geological heritage this territory is one of the most appealing natural environments of the Western Alps, including several different protected areas, important Walser settlement (13th century) and Palaeolithic human traces in the Monte Fenera caves, religious and artistic attraction dominated by the Ghiffa and Varallo Sacred Mount and eventually sport activities such as rafting, hiking, mountaineering and climbing. In order to promote cultural and geological heritage of the area, several scientific institution have been developing different researches and actions both in the scientific and educational domains. The various aspects related to the valorisation and popularization of Cultural Geology have been carried out by Earth Sciences Department of Torino University in cooperation with local institution, in order to enhance the proper management of local geoheritage and the spreading of Earth Science knowledge.
A magnetotelluric feasibility study of the Alps
NASA Astrophysics Data System (ADS)
Ritter, O.; Weckmann, U.
2016-12-01
The Alps are a famous and extensive mountain range system in central Europe. The mountains were formed as the African and Eurasian tectonic plates collided and they have been a prime target for geological and geophysical investigations since the beginning of modern geosciences. Consequently, the Alps have been investigated with active and passive seismological methods and extensive sets of potential field data exist. Hardly anything is known, however, about the deep electrical conductivity structure, as it has been notoriously difficult to acquire magnetotelluric (MT) data in the Alps. The Alps are densely populated and a lot of infrastructure for tourism has been built over the years. MT measurements, which rely on natural variations of the electromagnetic background fields, are severely hampered by this man-made noise. Here, we report on a feasibility study to acquire MT data in the Alps, where all stations are deployed outside the valleys, on high mountain ranges and alpine pastures. Overall we recorded MT data at 7 stations, along an approximately north-south profile centred on Mayrhofen in the Austrian Alps. The average station spacing was 5 kilometers. The data were processed using robust remote-reference processing and the results clearly show that MT measurements are feasible. We used Mare2DEM for 2D inversion to include a somewhat realistic topography. The 2D section indicates moderate resistivity for the top 2 - 5 km, consistent with the regional geology, which suggests (meta-) sedimentary sequences. From depths of 5 km and below resistivities exceed 5,000 Ohmm. This means we can sense very deep with MT but also, that we should be cautious with an interpretation of this short profile. The data also clearly indicate 3D effects. We therefore propose to deploy an array of stations covering the entire Alps in USArray style, e.g. with a station spacing of approximately 50 km, to derive a 3D model of the deep electrical resistivity structure of the Alps. Such a model could also serve as reference for more detailed investigations of key structures such as major fault systems or nappe structures. It will be essential to install stations on high ground, as far away as possible from valleys and cultural installations.
Glen, J.M.G.; Schmidt, J.; Pellerin, L.; McPhee, D.K.; O'Neill, J. M.
2007-01-01
Recent investigations of the Talkeetna Mountains in south-central Alaska were undertaken to study the region's framework geophysics and to reinterpret structures and crustal composition. Potential field (gravity and magnetic) and magnetotelluric (MT) data were collected along northwest-trending profiles as part of the U.S. Geological Survey's Talkeetna Mountains transect project. The Talkeetna Mountains transect area comprises eight 1:63,360 quadrangles (???9500 km2) in the Healy and Talkeetna Mountains 1?? ?? 3?? sheets that span four major lithostratigraphic terranes (Glen et al., this volume) including the Wrangellia and Peninsular terranes and two Mesozoic overlap assemblages inboard (northwest) of Wrangellia. These data were used here to develop 21/2-dimensional models for the three profiles. Modeling results reveal prominent gravity, magnetic, and MT gradients (???3.25 mGal/ km, ???100nT/km, ???300 ohm-m/km) corresponding to the Talkeetna Suture Zone-a first-order crustal discontinuity in the deep crust that juxtaposes rocks with strongly contrasting rock properties. This discontinuity corresponds with the suture between relatively dense magnetic crust of Wrangellia (likely of oceanic composition) and relatively less dense transitional crust underlying Jurassic to Cretaceous flysch basins developed between Wrangellia and North America. Some area of the oceanic crust beneath Wrangellia may also have been underplated by mafic material during early to mid-Tertiary volcanism. The prominent crustal break underlies the Fog Lakes basin approximately where theTalkeetna thrust faultwaspreviouslymappedas a surface feature. Potential fieldand MT models, however, indicate that the Talkeetna Suture Zone crustal break along the transect is a deep (2-8 km), steeply west-dipping structure-not a shallow east-dipping Alpine nappe-like thrust. Indeed, most of the crustal breaks in the area appear to be steep in the geophysical data, which is consistent with regional geologic mapping that indicates that most of the faults are steep normal, reverse, strike-slip, or oblique-slip faults. Mapping further indicates that many of these features, which likely formed during Jurassic and Cretaceous time, such as the Talkeetna Suture Zone have reactivated inTertiary time (O'Neill et al., 2005). Copyright ?? 2007 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Kalleson, E.; Corfu, F.; Dypvik, H.
2009-05-01
Zircon and titanite were investigated in impactites of the Gardnos structure, a crater formed in Sveconorwegian (ca. 1 Ga) crust, which was then overridden in the Devonian by Caledonian nappes. Observed deformation features in zircons are granular texture, planar microstructures, and likely the incorporation of organic carbon during impact causing black staining of the zircon grains. The grains were studied by scanning electron microscopy (SEM) and cathode luminescence (CL) and dated by U-Pb isotope dilution - thermo-ionization mass spectrometry (ID-TIMS). Zircon grains without impact related features have U-Pb data showing moderate discordance (5-13%) and indicating formation ages mostly in the range of 1600-1000 Ma, except detrital zircon ages as old as >2481 Ma, reflecting the diversity of target rocks in the area. Titanite with concordant ages of 995-999 Ma dates metamorphism during final juxtaposition of the Telemarkia on the Idefjorden terrane to the east. Zircon grains with demonstrated or presumed shock features yield highly discordant (14-40%) U-Pb data, with a majority of them plotting along an array with a lower intercept of about 340 Ma reflecting the influence of the Caledonian orogeny and recent Pb-loss. One zircon grain was totally reset at 379 Ma during late Caledonian metamorphism, which also caused local growth of new titanite. A specific group of zircon grains yields data with relatively high discordance for moderate U contents, and five of these analyses, including that of a grain with proven granular or aggregate texture, fit a discordia line with an upper intercept of 546 ± 5 Ma. These features are interpreted as indicating zircon break-down to an amorphous state during impact, with subsequent recrystallization into microcrystalline aggregates causing extensive to complete Pb loss. We further suggest that their crystallinity prevented Pb loss during the Caledonian orogeny, while the small subgrain size and increasing metamictisation allowed more recent disturbances. We thus interpret the 546 Ma age as the approximate time of impact.
Plate tectonics of the northern part of the Pacific Ocean
NASA Astrophysics Data System (ADS)
Verzhbitsky, E. V.; Kononov, M. V.; Kotelkin, V. D.
2007-10-01
Geophysical data on the northern part of the Pacific Ocean were systematized to compile a map of geomagnetic and geothermal studies of the Bering Sea. The absence of reliable data about the formation time of the Bering Sea structures of oceanic and continental origins is noted; this hampered the assessment of the geodynamical processes in the North Pacific. Based on the geophysical data, we estimated the age of the structures of the Bering Sea floor such as the Commander Basin (21 My), the Shirshov Ridge (95 and 33 My in the northern and southern parts, respectively), the Aleutian Basin (70 My), the Vitus Arch (44 My), the Bowers Ridge (30 My), and the Bowers Basin (40 My). These values are confirmed by the geological, geophysical, and kinematic data. A numerical modeling of the formation of extensive regional structures (Emperor Fracture Zone, Chinook Trough, and others) in the Northern Pacific is carried out. A conclusion was made on the basis of the geological and geothermal analysis that the northern and southern parts of the Shirshov Ridge have different geological ages and different tectonic structures. The northern part of the ridge is characterized by an upthrust-nappe terrain origin, while the southern part has originated from a torn-away island arc similar to the origin of the Bowers Ridge. The sea floor of the Aleutian Basin represents a detached part of the Upper Cretaceous Kula plate, on which spreading processes took place in the Vitus Arch area in the Eocene. The final activity phase in the Bering Sea began 21 My B.P. by spreading of the ancient oceanic floor of the Commander Basin. Based on the age estimations of the structures of the Bering Sea floor, the results of the modeling of the process of formation of regional fracture zones and of the geomagnetic, geothermal, tectonic, geological, and structural data, we calculated and compiled a kinematic model (with respect to a hot spot reference system) of the northern part of the Pacific Ocean for 21 My B.P.
Pre-Alpine contrasting tectono-metamorphic evolutions within the Southern Steep Belt, Central Alps
NASA Astrophysics Data System (ADS)
Roda, Manuel; Zucali, Michele; Li, Zheng-Xiang; Spalla, Maria Iole; Yao, Weihua
2018-06-01
In the Southern Steep Belt, Italian Central Alps, relicts of the pre-Alpine continental crust are preserved. Between Valtellina and Val Camonica, a poly-metamorphic rock association occurs, which belongs to the Austroalpine units and includes two classically subdivided units: the Languard-Campo nappe (LCN) and the Tonale Series (TS). The outcropping rocks are low to medium grade muscovite, biotite and minor staurolite-bearing gneisses and micaschists, which include interlayered garnet- and biotite-bearing amphibolites, marbles, quartzites and pegmatites, as well as sillimanite-bearing gneisses and micaschists. Permian intrusives (granitoids, diorites and minor gabbros) emplaced in the metamorphic rocks. We performed a detailed structural, petrological and geochronological analysis focusing on the two main lithotypes, namely, staurolite-bearing micaschists and sillimanite-bearing paragneisses, to reconstruct the Variscan and Permian-Triassic history of this crustal section. The reconstruction of the tectono-metamorphic evolution allows for the distinction between two different tectono-metamorphic units during the early pre-Alpine evolution (D1) and predates the Permian intrusives, which comprise rocks from both TS and LCN. In the staurolite-bearing micaschists, D1 developed under amphibolite facies conditions (P = 0.7-1.1 GPa, T = 580-660 °C), while in the sillimanite-bearing paragneisses formed under granulite facies conditions (P = 0.6-1.0 GPa, T> 780 °C). The two tectono-metamorphic units coupled together during the second pre-Alpine stage (D2) under granulite-amphibolite facies conditions at a lower pressure (P = 0.4-0.6 GPa, T = 620-750 °C) forming a single tectono-metamorphic unit (Languard-Tonale Tectono-Metamorphic Unit), which comprised the previously distinguished LCN and TS. Geochronological analyses on zircon rims indicate ages ranging between 250 and 275 Ma for D2, contemporaneous with the emplacement of Permian intrusives. This event developed under a high thermal state, which is compatible with an extensional tectonic setting that occurred during the exhumation of the Languard-Tonale Tectono-Metamorphic Unit. The extensional regime is interpreted as being responsible for the thinning of the Adriatic continental lithosphere during the Permian, which may be related to an early rifting phase of Pangea.
NASA Astrophysics Data System (ADS)
Berryman, E. J.; Kutzschbach, M.; Trumbull, R. B.; Meixner, A.; van Hinsberg, V.; Kasemann, S.; Franz, G.
2017-12-01
Tourmaline, a common accessory mineral in the metasedimentary units of the Pfitsch Formation in the Western Tauern Window, Eastern Alps, records the variation in fluid composition and B mobilization during Alpine metamorphism. These post-Variscan metasediments are part of the Subpenninic nappes, the former European distal margin, and experienced peak metamorphic conditions of 550°C, 1.0 GPa. In all investigated units, tourmaline is predominantly dravitic, with high Fe contents. Charge balance calculations combined with Fe-Mg and Fe-Al variation suggest a significant proportion of ferric iron. Tourmaline's composition reflects its host rock assemblage, with the relative predominance of Fe-Mg or Fe-Al exchange in tourmaline from different units corresponding to the presence of biotite/chlorite or muscovite, respectively. Boron content and correspondingly tourmaline abundance is highest in a 25 m thick unit of feldspathic gneiss ( 20-200 ppm B). The abundance and size of the tourmaline crystals increases near coarse-grained quartzofeldspathic segregations ( 1200 ppm B), reflecting the mobilization and concentration of B by the metamorphic fluid. Tourmaline crystals near segregations have up to three growth zones, recording pro- ( 350-500°C, 0.7-1.0 GPa) and retrograde (400°C, 0.2 GPa) growth. They show the largest amount of compositional variation, covering the range of compositional space represented by tourmaline occurring away from segregations. Tourmaline near segregations has the highest inferred ferric iron content, which decreases across growth zones, potentially reflecting the gradual reduction of the fluid during metamorphism. Whole rock δ11B values (-15 to -34‰) vary with the heaviest values found near B-rich segregations, and the lightest values in B-depleted samples. This correlation reflects the preferential mobilization of 11B towards the segregations. Isotopic zonation of individual tourmaline crystals with -11‰ in their cores and -20‰ in their rims suggests continuous volatilization and fractionation of B by a 10B-rich precursor mineral (e.g. mica) during prograde mobilization and redistribution of B within the Pfitsch Formation.
NASA Astrophysics Data System (ADS)
Morris, Kevin Peter
Accurate mapping of geological structures is important in numerous applications, ranging from mineral exploration through to hydrogeological modelling. Remotely sensed data can provide synoptic views of study areas enabling mapping of geological units within the area. Structural information may be derived from such data using standard manual photo-geologic interpretation techniques, although these are often inaccurate and incomplete. The aim of this thesis is, therefore, to compile a suite of automated and interactive computer-based analysis routines, designed to help a the user map geological structure. These are examined and integrated in the context of an expert system. The data used in this study include Digital Elevation Model (DEM) and Airborne Thematic Mapper images, both with a spatial resolution of 5m, for a 5 x 5 km area surrounding Llyn Cow lyd, Snowdonia, North Wales. The geology of this area comprises folded and faulted Ordo vician sediments intruded throughout by dolerite sills, providing a stringent test for the automated and semi-automated procedures. The DEM is used to highlight geomorphological features which may represent surface expressions of the sub-surface geology. The DEM is created from digitized contours, for which kriging is found to provide the best interpolation routine, based on a number of quantitative measures. Lambertian shading and the creation of slope and change of slope datasets are shown to provide the most successful enhancement of DEMs, in terms of highlighting a range of key geomorphological features. The digital image data are used to identify rock outcrops as well as lithologically controlled features in the land cover. To this end, a series of standard spectral enhancements of the images is examined. In this respect, the least correlated 3 band composite and a principal component composite are shown to give the best visual discrimination of geological and vegetation cover types. Automatic edge detection (followed by line thinning and extraction) and manual interpretation techniques are used to identify a set of 'geological primitives' (linear or arc features representing lithological boundaries) within these data. Inclusion of the DEM data provides the three-dimensional co-ordinates of these primitives enabling a least-squares fit to be employed to calculate dip and strike values, based, initially, on the assumption of a simple, linearly dipping structural model. A very large number of scene 'primitives' is identified using these procedures, only some of which have geological significance. Knowledge-based rules are therefore used to identify the relevant. For example, rules are developed to identify lake edges, forest boundaries, forest tracks, rock-vegetation boundaries, and areas of geomorphological interest. Confidence in the geological significance of some of the geological primitives is increased where they are found independently in both the DEM and remotely sensed data. The dip and strike values derived in this way are compared to information taken from the published geological map for this area, as well as measurements taken in the field. Many results are shown to correspond closely to those taken from the map and in the field, with an error of < 1°. These data and rules are incorporated into an expert system which, initially, produces a simple model of the geological structure. The system also provides a graphical user interface for manual control and interpretation, where necessary. Although the system currently only allows a relatively simple structural model (linearly dipping with faulting), in the future it will be possible to extend the system to model more complex features, such as anticlines, synclines, thrusts, nappes, and igneous intrusions.
NASA Astrophysics Data System (ADS)
Hassig, Marc; Rolland, Yann; Sosson, Marc; Galoyan, Ghazar; Sahakyan, Lilit; Topuz, Gultelin; Farouk Çelik, Omer; Avagyan, Ara; Muller, Carla
2014-05-01
During the Mesozoic, the Southern margin of the Eurasian continent was involved in the closure of the Paleotethys and opening Neotethys Ocean. Later, from the Jurassic to the Eocene, subductions, obductions, micro-plate accretions, and finally continent-continent collision occurred between Eurasia and Arabia, and resulted in the closure of Neotethys. In the Lesser Caucasus and NE Anatolia three main domains are distinguished from South to North: (1) the South Armenian Block (SAB) and the Tauride-Anatolide Platform (TAP), Gondwanian-derived continental terranes; (2) scattered outcrops of ophiolite bodies, coming up against the Sevan-Akera and Ankara-Erzincan suture zones; and (3) the Eurasian plate, represented by the Eastern Pontides margin and the Somkheto-Karabagh Arc. The slivers of ophiolites are preserved non-metamorphic relics of the now disappeared Northern Neotethys oceanic domain overthrusting onto the continental South Armenian Block (SAB) as well as on the Tauride-Anatolide plateform from the north to the south. It is important to point out that the major part of this oceanic lithosphere disappeared by subduction under the Eurasian Margin to the north. In the Lesser Caucasus, works using geochemical whole-rock analyses, 40Ar/39Ar dating of basalts and gabbro amphiboles and paleontological dating have shown that the obducted oceanic domain originates from a back-arc setting formed throughout Middle Jurassic times. The comprehension of the geodynamic evolution of the Lesser Caucasus supports the presence of two north dipping subduction zones: (1) a subduction under the Eurasian margin and to the south by (2) an intra-oceanic subduction allowing the continental domain to subduct under the oceanic lithosphere, thus leading to ophiolite emplacement. To the West, the NE Anatolian ophiolites have been intensely studied with the aim to characterize the type of oceanic crust which they originated from. Geochemical analyses have shown similar rock types as in Armenia, Mid Ocean Ridge Basalt (MORB) to volcanic arc rocks and Intra-Plate Basalts (IPB). Lithostratigraphic comparisons have shown that the relations between the three units, well identified in the Lesser Caucasus, are similar to those found in NE Anatolia, including the emplacement of stratigraphically conform and discordant deposits. New field data has also shed light on an outcrop of low-grade metamorphic rocks of volcanic origin overthrusted by the ophiolites towards the south on the northern side of the Erzincan basin, along the North Anatolian Fault (NAF). We extend our model for the Lesser Caucasus to NE Anatolia and infer that the missing of the volcanic arc formed above the intra-plate subduction may be explained by its dragging under the obducting ophiolite with scaling by faulting and tectonic erosion. In this large scale model the blueschists of Stepanavan, the garnet amphibolites of Amasia and the metamorphic arc complex of Erzincan correspond to this missing volcanic arc. We propose that the ophiolites of these two zones originate from the same oceanic domain and were emplaced during the same obduction event. This reconstructed ophiolitic nappe represents a preserved non-metamorphic oceanic domain over-thrusting up to 200km of continental domain along more than 500km. Distal outcrops of this exceptional object were preserved from latter collision which was concentrated along the suture zones.
NASA Astrophysics Data System (ADS)
Koutsovitis, Petros
2017-04-01
In Central Greece, the East Thessaly region encompasses ophiolitic and metaophiolitic formations emplaced onto Mesozoic platform series rocks. Metaophiolitic thrust sheets are characterized either by the predominance of serpentinites or metabasites. Serpentinites have been distinguished into three groups, representing distinct metamorphic degrees. Group-1 serpentinites (East Othris region) are characterized by the progressive transformation of lizardite to antigorite, estimated to have been formed under greenschist facies conditions (˜320-340 ˚ C, P≈6-8 kbar) [1]. Group-2 serpentinites (NE Othris and Agia-Agiokampos region) are marked by the further prevalence of antigorite over lizardite, suggesting upper-greenschist to low-blueschist facies metamorphism (˜340-370 ˚ C, P≈9-11 kbar) [1]. Group-3 serpentinites (Agia-Agiokampos region) are characterized by the predominance of antigorite and Cr-magnetite, as well as by their relatively low LOI (10.9-12.6 wt.%), corresponding to blueschist facies metamorphism (˜360-400 ˚ C, P≈12 kbar) [1]. These metamorphic conditions are highly comparable with the P-T estimates from the Easternmost Thessaly metabasic rocks, strongly indicating that the entire metaophiolitic formation (excluding East Othris) underwent blueschist facies metamorphism. Serpentinites from East Thessaly were formed from serpentinization of highly depleted harzburgitic protoliths under extensive partial melting processes (>15%), pointing to a hydrous subduction-related environment. Group-1 serpentinites exhibit higher Mg/Si ratio values and LOI compared to serpentinite Groups-2 and -3. Differences in the trace element behavior amongst the three serpentinite groups are also consistent with increasing metamorphic conditions (e.g. Pb, La enrichments, Ti, Y, Yb depletions) [1]. The East Thessaly serpentinites reflect highly oxidizing conditions (-0.4< FMQ<1.2) [1]. These serpentinites appear to have also been subjected to deserpentinization retrograde metamorphic processes (P<8 kbar and T<350 ˚ C) [1]. Retrograde metamorphism also resulted in the occurrence of late-stage rodingitization and derodingitization processes upon the rodingite intrusions hosted within the serpentinites. Late-stage derodingitization processes (T=250-300 oC) account for the formation of metarodingites (vesuvianite and/or chlorite bearing). Chlorite-serpentinite schists represent a reaction zone between the serpentinites and the hosted metarodingites [1]. Exhumation of the high-pressure serpentinite- and metabasic-bearing metaophiolitic occurrences may have occurred from either one or even from both of the bilateral oceanic basins (Pindos and Vardar) that coexisted besides the elongated Pelagonian zone. The Middle-Late Jurassic Pindos oceanic SSZ model appears to successfully interpret not only the geochemical and structural data recorded in the western Hellenic-Dinaric ophiolitic complexes, but additionally seems to explain the formation and emplacement for many of the East Thessaly metaophiolite occurrences. In this context, the exhumed metaophiolites represent parts either of a serpentinized subduction channel or of the serpentinized wedge, located on the hanging wall side close to the slab in the forearc system of the Pindos Ocean. The Hellenic-Dinaric ophiolitic units, as well as the metaophiolitic occurrences, were likely remobilized during thrusting of the flyschic nappe at the main Alpine orogenetic phase of the Upper Cretaceous-Paleogene period. References. [1] Koutsovitis 2016: Lithos, Special Issue, in Press. DOI: 10.1016/j.lithos.2016.11.008
Rankin, Douglas W.; Tucker, Robert D.; Amelin, Yuri
2013-01-01
The regional extent and mode and time of emplacement of the Piermont-Frontenac allochthon in the Boundary Mountains–Bronson Hill anticlinorium of the Upper Connecticut Valley, New Hampshire–Vermont, are controversial. Moench and coworkers beginning in the 1980s proposed that much of the autochthonous pre–Middle Ordovician section of the anticlinorium was a large allochthon of Silurian to Early Devonian rocks correlated to those near Rangeley, Maine. This ∼200-km-long allochthon was postulated to have been transported westward in the latest Silurian to Early Devonian as a soft-sediment gravity slide on a hypothesized Foster Hill fault. New mapping and U-Pb geochronology do not support this interpretation. The undisputed Rangeley sequence in the Bean Brook slice is different from the disputed sequence in the proposed larger Piermont-Frontenac allochthon, and field evidence for the Foster Hill fault is lacking. At the type locality on Foster Hill, the postulated “fault” is a stratigraphic contact within the Ordovician Ammonoosuc Volcanics. The proposed Foster Hill fault would place the Piermont-Frontenac allochthon over the inverted limb of the Cornish(?) nappe, which includes the Emsian Littleton Formation, thus limiting the alleged submarine slide to post-Emsian time. Mafic dikes of the 419 Ma Comerford Intrusive Complex intrude previously folded strata attributed to the larger Piermont-Frontenac allochthon as well as the autochthonous Albee Formation and Ammonoosuc Volcanics. The Lost Nation pluton intruded and produced hornfels in previously deformed Albee strata. Zircons from an apophysis of the pluton in the hornfels have a thermal ionization mass spectrometry 207Pb/206Pb age of 444.1 ± 2.1 Ma. Tonalite near Bath, New Hampshire, has a zircon sensitive high-resolution ion microprobe 206Pb/238U age of 492.5 ± 7.8 Ma. The tonalite intrudes the Albee Formation, formerly interpreted as the Silurian Perry Mountain Formation of the proposed allochthon. Collectively, these features indicate that the large Piermont-Frontenac allochthon gravity slide of Silurian-Devonian strata, as previously proposed, cannot exist. Allochthonous rocks are restricted to a 25 km2 klippe, the Bean Brook slice, emplaced by hard-rock thrusting in the post-Emsian Devonian. The Albee Formation, the oldest unit in the study area, is older than the Late Cambrian tonalite at Bath. The correlation and apparent continuity along strike to the northeast of the Albee Formation with the Dead River Formation suggest that the Albee Formation, like the Dead River Formation, is of Ganderian affinity and that the Bronson Hill magmatic arc in the Upper Connecticut Valley was built on Ganderian crust. The Dead River Formation is unconformably overlain by Middle and Upper Ordovician volcanic units; the unconformity is attributed to the pre-Arenig Penobscottian orogeny. Some of the pre-Silurian deformation in the Upper Connecticut Valley may be Penobscottian rather than Taconian. New stratigraphic units defined herein include the pelitic Scarritt Member of the Albee Formation, the Ordovician Washburn Brook Formation consisting of synsedimentary breccia and coticule, chert, and ironstone, and the Devonian–Silurian Sawyer Mountain Formation, probably correlative with the Frontenac Formation. The Partridge Formation is partially coeval with the Ammonoosuc Volcanics.
Virtual tours as a new teaching tool in geoscience: an example from the Western Alps
NASA Astrophysics Data System (ADS)
Berger, Antoine; Champagnac, Jean-Daniel; Nomade, Jérome
2013-04-01
Since almost two decades, numerical tools allowed to spread the science to the people at large, worldwide. Within a few minutes, it is now easy to find a detailed course on one technical or scientific topic. A teacher can lead students to online contents (created by his/her own or by others) to complement his/her own course, with videos, maps or any other content that would remain accessible for the students a long time after the course itself. In geosciences, many national and international institutions provide real time monitoring of the Earth (e.g. seismicity, climate, volcanisms...) and / or scientific content based on active research or more mature results. There is little doubt that this new scientific content is a great step forward for the students and the researchers alike. Geosciences (and especially geology), however, usually require field observations and in situ measurements, and a good student curriculum cannot be achieved without a significant amount of walking, observations, and questions answered on the field. We, as geologists, all experienced days and days of sun, dust and pouring rain... Most of the universities provide the students with field courses that allow them to (try to) apply what they have learnt in the universities' buildings. However, these few days (often reduced to cut the costs and fit teachers' schedules) may not be sufficient given the complexity of the area visited and the possible lack of some parts of the teacher's explanations for various reasons. It is therefore important to build a virtual suite to the field itself to provide a cost-free support available year round, to eventually achieve or complete the field course. The new images technologies now offer amazing visualization capabilities to "show" the field in an interactive fashion. For instance, a few tens of pictures taken with a good SRL camera equipped with an ultra wide angle lens permit to build a 360° panorama with no deformation of a point of interest. Moreover, these panorama can be linked together to travel from place to place. Last, but not least, the display of any type of information (video of the last year teachers' explanation, close up of a structure, graphic plot, text content, interpreted geological sections etc.) can be integrated in the virtual tour. From this, it is easy to build a full educational virtual tour that can include the information provided in the field book, and even become the field book itself. These virtual tours can be used with any device (laptop, tablet, smartphone...), hence have the potential become key players in field teaching. Finally, these virtual tours can help physically impaired students to complete their geological curriculum with the indispensable field experience they would not have had otherwise. Here we present an example of such a virtual tour build in 2012 across the European Alps during the 1st International Field Course organized by Grenoble University, ETH Zürich and Milano University. This virtual tour covers the Grimsel Pass Aar Massif Hercynian Basement (granite, shear zone and the underground NAGRA test site), the Zermatt area (two continents and two oceans packed together), the Aiguille du Midi incredible overview on most of the W-Alps, and the back limb of the Nappe de Morcles and its relation with the surrounding blocks. Link to the virtual tour: http://www.alpesphoto.com/temp/visites/Suisse/build/virtualtour.swf
The Gardnos Impact Structure, Norway
NASA Astrophysics Data System (ADS)
Dons, J. A.; Naterstad, J.
1992-07-01
The Gardnos area is situated 9 km north of the village Nesbyen in the county of Buskerud, south-central Norway. The peculiar "Gardnos breccia" was first described in 1945 and ascribed to explosive volcanic activity in Permian time. This conclusion has lately been questioned, and preliminary field and microscopic investigations by the authors in 1990-91 substantiated a theory of impact origin for the breccia and the structure. The Gardnos Impact Structure is the first of its kind to be described from Norway. Its geographical position is lat. 60 degrees 39'N, long. 9 degrees 00'E. The topography surrounding the structure ranges from 200 m.a.s.l. in the main Hallingdalen valley to more than 1000 m.a.s.l. in the high mountains nearby. At heights of 900-1000 m erosion has cut through the important, more or less horizontal boundary between a complex Precambrian crystalline basement and a deformed Caledonian cover sequence of Cambro-Ordovician sediments and overthrust nappes. Rocks of the latter sequence are however, still preserved in outliers no more than 3 km from the Gardnos structure. Erosional remnants of the Gardnos structure rocks are found within a semicircular area of 4-5 km diameter. Topographically the eroded structure now appears as a bowl-shaped, hanging side valley to Hallingdal. Wooded, late-Quaternary moraines and fluvioglacial deposits cover to a great extent the solid rocks, but the beds of many branching creeks provide good exposures. Thus a great variety of rocks formed within the Gardnos structure can be studied from approximately 350 m.a.s.l. up to more than 800 m.a.s.l. A variety of rocks from the Precambrian basement complex have been affected by the impact. This gives a unique opportunity to study shock-metamorphic effects on varying lithologies. Among the impact-produced structures and rock types that can easily be identified is an outer zone of breccia veining in the varied Precambrian lithologies, a lowermost lens of autochthonous breccia, the "Gardnos breccia" proper, above it a lens of suevite and suevite-like breccias, and at the transition to a series of crater-fill sediments there occur deposits that we interpret as back-fill and slump deposits. Type variation, trace fossils, and numerous sedimentary structures in the crater-fill sediments also testifies to the existence of a local, steep-sided sedimentary basin formed in the Precambrian rocks below the Cambro-Ordovician sea that probably existed in the region at this time. The autochthonous breccia shows great variation in clast size and extensive internal fracturing in the clasts. The fine-grained, black, carbonaceous matrix has entered even the most minute cracks. It is interesting to note that driving a tunnel through this breccia resulted in 30% greater wear on drilling equipment than that experienced when driving in unbrecciated gneiss. Microscopic study of thin sections made from the impactites shows many typical shock-metamorphic textures. Many types of planar features are seen in quartz and feldspar. In quartz methane- carrying fluid inclusions are very common along these directions. Biotites are strongly kinked. Partly vesicular fragments in different stages of devitrification are common in the suevite breccias, and so are crystals of quartz and feldspar showing different stages of isotropisation and melting--all in a heterogeneous mixture together with apparently undeformed rock and crystal fragments. Slight deformation and metamorphism seen in the crater-fill sediments are ascribed to the Caledonian orogeny, which influenced the area in Devonian time. Our studies so far indicate the following sequence of events: At a point in time corresponding approximately to the Cambro- Ordovician transition a bolide of a few hundred m diameter fell into the Lower Palaeozoic sea blasting a crater through its deposits of carbonaceous shale and deep into the underlying crystalline gneisses. Continued sedimentation filled the crater and development of the Caledonides then followed. Deep erosion has left structures and materials enough to unravel the story. Detailed mapping of the structure will continue in 1992, and a drilling project is planned for 1993.
Impacts of afforestation on groundwater resources and quality
NASA Astrophysics Data System (ADS)
Allen, Alistair; Chapman, Deborah
2001-07-01
Plans to double the proportion of land under forest cover in Ireland by the year 2035 have been initiated. The plan, primarily financially driven, ignores potential environmental impacts of forestry, particularly impacts on groundwater resources and quality. Since groundwater supplies almost 25% of Ireland's total potable water, these impacts are important. Field investigations indicate that afforestation leads to a reduction in runoff by as much as 20%, mainly due to interception of rainfall by forest canopies. Clearfelling has the opposite impact. Implications are that uncoordinated forestry practices can potentially exacerbate flooding. Groundwater recharge is affected by forestry, largely due to greater uptake of soil water by trees and to increased water-holding capacity of forest soils, arising from higher organic contents. Recharge rates under forests can be reduced to one tenth that under grass or heathland. Groundwater quality may be affected by enhanced acidification and nitrification under forests, due partly to scavenging of atmospheric pollutants by forest canopies, and partly to greater deposition of highly acid leaf litter. The slower recharge rates of groundwater under forests lead to significant delays in manifestation of deterioration in groundwater quality. Résumé. Des plans sont à l'étude pour doubler la proportion du couvert forestier en Irlande d'ici à 2035. Le plan, primitivement déterminé sur une base financière, ignore les impacts environnementaux potentiels de la foresterie, et particulièrement les impacts sur les ressources en eau souterraine et leur qualité. Du fait que les eaux souterraines satisfont presque 25% du total de l'eau potable de l'Irlande, ces impacts sont importants. Les études de terrain montrent que le reboisement conduit à une réduction du ruissellement d'au moins 20%, principalement à cause d'une interception de la pluie par le couvert forestier. Les coupes ont un impact contraire. Les implications sont que des pratiques forestières non coordonnées sont susceptibles d'exacerber les crues. La recharge des nappes est affectée par la foresterie, surtout à cause de prélèvements plus importants de l'eau du sol par les arbres et à cause de la capacité accrue des sols forestiers à retenir de l'eau, conduisant à de plus fortes teneurs en matières organiques. Les taux de recharge sous les forêts peuvent être réduits d'un dixième par rapport à la prairie ou à la lande. La qualité de l'eau souterraine peut être affectée par une acidification accrue et par une nitrification sous les forêts, provoquées pour une part par une fixation des polluants atmosphériques par le couvert forestier et pour une autre part par un dépôt plus important d'une litière plus fortement acide. Les taux de recharge plus lente des nappes sous les forêts conduisent à des retards importants dans la manifestation de la détérioration de la qualité de l'eau souterraine. Resumen. Se han iniciado los planes para duplicar la proporción de terrenos reforestados en Irlanda hacia el año 2035. El plan, impulsado por fines económicos, ignora los impactos potenciales medioambientales de la silvicultura, y, en particular, los impactos a los recursos de aguas subterráneas y a su calidad. Puesto que el 25 % del agua potable en Irlanda es suministrada por medio de aguas subterráneas, dichos impactos son importantes. Las investigaciones de campo indican que la reforestación lleva a una reducción de la escorrentía de hasta un 20 %, fundamentalmente por la interceptación de la lluvia en las copas de los árboles, mientras que la deforestación tiene el impacto opuesto. Las implicaciones son tales que las prácticas forestales descoordinadas pueden aumentar enormemente el riesgo de inundaciones. También la recarga a los acuíferos se ve afectada por la reforestación, debido, sobre todo, al uso del agua del suelo por los árboles y a la mayor capacidad de retención de los suelos en zonas boscosas, al disponer de más materia orgánica. Las tasas de recarga en zonas boscosas pueden verse reducidas al 10 % de las estimadas en campos de hierba o brezales. La calidad de las aguas subterráneas en zonas boscosas puede verse afectada por procesos de acidificación y nitrificación adicionales, causados por la retención de contaminantes atmosféricos en las copas de los árboles, y, en parte, por la acumulación de hojas enormemente ácidas en descomposición. El hecho de que la tasa de recarga sea inferior en zonas boscosas causa un retardo en la detección de fenómenos de deterioro de la calidad de las aguas subterráneas.
Hydrodynamic characteristics of the western Doñana Region (area of El Abalario), Huelva, Spain
NASA Astrophysics Data System (ADS)
Trick, Thomas; Custodio, Emilio
The Doñana region, in southwestern Spain, comprises a large and important nature reserve, the wetlands of which are affected by human activity. Planting of an extensive eucalyptus forest in the 1950s and, more recently, the use of aquifers for irrigation and water supply for some coastal tourist resorts, have altered the natural groundwater-flow system. The area of the study is the western sector of the region, called El Abalario, which is a gentle topographic elevation between the Atlantic coast and La Rocina Creek (Arroyo de la Rocina). Underneath a variable layer of eolian sands with high dunes near the coast, thick Plio-Quaternary detritic strata, mostly fine silica sands, overlie marls. Near the base there is a variable, deltaic-origin layer of coarse sands and gravels. The dome-shaped water table, inside the sands, is close to the surface everywhere except beneath the dune belt, and small, temporary, shallow lagoons are numerous. The coarse sand and gravel layer conditions groundwater flow and behaves as a semiconfined layer between sands. A cross section through the area was simulated with a model to check the validity of the conceptual groundwater-flow pattern and its sensitivity to the hydraulic parameters. The model was calibrated using parameter values obtained by pumping tests and multilevel piezometric data, and checked against the estimated groundwater discharge into La Rocina Creek. Groundwater flows peripherally to the sea coast, to La Rocina Creek, or directly east and southeastward into the Doñana marshlands, in the Guadalquivir River delta. The average net aquifer recharge rate was calculated to be between 100 and 200 mm year-1 for the area covered by brush, but is remarkably lower in the areas of eucalyptus trees. The transient-state model shows that recharge varies spatially and is not clearly proportional to annual precipitation. Phreatic evapotranspiration plays an important role in decreasing the net value of aquifer recharge to approximately 0.4-0.6 of that calculated with a soil-balance model. The cross section model was used to study the effect of groundwater ion on water-table depth by subtracting the contribution of vertical flow, calculated by a well-hydraulics formula, to the semiconfined deep aquifer. The result was a decrease in phreatic evapotranspiration, flow into La Rocina Creek, and lagoon-inundation frequency. Replacement of the eucalyptus forest with native vegetation may raise water-table levels and even reactivate old tributaries to La Rocina Creek. La région de Doñana, située dans le sud ouest de l'Espagne, comprend une importante réserve naturelle avec des zones humides, affectée par l'activité humaine. L'exploitation de vastes plantations d'eucalyptus pendant les années 50 et l'usage plus récent des nappes souterraines pour l'irrigation et l'alimentation en eau des centres touristiques côtiers ont modifié le système de flux d'eau souterraine dans cette zone. La présente étude a été réalisée dans le secteur occidental, appelé El Abalario. Ce secteur consiste en une légère élévation située entre l'Océan Atlantique et la ravine de La Rocina. Une couverture variable de sables éoliens, formant une haute crête dunaire côtière, recouvre des sédiments detritiques plio-quaternaires, déposés eux même sur des sables siliceux lesquels reposent à leur tour sur des marnes. Près de la base se trouvent des sables grossiers et des graviers d'origine deltaïque, dont l'épaisseur varie spatialement. Le flux d'eau souterraine est conditionné par l'aquifère semi confinés des graviers et des sables grossiers. Le niveau phréatique de l'aquifère libre des sables fluvio-marins est peu profond, excepté sous les dunes. On y trouve souvent des petites lagunes temporaires peu profondes. Le flux de l'eau souterraine a été simulé dans une section verticale pour vérifier le modèle hydrogéologique conceptuel et la sensibilité aux variations des paramètres. Le modèle a été calé en utilisant d'une part les valeurs des paramètres hydrauliques obtenus par des essais de pompage et d'après les données piezométriques mesurées à différentes profondeurs, et d'autre part l'apport estimé de la ravine de La Rocina. L'écoulement d'eau souterraine s'effectue par drainage latérale dans trois directions, d'une part vers la côte, d'autre part à travers la ravine de La Rocina et finalement directement vers les Marais de Doñana situés à l'est et sud-est dans le delta du fleuve Guadalquivir. Avec une pluviométrie moyenne comprise entre 550 et 600 mm, la recharge nette moyenne annuelle des nappes, pour des périodes de temps assez longues, est estimée entre 100 et 200 mm dans les aires de végétation autochtone, et elle est nettement inférieure dans les aires plantées deucalyptus. Le modèle transitoire montre que la recharge varie dans l'espace et qu'elle n'est pas clairement proportionnelle aux précipitations annuelles. L'évapotranspiration phréatique joue un rôle important et diminue la valeur nette de la recharge des nappes de 0,4 à 0,6 de la valeur calculée avec un modèle de bilan d'eau dans le sol. La section modélisée est utilisée pour étudier l'effet de l'extraction d'eau souterraine sur la profondeur du niveau phréatique en soustrayant le flux vertical, calculé grâce à une formule d'hydraulique des puits, de la nappe profonde semi-confinée. Le résultat de cette extraction est une diminution de l'évapotranspiration phréatique, du flux au niveau de la ravine de La Rocina et de la fréquence d'inondation des lagunes. La substitution de forêts d'eucalyptus par de la végétation autochtone peut permettre la remonté des niveaux phréatiques et même réactiver d'anciens ravins affluents à La Rocina. La región de Doñana, situada en el sudoeste de España, incluye una gran e importante reserva natural, cuyos humedales están siendo afectados por la actividad humana. La extensa plantación de eucaliptus en la década de 1950 y el uso más reciente de los acuíferos para riego y para abastecimiento de centros turísticos costeros han modificado el sistema de flujo del agua subterránea en esta zona. Este estudio se ha realizado en el sector occidental, llamado El Abalario. Se trata de una elevación suave situada entre el océano Atlántico y el arroyo de La Rocina. Debajo de un manto variable de arenas eólicas, que forma un alto cordón dunar costero, se encuentran sedimentos detríticos plio-cuaternarios formados por arenas silíceas finas, que hacia la base incluyen una capa de arenas gruesas y gravas de origen deltrico, los que a su vez yacen sobre margas. El flujo de agua subterránea está relacionado con niveles de gravas y gravillas semiconfinadas por las arenas fluvio-marinas que contienen el nivel freático. El nivel freático es somero excepto debajo del cordón dunar. Son frecuentes pequeñas lagunas temporales. Se ha simulado el flujo de agua subterránea en una sección para comprobar el modelo de flujo conceptual y la sensibilidad a variaciones de los parámetros. El modelo fue calibrado usando los valores de los parámetros hidráulicos obtenidos en ensayos de bombeo y datos piezométricos medidos a diferentes profundidades, y la descarga estimada al arroyo de La Rocina. La recarga de agua subterránea drena lateralmente, por un lado hacia la costa y por otro lado a través del arroyo de La Rocina, o directamente hacia las Marismas de Doñana situadas en el delta del río Guadalquivir. Con una lluvia media anual entre 550 y 600 mm, la recarga neta media estacionaria anual del acuífero, considerando periodos de tiempo largos, se estima entre 100 y 200 mm en las zonas de vegetación autóctona, y es notablemente menor en las zonas de plantación de eucaliptos. El modelo transitorio indica que la recarga varia espacialmente y no es claramente proporcional a la precipitación para periodos de un año. La evapotranspiración freática varia espacialmente y juega un papel importante; disminuye el valor neto de la recarga al acuífero para dejarlo en 0,4 a 0,6 de lo que se calcula mediante un balance de agua en el suelo. La sección modelada sirve para estudiar el efecto de la extracción de agua subterránea sobre la profundidad del nivel freático mediante la substracción del flujo vertical, que se calcula mediante una fórmula de hidráulica de pozos para el acuífero semiconfinado profundo. El resultado es una disminución de la evapotranspiración freática, del flujo al arroyo de la Rocina y de la frecuencia de inundación de las lagunas. La substitución del bosque de eucaliptus por vegetación nativa puede elevar los niveles freáticos e incluso reactivar antiguos "caños" tributarios al arroyo de La Rocina.
NASA Astrophysics Data System (ADS)
Czaplinska, Daria; Piazolo, Sandra; Almqvist, Bjarne
2015-04-01
Seismic anisotropy observed in Earth's interior is caused by the presence of aligned anisotropic minerals (crystallographic and shape preferred orientation; CPO and SPO respectively), and fluid and/or melt inclusions related to deformation. Therefore, the variations in seismic anisotropy carry valuable information about the structure of the mantle and crust. For example, anisotropy observed in the upper mantle is mainly attributed to the CPO of olivine, and provides strong evidence for the flow within the upper mantle. Seismic anisotropy in the crust is still poorly constrained, mostly due to the much larger heterogeneity of the crustal rocks in comparison with the more homogenous mantle. Anisotropy in the crust will be affected by the variations in rock composition, microstructure, texture (presence or lack of CPO), brittle structures (e.g. fracture systems) and chemical composition of the minerals. However, once the relationships between those variables and seismic properties of the crustal rocks are established, seismic anisotropy can be used to derive characteristics of rocks otherwise out of reach. Our study focuses on two sets of samples of middle to lower crustal rocks collected in Fiordland (New Zealand) and in Sweden. Samples from Fiordland represent a root of a thick (ca. 80 km) magmatic arc and comprise igneous rocks, which crystallized at high P and T conditions and were subsequently metamorphosed and deformed. Samples from Sweden are derived from a metasedimentary nappe in the Caledonian orogenic belt, which is mostly composed of gneisses, amphibolites and calc-silicates that have experienced different amounts of strain. We use large area EBSD mapping to measure the CPO of the constituent phases and record the geometric relationships of the rock microstructure. Data is then used to calculate the elastic properties of the rock from single-crystal stiffnesses. Here, we utilize the EBSD GUI software (Cook et al., 2013), which offers varied homogenization techniques, including Voigt, Reuss, Hill, geometric mean and self-consistent and Asymptotic Expansion Homogenization (AEH) methods. To test the advantages and disadvantages of the method, results are compared to measured geophysical properties of equivalent rocks. Such comparison, allows refinement of seismic data interpretation for mid to lower crustal rocks. References: Cook, A., Vel., S., Johnson, S.E., Gerbi, C., Song, W.J., 2013. Elastic and Seismic Properties (ESP) Toolbox (beta version); http://umaine.edu/mecheng/faculty-and-staff/senthil-vel/software/ESP_Toolbox/
NASA Astrophysics Data System (ADS)
Waldner, M.; Bellahsen, N.; Mouthereau, F.; Pik, R.; Bernet, M.; Scaillet, S.; Rosenberg, C.
2017-12-01
The pyrenean range was formed by the convergence of European and Iberian plates following the inversion of the Mesozoic rifting in the north of Pyrenees. In the Axial Zone, the collision caused an antiformal nappe-stacking of tectonic units. Recent studies pointed out the importance of pre-collision structural and thermal inheritance that may play a major role for orogeny such as: 1) Paleozoic Variscan inheritance; 2) Mesozoic rift-related high geothermal gradients, which are maintained during the onset of convergence in the North Pyrenean Zone. From a mineralogical point of view, pre-collision feldspars have been destabilized and influenced the development of alpine phyllonite in brittle-ductile conditions which suggests a weak crustal behavior during the formation of the orogenic wedge. Our aim is to get a better understanding of alpine deformation and exhumation by coupling different thermochronological, geochronological and thermometric methods. We document the thermal evolution of each tectonic unit by using low-temperature thermochronometers (Zircon Fission Tracks, U-Th/He on zircons including laser ablation profiles). Our data on vertical profiles combined to existing dataset on apatite allows to model alpine exhumation across the Axial zone. Structural observations through alpine thrusts coupled to geochronology (in situ K/Ar on phengites), Raman and chlorite-phengite thermo(baro)metry provide new key data to unravel the alpine evolution of the Pyrenees. According to preliminary ZFT results on granite massifs in the central part of Pyrenean Axial zone (near ECORS profile), exhumation ages potentially indicates a migration of exhumation towards the south. Exhumation ages of the northern massifs seems to have preserved the North Pyrenean Cretaceous rift evolution. Further south, the onset of exhumation is as old as Paleocene, which precedes the Eocene ages of the literature. The low burial estimated in the northern massifs may indicate a high thermal gradient. This dataset coupled to the above-cited other methods provide the most exhaustive and detailed image of the thermo-structural evolution of the Axial Zone that enables us to discuss the crustal rheology during collision. This study is part of the Orogen project, a partnership between academy and industry (Total, BRGM, CNRS)
Balanced sections and the propagation of décollement: A Jura perspective
NASA Astrophysics Data System (ADS)
Laubscher, Hans
2003-12-01
The propagation of thrusting is an important problem in tectonics that is usually approached by forward (kinematical) modeling of balanced sections. Although modeling techniques are similar in most foreland fold-thrust belts, it turns out that in the Jura, there are modeling problems that require modifications of widely used techniques. In particular, attention is called to the role of model constraints that complement the set of observational constraints in order to fully define the model. In the eastern Jura, such model constraints may be inferred from the regional geology, which shows a peculiar noncoaxial relation between thrusts and subsequent folds. This relation implies changes in the direction of translation and the mode of deformation in the course of the propagation of décollement. These changes are conjectured to be the result of a change in partial decoupling between the thin-skinned fold-thrust system (nappe) and the obliquely subducted foreland. As a particularly instructive case in point, a cross section through the Weissenstein range is discussed. A two-step forward (kinematical) model is proposed that uses both local observational constraints as well as model constraints inferred from regional data. As a first step, a fault bend fold is generated in the hanging wall of a thrust of 1500 m shortening. As a second step, this structure is transferred by flexural slip into the actual fold observed at the surface. This requires an additional 1600 m of shortening and leads to folding of the original thrust. Thereafter, the footwall is deformed so as to respect the constraint that this deformation must fit into the space defined by the folded thrust as the upper boundary and the décollement surface as the lower boundary, and that, in addition, should be confined to the area immediately below the fold. In modeling the footwall deformation a mix of balancing methods is used: fault propagation folds for the competent intervals of the stratigraphic column and area balancing for the incompetent ones. Further propagation of décollement into the foreland is made possible by the folding process, which is dominated by a sort of kinking and which is the main contribution to structural elevation and hence to producing a sort of critical taper of the moving thin-skinned wedge.
NASA Astrophysics Data System (ADS)
Gawlick, Hans-Jürgen; Djerić, Nevenka; Missoni, Sigrid; Bragin, Nikita Yu.; Lein, Richard; Sudar, Milan; Jovanović, Divna
2017-08-01
Oceanic radiolarite components from the Middle Jurassic ophiolitic mélange between Trnava and Rožanstvo in the Zlatibor Mountains (Dinaridic Ophiolite Belt) west of the Drina-Ivanjica unit yield Late Triassic radiolarian ages. The microfacies characteristics of the radiolarites show pure ribbon radiolarites without crinoids or thin-shelled bivalves. Beside their age and the preservation of the radiolarians this points to a deposition of the radiolarites on top of the oceanic crust of the Neo-Tethys, which started to open in the Late Anisian. South of the study area the ophiolitic mélange (Gostilje-Ljubiš-Visoka-Radoševo mélange) contains a mixture of blocks of 1) oceanic crust, 2) Middle and Upper Triassic ribbon radiolarites, and 3) open marine limestones from the continental slope. On the basis of this composition we can conclude that the Upper Triassic radiolarite clasts derive either from 1) the younger parts of the sedimentary succession above the oceanic crust near the continental slope or, more convincingly 2) the sedimentary cover of ophiolites in a higher nappe position, because Upper Triassic ribbon radiolarites are only expected in more distal oceanic areas. The ophiolitic mélange in the study area overlies different carbonate blocks of an underlying carbonate-clastic mélange (Sirogojno mélange). We date and describe three localities with different Upper Triassic radiolarite clasts in a mélange, which occurs A) on top of Upper Triassic fore-reef to reefal limestones (Dachstein reef), B) between an Upper Triassic reefal limestone block and a Lower Carnian reef limestone (Wetterstein reef), and C) in fissures of an Upper Triassic lagoonal to back-reef limestone (Dachstein lagoon). The sedimentary features point to a sedimentary and not to a tectonic emplacement of the ophiolitic mélange (= sedimentary mélange) filling the rough topography of the topmost carbonate-clastic mélange below. The block spectrum of the underlying and slightly older carbonate-clastic mélange points to a deposition of the sedimentary ophiolitic mélange east of or on top of the Drina-Ivanjica unit.
NASA Astrophysics Data System (ADS)
Gatta, G. Diego; Rotiroti, Nicola; Cámara, Fernando; Meven, Martin
2018-03-01
The crystal chemistry of a cafarsite sample from the fengitic orthogneisses of the Mt. Leone-Arbola nappe (Lower Penninic), forming the central body of Mount Cervandone and cropping out both in Switzerland and Italy (Alpe Devero area, Verbano-Cusio-Ossola province), was investigated by electron microprobe analysis in wavelength-dispersive mode (EPMA-WDS), single-crystal Raman spectroscopy, and single-crystal X-ray and neutron diffraction at 293 K. The sample of cafarsite of this study was found experimentally to be anhydrous and the chemical formula obtained on the basis of the EPMA-WDS data and structural refinements is the following: Ca1,Ca2 (Ca15.56Na0.44)Σ16 Fe1 (Na0.53Fe2+ 0.17REE0.30)Σ1.00 Mn1,Ti,Fe2 (Ti7.46Fe3+ 4.47Fe2+ 3.20Mn2+ 0.85Al0.11) Σ16.11 As1,As2,As3 (AsO3)28 F F, with the general chemical formula Ca16(Na,Fe2+,REE)(Ti, Fe3+,Fe2+,Mn2+,Al)16(AsO3)28F [or Ca16(Na,Fe2+,REE)(Ti,Fe3+,Al)12(Fe2+,Mn)4(AsO3)28F]. Our experimental findings show that fluorine, which was unconsidered in the previous studies, is a key element. The anhydrous nature of this sample is also confirmed by its Raman spectrum, which does not show any evidence of active bands ascribable to the O-H stretching region. The X-ray and neutron structure refinements provide a structure model that is partially in agreement with the previous experimental findings. The space group (i.e. Pn3) and the unit-cell constant [i.e. 15.9507(4) Å] are conform to the literature data, but the structure of cafarsite, here refined, contains the following building units: three independent AsO3 groups (trigonal pyramids), one CaO6F polyhedron, one CaO8 polyhedron, two independent (Ti,Fe)O6 octahedra, one (Na,Fe,REE)O8 polyhedron, and one (Mn,Fe)O6 octahedron. Connections among polyhedra are mainly due to edge- or vertex-sharing; the AsO3 groups are not connected to each other.
Huebner, Matthew T.; Hatcher, Robert D.; Merschat, Arthur J.
2017-01-01
Detailed geologic mapping, U-Pb zircon geochronology and whole-rock geochemical analyses were conducted to test the hypothesis that the southwestern extent of the Cat Square terrane continues from the northern Inner Piedmont (western Carolinas) into central Georgia. Geologic mapping revealed the Jackson Lake fault, a ∼15 m-thick, steeply dipping sillimanite-grade fault zone that truncates lithologically distinct granitoids and metasedimentary units, and roughly corresponds with a prominent aeromagnetic lineament hypothesized to represent the southern continuation of the terrane-bounding Brindle Creek fault. Results of U-Pb SHRIMP geochronology indicate Late Ordovician to Silurian granitoids (444–439 Ma) occur exclusively northwest of the fault, whereas Devonian (404–371 Ma) granitoids only occur southeast of the fault. The relatively undeformed Indian Springs granodiorite (three individual bodies dated 317–298 Ma) crosscuts the fault and occurs on both sides, which indicates the Jackson Lake fault is a pre-Alleghanian structure. However, detrital zircon signatures from samples southeast of the Jackson Lake fault reveal dominant Grenville provenance, in contrast to Cat Square terrane detrital zircon samples from the northern Inner Piedmont, which include peri-Gondwanan (600–500 Ma) and a prominent Ordovician-Silurian (∼430 Ma) signature. We interpret the rocks southeast of the Jackson Lake fault to represent the southwestern extension of the Cat Square terrane primarily based on the partitioning of granitoid ages and lithologic distinctions similar to the northern Inner Piedmont.Data suggest Cat Square terrane metasedimentary rocks were initially deposited in a remnant ocean basin setting and developed into an accretionary prism in front of the approaching Carolina superterrane, ultimately overridden by it in Late Devonian to Early Mississippian time. Burial to >20 km resulted in migmatization of lower plate rocks, forming an infrastructure beneath the Carolina superterrane suprastructure. Provenance patterns support ∼250 km of Devonian dextral translation of the composite Inner Piedmont, which places the northern portion of the Inner Piedmont adjacent to a suite of ∼430 Ma plutons in the Virginia Blue Ridge during deposition. The megascopic thrust-nappe structural style of the northern Inner Piedmont, combined with southwest-directed lateral extrusion at mid-crustal depths, may reconcile differences in timing of metamorphism between the Carolina and central Georgia Inner Piedmont and structural contrasts between the Brindle Creek and Jackson Lake faults.
NASA Astrophysics Data System (ADS)
Ilickovic, Tanja; Schuster, Ralf; Mali, Heinrich; Petrakakis, Konstantin; Schedl, Albert
2017-04-01
In the Austroalpine unit of the Eastern Alps spodumene bearing pegmatites occur heterogeneously distributed over an E-W distance of more than 400 km. They are usually associated with barren pegmatites which crystallisized in Permian time. There a two schools of thought about the genesis of the spodumene bearing pegmatites: Economic geologists bring forward the argument that these pegmatites only develop by fractionation of granitic parent plutons, whereas metamorphic petrologists consider that the barren pegmatites and even some highly fractionated pegmatites are products of anatexis of metapelitic country rocks. In the first case the virtual absence of co-genetic fertile granites in the Austroalpine units render the model problematic, whereas in the second case the formation of suitable Li-enriched pegmatitic melts is not yet understood. A new understanding of the Austroalpine basement through geological mapping and geochronological and geochemical investigations during the past few years gives the opportunity to reinvestigate this problem: In Permian time the Austroalpine unit was affected by lithospheric extension, causing basaltic underplating, high temperature / low pressure metamorphism and intense magmatic activity. The Permian P-T-t path is characterized by heating at slightly decreasing pressure. In an ongoing project additional spodumene bearing pegmatites have been discovered and some of them show temporal and spatial relations to relatively small leucogranitic bodies. New Sm/Nd data prove a Permian age for spodumene bearing pegmatites and leucogranites supporting a genetic relation with the barren pegmatites. Mapping revealed certain relations of pegmatites and distinct country rocks. Units of migmatitic mica schists with lots of interlayed barren pegmatites represent areas with aborted melt generation. In some places the melts accumulate forming inhomogeneous leucogranitic bodies. Examples are the Martell granite (South Tyrol) as well as leucoganites near to Uttenheim (South Tyrol), Geisrücken near to Judenburg (Styria) and Koralpe near to Deutschlandsberg (Styria). Areas with spodumene bearing pegmatites and other well fractionated pegmatites represent structurally higher levels. Spodumene bearing pegmatites mainly occur within the Koralpe-Wölz Nappe System. The biggest are situated in the Hohenwart region/Niedere Tauern (Styria), Falkenbergzug near Judenburg (Styria), Lachtal region/Niedere Tauern (Styria), Weinebene/Koralpe (Carinthia) and in the Defreggen Valley (East-Tyrol). Further investigations will deal with the processes of melt production, melt accumulation, melt fractionation and the regional fractionation trends within pegmatite swarms.
NASA Astrophysics Data System (ADS)
Katumwehe, A. B.; Atekwana, E. A.; Abdelsalam, M. G.; Laó-Dávila, D. A.
2014-12-01
The Aswa Shear zone (ASZ) is a Precambrian lithospheric structure which forms the western margin of the East African Orogeny (EAO) that influenced the evolution of many tectonic events in Eastern Africa including the East African Rift System. It separates the cratonic entities of Saharan Metacraton in the northeast from the Congo craton and the Tanzanian craton and the Kibaran orogenic belt to the southwest. However little is known about its kinematics and the extent and tectonic origin are not fully understood. We developed a new technique based on the tilt method to extract kinematic information from high-resolution airborne magnetic data. We also used radiometric data over Uganda integrated with Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) in South Sudan to understand the extent, kinematics and define the tectonic origin of ASZ. (1) Our results suggest that the ASZ extends in a NW-SE for ~550 km in Uganda and South Sudan. (2) The airborne magnetic and radiometric data revealed a much wider (~50 km) deformation belt than the mapped 5-10 km of exposed surface expression of the ASZ. The deformation belt associated with the shear is defined by three NW-trending sinistral strike-slip shear zones bounding structural domains with magnetic fabrics showing splays of secondary shear zones and shear-related folds. These folds are tighter close to the discrete shear zones with their axial traces becoming sub-parallel to the shear zones. Similar fold patterns are observed from South Sudan in the SRTM DEM. We interpret these folds as due to ENE-WSW shortening associated with the sinistral strike-slip movement. (3) To the northeast of the shear zone, the magnetic patterns suggest a series of W-verging nappes indicative of strong E-W oriented shortening. Based on the above observations, we relate the evolution of the ASZ to Neoproterozoic E-W collision between East and West Gondwana. This collision produced E-W contraction resulting in W-verging thrusts to the east and a sinistral strike-slip movement along the NW-trending ASZ with strain localization at the boundary between the Saharan Metacraton and the Tanzania craton. This evidence suggests that 1) ASZ lies at the boundary between Sahara Metacraton and Tanzania Craton 2) ASZ is not a product of escape tectonics as previously suggested.
NASA Astrophysics Data System (ADS)
Lemirre, Baptiste; Cochelin, Bryan; de Saint Blanquat, Michel; Denele, Yoann; Lahfid, Abdeltif; Duchene, Stephanie
2017-04-01
The formation of the Pyrenean mountain belt since late Variscan times is responsible of the exhumation of the basement in the central part of the belt. This basement is mainly made of Proterozoic to Paleozoic rocks involved in the Variscan orogeny. Following the publication of the ECORS deep seismic profile of the Central Pyrenees in 1989, it has been proposed that the Pyrenees are an asymmetrical double verging belt implying crustal nappe stacking resulting from the inversion of the Iberian margin. Such alpine deformation implies important Meso-Cenozoic bloc rotations and internal deformation, overprinting the earlier Variscan deformations that would define the basement. In order to constrain how the crust was affected by both Variscan and Alpine orogenies, we present a structural and petrological study along the trace of the ECORS profile in the axial zone. The section is composed of Precambrian to Carboniferous low-grade metasedimentary rocks intruded by large late-Variscan calc-alkaline plutons. We highlight a transpressional event which can be divided into three progressive stages: (1) a N-S folding, producing regional-scale open to southward verging anticlines and synclines, prior to the metamorphic peak; (2) a strong N-S horizontal shortening synchronous to the maximum temperature recorded which increases from 500 °C in the north, to 350 °C in the south (Raman Spectroscopy of Carbonaceous Materials geothermometry combined with a petrological study). This deformation induces vertical stretching, isoclinal folding and formation of a steep pervasive cleavage defined by biotite and chlorite; (3) a strain localization into retrogressive reverse mylonitic shear zones, responsible for limited vertical offset of the sedimentary pile and a maximum offset of the isotherms of 50 °C. The presence of undeformed and unconformable Permian deposits at the top of the pile underlines the Variscan age of, at least, the two first stages of pervasive deformation. The continuity of Variscan structures, stratigraphy and isotherms all along the cross-section allows us to consider that the Axial Zone (the Iberian north margin) was only moderately affected by Cretaceous rifting, contrary to the European one. For the same reasons, we propose that the Axial Zone was neither affected by an intense pervasive deformation nor by large-scale internal rotation and vertical offset during the Alpine orogeny.
NASA Astrophysics Data System (ADS)
El Harfi, A.; Lang, J.; Salomon, J.; Chellai, E. H.
2001-06-01
Cenozoic continental sedimentary deposits of the Southern Atlas named "Imerhane Group" crop out (a) in the Ouarzazate foreland basin between the Precambrian basement of the Anti Atlas and the uplifted limestone dominated High Atlas, and (b) in the Aït Kandoula and Aït Seddrat nappes where Jurassic strata detached from the basement have been thrust southwards over the Ouarzazate Basin. New biostratigraphic and geochronological data constraining the final Eocene marine regression, the characterization of the new "Aït Ouglif Detrital Formation" presumed to be of Oligocene age, and the new stratigraphic division proposed for the Continental Imerhane Group clarify the major tectonogenetic alpidic movements of the Central High Atlas Range. Four continental formations are identified at regional scale. Their emplacement was governed principally by tectonic but also by eustatic controls. The Hadida and Aït Arbi formations (Upper Eocene) record the major Paleogene regression. They are composed of margino-littoral facies (coastal sabkhas and fluviatile systems) and reflect incipient erosion of the underlying strata and renewed fluvial drainage. The Aït Ouglif Formation (presumed Oligocene) had not been characterized before. It frequently overlies all earlier formations with an angular unconformity. It includes siliciclastic alluvial deposits and is composed predominantly of numerous thin fining-upward cycles. The Aït Kandoula Formation (Miocene-Pliocene) is discordant, extensive, and represents a thick coarsening-upward megasequence. It is composed of palustro-lacustrine deposits in a context of alluvial plain with localized sabkhas, giving way to alluvial fans and fluviatile environments. The Upper Conglomeratic Formation (Quaternary) is the trace of a vast conglomeratic pediment, forming an alluvial plain and terraces. The second and third formations correspond to two megasequences engendered by the uplift of the Central High Atlas in two major compressive phases during late Oligocene and Miocene-Pliocene times. These two geodynamic events were separated by a tectonically calm phase, materialized by palustro-lacustrine sedimentation (Görler et al. 1988). Tectono-sedimentary analysis of the two megasequences shows that the basin structure and depositional processes were controlled by the compressive tectonic context generated by the collision of North Africa and Iberia in Tertiary times (Jacobshagen et al. 1988). The Quaternary Formation was apparently controlled by a tectonic continuum and by climatic variations.
Extensional Tectonics of SW Anatolia In relation to Slab Edge Processes in the Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Kaymakci, N.; Özacar, A.; Langereis, C. G.; Ozkaptan, M.; Koç, A.; Uzel, B.; Gulyuz, E.; Sözbilir, H.
2017-12-01
The tectonics of SW Anatolia is expressed in terms of emplacement of Lycian Nappes during the Eocene to Middle Miocene and synconvergent extension as part of the Aegean-West Anatolian extensional tectonic regime. Recent studies identified that there is a tear in the northwards subducting African Oceanic lithosphere along the Pliny-Strabo Trenches (PST). Such tears are coined as Subduction Transform-Edge Propagator (STEP) faults developed high angle to trenches. Hypothetically, the evolution of a STEP fault is somewhat similar to strike-slip fault zones and resultant asymmetric role-back of the subducting slab leads to differential block rotations and back arc type extension on the overriding plate. Recent studies claimed that the tear along the PST propagated NE on-land and developed Fethiye-Burdur Fault/Shear Zone (FBFZ) in SW Turkey. We have conducted a rigorous paleomagnetic study containing more than 3000 samples collected from 88 locations and 11700 fault slip data sets from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene to test if FBFZ ever existed. The results show that there is slight (20°) counter-clockwise rotation distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, constructed paleostress configurations, along the so-called FBFZ and within the 300 km diameter of the proposed fault zone, indicated that almost all the faults that are parallel to subparallel to the zone are almost pure normal faults similar to earthquake focal mechanisms suggesting active extension in the region. It is important to note that we have not encountered any significant strike-slip motion parallel to so-called "FBFZ" to support presence and transcurrent nature of it. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking transfer faults, which are almost perpendicular to zone that accommodated extension and normal motion. We claim that the sinistral Fethiye Burdur Fault/shear (Zone) is a myth and there is no tangible evidence to support the existence of such a strike-slip fault or a shear zone. This research is supported by TUBITAK - Grant Number 111Y239.
Petrology of metabasic and peridotitic rocks of the Songshugou ophiolite, Qinling orogen, China
NASA Astrophysics Data System (ADS)
Belic, Maximilian; Hauzenberger, Christoph; Dong, Yunpeng
2013-04-01
The Proterozoic Songshugou ophiolite outcrops as a rootless nappe which was emplaced into the southern margin of the Qinling Group. It consists mainly of amphibolite facies metamafic and -ultramafic rocks. Trace element geochemistry and isotope composition show that the mafic rocks are mainly E-MORB and T-MORB metabasalts (Dong et al., 2008b). Within the ophiolite sequence, ultramafic rocks consist mainly of peridotites and serpentinites. Particularly, extremely fresh dunites and harzburgites, are found which do not display a conspicuous metamorphic overprint. The low CaO (<0.39 wt.%) and Al2O3 (<0.51 wt.%) as well as high MgO (41-48 wt.%) contents classify them as depleted non-fertile mantle rocks. Chromite is found as disseminated phase but can sometimes form massive chromite bands. The platinumgroup mineral Laurite (RuS2) could be identified as inclusion in chromites. Usually part of Ru is substituted by Os and Ir. The metamafic rocks consist of garnet, amphibole, symplectitic pyroxenes, ilmenite, apatite, ±zoisite, ±sphene and show a strong metamorphic overprint. Garnet contains numerous inclusions in the core but are nearly inclusion free at the rim. The cores have sometimes snowball textures indicating initially syndeformative growth. Pure albite and prehnite were found in the central parts of the garnets. In the outer portions, pargasitic amphibole, rutile and rarely glaukophane were found. The symplectitic pyroxenes are of diopsidic composition which enclose prehnite and not albite, as common in retrograde eclogitic rocks. Different stages of garnet breakdown to plagioclase and amphibole, from thin plagioclase rims surrounding the garnets to plagioclase rich pseudomorphs, can be observed in different samples. Based on the glaukophane inclusions and symplectitic pyroxenes a high pressure metamorphic event can be concluded. The garnet breakdown to plagioclase and the symplectites clearly indicate a rapid exhumation phase. The age of the metamorphic event is unclear but probably related to the closure of the Shangdan ocean during the early Paleozoic. The financial support by Eurasia-Pacific Uninet is gratefully acknowledged. Dong, Y.P., Zhou, M.F., Zhang, G.W., Zhou, D.W., Liu, L., Zhang, Q., 2008. The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China: implications for the tectonic evolution of the Qinling orogenic belt. Journal of Asian Earth Science 32 (5-6), 325-335.
Hydrodynamic model of cells for designing systems of urban groundwater drainage
NASA Astrophysics Data System (ADS)
Zimmermann, Eric; Riccardi, Gerardo
2000-08-01
An improved mathematical hydrodynamic quasi-two-dimensional model of cells, CELSUB3, is presented for simulating drainage systems that consist of pumping well fields or subsurface drains. The CELSUB3 model is composed of an assemblage of algorithms that have been developed and tested previously and that simulate saturated flow in porous media, closed conduit flow, and flow through pumping stations. A new type of link between aquifer cells and drainage conduits is proposed. This link is verified in simple problems with well known analytical solutions. The correlation between results from analytical and mathematical solutions was considered satisfactory in all cases. To simulate more complex situations, the new proposed version, CELSUB3, was applied in a project designed to control the water-table level within a sewer system in Chañar Ladeado Town, Santa Fe Province, Argentina. Alternative drainage designs, which were evaluated under conditions of dynamic recharge caused by rainfall in a critical year (wettest year for the period of record) and a typical year, are briefly described. After analyzing ten alternative designs, the best technical-economic solution is a subsurface drainage system of closed conduits with pumping stations and evacuation channels. Résumé. Un modèle hydrodynamique perfectionné de cellules en quasi 2D, CELSUB3, est présenté dans le but de simuler des systèmes de drainage qui consistent en des champs de puits de pompage ou de drains souterrains. Le modèle CELSUB3 est composé d'un assemblage d'algorithmes développés et testés précédemment et qui simulent des écoulements en milieu poreux saturé, en conduites et dans des stations de pompage. Un nouveau type de lien entre des cellules d'aquifères et des drains est proposé. Ce lien est vérifié dans des problèmes simples dont les solutions analytiques sont bien connues. La corrélation entre les résultats des solutions analytiques et des solutions mathématiques a été considérée comme satisfaisante dans tous les cas. Afin de simuler des situations plus complexes, la nouvelle version proposée, CELSUB3, a été mise en œuvre dans un projet destiné à contrôler le niveau de la nappe à l'intérieur d'un système d'égouts, dans la ville de Chaar Ladeado (province de Santa Fe, Argentine). Différentes organisations du projet de drainage, qui ont été testées pour des conditions de recharge dynamique causées par la pluie au cours d'une année critique (la plus humide de la chronique disponible) et une année typique, sont brièvement décrites. Après analyse de dix organisations différentes, la meilleure solution technico-économique retenue est un système de drainage souterrain de conduites avec des stations de pompage et des canaux d'évacuation. Resumen. Se presenta un modelo matemático hidrodinámico cuasi-bidimensional de celdas, CELSUB3, apto para la simulación integral de sistemas de drenaje subterráneo basados en campos de bombeo o drenes subsuperficiales. El modelo de simulación presenta un ensamble de algoritmos, previamente desarrollados y testeados, que representan al escurrimiento a través del medio poroso saturado, escurrimiento en conducciones cerradas, estaciones de bombeo, etc. En la estructura del modelo se propone un nuevo tipo de vinculación entre celdas acuíferas y conductos de drenaje, la cual es verificada en problemas simples con solución analítica conocida arrojando, en todos los casos, resultados satisfactorios. Abordando situaciones más complejas, la nueva versión propuesta fue aplicada en un proyecto de control de niveles freáticos que acompaña un sistema de conductos cloacales, en la localidad de Chañar Ladeado, Santa Fe, Argentina. Se describen las alternativas de drenaje consideradas las cuales fueron evaluadas bajo recargas dinámicas provocadas por años críticamente lluviosos y en situaciones típicas. Los resultados derivados permitieron definir, tras analizar una decena de proyectos alternativos, la mejor solución técnico-económica consistente en un sistema de drenes subterráneos, estaciones de bombeo y canales de evacuación.
NASA Astrophysics Data System (ADS)
Kahraman, Burcu; Özsayın, Erman; Üner, Serkan; Dirik, Kadir
2013-04-01
The E-W trending Reşadiye peninsula located at the southwestern part of the Anatolian Plate is an important horst developed between Gökova and Hisarönü Grabens. NW-trending the Datça Graben is the prominent structure comprising on the Reşadiye peninsula and records the significant fingerprints of palaeogeographical and kinematical characteristics from Pliocene to recent. The Datça Graben is controlled by NW-trending the Karaköy fault in the south and E-W trending the Kızlan fault in the north. Basement rocks of the graben are composed of ophiolitic rocks of the Lycian Nappes and Jurassic marine carbonates. The basinfill initiates with Early Pliocene Kızılaǧaç formation consisting conglomerates and continues with transgressive sequence (Yıldırımlı formation) composed of conglomerates, sandstones and marls with ignimbrite intercalations. Late Pliocene age was attributed to this formation based on the gastropoda and pelecypoda fauna according to previous studies. These units are unconformably overlain by Quaternary Karaköy formation consisting red blocky conglomerates. Pyroclastics of Quaternary age (161 ka) cover the older units. Alluvium, alluvial fan deposits and terrace deposits are the youngest units of the study area. To state the tectonic evolution of the Datça Graben, bedding planes and palaeostress analysis of the fault-slip data were used. The palaeostress analyses of the Kızlan fault clearly represent N-S tensional stress regime with pure normal fault characteristics. Due to the thick colluvium and alluvial fans, any fault-slip data were collected from the Karaköy fault. Considering the same stress regime is viable for the southwestern margin of the graben, fault planes ought to have normal fault characteristics with minor strike-slip component. SW-dipping bedding planes and SW-bearing palaeocurrent measurements show that Karaköy fault occurred before the Kızlan fault and the basin was first formed as a half-graben during Early Pliocene and continued till Late Pliocene. As the Kızlan fault juxtaposes the Kızılaǧaç and Yıldırımlı formations, Late Pliocene age is attributed to the fault. Focal mechanism solutions of recent earthquakes occurred in the Gökova Bay show N-S extension which is compatible with the palaeostress analyses of the Kızlan fault. This situation represents the ongoing activity along the northern margin of the Datça Graben.
A historical overview of Moroccan magmatic events along northwest edge of the West African Craton
NASA Astrophysics Data System (ADS)
Ikenne, Moha; Souhassou, Mustapha; Arai, Shoji; Soulaimani, Abderrahmane
2017-03-01
Located along the northwestern edge of the West African Craton, Morocco exhibits a wide variety of magmatic events from Archean to Quaternary. The oldest magmatic rocks belong to the Archean Reguibat Shield outcrops in the Moroccan Sahara. Paleoproterozoic magmatism, known as the Anti-Atlas granitoids, is related to the Eburnean orogeny and initial cratonization of the WAC. Mesoproterozoic magmatism is represented by a small number of mafic dykes known henceforth as the Taghdout mafic volcanism. Massive Neoproterozoic magmatic activity, related to the Pan-African cycle, consists of rift-related Tonian magmatism associated with the Rodinia breakup, an Early Cryogenian convergent margin event (760-700 Ma), syn-collisional Bou-Azzer magmatism (680-640 Ma), followed by widespread Ediacaran magmatism (620-555 Ma). Each magmatic episode corresponded to a different geodynamic environment and produced different types of magma. Phanerozoic magmatism began with Early Cambrian basaltic (rift?) volcanism, which persisted during the Middle Cambrian, and into the Early Ordovician. This was succeeded by massive Late Devonian and Carboniferous, pre-Variscan tholeiitic and calc-alkaline (Central Morocco) volcanic flows in basins of the Moroccan Meseta. North of the Atlas Paleozoic Transform Zone, the Late Carboniferous Variscan event was accompanied by the emplacement of 330-300 Ma calc-alkaline granitoids in upper crustal shear zones. Post-Variscan alkaline magmatism was associated with the opening of the Permian basins. Mesozoic magmatism began with the huge volumes of magma emplaced around 200 Ma in the Central Atlantic Magmatic Province (CAMP) which was associated with the fragmentation of Pangea and the subsequent rifting of Central Atlantic. CAMP volcanism occurs in all structural domains of Morocco, from the Anti-Atlas to the External Rif domain with a peak activity around 199 Ma. A second Mesozoic magmatic event is represented by mafic lava flows and gabbroic intrusions in the Internal Maghrebian flysch nappes as well as in the external Mesorif. This event consists of Middle-Upper Jurassic MORB tholeiites emplaced during opening of the Alpine Tethys ocean. The Central High Atlas also records Early Cretaceous alpine Tethys magmatism associated with the aborted Atlas rift, or perhaps linked to plume activity on the edge of the WAC. Cenozoic magmatism is associated with Tertiary and Quaternary circum-Mediterranean alkaline provinces, and is characterized by an intermittent activity over 50 Ma from the Anti-Atlas to the Rif Mountain along a SW-NE volcanic lineament which underlines a thinned continental lithosphere.
Relative sea-level change in the central Cyclades (Greece) since the Early Bronze Age
NASA Astrophysics Data System (ADS)
Draganits, E.
2012-04-01
The Aegean is a focus of important cultural achievements in Europe since the Neolithic period. The resulting abundance of archaeological remains, many of them below sea-level represent an advantageous area for the study of local relative sea-level change. We have carried out detailed mapping of Despotiko Island (SW of Antiparos) and its surrounding. Despotiko is situated almost exactly in the center of the Cyclades (as defined nowadays), more so than Delos, and therefore is very well suited for sea-level studies of the Cyclades. This beneficial location, combined with a spacious and protected bay, additionally may explain its former importance as stepping-stone in the Aegean Sea. The island is uninhabited at present, but Early Bronze Age settlement sites and graveyards as well as a large Archaic sanctuary proof its former importance. The sanctuary is situated on a gently northeast dipping slope in the northeast part of Despotiko, in range of sight of the Órmos Despotiko. Since 1997 large parts of this important sanctuary have been excavated during several excavation campaigns. Tectonically, Despotiko, Antiparos and Paros, belong to the Attic-Cycladic Crystalline of the Central Hellenides, a stack of metamorphic tectonic nappes, mainly comprising variable types of gneiss, schist, marble and amphibolite, and tectonic slices of unmetamorphosed sediments on top, separated by low-angle normal faults from the metamorphic units below. Submerged archaeological structures at the sea bottom of the Órmos Despotiko, a Classical marble inscription from the sanctuary and partly submerged agriculture trenches at the east coast Despotiko, indicate that the relative sea-level in this area was some 3 m lower during the Early Bronze Age and still more than 1 m lower during Classical time. These values of relative sea-level rise indicate a subsidence component additional to the global sea-level rise in the investigated time period. Neglecting possible vertical tectonic movements and by means of the present sea floor bathymetric configuration the sea level reconstruction would imply the existence of an isthmus between Despotiko, Kimitiri and Antiparos linking the islands at least until Classical time. The existence of an isthmus would not only have altered the communication paths between the two islands, but Despotiko Bay would also have been even better protected from northwest winds than at present. The sea-level values from Despotiko are compared with other recent sea-level reconstructions on other islands of the Cyclades.
The importance of inherited structures in slope evolution: the Ridnaun Valley case, Italy
NASA Astrophysics Data System (ADS)
Zorzi, L.; Flaim, L.; Massironi, M.; Genevois, R.; Stead, D.
2013-12-01
The south facing slope of the Ridnaun Valley (South Tyrol, Italy) comprises the crystalline units belonging to the Austoalpine Nappe of the Alpine orogenic wedge and shows evidence of quaternary gravitational evolution which is highly dependent on the interaction between the slope trend and the brittle/ductile structural setting. The slope valley is incised within the paragneiss rocks of the Oetztal - Stubei Unit and the micaschists of the Schneeberg Unit. These two units are separated by a NNW gentle dipping tectonic contact, which obliquely intersects the E-W slope, and is characterized by multiple ultracataclasitic layers that follow the regional low angle north-dipping schistosity. Folds with sub-horizontal E-trending axes induce a change in the dip direction of the regional schistosity from N dipping (unfavorable to the slip) to SE dipping (favorable to the slip). NNE-SSW and N-S trending faults, having a mean thickness of incoherent fault breccias of 1 m, affect the entire slope. These along with the folds and the ultracataclastic layers, have significant influence on rock mass mechanical properties and on mechanisms and timing of the observed gravitational phenomena. Field work and ALS-HRDEM analysis has revealed different gravitational movements along the slope. A fully evolved gravitational collapse, having the features of a Rock Avalanche (RA), characterizes the central part covering an area of about 2.4 km2; whereas to the east and west of the RA, deep seated gravitational slope deformations (DSGSDs) still affect the slope. An ongoing gravitational deformation is apparent in the uphill sections of the slope, next to the crown area of the RA. PS and DS - SAR interferometry data (provided by the Geological Survey of the Autonomous Province of Bolzano, Italy), testify an ongoing movement on both the DSGSDs bordering the RA, highlighting a most unstable area at the western sector. The heterogeneous behavior of the slope is most likely controlled by the interaction between ductile and brittle structures. The small-scale folds facilitate the DSGSD formation and evolution and act a release mechanism for the RA crown area, whereas the observed fault network acts as lateral release for the unstable areas. Finite element and hybrid FEM/DEM modeling techniques were used to investigate, from the known structural setting, the triggers and the mechanisms of progressive rock mass degradation, as well as fracture propagation processes which led to the initiation and evolution of a catastrophic collapse.
Small-scale seismogenic soft sediment deformation (Hirlatzhöhle, Upper Austria)
NASA Astrophysics Data System (ADS)
Salomon, Martina Lan; Grasemann, Bernhard; Plan, Lukas; Gier, Susanne
2014-05-01
The Hirlatz Cave lies in the Dachstein Massif about 2 km SW of Hallstatt, in the Upper Austrian Salzkammergut. With a length of 101 km, this karst cave, located in the Dachstein nappe (Northern Calcareous Alps), is the second largest known cave system in Austria. Within the cave, in the so-called Lehmklamm, located 2.8 km southeast of the cave entrance, laminated (mm-scale) Quaternary clay-sized sediments with interbedded fine-grained sandy layers are preserved. In these layers, numerous soft sediment deformation structures are preserved in many layers. The unconsolidated sediments show rhythmic layering of brighter, carbonate and quartz rich, and darker, more clay mineral rich horizontal varve-like layers, that are assumed to be fluvio-lacustrine deposits. The present study focuses on a very detailed documentation of an approximately 6.8 x 3 m vertical outcrop that was cut by a small brook. Centimeter to millimeter sized water escape structures (intruded cusps and flame structures), folds (detachment folds, fault bend folds) and faults (normal faults, fault propagation folds, bookshelf faults) are described. Because of the geometric analogy to seismogenic structures which have been described at two orders of magnitude larger scales from areas close to the Dead Sea Fault, we suggest that the formation of the investigated soft-sediment structures was also triggered by seismic events. The structures were mainly formed by three different mechanism: (i) North directed gravitational gliding near the sediment surface; (ii) Liquefaction resulting in a density discontinuity and decreasing in shear strength within in the stratified layers; (iii) Extensional faulting that cut through the stratified layers. Observations of coarsening upwards into sandy layers on the top of the outcrop and current ripple indicate a north-directed flow under phreatic conditions, which is opposite to the present flow direction of the vadose water in the cave. The fact that deformation and erosion mostly occur in the uppermost meter of the outcrop wall suggests a higher seismic activity and at least periodically higher flow rates during sedimentation of the younger deposits. Since several extremely deformed layers occur between undeformed ones, we suggest that deformation of the layers occurred only in the uppermost highly water saturated sediments and that several seismic events lead to the formation of the observed structures. A possible source responsible for the seismic event is the Salzach-Ennstal-Mariazeller-Puchberger (SEMP) strike-slip fault, which accommodates the active extrusion of the Eastern Alps towards the Pannonian Basin.
Orogenic-type copper-gold-arsenic-(bismuth) mineralization at Flatschach (Eastern Alps), Austria
NASA Astrophysics Data System (ADS)
Raith, Johann G.; Leitner, Thomas; Paar, Werner H.
2015-10-01
Structurally controlled Cu-Au mineralization in the historic Flatschach mining district (Styria, Austria) occurs in a NE-SW to NNE-WSW oriented vein system as multiple steep-dipping calcite-(dolomite)-quartz veins in amphibolite facies metamorphic rocks (banded gneisses/amphibolites, orthogneisses, metagranitoids) of the poly-metamorphosed Austroalpine Silvretta-Seckau nappe. Vein formation postdated ductile deformation events and Eoalpine (Late Cretaceous) peak metamorphism but predated Early to Middle Miocene sediment deposition in the Fohnsdorf pull-apart basin; coal-bearing sediments cover the metamorphic basement plus the mineralized veins at the northern edge of the basin. Three gold-bearing ore stages consist of a stage 1 primary hydrothermal (mesothermal?) ore assemblage dominated by chalcopyrite, pyrite and arsenopyrite. Associated minor minerals include alloclasite, enargite, bornite, sphalerite, galena, bismuth and matildite. Gold in this stage is spatially associated with chalcopyrite occurring as inclusions, along re-healed micro-fractures or along grain boundaries of chalcopyrite with pyrite or arsenopyrite. Sericite-carbonate alteration is developed around the veins. Stage 2 ore minerals formed by the replacement of stage 1 sulfides and include digenite, anilite, "blue-remaining covellite" (spionkopite, yarrowite), bismuth, and the rare copper arsenides domeykite and koutekite. Gold in stage 2 is angular to rounded in shape and occurs primarily in the carbonate (calcite, Fe-dolomite) gangue and less commonly together with digenite, domeykite/koutekite and bismuth. Stage 3 is a strongly oxidized assemblage that includes hematite, cuprite, and various secondary Cu- and Fe-hydroxides and -carbonates. It formed during supergene weathering. Stage 1 and 2 gold consists mostly of electrum (gold fineness 640-860; mean = 725; n = 46), and rare near pure gold (fineness 930-940; n = 6). Gold in stage 3 is Ag-rich electrum (fineness 350-490, n = 12), and has a high Hg content (up to 11 mass %). The Cu-Au deposits in the Flatschach area show similarities with meso- to epizonal orogenic lode gold deposits regarding the geological setting, the structural control of mineralization, the type of alteration, the early (stage 1) sulfide assemblage and composition of gold. Unique about the Flatschach district is the lower-temperature overprint of copper arsenides (domeykite and koutekite) and copper sulfides (djurleite, yarrowite/spionkopite) on earlier formed sulfide mineralization. Based on mineralogical considerations temperature of stage 2 mineralization was between about 70 °C and 160 °C. Gold was locally mobilized during this low-temperature hydrothermal overprint as well as during stage 3 supergene oxidation and cementation processes.
Central Pamir crustal thickening to thinning switch: timing of an orogen wide event?
NASA Astrophysics Data System (ADS)
Rutte, D.; Fox, M.; Stuebner, K.; Ratschbacher, L.
2017-12-01
Asian deep crust exposed in gneiss domes of the Pamir permits the investigation of shortening and extension over 30-50 km of Asian crustal section during the India-Asia collision. In the Central Pamir a stack of fold nappes and thrust sheets records >100 km of N-S shortening at >35-22 Ma. N-S extensional structures crosscut this stack and exhumed the Central Pamir domes at 22-15 Ma. In the South Pamir a similar switch to N-S extension is observed, likely with a coeval onset compared to the Central Pamir, but most extension occurred later at 16-2 Ma. N-S extension in the Karakorum and south Tibet may have onset roughly coeval at 25-20 Ma, too. What forced this switch to N-S extension? While the Central Pamir domes extend >400 km along strike of the orogen, little variation in the amount and timing of the exhumation during N-S extension is observed. In contrast, extension in the South Pamir varies along strike. We scrutinize the exhumation history of the Central Pamir domes. We explore the vast P-T-t-d dataset established in recent publications using one-dimensional thermal models that account for the advection of heat driven by exhumation and thus enable interpretation in an internally consistent framework. Rock trajectories are tracked through the evolving thermal field; T-t paths are used to predict thermochronometric data. Comparison of our predictions with the P-T-t-d data provides best fit exhumation rate histories. Our models suggest that the exhumation rate was initially very high, exceeding 6 km/Myr at 22 Ma, and then exponentially decreased to 0.5 km/Myr by 15 Ma. This requires decreasing extension rates from 22-15 Ma in the Central Pamir. In contrast, extension rates from age-distance relations in the South Pamir Shakdara dome appear constant during extension from 16-2 Ma. Based on comparisons of the geometry, timing and rates of gneiss dome exhumation in the Central and South Pamir we explore how respective boundary conditions shaped the different dome systems. If further work confirms the coeval switch from thickening to thinning in the Pamir, Karakorum and South Tibet it would suggest that this important phase during orogenic plateau formation is governed by catastrophic, deep-seated processes (e.g., delamination, slab rollback or break-off events), rather than by steady-state processes in the crust.
Stratigraphy of Zambian copperbelt orebodies
NASA Astrophysics Data System (ADS)
Binda, Pier L.
1994-11-01
The subdivision of the Roan Supergroup in three informal units instead of the traditional Lower Roan/Upper Roan allows a better understanding of facies relationships. The lower division (Siliciclastic Unit) consists of a variable thickness of continental conglomerates and erenites. The middle division (Mixed Unit) consists of a wedge of carbonate and siliciclastic lithologies tapering to the south-west and deposited in a shallow sea. The upper division (Carbonate Unit or Upper Roan s.s.) is a thick succession of dolostones, subordinate argillites and breccias that directly overlies, but is probably in tectonic contact with, the Siliciclastic Unit in the south-western part of the Copperbelt. Reference boundaries for the Mixed and Siliciclastic Units are given for all mining localities of the Zambian Copperbelt. The basal part of the Mixed Unit, host to the most important CuCo orebodies, was deposited during a major marine transgression which, proceeding from SW-NE, swiftly inundated the whole Copperbelt basin. Thus, the Mufulira Ore Formation can be considered as the near-shore facies of the basinal ore shale. The transition from the Mufulira arenites to the Chambishi silty, ore shale has been effaced by erosional or tectonic stripping of the Roan sediments on the Kafue anticline, whereas the transition from silty to carbonaceous ore shale is well documented in the southern part of the Chambishi-Nkana basin. Concomitant with the NE-SW lithofacies changes within the basal Mixed Unit, there is marked decrease in Cu grade and content from the Mufulira wacke and arenite to the silty ore shale of the northern Chambishi basin and the carbonaceous and pyritic ore shale of the southern Chambishi basin. Cobalt is virtually absent in the Mufulira Ore Formation, reaches ore grade in the silty ore shale and occurs in trace amounts in the carbonaceous ore shale. Thus, the correlation of the basal Mixed Unit reveals a hitherto undetected regional metal zoning akin to that noted in parts of individual Copperbelt basin. The middle portion of the Mixed Unit contains at least one laterally continuous Cu mineralization in the arkosic arenite with minor occurrences of local significance. The Siliciclastic Unit contains Cu concentrations at several stratigraphical levels, but precise correlation of footwall orebodies is precluded by the heterogeneity of the clastic wedges of local provenance. The Mixed Unit of the Zambian Copperbelt can be correlated lithostratigraphically with the Serie des Mines of Shaba. A bed-by-bed correlation of the Kamoto (Zaire) and Mindola (Zambia) Ore Formations is proposed. The southern provenance of the Shaba nappes is supported.
NASA Astrophysics Data System (ADS)
Gamyanin, G. N.; Vikent'eva, O. V.; Prokof'ev, V. Yu.; Bortnikov, N. S.
2015-11-01
The formation sequence of orebodies, chemical composition of gangue and ore minerals, fluid inclusions, REE patterns, 40Ar/39Ar isotopic age, and relationships of stable isotopes (C, O, S) in minerals of the Arkachan gold-bismuth-siderite-sulfide deposit have been studied. The deposit has been localized in the Kuranakh Anticlinorium of the Verkhoyansky Fold-Nappe Belt at the intersection of the near-meridional Kygyltas and the NE-trending North Tirekhtyakh faults. The orebodies are extended (>2 km) and steeply dipping zones of veins and veinlets are hosted in Carbonaceous and Permian sandstones and siltstones deformed in anticlines and cut through by dikes pertaining to diorite-granodiorite-granite association. The deposit was formed during hydrothermal-metamorphic, productive main gold, silver-polymetallic, and silver-antimony stages. The orebodies are largely composed of quartz and siderite; arsenopyrite, pyrite, and pyrrhotite are widespread; bismuthinite, chalcopyrite, sphalerite, galena, and bismuth sulfosalts (gustavite, cosalite, matildite) are less abundant. The REE patterns of carbonates and quartz are characterized by a negative Eu anomaly. Three types of fluid inclusions (FI) in quartz and carbonates are distinguished: (I) liquid H2O + CO2 ± CH4 + NaCl, (II) gaseous CO2 ± CH4, and (III) aqueous salt solutions. The homogenization temperature and salinity of FI I vary from 385 to 280°C and 18.8 to 26.2 wt % NaCl equiv, respectively, whereas in FI III these parameters vary from 261 to 324°C and 3.7 to 9.5 wt % NaCl equiv. The pressure is estimated at 1830 to 1060 bar. The δ18O of quartz II associated with siderite I, native gold, and sulfosalts changes from +13.6 to 16.3‰(SMOW); δ18O and δ13C of siderite I related to gold-ore stage vary from +13.6 to +17.7‰ (SMOW) and from-6.0 to-3.0 (PDB). A wide range of δ34S from-5.7 to 16.0‰ (CDT) has been obtained for sulfides. The isotopic 40Ar/39Ar age of muscovite is 101.9 ± 1.4 Ma. The isotopic compositions of C, O, and S in fluids and their REE patterns suggest that magmatic components are predominant. Metamorphic H2O, CO2, and occasionally CH4 are derived from the apical part of a hidden intrusion, whereas sulfur is delivered from country rocks as a result of heating.
NASA Astrophysics Data System (ADS)
Reiser, Martin; Fügenschuh, Bernhard; Schuster, Ralf
2010-05-01
The Apuseni mountains in Romania take a central position in the Alpine Carpathian Dinaride system and separate the Pannonian basin in the west from the Transsylvanian basin in the east. The Cretaceous age nappe stack involves from bottom to top Tisza- (Bihor and Codru) and Dacia-derived units (Biharia, according to Schmid et al., 2008) overlain by the South Apuseni and Transylvanian ophiolite belt. This study tries to provide new and additional information on the structural and metamorphic evolution of these units from the Jurassic obduction to neotectonic activity. This also comprises information on their interaction with the neighbouring basins. The objective is to show the impact of large scale (plate) tectonics (f.i. in terms of its thermal configuration and strengths profile) and the impact of early-formed tectonic features for the further evolution, specifically the formation of the surrounding basins together with its feedback with topography. This approach includes investigation of kinematics along first order contacts during distinct events together with the thermotectonic characterization of the involved units. While the early "high-grade" evolution will be geochronologically addressed by Sm/Nd, Rb/Sr and Ar/Ar dating, fission track analysis on zircon and apatite will be used to constrain the low-temperature part of the story. Already available data by Sanders (1998), Schuller (2004), Merten (in preparation) and Kounov (in preparation) together with new own data will be used to provide a 4D model for the late-stage thermal evolution of the Apuseni mountains. Thermal modelling will be compared and integrated with numerical modelling of the landscape evolution. The hereby generated data and information on erosion and exhumation will be further used in associated partner projects of the Source to Sink research network which addresses the evolution of the Danube system from the hinterland to the Black Sea. References: Sanders, C. A. E. (1998), Tectonics and erosion - Competitive forces in a compressive orogen: A fission track study of the Romanian Carpathians, PhD-thesis, Vrije Universiteit, Amsterdam, pp. 204. Schuller, V. (2004), Evolution and geodynamic significance of the Upper Cretaceous Gosau basin in the Apuseni Mountains (Romania), PhD Thesis, Tubinger Geowiss. Arb. Reihe A70, 112 pp. Schmid, S. M., D. Bernoulli, B. Fügenschuh, L. Matenco, S. Schaefer, R. Schuster, M. Tischler and K. Ustaszewski (2008), The Alps-Carpathians-Dinaridic orogenic system: correlation and evolution of tectonic units, Swiss Journal of Geosciences, 2008.
Characterisation of the hydrogeology of the Augustus River catchment, Western Australia
NASA Astrophysics Data System (ADS)
Wilkes, Shane M.; Clement, T. Prabhakar; Otto, Claus J.
Understanding the hydrogeology of weathered rock catchments is integral for the management of various problems related to increased salinity within the many towns of Western Australia. This paper presents the results of site characterisation investigations aimed at improving the overall understanding of the hydrogeology of the southern portion of the Augustus River catchment, an example of a weathered rock catchment. Site data have highlighted the presence of both porous media aquifers within the weathered profile and fractured rock aquifers within the basement rocks. Geophysical airborne surveys and other drilling data have identified a large number of dolerite dykes which crosscut the site. Fractured quartz veins have been found along the margins of these dolerite dykes. Detailed groundwater-level measurements and barometric efficiency estimates indicate that these dolerite dykes and fractured quartz veins are affecting groundwater flow directions, promoting a strong hydraulic connection between all aquifers, and also influencing recharge mechanisms. The hydrogeological significance of the dolerite dykes and fractured quartz veins has been assessed using a combination of high-frequency groundwater-level measurements (30-min sampling interval), rainfall measurements (5-min sampling interval) and barometric pressure fluctuations (30-min sampling interval). A conceptual model was developed for describing various hydrogeological features of the study area. The model indicates that fractured quartz veins along the margins of dolerite dykes are an important component of the hydrogeology of the weathered rock catchments. Comprendre l'hydrogéologie des bassins en roches altérées est essentiel pour la gestion de différents problèmes liés à l'augmentation de la salinité dans de nombreuses villes d'Australie occidentale. Cet article présente les résultats d'études de caractérisation de sites conduites pour améliorer la compréhension de l'hydrogéologie de la partie sud du bassin de la rivière Augustus, exemple de bassin en roches altérées. Les données concernant le site ont mis en évidence la présence simultanée d'aquifères poreux dans le profil d'altération et d'aquifères de roches fracturées dans le socle. Des campagnes de géophysique aéroportée et d'autres données de forages ont identifié de très nombreux dykes de dolérite traversant le site. Des veines de quartz fracturées ont été trouvées aux marges de ces dykes de dolérite. Des mesures détaillées de niveau des nappes et des estimations des effets barométriques indiquent que ces dykes de dolérite et les veines de quartz fracturées affectent les directions d'écoulement souterrain, favorisant une forte connexion hydraulique entre tous ces aquifères, et influençant également les mécanismes de recharge. La signification hydrogéologique des dykes de dolérite et des veines de quartz fracturées a été analysée en combinant des mesures à haute fréquence du niveau des nappes (toutes les 30 min), de la pluie (toutes les 5 min) et des variations de la pression barométrique (toutes les 30 min). Un modèle conceptuel a été établi pour décrire les différents phénomènes hydrogéologiques de la région étudiée. Ce modèle indique que les veines de quartz aux marges des dykes de dolérite sont une importante composante de l'hydrogéologie des bassins en roches altérées. Entender la hidrogeología de cuencas con rocas meteorizadas es esencial para gestionar diversos problemas relacionados con el incremento de salinidad en muchas ciudades de Australia Occidental. Este artículo presenta los resultados obtenidos en la caracterización de varios emplazamientos con el fin de mejorar el conocimiento general de la hidrogeología en la zona sur de la cuenca del Río Augustus, que sirve como ejemplo de cuenca en rocas meteorizadas. Los datos de campo resaltan la presencia tanto de medios acuíferos porosos dentro del perfil meteorizado como de acuíferos en rocas fracturadas dentro de la roca fresca. Los registros geofísicos aéreos y datos de las perforaciones han identificado un gran número de diques de dolerita que intersectan el emplazamiento. Se ha hallado venas de cuarzo fracturado a lo largo de los márgenes de los diques de dolerita. Medidas detalladas del nivel piezométrico y estimaciones de la eficiencia barométrica indican que los diques de dolerita y las venas de cuarzo fracturado afectan las direcciones del flujo de las aguas subterráneas, originando una fuerte conexión hidráulica entre todos los acuíferos e influenciando también a los mecanismos de recarga. Se ha establecido la importancia hidrogeológica de los diques de dolerita y de las venas de cuarzo fracturado mediante una combinación de medidas muy frecuentes del nivel piezométrico (cada 30 min), de la precipitación (cada 5 min) y de las fluctuaciones de la presión barométrica (cada 30 min). Se ha desarrollado un modelo conceptual para describir varias características hidrogeológicas del área de estudio. El modelo indica que las venas de cuarzo fracturado en los márgenes de los diques de dolerita constituyen un componente importante de la hidrogeología de cuencas con rocas meteorizadas.
Phase distribution and flow mechanism in an amphibolite facies ultramylonite
NASA Astrophysics Data System (ADS)
Kilian, Rüdiger
2014-05-01
Rocks deforming by diffusion creep, are usually characterized by a small grain size, a weak or no crystallographic preferred orientation and an anti-correlated phase distribution of which the latter gives the most revealing insight into the active deformation mechanism. The present study focuses on the phase distribution in an amphibolite facies ultramylonite from a several meters wide shear zone within the Nordmannvik Nappe of the Norwegian Caledonides. In the shear zone, a granulite facies protolith is transformed to a fine grained matrix of quartz (50%), biotite (20%), white mica (20%), oligoclase (7%) and ilmenite/titanite with grain sizes below 10 μm (eq. diameter). Large grains of garnet, white mica and plagioclase form porphyroclasts. At high matrix proportions white mica and plagioclase porphyroclasts are less abundant. The matrix shows a homogeneous fabric and shows a strong anti-correlation of phases. Quartz forms single grains or clusters, which are at most a few grains thick, with a long axis inclined at 30 - 60° to the foliation, antithetic to the sense of shear. Quartz clusters have a regular spacing of ~30 μm, separated by biotite-stacks and oligoclase. White mica forms parallel to the foliation and replaces longer biotite grains (during shearing of the mica). Concurrently new biotite grows at those quartz grain boundaries, which are oriented at a high angle to the foliation. Only adjacent to porphyroclasts, the matrix homogeneity is disturbed. Biotite and plagioclase are depleted in the compressional sector and grow in the extensional sector. Correspondingly, garnet porphyroclasts have newly grown Ca-rich rims in compressional sectors and signs of dissolution in extensional ones. Thermodynamic modeling suggests that the modal composition of the matrix and the Ca-rich garnet rims form the stable assemblage. The microstructural positions of the phases can be related to the kinematics of granular flow. The alignment of quartz grains into clusters subparallel to the inferred shortening direction can be compared to the dynamic formation of force chains permitting high and low pressure sites in the matrix, similarly observed in numerical models of granular flow (e.g. Deubelbeiss et al., 2011). Biotite + oligoclase occupy sites of locally lower pressure and garnet rims + white mica those of higher pressure. It is suggested that a cyclic reaction of garnet + white mica = plagioclase + biotite, driven by dynamically changing, local gradients, causes the distribution of phases by nucleation, growth and mutual replacement during granular flow. Additionally, straining of biotite might contribute to its replacement by white mica. Deubelbeiss, Y., B. J. P. Kaus, J. A. D. Connolly, and L. Caricchi (2011), Potential causes for the non-Newtonian rheology of crystal-bearing magmas, Geochem. Geophys. Geosyst., 12, Q05007, doi:10.1029/2010GC003485.
Constraining dike emplacement conditions from virtual outcrop modelling
NASA Astrophysics Data System (ADS)
Jørgen Kjøll, Hans; Andersen, Torgeir; Tegner, Christian
2017-04-01
In the Late Neoproterozoic, the paleocontinents of Baltica and Laurentia rifted apart and sea-floor spreading into the Ordovician formed the Iapetus Ocean. The Iapetus later closed and the two continents collided forming the Caledonian orogen. Rocks related to the break-up and subsequent opening of the Iapetus, now reside as partly well-preserved tectonic lenses in thrust nappes within the Scandinavian Caledonides. The break-up architecture can be separated in two distinct domains, one hyperextended magma-poor segment in the SW, and one magma-rich part that comprise the Baltoscandian Dike Swarm (BDS), the main subject of this study. The magma-rich segment is exposed from c. Røros in the south, through Sweden and into Northern Norway, a distance of more than 900 kilometers. The magmatism of the BDS has been dated to c. 580-610 Ma and is now interpreted to represent a break-up related large igneous province (LIP). The BDS is generally well exposed in freshly glaciated outcrops and mountain cliffs. It intrudes proximal to distal marine, argillaceous, meta-sandstones and carbonates that locally display well-preserved extensional features, such as normal faults at both high and low angle. Partial melting of host rocks is observed at several localities, indicating relatively high temperatures during dike emplacement. Temperature estimates by previous workers indicate high-T (850°C) conditions during the break-up from the northernmost part of the dike swarm. Emplacement depths have not yet been accurately constrained, although some anomalous high pressure for an extensional environment (≈9Kbar) is indicated in the Corrovarre area. The spectacular exposure of the dike swarm provides the opportunity to evaluate the conditions during emplacement from dike geometries and morphologies. The several hundred meters high vertical cliff walls give excellent opportunities to assess the dike geometries over a range of host lithologies and across several km of stratigraphy (up to 3 km) in the, now tilted, cross-sections. The outcrops and mountain cliffs have been thoroughly photographed using a UAV and helicopter. 3-dimensional digital outcrop models have been prepared and interpreted together with outcrop observations. The new data give new insight into dike emplacement mechanisms, which in turn provide better constraints for the ambient conditions during emplacement of the dikes. Our regional observations support previous interpretations, that the BDS represented the distal parts of a magma-rich passive margin and the ocean-continent transition. Such tectonic domains are rarely exposed and available for direct observation and the study area in the North Scandinavian Caledonides, therefore represents a unique opportunity to better constrain the conditions during continental break-up as well as the infra-crustal dike emplacement mechanisms at divergent plate margins.
Geochemical Characteristics and Petrogenesis of Adakites in Sikhote-Alin, Russian Far East
NASA Astrophysics Data System (ADS)
Wu, Jeremy Tsung Jui; Jahn, Bor-ming; Nechaev, Victor; Chashchin, Alexander; Yokoyama, Kazumi; Tsutsumi, Yukiyasu
2016-04-01
The Sikhote-Alin orogenic belt and late Precambrian Khanka block are two major tectonic units in the southernmost Russian Far East. The Sikhote-Alin belt comprises several tectonostratigraphic terranes, including late Precambrian nappes, and Mesozoic accretionary prisms and turbidite basins. These terranes are overlain by Cretaceous to Paleocene felsic to intermediate volcanic rocks and intruded by granitoids. The magmatic rocks are collectively known as "the East Sikhote-Alin volcano-plutonic belt" (ESAVPB), and mainly characterized by acid-to-intermediate compositions. In this work we study the petrogenesis of adakitic rocks and discuss the possible tectonic implications. Adakitic rocks of the Sikhote-Alin orogen were emplaced in two main periods: Early Cretaceous (132-98 Ma) and Eocene (46-45 Ma). They mainly occur in the Khanka block, with a subordinate amount in the ESAVPB. The adakites show a large range of chemical composition: SiO2 = 57-74%, Al2O3 = 15-18%, Na2O = 3.5-6.1%, K2O = 0.7-3.2%, Na2O/K2O = 1.1-3.9, Sr/Y = 33-145, and (La/Yb)N = 11-53. HREE and HFSE are remarkably depleted. The Early Cretaceous adakites show eNd(T) = -1.0 to +3.2; ISr = 0.7040 - 0.7090, and the Eocene adakites have eNd(T) = -2.0 to +2.2; ISr = 0.7042 - 0.7058. Thus, the Cretaceous and Eocene adakites show rather similar Sr-Nd isotopic compositions, but their Nd isotopic signatures (slightly negative to positive eNd(T) values) may distinguish them from the granitoids of the ESAVPB (only negative eNd(T) values). Adakites may have different modes of generation, but partial melting of meta-basic rocks in a subduction zone is considered the most likely mode for the present case. The two periods of adakites have probably formed in the following scenario. The early Cretaceous emplacement ages for the adakites and the oldest granitoids of the ESAVPB, is considered as the time of initiation of the Paleo-Pacific subduction in NE Asia. The Eocene adakites were also generated in subduction zone, but accompanied by small amount of andesite and rhyolite. Contemporaneous granitoids were emplaced 200-400 km to the east of the study area in Sakhalin as well as in Hokkaido (Japan). With this scenario, we may speculate a roll-back of subducting Pacific plate during the Eocene, and a shifting of arc magmatism from the ESAVPB to Sakhalin Island and Hokkaido. Note that abundant adakitic rocks of early Cretaceous and Eocene ages occur in the Kitakami and Abukuma Mountains of NE Japan. Consequently, geological correlation between Sikhote-Alin and Kitakami-Abukuma and between Sakhalin and Hokaido is highly probable, particularly before the opening of the Japan Sea.
NASA Astrophysics Data System (ADS)
Ducassou, Céline; Robin, Cecile; Poujol, Marc; Al-Rahbi, Basim; Estournes, Guilhem
2016-04-01
The obduction of the Samail Ophiolite in Oman took place during the Upper Cretaceous. Since then, the northern part of Oman has been relatively preserved from deformation and is therefore one of the best places to study obduction processes. In addition, radiometric data provide good constraints on the timing of obduction from the formation of the metamorphic sole until the exhumation of the high-pressure / low-temperature metamorphic rocks involved in the subduction zone below the oceanic lithosphere. However, the response of the continental margin during the obduction is still poorly constrained. If most of the models suggest the development of a flexural basin and an associated forebulge such as in continental collision, their recognition within the syn-tectonic deposits led to different interpretations. The geometry of the youngest syn-tectonic deposits (Fiqa Formation) is relatively well constrained by sub-surface data that suggest a southward migration of the depocenter and progressive onlaps on the southern margin of the basin. The context of sedimentation of the oldest syn-tectonic deposits (Muti Formation) preserved below the nappes in the Oman Mountains is, however, still poorly understood. The location of the sedimentation area with respect of the forebulge, for instance, remains unclear. In order to acquire better constraints on the record, on the Arabian platform, of first steps of the obduction, the analysis of several sections of the Muti Formation has been performed. We present here our main results for the north-eastern part of the Oman Mountains, in the Sail Hatat window, where the thickest successions have been described in Quryat and Bidbid area, respectively located in the eastern and western part of the Sail Hatat window. Sedimentological and structural analysis have been combined to reconstitute the evolution of depositional environments in areas strongly affected by deformation. In addition, systematic measurements and restoration of palaeocurrents, petrological determinations and geochronological analyses (LA-ICPMS) on detrital zircons have been performed in order to identify the source areas. In both studied areas, the sedimentary series are characterised by mainly carbonated slope to basin deposits. The more distal deposits identified are in the easternmost part (Quryat area). Episodes of terrigenous input are recorded in both areas and palaeocurrents indicate a source area located toward the south, in agreement with the dating obtained on detrital zircons, yielding a dominant population at ca. 800 Ma. These results suggest that the Proterozoic basement was being eroded during the sedimentation of the Muti Formation in the Sail Hatat window and an episode of uplift of the Huqf High is therefore inferred. These results allow to discuss the evolution of the north-easternmost part of the Arabian platform during the first steps of the obduction.
NASA Astrophysics Data System (ADS)
Anastasatou, Marianthi; Kapsimalis, Vasilios; Stamatakis, Michael; Tsoutsia, Antonia; Poulos, Serafeim; Rousakis, Grigoris; Karditsa, Aikaterini; Petrakis, Stelios; Aspiotis, Konstantinos; Papavlasopoulou, Nafsika; Stamatakis, Giorgos
2015-04-01
Aggregates are inert materials, such as terrestrial or marine sand and gravel, composed mainly of limestone, igneous rocks and sandstone. There is an international trend of increasing demand for aggregates during the last 30 years. Thus, marine aggregate (MA) demand has been displayed a remarkably increased due to limited terrestrial deposits and strict environmental issues related to their exploitation, induced by mining legislation. Regarding offshore MA extraction, important physical and biological seabed impacts that may persist long after the completion of the MA dredging, should be addressed, according to European directives, that deal with aspects such as restoration of the influenced subaqueous mining area. The present contribution focuses on the qualitative determination of the marine sediments on inner continental shelf of SE Euboea (central Aegean Sea), concerning primarily its silica content and secondarily the various environmental issues, in order to evaluate whether or not this subaqueous deposit fulfils the requirements for its exploitation. This MA deposit was found during the implementation of the research project THALES-MARE (MIS 375655) and after taking into consideration the presence of highly siliceous coastal lithology of the South Euboea Island. The area belongs to the Attico-Cycladic geotectonic zone, and especially in the Blueschist Unit, Styra and Ochi nappes. It consists mainly of metamorphosed clastic siliceous sedimentary and calcareous, mafic and felsic volcanic rocks and serpentinites. Sixteen representative samples were analysed out of 48 were collected in June 2014, during the scientific cruise of the M/V Aegaio (Hellenic Centre for Marine Research). The grain size analysis shows that seabed sediments are granulometrically classified mostly as sand, with contaminants of finer fractions and with the sand content often to be >90%. X-Ray Diffraction analysis revealed that the predominant crystalline phase is quartz (often >70% according to a semi-quantitative estimation) with minor trace minerals, such as albite and clay minerals. On the basis of the qualitative characteristics, sediments on the inner continental shelf of SE Euboea can be classified as siliceous and being considered appropriate for potential exploitation, that is related also to its quantitatively characteristics. The relatively shallow depths (<40 m) and the absence of any beach nearby together with the ordinary population of benthic community support such an extraction. Definitive decisions for the commercial interest of the specific deposit will be concluded after the accomplished quality characterization and the estimation of the proven and inferred reserves of the deposit. Acknowledgemts: This work is supported by the research program THALES-MARE (MIS: 375655) that is funded by the Operational Programme ''Education and lifelong learning, 2007-2013'' of the Ministry of Education and Religious Affairs, Culture and Sports.
NASA Astrophysics Data System (ADS)
Massey, M. A.; Moecher, D. P.
2006-12-01
One widely cited model for Appalachian orogenesis in New England invokes the tripartite Alpine sequence of nappe folding/thrusting, back-folding, and doming to explain regional and outcrop-scale structural relationships. Recent work suggests lateral extrusion driven by oblique convergence as an important mechanism responsible for structures, fabrics, and mineral assemblages in the Bronson Hill terrane (BHT) of Connecticut and Massachusetts. Just as the Alpine model has evolved to incorporate elements of lateral extrusion, and syn- to post-orogenic collapse, we propose similar revisions for southern New England. Detailed mapping and structural analysis of the W- to WNW-dipping BHT in south-central MA reveals: (1) a sub-vertical, transpressional dextral thrust high strain zone (Bonemill/Conant Brook shear zone) bounding the eastern margin of the Monson granitic gneiss dome (MG) with two modes of Sil+Qtz+Fs lineations plunging WNW and SSW; (2) a moderate to steeply-dipping sinistral high strain zone bounding the western margin of the MG with WNW- and SSW-plunging Ms+Qtz+Grt lineations; (3) an apparently random arrangement of gneiss, s and s-l tectonites, protomylonites, and mylonites composing the body of the MG, also containing WNW and SSW Qtz+Fs lineations. Extrapolation to a regional scale from central CT to northern MA indicates: (1) a gradual increase in s-l and l-s tectonites to the north from predominantly s-tectonites in central CT; (2) transition of lineation plunge from NW in central CT to bimodal WNW and SSW distribution to the north; (3) amphibolite facies metamorphism was pre- to synkinematic with respect to deformation. We propose that these observations may be accounted for by transpression and extrusion, rather than discreet phases of deformation invoked by the traditional three-stage model. Synchronous operation of high strain zones bounding the MG accommodated northward orogen-parallel extrusion in addition to a component of orogen-normal shortening and sub-vertical extrusion, thus constituting bulk heterogeneous flow. Existing geochronology/thermochronology constrains deformation to the late Paleozoic Alleghanian orogeny. The consistency in timing and similarity in style with deformation associated with the Pelham dome demonstrate the significance of orogen-parallel flow in the BHT. We go further by presenting a working late Paleozoic tectonic model incorporating data from this study with existing contributions from other workers in southern New England. This model involves oblique convergence and underthrusting of Avalon in the late Mississippian/early Pennsylvanian continuing into and throughout most of the Permian. Synorogenic compressional and extensional structures from upper amphibolite to greenschist facies are explained by progressive deformation, including extrusion, orogenic collapse, and wedging, throughout an evolving metamorphic gradient.
NASA Astrophysics Data System (ADS)
Orlandi, Paolo; Biagioni, Cristian; Pasero, Marco; Mellini, Marcello
2013-03-01
The new mineral species lavoisierite, ideally Mn2+ 8[Al10(Mn3+Mg)][Si11P]O44(OH)12, has been discovered in piemontite-bearing micaschists belonging to the Piedmontese Nappe from Punta Gensane, Viù Valley, Western Alps, Italy. It occurs as yellow-orange acicular to prismatic-tabular crystals up to a few millimeters in length, with white streak and vitreous luster, elongated along [010] and flattened on {001}. Lavoisierite is associated with quartz, "mica," sursassite, piemontite, spessartine, braunite, and "tourmaline." Calculated density is 3.576 g cm-3. In plane-polarized light, it is transparent, pleochroic, with pale yellow parallel to [010] and yellow-orange normal to this direction; extinction is parallel and elongation is positive. Birefringence is moderate; the calculated average refraction index n is 1.750. Lavoisierite is orthorhombic, space group Pnmm, with a 8.6891(10), b 5.7755(3), c 36.9504(20) Å, V 1854.3(2) Å3, Z = 2. Calculated main diffraction lines of the X-ray powder diffraction pattern are [ d in Å, ( I), ( hkl); relative intensities are visually estimated]: 4.62 (m) (112), 2.931 (vs) (11 10), 2.765 (s) (11 11), 2.598 (s) (310), 2.448 (ms) (028). Chemical analyses by electron microprobe give (in wt%) P2O5 2.08, V2O5 0.37, SiO2 34.81, TiO2 0.13, Al2O3 22.92, Cr2O3 0.32, Fe2O3 0.86, Mn2O3 6.92, MnO 19.09, MgO 5.73, CaO 1.94, Na2O 0.01, H2O 5.44, sum 100.62 wt%. H2O content was calculated from structure refinement. The empirical formula, based on 56 anions, is (Mn{5.340/2+}Mg1.810Ca0.686Na0.006)Σ=7.852(Al8.921Mn{1.739/3+}Mg1.010Fe{0.214/3+}Cr0.084Ti0.032)Σ=12.000(Si11.496P0.582V0.081)Σ=12.159O43.995(OH)12.005. The crystal structure of lavoisierite was solved by direct methods and refined on the basis of 1743 observed reflections to R 1 = 4.6 %. The structure is characterized by columns of edge-sharing octahedra running along [010] and linked to each other by means of [SiO4], [Si2O7], and [Si3O10] groups. Lavoisierite, named after the French chemist and biologist Antoine-Laurent de Lavoisier (1743-1794), displays an unprecedented kind of structure, related to those of "ardennite" and sursassite.
NASA Astrophysics Data System (ADS)
Xia, Kan-yuan; Huang, Ci-liu; Jiang, Shao-ren; Zhang, Yi-xiang; Su, Da-quan; Xia, Si-gao; Chen, Zhong-rong
1994-07-01
A comparison of the tectonics and geophysics of the major structural belts of the northern and the southern continental margins of South China Sea has been made, on the basis of measured geophysical data obtained by ourselves over a period of 8 years (1984-1991). This confirmed that the northern margin is a divergent one and the southern margin is characterized by clearly convergent features. The main extensional structures of the northern margin are, from north to south: (1) The Littoral Fault Belt, a tectonic boundary between the continental crust and a transitional zone, along the coast of the provinces of Guangdong and Fujian in South China. It is characterised by earthquake activities, high magnetic anomalies and a rapid change in crustal thickness. (2) The Northern and Southern Depression zones (i.e., the Pearl River Mouth Basin), this strikes NE-ENE and is a very large Cenozoic depression which extends from offshore Shantou westwards to Hainan Island. (3) The Central Uplift Zone. This includes the Dongsha Uplift, Shenhu Uplift and may be linked with the Penghu uplift and Taiwan shoals to the east, forming a large NE-striking uplift zone along the northern continental slope. It is characterized by high magnetic anomalies. (4) Southern Boundary Fault Belt of the transitional crust. This has positive gravity anomalies on the land side and negative ones on the sea side. (5) The Magnetic Quiet Zone. This is located south of the southern Boundary Fault Belt and between the continental margin and the Central Basin of the South China Sea. Magnetic anomalies in this belt are of small amplitude and low gradient. We consider the Magnetic Quiet Zone to be a very important tectonic zone. The major structures of southern continental margin southwards are: (1) The Northern Fault Belt of the Nansha Block. This extends along the continental slope north of the Liyue shoal (Reed Bank) and Zhongye reef, and is a tectonic boundary between oceanic crust and the Nansha Block continental crust. (2) The Nansha Block Uplift Zone. Due to the development of reefs and shoals, there are many channels and valleys. Our long-distance multichannel seismic profiles indicated that there are thick Paleogene sediments and thin Neogene sediments all over the central part of the block. (3) The Nansha Trough, a nappe structure formed by the southeastward drifting of Nansha Block and northwestward overthrusting of Palawan-northwest Borneo. (4) Zengmu Shoal Basin, southwest of the Nansha Block; the maximum thickness of Cenozoic strata is over 9 km in this important petroliferous basin.
Synchronization in node of complex networks consist of complex chaotic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang, E-mail: qiangweibeihua@163.com; Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024
2014-07-15
A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Plummer, Niel; Sprinkle, Craig
2001-03-01
Geochemical reaction models were evaluated to improve radiocarbon dating of dissolved inorganic carbon (DIC) in groundwater from confined parts of the Upper Floridan aquifer in central and northeastern Florida, USA. The predominant geochemical reactions affecting the 14C activity of DIC include (1) dissolution of dolomite and anhydrite with calcite precipitation (dedolomitization), (2) sulfate reduction accompanying microbial degradation of organic carbon, (3) recrystallization of calcite (isotopic exchange), and (4) mixing of fresh water with as much as 7% saline water in some coastal areas. The calculated cumulative net mineral transfers are negligibly small in upgradient parts of the aquifer and increase significantly in downgradient parts of the aquifer, reflecting, at least in part, upward leakage from the Lower Floridan aquifer and circulation that contacted middle confining units in the Floridan aquifer system. The adjusted radiocarbon ages are independent of flow path and represent travel times of water from the recharge area to the sample point in the aquifer. Downgradient from Polk City (adjusted age 1.7 ka) and Keystone Heights (adjusted age 0.4 ka), 14 of the 22 waters have adjusted 14C ages of 20-30 ka, indicating that most of the fresh-water resource in the Upper Floridan aquifer today was recharged during the last glacial period. All of the paleowaters are enriched in 18O and 2H relative to modern infiltration, with maximum enrichment in δ18O of approximately 2.0‰. Résumé. Les modèles de réactions géochimiques ont été évalués afin de tester la datation par le radiocarbone du carbone minéral dissous (CMD) des eaux souterraines dans les parties captives de la nappe supérieure de Floride, en Floride centrale et nord-orientale (États-Unis). Les réactions géochimiques prédominantes affectant l'activité en 14C du CMD comprennent (1) la dissolution de la dolomite et de l'anhydrite accompagnée de la précipitation de la calcite (dédolomitisation), (2) la réduction des sulfates accompagnant une dégradation microbienne du carbone organique, (3) la recristallisation de la calcite (échange isotopique), et (4) le mélange d'eau douce avec de l'eau salée, jusqu'à 7%, dans certaines zones côtières. Les transferts minéraux nets calculés sont extrêmement faibles dans les parties situées dans l'amont de l'aquifère ils augmentent significativement dans les zones de l'aval, montrant en partie au moins l'existence d'une drainance ascendante depuis l'aquifère inférieur de Floride et une circulation qui met en relation les unités captives du système aquifère de Floride. Les âges radiocarbone corrigés sont indépendants des trajets d'écoulement et représentent des temps de transit de l'eau depuis la zone de recharge vers le point de prélèvement dans l'aquifère. En aval de Polk City (âge corrigé 1,7 ka) et de Keystone Heighats (âge corrigé 0,4 ka), 14 des 22 échantillons d'eau présentent des âges corrigés compris entre 20 et 30 ka, ce qui montre que la plus grande partie des ressources actuelles en eau douce de la nappe supérieure de Floride provient d'une recharge effectuée au cours de la dernière période glaciaire. Toutes ces eaux anciennes sont enrichies en 18O et en 2H par rapport à l'infiltration actuelle, avec un enrichissement maximal de δ18O d'environ 2.0‰. Resumen. Se han evaluado varios modelos geoquímicos con el fin de mejorar la datación del carbono inorgánico disuelto (CID) en las aguas subterráneas de las zonas confinadas del acuífero Superior de Florida, que ocupa el centro y nordeste de Florida (Estados Unidos). Las reacciones geoquímicas dominantes en cuanto a la actividad del 14C del CID incluyen: (1) disolución de dolomita y anhidrita, con precipitación de calcita (o de-dolomitización), (2) reducción de sulfato, acompañada por degradación microbiana de carbón orgánico, (3) recristalización de calcita (intercambio isotópico), y (4) mezcla de agua dulce con hasta un 7% de agua salina en algunas áreas costeras. Se ha calculado que las transferencias netas acumuladas de mineral son despreciables en las zonas situadas aguas arriba, y aumentan significativamente aguas abajo. Esto refleja, al menos en parte, el goteo desde el acuífero Inferior de Florida y la interconexión de las unidades confinantes en el sistema acuífero de Florida. Las edades de radiocarbono estimadas son independientes de las líneas de flujo y representan tiempos de tránsito de aguas desde el área de recarga hasta el punto de muestreo en el acuífero. Aguas debajo de la ciudad de Polk (edad de 1.700 años) y Keystone Heighats (edad de 400 años), 14 de las 22 muestras tienen edades estimadas de entre 20.000 y 30.000 años, hecho que indica que la mayor parte de los recursos actuales de agua dulce en el acuífero Superior de Florida fue recargada durante el último período glacial. Todas las paleoaguas están enriquecidas en 18O y 2H con respecto al agua actual de recarga, con un factor máximo de enriquecimiento en 18O de, aproximadamente, 2,0.
Internal complexity and environmental sensitivity in hospitals.
Ashmos, D P; Duchon, D; Hauge, F E; McDaniel, R R
1996-01-01
Theory suggests that organizations should respond to external complexity with internal complexity. We examine whether "environmentally sensitive" hospitals are more internally complex than "environmentally insensitive" hospitals. Results show that environmentally sensitive and insensitive hospitals differed on three of the measures of internal complexity: goal complexity, strategic complexity, and relational complexity.
Revitalizing Complex Analysis: A Transition-to-Proof Course Centered on Complex Topics
ERIC Educational Resources Information Center
Sachs, Robert
2017-01-01
A new transition course centered on complex topics would help in revitalizing complex analysis in two ways: first, provide early exposure to complex functions, sparking greater interest in the complex analysis course; second, create extra time in the complex analysis course by eliminating the "complex precalculus" part of the course. In…
Research on image complexity evaluation method based on color information
NASA Astrophysics Data System (ADS)
Wang, Hao; Duan, Jin; Han, Xue-hui; Xiao, Bo
2017-11-01
In order to evaluate the complexity of a color image more effectively and find the connection between image complexity and image information, this paper presents a method to compute the complexity of image based on color information.Under the complexity ,the theoretical analysis first divides the complexity from the subjective level, divides into three levels: low complexity, medium complexity and high complexity, and then carries on the image feature extraction, finally establishes the function between the complexity value and the color characteristic model. The experimental results show that this kind of evaluation method can objectively reconstruct the complexity of the image from the image feature research. The experimental results obtained by the method of this paper are in good agreement with the results of human visual perception complexity,Color image complexity has a certain reference value.
Hall, Mark R.; Meinke, William; Goldstein, David A.
1973-01-01
Procedures for isolating nucleoprotein complexes containing replicating polyoma DNA from infected mouse cells were used to prepare short-lived nucleoprotein complexes (r-SV40 complexes) containing replicating simian virus 40 (SV40) DNA from infected monkey cells. Like the polyoma complexes, r-SV40 complexes were only partially released from nuclei by cell lysis but could be extracted from nuclei by prolonged treatment with solutions containing Triton X-100. r-SV40 complexes sedimented faster than complexes containing SV40 supercoiled DNA (SV40 complex) in sucrose gradients, and both types of SV40 nucleoprotein complexes sedimented ahead of polyoma complexes containing supercoiled polyoma DNA (py complex). The sedimentation rates of py complex and SV40 complex were 56 and 61S, respectively, based on the sedimentation rate of the mouse large ribosomal subunit as a marker. r-SV40 complexes sedimented as multiple peaks between 56 and 75S. Sedimentation and buoyant density measurements indicated that protein is bound to all forms of SV40 DNA at about the same ratio of protein to DNA (1-2/1) as was reported for polyoma nucleoproteins. PMID:4359958
Communication complexity and information complexity
NASA Astrophysics Data System (ADS)
Pankratov, Denis
Information complexity enables the use of information-theoretic tools in communication complexity theory. Prior to the results presented in this thesis, information complexity was mainly used for proving lower bounds and direct-sum theorems in the setting of communication complexity. We present three results that demonstrate new connections between information complexity and communication complexity. In the first contribution we thoroughly study the information complexity of the smallest nontrivial two-party function: the AND function. While computing the communication complexity of AND is trivial, computing its exact information complexity presents a major technical challenge. In overcoming this challenge, we reveal that information complexity gives rise to rich geometrical structures. Our analysis of information complexity relies on new analytic techniques and new characterizations of communication protocols. We also uncover a connection of information complexity to the theory of elliptic partial differential equations. Once we compute the exact information complexity of AND, we can compute exact communication complexity of several related functions on n-bit inputs with some additional technical work. Previous combinatorial and algebraic techniques could only prove bounds of the form theta( n). Interestingly, this level of precision is typical in the area of information theory, so our result demonstrates that this meta-property of precise bounds carries over to information complexity and in certain cases even to communication complexity. Our result does not only strengthen the lower bound on communication complexity of disjointness by making it more exact, but it also shows that information complexity provides the exact upper bound on communication complexity. In fact, this result is more general and applies to a whole class of communication problems. In the second contribution, we use self-reduction methods to prove strong lower bounds on the information complexity of two of the most studied functions in the communication complexity literature: Gap Hamming Distance (GHD) and Inner Product mod 2 (IP). In our first result we affirm the conjecture that the information complexity of GHD is linear even under the uniform distribution. This strengthens the O(n) bound shown by Kerenidis et al. (2012) and answers an open problem by Chakrabarti et al. (2012). We also prove that the information complexity of IP is arbitrarily close to the trivial upper bound n as the permitted error tends to zero, again strengthening the O(n) lower bound proved by Braverman and Weinstein (2011). More importantly, our proofs demonstrate that self-reducibility makes the connection between information complexity and communication complexity lower bounds a two-way connection. Whereas numerous results in the past used information complexity techniques to derive new communication complexity lower bounds, we explore a generic way, in which communication complexity lower bounds imply information complexity lower bounds in a black-box manner. In the third contribution we consider the roles that private and public randomness play in the definition of information complexity. In communication complexity, private randomness can be trivially simulated by public randomness. Moreover, the communication cost of simulating public randomness with private randomness is well understood due to Newman's theorem (1991). In information complexity, the roles of public and private randomness are reversed: public randomness can be trivially simulated by private randomness. However, the information cost of simulating private randomness with public randomness is not understood. We show that protocols that use only public randomness admit a rather strong compression. In particular, efficient simulation of private randomness by public randomness would imply a version of a direct sum theorem in the setting of communication complexity. This establishes a yet another connection between the two areas. (Abstract shortened by UMI.).
On the Way to Appropriate Model Complexity
NASA Astrophysics Data System (ADS)
Höge, M.
2016-12-01
When statistical models are used to represent natural phenomena they are often too simple or too complex - this is known. But what exactly is model complexity? Among many other definitions, the complexity of a model can be conceptualized as a measure of statistical dependence between observations and parameters (Van der Linde, 2014). However, several issues remain when working with model complexity: A unique definition for model complexity is missing. Assuming a definition is accepted, how can model complexity be quantified? How can we use a quantified complexity to the better of modeling? Generally defined, "complexity is a measure of the information needed to specify the relationships between the elements of organized systems" (Bawden & Robinson, 2015). The complexity of a system changes as the knowledge about the system changes. For models this means that complexity is not a static concept: With more data or higher spatio-temporal resolution of parameters, the complexity of a model changes. There are essentially three categories into which all commonly used complexity measures can be classified: (1) An explicit representation of model complexity as "Degrees of freedom" of a model, e.g. effective number of parameters. (2) Model complexity as code length, a.k.a. "Kolmogorov complexity": The longer the shortest model code, the higher its complexity (e.g. in bits). (3) Complexity defined via information entropy of parametric or predictive uncertainty. Preliminary results show that Bayes theorem allows for incorporating all parts of the non-static concept of model complexity like data quality and quantity or parametric uncertainty. Therefore, we test how different approaches for measuring model complexity perform in comparison to a fully Bayesian model selection procedure. Ultimately, we want to find a measure that helps to assess the most appropriate model.
Landslide inventory map as a tool for landscape planning and management in Buzau Land Geopark
NASA Astrophysics Data System (ADS)
Tatu, Mihai; Niculae, Lucica; Popa, Răzvan-Gabriel
2015-04-01
Buzău Land is an aspiring Geopark in Romania, located in the mountainous region of the southern part of the Carpathian Bend Area. From a geologic point of view, the East Carpathians represent a segment of the Alpine - Carpathian orogene, and they are composed of numerous tectonic units put up throughout the Mesozoic and Cenozoic orogenesis. They represent a result of two compressional phases, (1) during Late Cretaceous and (2) during Early and Middle Miocene that were responsible for thrusting of internal units onto external units. The latter cover tectonically the Foredeep folded deposits. Landslides are one of the most widespread and dangerous natural hazards in this region, disrupting access routes and damaging property and habitats at least twice per year, in the rainy seasons. This hazard induces deep changes in the landscape and has serious economic consequences related to the damaging of infrastructure and isolation of localities. The proximity to the Vrancea seismogenic zone increases the risk of landslide triggering. A first step in observing the space and time tendency and amplitude of landslides, in order to distinguish the main vulnerabilities and estimate the risk, is to produce an inventory map. We shall present a landslide inventory map for the Buzău Land territory (~1036 km2), which is the primary base of information for further discussions regarding this phenomenon and an essential tool in observing the development of mass-wasting processes and in landscape planning. The inventory map is in accordance with the recommendations of the IAEG Commission on Landslides and other Mass-Movement, applied across the EU. Based on this work, we can already draw some remarks: - The Geopark territory mostly covers two major tectonic units of the East Carpathians: the external nappes and the folded foredeep; areas with landslide potential are common, but by far the highest landslide frequency is observed in the foredeep. This is related to the soft, argillaceous and sandy rock compositions. The magnitude of the phenomenon progressively diminishes towards the NW, where older and more coherent rocks are found. Here, mixed aspects (landslides with blocks) and rockslides are well expressed. - The spatial distribution of landslides is controlled by active tectonics, most of them being observed along faults. - Landslides are common in the vicinity of salt diapirs and especially on their flanks. - Deforestation in the area is mostly related to small scale, superficial mass movements (soil creeps especially). - The dynamics of the area brings continuous damage to the infrastructure. Our inventory map is the first step in characterizing and forecasting landslide activity in the Geopark and future research will offer tools for the sustainable development of the region. The research leading to these results has received funding from EEA Financial Mecanism 2009 - 2014 under the GeoSust project contract no 22 SEE/30.06.2014.
NASA Astrophysics Data System (ADS)
Rodriguez, L.; Cuevas, J.; Tubía, J. M.
2012-04-01
This work deals with the structural evolution of the Sierras Interiores between the Tena and Aragon valleys. The Sierras Interiores is a WNW-trending mountain range that bounds the South Pyrenean Zone to the north and that is characterized by a thrust-fold system with a strong lithological control that places preferably decollements in Triassic evaporites. In the studied area of the Sierras Interiores Cenomanian limestones cover discordantly the Paleozoic rocks of the Axial Zone because there is a stratigraphic lacuna developed from Triassic to Late Cretaceous times. A simple lithostratigraphy of the study area is made up of Late Cenomanian to Early Campanian limestones with grey colour and massive aspect in landscape (170 m, Lower calcareous section), Campanian to Maastrichtian brown coloured sandstones (400-600 m, Marboré sandstones) and, finally, Paleocene light-coloured massive limestones (130-230 m), that often generate the higher topographic levels of the Sierras Interiores due to their greater resistance to erosion. Above the sedimentary sequence of the Sierras Interiores, the Jaca Basin flysch succession crops out discordantly. Based on a detailed mapping of the studied area of the Sierras Interiores, together with well and structural data of the Jaca Basin (Lanaja, 1987; Rodríguez and Cuevas, 2008) we have constructed a 12 km long NS cross section, approximately parallel to the movement direction deduced for this region (Rodríguez et al., 2011). The main structure is a thrust array made up of at least four Paleozoic-involving thrusts (the deeper thrust system) of similar thickness in a probably piggyback sequence, some of which are blind thrusts that generate fold-propagation-folds in upper levels. The higher thrust of the thrust array crops out duplicating the lower calcareous section all over the Sierras Interiores. The emplacement of the deeper thrust system generated the tightness of previous structures: south directed piggyback duplexes (the upper thrust system) affecting the Marboré sandstones and the Paleocene limestones, deformed by angular south-vergent folds and their related axial plane foliation. The transect explained above clearly summarizes the alpine evolution of northern part of the Sierras Interiores. Moreover, well data available indicate the presence of two thrust soled in the lower calcareous section covering Triassic evaporites at 5 km depth and 8 km to the south of the Sierras Interiores. Because the Triassic evaporites constitute a main decollement level in the South Pyrenean Zone, the deeper thrust system is associated to the emplacement of the Gavarnie nappe. Lanaja, J.M., 1987, Contribución de la exploración petrolífera al conocimiento de la Geología de España, IGME, Madrid, 465 p. Rodríguez, L., Cuevas, J., 2008. Geogaceta 44, 51-54. Rodríguez, L., Cuevas, J., Tubia, J.M., 2011. Geophysical Research Abstracts 13, 2273.
The Evolution of the Tethysides during the Medial to Late Triassic
NASA Astrophysics Data System (ADS)
Saǧdıç, Nurbike G.; Celâl Şengör, A. M.
2016-04-01
The Triassic is a time of widespread rifting within the future Alpides of the circum-Mediterranean countries. However, this rifting had little to do with the later, Sinemurian-Hettangian rifting that penetrated the Tethyan realm from the Atlantic Ocean. The eastern part of the rifting occurred south of the Palaeo-Tethys and seems to have been related to stretching above its extensional arc. Evidence for his stretching is seen in the Karakaya-Pelagonian-Pindos- Meliata-Hallstatt zones and the Eastern Mediterranean. The Eastern Mediterranean is separated from the other extensional zones by a Mikrasian continental fragment that had begun separating from Gondwana-Land already during the Permian. The rifting propagated eastward along the Carpathians (Transylvanian Nappes) and the Eastern and the Southern Alps from where it entered the future Provençal chains and finally the Pyrenees where evaporites were laid down in extensional basins. In the south, an area of rifting went from the Eastern Mediterranean into the High Atlas thus delimiting an Iberapulian continental fragment. The Iberapulian fragment became divided into an Iberian and an Apulian parts later during the Hettangian-Sinemurian rifting that also invaded the earlier extensional areas in the Atlas. The extension directions during the medial and late Triassic are controlled by the tectonics of the eastern end of the Palaeo-Tethys. Along its northern margin, i.e., along the Scythides, right-lateral motion dominated. Along the northern margin of the Mikrasian fragment subduction was nearly head-on (slightly oblique so as to impose a slight right-lateral motion along the arc), but the stretching along the Karakaya rift zones was probably orthogonal because of the similarly orthogonal stretching in the Eastern Mediterrarean. The kinematics is dependent on what sort of motion is imposed onto the Palaeo-Tethyan plate (s) along its (their) northern margin and the direction of stretching in the Eastern Mediterranean. The rifting in areas farther west may have been a consequence of the origin of secondary shear structures along the Mikrasian and Iberapulian fragments. The Italian rifts, such as the Lagonegro and the Sclafani seem to have resulted from a similar process. Plate kinematics, as reconstructed, imposes a slight right-lateral motion onto the East Alpine/Southern Alpine areas. It is remarkable how independent the later Jurassic rifting seems to have been. It avoided in many places the former regions of stretching and opened new avenues of rifting for itself. One wonders whether the lithosphere in the older areas of rifting had recovered sufficiently to pose a hindernis to fracturing or whether the newer rifting followed older, Hercynian zones of deformation. For the time being we favour the second alternative as the time between the Triassic rifting and the Jurassic rifting seems insufficient to allow the lithosphere to recover to build sufficient strength.
Malenco Serpentine: proposed as a candidate for "Global Heritage Stone Resource" designation
NASA Astrophysics Data System (ADS)
Primavori, Piero
2017-04-01
The Malenco Serpentine (Serpentine of Val Malenco) is the commercial name of a meta-peridotitic geological formation, Jurassic-Lower Cretaceous in age, entirely restricted to the borders of the valley of the same name (Malenco Valley), and geographically located in Sondrio Province, Lombardy Region, North Italy. Geologically speaking, it is part of an ophiolithic suture zone situated at the contact of the Austroalpine and Penninic nappes of the Alps (Rhaetian sector); petrographically, it is the result of a polymetamorphic (both regional and contact) and polytectonic history, with the development of a paragenesis of antigorite + chrysotile + chlorite + magnetite + diopside + olivine + titanolivine ± chromite ± pyrite ± brucite, and other iron and copper sulphurs. Malenco Serpentine extends over an area of approximately 170 km2, with a thickness ranging from 1 to 2 km. Lithological and mineralogical features allow the recognition of three distinct lythotypes: 1) a strongly foliated Serpentine - called Serpentine-schist of Val Malenco, with a regular and penetrative schistosity, which makes it possible to split the rock into very fine sheets ("pioda"); 2) a massive Serpentine, with no remarkable foliation, called with different commercial names (Green Vittoria, Green Mare, Green Torre S. Maria etc.); 3) A Clorithic schist (Val Malenco Ollare Stone), in turn subdivisible into two main types, depending on the predominance of Chlorite or Talc, and well known for their thermal behaviour and historical utilization for the production of stoves and cooking pots. The stone is quarried and processed since Middle Ages, and used in building and urban décor since 1800. Particularly, the splittable Serpentine has totally characterized - and still characterizes - the typology of the roofs and the urban style of the Malenco Valley architecture. "Pioda" is the name given to the roofing elements; initially used only for the local building, they were processed and transported out of the valley on sleighs and carts and sold in two distinct markets: Sundrium (now Sondrio) and throughout the region, or carried up on an old Roman caravan route to the region formerly called Rezia. From early on, Serpentinoscisto gained a reputation as an outstanding roofing material and, over the centuries, it has had a significant impact on the social and cultural life of the valley, and continues to do so today. The excavation has been moved open-cast from the initially adopted underground system, with the use of modern technologies; but processing and installation have maintained the truly original, traditional and artisanal systems. Apart from its intrinsic geological, petrographic, commercial and technical properties, several issues related to the Malenco Serpentine are considered to be of relevant importance for its candidature for the designation as a "Global Heritage Stone Resource". Among the most important, there are: the peculiarity of some applications (tools, tradition, technical rules), the architecture and urban landscape of the area, the importance of the whole territory (Malenco Valley is known as "a world of geology"), the presence of an EcoMuseum, the local Historical Consortium.
3D inversion based on multi-grid approach of magnetotelluric data from Northern Scandinavia
NASA Astrophysics Data System (ADS)
Cherevatova, M.; Smirnov, M.; Korja, T. J.; Egbert, G. D.
2012-12-01
In this work we investigate the geoelectrical structure of the cratonic margin of Fennoscandian Shield by means of magnetotelluric (MT) measurements carried out in Northern Norway and Sweden during summer 2011-2012. The project Magnetotellurics in the Scandes (MaSca) focuses on the investigation of the crust, upper mantle and lithospheric structure in a transition zone from a stable Precambrian cratonic interior to a passive continental margin beneath the Caledonian Orogen and the Scandes Mountains in western Fennoscandia. Recent MT profiles in the central and southern Scandes indicated a large contrast in resistivity between Caledonides and Precambrian basement. The alum shales as a highly conductive layers between the resistive Precambrian basement and the overlying Caledonian nappes are revealed from this profiles. Additional measurements in the Northern Scandes were required. All together data from 60 synchronous long period (LMT) and about 200 broad band (BMT) sites were acquired. The array stretches from Lofoten and Bodo (Norway) in the west to Kiruna and Skeleftea (Sweden) in the east covering an area of 500x500 square kilometers. LMT sites were occupied for about two months, while most of the BMT sites were measured during one day. We have used new multi-grid approach for 3D electromagnetic (EM) inversion and modelling. Our approach is based on the OcTree discretization where the spatial domain is represented by rectangular cells, each of which might be subdivided (recursively) into eight sub-cells. In this simplified implementation the grid is refined only in the horizontal direction, uniformly in each vertical layer. Using multi-grid we manage to have a high grid resolution near the surface (for instance, to tackle with galvanic distortions) and lower resolution at greater depth as the EM fields decay in the Earth according to the diffusion equation. We also have a benefit in computational costs as number of unknowns decrease. The multi-grid forward solver is implemented within the framework of the modular system for EM inversion (ModEM by G. Egbert, A. Kelbert, N. Meqbel), using the ModEM 3D finite difference staggered grid forward solver (second order PDE in the electric field, with divergence correction) as a starting point for our development. The first 3D inversion model for the crust and upper mantle shows the highly conducting bodies in the crust which can be interpreted as alum shales. The eastern and central parts are presented by resistive Precambrian rocks of the Svecofennian and Archaean domains. The upper mantle is resistive and relates to the Baltica basement. We also compare 3D inversion model with the results of 2D inversion along several profiles. We are able to explain some of the features in the data (out of quadrant phase) with 3D model, thus providing more reliable results compared to routine 2D approach.
NASA Astrophysics Data System (ADS)
Japsen, Peter; Green, Paul F.; Bonow, Johan M.; Chalmers, James A.; Rasmussen, Erik S.
2016-04-01
We present new apatite fission-track analysis (AFTA) data from 27 basement samples from Norway south of ~60°N. The data define three events of cooling and exhumation that overlap in time with events defined from AFTA in southern Sweden (Japsen et al. 2015). The samples cooled below palaeotemperatures of >100°C in a major episode of Triassic cooling as also reported by previous studies (Rohrman et al. 1995). Our study area is just south of the Hardangervidda where Cambrian sediments and Caledonian nappes are present. We thus infer that these palaeotemperatures reflect heating below a cover that accumulated during the Palaeozoic and Triassic. By Late Triassic, this cover had been removed from the Utsira High, off SW Norway, resulting in deep weathering of a granitic landscape (Fredin et al. 2014). Our samples were therefore at or close to the surface at this time. Palaeotemperatures reached ~80°C prior to a second phase of cooling and exhumation in the Jurassic, following a phase of Late Triassic - Jurassic burial. Upper Jurassic sandstones rest on basement near Bergen, NW of our study area (Fossen et al. 1997), and we infer that the Jurassic event led to complete removal of any remaining Phanerozoic cover in the region adjacent to the evolving rift system prior to Late Jurassic subsidence and burial. The data reveal a third phase of cooling in the early Miocene when samples that are now near sea level cooled below palaeotemperatures of ~60°C. For likely values of the palaeogeothermal gradient, such palaeotemperatures correspond to burial below rock columns that reach well above the present-day landscape where elevations rarely exceed 1 km above sea level. This implies that the present-day landscape was shaped by Neogene erosion. This is in agreement with the suggestion of Lidmar-Bergström et al. (2013) that the near-horizontal Palaeic surfaces of southern Norway are the result of Cenozoic erosion to sea level followed by uplift to their present elevations in a fourth event that is not detected by the AFTA data. Fossen, Mangerud, Hesthammer, Bugge, Gabrielsen 1997: The Bjorøy Formation: a newly discovered occurrence of Jurassic sediments in the Bergen Arc System. Norsk Geologisk Tidsskrift 77. Fredin, Zwingmann, Knies, Sørlie, Gandal, Lie, Müller, Vogt, 2014: Saprolites on- and offshore Norway: New constraints on formation processes and age. Nordic Geological Winter Meeting, Lund, Sweden. Japsen, Green, Bonow, Erlström 2015: Episodic burial and exhumation of the southern Baltic Shield: Epeirogenic uplifts during and after break-up of Pangea. Gondwana Research, in press. Lidmar-Bergström, Bonow, Japsen 2013: Stratigraphic landscape analysis and geomorphological paradigms: Scandinavia as an example of Phanerozoic uplift and subsidence. Global and Planetary Change 100. Rohrman, van der Beek, Andriessen, Cloetingh 1995: Meso-Cenozoic morphotectonic evolution of southern Norway: Neogene domal uplift inferred from apatite fission track thermochronology. Tectonics 14.
NASA Astrophysics Data System (ADS)
Riva, Federico; Agliardi, Federico; Crosta, Giovanni B.; Zanchi, Andrea
2015-04-01
Deep-Seated Gravitational Slope Deformations (DSGSD) are widespread phenomena in alpine environments, where they affect entire high-relief valley flanks involving huge rock volumes. Slope scale inherited structures related to ductile and brittle tectonic deformation can control the onset and development of DSGSD and the localization of strain in deep gravitational shear zones. Slope unloading, rock mass damage and hydrological perturbations related to deglaciation are considered important triggers of these phenomena in formerly glaciated areas. Furthermore, earthquake shaking and the long-term effects of seismicity in active tectonic areas might provide an additional triggering component. Nevertheless, the role played by these different processes and their interplay is not obvious, especially in geological context less typically favourable to DSGSD and in low-magnitude seismicity settings as the axial European Alps. We analysed the Piz Dora sackung system (Val Mustair, Switzerland), which affects conglomerates, meta-conglomerates and phyllites of the Austroalpine S-Charl nappe, involved in a slope-scale, WNW trending closed anticline fold. The area is actively uplifting, seismically active (maximum Mw>5) and experienced extensive glaciation during the LGM. The slope is affected by sharp gravitational morphostructures associated to the deep-seated sliding of 1.85 km3 of rock along a basal shear zone up to 300 m deep (Agliardi et al., 2014; Barbarano et al., 2015). We investigated the controlling role of inherited tectonic features and the relative influence of different candidate triggering processes (post-glacial debuttressing, related changes in slope hydrology, seismicity) through a series of 2D Distinct Element (DEM) numerical models set up using the code UDEC (ItascaTM). Based on field structural and geomechanical data, we discretized the slope into an ensemble of discontinuum domains, accounting for the slope-scale folded structure and characterised by unique combinations of rock mass properties and persistent brittle structural patterns related to folding or regional stress fields. We analysed the processes leading to DSGSD onset and evolution by testing combinations of: a) rock mass constitutive models; b) in situ stress fields; c) hydro-mechanical coupling; d) dynamic loadings. DEM results, validated using field evidence and discussed against the results of continuum-based Finite-Element models (Agliardi et al., 2014; Barbarano et al., 2015), suggest that DSGSD failure mechanisms are constrained by fold-related brittle structures, and stress and hydrologic conditioning of deglaciation were key triggers modulated by active tectonic processes. References: - Agliardi F., Barbarano M., Crosta G.B., Riva F. & Zanchi A. (2014). Inherited and active tectonic controls on the Piz Dora sackung system (Val Mustair). In 3rd Slope Tectonic Conference proceedings, NGU Report 2014.030. - Barbarano M., Agliardi F., Crosta G. B., & Zanchi A. (2015). Inherited and Active Tectonic Controls on the Piz Dora DSGSD (Val Müstair, Switzerland). In Engineering Geology for Society and Territory-Volume 2 (pp. 605-608). Springer International Publishing.
Complexity and the Arrow of Time
NASA Astrophysics Data System (ADS)
Lineweaver, Charles H.; Davies, Paul C. W.; Ruse, Michael
2013-08-01
1. What is complexity? Is it increasing? Charles H. Lineweaver, Paul C. W. Davies and Michael Ruse; 2. Directionality principles from cancer to cosmology Paul C. W. Davies; 3. A simple treatment of complexity: cosmological entropic boundary conditions on increasing complexity Charles H. Lineweaver; 4. Using complexity science to search for unity in the natural sciences Eric J. Chaisson; 5. On the spontaneous generation of complexity in the universe Seth Lloyd; 6. Emergent spatiotemporal complexity in field theory Marcelo Gleiser; 7. Life: the final frontier for complexity? Simon Conway Morris; 8. Evolution beyond Newton, Darwin, and entailing law: the origin of complexity in the evolving biosphere Stuart A. Kauffman; 9. Emergent order in processes: the interplay of complexity, robustness, correlation, and hierarchy in the biosphere D. Eric Smith; 10. The inferential evolution of biological complexity: forgetting nature by learning to nurture David C. Krakauer; 11. Information width: a way for the second law to increase complexity David Wolpert; 12. Wrestling with biological complexity: from Darwin to Dawkins Michael Ruse; 13. The role of generative entrenchment and robustness in the evolution of complexity William C. Wimsatt; 14. On the plurality of complexity-producing mechanisms Philip Clayton; Index.
Böttinger, Lena; Mårtensson, Christoph U.; Song, Jiyao; Zufall, Nicole; Wiedemann, Nils; Becker, Thomas
2018-01-01
Mitochondria are the powerhouses of eukaryotic cells. The activity of the respiratory chain complexes generates a proton gradient across the inner membrane, which is used by the F1FO-ATP synthase to produce ATP for cellular metabolism. In baker’s yeast, Saccharomyces cerevisiae, the cytochrome bc1 complex (complex III) and cytochrome c oxidase (complex IV) associate in respiratory chain supercomplexes. Iron–sulfur clusters (ISC) form reactive centers of respiratory chain complexes. The assembly of ISC occurs in the mitochondrial matrix and is essential for cell viability. The cysteine desulfurase Nfs1 provides sulfur for ISC assembly and forms with partner proteins the ISC-biogenesis desulfurase complex (ISD complex). Here, we report an unexpected interaction of the active ISD complex with the cytochrome bc1 complex and cytochrome c oxidase. The individual deletion of complex III or complex IV blocks the association of the ISD complex with respiratory chain components. We conclude that the ISD complex binds selectively to respiratory chain supercomplexes. We propose that this molecular link contributes to coordination of iron–sulfur cluster formation with respiratory activity. PMID:29386296
Majhi, Paresh Kumar; Kyri, Andreas Wolfgang; Schmer, Alexander; Schnakenburg, Gregor; Streubel, Rainer
2016-10-17
Synthesis of 1,1'-bifunctional aminophosphane complexes 3 a-e was achieved by the reaction of Li/Cl phosphinidenoid complex 2 with various primary amines (R=Me, iPr, tBu, Cy, Ph). Deprotonation of complex 3 a (R=Me) with potassium hexamethyldisilazide yielded a mixture of K/NHMe phosphinidenoid complex 4 a and potassium phosphanylamido complex 4 a'. Treatment of complex 3 c (R=tBu) and e (R=Ph) with KHMDS afforded the first examples of K/NHR phosphinidenoid complexes 4 c and e. The reaction of complex 3 c with 2 molar equivalents of KHMDS followed by PhPCl 2 afforded complexes 5 c,c', which possess a P 2 N-ring ligand. All complexes were characterized by NMR, IR, MS, and microanalysis, and additionally, complexes 3 b-e and 5 c' were scrutinized by single-crystal X-ray crystallography. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zheng, Mengge; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun
2018-02-28
The effects of chain length and degree of unsaturation of fatty acids (FAs) on structure and in vitro digestibility of starch-protein-FA complexes were investigated in model systems. Studies with the rapid visco analyzer (RVA) showed that the formation of ternary complex resulted in higher viscosities than those of binary complex during the cooling and holding stages. The results of differential scanning calorimetry (DSC), Raman, and X-ray diffraction (XRD) showed that the structural differences for ternary complexes were much less than those for binary complexes. Starch-protein-FA complexes presented lower in vitro enzymatic digestibility compared with starch-FAs complexes. We conclude that shorter chain and lower unsaturation FAs favor the formation of ternary complexes but decrease the thermal stability of these complexes. FAs had a smaller effect on the ordered structures of ternary complexes than on those of binary complexes and little effect on enzymatic digestibility of both binary and ternary complexes.
NASA Astrophysics Data System (ADS)
Syiemlieh, Ibanphylla; Kumar, Arvind; Kurbah, Sunshine D.; De, Arjune K.; Lal, Ram A.
2018-01-01
Low-spin manganese(II) complexes [MnII(H2slox)].H2O (1), [MnII(H2slox)(SL)] (where SL (secondary ligand) = pyridine (py, 2), 2-picoline (2-pic, 3), 3-picoline (3-pic, 4), and 4-picoline (4-pic, 5) and high-spin manganese(III) complex Na(H2O)4[MnIII(slox)(H2O)2].2.5H2O have been synthesized from disalicyaldehyde oxaloyldihydrazone in methanolic - water medium. The composition of complexes has been established by elemental analyses and thermoanalytical data. The structures of the complexes have been discussed on the basis of data obtained from molar conductance, UV visible, 1H NMR, infrared spectra, magnetic moment and electron paramagnetic resonance spectroscopic studies. Conductivity measurements in DMF suggest that the complexes (1-5) are non-electrolyte while the complex (6) is 1:1 electrolyte. The electronic spectral studies and magnetic moment data suggest five - coordinate square pyramidal structure for the complexes (2-5) and square planar geometry for manganese(II) in complex (1). In complex (6), both sodium and manganese(III) have six coordinate octahedral geometry. IR spectral studies reveal that the dihydrazone coordinates to the manganese centre in keto form in complexes (1-5) and in enol form in complex (6). In all complexes, the ligand is present in anti-cis configuration. Magnetic moment and EPR studies indicate manganese in +2 oxidation state in complexes (1-5), with low-spin square planar complex (1) and square pyramidal stereochemistries complexes (2-5) while in +3 oxidation state in high-spin distorted octahedral stereochemistry in complex (6). The complex (1) involves significant metal - metal interaction in the solid state. All of the complexes show only one metal centred electron transfer reaction in DMF solution in cyclic voltammetric studies. The complexes (1-5) involve MnII→MnI redox reaction while the complex (6) involves MnIII→MnII redox reaction, respectively.
Unraveling chaotic attractors by complex networks and measurements of stock market complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Hongduo; Li, Ying, E-mail: mnsliy@mail.sysu.edu.cn
2014-03-15
We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel–Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However,more » developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process.« less
Cytokine/Antibody complexes: an emerging class of immunostimulants.
Mostböck, Sven
2009-01-01
In recent years, complexes formed from a cytokine and antibodies against that respective cytokine (cytokine/Ab complex) have been shown to induce remarkable powerful changes in the immune system. Strong interest exists especially for complexes formed with Interleukin (IL)-2 and anti-IL-2-antibody (IL-2/Ab complex). IL-2/Ab complex activates maturation and proliferation in CD8(+) T cells and natural killer (NK) cells to a much higher degree than conventional IL-2 therapy. In addition, IL-2/Ab complex does not stimulate regulatory T cells as much as IL-2 alone. This suggests the possibility to replace the conventional IL-2 therapy with a therapy using low-dose IL-2/Ab complex. Further synthetic cytokine/Ab complexes are studied currently, including IL-3/Ab complex for its effects on the mast cell population, and IL-4/Ab complex and IL-7/Ab complex for inducing B and T cell expansion and maturation. Cytokine complexes can also be made from a cytokine and its soluble receptor. Pre-association of IL-15 with soluble IL-15 receptor alpha produces a complex with strong agonistic functions that lead to an expansion of CD8(+) T cells and NK cells. However, cytokine/Ab complexes also occur naturally in humans. A multitude of auto-antibodies to cytokines are found in human sera, and many of these auto-antibodies build cytokine/Ab complexes. This review presents naturally occurring auto-antibodies to cytokines and cytokine/Ab complexes in health and disease. It further summarizes recent research on synthetic cytokine/Ab complexes with a focus on the basic mechanisms behind the function of cytokine/Ab complexes.
Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.
2015-01-01
Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416
2008-07-03
complex is still unclear even in the crystal structure of RC-LH1 core complex from Rhodopseudomonas (Rps.) palustris [1]. In this study, we use a...complex of R. palustris . 16 The NIR absorption spectra of these core complexes on the electrode indicate that these complexes are stable when...as the LH or the core complex. For example, the core complex, isolated from the photosynthetic bacterium, Rps. palustris , was successfully