Soil biodiversity and soil community composition determine ecosystem multifunctionality
Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.
2014-01-01
Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507
NASA Astrophysics Data System (ADS)
Hubbard, Susan S.; Ajo-Franklin, Jonathan B.; Dafflon, Baptiste; Dou, Shan; Kneafsey, Tim J.; Peterson, John E.; Tas, Neslihan; Torn, Margaret S.; Phuong Tran, Anh; Ulrich, Craig; Wainwright, Haruko; Wu, Yuxin; Wullschleger, Stan
2015-04-01
Although accurate prediction of ecosystem feedbacks to climate requires characterization of the properties that influence terrestrial carbon cycling, performing such characterization is challenging due to the disparity of scales involved. This is particularly true in vulnerable Arctic ecosystems, where microbial activities leading to the production of greenhouse gasses are a function of small-scale hydrological, geochemical, and thermal conditions influenced by geomorphology and seasonal dynamics. As part of the DOE Next-Generation Ecosystem Experiment (NGEE-Arctic), we are advancing two approaches to improve the characterization of complex Arctic ecosystems, with an initial application to an ice-wedge polygon dominated tundra site near Barrow, AK, USA. The first advance focuses on developing a new strategy to jointly monitor above- and below- ground properties critical for carbon cycling in the tundra. The strategy includes co-characterization of properties within the three critical ecosystem compartments: land surface (vegetation, water inundation, snow thickness, and geomorphology); active layer (peat thickness, soil moisture, soil texture, hydraulic conductivity, soil temperature, and geochemistry); and permafrost (mineral soil and ice content, nature, and distribution). Using a nested sampling strategy, a wide range of measurements have been collected at the study site over the past three years, including: above-ground imagery (LiDAR, visible, near infrared, NDVI) from various platforms, surface geophysical datasets (electrical, electromagnetic, ground penetrating radar, seismic), and point measurements (such as CO2 and methane fluxes, soil properties, microbial community composition). A subset of the coincident datasets is autonomously collected daily. Laboratory experiments and new inversion approaches are used to improve interpretation of the field geophysical datasets in terms of ecosystem properties. The new strategy has significantly advanced our ability to characterize and monitor ecosystem functioning - within and across permafrost, active layer and land-surface compartments and as a function of geomorphology and seasonal dynamics (thaw, growing season, freeze-up, and winter seasons). The second construct uses statistical approaches with the rich datasets to identify Arctic functional zones. Functional zones are regions in the landscape that have unique assemblages of above- and below-ground properties relevant to ecosystem functioning. Results demonstrate the strong co-variation of above and below ground properties in this Arctic ecosystem, particularly highlighting the critical influence of soil moisture on vegetation dynamics and redox-based active-layer biogeochemistry important for carbon cycling. The results also indicate that polygon types (low centered, high centered) have more power to explain the variations in properties than polygon features (trough, rim, center). This finding allows delineation of functional zones through grouping contiguous, similar types of polygons using remote sensing and surface geophysical datasets. Applied to the tundra NGEE study site, the functional zone approach permitted aggregation of critical properties associated with ~1350 polygons and their individual features, which vary over centimeter-to-meter length scales, into a few functional zones having suites of co-varying properties that were tractably defined over ~hundred meter length scales. The developed above-and-below ground monitoring strategy and functional zone approach are proving to be extremely valuable for gaining new insights about a complex Arctic ecosystem and for characterizing the system properties at high resolution and yet with spatial extents relevant for informing models focused on simulating ecosystem-climate feedbacks.
NASA Astrophysics Data System (ADS)
Cavender-Bares, J.; Schweiger, A. K.; Madritch, M. D.; Gamon, J. A.; Hobbie, S. E.; Montgomery, R.; Townsend, P. A.
2017-12-01
Above-and below-ground plant traits are important for substrate input to the rhizosphere. The substrate composition of the rhizosphere, in turn, affects the diversity of soil organisms, influences soil biochemistry, and water content, and resource availability for plant growth. This has substantial consequences for ecosystem functions, such as above-ground productivity and stability. Above-ground plant chemical and structural traits can be linked to the characteristics of other plant organs, including roots. Airborne imaging spectroscopy has been successfully used to model and predict chemical and structural traits of the above-ground vegetation. However, remotely sensed images capture, almost exclusively, signals from the top of the canopy, providing limited direct information about understory vegetation. Here, we use a data set collected in a savanna ecosystem consisting of spectral measurements gathered at the leaf, the whole plant, and vegetation canopy level to test for hypothesized linkages between above- and below-ground processes that influence root biomass, soil biochemistry, and the diversity of the soil community. In this environment, consisting of herbaceous vegetation intermixed with shrubs and trees growing at variable densities, we investigate the contribution of different vegetation strata to soil characteristics and test the ability of imaging spectroscopy to detect these in plant communities with contrasting vertical structure.
Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales
Madritch, Michael D.; Kingdon, Clayton C.; Singh, Aditya; Mock, Karen E.; Lindroth, Richard L.; Townsend, Philip A.
2014-01-01
Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales. PMID:24733949
Forest restoration, biodiversity and ecosystem functioning.
Aerts, Raf; Honnay, Olivier
2011-11-24
Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but it also highlights that much remains to be understood, especially regarding the relation between forest functioning on the one side and genetic diversity and above-ground-below-ground species associations on the other. The strong emphasis of the BEF-approach on functional rather than taxonomic diversity may also be the beginning of a paradigm shift in restoration ecology, increasing the tolerance towards allochthonous species.
Tanner, Robert A.; Varia, Sonal; Eschen, René; Wood, Suzy; Murphy, Sean T.; Gange, Alan C.
2013-01-01
Vegetation community composition and the above- and below-ground invertebrate communities are linked intrinsically, though few studies have assessed the impact of non-native plants on both these parts of the community together. We evaluated the differences in the above- (foliage- and ground-dwelling) and below-ground invertebrate communities in nine uninvaded plots and nine plots invaded by the annual invasive species Impatiens glandulifera, in the UK during 2007 and 2008. Over 139,000 invertebrates were identified into distinct taxa and categorised into functional feeding groups. The impact of I. glandulifera on the vegetation and invertebrate community composition was evaluated using multivariate statistics including principal response curves (PRC) and redundancy analysis (RDA). In the foliage-dwelling community, all functional feeding groups were less abundant in the invaded plots, and the species richness of Coleoptera and Heteroptera was significantly reduced. In the ground-dwelling community, herbivores, detritivores, and predators were all significantly less abundant in the invaded plots. In contrast, these functional groups in the below-ground community appeared to be largely unaffected, and even positively associated with the presence of I. glandulifera. Although the cover of I. glandulifera decreased in the invaded plots in the second year of the study, only the below-ground invertebrate community showed a significant response. These results indicate that the above- and below-ground invertebrate communities respond differently to the presence of I. glandulifera, and these community shifts can potentially lead to a habitat less biologically diverse than surrounding native communities; which could have negative impacts on higher trophic levels and ecosystem functioning. PMID:23840648
Combined effects of agrochemicals and ecosystem services on crop yield across Europe.
Gagic, Vesna; Kleijn, David; Báldi, András; Boros, Gergely; Jørgensen, Helene Bracht; Elek, Zoltán; Garratt, Michael P D; de Groot, G Arjen; Hedlund, Katarina; Kovács-Hostyánszki, Anikó; Marini, Lorenzo; Martin, Emily; Pevere, Ines; Potts, Simon G; Redlich, Sarah; Senapathi, Deepa; Steffan-Dewenter, Ingolf; Świtek, Stanislaw; Smith, Henrik G; Takács, Viktória; Tryjanowski, Piotr; van der Putten, Wim H; van Gils, Stijn; Bommarco, Riccardo
2017-11-01
Simultaneously enhancing ecosystem services provided by biodiversity below and above ground is recommended to reduce dependence on chemical pesticides and mineral fertilisers in agriculture. However, consequences for crop yield have been poorly evaluated. Above ground, increased landscape complexity is assumed to enhance biological pest control, whereas below ground, soil organic carbon is a proxy for several yield-supporting services. In a field experiment replicated in 114 fields across Europe, we found that fertilisation had the strongest positive effect on yield, but hindered simultaneous harnessing of below- and above-ground ecosystem services. We furthermore show that enhancing natural enemies and pest control through increasing landscape complexity can prove disappointing in fields with low soil services or in intensively cropped regions. Thus, understanding ecological interdependences between land use, ecosystem services and yield is necessary to promote more environmentally friendly farming by identifying situations where ecosystem services are maximised and agrochemical inputs can be reduced. © 2017 John Wiley & Sons Ltd/CNRS.
Intraspecific plant-soil feedback and intraspecific overyielding in Arabidopsis thaliana.
Bukowski, Alexandra R; Petermann, Jana S
2014-06-01
Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant-soil feedback that can, for example, be caused by below-ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above- and below-ground traits. We performed a plant-soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity-productivity relationship at intraspecific level. We found strong differences in above- and below-ground traits between the A. thaliana accessions. Overall, plant-soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above-ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession-specific accumulated soil communities, by root exudates, or by accession-specific resource use based on genetic differences that are not expressed in morphological traits. Synthesis. Our results provide some of the first evidence for intraspecific plant-soil feedback and intraspecific overyielding. These findings may have wider implications for the maintenance of variation within species and the importance of this variation for ecosystem functioning. Our results highlight the need for an increased focus on intraspecific processes in plant diversity research to fully understand the mechanisms of coexistence and ecosystem functioning.
Intraspecific plant–soil feedback and intraspecific overyielding in Arabidopsis thaliana
Bukowski, Alexandra R; Petermann, Jana S
2014-01-01
Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant–soil feedback that can, for example, be caused by below-ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above- and below-ground traits. We performed a plant–soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity–productivity relationship at intraspecific level. We found strong differences in above- and below-ground traits between the A. thaliana accessions. Overall, plant–soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above-ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession-specific accumulated soil communities, by root exudates, or by accession-specific resource use based on genetic differences that are not expressed in morphological traits. Synthesis. Our results provide some of the first evidence for intraspecific plant–soil feedback and intraspecific overyielding. These findings may have wider implications for the maintenance of variation within species and the importance of this variation for ecosystem functioning. Our results highlight the need for an increased focus on intraspecific processes in plant diversity research to fully understand the mechanisms of coexistence and ecosystem functioning. PMID:25360284
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleska, Scott; Davidson, Eric; Finzi, Adrien
This project combines automated in situ observations of the isotopologues of CO 2 with root observations, novel experimental manipulations of below ground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. above ground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: (A) Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics; (B) Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated below groundmore » using measurements of root growth and indices of below ground autotrophic vs. heterotrophic respiration (via trenched plots andisotope measurements); (C) Testing whether plant allocation of carbon below ground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and (D) Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2).« less
Locally rare species influence grassland ecosystem multifunctionality
Manning, Peter; Prati, Daniel; Gossner, Martin M.; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H.; Klein, Alexandra-Maria; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E. Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Renner, Swen C.; Rillig, Matthias C.; Schaefer, H. Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A.; Solly, Emily F.; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul; Weiner, Christiane N.; Weisser, Wolfgang W.; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric
2016-01-01
Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity–multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities. PMID:27114572
Locally rare species influence grassland ecosystem multifunctionality.
Soliveres, Santiago; Manning, Peter; Prati, Daniel; Gossner, Martin M; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H; Klein, Alexandra-Maria; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Renner, Swen C; Rillig, Matthias C; Schaefer, H Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A; Solly, Emily F; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric
2016-05-19
Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity-multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities. © 2016 The Author(s).
A global Fine-Root Ecology Database to address below-ground challenges in plant ecology
Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer; ...
2017-02-28
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. And while fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of rootmore » traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. There has been a continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.« less
A global Fine-Root Ecology Database to address below-ground challenges in plant ecology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. And while fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of rootmore » traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. There has been a continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.« less
The Longterm Effects of Climate Change in European Shrubland Ecosystems
NASA Astrophysics Data System (ADS)
Emmett, B.; Sowerby, A.; Smith, A.; EU Increase-infrastructure Project Team
2011-12-01
Shrublands constitute significant and important parts of European landscapes providing a large number of important ecosystem services. Biogeochemical cycles in these ecosystems have gained little attention relative to forests and grassland systems. As climate change progresses the potential feedback from the biosphere to the atmosphere through changes in above and below-ground structure and functioning will become increasingly important. A series of replicate long term climate change experiments have been running for ca. 10 years in contrasting shrubland types across Europe to quantify; (a) the potential changes in carbon sequestration, GHG emissions and nutrient cycling, (b) the links to above and below-ground biodiversity, and (c) implications for water quality, in response to warming and repeated summer drought. Results indicate a relatively high rate of below-ground carbon allocation compared to forest systems and the importance of modifying factors such as past and current management, atmospheric deposition and soil type in determining resilience to change. Unexpectedly, sustained reduction in soil moisture over winter (between drought periods and despite major winter rainfall) was observed in the repeated summer drought treatment, along with a reduction in the maximum water-holding capacity attained. The persistent reduction in soil moisture throughout the year resulted in a year-round increase in soil respiration flux, a response that accelerated over time to 40% above control levels in the hydric, organic-rich UK system. As above-ground biomass, litter production and diversity was remarkably stable, changes in soil fungal communities and soil physical structure appear to be critical in driving changes in soil carbon fluxes in this organic-rich site. Current ecosystem models may under-estimate potential changes in carbon loss in response to climate change if changes in soil biological and physical properties are not included.
Ramirez, Kelly S.; Leff, Jonathan W.; Barberán, Albert; Bates, Scott Thomas; Betley, Jason; Crowther, Thomas W.; Kelly, Eugene F.; Oldfield, Emily E.; Shaw, E. Ashley; Steenbock, Christopher; Bradford, Mark A.; Wall, Diana H.; Fierer, Noah
2014-01-01
Soil biota play key roles in the functioning of terrestrial ecosystems, however, compared to our knowledge of above-ground plant and animal diversity, the biodiversity found in soils remains largely uncharacterized. Here, we present an assessment of soil biodiversity and biogeographic patterns across Central Park in New York City that spanned all three domains of life, demonstrating that even an urban, managed system harbours large amounts of undescribed soil biodiversity. Despite high variability across the Park, below-ground diversity patterns were predictable based on soil characteristics, with prokaryotic and eukaryotic communities exhibiting overlapping biogeographic patterns. Further, Central Park soils harboured nearly as many distinct soil microbial phylotypes and types of soil communities as we found in biomes across the globe (including arctic, tropical and desert soils). This integrated cross-domain investigation highlights that the amount and patterning of novel and uncharacterized diversity at a single urban location matches that observed across natural ecosystems spanning multiple biomes and continents. PMID:25274366
Changes in Soil Microbial Community Structure with Flooding
USDA-ARS?s Scientific Manuscript database
Flooding disturbs both above- and below-ground ecosystem processes. Although often ignored, changes in below-ground environments are no less important than those that occur above-ground. Shifts in soil microbial community structure are expected when anaerobic conditions develop from flooding. The ...
A global exploration of fine-root trait variation: opening the black box
USDA-ARS?s Scientific Manuscript database
A major part of ecosystem functioning relies on processes below ground, which are governed by fine root traits. This study synthesizes published and unpublished fine-root trait data available worldwide (>9000 observations from >1100 species on 14 traits) and examines their ecological value and globa...
Functional traits explain ecosystem function through opposing mechanisms.
Cadotte, Marc W
2017-08-01
The ability to explain why multispecies assemblages produce greater biomass compared to monocultures, has been a central goal in the quest to understand biodiversity effects on ecosystem function. Species contributions to ecosystem function can be driven by two processes: niche complementarity and a selection effect that is influenced by fitness (competitive) differences, and both can be approximated with measures of species' traits. It has been hypothesised that fitness differences are associated with few, singular traits while complementarity requires multidimensional trait measures. Here, using experimental data from plant assemblages, I show that the selection effect was strongest when trait dissimilarity was low, while complementarity was greatest with high trait dissimilarity. Selection effects were best explained by a single trait, plant height. Complementarity was correlated with dissimilarity across multiple traits, representing above and below ground processes. By identifying the relevant traits linked to ecosystem function, we obtain the ability to predict combinations of species that will maximise ecosystem function. © 2017 John Wiley & Sons Ltd/CNRS.
Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis.
Chen, Hao; Li, Dejun; Gurmesa, Geshere A; Yu, Guirui; Li, Linghao; Zhang, Wei; Fang, Huajun; Mo, Jiangming
2015-11-01
Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling on Chinese terrestrial ecosystems. Our results showed that N addition did not change soil C pools but increased above-ground plant C pool. A large decrease in below-ground plant C pool was observed. Our result also showed that the impacts of N addition on ecosystem C dynamics depend on ecosystem type and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M.; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G.; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo
2015-01-01
Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se. PMID:25567651
Below-ground carbon flux and partitioning: global patterns and response to temperature
C.M. Litton; C.P. Giardina
2008-01-01
1. The fraction of gross primary production (GPP) that is total below-ground carbon flux (TBCF) and the fraction of TBCF that is below-ground net primary production (BNPP) represent globally significant C fluxes that are fundamental in regulating ecosystem C balance. However, global estimates of the partitioning of GPP to TBCF and of TBCF to BNPP, as well as the...
A global Fine-Root Ecology Database to address below-ground challenges in plant ecology.
Iversen, Colleen M; McCormack, M Luke; Powell, A Shafer; Blackwood, Christopher B; Freschet, Grégoire T; Kattge, Jens; Roumet, Catherine; Stover, Daniel B; Soudzilovskaia, Nadejda A; Valverde-Barrantes, Oscar J; van Bodegom, Peter M; Violle, Cyrille
2017-07-01
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.
Ramirez, Kelly S; Leff, Jonathan W; Barberán, Albert; Bates, Scott Thomas; Betley, Jason; Crowther, Thomas W; Kelly, Eugene F; Oldfield, Emily E; Shaw, E Ashley; Steenbock, Christopher; Bradford, Mark A; Wall, Diana H; Fierer, Noah
2014-11-22
Soil biota play key roles in the functioning of terrestrial ecosystems, however, compared to our knowledge of above-ground plant and animal diversity, the biodiversity found in soils remains largely uncharacterized. Here, we present an assessment of soil biodiversity and biogeographic patterns across Central Park in New York City that spanned all three domains of life, demonstrating that even an urban, managed system harbours large amounts of undescribed soil biodiversity. Despite high variability across the Park, below-ground diversity patterns were predictable based on soil characteristics, with prokaryotic and eukaryotic communities exhibiting overlapping biogeographic patterns. Further, Central Park soils harboured nearly as many distinct soil microbial phylotypes and types of soil communities as we found in biomes across the globe (including arctic, tropical and desert soils). This integrated cross-domain investigation highlights that the amount and patterning of novel and uncharacterized diversity at a single urban location matches that observed across natural ecosystems spanning multiple biomes and continents. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Liang-Jun Hu; Ping Li; Qinfeng Guo
2013-01-01
Living plant diversity (excluding the litter issue) may affect below-ground properties and processes, which is critical to obtaining an integrated biodiversity-ecosystem functioning theory. However, related patterns and underlying mechanisms have rarely been examined, especially lacking long-term evidence. We conducted a factorial crossed sample survey to examine the...
Daniel L. Luoma; Joyce L. Eberhart; Randy Molina; Michael P. Amaranthus
2004-01-01
Forest management activities can reduce ectomycorrhizal fungus diversity and forest regeneration success. We examine contrasts in structural retention as they affect sporocarp production of ectomycorrhizal fungi (EMF)--functional guild of organisms well suited as indicators of disturbance effects on below-ground ecosystems. Our results are from an experiment that tests...
Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo
2015-02-22
Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Does species richness affect fine root biomass and production in young forest plantations?
Domisch, Timo; Finér, Leena; Dawud, Seid Muhie; Vesterdal, Lars; Raulund-Rasmussen, Karsten
2015-02-01
Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested that functional group identity (i.e. conifers vs. broadleaved species) can be more important for below-ground biomass and production than the species richness itself, as conifers seemed to be more competitive in colonising the soil volume, compared to broadleaved species.
Above- and below-ground growth of longleaf pine in response to three prescribed burning regimes
Mary Ann Sword Sayer; Eric Kuehler
2000-01-01
Maintenance of longleaf pine ecosystems requires repeated fire. Past research has indicated that in some situations, regular burning decreases longleaf pine productivity. Growth reductions may be attributed to fire-induced loss of leaf area. It is possible that the loss of leaf area is a function of both fire intensity and the stage of flush development at the time of...
Species richness alters spatial nutrient heterogeneity effects on above-ground plant biomass.
Xi, Nianxun; Zhang, Chunhui; Bloor, Juliette M G
2017-12-01
Previous studies have suggested that spatial nutrient heterogeneity promotes plant nutrient capture and growth. However, little is known about how spatial nutrient heterogeneity interacts with key community attributes to affect plant community production. We conducted a meta-analysis to investigate how nitrogen heterogeneity effects vary with species richness and plant density. Effect size was calculated using the natural log of the ratio in plant biomass between heterogeneous and homogeneous conditions. Effect sizes were significantly above zero, reflecting positive effects of spatial nutrient heterogeneity on community production. However, species richness decreased the magnitude of heterogeneity effects on above-ground biomass. The magnitude of heterogeneity effects on below-ground biomass did not vary with species richness. Moreover, we detected no modification in heterogeneity effects with plant density. Our results highlight the importance of species richness for ecosystem function. Asynchrony between above- and below-ground responses to spatial nutrient heterogeneity and species richness could have significant implications for biotic interactions and biogeochemical cycling in the long term. © 2017 The Author(s).
Bryophytes and Organic layers Control Uptake of Airborne Nitrogen in Low-N Environments.
Bähring, Alexandra; Fichtner, Andreas; Friedrich, Uta; von Oheimb, Goddert; Härdtle, Werner
2017-01-01
The effects of atmospheric nitrogen (N) deposition on ecosystem functioning largely depend on the retention of N in different ecosystem compartments, but accumulation and partitioning processes have rarely been quantified in long-term field experiments. In the present study we analysed for the first time decadal-scale flows and allocation patterns of N in a heathland ecosystem that has been subject to airborne N inputs over decades. Using a long-term 15 N tracer experiment, we quantified N retention and flows to and between ecosystem compartments (above-ground/below-ground vascular biomass, moss layer, soil horizons, leachate). After 9 years, about 60% of the added 15 N-tracer remained in the N cycle of the ecosystem. The moss layer proved to be a crucial link between incoming N and its allocation to different ecosystem compartments (in terms of a short-term capture, but long-term release function). However, about 50% of the 15 N captured and released by the moss layer was not compensated for by a corresponding increase in recovery rates in any other compartment, probably due to denitrification losses from the moss layer in the case of water saturation after rain events. The O-horizon proved to be the most important long-term sink for added 15 N, as reflected by an increase in recovery rates from 18 to 40% within 8 years. Less than 2.1% of 15 N were recovered in the podzol-B-horizon, suggesting that only negligible amounts of N were withdrawn from the N cycle of the ecosystem. Moreover, 15 N recovery was low in the dwarf shrub above-ground biomass (<3.9% after 9 years) and in the leachate (about 0.03% within 1 year), indicating still conservative N cycles of the ecosystem, even after decades of N inputs beyond critical load thresholds. The continuous accumulation of reactive forms of airborne N suggests that critical load-estimates need to account for cumulative effects of N additions into ecosystems.
Bryophytes and Organic layers Control Uptake of Airborne Nitrogen in Low-N Environments
Bähring, Alexandra; Fichtner, Andreas; Friedrich, Uta; von Oheimb, Goddert; Härdtle, Werner
2017-01-01
The effects of atmospheric nitrogen (N) deposition on ecosystem functioning largely depend on the retention of N in different ecosystem compartments, but accumulation and partitioning processes have rarely been quantified in long-term field experiments. In the present study we analysed for the first time decadal-scale flows and allocation patterns of N in a heathland ecosystem that has been subject to airborne N inputs over decades. Using a long-term 15N tracer experiment, we quantified N retention and flows to and between ecosystem compartments (above-ground/below-ground vascular biomass, moss layer, soil horizons, leachate). After 9 years, about 60% of the added 15N-tracer remained in the N cycle of the ecosystem. The moss layer proved to be a crucial link between incoming N and its allocation to different ecosystem compartments (in terms of a short-term capture, but long-term release function). However, about 50% of the 15N captured and released by the moss layer was not compensated for by a corresponding increase in recovery rates in any other compartment, probably due to denitrification losses from the moss layer in the case of water saturation after rain events. The O-horizon proved to be the most important long-term sink for added 15N, as reflected by an increase in recovery rates from 18 to 40% within 8 years. Less than 2.1% of 15N were recovered in the podzol-B-horizon, suggesting that only negligible amounts of N were withdrawn from the N cycle of the ecosystem. Moreover, 15N recovery was low in the dwarf shrub above-ground biomass (<3.9% after 9 years) and in the leachate (about 0.03% within 1 year), indicating still conservative N cycles of the ecosystem, even after decades of N inputs beyond critical load thresholds. The continuous accumulation of reactive forms of airborne N suggests that critical load-estimates need to account for cumulative effects of N additions into ecosystems. PMID:29375589
Bioactive Molecules in Soil Ecosystems: Masters of the Underground
Zhuang, Xuliang; Gao, Jie; Ma, Anzhou; Fu, Shenglei; Zhuang, Guoqiang
2013-01-01
Complex biological and ecological processes occur in the rhizosphere through ecosystem-level interactions between roots, microorganisms and soil fauna. Over the past decade, studies of the rhizosphere have revealed that when roots, microorganisms and soil fauna physically contact one another, bioactive molecular exchanges often mediate these interactions as intercellular signal, which prepare the partners for successful interactions. Despite the importance of bioactive molecules in sustainable agriculture, little is known of their numerous functions, and improving plant health and productivity by altering ecological processes remains difficult. In this review, we describe the major bioactive molecules present in below-ground ecosystems (i.e., flavonoids, exopolysaccharides, antibiotics and quorum-sensing signals), and we discuss how these molecules affect microbial communities, nutrient availability and plant defense responses. PMID:23615474
Ming, Angang; Jia, Hongyan; Zhao, Jinlong; Tao, Yi; Li, Yuanfa
2014-01-01
More than 60% of the total area of tree plantations in China is in subtropical, and over 70% of subtropical plantations consist of pure stands of coniferous species. Because of the poor ecosystem services provided by pure coniferous plantations and the ecological instability of these stands, a movement is under way to promote indigenous broadleaf plantation cultivation as a promising alternative. However, little is known about the carbon (C) stocks in indigenous broadleaf plantations and their dependence on stand age. Thus, we studied above- and below-ground biomass and C stocks in a chronosequence of Mytilaria laosensis plantations in subtropical China; stands were 7, 10, 18, 23, 29 and 33 years old. Our assessments included tree, shrub, herb and litter layers. We used plot-level inventories and destructive tree sampling to determine vegetation C stocks. We also measured soil C stocks by analyses of soil profiles to 100 cm depth. C stocks in the tree layer dominated the above-ground ecosystem C pool across the chronosequence. C stocks increased with age from 7 to 29 years and plateaued thereafter due to a reduction in tree growth rates. Minor C stocks were found in the shrub and herb layers of all six plantations and their temporal fluctuations were relatively small. C stocks in the litter and soil layers increased with stand age. Total above-ground ecosystem C also increased with stand age. Most increases in C stocks in below-ground and total ecosystems were attributable to increases in soil C content and tree biomass. Therefore, considerations of C sequestration potential in indigenous broadleaf plantations must take stand age into account.
Zhao, Jinlong; Tao, Yi
2014-01-01
More than 60% of the total area of tree plantations in China is in subtropical, and over 70% of subtropical plantations consist of pure stands of coniferous species. Because of the poor ecosystem services provided by pure coniferous plantations and the ecological instability of these stands, a movement is under way to promote indigenous broadleaf plantation cultivation as a promising alternative. However, little is known about the carbon (C) stocks in indigenous broadleaf plantations and their dependence on stand age. Thus, we studied above- and below-ground biomass and C stocks in a chronosequence of Mytilaria laosensis plantations in subtropical China; stands were 7, 10, 18, 23, 29 and 33 years old. Our assessments included tree, shrub, herb and litter layers. We used plot-level inventories and destructive tree sampling to determine vegetation C stocks. We also measured soil C stocks by analyses of soil profiles to 100 cm depth. C stocks in the tree layer dominated the above-ground ecosystem C pool across the chronosequence. C stocks increased with age from 7 to 29 years and plateaued thereafter due to a reduction in tree growth rates. Minor C stocks were found in the shrub and herb layers of all six plantations and their temporal fluctuations were relatively small. C stocks in the litter and soil layers increased with stand age. Total above-ground ecosystem C also increased with stand age. Most increases in C stocks in below-ground and total ecosystems were attributable to increases in soil C content and tree biomass. Therefore, considerations of C sequestration potential in indigenous broadleaf plantations must take stand age into account. PMID:25343446
Elise Pendall; Scott Bridgham; Paul J. Hanson; Bruce Hungate; David W. Kicklighter; Dale W. Johnson; Beverly E. Law; Yiqi Luo; J. Patrick Megonigal; Maria Olsrud; Michael G. Ryan; Shiqiang Wan
2004-01-01
Rising atmospheric CO2 and temperatures are probably altering ecosystem carbon cycling, causing both positive and negative feedbacks to climate. Below-ground processes play a key role in the global carbon (C) cycle because they regulate storage of large quantities of C, and are potentially very sensitive to direct and indirect effects of elevated...
Hammill, Edward; Booth, David J.; Madin, Elizabeth M. P.; Hinchliffe, Charles; Harborne, Alastair R.; Lovelock, Catherine E.; Macreadie, Peter I.; Atwood, Trisha B.
2018-01-01
Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the ‘grazing halos’ of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (μm) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways. PMID:29513746
Ollivier, Quinn R; Hammill, Edward; Booth, David J; Madin, Elizabeth M P; Hinchliffe, Charles; Harborne, Alastair R; Lovelock, Catherine E; Macreadie, Peter I; Atwood, Trisha B
2018-01-01
Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the 'grazing halos' of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (μm) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways.
NASA Astrophysics Data System (ADS)
Rankine, C. J.; Sánchez-Azofeifa, G.
2011-12-01
In the face of unprecedented global change driven by anthropogenic pressure on natural systems it has become imperative to monitor and better understand potential shifts in ecosystem functioning and services from local to global scales. The utilization of automated sensors technologies offers numerous advantages over traditional on-site ecosystem surveying techniques and, as a result, sensor networks are becoming a powerful tool in environmental monitoring programs. Tropical forests, renowned for their biodiversity, are important regulators of land-atmosphere fluxes yet the seasonally dry tropical forests, which account for 40% of forested ecosystems in the American tropics, have been severely degraded over the past several decades and not much is known of their capacity to recover. With less than 1% of these forests protected, our ability to monitor the dynamics and quantify changes in the remaining primary and recovering secondary tropical dry forests is vital to understanding mechanisms of ecosystem stress responses and climate feedback with respect to annual productivity and desertification processes in the tropics. The remote sensing component of the Tropi-Dry: Human and Biophysical Dimensions of Tropical Dry Forests in the Americas research network supports a network of long-term tropical ecosystem monitoring platforms which focus on the dynamics of seasonally dry tropical forests in the Americas. With over 25 sensor station deployments operating across a latitudinal gradient in Mexico, Costa Rica, Brazil, and Argentina continuously collecting hyper-temporal sensory input based on standardized deployment parameters, this monitoring system is unique among tropical environments. Technologies used in the network include optical canopy phenology towers, understory wireless sensing networks, above and below ground microclimate stations, and digital cameras. Sensory data streams are uploaded to a cyber-infrastructure initiative, denominated Enviro-Net°, for data storage, management, visualization, and retrieval for further analysis. The use of tower and ground-based optical sensor networks and meteorological monitoring instrumentation has proven effective in capturing seasonal growth patterns in primary and secondary forest stands. Furthermore, the observed trends in above and below ground microclimate variables are shown to closely correlate with in-situ vegetative indices (NDVI and EVI) across study sites. These long-term environmental sensory data streams provide valuable insights as to how these threatened semi-arid ecosystems regenerate after disturbances and how they respond to environmental stress such as climate change in the tropical and sub-tropical latitudes.
NASA Astrophysics Data System (ADS)
Altimir, Nuria; Ibañez, Mercedes; Elbers, Jan; Rota, Cristina; Arias, Claudia; Carrara, Arnaud; Nogues, Salvador; Sebastia, Maria-Teresa
2013-04-01
The net ecosystem exchange (NEE) and the annual C balance of a site are in general modulated by light, temperature and availability of water and other resources to the plants. In grasslands, NEE is expected to depend strongly on the vegetation with a relationship that can be summarized by the above-ground biomass, its amount and dynamics. Any factor controlling the amount of green biomass is expected to have a strong impact on the short-term NEE, such as amount of solar radiation, water availability and grazing pressure. These controls are modulated differently depending on the plant functional type enduring them. Furthermore, as different guilds follow different functional strategies for optimization of the resources, they also present different patterns of change in their capacities such as photosynthetic fixation, belowground C allocation, and C loss via respiration. We examined these relationships at several semi-natural pastures to determine how the seasonal distribution of plant functional types is detected in the short-term ecosystem exchange and what role it plays. We have looked into these patterns to determine the general variation of key processes and whether different temporal patterns arise between different guilds. The study sites are in the Pyrenees, on the mountain pastures of La Bertolina, Alinyà, and Castellar at 1300, 1700, 1900 m a.s.l. respectively. We performed ecosystem-scale flux measurements by means of micrometeorologial stations combined with a thorough description of the vegetation including below- and above-ground biomass and leaf area as well as monitoring of natural abundance of C isotopes, discriminated by plant functional types. We present here the results of the study.
Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis
Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong
2016-01-01
Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition. PMID:26813078
Zeng, Chaoxu; Wu, Jianshuang; Zhang, Xianzhou
2015-01-01
Biomass allocation is an essential concept for understanding above- vs. below-ground functions and for predicting the dynamics of community structure and ecosystem service under ongoing climate change. There is rare available knowledge of grazing effects on biomass allocation in multiple zonal alpine grassland types along climatic gradients across the Northern Tibetan Plateau. We collected the peak above- and below-ground biomass (AGB and BGB) values at 106 pairs of well-matched grazed vs. fenced sites during summers of 2010–2013, of which 33 pairs were subject to meadow, 52 to steppe and 21 to desert-steppe. The aboveground net primary productivity (ANPP) was represented by the peak AGB while the belowground net primary productivity (BNPP) was estimated from ANPP, the ratio of living vs. dead BGB, and the root turnover rate. Two-ways analyses of variance (ANOVA) and paired samples comparisons with t-test were applied to examine the effects of pasture managements (PMS, i.e., grazed vs. fenced) and zonal grassland types on both ANPP and BNPP. Allometric and isometric allocation hypotheses were also tested between logarithmically transformed ANPP and BNPP using standardized major axis (SMA) analyses across grazed, fenced and overall sites. In our study, a high community-dependency was observed to support the allometric biomass allocation hypothesis, in association with decreased ANPP and a decreasing-to-increasing BNPP proportions with increasing aridity across the Northern Tibetan Plateau. Grazing vs. fencing seemed to have a trivial effect on ANPP compared to the overwhelming influence of different zonal grassland types. Vegetation links above- and below-ground ecological functions through integrated meta-population adaptive strategies to the increasing severity of habitat conditions. Therefore, more detailed studies on functional diversity are essentially to achieve conservation and sustainability goals under ongoing climatic warming and intensifying human influences. PMID:26284515
Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems.
Sloan, Victoria L; Fletcher, Benjamin J; Press, Malcolm C; Williams, Mathew; Phoenix, Gareth K
2013-12-01
Estimates of vegetation carbon pools and their turnover rates are central to understanding and modelling ecosystem responses to climate change and their feedbacks to climate. In the Arctic, a region containing globally important stores of soil carbon, and where the most rapid climate change is expected over the coming century, plant communities have on average sixfold more biomass below ground than above ground, but knowledge of the root carbon pool sizes and turnover rates is limited. Here, we show that across eight plant communities, there is a significant positive relationship between leaf and fine root turnover rates (r(2) = 0.68, P < 0.05), and that the turnover rates of both leaf (r(2) = 0.63, P < 0.05) and fine root (r(2) = 0.55, P < 0.05) pools are strongly correlated with leaf area index (LAI, leaf area per unit ground area). This coupling of root and leaf dynamics supports the theory of a whole-plant economics spectrum. We also show that the size of the fine root carbon pool initially increases linearly with increasing LAI, and then levels off at LAI = 1 m(2) m(-2), suggesting a functional balance between investment in leaves and fine roots at the whole community scale. These ecological relationships not only demonstrate close links between above and below-ground plant carbon dynamics but also allow plant carbon pool sizes and their turnover rates to be predicted from the single readily quantifiable (and remotely sensed) parameter of LAI, including the possibility of estimating root data from satellites. © 2013 John Wiley & Sons Ltd.
Soler, Roxina; Harvey, Jeffrey A; Bezemer, T Martijn; Stuefer, Josef F
2008-08-01
Plants can act as vertical communication channels or 'green phones' linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The protection of the plant shoot elicited by root damage can impair the survival, growth and development of aboveground insect herbivores, thereby creating plant-based functional links between soil-dwelling insects and insects that develop in the aboveground ecosystem. The interactions between spatially separated insects below- and aboveground are not restricted to root and foliar plant-feeding insects, but can be extended to higher trophic levels such as insect parasitoids. Here we discuss some implications of plants acting as communication channels or 'green phones' between root and foliar-feeding insects and their parasitoids, focusing on recent findings that plants attacked by root-feeding insects are significantly less attractive for the parasitoids of foliar-feeding insects.
Stafford, Joshua D.; Michael W. Eichholz,; Adam C. Phillips,
2012-01-01
Wetland loss in North America has been considerable and well documented, and the establishment of exotic species in remaining wetlands can further reduce their ability to support native flora and fauna. In the Chesapeake Bay and Great Lakes ecosystems, exotic mute swans (Cygnus olor) have been found to negatively impact wetlands through degradation of submerged aquatic vegetation (SAV) communities. Mute swan populations have expanded into many areas of mid-continental North America outside the Great Lakes ecosystem, but the environmental impact of these populations is not well known. Mid-continental wetlands in North America differ in physical characteristics (e.g., size, depth, and permanency) and aquatic vegetation species composition compared to wetlands in other areas where mute swans have been studied and, thus, may be more or less susceptible to degradation from swan herbivory. To investigate the impact of mute swan herbivory on SAV communities in mid-continent wetlands, we used exclosures to prevent swans from foraging in 2 wetland complexes in central Illinois. Above-ground biomass of vegetation did not differ between exclosures and controls; however, mean below-ground biomass was greater in exclosures (52.0 g/m2, SE = 6.0) than in controls (34.4 g/m2 SE = 4.0). Thus, although swan densities were lower in our study region compared to that of previous studies, we observed potentially detrimental impacts of swan herbivory on below-ground biomass of SAV. Our results indicate that both above-ground and below-ground impacts of herbivory should be monitored, and below-ground biomass may be most sensitive to swan foraging.
[Vegetation biomass distribution characteristics of alpine tundra ecosystem in Changbai Mountains].
Wei, Jing; Wu, Gang; Deng, Hongbing
2004-11-01
Climate change is one of the hotspots in global environment concerns, while alpine tundra ecosystem is most sensitive to global climate change. Because of the relatively small area of tundra, researches on alpine tundra ecosystem were much less. Based on the measurement of species biomass, dominant species organ biomass and vegetation biomass, this paper discussed the biomass spatial variation in alpine tundra ecosystem of Changbai Mountains. The results showed that among 43 species investigated, the first five species in biomass were Rhododendron chrysanthum (159.01 kg x hm(-2)), Vaccinium uliginosum var. alpinum (137.52 kg x hm(-2)), Vaccinium uliginosum (134.7 kg x hm(-2)), Dryas octopetala var. asiatica (131.5 kg x hm(-2)) and Salix rotundifolia (128.4 kg x hm(-2)), which were the dominant species in the alpine tundra ecosystem of Changbai Mountains. Along with increasing altitude, the ratio of below-/above-ground biomass and below-ground/total biomass gradually increased, while the vegetation biomass gradually decreased. The vegetation biomass showed a significant correlation with altitude in typical alpine tundra ecosystem of Changbai Mountains, and the average vegetation biomass was 2.21 t x hm(-2). Alpine tundra ecosystem is very important for microclimate regulation, soil improvement, water-holding, soil conservation, nutrient cycling, carbon fixation and oxygen production, and currently, it is the CO2 sink of Changbai Mountains.
A carbon balance model for the great dismal swamp ecosystem
Sleeter, Rachel; Sleeter, Benjamin M.; Williams, Brianna; Hogan, Dianna; Hawbaker, Todd J.; Zhu, Zhiliang
2017-01-01
BackgroundCarbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting.ResultsWe modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985–2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus.ConclusionsNatural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha−1/year−1 for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference conditions to model future scenarios of land management and disturbance.
A carbon balance model for the great dismal swamp ecosystem.
Sleeter, Rachel; Sleeter, Benjamin M; Williams, Brianna; Hogan, Dianna; Hawbaker, Todd; Zhu, Zhiliang
2017-12-01
Carbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting. We modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985-2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus. Natural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha -1 /year -1 for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference conditions to model future scenarios of land management and disturbance.
Kell, Douglas B
2012-06-05
The soil holds twice as much carbon as does the atmosphere, and most soil carbon is derived from recent photosynthesis that takes carbon into root structures and further into below-ground storage via exudates therefrom. Nonetheless, many natural and most agricultural crops have roots that extend only to about 1 m below ground. What determines the lifetime of below-ground C in various forms is not well understood, and understanding these processes is therefore key to optimising them for enhanced C sequestration. Most soils (and especially subsoils) are very far from being saturated with organic carbon, and calculations show that the amounts of C that might further be sequestered (http://dbkgroup.org/carbonsequestration/rootsystem.html) are actually very great. Breeding crops with desirable below-ground C sequestration traits, and exploiting attendant agronomic practices optimised for individual species in their relevant environments, are therefore important goals. These bring additional benefits related to improvements in soil structure and in the usage of other nutrients and water.
Xiao, Chunwang; Zhou, Yong; Su, Jiaqi; Yang, Fan
2017-01-01
Globally, many terrestrial ecosystems are experiencing a rapid loss of biodiversity. Continued improvements in our understanding of interrelationships between plant diversity and soil microbes are critical to address the concern over the consequences of the decline in biodiversity on ecosystem functioning and services. By removing forbs, or grasses, or, to an extreme scenario, both forbs and grasses in a steppe vegetation in Inner Mongolia, we studied how plant functional group (PFG) loss affects soil microbial community composition using phospholipid fatty acid analysis (PLFA) and litter decomposition using a litter-bag method. PFG loss significantly decreased above- and below-ground plant biomass, soil microbial biomass carbon (SMBC) and nitrogen (SMBN), but had no effect on the ratio of SMBC to SMBN. Although the ratio of fungal to bacterial PLFAs remained unaffected, PFG loss significantly reduced the amount of bacterial, fungal, and total PLFAs. PFG loss decreased litter monthly mass loss and decay constant, and such decrease was significant when both forbs and grasses were removed. Our results provide robust evidence that PFG loss in grassland ecosystem can lead to a rapid response of soil microbial activity which may affect litter decomposition and soil nutrient cycling, suggesting that the assessment of plant-microbe interactions in soils is an integral component of ecosystem response to biodiversity loss.
Human impacts in African savannas are mediated by plant functional traits.
Osborne, Colin P; Charles-Dominique, Tristan; Stevens, Nicola; Bond, William J; Midgley, Guy; Lehmann, Caroline E R
2018-05-28
Tropical savannas have a ground cover dominated by C 4 grasses, with fire and herbivory constraining woody cover below a rainfall-based potential. The savanna biome covers 50% of the African continent, encompassing diverse ecosystems that include densely wooded Miombo woodlands and Serengeti grasslands with scattered trees. African savannas provide water, grazing and browsing, food and fuel for tens of millions of people, and have a unique biodiversity that supports wildlife tourism. However, human impacts are causing widespread and accelerating degradation of savannas. The primary threats are land cover-change and transformation, landscape fragmentation that disrupts herbivore communities and fire regimes, climate change and rising atmospheric CO 2 . The interactions among these threats are poorly understood, with unknown consequences for ecosystem health and human livelihoods. We argue that the unique combinations of plant functional traits characterizing the major floristic assemblages of African savannas make them differentially susceptible and resilient to anthropogenic drivers of ecosystem change. Research must address how this functional diversity among African savannas differentially influences their vulnerability to global change and elucidate the mechanisms responsible. This knowledge will permit appropriate management strategies to be developed to maintain ecosystem integrity, biodiversity and livelihoods. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
The distribution and amount of carbon in the largest peatland complex in Amazonia
NASA Astrophysics Data System (ADS)
Draper, Frederick C.; Roucoux, Katherine H.; Lawson, Ian T.; Mitchard, Edward T. A.; Honorio Coronado, Euridice N.; Lähteenoja, Outi; Torres Montenegro, Luis; Valderrama Sandoval, Elvis; Zaráte, Ricardo; Baker, Timothy R.
2014-12-01
Peatlands in Amazonian Peru are known to store large quantities of carbon, but there is high uncertainty in the spatial extent and total carbon stocks of these ecosystems. Here, we use a multi-sensor (Landsat, ALOS PALSAR and SRTM) remote sensing approach, together with field data including 24 forest census plots and 218 peat thickness measurements, to map the distribution of peatland vegetation types and calculate the combined above- and below-ground carbon stock of peatland ecosystems in the Pastaza-Marañon foreland basin in Peru. We find that peatlands cover 35 600 ± 2133 km2 and contain 3.14 (0.44-8.15) Pg C. Variation in peat thickness and bulk density are the most important sources of uncertainty in these values. One particular ecosystem type, peatland pole forest, is found to be the most carbon-dense ecosystem yet identified in Amazonia (1391 ± 710 Mg C ha-1). The novel approach of combining optical and radar remote sensing with above- and below-ground carbon inventories is recommended for developing regional carbon estimates for tropical peatlands globally. Finally, we suggest that Amazonian peatlands should be a priority for research and conservation before the developing regional infrastructure causes an acceleration in the exploitation and degradation of these ecosystems.
NASA Astrophysics Data System (ADS)
Wohlfahrt, Georg; Galvagno, Marta
2016-04-01
Ecosystem respiration (ER) and gross primary productivity (GPP) are key carbon cycle concepts. Global estimates of ER and GPP are largely based on measurements of the net ecosystem CO2 exchange by means of the eddy covariance method from which ER and GPP are inferred using so-called flux partitioning algorithms. Using a simple two-source model of ecosystem respiration, consisting of an above-ground respiration source driven by simulated air temperature and a below-ground respiration source driven by simulated soil temperature, we demonstrate that the two most popular flux partitioning algorithms are unable to provide unbiased estimates of daytime ER (ignoring any reduction of leaf mitochondrial respiration) and thus GPP. The bias is demonstrated to be either positive or negative and to depend in a complex fashion on the driving temperature, the ratio of above- to below-ground respiration, the respective temperature sensitivities, the soil depth where the below-ground respiration source originates from (and thus phase and amplitude of soil vs. surface temperature) and day length. The insights from the modeling analysis are subject to a reality check using direct measurements of ER at a grassland where measurements of ER were conducted both during night and day using automated opaque chambers. Consistent with the modeling analysis we find that using air temperature to extrapolate from nighttime to daytime conditions overestimates daytime ER (by 20% or ca. 65 gC m-2 over a 100 day study period), while soil temperature results in an underestimation (by 4% or 12 gC m-2). We conclude with practical recommendations for eddy covariance flux partitioning in the context of the FLUXNET project.
Below-ground herbivory in natural communities: a review emphasizing fossorial animals
Andersen, Douglas C.
1987-01-01
Roots, bulbs, corms, and other below-ground organs are almost universally present in communities containing vascular plants. A large and taxonomically diverse group of herbivores uses these below-ground plant parts as its sole or primary source of food. Important within this group are plant-parasitic nematodes and several fossorial taxa that affect plants through their soil-disturbing activities as well as by consuming plant tissue. The fossorial taxa are probably best exemplified by fossorial rodents, which are distributed on all continents except Australia. All other fossorial herbivores are insects. The impact of below-groud herbivory on individual plant fitness will depend upon the extent to which, and under what circumstances, the consumption of plant tissue disrupts one or more of the six functions of below-ground plant parts. Below-ground herbivory is probably more often chronic than acute. Indirect evidence suggests that plants have responded evolutionarily to herbivory by enhancing the functional capacities of below-ground organs, thus developing a degree of tolerance, and by producing compounds that serve as feeding deterrents. Many plant species respond to the removal of root tissues by increasing the growth rate of the remaining roots and initiating new roots. Soil movement and mixing by fossorial rodents infleuce the environment of other below-ground herbivores as well as that of plants and plant propagules. The relationships among the various groups of below-ground herbivores, and between below-ground herbivores and plants, are at best poorly known, yet they appear to have major roles in determining the structure and regulating the functioning of natural communities.
Dormann, Carsten F; von Riedmatten, Lars; Scherer-Lorenzen, Michael
2017-06-17
Species richness affects processes and functions in many ecosystems. Since management of temperate grasslands is directly affecting species composition and richness, it can indirectly govern how systems respond to fluctuations in environmental conditions. Our aim in this study was to investigate whether species richness in managed grasslands can buffer the effects of drought and warming manipulations and hence increase the resistance to climate change. We established 45 plots in three regions across Germany, each with three different management regimes (pasture, meadow and mown pasture). We manipulated spring warming using open-top chambers and summer drought using rain-out shelters for 4 weeks. Measurements of species richness, above- and below-ground biomass and soil carbon and nitrogen concentrations showed significant but inconsistent differences among regions, managements and manipulations. We detected a three-way interaction between species richness, management and region, indicating that our study design was sensitive enough to detect even intricate effects. We could not detect a pervasive effect of species richness on biomass differences between treatments and controls, indicating that a combination of spring warming and summer drought effects on grassland systems are not consistently moderated by species richness. We attribute this to the relatively high number of species even at low richness levels, which already provides the complementarity required for positive biodiversity-ecosystem functioning relationships. A review of the literature also indicates that climate manipulations largely fail to show richness-buffering, while natural experiments do, suggesting that such manipulations are milder than reality or incur treatment artefacts.
Phillips, Richard P.; Ibanez, Ines; D’Orangeville, Loic; ...
2016-09-13
Predicted increases in the frequency and intensity of droughts across the temperate biome have highlighted the need to examine the extent to which forests may differ in their sensitivity to water stress. At present, a rich body of literature exists on how leaf- and stem-level physiology influence tree drought responses; however, less is known regarding the dynamic interactions that occur below ground between roots and soil physical and biological factors. Hence, there is a need to better understand how and why processes occurring below ground influence forest sensitivity to drought. Here, we review what is known about tree species’ belowmore » ground strategies for dealing with drought, and how physical and biological characteristics of soils interact with rooting strategies to influence forest sensitivity to drought. Then, we highlight how a below ground perspective of drought can be used in models to reduce uncertainty in predicting the ecosystem consequences of droughts in forests. Lastly, we describe the challenges and opportunities associated with managing forests under conditions of increasing drought frequency and intensity, and explain how a below ground perspective on drought may facilitate improved forest management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Richard P.; Ibanez, Ines; D’Orangeville, Loic
Predicted increases in the frequency and intensity of droughts across the temperate biome have highlighted the need to examine the extent to which forests may differ in their sensitivity to water stress. At present, a rich body of literature exists on how leaf- and stem-level physiology influence tree drought responses; however, less is known regarding the dynamic interactions that occur below ground between roots and soil physical and biological factors. Hence, there is a need to better understand how and why processes occurring below ground influence forest sensitivity to drought. Here, we review what is known about tree species’ belowmore » ground strategies for dealing with drought, and how physical and biological characteristics of soils interact with rooting strategies to influence forest sensitivity to drought. Then, we highlight how a below ground perspective of drought can be used in models to reduce uncertainty in predicting the ecosystem consequences of droughts in forests. Lastly, we describe the challenges and opportunities associated with managing forests under conditions of increasing drought frequency and intensity, and explain how a below ground perspective on drought may facilitate improved forest management.« less
A scalable multi-process model of root nitrogen uptake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Anthony P.
This article is a Commentary on McMurtrie & Näsholm et al., 218: 119–130. Roots are represented in Terrestrial Ecosystem Models (TEMs) in much less detail than their equivalent above-ground resource acquisition organs – leaves. Often roots in TEMs are simply resource sinks, and below-ground resource acquisition is commonly simulated without any relationship to root dynamics at all, though there are exceptions (e.g. Zaehle & Friend, 2010). The representation of roots as carbon (C) and nitrogen (N) sinks without complementary source functions can lead to strange sensitivities in a model. For example, reducing root lifespans in the Community Land Model (versionmore » 4.5) increases plant production as N cycles more rapidly through the ecosystem without loss of plant function (D. M. Ricciuto, unpublished). The primary reasons for the poorer representation of roots compared with leaves in TEMs are three-fold: (1) data are much harder won, especially in the field; (2) no simple mechanistic models of root function are available; and (3) scaling root function from an individual root to a root system lags behind methods of scaling leaf function to a canopy. Here in this issue of New Phytologist, McMurtrie & Näsholm (pp. 119–130) develop a relatively simple model for root N uptake that mechanistically accounts for processes of N supply (mineralization and transport by diffusion and mass flow) and N demand (root uptake and microbial immobilization).« less
A scalable multi-process model of root nitrogen uptake
Walker, Anthony P.
2018-02-28
This article is a Commentary on McMurtrie & Näsholm et al., 218: 119–130. Roots are represented in Terrestrial Ecosystem Models (TEMs) in much less detail than their equivalent above-ground resource acquisition organs – leaves. Often roots in TEMs are simply resource sinks, and below-ground resource acquisition is commonly simulated without any relationship to root dynamics at all, though there are exceptions (e.g. Zaehle & Friend, 2010). The representation of roots as carbon (C) and nitrogen (N) sinks without complementary source functions can lead to strange sensitivities in a model. For example, reducing root lifespans in the Community Land Model (versionmore » 4.5) increases plant production as N cycles more rapidly through the ecosystem without loss of plant function (D. M. Ricciuto, unpublished). The primary reasons for the poorer representation of roots compared with leaves in TEMs are three-fold: (1) data are much harder won, especially in the field; (2) no simple mechanistic models of root function are available; and (3) scaling root function from an individual root to a root system lags behind methods of scaling leaf function to a canopy. Here in this issue of New Phytologist, McMurtrie & Näsholm (pp. 119–130) develop a relatively simple model for root N uptake that mechanistically accounts for processes of N supply (mineralization and transport by diffusion and mass flow) and N demand (root uptake and microbial immobilization).« less
Anita C. Risch; Martin F. Jurgensen; Deborah S. Page-Dumroese; Otto Wildi; Martin Schultz
2008-01-01
Vegetation changes following agricultural land abandonment at high elevation - which is frequent in Europe - could have a major impact on carbon (C) sequestration. However, most information on the effects of vegetation changes on ecosystem C stocks originates from low-elevation studies on reforestation or early successional forests, and little is known about how these...
Yando, Erik S.; Osland, Michael J.; Willis, Jonathan M; Day, Richard H.; Krauss, Ken W.; Hester, Mark W.
2016-01-01
Synthesis: Our results indicate that the ecological implications of woody plant encroachment in tidal saline wetlands are dependent upon precipitation controls of plant–soil interactions. Although the above-ground effects of mangrove expansion are consistently large, below-ground influences of mangrove expansion appear to be greatest along low-rainfall coasts where salinities are high and marshes being replaced are carbon poor and dominated by succulent plants. Collectively, these findings complement those from terrestrial ecosystems and reinforce the importance of considering rainfall and plant–soil interactions within predictions of the ecological effects of woody plant encroachment.
Monitoring Functional Traits of Alpine Vegetation using Remote Sensing
NASA Astrophysics Data System (ADS)
Li, C.; Wulf, H.; Schaepman, M. E.; Schmid, B.
2016-12-01
Plant functional traits can be used to study the interactions between plants and ecosystem functioning as well as the response of plants to various environmental pressures. Continuous monitoring of plant functional traits dynamics on a large spatial scale is important to understand the mechanisms of ecosystem function degradation, especially on the Qinghai-Tibet Plateau. In this study, we investigated spatiotemporal trends of functional traits (i.e., chlorophyll content, phenology, leaf area index proxy of leaf size and above ground biomass proxy of leaf mass) in the eastern part of the Qinghai-Tibet Plateau based on the combined analysis of multi-sensor satellite data and field observations at three spatial scales (ground-truth data at 1 m, Landsat at 30 m, MODIS at 500 m), and analyzed potential factors contribute to their spatiotemporal trends. Chlorophyll content (Chl) and biomass was retrieved based on 94 field plots measurements. LAI was analyzed using MCD15A3H product and estimated values using digital hemispherical photographs in the field. Plant phenology will be processed based on MODIS NDVI time series and hourly Phenocam observations. The preliminary results show that (1) Chl, LAI and biomass show high spatial heterogeneity trends and increase in 2001 - 2015. (2) Elevation played an important role in the spatial pattern of LAI and Chl variation in 15 years. A dividing line of approximately 3800 m exists and shows that below this line, LAI and Chl changes more complicated, showing significantly positive and negative linear trend. While above this altitude, the change rate of two variables keeps relatively stable. Vegetation in low elevation is exposed to high habitat diversity by showing high Chl, LAI and biomass spatial heterogeneity. The vegetation in high habitat diversity may be more sensitive to climatic variables and human activities than higher elevation since warming contribute to the positive trend of traits while human factors like urbanization might be explain negative trend in relative low altitude (below 3800 m). (3) Temperature contribute to the above functional traits variation than precipitation, especially temperature is more correlated to the functional traits of widely distributed vegetation type than narrow-ranging vegetation type.
McCormack, M. Luke; Guo, Dali; Iversen, Colleen M.; ...
2017-03-13
Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual rootsmore » to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormack, M. Luke; Guo, Dali; Iversen, Colleen M.
Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual rootsmore » to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales.« less
NASA Astrophysics Data System (ADS)
Miyauchi, T.; Machimura, T.
2013-12-01
In the simulation using an ecosystem process model, the adjustment of parameters is indispensable for improving the accuracy of prediction. This procedure, however, requires much time and effort for approaching the simulation results to the measurements on models consisting of various ecosystem processes. In this study, we tried to apply a general purpose optimization tool in the parameter optimization of an ecosystem model, and examined its validity by comparing the simulated and measured biomass growth of a woody plantation. A biometric survey of tree biomass growth was performed in 2009 in an 11-year old Eucommia ulmoides plantation in Henan Province, China. Climate of the site was dry temperate. Leaf, above- and below-ground woody biomass were measured from three cut trees and converted into carbon mass per area by measured carbon contents and stem density. Yearly woody biomass growth of the plantation was calculated according to allometric relationships determined by tree ring analysis of seven cut trees. We used Biome-BGC (Thornton, 2002) to reproduce biomass growth of the plantation. Air temperature and humidity from 1981 to 2010 was used as input climate condition. The plant functional type was deciduous broadleaf, and non-optimizing parameters were left default. 11-year long normal simulations were performed following a spin-up run. In order to select optimizing parameters, we analyzed the sensitivity of leaf, above- and below-ground woody biomass to eco-physiological parameters. Following the selection, optimization of parameters was performed by using the Dakota optimizer. Dakota is an optimizer developed by Sandia National Laboratories for providing a systematic and rapid means to obtain optimal designs using simulation based models. As the object function, we calculated the sum of relative errors between simulated and measured leaf, above- and below-ground woody carbon at each of eleven years. In an alternative run, errors at the last year (at the field survey) were weighted for priority. We compared some gradient-based global optimization methods of Dakota starting with the default parameters of Biome-BGC. In the result of sensitive analysis, carbon allocation parameters between coarse root and leaf, between stem and leaf, and SLA had high contribution on both leaf and woody biomass changes. These parameters were selected to be optimized. The measured leaf, above- and below-ground woody biomass carbon density at the last year were 0.22, 1.81 and 0.86 kgC m-2, respectively, whereas those simulated in the non-optimized control case using all default parameters were 0.12, 2.26 and 0.52 kgC m-2, respectively. After optimizing the parameters, the simulated values were improved to 0.19, 1.81 and 0.86 kgC m-2, respectively. The coliny global optimization method gave the better fitness than efficient global and ncsu direct method. The optimized parameters showed the higher carbon allocation rates to coarse roots and leaves and the lower SLA than the default parameters, which were consistent to the general water physiological response in a dry climate. The simulation using the weighted object function resulted in the closer simulations to the measurements at the last year with the lower fitness during the previous years.
Use of ground-based radiometers for L-Band Freeze/Thaw retrieval in a boreal forest site
NASA Astrophysics Data System (ADS)
Roy, A.; Sonnentag, O.; Derksen, C.; Toose, P.; Pappas, C.; Mavrovic, A.; El Amine, M.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Barr, A.; Black, T. A.
2017-12-01
The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of the seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitutes an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. Recently, new L-Band satellite-derived F/T information has become available. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the ground surface to the satellite signal remains challenging. Here we present results from an ongoing campaign with two L-Band surface-based radiometers (SBR) installed on a micrometeorological tower at the Southern Old Black Spruce site (53.99°N / 105.12°W) in central Saskatchewan. One radiometer unit is installed on top of the tower viewing the multi-layer vegetation canopy from above. A second radiometer unit is installed within the multi-layer canopy, viewing the understory and the ground surface only. The objectives of our study are to (i) disentangle the L-Band F/T signal contribution of boreal forest overstory from the combined understory and ground surface contribution, and (ii) link the L-Band F/T signal to related boreal forest structural and functional characteristics. Analysis of these radiometer measurements made from September to November 2016 shows that when the ground surface is thawed, the main contributor to both radiometer signals is soil moisture. The Pearson correlation coefficient between brightness temperature (TB) at vertical polarization (V-pol) and soil permittivity is 0.79 for the radiometer above the canopy and 0.74 for the radiometer below the canopy. Under cold conditions when the soil was thawed (snow insulation) and the trees were frozen (below 0°C), TB at V-pol is negatively correlated with tree permittivity. The freezing tree contribution to the L-Band signal is however confirmed with L-Band coaxial probe measurements that show significant changes in tree L-Band permittivity when the tree temperature falls below 0 °C. This study will help develop freeze/thaw product and ecosystemic processes in boreal forest from satellite based remote sensing.
Frelich, Lee E; Peterson, Rolf O; Dovčiak, Martin; Reich, Peter B; Vucetich, John A; Eisenhauer, Nico
2012-11-05
As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems.
Legay, N.; Baxendale, C.; Grigulis, K.; Krainer, U.; Kastl, E.; Schloter, M.; Bardgett, R. D.; Arnoldi, C.; Bahn, M.; Dumont, M.; Poly, F.; Pommier, T.; Clément, J. C.; Lavorel, S.
2014-01-01
Background and Aims Abiotic properties of soil are known to be major drivers of the microbial community within it. Our understanding of how soil microbial properties are related to the functional structure and diversity of plant communities, however, is limited and largely restricted to above-ground plant traits, with the role of below-ground traits being poorly understood. This study investigated the relative contributions of soil abiotic properties and plant traits, both above-ground and below-ground, to variations in microbial processes involved in grassland nitrogen turnover. Methods In mountain grasslands distributed across three European sites, a correlative approach was used to examine the role of a large range of plant functional traits and soil abiotic factors on microbial variables, including gene abundance of nitrifiers and denitrifiers and their potential activities. Key Results Direct effects of soil abiotic parameters were found to have the most significant influence on the microbial groups investigated. Indirect pathways via plant functional traits contributed substantially to explaining the relative abundance of fungi and bacteria and gene abundances of the investigated microbial communities, while they explained little of the variance in microbial activities. Gene abundances of nitrifiers and denitrifiers were most strongly related to below-ground plant traits, suggesting that they were the most relevant traits for explaining variation in community structure and abundances of soil microbes involved in nitrification and denitrification. Conclusions The results suggest that consideration of plant traits, and especially below-ground traits, increases our ability to describe variation in the abundances and the functional characteristics of microbial communities in grassland soils. PMID:25122656
Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra.
Deslippe, Julie R; Simard, Suzanne W
2011-11-01
• Shrubs are expanding in Arctic tundra, but the role of mycorrhizal fungi in this process is unknown. We tested the hypothesis that mycorrhizal networks are involved in interplant carbon (C) transfer within a tundra plant community. • Here, we installed below-ground treatments to control for C transfer pathways and conducted a (13)CO(2)-pulse-chase labelling experiment to examine C transfer among and within plant species. • We showed that mycorrhizal networks exist in tundra, and facilitate below-ground transfer of C among Betula nana individuals, but not between or within the other tundra species examined. Total C transfer among conspecific B. nana pairs was 10.7 ± 2.4% of photosynthesis, with the majority of C transferred through rhizomes or root grafts (5.2 ± 5.3%) and mycorrhizal network pathways (4.1 ± 3.3%) and very little through soil pathways (1.4 ± 0.35%). • Below-ground C transfer was of sufficient magnitude to potentially alter plant interactions in Arctic tundra, increasing the competitive ability and mono-dominance of B. nana. C transfer was significantly positively related to ambient temperatures, suggesting that it may act as a positive feedback to ecosystem change as climate warms. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Feng, Youzhi; Lin, Xiangui; Yu, Yongchang; Zhu, Jianguo
2011-11-01
The knowledge of the impact of elevated ground-level O(3) below ground the agro-ecosystem is limited. A field experiment in China Ozone Free-Air Concentration Enrichment (FACE-O(3)) facility on a rice-wheat rotation system was carried out to investigate responses of anoxygenic phototrophic purple bacteria (AnPPB) to elevated ground-level O(3). AnPPB community structures and sizes in paddy soil were monitored by molecular approaches including PCR-DGGE and real-time quantitative PCR based upon the pufM gene on three typical rice growth stages. Repetitive sequence-based PCR (rep-PCR) in combination with culture-reliant method was conducted to reveal changes in genotypic diversity. Elevated ground-level O(3) statistically reduce AnPPB abundance and percentage in total bacterial community in flooded rice soil via decreasing their genotypic diversity and metabolic versatility. Concomitantly, their community composition changed after rice anthesis stage under elevated ground-level O(3). Our results from AnPPB potential responses imply that continuously elevated ground-level O(3) in the future would eventually harm the health of paddy ecosystem through negative effect on soil microorganisms.
Bioturbation by the Fungus-Gardening Ant, Trachymyrmex septentrionalis
Tschinkel, Walter R.; Seal, Jon N.
2016-01-01
Soil invertebrates such as ants are thought to be important manipulators of soils in temperate and tropical ecosystems. The fungus gardening ant, Trachymyrmex septentrionalis, is an important agent of biomantling, that is, of depositing soil excavated from below onto the surface, and has been suggested as an agent of bioturbation (moving soil below ground) as well. The amount of bioturbation by this ant was quantified by planting queenright colonies in sand columns consisting of 5 layers of different colored sand. The amount of each color of sand deposited on the surface was determined from April to November 2015. In November, colonies were excavated and the color and amount of sand deposited below ground (mostly as backfill in chambers) was determined. Extrapolated to one ha, T. septentrionalis deposited 800 kg of sand per annum on the surface, and an additional 200 kg (17% of the total excavated) below ground. On average, this mixes 1.3% of the sand from other layers within the top meter of soil per millennium, but this mixing is unlikely to be homogeneous, and probably occurs as "hotspots" in both horizontal and vertical space. Such mixing is discussed as a challenge to sediment dating by optically stimulated luminescence (OSL). PMID:27391485
Bioturbation by the Fungus-Gardening Ant, Trachymyrmex septentrionalis.
Tschinkel, Walter R; Seal, Jon N
2016-01-01
Soil invertebrates such as ants are thought to be important manipulators of soils in temperate and tropical ecosystems. The fungus gardening ant, Trachymyrmex septentrionalis, is an important agent of biomantling, that is, of depositing soil excavated from below onto the surface, and has been suggested as an agent of bioturbation (moving soil below ground) as well. The amount of bioturbation by this ant was quantified by planting queenright colonies in sand columns consisting of 5 layers of different colored sand. The amount of each color of sand deposited on the surface was determined from April to November 2015. In November, colonies were excavated and the color and amount of sand deposited below ground (mostly as backfill in chambers) was determined. Extrapolated to one ha, T. septentrionalis deposited 800 kg of sand per annum on the surface, and an additional 200 kg (17% of the total excavated) below ground. On average, this mixes 1.3% of the sand from other layers within the top meter of soil per millennium, but this mixing is unlikely to be homogeneous, and probably occurs as "hotspots" in both horizontal and vertical space. Such mixing is discussed as a challenge to sediment dating by optically stimulated luminescence (OSL).
Wetland Ecohydrology: stochastic description of water level fluctuations across the soil surface
NASA Astrophysics Data System (ADS)
Tamea, S.; Muneepeerakul, R.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I.
2009-12-01
Wetlands provide a suite of social and ecological critical functions such as being habitats of disease-carrying vectors, providing buffer zones against hurricanes, controlling sediment transport, filtering nutrients and contaminants, and a repository of great biological diversity. More recently, wetlands have also been recognized as crucial for carbon storage in the context of global climate change. Despite such importance, quantitative approaches to many aspects of wetlands are far from adequate. Therefore, improving our quantitative understanding of wetlands is necessary to our ability to maintain, manage, and restore these invaluable environments. In wetlands, hydrologic factors and ecosystem processes interplay and generate unique characteristics and a delicate balance between biotic and abiotic elements. The main hydrologic driver of wetland ecosystems is the position of the water level that, being above or below ground, determines the submergence or exposure of soil. When the water level is above the soil surface, soil saturation and lack of oxygen causes hypoxia, anaerobic functioning of microorganisms and anoxic stress in plants, that might lead to the death of non-adapted organisms. When the water level lies below the soil surface, the ecosystem becomes groundwater-dependent, and pedological and physiological aspects play their role in the soil water balance. We propose here a quantitative description of wetland ecohydrology, through a stochastic process-based water balance, driven by a marked compound Poisson noise representing rainfall events. The model includes processes such as rainfall infiltration, evapotranspiration, capillary rise, and the contribution of external water bodies, which are quantified in a simple yet realistic way. The semi-analytical steady-state probability distributions of water level spanning across the soil surface are validated with data from the Everglades (Florida, USA). The model and its results allow for a quantitative analysis of the long term behavior of biotic and abiotic factors which depend on the position of the water level and enable the assessment of impacts of climate changes on the wetland ecosystem.
Climate change effects on above- and below-ground interactions in a dryland ecosystem.
González-Megías, Adela; Menéndez, Rosa
2012-11-19
Individual species respond to climate change by altering their abundance, distribution and phenology. Less is known, however, about how climate change affects multitrophic interactions, and its consequences for food-web dynamics. Here, we investigate the effect of future changes in rainfall patterns on detritivore-plant-herbivore interactions in a semiarid region in southern Spain by experimentally manipulating rainfall intensity and frequency during late spring-early summer. Our results show that rain intensity changes the effect of below-ground detritivores on both plant traits and above-ground herbivore abundance. Enhanced rain altered the interaction between detritivores and plants affecting flower and fruit production, and also had a direct effect on fruit and seed set. Despite this finding, there was no net effect on plant reproductive output. This finding supports the idea that plants will be less affected by climatic changes than by other trophic levels. Enhanced rain also affected the interaction between detritivores and free-living herbivores. The effect, however, was apparent only for generalist and not for specialist herbivores, demonstrating a differential response to climate change within the same trophic level. The complex responses found in this study suggest that future climate change will affect trophic levels and their interactions differentially, making extrapolation from individual species' responses and from one ecosystem to another very difficult.
Frelich, Lee E.; Peterson, Rolf O.; Dovčiak, Martin; Reich, Peter B.; Vucetich, John A.; Eisenhauer, Nico
2012-01-01
As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems. PMID:23007083
NASA Astrophysics Data System (ADS)
Clough, Yann; Krishna, Vijesh V.; Corre, Marife D.; Darras, Kevin; Denmead, Lisa H.; Meijide, Ana; Moser, Stefan; Musshoff, Oliver; Steinebach, Stefanie; Veldkamp, Edzo; Allen, Kara; Barnes, Andrew D.; Breidenbach, Natalie; Brose, Ulrich; Buchori, Damayanti; Daniel, Rolf; Finkeldey, Reiner; Harahap, Idham; Hertel, Dietrich; Holtkamp, A. Mareike; Hörandl, Elvira; Irawan, Bambang; Jaya, I. Nengah Surati; Jochum, Malte; Klarner, Bernhard; Knohl, Alexander; Kotowska, Martyna M.; Krashevska, Valentyna; Kreft, Holger; Kurniawan, Syahrul; Leuschner, Christoph; Maraun, Mark; Melati, Dian Nuraini; Opfermann, Nicole; Pérez-Cruzado, César; Prabowo, Walesa Edho; Rembold, Katja; Rizali, Akhmad; Rubiana, Ratna; Schneider, Dominik; Tjitrosoedirdjo, Sri Sudarmiyati; Tjoa, Aiyen; Tscharntke, Teja; Scheu, Stefan
2016-10-01
Smallholder-dominated agricultural mosaic landscapes are highlighted as model production systems that deliver both economic and ecological goods in tropical agricultural landscapes, but trade-offs underlying current land-use dynamics are poorly known. Here, using the most comprehensive quantification of land-use change and associated bundles of ecosystem functions, services and economic benefits to date, we show that Indonesian smallholders predominantly choose farm portfolios with high economic productivity but low ecological value. The more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa. Between the monocultures, the higher economic performance of oil palm over rubber comes with the reliance on fertilizer inputs and with increased nutrient leaching losses. Strategies to achieve an ecological-economic balance and a sustainable management of tropical smallholder landscapes must be prioritized to avoid further environmental degradation.
Clough, Yann; Krishna, Vijesh V.; Corre, Marife D.; Darras, Kevin; Denmead, Lisa H.; Meijide, Ana; Moser, Stefan; Musshoff, Oliver; Steinebach, Stefanie; Veldkamp, Edzo; Allen, Kara; Barnes, Andrew D.; Breidenbach, Natalie; Brose, Ulrich; Buchori, Damayanti; Daniel, Rolf; Finkeldey, Reiner; Harahap, Idham; Hertel, Dietrich; Holtkamp, A. Mareike; Hörandl, Elvira; Irawan, Bambang; Jaya, I. Nengah Surati; Jochum, Malte; Klarner, Bernhard; Knohl, Alexander; Kotowska, Martyna M.; Krashevska, Valentyna; Kreft, Holger; Kurniawan, Syahrul; Leuschner, Christoph; Maraun, Mark; Melati, Dian Nuraini; Opfermann, Nicole; Pérez-Cruzado, César; Prabowo, Walesa Edho; Rembold, Katja; Rizali, Akhmad; Rubiana, Ratna; Schneider, Dominik; Tjitrosoedirdjo, Sri Sudarmiyati; Tjoa, Aiyen; Tscharntke, Teja; Scheu, Stefan
2016-01-01
Smallholder-dominated agricultural mosaic landscapes are highlighted as model production systems that deliver both economic and ecological goods in tropical agricultural landscapes, but trade-offs underlying current land-use dynamics are poorly known. Here, using the most comprehensive quantification of land-use change and associated bundles of ecosystem functions, services and economic benefits to date, we show that Indonesian smallholders predominantly choose farm portfolios with high economic productivity but low ecological value. The more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa. Between the monocultures, the higher economic performance of oil palm over rubber comes with the reliance on fertilizer inputs and with increased nutrient leaching losses. Strategies to achieve an ecological-economic balance and a sustainable management of tropical smallholder landscapes must be prioritized to avoid further environmental degradation. PMID:27725673
Clough, Yann; Krishna, Vijesh V; Corre, Marife D; Darras, Kevin; Denmead, Lisa H; Meijide, Ana; Moser, Stefan; Musshoff, Oliver; Steinebach, Stefanie; Veldkamp, Edzo; Allen, Kara; Barnes, Andrew D; Breidenbach, Natalie; Brose, Ulrich; Buchori, Damayanti; Daniel, Rolf; Finkeldey, Reiner; Harahap, Idham; Hertel, Dietrich; Holtkamp, A Mareike; Hörandl, Elvira; Irawan, Bambang; Jaya, I Nengah Surati; Jochum, Malte; Klarner, Bernhard; Knohl, Alexander; Kotowska, Martyna M; Krashevska, Valentyna; Kreft, Holger; Kurniawan, Syahrul; Leuschner, Christoph; Maraun, Mark; Melati, Dian Nuraini; Opfermann, Nicole; Pérez-Cruzado, César; Prabowo, Walesa Edho; Rembold, Katja; Rizali, Akhmad; Rubiana, Ratna; Schneider, Dominik; Tjitrosoedirdjo, Sri Sudarmiyati; Tjoa, Aiyen; Tscharntke, Teja; Scheu, Stefan
2016-10-11
Smallholder-dominated agricultural mosaic landscapes are highlighted as model production systems that deliver both economic and ecological goods in tropical agricultural landscapes, but trade-offs underlying current land-use dynamics are poorly known. Here, using the most comprehensive quantification of land-use change and associated bundles of ecosystem functions, services and economic benefits to date, we show that Indonesian smallholders predominantly choose farm portfolios with high economic productivity but low ecological value. The more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa. Between the monocultures, the higher economic performance of oil palm over rubber comes with the reliance on fertilizer inputs and with increased nutrient leaching losses. Strategies to achieve an ecological-economic balance and a sustainable management of tropical smallholder landscapes must be prioritized to avoid further environmental degradation.
Ground-water protection, low-level waste, and below regulatory concern: What`s the connection?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruhlke, J.M.; Galpin, F.L.
1991-12-31
The Environmental Protection Agency (EPA) has a responsibility to protect ground water and drinking water under a wide variety of statutes. Each statute establishes different but specific requirements for EPA and applies to diverse environmental contaminants. Radionuclides are but one of the many contaminants subject to this regulatory matrix. Low-level radioactive waste (LLW) and below regulatory concern (BRC) are but two of many activities falling into this regulatory structure. The nation`s ground water serves as a major source of drinking water, supports sensitive ecosystems, and supplies the needs of agriculture and industry. Ground water can prove enormously expensive to cleanmore » up. EPA policy for protecting ground water has evolved considerably over the last ten years. The overall goal is to prevent adverse effects to human health, both now and in the future, and to protect the integrity of the nation`s ground-water resources. The Agency uses the Maximum Contaminant Levels (MCLs) under the Safe Drinking Water Act as reference points for protection in both prevention and remediation activities. What`s the connection? Both low-level waste management and disposal activities and the implementation of below regulatory concern related to low-level waste disposal have the potential for contaminating ground water. EPA is proposing to use the MCLs as reference points for low-level waste disposal and BRC disposal in order to define limits to the environmental contamination of ground water that is, or may be, used for drinking water.« less
Arctic mosses govern below-ground environment and ecosystem processes.
Gornall, J L; Jónsdóttir, I S; Woodin, S J; Van der Wal, R
2007-10-01
Mosses dominate many northern ecosystems and their presence is integral to soil thermal and hydrological regimes which, in turn, dictate important ecological processes. Drivers, such as climate change and increasing herbivore pressure, affect the moss layer thus, assessment of the functional role of mosses in determining soil characteristics is essential. Field manipulations conducted in high arctic Spitsbergen (78 degrees N), creating shallow (3 cm), intermediate (6 cm) and deep (12 cm) moss layers over the soil surface, had an immediate impact on soil temperature in terms of both average temperatures and amplitude of fluctuations. In soil under deep moss, temperature was substantially lower and organic layer thaw occurred 4 weeks later than in other treatment plots; the growing season for vascular plants was thereby reduced by 40%. Soil moisture was also reduced under deep moss, reflecting the influence of local heterogeneity in moss depth, over and above the landscape-scale topographic control of soil moisture. Data from field and laboratory experiments show that moss-mediated effects on the soil environment influenced microbial biomass and activity, resulting in warmer and wetter soil under thinner moss layers containing more plant-available nitrogen. In arctic ecosystems, which are limited by soil temperature, growing season length and nutrient availability, spatial and temporal variation in the depth of the moss layer has significant repercussions for ecosystem function. Evidence from our mesic tundra site shows that any disturbance causing reduction in the depth of the moss layer will alleviate temperature and moisture constraints and therefore profoundly influence a wide range of ecosystem processes, including nutrient cycling and energy transfer.
Using simple environmental variables to estimate below-ground productivity in grasslands
Gill, R.A.; Kelly, R.H.; Parton, W.J.; Day, K.A.; Jackson, R.B.; Morgan, J.A.; Scurlock, J.M.O.; Tieszen, L.L.; Castle, J.V.; Ojima, D.S.; Zhang, X.S.
2002-01-01
In many temperate and annual grasslands, above-ground net primary productivity (NPP) can be estimated by measuring peak above-ground biomass. Estimates of below-ground net primary productivity and, consequently, total net primary productivity, are more difficult. We addressed one of the three main objectives of the Global Primary Productivity Data Initiative for grassland systems to develop simple models or algorithms to estimate missing components of total system NPP. Any estimate of below-ground NPP (BNPP) requires an accounting of total root biomass, the percentage of living biomass and annual turnover of live roots. We derived a relationship using above-ground peak biomass and mean annual temperature as predictors of below-ground biomass (r2 = 0.54; P = 0.01). The percentage of live material was 0.6, based on published values. We used three different functions to describe root turnover: constant, a direct function of above-ground biomass, or as a positive exponential relationship with mean annual temperature. We tested the various models against a large database of global grassland NPP and the constant turnover and direct function models were approximately equally descriptive (r2 = 0.31 and 0.37), while the exponential function had a stronger correlation with the measured values (r2 = 0.40) and had a better fit than the other two models at the productive end of the BNPP gradient. When applied to extensive data we assembled from two grassland sites with reliable estimates of total NPP, the direct function was most effective, especially at lower productivity sites. We provide some caveats for its use in systems that lie at the extremes of the grassland gradient and stress that there are large uncertainties associated with measured and modelled estimates of BNPP.
Supplementing forest ecosystem health projects on the ground
Cathy Barbouletos; Lynette Z. Morelan
1995-01-01
Understanding the functions and processes of ecosystems is critical before implementing forest ecosystem health projects on the landscape. Silvicultural treatments such as thinning, prescribed fire, and reforestation can simulate disturbance regimes and landscape patterns that have regulated forest ecosystems for centuries. As land managers we need to understand these...
Toward Linking Aboveground Vegetation Properties and Soil Microbial Communities Using Remote Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; Gilbert, Jack A.; Larsen, Peter E.
2014-04-01
Despite their vital role in terrestrial ecosystem function, the distributions and dynamics of soil microbial communities (SMCs) are poorly understood. Vegetation and soil properties are the primary factors that influence SMCs. This paper discusses the potential effectiveness of remote sensing science and technologies for mapping SMC biogeography by characterizing surface biophysical properties (e.g., plant traits and community composition) strongly correlated with SMCs. Using remotely sensed biophysical properties to predict SMC distributions is extremely challenging because of the intricate interactions between biotic and abiotic factors and between above- and below-ground ecosystems. However, the integration of biophysical and soil remote sensing withmore » geospatial information about the environment holds great promise for mapping SMC biogeography. Additional research needs involve microbial taxonomic definition, soil environmental complexity, and scaling strategies. The collaborative effort of experts from diverse disciplines is essential to linking terrestrial surface biosphere observations with subsurface microbial community distributions using remote sensing.« less
Birkhofer, Klaus; Gossner, Martin M; Diekötter, Tim; Drees, Claudia; Ferlian, Olga; Maraun, Mark; Scheu, Stefan; Weisser, Wolfgang W; Wolters, Volkmar; Wurst, Susanne; Zaitsev, Andrey S; Smith, Henrik G
2017-05-01
Along with the global decline of species richness goes a loss of ecological traits. Associated biotic homogenization of animal communities and narrowing of trait diversity threaten ecosystem functioning and human well-being. High management intensity is regarded as an important ecological filter, eliminating species that lack suitable adaptations. Below-ground arthropods are assumed to be less sensitive to such effects than above-ground arthropods. Here, we compared the impact of management intensity between (grassland vs. forest) and within land-use types (local management intensity) on the trait diversity and composition in below- and above-ground arthropod communities. We used data on 722 arthropod species living above-ground (Auchenorrhyncha and Heteroptera), primarily in soil (Chilopoda and Oribatida) or at the interface (Araneae and Carabidae). Our results show that trait diversity of arthropod communities is not primarily reduced by intense local land use, but is rather affected by differences between land-use types. Communities of Auchenorrhyncha and Chilopoda had significantly lower trait diversity in grassland habitats as compared to forests. Carabidae showed the opposite pattern with higher trait diversity in grasslands. Grasslands had a lower proportion of large Auchenorrhyncha and Carabidae individuals, whereas Chilopoda and Heteroptera individuals were larger in grasslands. Body size decreased with land-use intensity across taxa, but only in grasslands. The proportion of individuals with low mobility declined with land-use intensity in Araneae and Auchenorrhyncha, but increased in Chilopoda and grassland Heteroptera. The proportion of carnivorous individuals increased with land-use intensity in Heteroptera in forests and in Oribatida and Carabidae in grasslands. Our results suggest that gradients in management intensity across land-use types will not generally reduce trait diversity in multiple taxa, but will exert strong trait filtering within individual taxa. The observed patterns for trait filtering in individual taxa are not related to major classifications into above- and below-ground species. Instead, ecologically different taxa resembled each other in their trait diversity and compositional responses to land-use differences. These previously undescribed patterns offer an opportunity to develop management strategies for the conservation of trait diversity across taxonomic groups in permanent grassland and forest habitats. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Novel techniques and findings in the study of plant microbiota: search for plant probiotics.
Berlec, Aleš
2012-09-01
Plants live in intimate relationships with numerous microorganisms present inside or outside plant tissues. The plant exterior provides two distinct ecosystems, the rhizosphere (below ground) and the phyllosphere (above ground), both populated by microbial communities. Most studies on plant microbiota deal with pathogens or mutualists. This review focuses on plant commensal bacteria, which could represent a rich source of bacteria beneficial to plants, alternatively termed plant probiotics. Plant commensal bacteria have been addressed only recently with culture-independent studies. These use next-generation sequencing, DNA microarray technologies and proteomics to decipher microbial community composition and function. Diverse bacterial populations are described in both rhizosphere and phyllosphere of different plants. The microorganisms can emerge from neighboring environmental ecosystems at random; however their survival is regulated by the plant. Influences from the environment, such as pesticides, farming practice and atmosphere, also affect the composition of microbial communities. Apart from community composition studies, some functional studies have also been performed. These include identification of broad-substrate surface receptors and methanol utilization enzymes by the proteomic approach, as well as identification of bacterial species that are important mediators of disease-suppressive soil phenomenon. Experience from more advanced human microbial studies could provide useful information and is discussed in the context of methodology and common trends. Administration of microbial mixtures of whole communities, rather than individual species, is highlighted and should be considered in future agricultural applications. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Common Ground for Managing Invasive Annual Grasses
USDA-ARS?s Scientific Manuscript database
Invasive annual grasses often reach their full biological potential in ecosystems of the western United States. This suggests that crucial ecosystem "checks and balances" are not functioning. In other words, invasion occurs because ecosystems have lost resistance to invasion, and invasive plants a...
Mueller, Rebecca C; Paula, Fabiana S; Mirza, Babur S; Rodrigues, Jorge L M; Nüsslein, Klaus; Bohannan, Brendan J M
2014-07-01
Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests.
S. W. Blecker; L. L. Stillings; M. C. Amacher; J. A. Ippolito; N. M. DeCrappeo
2012-01-01
Soil quality indices (SQIs) are often management driven and attempt to describe key relationships between above- and below-ground parameters. In terrestrial systems, indices that were initially developed and modified for agroecosystems have been applied to non-agricultural systems in increasing number. We develop an SQI in arid and semi-arid ecosystems of the Western...
John S. King; Timothy J. Albaugh; H. Lee Allen; Boyd R. Strain; Phillip Dougherty
2002-01-01
Availability of growth limiting resources may alter root dynamics in forest ecosystems, possibly affecting the land-atmosphere exchange of carbon. This was evaluated for a commercially important southern timber species by installing a factorial experiment of fertilization and irrigation treatments in an 8-yr-old loblolly pine (Pinus taeda) plantation...
Linking plant and ecosystem functional biogeography.
Reichstein, Markus; Bahn, Michael; Mahecha, Miguel D; Kattge, Jens; Baldocchi, Dennis D
2014-09-23
Classical biogeographical observations suggest that ecosystems are strongly shaped by climatic constraints in terms of their structure and function. On the other hand, vegetation function feeds back on the climate system via biosphere-atmosphere exchange of matter and energy. Ecosystem-level observations of this exchange reveal very large functional biogeographical variation of climate-relevant ecosystem functional properties related to carbon and water cycles. This variation is explained insufficiently by climate control and a classical plant functional type classification approach. For example, correlations between seasonal carbon-use efficiency and climate or environmental variables remain below 0.6, leaving almost 70% of variance unexplained. We suggest that a substantial part of this unexplained variation of ecosystem functional properties is related to variations in plant and microbial traits. Therefore, to progress with global functional biogeography, we should seek to understand the link between organismic traits and flux-derived ecosystem properties at ecosystem observation sites and the spatial variation of vegetation traits given geoecological covariates. This understanding can be fostered by synergistic use of both data-driven and theory-driven ecological as well as biophysical approaches.
Linking plant and ecosystem functional biogeography
Reichstein, Markus; Bahn, Michael; Mahecha, Miguel D.; Kattge, Jens; Baldocchi, Dennis D.
2014-01-01
Classical biogeographical observations suggest that ecosystems are strongly shaped by climatic constraints in terms of their structure and function. On the other hand, vegetation function feeds back on the climate system via biosphere–atmosphere exchange of matter and energy. Ecosystem-level observations of this exchange reveal very large functional biogeographical variation of climate-relevant ecosystem functional properties related to carbon and water cycles. This variation is explained insufficiently by climate control and a classical plant functional type classification approach. For example, correlations between seasonal carbon-use efficiency and climate or environmental variables remain below 0.6, leaving almost 70% of variance unexplained. We suggest that a substantial part of this unexplained variation of ecosystem functional properties is related to variations in plant and microbial traits. Therefore, to progress with global functional biogeography, we should seek to understand the link between organismic traits and flux-derived ecosystem properties at ecosystem observation sites and the spatial variation of vegetation traits given geoecological covariates. This understanding can be fostered by synergistic use of both data-driven and theory-driven ecological as well as biophysical approaches. PMID:25225392
He, Huaijiang; Zhang, Chunyu; Zhao, Xiuhai; Fousseni, Folega; Wang, Jinsong; Dai, Haijun; Yang, Song; Zuo, Qiang
2018-01-01
Understanding forest carbon budget and dynamics for sustainable resource management and ecosystem functions requires quantification of above- and below-ground biomass at individual tree species and stand levels. In this study, a total of 122 trees (9-12 per species) were destructively sampled to determine above- and below-ground biomass of 12 tree species (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis and Ulmus japonica) in coniferous and broadleaved mixed forests of Northeastern China, an area of the largest natural forest in the country. Biomass allocation was examined and biomass models were developed using diameter as independent variable for individual tree species and all species combined. The results showed that the largest biomass allocation of all species combined was on stems (57.1%), followed by coarse root (21.3%), branch (18.7%), and foliage (2.9%). The log-transformed model was statistically significant for all biomass components, although predicting power was higher for species-specific models than for all species combined, general biomass models, and higher for stems, roots, above-ground biomass, and total tree biomass than for branch and foliage biomass. These findings supplement the previous studies on this forest type by additional sample trees, species and locations, and support biomass research on forest carbon budget and dynamics by management activities such as thinning and harvesting in the northeastern part of China.
He, Huaijiang; Zhao, Xiuhai; Fousseni, Folega; Wang, Jinsong; Dai, Haijun; Yang, Song; Zuo, Qiang
2018-01-01
Understanding forest carbon budget and dynamics for sustainable resource management and ecosystem functions requires quantification of above- and below-ground biomass at individual tree species and stand levels. In this study, a total of 122 trees (9–12 per species) were destructively sampled to determine above- and below-ground biomass of 12 tree species (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis and Ulmus japonica) in coniferous and broadleaved mixed forests of Northeastern China, an area of the largest natural forest in the country. Biomass allocation was examined and biomass models were developed using diameter as independent variable for individual tree species and all species combined. The results showed that the largest biomass allocation of all species combined was on stems (57.1%), followed by coarse root (21.3%), branch (18.7%), and foliage (2.9%). The log-transformed model was statistically significant for all biomass components, although predicting power was higher for species-specific models than for all species combined, general biomass models, and higher for stems, roots, above-ground biomass, and total tree biomass than for branch and foliage biomass. These findings supplement the previous studies on this forest type by additional sample trees, species and locations, and support biomass research on forest carbon budget and dynamics by management activities such as thinning and harvesting in the northeastern part of China. PMID:29351291
Controls of vegetation structure and net primary production in restored grasslands
Munson, Seth M.; Lauenroth, William K.
2014-01-01
1. Vegetation structure and net primary production (NPP) are fundamental properties of ecosystems. Understanding how restoration practices following disturbance interact with environmental factors to control these properties can provide insight on how ecosystems recover and guide management efforts. 2. We assessed the relative contribution of environmental and restoration factors in controlling vegetation structure, above- and below-ground investment in production across a chronosequence of semiarid Conservation Reserve Program (CRP) fields recovering from dryland wheat cropping relative to undisturbed grassland. Importantly, we determined the role of plant diversity and how seeding either native or introduced perennial grasses influenced the recovery of vegetation properties. 3. Plant basal cover increased with field age and was highest in CRP fields seeded with native perennial grasses. In contrast, fields seeded with introduced perennial grasses had tall-growing plants with relatively low basal cover. These vegetation structural characteristics interacted with precipitation, but not soil characteristics, to influence above-ground NPP (ANPP). Fields enrolled in the CRP program for >7 years supported twice as much ANPP as undisturbed shortgrass steppe in the first wet year of the study, but all CRP fields converged on a common low amount of ANPP in the following dry year and invested less than half as much as the shortgrass steppe in below-ground biomass. 4. ANPP in CRP fields seeded with native perennial grasses for more than 7 years was positively related to species richness, whereas ANPP in CRP fields seeded with introduced perennial grasses were controlled more by dominant species. 5. Synthesis and applications. Seeding with introduced, instead of native, perennial grasses had a strong direct influence on vegetation structure, including species richness, which indirectly affected NPP through time. However, the effects of restoring either native or introduced grasses on NPP were secondary to low water availability. Therefore, restoration strategies that maximize basal cover and below-ground biomass, which promote water acquisition, may lead to high resilience in semiarid and arid regions.
Fragmentation impairs the microclimate buffering effect of tropical forests.
Ewers, Robert M; Banks-Leite, Cristina
2013-01-01
Tropical forest species are among the most sensitive to changing climatic conditions, and the forest they inhabit helps to buffer their microclimate from the variable climatic conditions outside the forest. However, habitat fragmentation and edge effects exposes vegetation to outside microclimatic conditions, thereby reducing the ability of the forest to buffer climatic variation. In this paper, we ask what proportion of forest in a fragmented ecosystem is impacted by altered microclimate conditions driven by edge effects, and extrapolate these results to the whole Atlantic Forest biome, one of the most disturbed biodiversity hotspots. To address these questions, we collected above and below ground temperature for a full year using temperature sensors placed in forest fragments of different sizes, and at different distances from the forest edge. In the Atlantic forests of Brazil, we found that the buffering effect of forests reduced maximum outside temperatures by one third or more at ground level within a forest, with the buffering effect being stronger below-ground than one metre above-ground. The temperature buffering effect of forests was, however, reduced near forest edges with the edge effect extending up to 20 m inside the forest. The heavily fragmented nature of the Brazilian Atlantic forest means that 12% of the remaining biome experiences altered microclimate conditions. Our results add further information about the extent of edge effects in the Atlantic Forest, and we suggest that maintaining a low perimeter-to-area ratio may be a judicious method for minimizing the amount of forest area that experiences altered microclimatic conditions in this ecosystem.
Fragmentation Impairs the Microclimate Buffering Effect of Tropical Forests
Ewers, Robert M.; Banks-Leite, Cristina
2013-01-01
Background Tropical forest species are among the most sensitive to changing climatic conditions, and the forest they inhabit helps to buffer their microclimate from the variable climatic conditions outside the forest. However, habitat fragmentation and edge effects exposes vegetation to outside microclimatic conditions, thereby reducing the ability of the forest to buffer climatic variation. In this paper, we ask what proportion of forest in a fragmented ecosystem is impacted by altered microclimate conditions driven by edge effects, and extrapolate these results to the whole Atlantic Forest biome, one of the most disturbed biodiversity hotspots. To address these questions, we collected above and below ground temperature for a full year using temperature sensors placed in forest fragments of different sizes, and at different distances from the forest edge. Principal Findings In the Atlantic forests of Brazil, we found that the buffering effect of forests reduced maximum outside temperatures by one third or more at ground level within a forest, with the buffering effect being stronger below-ground than one metre above-ground. The temperature buffering effect of forests was, however, reduced near forest edges with the edge effect extending up to 20 m inside the forest. The heavily fragmented nature of the Brazilian Atlantic forest means that 12% of the remaining biome experiences altered microclimate conditions. Conclusions Our results add further information about the extent of edge effects in the Atlantic Forest, and we suggest that maintaining a low perimeter-to-area ratio may be a judicious method for minimizing the amount of forest area that experiences altered microclimatic conditions in this ecosystem. PMID:23483976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinkle, Ross; Benscoter, Brian; Comas, Xavier
2015-04-07
Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change The objectives of this project are to: 1) quantify above- and below-ground carbon stocks of terrestrial ecosystems along a seasonal hydrologic gradient in the headwaters region of the Greater Everglades watershed; 2) develop budgets of ecosystem gaseous carbon exchange (carbon dioxide and methane) across the seasonal hydrologic gradient; 3) assess the impact of climate drivers on ecosystem carbon exchange in the Greater Everglades headwater region; and 4) integrate research findings with climate-driven terrestrial ecosystem carbon models to examine the potential influence of projected future climate change on regionalmore » carbon cycling. Note: this project receives a one-year extension past the original performance period - David Sumner (USGS) is not included in this extension.« less
Coastal eutrophication as a driver of salt marsh loss.
Deegan, Linda A; Johnson, David Samuel; Warren, R Scott; Peterson, Bruce J; Fleeger, John W; Fagherazzi, Sergio; Wollheim, Wilfred M
2012-10-18
Salt marshes are highly productive coastal wetlands that provide important ecosystem services such as storm protection for coastal cities, nutrient removal and carbon sequestration. Despite protective measures, however, worldwide losses of these ecosystems have accelerated in recent decades. Here we present data from a nine-year whole-ecosystem nutrient-enrichment experiment. Our study demonstrates that nutrient enrichment, a global problem for coastal ecosystems, can be a driver of salt marsh loss. We show that nutrient levels commonly associated with coastal eutrophication increased above-ground leaf biomass, decreased the dense, below-ground biomass of bank-stabilizing roots, and increased microbial decomposition of organic matter. Alterations in these key ecosystem properties reduced geomorphic stability, resulting in creek-bank collapse with significant areas of creek-bank marsh converted to unvegetated mud. This pattern of marsh loss parallels observations for anthropogenically nutrient-enriched marshes worldwide, with creek-edge and bay-edge marsh evolving into mudflats and wider creeks. Our work suggests that current nutrient loading rates to many coastal ecosystems have overwhelmed the capacity of marshes to remove nitrogen without deleterious effects. Projected increases in nitrogen flux to the coast, related to increased fertilizer use required to feed an expanding human population, may rapidly result in a coastal landscape with less marsh, which would reduce the capacity of coastal regions to provide important ecological and economic services.
NASA Astrophysics Data System (ADS)
Guilderson, T. P.; McFarlane, K. J.; McNicol, G.; Hanson, P. J.; Chanton, J.; Wilson, R.; Bosworth, R.; Singleton, M. J.
2015-12-01
A significant uncertainty in future land-surface carbon budgets is the response of wetlands to climate change. A related question is the future net climate (radiative) forcing impact due to ecosystem and environmental change in wetlands. Active wetlands emit both CO2 and CH4 to the atmosphere. CH4 is, over a few decades, a much more potent greenhouse gas than CO2 whereas as a consequence of a much longer atmospheric lifetime, CO2 has a longer 'tail' to its influence. Whether wetlands are a net source or sink of atmospheric carbon under future climate change will depend on the response of the ecosystem to rising temperatures and elevated CO2. The largest uncertainty in future wetland budgets, and its climate forcing, is the stability of the large belowground carbon stocks, often in the form of peat, and the partitioning of CO2 and CH4released via ecosystem respiration. We have characterized the isotopic signatures (14,13C of CO2 and CH4, D-CH4) of the respired carbon used for the production of CO2 and CH4 from the DOE Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) site in the Marcell Experimental Forest, which contains replicated mesocosm manipulations including above/below ground warming and elevated CO2. Deep warming (1-2 m) was initiated in July of 2014 and above ground heating will be initiated in July 2015. Comparison of the respired CO2 and CH4with recently fixed photosynthate, below-ground peat (up to 11,000 years old), and dissolved organic carbon allow us to determine the primary substrates used by the microbial community. Control and pre-perturbed plots are characterized by the consumption and respiration of recently fixed photosynthate and recent (few years to 15 yr) carbon. Although CH4 fluxes have begun to respond to deep-heating, the source of carbon remains similar in the control and perturbed plots. Respired CO2 remains consistent with being sourced from carbon only a few years old. We will present additional data collected in July, August, and September 2015 which will include the combined influence of above and belowground heating.
Influence of small-scale disturbances by kangaroo rats on Chihuahuan Desert ants
R. L. Schooley; B. T. Bestelmeyer; J. F. Kelly
2000-01-01
Banner-tailed kangaroo rats (Dipodomys spectabilis) are prominent ecosystem engineers that build large mounds that influence the spatial structuring of fungi, plants, and some ground-dwelling animals. Ants are diverse and functionally important components of arid ecosystems; some species are also ecosystem engineers. We investigated the effects of...
Muntadas, Alba; de Juan, Silvia; Demestre, Montserrat
2015-02-15
The species interaction and their biological traits (BT) determine the function of benthic communities and, hence, the delivery of ecosystem services. Therefore, disturbance of benthic communities by trawling may compromise ecosystem service delivery, including fisheries' catches. In this work, we explore 1) the impact of trawling activities on benthic functional components (after the BTA approach) and 2) how trawling impact may affect the ecosystem services delivered by benthic communities. To this aim, we assessed the provision of ecosystem services by adopting the concept of Ecosystem Service Providers (ESP), i.e. ecological units that perform ecosystem functions that will ultimately deliver ecosystem services. We studied thirteen sites subjected to different levels of fishing effort in the Mediterranean. From a range of environmental variables included in the study, we found ESPs to be mainly affected by fishing effort and grain size. Our results suggested that habitat type has significant effects on the distribution of ESPs and this natural variability influences ESP response to trawling at a specific site. In order to summarize the complex relationships between human uses, ecosystem components and the demand for ecosystem services in trawling grounds, we adapted a DPSIR (Drivers-Pressures-State Change-Impact-Response) framework to the study area, emphasizing the role of society as Drivers of change and actors demanding management Responses. This integrative framework aims to inform managers about the interactions between all the elements involved in the management of trawling grounds, highlighting the need for an integrated approach in order to ensure ecosystem service provision. Copyright © 2014 Elsevier B.V. All rights reserved.
Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A.; Lohrer, Andrew M.; Wethey, David S.; Hewitt, Judi E.; Thrush, Simon F.
2016-01-01
Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes. PMID:27230562
Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A; Lohrer, Andrew M; Wethey, David S; Hewitt, Judi E; Thrush, Simon F
2016-05-27
Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes.
Dislich, Claudia; Hettig, Elisabeth; Salecker, Jan; Heinonen, Johannes; Lay, Jann; Meyer, Katrin M; Wiegand, Kerstin; Tarigan, Suria
2018-01-01
Land-use changes have dramatically transformed tropical landscapes. We describe an ecological-economic land-use change model as an integrated, exploratory tool used to analyze how tropical land-use change affects ecological and socio-economic functions. The model analysis seeks to determine what kind of landscape mosaic can improve the ensemble of ecosystem functioning, biodiversity, and economic benefit based on the synergies and trade-offs that we have to account for. More specifically, (1) how do specific ecosystem functions, such as carbon storage, and economic functions, such as household consumption, relate to each other? (2) How do external factors, such as the output prices of crops, affect these relationships? (3) How do these relationships change when production inefficiency differs between smallholder farmers and learning is incorporated? We initialize the ecological-economic model with artificially generated land-use maps parameterized to our study region. The economic sub-model simulates smallholder land-use management decisions based on a profit maximization assumption. Each household determines factor inputs for all household fields and decides on land-use change based on available wealth. The ecological sub-model includes a simple account of carbon sequestration in above-ground and below-ground vegetation. We demonstrate model capabilities with results on household consumption and carbon sequestration from different output price and farming efficiency scenarios. The overall results reveal complex interactions between the economic and ecological spheres. For instance, model scenarios with heterogeneous crop-specific household productivity reveal a comparatively high inertia of land-use change. Our model analysis even shows such an increased temporal stability in landscape composition and carbon stocks of the agricultural area under dynamic price trends. These findings underline the utility of ecological-economic models, such as ours, to act as exploratory tools which can advance our understanding of the mechanisms underlying the trade-offs and synergies of ecological and economic functions in tropical landscapes.
Dislich, Claudia; Hettig, Elisabeth; Heinonen, Johannes; Lay, Jann; Meyer, Katrin M.; Wiegand, Kerstin; Tarigan, Suria
2018-01-01
Land-use changes have dramatically transformed tropical landscapes. We describe an ecological-economic land-use change model as an integrated, exploratory tool used to analyze how tropical land-use change affects ecological and socio-economic functions. The model analysis seeks to determine what kind of landscape mosaic can improve the ensemble of ecosystem functioning, biodiversity, and economic benefit based on the synergies and trade-offs that we have to account for. More specifically, (1) how do specific ecosystem functions, such as carbon storage, and economic functions, such as household consumption, relate to each other? (2) How do external factors, such as the output prices of crops, affect these relationships? (3) How do these relationships change when production inefficiency differs between smallholder farmers and learning is incorporated? We initialize the ecological-economic model with artificially generated land-use maps parameterized to our study region. The economic sub-model simulates smallholder land-use management decisions based on a profit maximization assumption. Each household determines factor inputs for all household fields and decides on land-use change based on available wealth. The ecological sub-model includes a simple account of carbon sequestration in above-ground and below-ground vegetation. We demonstrate model capabilities with results on household consumption and carbon sequestration from different output price and farming efficiency scenarios. The overall results reveal complex interactions between the economic and ecological spheres. For instance, model scenarios with heterogeneous crop-specific household productivity reveal a comparatively high inertia of land-use change. Our model analysis even shows such an increased temporal stability in landscape composition and carbon stocks of the agricultural area under dynamic price trends. These findings underline the utility of ecological-economic models, such as ours, to act as exploratory tools which can advance our understanding of the mechanisms underlying the trade-offs and synergies of ecological and economic functions in tropical landscapes. PMID:29351290
Clemmensen, Karina E; Finlay, Roger D; Dahlberg, Anders; Stenlid, Jan; Wardle, David A; Lindahl, Björn D
2015-03-01
Boreal forest soils store a major proportion of the global terrestrial carbon (C) and below-ground inputs contribute as much as above-ground plant litter to the total C stored in the soil. A better understanding of the dynamics and drivers of root-associated fungal communities is essential to predict long-term soil C storage and climate feedbacks in northern ecosystems. We used 454-pyrosequencing to identify fungal communities across fine-scaled soil profiles in a 5000 yr fire-driven boreal forest chronosequence, with the aim of pinpointing shifts in fungal community composition that may underlie variation in below-ground C sequestration. In early successional-stage forests, higher abundance of cord-forming ectomycorrhizal fungi (such as Cortinarius and Suillus species) was linked to rapid turnover of mycelial biomass and necromass, efficient nitrogen (N) mobilization and low C sequestration. In late successional-stage forests, cord formers declined, while ericoid mycorrhizal ascomycetes continued to dominate, potentially facilitating long-term humus build-up through production of melanized hyphae that resist decomposition. Our results suggest that cord-forming ectomycorrhizal fungi and ericoid mycorrhizal fungi play opposing roles in below-ground C storage. We postulate that, by affecting turnover and decomposition of fungal tissues, mycorrhizal fungal identity and growth form are critical determinants of C and N sequestration in boreal forests. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.
Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes
Chen, Weile; Koide, Roger T.; Eissenstat, David M.
2018-01-09
1. Plant roots and the associated mycorrhizal fungal hyphae often selectively proliferate into patchily distributed soil nutrient hotspots, but interactions between these two components of a mycorrhizal root system are usually ignored or experimentally isolated in nutrient foraging studies. 2. From studies in which both roots and mycorrhizal hyphae had access to nutrient hotspots, we compiled data on root foraging precision (increase in roots in nutrient hotspots relative to outside hotspots) of plant species from different ecosystems, ranging from temperate grasslands to subtropical forests. We found that root for- aging precision across the wide range of plant species was stronglymore » influenced by root morphology and mycorrhizal type. 3. The precision of root nutrient foraging, as a plant functional trait, may coordinate with other root traits that are related to the economics of nutrient acquisition. High foraging precision is expected to associate with the strategy of fast return on the investment in roots, such as low construction cost, high metabolic rate and rapid turnover. 4. Nutrient foraging by mycorrhizal fungi alone may be influenced by functional traits such as hyphal exploration distance, hyphal turnover, and hyphal uptake capacity and efficiency, but such data are limited to a small portion of mycorrhizal fungal species. 5. We propose a conceptual framework in which to simulate nitrogen and phosphorus acquisition from both nutrient hotspots and outside hotspots in mixed-species plant communities. Simulation outputs suggest that plant species with varying root morphology and mycorrhizal type can be adaptive to a range of nutrient heterogeneity. 6. Although there are still knowledge gaps related to nutrient foraging, as well as many unexplored plant and fungal species, we suggest that scaling nutrient foraging from individual plants to communities would advance understanding of plant species interactions and below-ground ecosystem function.« less
Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Weile; Koide, Roger T.; Eissenstat, David M.
1. Plant roots and the associated mycorrhizal fungal hyphae often selectively proliferate into patchily distributed soil nutrient hotspots, but interactions between these two components of a mycorrhizal root system are usually ignored or experimentally isolated in nutrient foraging studies. 2. From studies in which both roots and mycorrhizal hyphae had access to nutrient hotspots, we compiled data on root foraging precision (increase in roots in nutrient hotspots relative to outside hotspots) of plant species from different ecosystems, ranging from temperate grasslands to subtropical forests. We found that root for- aging precision across the wide range of plant species was stronglymore » influenced by root morphology and mycorrhizal type. 3. The precision of root nutrient foraging, as a plant functional trait, may coordinate with other root traits that are related to the economics of nutrient acquisition. High foraging precision is expected to associate with the strategy of fast return on the investment in roots, such as low construction cost, high metabolic rate and rapid turnover. 4. Nutrient foraging by mycorrhizal fungi alone may be influenced by functional traits such as hyphal exploration distance, hyphal turnover, and hyphal uptake capacity and efficiency, but such data are limited to a small portion of mycorrhizal fungal species. 5. We propose a conceptual framework in which to simulate nitrogen and phosphorus acquisition from both nutrient hotspots and outside hotspots in mixed-species plant communities. Simulation outputs suggest that plant species with varying root morphology and mycorrhizal type can be adaptive to a range of nutrient heterogeneity. 6. Although there are still knowledge gaps related to nutrient foraging, as well as many unexplored plant and fungal species, we suggest that scaling nutrient foraging from individual plants to communities would advance understanding of plant species interactions and below-ground ecosystem function.« less
Wullschleger, Stan D.; Epstein, Howard E.; Box, Elgene O.; Euskirchen, Eugénie S.; Goswami, Santonu; Iversen, Colleen M.; Kattge, Jens; Norby, Richard J.; van Bodegom, Peter M.; Xu, Xiaofeng
2014-01-01
Background Earth system models describe the physical, chemical and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Scope Plant functional types (PFTs) have been adopted by modellers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review, the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current and future distribution of vegetation. Conclusions Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration and shrub expansion. However, representation of above- and especially below-ground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait–environment relationships. Surprisingly, despite being important to land–atmosphere interactions of carbon, water and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology and remote sensing will be required if we are to overcome these and other shortcomings. PMID:24793697
RESTORATION EFFECTS ON N CYCLING POOLS AND PROCESSES
Over the past several years, there has been an acceleration of restoration efforts to mitigate the consequences (i.e., ground and surface water chemical pollutants, erosion, etc.) of degraded ecosystems and enhance structural and functional components of watershed ecosystems that...
Baskaran, Preetisri; Hyvönen, Riitta; Berglund, S Linnea; Clemmensen, Karina E; Ågren, Göran I; Lindahl, Björn D; Manzoni, Stefano
2017-02-01
Tree growth in boreal forests is limited by nitrogen (N) availability. Most boreal forest trees form symbiotic associations with ectomycorrhizal (ECM) fungi, which improve the uptake of inorganic N and also have the capacity to decompose soil organic matter (SOM) and to mobilize organic N ('ECM decomposition'). To study the effects of 'ECM decomposition' on ecosystem carbon (C) and N balances, we performed a sensitivity analysis on a model of C and N flows between plants, SOM, saprotrophs, ECM fungi, and inorganic N stores. The analysis indicates that C and N balances were sensitive to model parameters regulating ECM biomass and decomposition. Under low N availability, the optimal C allocation to ECM fungi, above which the symbiosis switches from mutualism to parasitism, increases with increasing relative involvement of ECM fungi in SOM decomposition. Under low N conditions, increased ECM organic N mining promotes tree growth but decreases soil C storage, leading to a negative correlation between C stores above- and below-ground. The interplay between plant production and soil C storage is sensitive to the partitioning of decomposition between ECM fungi and saprotrophs. Better understanding of interactions between functional guilds of soil fungi may significantly improve predictions of ecosystem responses to environmental change. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions.
Gebremikael, Mesfin T; Steel, Hanne; Buchan, David; Bert, Wim; De Neve, Stefaan
2016-09-08
The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota.
Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions
NASA Astrophysics Data System (ADS)
Gebremikael, Mesfin T.; Steel, Hanne; Buchan, David; Bert, Wim; de Neve, Stefaan
2016-09-01
The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota.
Keppel, Gunnar; Anderson, Sharolyn; Williams, Craig; Kleindorfer, Sonia; O'Connell, Christopher
2017-01-01
Extreme heat events will become more frequent under anthropogenic climate change, especially in Mediterranean ecosystems. Microhabitats can considerably moderate (buffer) the effects of extreme weather events and hence facilitate the persistence of some components of the biodiversity. We investigate the microclimatic moderation provided by two important microhabitats (cavities formed by the leaves of the grass-tree Xanthorrhoea semiplana F.Muell., Xanthorrhoeaceae; and inside the leaf-litter) during the summer of 2015/16 on the Fleurieu Peninsula of South Australia. We placed microsensors inside and outside these microhabitats, as well as above the ground below the forest canopy. Grass-tree and leaf-litter microhabitats significantly buffered against high temperatures and low relative humidity, compared to ground-below-canopy sensors. There was no significant difference between grass-tree and leaf-litter temperatures: in both microhabitats, daily temperature variation was reduced, day temperatures were 1-5°C cooler, night temperatures were 0.5-3°C warmer, and maximum temperatures were up to 14.4°C lower, compared to ground-below-canopy sensors. Grass-tree and leaf-litter microhabitats moderated heat increase at an average rate of 0.24°C temperature per 1°C increase of ambient temperature in the ground-below-canopy microhabitat. The average daily variation in temperature was determined by the type (grass-tree and leaf-litter versus ground-below-canopy) of microhabitat (explaining 67%), the amount of canopy cover and the area of the vegetation fragment (together explaining almost 10% of the variation). Greater canopy cover increased the amount of microclimatic moderation provided, especially in the leaf-litter. Our study highlights the importance of microhabitats in moderating macroclimatic conditions. However, this moderating effect is currently not considered in species distribution modelling under anthropogenic climate change nor in the management of vegetation. This shortcoming will have to be addressed to obtain realistic forecasts of future species distributions and to achieve effective management of biodiversity.
Twenty Years of Litter and Root Manipulations: Insights into Multi-Decadal SOM Dynamics and Controls
NASA Astrophysics Data System (ADS)
Wig, J.; Lajtha, K.; Nadelhoffer, K. J.
2012-12-01
Reforestation, reducing deforestation, and sustainable forest management are often recommended by policy makers to mitigate the greenhouse gas contributions of the forestry sector. However, underlying many of these policy recommendations is the assumption that increasing above-ground carbon stocks corresponds to long-term increases in ecosystem carbon stocks, the majority of which is stored in soils. We analyzed soil carbon and nitrogen dynamics in forest soils that had undergone twenty years of continuous manipulations of above- and below-ground organic inputs as part of the Detritus Input and Removal Treatment (DIRT) network. Although we expected that increased C inputs would correspond to significantly elevated C in surface mineral soils, our data suggest that increasing above-ground litter inputs has had a positive priming effect in this soil. Positive priming occurs when increased rates of litter addition to soil lead to disproportionate increases in microbial respiration rates of native soil C, resulting in a net decrease of soil C. Soil respiration rates in a year-long laboratory incubation support this theory: increased above-ground litter inputs led to decreased respiration rates, suggesting a relative deficit of labile organic matter. Removal of below ground inputs, either with or without above-ground litter inputs, also led to decreased respiration in laboratory incubations, demonstrating the importance of fresh root inputs to labile C. Trends in non-hydrolyzable C fractions, a proxy for the more stable C pool, agree with our respiration measurements. Data from sequential density fractionation are consistent with the hypotheses that priming has occurred in response to increased above-ground litter inputs and that root inputs are an important control of the labile C pool. The importance of roots inputs for C stabilization is well documented in the literature, and our hypothesis that increased above-ground litter inputs leads to priming is supported by data from several other DIRT sites. These data indicate there is an important potential loss of ecosystem C due to priming which should be considered when changing organic inputs to the soil, as is the case in some sustainable forestry recommendations.
Below-ground biotic interactions moderated the postglacial range dynamics of trees.
Pither, Jason; Pickles, Brian J; Simard, Suzanne W; Ordonez, Alejandro; Williams, John W
2018-05-17
Tree range shifts during geohistorical global change events provide a useful real-world model for how future changes in forest biomes may proceed. In North America, during the last deglaciation, the distributions of tree taxa varied significantly as regards the rate and direction of their responses for reasons that remain unclear. Local-scale processes such as establishment, growth, and resilience to environmental stress ultimately influence range dynamics. Despite the fact that interactions between trees and soil biota are known to influence local-scale processes profoundly, evidence linking below-ground interactions to distribution dynamics remains scarce. We evaluated climate velocity and plant traits related to dispersal, environmental tolerance and below-ground symbioses, as potential predictors of the geohistorical rates of expansion and contraction of the core distributions of tree genera between 16 and 7 ka bp. The receptivity of host genera towards ectomycorrhizal fungi was strongly supported as a positive predictor of poleward rates of distribution expansion, and seed mass was supported as a negative predictor. Climate velocity gained support as a positive predictor of rates of distribution contraction, but not expansion. Our findings indicate that understanding how tree distributions, and thus forest ecosystems, respond to climate change requires the simultaneous consideration of traits, biotic interactions and abiotic forcing. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Anna M. Jensen; Magnus Lof; Emile S. Gardiner
2011-01-01
For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings....
Seal carrion is a predictable resource for coastal ecosystems
NASA Astrophysics Data System (ADS)
Quaggiotto, Maria-Martina; Barton, Philip S.; Morris, Christopher D.; Moss, Simon E. W.; Pomeroy, Patrick P.; McCafferty, Dominic J.; Bailey, David M.
2018-04-01
The timing, magnitude, and spatial distribution of resource inputs can have large effects on dependent organisms. Few studies have examined the predictability of such resources and no standard ecological measure of predictability exists. We examined the potential predictability of carrion resources provided by one of the UK's largest grey seal (Halichoerus grypus) colonies, on the Isle of May, Scotland. We used aerial (11 years) and ground surveys (3 years) to quantify the variability in time, space, quantity (kg), and quality (MJ) of seal carrion during the seal pupping season. We then compared the potential predictability of seal carrion to other periodic changes in food availability in nature. An average of 6893 kg of carrion •yr-1 corresponding to 110.5 × 103 MJ yr-1 was released for potential scavengers as placentae and dead animals. A fifth of the total biomass from dead seals was consumed by the end of the pupping season, mostly by avian scavengers. The spatial distribution of carcasses was similar across years, and 28% of the area containing >10 carcasses ha-1 was shared among all years. Relative standard errors (RSE) in space, time, quantity, and quality of carrion were all below 34%. This is similar to other allochthonous-dependent ecosystems, such as those affected by migratory salmon, and indicates high predictability of seal carrion as a resource. Our study illustrates how to quantify predictability in carrion, which is of general relevance to ecosystems that are dependent on this resource. We also highlight the importance of carrion to marine coastal ecosystems, where it sustains avian scavengers thus affecting ecosystem structure and function.
Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei
2015-01-01
Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.
Disproportionate Declines in Ground-Foraging Insectivorous Birds after Mistletoe Removal
Watson, David M.
2015-01-01
Insectivorous birds have been recognized as disproportionately sensitive to land-use intensification and habitat loss, with those species feeding primarily on the ground exhibiting some of the most dramatic declines. Altered litter inputs and availability of epigeic arthropods have been suggested to underlie reduced abundances and shrinking distributions but direct evidence is lacking. I used a patch-scale removal experiment in southern Australia to evaluate whether ground-feeding insectivores are especially vulnerable to altered litter-fall. Building on work demonstrating the importance of mistletoe litter to nutrient dynamics, litter was reduced by removing mistletoe (Loranthaceae) from one set of eucalypt woodlands, responses of birds three years after mistletoe removal compared with otherwise similar control woodlands containing mistletoe. Despite not feeding on mistletoes directly, insectivores exhibited the greatest response to mistletoe removal. Among woodland residents, ground-foraging insectivores showed the most dramatic response; treatment woodlands losing an average of 37.4% of their pre-treatment species richness. Once these 19 species of ground-foraging insectivores were excluded, remaining woodland species showed no significant effect of mistletoe removal. This response reflects greater initial losses in treatment woodlands during the study (which coincided with a severe drought) and double the number of species returning to control woodlands (where mistletoe numbers and litter were not manipulated) post-drought. These findings support the productivity-based explanation of declining insectivores, suggesting diminished litter-fall reduced habitat quality for these birds via decreased availability of their preferred prey. In addition to altered prey availability, interactions between litter-fall and epigeic arthropods exemplify the importance of below-ground / above-ground linkages driving ecosystem function. PMID:26640895
Pizzolotto, Roberto; Gobbi, Mauro; Brandmayr, Pietro
2014-01-01
Very little is known about the changes of ground beetle assemblages in the last few decades in the Alps, and different responses to climate change of animal populations living above and below the treeline have not been estimated yet. This study focuses on an altitudinal habitat sequence from subalpine spruce forest to alpine grassland in a low disturbance area of the southeastern Dolomites in Italy, the Paneveggio Regional Park. We compared the ground beetle (Carabidae) populations sampled in 1980 in six stands below and above the treeline (1650–2250 m a.s.l.) with those sampled in the same sites almost 30 years later (2008/9). Quantitative data (species richness and abundance) have been compared by means of several diversity indexes and with a new index, the Index of Rank-abundance Change (IRC). Our work shows that species richness and abundance have changed after almost 30 years as a consequence of local extinctions, uphill increment of abundance and uphill shift of distribution range. The overall species number dropped from 36 to 27, while in the sites above the treeline, species richness and abundance changed more than in the forest sites. Two microtherm characteristic species of the pioneer cushion grass mats, Nebria germari and Trechus dolomitanus, became extinct or showed strong abundance reduction. In Nardetum pastures, several hygrophilic species disappeared, and xerophilic zoophytophagous elements raised their population density. In forest ecosystems, the precipitation reduction caused deep soil texture and watering changes, driving a transformation from Sphagnum-rich (peaty) to humus-rich soil, and as a consequence, soil invertebrate biomass strongly increased and thermophilic carabids enriched the species structure. In three decades, Carabid assemblages changed consistently with the hypothesis that climate change is one of the main factors triggering natural environment modifications. Furthermore, the level of human disturbance could enhance the sensitivity of mountain ecosystems to climate change. PMID:24834326
Pizzolotto, Roberto; Gobbi, Mauro; Brandmayr, Pietro
2014-04-01
Very little is known about the changes of ground beetle assemblages in the last few decades in the Alps, and different responses to climate change of animal populations living above and below the treeline have not been estimated yet. This study focuses on an altitudinal habitat sequence from subalpine spruce forest to alpine grassland in a low disturbance area of the southeastern Dolomites in Italy, the Paneveggio Regional Park. We compared the ground beetle (Carabidae) populations sampled in 1980 in six stands below and above the treeline (1650-2250 m a.s.l.) with those sampled in the same sites almost 30 years later (2008/9). Quantitative data (species richness and abundance) have been compared by means of several diversity indexes and with a new index, the Index of Rank-abundance Change (IRC). Our work shows that species richness and abundance have changed after almost 30 years as a consequence of local extinctions, uphill increment of abundance and uphill shift of distribution range. The overall species number dropped from 36 to 27, while in the sites above the treeline, species richness and abundance changed more than in the forest sites. Two microtherm characteristic species of the pioneer cushion grass mats, Nebria germari and Trechus dolomitanus, became extinct or showed strong abundance reduction. In Nardetum pastures, several hygrophilic species disappeared, and xerophilic zoophytophagous elements raised their population density. In forest ecosystems, the precipitation reduction caused deep soil texture and watering changes, driving a transformation from Sphagnum-rich (peaty) to humus-rich soil, and as a consequence, soil invertebrate biomass strongly increased and thermophilic carabids enriched the species structure. In three decades, Carabid assemblages changed consistently with the hypothesis that climate change is one of the main factors triggering natural environment modifications. Furthermore, the level of human disturbance could enhance the sensitivity of mountain ecosystems to climate change.
Space sequestration below ground in old-growth spruce-beech forests-signs for facilitation?
Bolte, Andreas; Kampf, Friederike; Hilbrig, Lutz
2013-01-01
Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤2 mm) by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1) spruce as a central tree, (2) spruce as competitor, (3) beech as a central tree, and (4) beech as competitor. Mean values of life fine root attributes like biomass (FRB), length (FRL), and root area index (RAI) were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA) exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL) and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA), asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area.
Space sequestration below ground in old-growth spruce-beech forests—signs for facilitation?
Bolte, Andreas; Kampf, Friederike; Hilbrig, Lutz
2013-01-01
Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤2 mm) by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1) spruce as a central tree, (2) spruce as competitor, (3) beech as a central tree, and (4) beech as competitor. Mean values of life fine root attributes like biomass (FRB), length (FRL), and root area index (RAI) were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA) exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL) and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA), asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area. PMID:24009616
Wu, Jianbo; Hong, Jiangtao; Wang, Xiaodan; Sun, Jian; Lu, Xuyang; Fan, Jihui; Cai, Yanjiang
2013-01-01
Alpine steppe is considered to be the largest grassland type on the Tibetan Plateau. This grassland contributes to the global carbon cycle and is sensitive to climate changes. The allocation of biomass in an ecosystem affects plant growth and the overall functioning of the ecosystem. However, the mechanism by which plant biomass is allocated on the alpine steppe remains unclear. In this study, biomass allocation and its relationship to environmental factors on the alpine grassland were studied by a meta-analysis of 32 field sites across the alpine steppe of the northern Tibetan Plateau. We found that there is less above-ground biomass (M A ) and below-ground biomass (M B ) in the alpine steppe than there is in alpine meadows and temperate grasslands. By contrast, the root-to-shoot ratio (R:S) in the alpine steppe is higher than it is in alpine meadows and temperate grasslands. Although temperature maintained the biomass in the alpine steppe, precipitation was found to considerably influence M A , M B , and R:S, as shown by ordination space partitioning. After standardized major axis (SMA) analysis, we found that allocation of biomass on the alpine steppe is supported by the allometric biomass partitioning hypothesis rather than the isometric allocation hypothesis. Based on these results, we believe that M A and M B will decrease as a result of the increased aridity expected to occur in the future, which will reduce the landscape's capacity for carbon storage.
Commentary: Urgent need for large-scale warming manipulation experiments in tropical forests
NASA Astrophysics Data System (ADS)
Cavaleri, M. A.; Wood, T. E.; Reed, S.
2013-12-01
Tropical forests represent the largest fluxes of carbon into and out of the atmosphere of any terrestrial ecosystem type on earth. Despite their clear biogeochemical importance, responses of tropical forests to global warming are more uncertain than for any other biome. This uncertainty stems primarily from a lack of mechanistic data, in part because warming manipulation field experiments have been located almost exclusively in higher latitude systems. As a result of the large fluxes, lack of data, and high uncertainty, recent studies have highlighted the tropics as a 'high priority region' for future climate change research. We argue that warming manipulation experiments are urgently needed in tropical forests that are: 1) single-factor, 2) large-scale, and 3) long-term. The emergence of a novel heat regime is predicted for the tropics within the next two decades, and tropical forest trees may be more susceptible to warming than previously thought. Over a decade of Free Air CO2 Enrichment experiments have shown that single-factor studies that integrate above- and belowground function can be the most informative and efficient means of informing models, which can then be used to determine interactive effects of multiple factors. Warming both above- and below-ground parts of an ecosystem would be fundamental to the understanding of whole-ecosystem and net carbon responses because of the multiple feedbacks between tree canopy, root, and soil function. Finally, evidence from high-latitude warming experiments highlight the importance of long-term studies by suggesting that key processes related to carbon cycling, like soil respiration, could acclimate with extended warming. Despite the fact that there has never been a long-term ecosystem-level warming experiment in any forest, the technology is available, and momentum is gathering. In order to study the effects of warming on tropical forests, which contribute disproportionately to global carbon balance, full-scale ecosystem warming experiments are imperative.
Restoration effects on N cycling pools and processes
James M. Vose; Chris Geron; John Walker; Karsten Raulund-Rasmussen
2005-01-01
Over the past several years, there has been an acceleration of restoration efforts to mitigate the consequences (i.e., ground and surface water chemical pollutants, erosion, etc.) of degraded ecosystems and enhance structural and functional components of watershed ecosystems that regulate biogeochemical cycling and associated aquatic components. Biogeochemical...
Coupling fine-scale root and canopy structure using ground-based remote sensing
Brady Hardiman; Christopher Gough; John Butnor; Gil Bohrer; Matteo Detto; Peter Curtis
2017-01-01
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in...
Rare, Intense, Big fires dominate the global tropics under drier conditions.
Hantson, Stijn; Scheffer, Marten; Pueyo, Salvador; Xu, Chi; Lasslop, Gitta; van Nes, Egbert H; Holmgren, Milena; Mendelsohn, John
2017-10-30
Wildfires burn large parts of the tropics every year, shaping ecosystem structure and functioning. Yet the complex interplay between climate, vegetation and human factors that drives fire dynamics is still poorly understood. Here we show that on all continents, except Australia, tropical fire regimes change drastically as mean annual precipitation falls below 550 mm. While the frequency of fires decreases below this threshold, the size and intensity of wildfires rise sharply. This transition to a regime of Rare-Intense-Big fires (RIB-fires) corresponds to the relative disappearance of trees from the landscape. Most dry regions on the globe are projected to become substantially drier under global warming. Our findings suggest a global zone where this drying may have important implications for fire risks to society and ecosystem functioning.
NASA Astrophysics Data System (ADS)
Kutsch, W. L.; Falge, E. M.; Brümmer, C.; Mukwashi, K.; Schmullius, C.; Hüttich, C.; Odipo, V.; Scholes, R. J.; Mudau, A.; Midgley, G.; Stevens, N.; Hickler, T.; Scheiter, S.; Martens, C.; Twine, W.; Iiyambo, T.; Bradshaw, K.; Lück, W.; Lenfers, U.; Thiel-Clemen, T.; du Toit, J.
2015-12-01
Sub-Saharan Africa currently experiences rapidly growing human population, intrinsically tied to substantial changes in land use on shrubland, savanna and mixed woodland ecosystems due to over-exploitation. Significant conversions driving degradation, affecting fire frequency and water availability, and fueling climate change are expected to increase in the immediate future. However, measured data of greenhouse gas emissions as affected by land use change are scarce to entirely lacking from this region. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. This will be achieved by (1) creation of a network of research clusters (paired sites with natural and altered vegetation) along an aridity gradient in South Africa for ground-based micrometeorological in-situ measurements of energy and matter fluxes, (2) linking biogeochemical functions with ecosystem structure, and eco-physiological properties, (3) description of ecosystem disturbance (and recovery) in terms of ecosystem function such as carbon balance components and water use efficiency, (4) set-up of individual-based models to predict ecosystem dynamics under (post) disturbance managements, (5) combination with long-term landscape dynamic information derived from remote sensing and aerial photography, and (6) development of sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation (by a suite of field measurements) of estimates obtained from eddy covariance, model approaches and satellite derivations.
NASA Astrophysics Data System (ADS)
Pehringer, M.; Carr, G.; Long, H.; Parsekian, A.
2015-12-01
Wyoming, the third driest state in the United States, is home to a high level of biodiversity. In many cases, ecosystems are dependent on the vast systems of water resting just below the surface. This groundwater supports a variety of organisms that live far from surface water and its surrounding riparian zone, where more than 70% of species reside. In order to observe the correlation of groundwater presence and biodiversity in non-riparian ecosystems, a study was conducted to look specifically at terrestrial insect species linked to groundwater in Bighorn National Forest, WY. It was hypothesized that the more groundwater present, the greater the diversity of insects would be. Sample areas were randomly selected in non-riparian zones and groundwater was evaluated using a transient electromagnetic (TEM) geophysical instrument. Electrical pulses were transmitted through a 40m by 40m square of wire to measure levels of resistivity from near the surface to several hundred meters below ground. Pulses are echoed back to the surface and received by a smaller 10m by 10m square of wire, and an even smaller 1m by 1m square of wire set inside the larger transmitting wire. An insect population and species count was then conducted within the perimeter set by the outer transmitting wire. The results were not as hypothesized. More inferred groundwater below the surface resulted in a smaller diversity of species. Inversely, the areas with a smaller diversity held a larger total population of terrestrial insects.
Root growth studies of willow cuttings using Rhizoboxes
NASA Astrophysics Data System (ADS)
Omarova, Dinara; Lammeranner, Walter; Florineth, Florin
2014-05-01
Riparian forests (Tugay forests) in Central Asia (Kazakhstan) play a significant in soil protection. However, unadapted forest use leads to damage and loss of these fragile ecosystems. Willows have a crucial function in the ecosystem of these riparian forests. Willows facilitate the colonization with other important tree species and furthermore they protect the soil from wind and water erosion. To propagate willows and to estimate the beneficial effects of these plants it is important to know the root growth development. The research design is planned as model experiment with rhizoboxes. Rhizoboxes are non-invasive investigation methods which offer the possibility to survey the root system growth dynamics in time and space. A total of 33 rhizoboxes in size of 50cm x 75 cm x 5 cm will be constructed. The rhizoboxes will be tilted by 45 degrees using the gravitropism of the roots. The willow cuttings (Salix purpurea) will be planted in three different soil types. Each test series (growth period) will take three months. Investigated parameters will be root architecture, dynamic of root growth and above and below ground biomass allocation. Data will be drawn from photographic surveys which will be performed once a week. The contribution will present the methodology of these rhizobox investigations.
Chen, Weile; Koide, Roger T.; Adams, Thomas S.; DeForest, Jared L.; Cheng, Lei; Eissenstat, David M.
2016-01-01
Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich “hotspots” can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together. PMID:27432986
Chen, Weile; Koide, Roger T; Adams, Thomas S; DeForest, Jared L; Cheng, Lei; Eissenstat, David M
2016-08-02
Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich "hotspots" can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together.
Climate, soil and plant functional types as drivers of global fine-root trait variation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.
Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N 2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two strongest predictors of fine-root trait variation. High trait variation occurred at local scales, suggesting that wide-ranging below-ground resource economics strategies are viable within most climatic areas and soil conditions.« less
Climate, soil and plant functional types as drivers of global fine-root trait variation
Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.; ...
2017-03-08
Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N 2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two strongest predictors of fine-root trait variation. High trait variation occurred at local scales, suggesting that wide-ranging below-ground resource economics strategies are viable within most climatic areas and soil conditions.« less
Relationships between CH4 emission, biomass, and CO2 exchange in a subtropical grassland
NASA Technical Reports Server (NTRS)
Whiting, Gary J.; Chanton, Jeffrey P.; Happell, James D.; Bartlett, David S.
1991-01-01
Methane flux was linearly correlated with plant biomass (r = 0.97, n = 6 and r = 0.95, n = 8) at two locations in a Florida Everglades Cladium marsh. One location, which had burned 4 months previously, exhibited a greater increase in methane flux as a function of biomass relative to sites at an unburned location. However, methane flux data from both sites fit a single regression (r = 0.94, n = 14) when plotted against net CO2 exchange suggesting that either methanogenesis in Everglades marl sediments is fueled by root exudation below ground, or that factors which enhance photosynthetic production and plant growth are also correlated with methane production and flux in this oligotrophic environment. The data presented are the first to show a direct relationship between spatial variability in plant biomass, net ecosystem production, and methane emission in a natural wetland.
Functional Responses and Resilience of Boreal Forest Ecosystem after Reduction of Deer Density
Bachand, Marianne; Pellerin, Stéphanie; Moretti, Marco; Aubin, Isabelle; Tremblay, Jean-Pierre; Côté, Steeve D.; Poulin, Monique
2014-01-01
The functional trait-based approach is increasingly used to predict responses of ecological communities to disturbances, but most studies target a single taxonomic group. Here, we assessed the resilience of a forest ecosystem to an overabundant herbivore population by assessing changes in 19 functional traits for plant, 13 traits for ground beetle and 16 traits for songbird communities after six years of controlled browsing on Anticosti Island (Quebec, Canada). Our results indicated that plants were more responsive to 6 years of reduced browsing pressure than ground beetles and songbirds. However, co-inertia analysis revealed that ground beetle communities responded in a similar way than plant communities with stronger relationships between plant and ground beetle traits at reduced deer density, a pattern not detected between plant and songbird. High deer density favored plants species that reproduce vegetatively and with abiotic pollination and seed dispersal, traits implying little interaction with animal. On the other hand, traits found at reduced deer density mostly involved trophic interaction. For example, plants in this treatment had fleshy fruits and large seeds dispersed by birds or other animals whereas ground beetle species were carnivorous. Overall, our results suggest that plant communities recovered some functional components to overabundant herbivore populations, since most traits associated with undisturbed forests were reestablished after six years of deer reduction. The re-establishment of functional plant communities with traits involving trophic interaction induces changes in the ground-beetle trait community, but forest structure remains likely insufficiently heterogeneous to shift the songbird trait community within six years. PMID:24587362
Carbon dioxide budget in a temperature grassland ecosystem
NASA Technical Reports Server (NTRS)
Kim, Joon; Verma, Shashi B.; Clement, Robert J.
1992-01-01
Eddy correlation measurements of CO2 flux made during May-October 1987 and June-August 1989 were employed, in conjunction with simulated data, to examine the net exchange of CO2 in a temperature grassland ecosystem. Simulated estimates of CO2 uptake were used when flux measurements were not available. These estimates were based on daily intercepted photosynthetically active radiation, air temperature, and extractable soil water. Soil CO2 flux and dark respiration of the aerial part of plants were estimated using the relationships developed by Norman et al. (1992) and Polley et al. (1992) at the study site. The results indicate that the CO2 exchange between this ecosystem and the atmosphere is highly variable. The net ecosystem CO2 exchange reached its peak value (12-18 g/sq m d) during the period when the leaf area index was maximum. Drought, a frequent occurrence in this region, can change this ecosystem from a sink to a source for atmospheric CO2. Comparison with data on dry matter indicated that the aboveground biomass accounted for about 45-70 percent of the net carbon uptake, suggesting the importance of the below ground biomass in estimating net primary productivity in this ecosystem.
Wullschleger, Stan D; Epstein, Howard E; Box, Elgene O; Euskirchen, Eugénie S; Goswami, Santonu; Iversen, Colleen M; Kattge, Jens; Norby, Richard J; van Bodegom, Peter M; Xu, Xiaofeng
2014-07-01
Earth system models describe the physical, chemical and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Plant functional types (PFTs) have been adopted by modellers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review, the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current and future distribution of vegetation. Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration and shrub expansion. However, representation of above- and especially below-ground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait-environment relationships. Surprisingly, despite being important to land-atmosphere interactions of carbon, water and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology and remote sensing will be required if we are to overcome these and other shortcomings. Published by Oxford University Press on behalf of the Annals of Botany Company 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
Brown, R. F.; Collins, S. L.
2017-12-01
Climate is becoming increasingly more variable due to global environmental change, which is evidenced by fewer, but more extreme precipitation events, changes in precipitation seasonality, and longer, higher severity droughts. These changes, combined with a rising incidence of wildfire, have the potential to strongly impact net primary production (NPP) and key biogeochemical cycles, particularly in dryland ecosystems where NPP is sequentially limited by water and nutrient availability. Here we utilize a ten-year dataset from an ongoing long-term field experiment established in 2007 in which we experimentally altered monsoon rainfall variability to examine how our manipulations, along with naturally occurring events, affect NPP and associated biogeochemical cycles in a semi-arid grassland in central New Mexico, USA. Using long-term regional averages, we identified extremely wet monsoon years (242.8 mm, 2013), and extremely dry monsoon years (86.0 mm, 2011; 80.0 mm, 2015) and water years (117.0 mm, 2011). We examined how changes in precipitation variability and extreme events affected ecosystem processes and function particularly in the context of ecosystem recovery following a 2009 wildfire. Response variables included above- and below-ground plant biomass (ANPP & BNPP) and abundance, soil nitrogen availability, and soil CO2 efflux. Mean ANPP ranged from 3.6 g m-2 in 2011 to 254.5 g m-2 in 2013, while BNPP ranged from 23.5 g m-2 in 2015 to 194.2 g m-2 in 2013, demonstrating NPP in our semi-arid grassland is directly linked to extremes in both seasonal and annual precipitation. We also show increased nitrogen deposition positively affects NPP in unburned grassland, but has no significant impact on NPP post-fire except during extremely wet monsoon years. While soil respiration rates reflect lower ANPP post-fire, patterns in CO2 efflux have not been shown to change significantly in that efflux is greatest following large precipitation events preceded by longer drying periods. Current land surface models poorly represent dryland ecosystems, which frequently undergo extreme weather events. Our long-term experiment provides key insights into ecosystem processes and function, thereby providing capacity for model improvement particularly in the context of future environmental change.
NASA Astrophysics Data System (ADS)
Louchouarn, P.; Kaiser, K.; Norwood, M. J.; Sterne, A. M. E.; Armitage, A. R.; HighField, W.; Brody, S.
2015-12-01
Landscape-level shifts in plant species distribution and abundance can fundamentally change the structure and services of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones of the U.S., where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. Here we present the synthesis of 3 years of multidisciplinary work to quantify ecosystem shifts at the regional scale, along the entire Texas (USA) coast of the western Gulf of Mexico, and transcribe these shifts into carbon (C) sequestration mass balances. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify shifts in areal coverage of black mangrove (Avicennia germinans) and salt marsh (Spartina alterniflora and other grass and forb species) over 20 years across the Texas Gulf coast. Between 1990 and 2010, mangrove area expanded by 74% (+16 km2). Concurrently, salt marsh area experienced a net loss of 24% (-78 km2). Most of that loss was due to conversion to tidal flats or water, likely a result of relative sea level rise, with only 6% attributable to mangrove expansion. Although relative carbon load (per surface area) are statistically larger for mangrove wetlands, total C loads are larger for salt marsh wetlands due to their greater aerial coverage. The entire loss of above ground C (~7.0·109 g), was offset by salt marsh expansion (2.0·109 g) and mangrove expansion (5.6·109 g) over the study period. Concurrently, the net loss in salt marsh coverage led to a loss in below ground C accumulation capacity of 2.0·109 g/yr, whereas the net expansion of mangrove wetlands led to an added below ground C accumulation capacity of 0.4·109 g/yr. Biomarker data show that neutral carbohydrates and lignin contributed 30-70% and 10-40% of total C, respectively, in plant litter and surface sediments. Sharp declines of carbohydrate yields with depth occur parallel to increases in lignin degradation ratios, indicating substantial decomposition of both the polysaccharide and lignin components of litter detritus. Further, biomarker data suggest that litter chemistry is the primary control of C preservation in these wetland ecosystems. This study shows that shifts in plant composition influence C sequestration potential from landscape to molecular levels.
Coupling fine-scale root and canopy structure using ground-based remote sensing
Hardiman, Brady S.; Gough, Christopher M.; Butnor, John R.; ...
2017-02-21
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL) and ground penetrating radar (GPR) along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation) at multiple spatialmore » scales 10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Lastly, our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.« less
Coupling fine-scale root and canopy structure using ground-based remote sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardiman, Brady S.; Gough, Christopher M.; Butnor, John R.
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL) and ground penetrating radar (GPR) along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation) at multiple spatialmore » scales 10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Lastly, our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.« less
NASA Astrophysics Data System (ADS)
Lagomasino, D.; Cook, B.; Fatoyinbo, T.; Morton, D. C.; Montesano, P.; Neigh, C. S. R.; Wooten, M.; Gaiser, E.; Troxler, T.
2017-12-01
Hurricane Irma, one of the strongest hurricanes recorded in the Atlantic, first made landfall in the Florida Keys before coming ashore in southwestern Florida near Everglades National Park (ENP) on September 9th and 10th of this year. Strong winds and storm surge impacted a 100+ km stretch of the southern Florida Gulf Coast, resulting in extensive damages to coastal and inland ecosystems. Impacts from previous catastrophic storms in the region have led to irreversible changes to vegetation communities and in some areas, ecosystem collapse. The processes that drive coastal wetland vulnerability and resilience are largely a function of the severity of the impact to forest structure and ground elevation. Remotely sensed imagery plays an important role in measuring changes to the landscape, particularly for extensive and inaccessible regions like the mangroves in ENP. We have estimated changes in coastal vegetation structure and soil elevation using a combination of repeat measurements from ground, airborne, and satellite platforms. At the ground level, we used before and after Structure-from-Motion models to capture the change in below canopy structure as result of stem breakage and fallen branches. Using airborne imagery collected before and after Hurricane Irma by Goddard's Lidar, Hyperspectral, and Thermal (G-LiHT) Airborne Imager, we measured the change in forest structure and soil elevation. This unique data acquisition covered an area over 130,000 ha in regions most heavily impacted storm surge. Lastly, we also combined commercial and NASA satellite Earth observations to measure forest structural changes across the entire South Florida coast. An analysis of long-term observations from the Landsat data archive highlights the heterogeneity of hurricane and other environmental disturbances along the Florida coast. These findings captured coastal disturbance legacies that have the potential to influence the trajectory of mangrove resilience and vulnerability following Hurricane Irma. The synergies between these unique field, airborne, and satellite observations help to capture both the legacy and immediate ecosystem responses following catastrophic storms and will ultimately be used to improve storm surge models and provide predictions for future vulnerability and degradation.
NASA Astrophysics Data System (ADS)
Anderson, C.; Bond-Lamberty, B. P.; Huang, M.; Xu, Y.; Stegen, J.
2016-12-01
Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.
NASA Astrophysics Data System (ADS)
Antonarakis, A. S.; Bogan, S.; Moorcroft, P. R.
2017-12-01
Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.
Gao, Song; Guo, Jixun; Sun, Wei
2015-01-01
Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China. PMID:25874975
Effect of tree line advance on carbon storage in NW Alaska
Wilmking, M.; Harden, J.; Tape, K.
2006-01-01
We investigated the size, distribution, and temporal dynamics of ecosystem carbon (C) pools in an area of recent tree line advance, northwest Alaska. Repeat aerial photographs show forest cover increased ???10% in our study area since 1949. We sampled C pools of four principal ecosystem types, tussock tundra, shrub tundra, woodland, and forest, all located on a 600-800 year old river terrace. Significant differences between ecosystem C pools, both above ground and below ground existed. Tundra sites store >22.2 kg C/m2, shrub tundra sites and woodland sites store 9.7 kg C/m2 and 14.3 kg C/m2, respectively, and forest sites store 14.4 kg C/m2. Landscape variation of total ecosystem C was primarily due to organic soil C and was secondarily due to C stored in trees. Soil C/N profiles of shrub tundra sites and woodland sites showed similarities with forest site soils at surface and tundra site soils at depth. We hypothesize that tundra systems transformed to forest systems in this area under a progression of permafrost degradation and enhanced drainage. On the basis of C pool estimates for the different ecosystem types, conversion of tundra sites to forest may have resulted in a net loss of > 7.8 kg C/m2, since aboveground C gains were more than offset by belowground C losses to decomposition in the tundra sites. Tree line advance therefore might not increase C storage in high-latitude ecosystems and thus might not, as previously suggested, act as a negative feedback to warming. Key to this hypothesis and to its projection to future climate response is the fate of soil carbon upon warming and permafrost drainage. Copyright 2006 by the American Geophysical Union.
Acidification is a broad term that refers to the process by which aquatic ecosystems become more acidic. Acid rain and acid mine drainage are major sources of acidifying compounds, lowering the pH below the range where most living organisms function.
NASA Astrophysics Data System (ADS)
Sritrairat, S.
2014-12-01
Over half the world's 7.2 billion population are living in urban habitats. While these cities only occupy 2% of the world's surface, the ecological footprint by these cities combined is far greater than that of the other 98% of the world. Bangkok, Thailand has experienced this rapid urbanization that has resulted in various environmental problems, including pollution, land subsidence, and flooding. Major flooding in 2011 has raised awareness about the importance of restoring ecosystem services in urban space to cope up with the forecasted extreme climatic conditions. Finding localized flooding, carbon and pollution mitigation methods will be important to cities. Upland reforestration has been proposed as a way to decrease these anthropogenic and climate change impacts. However, there is also a large area of wetlands in Bangkok with possibly high ecosystem services that have not been quantified. This study measure above ground and below ground carbon accumulation in wide-spread Typha angustifolia wetlands as an untapped source of ecosystem services that are worth projected. These wetlands are typically viewed as wasteland and are not being protected. We examined carbon and heavy metals (Pb, Zn, Cu) pools in 7 wetlands across Bangkok with various environmental settings--from industrialized zone, to residential area, farms, and protected urban green space. The results indicate recent peat accumulation layer by these wetlands at high rate. Heavy concentration are found near contaminant source such as industries and farms. Combined with their ability to buffer storms and being habitats for wildlife, these wetlands have important values in increasing ecosystem services in urban space and should be considered for protection.
NASA Technical Reports Server (NTRS)
McKay, Christopher P.; Rask, Jon C.; Detweiler, Angela M.; Bebout, Brad M.; Everroad, R. Craig; Chanton, Jeffrey P.; Mayer, Marisa H.; Caraballo, Adrian A. L.; Kapili, Bennett
2016-01-01
Salt flats (sabkha) are a recognized habitat for microbial life in desert environments and as analogs for habitats for life on Mars. Here we report on the physical setting and microbiology of interdune sabkhas among the large dunes in the Rub' al Khali (the Empty Quarter) in Liwa Oasis, United Arab Emirates. The salt flats, composed of gypsum and halite, between the dunes are moistened by relatively fresh ground water from below. The result is a salinity gradient that is inverted compared to most salt flat communities with the hypersaline layer at the top and freshwater layers below. We describe and characterize a rich photosynthetically-based microbial ecosystem that is protected from the arid outside environment below the translucent salt crust. Gases collected from sediments under shallow ponds in the sabkha contain methane in concentrations as high as 3400 ppm. The salt layer provides environmental protection to the habitat below and could preserve biomarkers and other evidence for life in the salt after it dries out. Chloride-filled depressions have been identified on Mars and although the surface flow of water is unlikely on Mars today, ground water is possible. Such a near surface system with modern groundwater flowing under ancient salt deposits could be present on Mars and could be accessed by surface rovers.
Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores
Huang, Wei; Siemann, Evan; Carrillo, Juli; Ding, Jianqing
2015-01-01
Background and Aims Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induced by above- and below-ground herbivory has limited our understanding of how below-ground herbivory mediates indirect plant defences to affect above-ground herbivores and their natural enemies. Methods In a greenhouse experiment, seedlings of tallow tree (Triadica sebifera) were subjected to herbivory by a specialist flea beetle (Bikasha collaris) that naturally co-occurs as foliage-feeding adults and root-feeding larvae. Seedlings were subjected to above-ground adults and/or below-ground larvae herbivory, and EFN production was monitored. Key Results Above- and/or below-ground herbivory significantly increased the percentage of leaves with active nectaries, the volume of EFN and the mass of soluble solids within the nectar. Simultaneous above- and below-ground herbivory induced a higher volume of EFN and mass of soluble solids than below-ground herbivory alone, but highest EFN production was induced by above-ground herbivory when below-ground herbivores were absent. Conclusions The induction of EFN production by below-ground damage suggests that systemic induction underlies some of the EFN response. The strong induction by above-ground herbivory in the absence of below-ground herbivory points to specific induction based on above- and below-ground signals that may be adaptive for this above-ground indirect defence. PMID:25681822
Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores.
Huang, Wei; Siemann, Evan; Carrillo, Juli; Ding, Jianqing
2015-04-01
Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induced by above- and below-ground herbivory has limited our understanding of how below-ground herbivory mediates indirect plant defences to affect above-ground herbivores and their natural enemies. In a greenhouse experiment, seedlings of tallow tree (Triadica sebifera) were subjected to herbivory by a specialist flea beetle (Bikasha collaris) that naturally co-occurs as foliage-feeding adults and root-feeding larvae. Seedlings were subjected to above-ground adults and/or below-ground larvae herbivory, and EFN production was monitored. Above- and/or below-ground herbivory significantly increased the percentage of leaves with active nectaries, the volume of EFN and the mass of soluble solids within the nectar. Simultaneous above- and below-ground herbivory induced a higher volume of EFN and mass of soluble solids than below-ground herbivory alone, but highest EFN production was induced by above-ground herbivory when below-ground herbivores were absent. The induction of EFN production by below-ground damage suggests that systemic induction underlies some of the EFN response. The strong induction by above-ground herbivory in the absence of below-ground herbivory points to specific induction based on above- and below-ground signals that may be adaptive for this above-ground indirect defence. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stottlemyer, Robert; Binkley, Dan; Steltzer, Heidi; Wilson, Frederic H.; Galloway, John P.
2002-01-01
The extensive boreal biome is little studies relative to its global importance. Its high soil moisture and low temperatures result in large below-ground reservoirs of carbon (C) and nitrogen (N). Presently, such high-latitude ecosystems are undergoing the largest temperature increases in global warming. Change in soil temperature or moisture in the large pools of soil organic matter could fundamentally change ecosystem C and N budgets. Since 1990, we have conducted treeline studies in a small (800 ha) watershed in Noatak National Preserve, northwestern Alaska. Our objectives were to (1) gain an understanding of treeline dynamics, structure, and function; and (2) examine the effects of global climate change, particularly soil temperature, moisture, and N availability, on ecosystem processes. Our intensive site studies show that the treeline has advanced into turdra during the past 150 years. Inplace and laboratory incubations indicate that soil organic-layer mineralization rates increase with a temperature change >5 degrees C. N availability was greatest in soils beneath alder and lowest beneath willow or cottongrass tussocks. Watershed output of inorganic N as NO3 was 70 percent greater than input. The high inorganic-N output likely reflects soil freeze-thaw cycles, shallow flowpaths to the stream, and low seasonal biological retention. Concentrations and flux of dissolved organic carbon (DOC) in streamwater increased during spring melt and in autumn, indicating a seasonal accumulation of soil and forest-floor DOC and a shallower flowpath for meltwater to the stream. In sum, our research suggests that treeling transitionzone processes are quite sensitive to climate change, especially those functions regulating the C and N cycles.
Nguyen, Thi; Bajwa, Ali Ahsan; Belgeri, Amalia; Navie, Sheldon; O'Donnell, Chris; Adkins, Steve
2017-12-01
Parthenium weed is a highly invasive alien species in more than 40 countries around the world. Along with severe negative effects on human and animal health and crop production, it also causes harm to ecosystem functioning by reducing the native plant species biodiversity. However, its impacts on native plant species, especially in pasture communities, are less known. Given parthenium weed causes substantial losses to Australian pastures' productivity, it is crucial to estimate its impact on pasture communities. This study evaluates the impact of parthenium weed upon species diversity in a pasture community at Kilcoy, south east Queensland, Australia. Sub-sites containing three levels of parthenium weed density (i.e. high, low and zero) were chosen to quantify the above- and below-ground plant community structure. Species richness, diversity and evenness were all found to be significantly reduced as the density of parthenium weed increased; an effect was evident even when parthenium weed was present at relatively low densities (i.e. two plants m -2 ). This trend was observed in the summer season as well as in winter season when this annual weed was absent from the above-ground plant community. This demonstrates the strong impact that parthenium weed has upon the community composition and functioning throughout the year. It also shows the long-term impact of parthenium weed on the soil seed bank where it had displaced several native species. So, management options used for parthenium weed should also consider the reduction of parthenium weed seed bank along with controlling its above-ground populations.
A birds-eye view of biological connectivity in mangrove systems
NASA Astrophysics Data System (ADS)
Buelow, Christina; Sheaves, Marcus
2015-01-01
Considerable advances in understanding of biological connectivity have flowed from studies of fish-facilitated connectivity within the coastal ecosystem mosaic. However, there are limits to the information that fish can provide on connectivity. Mangrove-bird communities have the potential to connect coastal habitats in different ways and at different scales than fish, so incorporation of these links into our models of coastal ecosystem mosaics affords the opportunity to greatly increase the breadth of our understanding. We review the habitat and foraging requirements of mangrove-bird functional groups to understand how bird use of mangroves facilitates biological connectivity in coastal ecosystem mosaics, and how that connectivity adds to the diversity and complexity of ecological processes in mangrove ecosystems. Avian biological connectivity is primarily characterized by foraging behavior and habitat/resource requirements. Therefore, the consequence of bird links for coastal ecosystem functioning largely depends on patterns of habitat use and foraging, and potentially influences nutrient cycling, top-down control and genetic information linkage. Habitats that experience concentrated bird guano deposition have high levels of nitrogen and phosphorus, placing particular importance on the consequences of avian nutrient translocation and subsidization for coastal ecosystem functioning. High mobility allows mangrove-bird communities to link mangrove forests to other mangrove, terrestrial and marine-pelagic systems. Therefore, the spatial scale of coastal connectivity facilitated by birds is substantially more extensive than fish-facilitated connectivity. In particular, migratory birds link habitats at regional, continental and inter-continental scales as they travel among seasonally available feeding areas from breeding grounds to non-breeding grounds; scales at which there are few fish equivalents. Knowledge of the nature and patterns of fish connectivity have contributed to shifting the initial, historical perception of mangrove-ecosystem functioning from that of a simple system based on nutrient and energy retention, to a view that includes fish-facilitated energy export. In a similar way, understanding the nature and implications of mangrove connectivity through bird movements and migrations affords new possibilities for revising our view of the extent of functional links between mangroves and other ecosystems.
Arctic Oases? - River Aufeis Maintain Perennial Groundwater Habitat in the Arctic
NASA Astrophysics Data System (ADS)
Huryn, A. D.; Gooseff, M. N.; Briggs, M. A.; Terry, N.; Kendrick, M.; Hendrickson, P. J.; Grunewald, E. D.
2017-12-01
Aufeis are massive accumulations of ice found along many arctic rivers, with aufeis on some Alaskan rivers covering 20+ km2 and attaining thicknesses of 5+ m. Although aufeis are prominent landscape features, understanding of their ecology is poor. We propose that aufeis function as summer oases by providing meltwater and nutrients to downstream habitats and winter oases due to insulating layers of ice that maintain below-ground freshwater habitat that would otherwise be frozen in regions of continuous permafrost. To gain information about the ecological roles of aufeis, we installed 50 1-m deep wells in a 1.5 km2aufeis field along the Kuparuk River, an arctic tundra river in Alaska. We assessed the predictions that aufeis provide perennially-unfrozen, below-ground habitat for a specialized invertebrate community while functioning as hot spots for nutrient regeneration. Surface geophysical measurements made during the time of maximum ice thickness in 2017 indicated most of the Kuparuk feature was underlain by several meters of shallow frozen cobbles that were further underlain by a 10 m thick+ zone of thawed material. Ground penetrating radar and surface nuclear magnetic resonance data indicated several spatially-discrete thawed preferential flow zones through the shallow frozen sediment layer that may result from groundwater upwelling observed flowing through fractures in the icepack. Freshwater invertebrates sampled from the wells represent a rich community consisting of flatworms, annelids, copepods, ostracods, chironomids (Krenosmittia, Trichotanypus) and stoneflies. Although the potential for below-ground NH4+ and NO3-regeneration was indicated, analyses were complicated bya surprisingly strong and dynamic coupling of surface and below-ground water.
NASA Astrophysics Data System (ADS)
Pinho, P.; Theobald, M. R.; Dias, T.; Tang, Y. S.; Cruz, C.; Martins-Loução, M. A.; Máguas, C.; Sutton, M.; Branquinho, C.
2011-11-01
Nitrogen (N) has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds have been established, such as critical loads (deposition fluxes) and levels (concentrations). For Mediterranean ecosystems, few studies have been carried out to assess these parameters. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for Mediterranean evergreen woodlands. For that we have considered changes in epiphytic lichen communities, which have been shown to be one of the most sensitive to excessive N. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done under Mediterranean climate, in evergreen cork-oak woodlands, by sampling lichen functional diversity and annual atmospheric ammonia concentrations and modelling N deposition downwind from a reduced N source (a cattle barn). By modelling the highly significant relationship between lichen functional groups and N deposition, the critical load was estimated to be below 26 kg (N) ha-1 yr-1, which is within the upper range established for other semi-natural ecosystems. By modelling the highly significant relationship of lichen functional groups with annual atmospheric ammonia concentration, the critical level was estimated to be below 1.9 μg m-3, in agreement with recent studies for other ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should be taken into account in policies that aim at protecting Mediterranean woodlands from the initial effects of excessive N.
Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004-2010.
Zhang, Xinyu; Xu, Zhiwei; Sun, Xiaomin; Dong, Wenyi; Ballantine, Deborah
2013-05-01
The nitrate-nitrogen (NO3(-)-N) concentrations from shallow groundwater wells situated in 29 of the Chinese Ecosystem Research Network field stations, representing typical agro- and forest ecosystems, were assessed using monitoring data collected between 2004 and 2010. Results from this assessment permit a national scale assessment of nitrate concentrations in shallow groundwater, and allow linkages between nitrate concentrations in groundwater and broad land use categories to be made. Results indicated that most of the NO3(-)-N concentrations in groundwater from the agro- and forest ecosystems were below the Class 3 drinking water standard stated in the Chinese National Standard: Quality Standard for Ground Water (< or = 20 mg/L). Over the study period, the average NO3(-)-N concentrations were significantly higher in agro-ecosystems (4.1 +/- 0.33 mg/L) than in forest ecosystems (0.5 +/- 0.04 mg/L). NO3(-)-N concentrations were relatively higher (> 10 mg N /L) in 10 of the 43 wells sampled in the agricultural ecosystems. These elevated concentrations occurred mainly in the Ansai, Yucheng, Linze, Fukang, Akesu, and Cele field sites, which were located in arid and semi-arid areas where irrigation rates are high. We suggest that improvements in N fertilizer application and irrigation management practices in the arid and semi-arid agricultural ecosystems of China are the key to managing groundwater nitrate concentrations.
Sarah Jovan; Robert J. Smith; Juan C. Benavides; Michael Amacher; Bruce McCune
2015-01-01
Mat-forming ââground layersââ of mosses and lichens often have functional impacts disproportionate to their biomass, and are responsible for sequestering one-third of the worldâs terrestrial carbon as they regulate water tables, cool soils and inhibit microbial decomposition. Without reliable assessment tools, the potential effects of climate and land use changes on...
Aboveground and belowground effects of single-tree removals in New Zealand rain forest.
Wardle, David A; Wiser, Susan K; Allen, Robert B; Doherty, James E; Bonner, Karen I; Williamson, Wendy M
2008-05-01
There has been considerable recent interest in how human-induced species loss affects community and ecosystem properties. These effects are particularly apparent when a commercially valuable species is harvested from an ecosystem, such as occurs through single-tree harvesting or selective logging of desired timber species in natural forests. In New Zealand mixed-species rain forests, single-tree harvesting of the emergent gymnosperm Dacrydium cupressinum, or rimu, has been widespread. This harvesting has been contentious in part because of possible ecological impacts of Dacrydium removal on the remainder of the forest, but many of these effects remain unexplored. We identified an area where an unintended 40-year "removal experiment" had been set up that involved selective extraction of individual Dacrydium trees. We measured aboveground and belowground variables at set distances from both individual live trees and stumps of trees harvested 40 years ago. Live trees had effects both above and below ground by affecting diversity and cover of several components of the vegetation (usually negatively), promoting soil C sequestration, enhancing ratios of soil C:P and N:P, and affecting community structure of soil microflora. These effects extended to 8 m from the tree base and were likely caused by poor-quality litter and humus produced by the trees. Measurements for the stumps revealed strong legacy effects of prior presence of trees on some properties (e.g., cover by understory herbs and ferns, soil C sequestration, soil C:P and N:P ratios), but not others (e.g., soil fungal biomass, soil N concentration). These results suggest that the legacy of prior presence of Dacrydium may remain for several decades or centuries, and certainly well over 40 years. They also demonstrate that, while large Dacrydium individuals (and their removal) may have important effects in their immediate proximity, within a forest, these effects should only be important in localized patches containing high densities of large trees. Finally, this study emphasizes that deliberate extraction of a particular tree species from a forest can exert influences both above and below ground if the removed species has a different functional role than that of the other plant species present.
Identifying priority areas for ecosystem service management in South African grasslands.
Egoh, Benis N; Reyers, Belinda; Rouget, Mathieu; Richardson, David M
2011-06-01
Grasslands provide many ecosystem services required to support human well-being and are home to a diverse fauna and flora. Degradation of grasslands due to agriculture and other forms of land use threaten biodiversity and ecosystem services. Various efforts are underway around the world to stem these declines. The Grassland Programme in South Africa is one such initiative and is aimed at safeguarding both biodiversity and ecosystem services. As part of this developing programme, we identified spatial priority areas for ecosystem services, tested the effect of different target levels of ecosystem services used to identify priority areas, and evaluated whether biodiversity priority areas can be aligned with those for ecosystem services. We mapped five ecosystem services (below ground carbon storage, surface water supply, water flow regulation, soil accumulation and soil retention) and identified priority areas for individual ecosystem services and for all five services at the scale of quaternary catchments. Planning for individual ecosystem services showed that, depending on the ecosystem service of interest, between 4% and 13% of the grassland biome was required to conserve at least 40% of the soil and water services. Thirty-four percent of the biome was needed to conserve 40% of the carbon service in the grassland. Priority areas identified for five ecosystem services under three target levels (20%, 40%, 60% of the total amount) showed that between 17% and 56% of the grassland biome was needed to conserve these ecosystem services. There was moderate to high overlap between priority areas selected for ecosystem services and already-identified terrestrial and freshwater biodiversity priority areas. This level of overlap coupled with low irreplaceability values obtained when planning for individual ecosystem services makes it possible to combine biodiversity and ecosystem services in one plan using systematic conservation planning. Copyright © 2011 Elsevier Ltd. All rights reserved.
Revisiting the choice of the driving temperature for eddy covariance CO2 flux partitioning
Wohlfahrt, Georg; Galvagno, Marta
2017-01-01
So-called CO2 flux partitioning algorithms are widely used to partition the net ecosystem CO2 exchange into the two component fluxes, gross primary productivity and ecosystem respiration. Common CO2 flux partitioning algorithms conceptualize ecosystem respiration to originate from a single source, requiring the choice of a corresponding driving temperature. Using a conceptual dual-source respiration model, consisting of an above- and a below-ground respiration source each driven by a corresponding temperature, we demonstrate that the typical phase shift between air and soil temperature gives rise to a hysteresis relationship between ecosystem respiration and temperature. The hysteresis proceeds in a clockwise fashion if soil temperature is used to drive ecosystem respiration, while a counter-clockwise response is observed when ecosystem respiration is related to air temperature. As a consequence, nighttime ecosystem respiration is smaller than daytime ecosystem respiration when referenced to soil temperature, while the reverse is true for air temperature. We confirm these qualitative modelling results using measurements of day and night ecosystem respiration made with opaque chambers in a short-statured mountain grassland. Inferring daytime from nighttime ecosystem respiration or vice versa, as attempted by CO2 flux partitioning algorithms, using a single-source respiration model is thus an oversimplification resulting in biased estimates of ecosystem respiration. We discuss the likely magnitude of the bias, options for minimizing it and conclude by emphasizing that the systematic uncertainty of gross primary productivity and ecosystem respiration inferred through CO2 flux partitioning needs to be better quantified and reported. PMID:28439145
Rudolf, Volker H W; Rasmussen, Nick L
2013-05-01
A central challenge in community ecology is to understand the connection between biodiversity and the functioning of ecosystems. While traditional approaches have largely focused on species-level diversity, increasing evidence indicates that there exists substantial ecological diversity among individuals within species. By far, the largest source of this intraspecific diversity stems from variation among individuals in ontogenetic stage and size. Although such ontogenetic shifts are ubiquitous in natural communities, whether and how they scale up to influence the structure and functioning of complex ecosystems is largely unknown. Here we take an experimental approach to examine the consequences of ontogenetic niche shifts for the structure of communities and ecosystem processes. In particular we experimentally manipulated the stage structure in a keystone predator, larvae of the dragonfly Anax junius, in complex experimental pond communities to test whether changes in the population stage or size structure of a keystone species scale up to alter community structure and ecosystem processes, and how functional differences scale with relative differences in size among stages. We found that the functional role of A. junius was stage-specific. Altering what stages were present in a pond led to concurrent changes in community structure, primary producer biomass (periphyton and phytoplankton), and ultimately altered ecosystem processes (respiration and net primary productivity), indicating a strong, but stage-specific, trophic cascade. Interestingly, the stage-specific effects did not simply scale with size or biomass of the predator, but instead indicated clear ontogenetic niche shifts in ecological interactions. Thus, functional differences among stages within a keystone species scaled up to alter the functioning of entire ecosystems. Therefore, our results indicate that the classical approach of assuming an average functional role of a species can be misleading because functional roles are dynamic and will change with shifts in the stage structure of the species. In general this emphasizes the importance of accounting for functional diversity below the species level to predict how natural and anthropogenic changes alter the functioning of natural ecosystems.
Unraveling the Plant-Soil Interactome
NASA Astrophysics Data System (ADS)
Lipton, M. S.; Hixson, K.; Ahkami, A. H.; HaHandkumbura, P. P.; Hess, N. J.; Fang, Y.; Fortin, D.; Stanfill, B.; Yabusaki, S.; Engbrecht, K. M.; Baker, E.; Renslow, R.; Jansson, C.
2017-12-01
Plant photosynthesis is the primary conduit of carbon fixation from the atmosphere to the terrestrial ecosystem. While more is known about plant physiology and biochemistry, the interplay between genetic and environmental factors that govern partitioning of carbon to above- and below ground plant biomass, to microbes, to the soil, and respired to the atmosphere is not well understood holistically. To address this knowledge gap there is a need to define, study, comprehend, and model the plant ecosystem as an integrated system of integrated biotic and abiotic processes and feedbacks. Local rhizosphere conditions are an important control on plant performance but are in turn affected by plant uptake and rhizodeposition processes. C3 and C4 plants have different CO2 fixation strategies and likely have differential metabolic profiles resulting in different carbon sources exuding to the rhizosphere. In this presentation, we report on an integrated capability to better understand plant-soil interactions, including modeling tools that address the spatiotemporal hydrobiogeochemistry in the rhizosphere. Comparing Brachypodium distachyon, (Brachypodium) as our C3 representative and Setaria viridis (Setaria) as our C4 representative, we designed, highly controlled single-plant experimental ecosystems based these model grasses to enable quantitative prediction of ecosystem traits and responses as a function of plant genotype and environmental variables. A metabolomics survey of 30 Brachypodium genotypes grown under control and drought conditions revealed specific metabolites that correlated with biomass production and drought tolerance. A comparison of Brachypodium and Setaria grown with control and a future predicted elevated CO2 level revealed changes in biomass accumulation and metabolite profiles between the C3 and C4 species in both leaves and roots. Finally, we are building an mechanistic modeling capability that will contribute to a better basis for modeling plant water and nutrient cycling in larger scale models.
Osland, Michael J.; Spivak, Amanda C.; Nestlerode, Janet A.; Lessmann, Jeannine M.; Almario, Alejandro E.; Heitmuller, Paul T.; Russell, Marc J.; Krauss, Ken W.; Alvarez, Federico; Dantin, Darrin D.; Harvey, James E.; From, Andrew S.; Cormier, Nicole; Stagg, Camille L.
2012-01-01
Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland losses. However, ecosystem development and functional equivalence in restored and created mangrove wetlands are poorly understood. We compared a 20-year chronosequence of created tidal wetland sites in Tampa Bay, Florida (USA) to natural reference mangrove wetlands. Across the chronosequence, our sites represent the succession from salt marsh to mangrove forest communities. Our results identify important soil and plant structural differences between the created and natural reference wetland sites; however, they also depict a positive developmental trajectory for the created wetland sites that reflects tightly coupled plant-soil development. Because upland soils and/or dredge spoils were used to create the new mangrove habitats, the soils at younger created sites and at lower depths (10-30 cm) had higher bulk densities, higher sand content, lower soil organic matter (SOM), lower total carbon (TC), and lower total nitrogen (TN) than did natural reference wetland soils. However, in the upper soil layer (0-10 cm), SOM, TC, and TN increased with created wetland site age simultaneously with mangrove forest growth. The rate of created wetland soil C accumulation was comparable to literature values for natural mangrove wetlands. Notably, the time to equivalence for the upper soil layer of created mangrove wetlands appears to be faster than for many other wetland ecosystem types. Collectively, our findings characterize the rate and trajectory of above- and below-ground changes associated with ecosystem development in created mangrove wetlands; this is valuable information for environmental managers planning to sustain existing mangrove wetlands or mitigate for mangrove wetland losses.
NASA Astrophysics Data System (ADS)
Pappas, C.
2017-12-01
Terrestrial ecosystem processes respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Process-based modeling of ecosystem functioning is therefore challenging, especially when long-term predictions are envisioned. Here we analyze the statistical properties of hydrometeorological and ecosystem variability, i.e., the variability of ecosystem process related to vegetation carbon dynamics, from hourly to decadal timescales. 23 extra-tropical forest sites, covering different climatic zones and vegetation characteristics, are examined. Micrometeorological and reanalysis data of precipitation, air temperature, shortwave radiation and vapor pressure deficit are used to describe hydrometeorological variability. Ecosystem variability is quantified using long-term eddy covariance flux data of hourly net ecosystem exchange of CO2 between land surface and atmosphere, monthly remote sensing vegetation indices, annual tree-ring widths and above-ground biomass increment estimates. We find that across sites and timescales ecosystem variability is confined within a hydrometeorological envelope that describes the range of variability of the available resources, i.e., water and energy. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. We derive an analytical model, combining deterministic harmonics and stochastic processes, that represents major mechanisms and uncertainties and mimics the observed pattern of hydrometeorological and ecosystem variability. This stochastic framework offers a parsimonious and mathematically tractable approach for modelling ecosystem functioning and for understanding its response and resilience to environmental changes. Furthermore, this framework reflects well the observed ecological memory, an inherent property of ecosystem functioning that is currently not captured by simulation results with process-based models. Our analysis offers a perspective for terrestrial ecosystem modelling, combining current process understanding with stochastic methods, and paves the way for new model-data integration opportunities in Earth system sciences.
GWERD Overview: U.S. EPA's Ground Water and Ecosystems Restoration Division
The USEPA's Ground Water and Ecosystems Restoration Division (GWERD) conducts research and provides technical assistance to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted by man-made and natural...
Carbon storage in Chinese grassland ecosystems: Influence of different integrative methods.
Ma, Anna; He, Nianpeng; Yu, Guirui; Wen, Ding; Peng, Shunlei
2016-02-17
The accurate estimate of grassland carbon (C) is affected by many factors at the large scale. Here, we used six methods (three spatial interpolation methods and three grassland classification methods) to estimate C storage of Chinese grasslands based on published data from 2004 to 2014, and assessed the uncertainty resulting from different integrative methods. The uncertainty (coefficient of variation, CV, %) of grassland C storage was approximately 4.8% for the six methods tested, which was mainly determined by soil C storage. C density and C storage to the soil layer depth of 100 cm were estimated to be 8.46 ± 0.41 kg C m(-2) and 30.98 ± 1.25 Pg C, respectively. Ecosystem C storage was composed of 0.23 ± 0.01 (0.7%) above-ground biomass, 1.38 ± 0.14 (4.5%) below-ground biomass, and 29.37 ± 1.2 (94.8%) Pg C in the 0-100 cm soil layer. Carbon storage calculated by the grassland classification methods (18 grassland types) was closer to the mean value than those calculated by the spatial interpolation methods. Differences in integrative methods may partially explain the high uncertainty in C storage estimates in different studies. This first evaluation demonstrates the importance of multi-methodological approaches to accurately estimate C storage in large-scale terrestrial ecosystems.
Ohtsuka, Toshiyuki; Shizu, Yoko; Nishiwaki, Ai; Yashiro, Yuichiro; Koizumi, Hiroshi
2010-07-01
Secondary mixed forests are one of the dominant forest cover types in human-dominated temperate regions. However, our understanding of how secondary succession affects carbon cycling and carbon sequestration in these ecosystems is limited. We studied carbon cycling and net ecosystem production (NEP) over 4 years (2004-2008) in a cool-temperate deciduous forest at an early stage of secondary succession (18 years after clear-cutting). Net primary production of the 18-year-old forest in this study was 5.2 tC ha(-1 )year(-1), including below-ground coarse roots; this was partitioned into 2.5 tC ha(-1 )year(-1) biomass increment, 1.6 tC ha(-1 )year(-1) foliage litter, and 1.0 tC ha(-1 )year(-1) other woody detritus. The total amount of annual soil surface CO(2) efflux was 6.8 tC ha(-1 )year(-1), which included root respiration (1.9 tC ha(-1 )year(-1)) and heterotrophic respiration (RH) from soils (4.9 tC ha(-1 )year(-1)). The 18-year forest at this study site exhibited a great increase in biomass pool as a result of considerable total tree growth and low mortality of tree stems. In contrast, the soil organic matter (SOM) pool decreased markedly (-1.6 tC ha(-1 )year(-1)), although further study of below-ground detritus production and RH of SOM decomposition is needed. This young 18-year forest was a weak carbon sink (0.9 tC ha(-1 )year(-1)) at this stage of secondary succession. The NEP of this 18-year forest is likely to increase gradually because biomass increases with tree growth and with the improvement of the SOM pool through increasing litter and dead wood production with stand development.
Teng, Jiangnan; Xiang, Tingting; Huang, Zhangting; Wu, Jiasen; Jiang, Peikun; Meng, Cifu; Li, Yongfu; Fuhrmann, Jeffry J
2016-03-01
Selection of tree species is potentially an important management decision for increasing carbon storage in forest ecosystems. This study investigated and compared spatial distribution and variability of carbon storage in 8 sympodial bamboo species in China. The results of this study showed that average carbon densities (CDs) in the different organs decreased in the order: culms (0.4754 g g(-1)) > below-ground (0.4701 g g(-1)) > branches (0.4662 g g(-1)) > leaves (0.4420 g g(-1)). Spatial distribution of carbon storage (CS) on an area basis in the biomass of 8 sympodial bamboo species was in the order: culms (17.4-77.1%) > below-ground (10.6-71.7%) > branches (3.8-11.6%) > leaves (0.9-5.1%). Total CSs in the sympodial bamboo ecosystems ranged from 103.6 Mg C ha(-1) in Bambusa textilis McClure stand to 194.2 Mg C ha(-1) in Dendrocalamus giganteus Munro stand. Spatial distribution of CSs in 8 sympodial bamboo ecosystems decreased in the order: soil (68.0-83.5%) > vegetation (16.8-31.1%) > litter (0.3-1.7%). Total current CS and biomass carbon sequestration rate in the sympodial bamboo stands studied in China is 93.184 × 10(6) Mg C ha(-1) and 8.573 × 10(6) Mg C yr(-1), respectively. The sympodial bamboos had a greater CSs and higher carbon sequestration rates relative to other bamboo species. Sympodial bamboos can play an important role in improving climate and economy in the widely cultivated areas of the world. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huang, Wei; Siemann, Evan; Yang, Xuefang; Wheeler, Gregory S; Ding, Jianqing
2013-09-22
To date, it remains unclear how herbivore-induced changes in plant primary and secondary metabolites impact above-ground and below-ground herbivore interactions. Here, we report effects of above-ground (adult) and below-ground (larval) feeding by Bikasha collaris on nitrogen and secondary chemicals in shoots and roots of Triadica sebifera to explain reciprocal above-ground and below-ground insect interactions. Plants increased root tannins with below-ground herbivory, but above-ground herbivory prevented this increase and larval survival doubled. Above-ground herbivory elevated root nitrogen, probably contributing to increased larval survival. However, plants increased foliar tannins with above-ground herbivory and below-ground herbivory amplified this increase, and adult survival decreased. As either foliar or root tannins increased, foliar flavonoids decreased, suggesting a trade-off between these chemicals. Together, these results show that plant chemicals mediate contrasting effects of conspecific larval and adult insects, whereas insects may take advantage of plant responses to facilitate their offspring performance, which may influence population dynamics.
Mechanisms and Control of Phloem Transport in Trees: Fast and Slow - Sink and Source
NASA Astrophysics Data System (ADS)
Gessler, Arthur; Hagedorn, Frank; Galiano, Lucia; Schaub, Marcus; Joseph, Jobin; Arend, Matthias; Hommel, Robert; Kayler, Zachary
2017-04-01
Trees are large global stores of carbon that will be affected by increased carbon dioxide levels and climate change in the future. However, at present we cannot properly predict the carbon balance of forests as we lack knowledge on how plant physiological processes and especially the transport of carbon within the plant interact with environmental drivers and ecosystem-scale processes. The central conveyor belt for C allocation and distribution within the tree is the phloem and its functionality under environmental stress (esp. drought) is important for the avoidance of C starvation. This paper addresses the distribution of new assimilates within the plant, and sheds light on phloem transport mechanisms and transport control using 13C pulse labelling techniques. We provide experimental evidence that at least two mechanisms are employed to couple C sink processes to assimilation. We observed a fast increase of belowground respiration with the onset of photosynthesis, which we assume is induced by pressure concentration waves travelling through the phloem. A second, much later occurring peak in respiration is fueled by new 13C labeled assimilates. Moreover, we relate phloem transport velocity and intensity of labelled 13C assimilates to drought stress intensity and give indication how sink rather than source control might affect phloem transport in trees. During drought, net photosynthesis, soil respiration and the allocation of recent assimilates below ground were reduced. Carbohydrates accumulated in metabolically resting roots but not in leaves, indicating sink control of the tree carbon balance. After drought release, soil respiration recovered faster than assimilation and CO2 fluxes exceeded those in continuously watered trees for months. This stimulation was related to greater assimilate allocation to and metabolization in the rhizosphere. These findings show that trees prioritize the investment of assimilates below ground, probably to regain root functions after drought and indicate that sink activity governs carbon allocation not only during drought stress but also after stress release.
Context-dependent consumer control in New England tidal wetlands.
Moore, Alexandria
2018-01-01
Recent studies in coastal wetlands have indicated that consumers may play an important role in regulating large-scale ecosystem processes. Predator removal experiments have shown significant differences in above-ground biomass production in the presence of higher level consumers, or predators. These results indicate that predators play an important role in regulating biomass production, but the extent to which this regulation impacts additional ecosystem functions, such as nutrient cycling and organic matter accumulation, is unclear. This study evaluated the impact that consumers have on large-scale ecosystem processes within southern New England tidal wetlands and contributes to the general understanding of trophic control in these systems. I established enclosure cages within three coastal wetlands and manipulated the presence of green crab predators to assess how trophic interactions affect ecosystem functions. Findings suggest that although these consumers may exert some top-down effects, other environmental factors, such as other consumers not studied here or bottom-up interactions, may variably play a larger role in the maintenance of ecosystem processes within the region. These results indicate that the loss of top-down control as an important mechanism influencing ecosystem functions may not hold for all wetlands along the full extent of the New England coastline.
Context-dependent consumer control in New England tidal wetlands
2018-01-01
Recent studies in coastal wetlands have indicated that consumers may play an important role in regulating large-scale ecosystem processes. Predator removal experiments have shown significant differences in above-ground biomass production in the presence of higher level consumers, or predators. These results indicate that predators play an important role in regulating biomass production, but the extent to which this regulation impacts additional ecosystem functions, such as nutrient cycling and organic matter accumulation, is unclear. This study evaluated the impact that consumers have on large-scale ecosystem processes within southern New England tidal wetlands and contributes to the general understanding of trophic control in these systems. I established enclosure cages within three coastal wetlands and manipulated the presence of green crab predators to assess how trophic interactions affect ecosystem functions. Findings suggest that although these consumers may exert some top-down effects, other environmental factors, such as other consumers not studied here or bottom-up interactions, may variably play a larger role in the maintenance of ecosystem processes within the region. These results indicate that the loss of top-down control as an important mechanism influencing ecosystem functions may not hold for all wetlands along the full extent of the New England coastline. PMID:29771961
NASA Technical Reports Server (NTRS)
Veroustraete, Frank; Patyn, Johan; Myneni, R. B.
1994-01-01
A concept for coupling the remote sensing derived fraction of the absorbed photosynthetic active radiation (FAPAR) with a functional ecosystem model was developed. The study was named the Belfix procedure. The quantification of changes in carbon dynamics at the ecosystem level is a key issue in studies of global climatic change effects at the vegetation atmosphere interface. An operational procedure, for the determination of carbon fluxes at the regional scale (Belgian territory), is presented. The approach allows for the determination of the sink function of vegetation for carbon (dioxide). The phyto- and litter mass, photosynthetic assimilation, autotroph and heterotroph carbon fluxes and net ecosystem exchange (NEE) of carbon, were evaluated. The results suggest that a single solution can be obtained for ecosystem rates and states, applying an iterative procedure, based on minimizing the change in maximal seasonal green phytomass in function of yearly FAPAR temporal profiles. Total phytomass values obtained are in close range with those obtained by ground sampling.
Huang, Wei; Siemann, Evan; Yang, Xuefang; Wheeler, Gregory S.; Ding, Jianqing
2013-01-01
To date, it remains unclear how herbivore-induced changes in plant primary and secondary metabolites impact above-ground and below-ground herbivore interactions. Here, we report effects of above-ground (adult) and below-ground (larval) feeding by Bikasha collaris on nitrogen and secondary chemicals in shoots and roots of Triadica sebifera to explain reciprocal above-ground and below-ground insect interactions. Plants increased root tannins with below-ground herbivory, but above-ground herbivory prevented this increase and larval survival doubled. Above-ground herbivory elevated root nitrogen, probably contributing to increased larval survival. However, plants increased foliar tannins with above-ground herbivory and below-ground herbivory amplified this increase, and adult survival decreased. As either foliar or root tannins increased, foliar flavonoids decreased, suggesting a trade-off between these chemicals. Together, these results show that plant chemicals mediate contrasting effects of conspecific larval and adult insects, whereas insects may take advantage of plant responses to facilitate their offspring performance, which may influence population dynamics. PMID:23902902
Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground
Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; ...
2015-03-24
Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) formore » analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.« less
Effects of inter-row management intensity on wild bee, plant and soil biota diversity in vineyards
NASA Astrophysics Data System (ADS)
Kratschmer, Sophie; Pachinger, Bärbel; Winter, Silvia; Zaller, Johann G.; Buchholz, Jacob; Querner, Pascal; Strauß, Peter; Bauer, Thomas; Stiper, Katrin
2016-04-01
Vineyards may provide a range of essential ecosystem services, which interact with a diverse community of above- and belowground organisms. Intensive soil management like frequent tilling has resulted in the degradation of habitat quality with consequences on biodiversity and ecosystem services. This study is part of the European BiodivERsA project "VineDivers - Biodiversity-based ecosystem services in vineyards". We study the effects of different soil management intensities on above- and below-ground biodiversity (plants, insect pollinators, and soil biota), their interactions and the consequences for ecosystem services. We investigated 16 vineyards in Austria assessing the diversity of (1) wild bees using a semi-quantitative transect method, (2) earthworms by hand sorting, (3) Collembola (springtails) via pitfall trapping and soil coring, (4) plants by relevés and (5) litter decomposition (tea bag method). Management intensity differed in tillage frequency from intermediate intensity resulting in temporary vegetation cover to no tillage in permanent vegetation cover systems. First results show opposed relationships between the biodiversity of selected species groups and management intensity. We will discuss possible explanations and evaluate ecological interactions between wild bee, plant and soil biota diversity.
Salas-Lopez, Alex; Mickal, Houadria; Menzel, Florian; Orivel, Jérôme
2017-01-01
The diversity and functional identity of organisms are known to be relevant to the maintenance of ecosystem processes but can be variable in different environments. Particularly, it is uncertain whether ecosystem processes are driven by complementary effects or by dominant groups of species. We investigated how community structure (i.e., the diversity and relative abundance of biological entities) explains the community-level contribution of Neotropical ant communities to different ecosystem processes in different environments. Ants were attracted with food resources representing six ant-mediated ecosystem processes in four environments: ground and vegetation strata in cropland and forest habitats. The exploitation frequencies of the baits were used to calculate the taxonomic and trophic structures of ant communities and their contribution to ecosystem processes considered individually or in combination (i.e., multifunctionality). We then investigated whether community structure variables could predict ecosystem processes and whether such relationships were affected by the environment. We found that forests presented a greater biodiversity and trophic complementarity and lower dominance than croplands, but this did not affect ecosystem processes. In contrast, trophic complementarity was greater on the ground than on vegetation and was followed by greater resource exploitation levels. Although ant participation in ecosystem processes can be predicted by means of trophic-based indices, we found that variations in community structure and performance in ecosystem processes were best explained by environment. We conclude that determining the extent to which the dominance and complementarity of communities affect ecosystem processes in different environments requires a better understanding of resource availability to different species.
RIP-ET: A riparian evapotranspiration package for MODFLOW-2005
Maddock, Thomas; Baird, Kathryn J.; Hanson, R.T.; Schmid, Wolfgang; Ajami, Hoori
2012-01-01
A new evapotranspiration package for the U.S. Geological Survey's groundwater-flow model, MODFLOW, is documented. The Riparian Evapotranspiration Package (RIP-ET) provides flexibility in simulating riparian and wetland transpiration not provided by the Evapotranspiration (EVT) or Segmented Function Evapotranspiration (ETS1) Packages for MODFLOW 2005. This report describes how the RIP-ET package was conceptualized and provides input instructions, listings and explanations of the source code, and an example. Traditional approaches to modeling evapotranspiration (ET) processes assume a piecewise linear relationship between ET flux and hydraulic head. The RIP-ET replaces this traditional relationship with a segmented, nonlinear dimensionless curve that reflects the eco-physiology of riparian and wetland ecosystems. Evapotranspiration losses from these ecosystems are dependent not only on hydraulic head, but on the plant types present. User-defined plant functional groups (PFGs) are used to elucidate the interaction between plant transpiration and groundwater conditions. Five generalized plant functional groups based on transpiration rates, plant rooting depth, and water tolerance ranges are presented: obligate wetland, shallow-rooted riparian, deep-rooted riparian, transitional riparian and bare ground/open water. Plant functional groups can be further divided into subgroups (PFSGs) based on plant size, density or other characteristics. The RIP-ET allows for partial habitat coverage and mixtures of plant functional subgroups to be present in a single model cell. RIP-ET also distinguishes between plant transpiration and bare-ground evaporation. Habitat areas are designated by polygons; each polygon can contain a mixture of PFSGs and bare ground, and is assigned a surface elevation. This process requires a determination of fractional coverage for each of the plant functional subgroups present in a polygon to account for the mixture of coverage types and resulting transpiration. The fractional cover within a cell has two components: (1) the polygonal fraction of active habitat (excluding area of bare ground, dead trees, or brush) in a cell, and (2) fraction of plant type area or bare ground area in a polygon. RIP-ET determines the transpiration rate for each plant functional group and evaporation from bare ground/open water in a cell, the total ET in the cell, and the total ET rate over the region of simulation.
Stendahl, Johan; Berg, Björn; Lindahl, Björn D
2017-11-14
Carbon sequestration below ground depends on organic matter input and decomposition, but regulatory bottlenecks remain unclear. The relative importance of plant production, climate and edaphic factors has to be elucidated to better predict carbon storage in forests. In Swedish forest soil inventory data from across the entire boreal latitudinal range (n = 2378), the concentration of exchangeable manganese was singled out as the strongest predictor (R 2 = 0.26) of carbon storage in the extensive organic horizon (mor layer), which accounts for one third of the total below ground carbon. In comparison, established ecosystem models applied on the same data have failed to predict carbon stocks (R 2 < 0.05), and in our study manganese availability overshadowed both litter production and climatic factors. We also identified exchangeable potassium as an additional strong predictor, however strongly correlated with manganese. The negative correlation between manganese and carbon highlights the importance of Mn-peroxidases in oxidative decomposition of recalcitrant organic matter. The results support the idea that the fungus-driven decomposition could be a critical factor regulating humus carbon accumulation in boreal forests, as Mn-peroxidases are specifically produced by basidiomycetes.
NASA Astrophysics Data System (ADS)
Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.
2016-12-01
Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.
Garnier, Eric; Lavorel, Sandra; Ansquer, Pauline; Castro, Helena; Cruz, Pablo; Dolezal, Jiri; Eriksson, Ove; Fortunel, Claire; Freitas, Helena; Golodets, Carly; Grigulis, Karl; Jouany, Claire; Kazakou, Elena; Kigel, Jaime; Kleyer, Michael; Lehsten, Veiko; Lepš, Jan; Meier, Tonia; Pakeman, Robin; Papadimitriou, Maria; Papanastasis, Vasilios P.; Quested, Helen; Quétier, Fabien; Robson, Matt; Roumet, Catherine; Rusch, Graciela; Skarpe, Christina; Sternberg, Marcelo; Theau, Jean-Pierre; Thébault, Aurélie; Vile, Denis; Zarovali, Maria P.
2007-01-01
Background and Aims A standardized methodology to assess the impacts of land-use changes on vegetation and ecosystem functioning is presented. It assumes that species traits are central to these impacts, and is designed to be applicable in different historical, climatic contexts and local settings. Preliminary results are presented to show its applicability. Methods Eleven sites, representative of various types of land-use changes occurring in marginal agro-ecosystems across Europe and Israel, were selected. Climatic data were obtained at the site level; soil data, disturbance and nutrition indices were described at the plot level within sites. Sixteen traits describing plant stature, leaf characteristics and reproductive phase were recorded on the most abundant species of each treatment. These data were combined with species abundance to calculate trait values weighed by the abundance of species in the communities. The ecosystem properties selected were components of above-ground net primary productivity and decomposition of litter. Key Results The wide variety of land-use systems that characterize marginal landscapes across Europe was reflected by the different disturbance indices, and were also reflected in soil and/or nutrient availability gradients. The trait toolkit allowed us to describe adequately the functional response of vegetation to land-use changes, but we suggest that some traits (vegetative plant height, stem dry matter content) should be omitted in studies involving mainly herbaceous species. Using the example of the relationship between leaf dry matter content and above-ground dead material, we demonstrate how the data collected may be used to analyse direct effects of climate and land use on ecosystem properties vs. indirect effects via changes in plant traits. Conclusions This work shows the applicability of a set of protocols that can be widely applied to assess the impacts of global change drivers on species, communities and ecosystems. PMID:17085470
Ecosystem Restoration Research at GWERD
Ground Water and Ecosystems Restoration Division, Ada, OK Mission: Conduct research and technical assistance to provide the scientific basis to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted b...
NASA Astrophysics Data System (ADS)
Will, R. M.; Glenn, N. F.; Benner, S. G.; Pierce, J. L.; Spaete, L.; Li, A.
2015-12-01
Quantifying SOC (Soil Organic Carbon) storage in complex terrain is challenging due to high spatial variability. Generally, the challenge is met by transforming point data to the entire landscape using surrogate, spatially-distributed, variables like elevation or precipitation. In many ecosystems, remotely sensed information on above-ground vegetation (e.g. NDVI) is a good predictor of below-ground carbon stocks. In this project, we are attempting to improve this predictive method by incorporating LiDAR-derived vegetation indices. LiDAR provides a mechanism for improved characterization of aboveground vegetation by providing structural parameters such as vegetation height and biomass. In this study, a random forest model is used to predict SOC using a suite of LiDAR-derived vegetation indices as predictor variables. The Reynolds Creek Experimental Watershed (RCEW) is an ideal location for a study of this type since it encompasses a strong elevation/precipitation gradient that supports lower biomass sagebrush ecosystems at low elevations and forests with more biomass at higher elevations. Sagebrush ecosystems composed of Wyoming, Low and Mountain Sagebrush have SOC values ranging from .4 to 1% (top 30 cm), while higher biomass ecosystems composed of aspen, juniper and fir have SOC values approaching 4% (top 30 cm). Large differences in SOC have been observed between canopy and interspace locations and high resolution vegetation information is likely to explain plot scale variability in SOC. Mapping of the SOC reservoir will help identify underlying controls on SOC distribution and provide insight into which processes are most important in determining SOC in semi-arid mountainous regions. In addition, airborne LiDAR has the potential to characterize vegetation communities at a high resolution and could be a tool for improving estimates of SOC at larger scales.
Ground Water Remediation Technologies
The USEPA's Ground Water and Ecosystems Restoration Division (GWERD) conducts research and provides technical assistance to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted by man-made and natural...
Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought
Isbell, Forest; Manning, Pete; Connolly, John; Bruelheide, Helge; Ebeling, Anne; Roscher, Christiane; van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian; Beierkuhnlein, Carl; de Luca, Enrica; Griffin, John N.; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtech; Loreau, Michel; Meyer, Sebastian T.; Mori, Akira S.; Naeem, Shahid; Palmborg, Cecilia; Polley, H. Wayne; Reich, Peter B.; Schmid, Bernhard; Siebenkäs, Alrun; Seabloom, Eric; Thakur, Madhav P.; Tilman, David; Vogel, Anja; Eisenhauer, Nico
2016-01-01
Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function. PMID:27114579
Biological soil crusts: a fundamental organizing agent in global drylands
NASA Astrophysics Data System (ADS)
Belnap, J.; Zhang, Y.
2013-12-01
Ecosystem function is profoundly affected by plant community composition, which is ultimately determined by factors that govern seed retention. Dryland ecosystems constitute ~35% of terrestrial surfaces, with most soils in these regions covered by biological soil crusts (biocrusts), a community whose autotrophs are dominated by cyanobacteria, lichens, and mosses. Studies at 550 sites revealed that plant community composition was controlled by the interaction among biocrust type, disturbance regime, and external morphology of seeds. In bare soils (due to disturbance), all seed types were present in the seedbank and plant community. As biocrusts became better developed (i.e., the cover of lichens and mosses increased), they more strongly filtered out seeds with appendages. Thus, soils under late successional biocrusts contained seedbanks dominated by smooth seeds and vascular plants growing in late successional biocrusts were dominated by those with smooth seeds. Therefore, the tension between the removal of biocrusts by soil surface disturbance and their recovery creates a shifting mosaic of plant patch types in both space and time. Because changes in vascular plant communities reverberate throughout both below ground and above ground food webs and thus affect multiple trophic levels, we propose that biocrusts are a fundamental organizing agent in drylands worldwide. Future increased demand for resources will intensify land use both temporally and spatially, resulting in an increased rate of biocrust loss across larger areas. As a result, we can expect shifts in the composition and distribution of plant communities, accompanied by concomitant changes in many aspects of dryland ecosystems. Conceptual model of shifting dryland plant mosaics through space and time. Within the large circles, soil surface type changes with time in the same space, going from bare uncrusted soil (B) to cyanobacterial biocrust (C) to lichen/moss (L/M) biocrust. Disturbance (D) drives the cycle back towards U, and recovery (R) drives it towards L/M. Larger disturbances and dispersal of biocrust organisms among the larger circles result in mosaics that shift in space as well. The bar chart shows the proportion of smooth (left side) and rough (right side) seeds under different crust types.
Inventory of File nam.t00z.hawaiinest.hiresf00.tm00.gr
m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 589 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 590 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 591 0.1-0.4 m below ground TSOIL analysis Soil
Inventory of File nam.t00z.firewxnest.hiresf00.tm00.gr
m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 589 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 590 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 591 0.1-0.4 m below ground TSOIL analysis Soil
Inventory of File nam.t00z.awip3200.tm00.grib2
m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 620 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 621 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 622 0.1-0.4 m below ground TSOIL analysis Soil
Inventory of File nam.t00z.conusnest.hiresf00.tm00.gri
m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 589 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 590 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 591 0.1-0.4 m below ground TSOIL analysis Soil
Inventory of File nam.t00z.alaskanest.hiresf00.tm00.gr
m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 589 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 590 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 591 0.1-0.4 m below ground TSOIL analysis Soil
A Historical Search for the Occurrence of Habitable Ground Ice at the Phoenix Landing Site
NASA Technical Reports Server (NTRS)
Zent, Aaron P.
2006-01-01
A numerical model of the thermal history of Martian ground ice at the approximate location of the planned Phoenix landing site has been developed and used to identify instances of relatively warm ground ice over the last 10 Ma. Many terrestrial organisms are adapted to life at or below the freezing temperature of water, and we will use the approximate doubling time of terrestrial microbial populations as a function of temperature, is used as a metric against which to assess the "habitability" of Martian ground ice.
Cunniff, Jennifer; Purdy, Sarah J.; Barraclough, Tim J.P.; Castle, March; Maddison, Anne L.; Jones, Laurence E.; Shield, Ian F.; Gregory, Andrew S.; Karp, Angela
2015-01-01
Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. PMID:26339128
Inventory of File sref_em.t03z.pgrb132.p1.f00.grib2
0-0.1 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 402 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 403 0.1-0.4 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 404 0.1-0.4 m below ground SOILW analysis Volumetric
Inventory of File nam.t00z.awip3d06.tm00.grib2
below ground TSOIL 6 hour fcst Soil Temperature Validation to deprecate [K] 433 0-0.1 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content [Fraction] 434 0-0.1 m below ground SOILL 6 hour fcst Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 435 0.1-0.4 m below ground TSOIL 6 hour fcst
NASA Astrophysics Data System (ADS)
Howell, Kerry-Louise; Piechaud, Nils; Downie, Anna-Leena; Kenny, Andrew
2016-09-01
Sponge aggregations have been recognised as key component of shallow benthic ecosystems providing several important functional roles including habitat building and nutrient recycling. Within the deep-sea ecosystem, sponge aggregations may be extensive and available evidence suggests they may also play important functional roles, however data on their ecology, extent and distribution in the North Atlantic is lacking, hampering conservation efforts. In this study, we used Maximum Entropy Modelling and presence data for two deep-sea sponge aggregation types, Pheronema carpenteri aggregations and ostur aggregations dominated by geodid sponges, to address the following questions: 1) What environmental factors drive the broad-scale distribution of these selected sponge grounds? 2) What is the predicted distribution of these grounds in the northern North Atlantic, Norwegian and Barents Sea? 3) How are these sponge grounds distributed between Exclusive Economic Zones (EEZs) and High Seas areas? 4) What percentage of these grounds in High Seas areas are protected by the current High Seas MPA network? Our results suggest that silicate concentration, temperature, depth and amount of particulate organic carbon are the most important drivers of sponge distribution. Most of the sponge grounds are located within national EEZs rather than in the High Seas. Coordinated conservation planning between nations with significant areas of sponge grounds such as Iceland, Greenland and Faroes (Denmark), Norway (coastal Norway and Svalbard), Portugal and the UK, should be implemented in order to effectively manage these communities in view of the increasing level of human activity within the deep-sea environment.
Elevation alters ecosystem properties across temperate treelines globally
NASA Astrophysics Data System (ADS)
Mayor, Jordan R.; Sanders, Nathan J.; Classen, Aimée T.; Bardgett, Richard D.; Clément, Jean-Christophe; Fajardo, Alex; Lavorel, Sandra; Sundqvist, Maja K.; Bahn, Michael; Chisholm, Chelsea; Cieraad, Ellen; Gedalof, Ze'Ev; Grigulis, Karl; Kudo, Gaku; Oberski, Daniel L.; Wardle, David A.
2017-01-01
Temperature is a primary driver of the distribution of biodiversity as well as of ecosystem boundaries. Declining temperature with increasing elevation in montane systems has long been recognized as a major factor shaping plant community biodiversity, metabolic processes, and ecosystem dynamics. Elevational gradients, as thermoclines, also enable prediction of long-term ecological responses to climate warming. One of the most striking manifestations of increasing elevation is the abrupt transitions from forest to treeless alpine tundra. However, whether there are globally consistent above- and belowground responses to these transitions remains an open question. To disentangle the direct and indirect effects of temperature on ecosystem properties, here we evaluate replicate treeline ecotones in seven temperate regions of the world. We find that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations, but did reduce ground-layer community-weighted plant nitrogen, leading to the strong stoichiometric convergence of ground-layer plant community nitrogen to phosphorus ratios across all regions. Further, elevation-driven changes in plant nutrients were associated with changes in soil organic matter content and quality (carbon to nitrogen ratios) and microbial properties. Combined, our identification of direct and indirect temperature controls over plant communities and soil properties in seven contrasting regions suggests that future warming may disrupt the functional properties of montane ecosystems, particularly where plant community reorganization outpaces treeline advance.
Elevation alters ecosystem properties across temperate treelines globally.
Mayor, Jordan R; Sanders, Nathan J; Classen, Aimée T; Bardgett, Richard D; Clément, Jean-Christophe; Fajardo, Alex; Lavorel, Sandra; Sundqvist, Maja K; Bahn, Michael; Chisholm, Chelsea; Cieraad, Ellen; Gedalof, Ze'ev; Grigulis, Karl; Kudo, Gaku; Oberski, Daniel L; Wardle, David A
2017-02-02
Temperature is a primary driver of the distribution of biodiversity as well as of ecosystem boundaries. Declining temperature with increasing elevation in montane systems has long been recognized as a major factor shaping plant community biodiversity, metabolic processes, and ecosystem dynamics. Elevational gradients, as thermoclines, also enable prediction of long-term ecological responses to climate warming. One of the most striking manifestations of increasing elevation is the abrupt transitions from forest to treeless alpine tundra. However, whether there are globally consistent above- and belowground responses to these transitions remains an open question. To disentangle the direct and indirect effects of temperature on ecosystem properties, here we evaluate replicate treeline ecotones in seven temperate regions of the world. We find that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations, but did reduce ground-layer community-weighted plant nitrogen, leading to the strong stoichiometric convergence of ground-layer plant community nitrogen to phosphorus ratios across all regions. Further, elevation-driven changes in plant nutrients were associated with changes in soil organic matter content and quality (carbon to nitrogen ratios) and microbial properties. Combined, our identification of direct and indirect temperature controls over plant communities and soil properties in seven contrasting regions suggests that future warming may disrupt the functional properties of montane ecosystems, particularly where plant community reorganization outpaces treeline advance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhili; Xu, Meiying; Deng, Ye
2010-05-17
The global atmospheric concentration of CO2 has increased by more than 30percent since the industrial revolution. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been well studied, its influences on belowground microbial communities are poorly understood and controversial. In this study, we showed a significant change in the structure and functional potential of soil microbial communities at eCO2 in a grassland ecosystem, the BioCON (Biodiversity, CO2 and Nitrogen) experimental site (http://www.biocon.umn.edu/) using a comprehensive functional gene array, GeoChip 3.0, which contains about 28,0000 probes and covers approximately 57,000 gene variants from 292 functionalmore » gene families involved in carbon, nitrogen, phosphorus and sulfur cycles as well as other functional processes. GeoChip data indicated that the functional structure of microbial communities was markedly different between ambient CO2 (aCO2) and eCO2 by detrended correspondence analysis (DCA) of all 5001 detected functional gene probes although no significant differences were detected in the overall microbial diversity. A further analysis of 1503 detected functional genes involved in C, N, P, and S cycles showed that a considerable portion (39percent) of them were only detected under either aCO2 (14percent) or eCO2 (25percent), indicating that the functional characteristics of the microbial community were significantly altered by eCO2. Also, for those shared genes (61percent) detected, some significantly (p<0.05) changed their abundance at eCO2. Especially, genes involved in labile C degradation, such as amyA, egl, and ara for starch, cellulose, and hemicelluloses, respectively, C fixation (e.g., rbcL, pcc/acc), N fixation (nifH), and phosphorus utilization (ppx) were significantly increased under eCO2, while those involved in decomposing recalcitrant C, such as glx, lip, and mnp for lignin degradation remained unchanged. This study provides insights into our understanding of belowground microbial communities and their feedbacks to terrestrial ecosystems at eCO2.« less
Sands, Bryony; Mgidiswa, Neludo; Nyamukondiwa, Casper; Wall, Richard
2018-03-01
Pyrethroid insecticides are widely used to control ectoparasites of livestock, particularly ticks and biting flies. Their use in African livestock systems is increasing, driven by the need to increase productivity and local food security. However, insecticide residues present in the dung after treatment are toxic to dung-inhabiting insects. In a semiarid agricultural habitat in Botswana, dung beetle adult mortality, brood ball production, and larval survival were compared between untreated cattle dung and cattle dung spiked with deltamethrin, to give concentrations of 0.01, 0.1, 0.5, or 1 ppm. Cattle dung-baited pitfall traps were used to measure repellent effects of deltamethrin in dung on Scarabaeidae. Dung decomposition rate was also examined. There was significantly increased mortality of adult dung beetles colonizing pats that contained deltamethrin compared to insecticide-free pats. Brood ball production was significantly reduced at concentrations of 1 ppm; larval survival was significantly reduced in dung containing 0.1 ppm deltamethrin and above. There was no difference in the number of Scarabaeidae attracted to dung containing any of the deltamethrin concentrations. Dung decomposition was significantly reduced even at the lowest concentration (0.01 ppm) compared to insecticide-free dung. The widespread use of deltamethrin in African agricultural ecosystems is a significant cause for concern; sustained use is likely to damage dung beetle populations and their provision of environmentally and economically important ecosystem services. Contaminated dung buried by paracoprid (tunneling) beetles may retain insecticidal effects, with impacts on developing larvae below ground. Lethal and sublethal effects on entire dung beetle (Scarabaeidae) communities could impair ecosystem function in agricultural landscapes.
Du, Ling; Mikle, Nathaniel; Zou, Zhenhua; Huang, Yuanyuan; Shi, Zheng; Jiang, Lifen; McCarthy, Heather R; Liang, Junyi; Luo, Yiqi
2018-07-01
Quantifying the ecological patterns of loss of ecosystem function in extreme drought is important to understand the carbon exchange between the land and atmosphere. Rain-use efficiency [RUE; gross primary production (GPP)/precipitation] acts as a typical indicator of ecosystem function. In this study, a novel method based on maximum rain-use efficiency (RUE max ) was developed to detect losses of ecosystem function globally. Three global GPP datasets from the MODIS remote sensing data (MOD17), ground upscaling FLUXNET observations (MPI-BGC), and process-based model simulations (BESS), and a global gridded precipitation product (CRU) were used to develop annual global RUE datasets for 2001-2011. Large, well-known extreme drought events were detected, e.g. 2003 drought in Europe, 2002 and 2011 drought in the U.S., and 2010 drought in Russia. Our results show that extreme drought-induced loss of ecosystem function could impact 0.9% ± 0.1% of earth's vegetated land per year and was mainly distributed in semi-arid regions. The reduced carbon uptake caused by functional loss (0.14 ± 0.03 PgC/yr) could explain >70% of the interannual variation in GPP in drought-affected areas (p ≤ 0.001). Our results highlight the impact of ecosystem function loss in semi-arid regions with increasing precipitation variability and dry land expansion expected in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
Connections between transport in events and transport at landscape-structuring timescales
NASA Astrophysics Data System (ADS)
Harman, C. J.; Lohse, K. A.; Troch, P. A.; Sivapalan, M.
2012-12-01
Complex spatial and temporal variability can arise in the critical zone when feedbacks occur at multiple time scales between transported materials and the landscape and soils through which it is transported. This is clearly illustrated where geomorphic transport processes, soil development, and vegetation interact in semi-arid shrublands. Here we use soil and terrain data and a numerical model of overland flow on semi-arid hillslopes to show that microtopography can generate spatial variations in the dominance of transport processes operating at different timescales, with consequences for the direction of resource redistribution between functional units within these ecosystems. Conceptual and numerical models of the redistribution of mineral, organic and water have mostly been developed on low-gradient alluvial fans and pediments. These have focused on the fluvial transport of resources from the inter-spaces between shrub canopies to the areas below the canopy in those few storm events that generate significant run-off. These processes are believed to produce a mosaic of resource islands in which biota are concentrated. We investigated the spatial distribution of soil properties (including organic matter and soil hydraulic properties), vegetation, and microtopography on two steeper hillslopes of contrasting lithology (one granite, one schist) in the Sonoran desert foothills of the Catalina Mountains. Three hypotheses were developed through iteration between fieldwork and data analysis. These tested whether there were significant differences in soil composition and hydraulic properties below- and between-canopy, whether the surface soil organic matter was directly associated with above-ground biomass, and whether soil organic matter distributions measured along transects below shrubs showed downslope asymmetries indicative of the processes that create them. Data from these sites were used in a numerical model to investigate how these structures could be related to the population of runoff events and processes that generate them. The results suggest that over the long term, slope-dependent transport processes (such as rainsplash, bioturbation and trampling) seem to play an important role in these steeper hillslopes in inverting the flow of resources. Over many storm and inter-storm periods, soil organic matter is transported downslope in plumes extending at least two canopy radii downslope from below woody-shrub canopies into the inter-space. This pattern was particularly evident where microtopography and soil properties create micro-sites protected from fluvial transport. While many of the patterns observed are similar to those from more stable geomorphic surfaces, the results suggest that long-term downslope transport processes in sloping terrain can disrupt the autogenic processes that reinforce the redistribution of resources under shrubs. This result has important implications for our understanding of the relationship between ecosystem function and landscape-scale transport in these environments.
Unravelling Soil Fungal Communities from Different Mediterranean Land-Use Backgrounds
Nilsson, R. Henrik; Girlanda, Mariangela; Vizzini, Alfredo; Bonfante, Paola; Bianciotto, Valeria
2012-01-01
Background Fungi strongly influence ecosystem structure and functioning, playing a key role in many ecological services as decomposers, plant mutualists and pathogens. The Mediterranean area is a biodiversity hotspot that is increasingly threatened by intense land use. Therefore, to achieve a balance between conservation and human development, a better understanding of the impact of land use on the underlying fungal communities is needed. Methodology/Principal Findings We used parallel pyrosequencing of the nuclear ribosomal ITS regions to characterize the fungal communities in five soils subjected to different anthropogenic impact in a typical Mediterranean landscape: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards. Marked differences in the distribution of taxon assemblages among the different sites and communities were found. Data analyses consistently indicated a sharp distinction of the fungal community of the cork oak forest soil from those described in the other soils. Each soil showed features of the fungal assemblages retrieved which can be easily related to the above-ground settings: ectomycorrhizal phylotypes were numerous in natural sites covered by trees, but were nearly completely missing from the anthropogenic and grass-covered sites; similarly, coprophilous fungi were common in grazed sites. Conclusions/Significance Data suggest that investigation on the below-ground fungal community may provide useful elements on the above-ground features such as vegetation coverage and agronomic procedures, allowing to assess the cost of anthropogenic land use to hidden diversity in soil. Datasets provided in this study may contribute to future searches for fungal bio-indicators as biodiversity markers of a specific site or a land-use degree. PMID:22536336
NASA Astrophysics Data System (ADS)
Krause, Keith Stuart
The change, reduction, or extinction of species is a major issue currently facing the Earth. Efforts are underway to measure, monitor, and protect habitats that contain high species diversity. Remote sensing technology shows extreme value for monitoring species diversity by mapping ecosystems and using those land cover maps or other derived data as proxies to species number and distribution. The National Ecological Observatory Network (NEON) Airborne Observation Platform (AOP) consists of remote sensing instruments such as an imaging spectrometer, a full-waveform lidar, and a high-resolution color camera. AOP collected data over the Ordway-Swisher Biological Station (OSBS) in May 2014. A majority of the OSBS site is covered by the Sandhill ecosystem, which contains a very high diversity of vegetation species and is a native habitat for several threatened fauna species. The research presented here investigates ways to analyze the AOP data to map ecosystems at the OSBS site. The research attempts to leverage the high spatial resolution data and study the variability of the data within a ground plot scale along with integrating data from the different sensors. Mathematical features are derived from the data and brought into a decision tree classification algorithm (rpart), in order to create an ecosystem map for the site. The hyperspectral and lidar features serve as proxies for chemical, functional, and structural differences in the vegetation types for each of the ecosystems. K-folds cross validation shows a training accuracy of 91%, a validation accuracy of 78%, and a 66% accuracy using independent ground validation. The results presented here represent an important contribution to utilizing integrated hyperspectral and lidar remote sensing data for ecosystem mapping, by relating the spatial variability of the data within a ground plot scale to a collection of vegetation types that make up a given ecosystem.
NASA Astrophysics Data System (ADS)
Fatma, N. A. H.; Wan Juliana, W. A.; Shaharuddin, M. I.; Wickneswari, R.
2016-11-01
A descriptive study of species composition, community structure and biomass was conducted in compartment 107, which is a rehabilitated area at Kenaboi Forest Reserve, Jelebu, Negeri Sembilan. The objective is to determine the forest structure and species composition in a rehabilitated area of Kenaboi FR since enrichment planting had done. A sample plot of 1 hectare was censused and a total of 395 trees with diameter ≥ 5 cm DBH were recorded. A total of 285 individual trees were identified belonging to 20 families and the commonest family was Dipterocarpaceae with 193 individuals. The highest tree density per ha was Shorea acuminata at 33% followed by S. parvifolia, 10% and S. leprosula, 6%. The biggest tree was Artocarpus elasticus Reinw. ex Blume with a diameter of 101 cm. The total basal area was 34.48 m2/ha, whereby the highest basal area was between 45 - 54.9 cm DBH class that contributed 10.21 m2/ha (30%). The total biomass estimation (above ground and below ground) was 792.57 t/ha. Dipterocarpaceae contributed the highest total biomass at 545.14 t/ha with S. acuminata contributed the highest total biomass of 330.45 t/ha. This study will contribute to the knowledge of regeneration forest especially on how the ecological process restoring the biodiversity and ecosystem functioning in rehabilitated forest by practicing the enrichment planting of native species.
NASA Astrophysics Data System (ADS)
Brodie, E.; Arora, B.; Beller, H. R.; Bill, M.; Bouskill, N.; Chakraborty, R.; Conrad, M. E.; Dafflon, B.; Enquist, B. J.; Falco, N.; Henderson, A.; Karaoz, U.; Polussa, A.; Sorensen, P.; Steltzer, H.; Wainwright, H. M.; Wang, S.; Williams, K. H.; Wilmer, C.; Wu, Y.
2017-12-01
In mountainous systems, snow-melt is associated with a large pulse of nutrients that originates from under-snow microbial mineralization of organic matter and microbial biomass turnover. Vegetation phenology in these systems is regulated by environmental cues such as air temperature ranges and photoperiod, such that, under typical conditions, vegetation greening and nutrient uptake occur in sync with microbial biomass turnover and nutrient release, closing nutrient cycles and enhancing nutrient retention. However, early snow-melt has been observed with increasing frequency in the mountainous west and is hypothesized to disrupt coupled plant-microbial behavior, potentially resulting in a temporal discontinuity between microbial nutrient release and vegetation greening. As part of the Watershed Function Scientific Focus Area (SFA) at Berkeley Lab we are quantifying below-ground biogeochemistry and above-ground phenology and vegetation chemistry and their relationships to hydrologic events at a lower montane hillslope in the East River catchment, Crested Butte, CO. This presentation will focus on data-model integration to interpret connectivity between biogeochemical cycling of nitrogen and vegetation nitrogen demand. Initial model results suggest that early snow-melt will result in an earlier accumulation and leaching loss of nitrate from the upper soil depths but that vegetation productivity may not decline as traits such as greater rooting depth and resource allocation to stems are favored.
Faunal communities and habitat characteristics of the Big Bend seagrass meadows, 2009-2010.
Seagrass meadows are important habitats that serve as nursery, feeding, and sheltering grounds for many marine species. In addition to the ecosystem functions and services they provide, seagrass habitats and associated fauna are commonly observed to have naturally high levels of...
Ecological risk assessment of depleted uranium in the environment at Aberdeen Proving Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clements, W.H.; Kennedy, P.L.; Myers, O.B.
1993-01-01
A preliminary ecological risk assessment was conducted to evaluate the effects of depleted uranium (DU) in the Aberdeen Proving Ground (APG) ecosystem and its potential for human health effects. An ecological risk assessment of DU should include the processes of hazard identification, dose-response assessment, exposure assessment, and risk characterization. Ecological risk assessments also should explicitly examine risks incurred by nonhuman as well as human populations, because risk assessments based only on human health do not always protect other species. To begin to assess the potential ecological risk of DU release to the environment we modeled DU transport through the principalmore » components of the aquatic ecosystem at APG. We focused on the APG aquatic system because of the close proximity of the Chesapeake Bay and concerns about potential impacts on this ecosystem. Our objective in using a model to estimate environmental fate of DU is to ultimately reduce the uncertainty about predicted ecological risks due to DU from APG. The model functions to summarize information on the structure and functional properties of the APG aquatic system, to provide an exposure assessment by estimating the fate of DU in the environment, and to evaluate the sources of uncertainty about DU transport.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clements, W.H.; Kennedy, P.L.; Myers, O.B.
1993-03-01
A preliminary ecological risk assessment was conducted to evaluate the effects of depleted uranium (DU) in the Aberdeen Proving Ground (APG) ecosystem and its potential for human health effects. An ecological risk assessment of DU should include the processes of hazard identification, dose-response assessment, exposure assessment, and risk characterization. Ecological risk assessments also should explicitly examine risks incurred by nonhuman as well as human populations, because risk assessments based only on human health do not always protect other species. To begin to assess the potential ecological risk of DU release to the environment we modeled DU transport through the principalmore » components of the aquatic ecosystem at APG. We focused on the APG aquatic system because of the close proximity of the Chesapeake Bay and concerns about potential impacts on this ecosystem. Our objective in using a model to estimate environmental fate of DU is to ultimately reduce the uncertainty about predicted ecological risks due to DU from APG. The model functions to summarize information on the structure and functional properties of the APG aquatic system, to provide an exposure assessment by estimating the fate of DU in the environment, and to evaluate the sources of uncertainty about DU transport.« less
Trophic interactions, ecosystem structure and function in the southern Yellow Sea
NASA Astrophysics Data System (ADS)
Lin, Qun; Jin, Xianshi; Zhang, Bo
2013-01-01
The southern Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. A trophic mass-balance model of the southern Yellow Sea during 2000-2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to >V was 5.0%, 5.7%, 18.5%, and 19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.
Bakker, Elisabeth S.; Gill, Jacquelyn L.; Johnson, Christopher N.; Vera, Frans W. M.; Sandom, Christopher J.; Asner, Gregory P.; Svenning, Jens-Christian
2016-01-01
Until recently in Earth history, very large herbivores (mammoths, ground sloths, diprotodons, and many others) occurred in most of the World’s terrestrial ecosystems, but the majority have gone extinct as part of the late-Quaternary extinctions. How has this large-scale removal of large herbivores affected landscape structure and ecosystem functioning? In this review, we combine paleo-data with information from modern exclosure experiments to assess the impact of large herbivores (and their disappearance) on woody species, landscape structure, and ecosystem functions. In modern landscapes characterized by intense herbivory, woody plants can persist by defending themselves or by association with defended species, can persist by growing in places that are physically inaccessible to herbivores, or can persist where high predator activity limits foraging by herbivores. At the landscape scale, different herbivore densities and assemblages may result in dynamic gradients in woody cover. The late-Quaternary extinctions were natural experiments in large-herbivore removal; the paleoecological record shows evidence of widespread changes in community composition and ecosystem structure and function, consistent with modern exclosure experiments. We propose a conceptual framework that describes the impact of large herbivores on woody plant abundance mediated by herbivore diversity and density, predicting that herbivore suppression of woody plants is strongest where herbivore diversity is high. We conclude that the decline of large herbivores induces major alterations in landscape structure and ecosystem functions. PMID:26504223
Bakker, Elisabeth S; Gill, Jacquelyn L; Johnson, Christopher N; Vera, Frans W M; Sandom, Christopher J; Asner, Gregory P; Svenning, Jens-Christian
2016-01-26
Until recently in Earth history, very large herbivores (mammoths, ground sloths, diprotodons, and many others) occurred in most of the World's terrestrial ecosystems, but the majority have gone extinct as part of the late-Quaternary extinctions. How has this large-scale removal of large herbivores affected landscape structure and ecosystem functioning? In this review, we combine paleo-data with information from modern exclosure experiments to assess the impact of large herbivores (and their disappearance) on woody species, landscape structure, and ecosystem functions. In modern landscapes characterized by intense herbivory, woody plants can persist by defending themselves or by association with defended species, can persist by growing in places that are physically inaccessible to herbivores, or can persist where high predator activity limits foraging by herbivores. At the landscape scale, different herbivore densities and assemblages may result in dynamic gradients in woody cover. The late-Quaternary extinctions were natural experiments in large-herbivore removal; the paleoecological record shows evidence of widespread changes in community composition and ecosystem structure and function, consistent with modern exclosure experiments. We propose a conceptual framework that describes the impact of large herbivores on woody plant abundance mediated by herbivore diversity and density, predicting that herbivore suppression of woody plants is strongest where herbivore diversity is high. We conclude that the decline of large herbivores induces major alterations in landscape structure and ecosystem functions.
Ecosystem vs. community recovery 25 years after grass invasions and fire in a subtropical woodland
D'Antonio, Carla M.; Yelenik, Stephanie G.; Mack, Michelle C.
2017-01-01
Despite a large body of research documenting invasive plant impacts, few studies have followed individual invaded sites over decades to observe how they change, and none have contrasted how compositional impacts from invasion compare to ecosystem-process impacts over a multi-decadal time-scale. Using direct measurements of plant density and composition and of ecosystems processes, we evaluate how ecosystem structure, above-ground net primary production (ANPP), and above-ground and soil nutrient pools compare over 25 years since fire and C4 grass invasions disrupted seasonally dry Hawaiian woodlands. We compare structure and function between primary woodland that has never burned and is largely native species-dominated, with sites that had been the same woodland type but burned in alien-grass-fuelled fires in the 1970s and 1980s. The sites have not experienced fires since 1987. We report here that woody plant composition and structure continue to be dramatically changed by the initial invasions and fires that occurred 25 years ago and invaders continue to dominate in burned sites. This is reflected in continued low plant carbon pools in burned compared to unburned sites. Yet ANPP and N storage, which were dramatically lower in the initial decade after invasive-grass fuelled fires, have increased and are now indistinguishable from values measured in intact woodlands. Soil carbon pools were resilient to both invasion and fire initially and over time. Above-ground net primary production has recovered because of invasion of burned sites by a non-native N-fixing tree rather than because of recovery of native species. This invasive N-fixing tree is unlikely to return C storage of the invaded sites to those of unburned woodland because of its tissue and growth characteristics and its interactions with invasive grasses. It does not facilitate native species but rather promotes a persistent invasive grass/N-fixer savanna. Synthesis. We conclude that fire, an unusual disturbance in this system, has perpetuated the dominance of these sites by invasive species and that despite the dramatic recovery of above-ground net primary production and N pools, the ecosystem continues to be in a distinctly different state than the pre-fire, pre-Melinis community. Thus, despite the absence of further disturbance (fire), there is no evidence that succession towards the original ecosystem is occurring. The fact that N pools and above-ground net primary production recover because of a new invader (Morella faya), highlights the unpredictability of ecosystem trajectories in the face of altered regional species pools.
Climate mediates hypoxic stress on fish diversity and nursery function at the land-sea interface.
Hughes, Brent B; Levey, Matthew D; Fountain, Monique C; Carlisle, Aaron B; Chavez, Francisco P; Gleason, Mary G
2015-06-30
Coastal ecosystems provide numerous important ecological services, including maintenance of biodiversity and nursery grounds for many fish species of ecological and economic importance. However, human population growth has led to increased pollution, ocean warming, hypoxia, and habitat alteration that threaten ecosystem services. In this study, we used long-term datasets of fish abundance, water quality, and climatic factors to assess the threat of hypoxia and the regulating effects of climate on fish diversity and nursery conditions in Elkhorn Slough, a highly eutrophic estuary in central California (United States), which also serves as a biodiversity hot spot and critical nursery grounds for offshore fisheries in a broader region. We found that hypoxic conditions had strong negative effects on extent of suitable fish habitat, fish species richness, and abundance of the two most common flatfish species, English sole (Parophrys vetulus) and speckled sanddab (Citharichthys stigmaeus). The estuary serves as an important nursery ground for English sole, making this species vulnerable to anthropogenic threats. We determined that estuarine hypoxia was associated with significant declines in English sole nursery habitat, with cascading effects on recruitment to the offshore adult population and fishery, indicating that human land use activities can indirectly affect offshore fisheries. Estuarine hypoxic conditions varied spatially and temporally and were alleviated by strengthening of El Niño conditions through indirect pathways, a consistent result in most estuaries across the northeast Pacific. These results demonstrate that changes to coastal land use and climate can fundamentally alter the diversity and functioning of coastal nurseries and their adjacent ocean ecosystems.
Climate mediates hypoxic stress on fish diversity and nursery function at the land–sea interface
Hughes, Brent B.; Levey, Matthew D.; Fountain, Monique C.; Carlisle, Aaron B.; Chavez, Francisco P.; Gleason, Mary G.
2015-01-01
Coastal ecosystems provide numerous important ecological services, including maintenance of biodiversity and nursery grounds for many fish species of ecological and economic importance. However, human population growth has led to increased pollution, ocean warming, hypoxia, and habitat alteration that threaten ecosystem services. In this study, we used long-term datasets of fish abundance, water quality, and climatic factors to assess the threat of hypoxia and the regulating effects of climate on fish diversity and nursery conditions in Elkhorn Slough, a highly eutrophic estuary in central California (United States), which also serves as a biodiversity hot spot and critical nursery grounds for offshore fisheries in a broader region. We found that hypoxic conditions had strong negative effects on extent of suitable fish habitat, fish species richness, and abundance of the two most common flatfish species, English sole (Parophrys vetulus) and speckled sanddab (Citharichthys stigmaeus). The estuary serves as an important nursery ground for English sole, making this species vulnerable to anthropogenic threats. We determined that estuarine hypoxia was associated with significant declines in English sole nursery habitat, with cascading effects on recruitment to the offshore adult population and fishery, indicating that human land use activities can indirectly affect offshore fisheries. Estuarine hypoxic conditions varied spatially and temporally and were alleviated by strengthening of El Niño conditions through indirect pathways, a consistent result in most estuaries across the northeast Pacific. These results demonstrate that changes to coastal land use and climate can fundamentally alter the diversity and functioning of coastal nurseries and their adjacent ocean ecosystems. PMID:26056293
Root traits predict decomposition across a landscape-scale grazing experiment
Smith, Stuart W; Woodin, Sarah J; Pakeman, Robin J; Johnson, David; van der Wal, René
2014-01-01
Root litter is the dominant soil carbon and nutrient input in many ecosystems, yet few studies have considered how root decomposition is regulated at the landscape scale and how this is mediated by land-use management practices. Large herbivores can potentially influence below-ground decomposition through changes in soil microclimate (temperature and moisture) and changes in plant species composition (root traits). To investigate such herbivore-induced changes, we quantified annual root decomposition of upland grassland species in situ across a landscape-scale livestock grazing experiment, in a common-garden experiment and in laboratory microcosms evaluating the influence of key root traits on decomposition. Livestock grazing increased soil temperatures, but this did not affect root decomposition. Grazing had no effect on soil moisture, but wetter soils retarded root decomposition. Species-specific decomposition rates were similar across all grazing treatments, and species differences were maintained in the common-garden experiment, suggesting an overriding importance of litter type. Supporting this, in microcosms, roots with lower specific root area (m2 g−1) or those with higher phosphorus concentrations decomposed faster. Our results suggest that large herbivores alter below-ground carbon and nitrogen dynamics more through their effects on plant species composition and associated root traits than through effects on the soil microclimate. PMID:24841886
Factors controlling dimethylsulfide emission from salt marshes
NASA Technical Reports Server (NTRS)
Dacey, John W. H.; Wakeham, S. G.; Howes, B. L.
1985-01-01
The factors that control the emission of methylated gases from salt marshes are being studied. Research focusses on dimethylsulfide (DMS) formation and the mechanism of DMS and CH4 emission to the atmosphere. The approach is to consider the plants as valves regulating the emission of methylated gases to the atmosphere with the goal of developing appropriate methods for emission measurement. In the case of CH4, the sediment is the source and transport to the atmosphere occurs primarily through the internal gas spaces in the plants. The source of DMS appears to be dimethyl sulfoniopropionate (DMSP) which may play a role in osmoregulation in plant tissues. Concentrations of DMSP in leaves are typically several-fold higher than in roots and rhizomes. Even so, the large below ground biomass of this plant means that 2/3 of the DMSP in the ecosystem is below ground on the aerial basis. Upon introduction to sediment water, DMSP rapidly decomposes to DMS and acrylic acid. The solubility of a gas (its equilibrium vapor pressure) is a fundamental aspect of gas exchange kinetics. The first comprehensive study was conducted of DMS solubility in freshwater and seawater. Data suggest that the Setchenow relation holds for H at intermediate salinities collected. These data support the concept that the concentration of DMS in the atmosphere is far from equilibrium with seawater.
Liana infestation impacts tree growth in a lowland tropical moist forest
NASA Astrophysics Data System (ADS)
van der Heijden, G. M. F.; Phillips, O. L.
2009-10-01
Ecosystem-level estimates of the effect of lianas on tree growth in mature tropical forests are needed to evaluate the functional impact of lianas and their potential to affect the ability of tropical forests to sequester carbon, but these are currently lacking. Using data collected on tree growth rates, local growing conditions and liana competition in five permanent sampling plots in Amazonian Peru, we present the first ecosystem-level estimates of the effect of lianas on above-ground productivity of trees. By first constructing a multi-level linear mixed effect model to predict individual-tree diameter growth model using individual-tree growth conditions, we were able to then estimate stand-level above-ground biomass (AGB) increment in the absence of lianas. We show that lianas, mainly by competing above-ground with trees, reduce tree annual above-ground stand-level biomass increment by ~10%, equivalent to 0.51 Mg dry weight ha-1 yr-1 or 0.25 Mg C ha-1 yr-1. AGB increment of lianas themselves was estimated to be 0.15 Mg dry weight ha-1 yr-1 or 0.07 Mg C ha-1 yr-1, thus only compensating ~29% of the liana-induced reduction in ecosystem AGB increment. Increasing liana pressure on tropical forests will therefore not only tend to reduce their carbon storage capacity, by indirectly promoting tree species with low-density wood, but also their rate of carbon uptake, with potential consequences for the rate of increase in atmospheric carbon dioxide.
NASA Astrophysics Data System (ADS)
Docherty, K. M.; Lemmer, K. M.; Domingue, K. D.; Spring, A.; Kerber, T. V.; Mooney, M. M.
2017-12-01
Airborne transport of microbial communities is a key component of the global ecosystem because it serves as a mechanism for dispersing microbial life between all surface habitats on the planet. However, most of our understanding of airborne microbial distribution is derived from samples collected near the ground. Little is understood about how the vertical layers of the air may act as a habitat filter or how local terrestrial ecosystems contribute to a vast airborne microbial seedbank. Specifically, urbanization may fundamentally alter the terrestrial sources of airborne microbial biodiversity. To address this question, we conducted airborne sampling at minimally disturbed natural sites and paired urban sites in 4 different North American ecosystems: shortgrass steppe, desert scrub, eastern deciduous forest, and northern mesic forest. All natural area sites were co-located with NEON/Ameriflux tower sites collecting atmospheric data. We developed an airborne sampling platform that uses tethered helikites at 3 replicate locations within each ecosystem to launch remote-controlled sampler payloads. We designed sampler payloads to collect airborne bacteria and fungi from 150, 30 and 2 m above the ground. Payload requirements included: ability to be disinfected and remain contaminant-free during transport, remote open/close functionality, payload weight under 6 lbs and automated collection of weather data. After sampling for 6 hours at each location, we extracted DNA collected by the samplers. We also extracted DNA from soil and plant samples collected from each location, and characterized ground vegetation. We conducted bacterial 16S amplicon-based sequencing using Mi-Seq and sequence analysis using QIIME. We used ArcGIS to determine percent land use coverage. Our results demonstrate that terrestrial ecosystem type is the most important factor contributing to differences in airborne bacterial community composition, and that communities differed by ecosystem. The signature of the specific ecosystem, and whether it was located in a natural or urban area, was evident in both near-surface and higher altitude samples. This suggests that continued urbanization and increases in impervious surface area can fundamentally change sources of atmospheric biodiversity and distribution patterns.
Network modules and hubs in plant-root fungal biomes
Toju, Hirokazu; Yamamoto, Satoshi; Tanabe, Akifumi S.; Hayakawa, Takashi; Ishii, Hiroshi S.
2016-01-01
Terrestrial plants host phylogenetically and functionally diverse groups of below-ground microbes, whose community structure controls plant growth/survival in both natural and agricultural ecosystems. Therefore, understanding the processes by which whole root-associated microbiomes are organized is one of the major challenges in ecology and plant science. We here report that diverse root-associated fungi can form highly compartmentalized networks of coexistence within host roots and that the structure of the fungal symbiont communities can be partitioned into semi-discrete types even within a single host plant population. Illumina sequencing of root-associated fungi in a monodominant south beech forest revealed that the network representing symbiont–symbiont co-occurrence patterns was compartmentalized into clear modules, which consisted of diverse functional groups of mycorrhizal and endophytic fungi. Consequently, terminal roots of the plant were colonized by either of the two largest fungal species sets (represented by Oidiodendron or Cenococcum). Thus, species-rich root microbiomes can have alternative community structures, as recently shown in the relationships between human gut microbiome type (i.e. ‘enterotype’) and host individual health. This study also shows an analytical framework for pinpointing network hubs in symbiont–symbiont networks, leading to the working hypothesis that a small number of microbial species organize the overall root–microbiome dynamics. PMID:26962029
Cartwright, Jennifer M.; Advised by Dzantor, E. Kudjo
2015-01-01
Stress factors quantified by this research include shallow soil (depth to bedrock ranging from 2.4 to 22.6 cm), volumetric soil water content levels seasonally ranging from xeric (below 5%) to saturated (above 50%), and seasonally extreme ground-surface temperatures (above 48°C). Findings from this research indicate that spatial and temporal heterogeneity exists in limestone cedar glades in terms of abiotic stress factors and soil physical and chemical properties. Several such soil properties (e.g. soil depth, organic matter levels, pH, and particle size distribution) are spatially correlated. These soil properties were statistically related to ecological structures and functions such as vegetation patterns, soil respiration, the density of culturable heterotrophic microbes in soil and metabolic diversity of soil microbial community profiles. In general, zones within limestone cedar glades that had relatively shallow soil, alkaline pH, low levels of organic matter and high levels of silt also tended to have depressed rates of soil respiration and reduced densities and metabolic diversity of culturable heterotrophic soil microbes. Additionally, seasonally-relevant stress factors including soil water content and temperatures at or near the soil surface were related to the same set of ecological structures and functions.
Drescher, Jochen; Rembold, Katja; Allen, Kara; Beckschäfer, Philip; Buchori, Damayanti; Clough, Yann; Faust, Heiko; Fauzi, Anas M; Gunawan, Dodo; Hertel, Dietrich; Irawan, Bambang; Jaya, I Nengah S; Klarner, Bernhard; Kleinn, Christoph; Knohl, Alexander; Kotowska, Martyna M; Krashevska, Valentyna; Krishna, Vijesh; Leuschner, Christoph; Lorenz, Wolfram; Meijide, Ana; Melati, Dian; Nomura, Miki; Pérez-Cruzado, César; Qaim, Matin; Siregar, Iskandar Z; Steinebach, Stefanie; Tjoa, Aiyen; Tscharntke, Teja; Wick, Barbara; Wiegand, Kerstin; Kreft, Holger; Scheu, Stefan
2016-05-19
Tropical lowland rainforests are increasingly threatened by the expansion of agriculture and the extraction of natural resources. In Jambi Province, Indonesia, the interdisciplinary EFForTS project focuses on the ecological and socio-economic dimensions of rainforest conversion to jungle rubber agroforests and monoculture plantations of rubber and oil palm. Our data confirm that rainforest transformation and land use intensification lead to substantial losses in biodiversity and related ecosystem functions, such as decreased above- and below-ground carbon stocks. Owing to rapid step-wise transformation from forests to agroforests to monoculture plantations and renewal of each plantation type every few decades, the converted land use systems are continuously dynamic, thus hampering the adaptation of animal and plant communities. On the other hand, agricultural rainforest transformation systems provide increased income and access to education, especially for migrant smallholders. Jungle rubber and rubber monocultures are associated with higher financial land productivity but lower financial labour productivity compared to oil palm, which influences crop choice: smallholders that are labour-scarce would prefer oil palm while land-scarce smallholders would prefer rubber. Collecting long-term data in an interdisciplinary context enables us to provide decision-makers and stakeholders with scientific insights to facilitate the reconciliation between economic interests and ecological sustainability in tropical agricultural landscapes. © 2016 The Authors.
Ecological and socio-economic functions across tropical land use systems after rainforest conversion
Rembold, Katja; Allen, Kara; Beckschäfer, Philip; Buchori, Damayanti; Clough, Yann; Faust, Heiko; Fauzi, Anas M.; Gunawan, Dodo; Hertel, Dietrich; Irawan, Bambang; Jaya, I. Nengah S.; Klarner, Bernhard; Kleinn, Christoph; Knohl, Alexander; Kotowska, Martyna M.; Krashevska, Valentyna; Krishna, Vijesh; Leuschner, Christoph; Lorenz, Wolfram; Meijide, Ana; Melati, Dian; Nomura, Miki; Pérez-Cruzado, César; Qaim, Matin; Siregar, Iskandar Z.; Steinebach, Stefanie; Tjoa, Aiyen; Tscharntke, Teja; Wick, Barbara; Wiegand, Kerstin; Kreft, Holger; Scheu, Stefan
2016-01-01
Tropical lowland rainforests are increasingly threatened by the expansion of agriculture and the extraction of natural resources. In Jambi Province, Indonesia, the interdisciplinary EFForTS project focuses on the ecological and socio-economic dimensions of rainforest conversion to jungle rubber agroforests and monoculture plantations of rubber and oil palm. Our data confirm that rainforest transformation and land use intensification lead to substantial losses in biodiversity and related ecosystem functions, such as decreased above- and below-ground carbon stocks. Owing to rapid step-wise transformation from forests to agroforests to monoculture plantations and renewal of each plantation type every few decades, the converted land use systems are continuously dynamic, thus hampering the adaptation of animal and plant communities. On the other hand, agricultural rainforest transformation systems provide increased income and access to education, especially for migrant smallholders. Jungle rubber and rubber monocultures are associated with higher financial land productivity but lower financial labour productivity compared to oil palm, which influences crop choice: smallholders that are labour-scarce would prefer oil palm while land-scarce smallholders would prefer rubber. Collecting long-term data in an interdisciplinary context enables us to provide decision-makers and stakeholders with scientific insights to facilitate the reconciliation between economic interests and ecological sustainability in tropical agricultural landscapes. PMID:27114577
Inventory of File nam.t00z.awp24200.tm00.grib2
ground TSOIL analysis Soil Temperature Validation to deprecate [K] 034 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 035 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 036 0.1-0.4 m below ground TSOIL analysis Soil Temperature
Garrard, Samantha L; Beaumont, Nicola J
2014-09-15
Ocean acidification will have many negative consequences for marine organisms and ecosystems, leading to a decline in many ecosystem services provided by the marine environment. This study reviews the effect of ocean acidification (OA) on seagrasses, assessing how this may affect their capacity to sequester carbon in the future and providing an economic valuation of these changes. If ocean acidification leads to a significant increase in above- and below-ground biomass, the capacity of seagrass to sequester carbon will be significantly increased. The associated value of this increase in sequestration capacity is approximately £500 and 600 billion globally between 2010 and 2100. A proportionally similar increase in carbon sequestration value was found for the UK. This study highlights one of the few positive stories for ocean acidification and underlines that sustainable management of seagrasses is critical to avoid their continued degradation and loss of carbon sequestration capacity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Species Composition and Fire: Non-Additive Mixture Effects on Ground Fuel Flammability
van Altena, Cassandra; van Logtestijn, Richard S. P.; Cornwell, William K.; Cornelissen, Johannes H. C.
2012-01-01
Diversity effects on many aspects of ecosystem function have been well documented. However, fire is an exception: fire experiments have mainly included single species, bulk litter, or vegetation, and, as such, the role of diversity as a determinant of flammability, a crucial aspect of ecosystem function, is poorly understood. This study is the first to experimentally test whether flammability characteristics of two-species mixtures are non-additive, i.e., differ from expected flammability based on the component species in monospecific fuel. In standardized fire experiments on ground fuels, including monospecific fuels and mixtures of five contrasting subarctic plant fuel types in a controlled laboratory environment, we measured flame speed, flame duration, and maximum temperature. Broadly half of the mixture combinations showed non-additive effects for these flammability indicators; these were mainly enhanced dominance effects for temporal dynamics – fire speed and duration. Fuel types with the more flammable value for a characteristic determined the rate of fire speed and duration of the whole mixture; in contrast, maximum temperature of the fire was determined by the biomass-weighted mean of the mixture. These results suggest that ecological invasions by highly flammable species may have effects on ground-fire dynamics well out of proportion to their biomass. PMID:22639656
Chen, Dima; Lan, Zhichun; Bai, Xue; Grace, James B.; Bai, Yongfei
2013-01-01
Synthesis. Our results suggest that the below-ground microbial and nematode communities are more sensitive to soil acidification than the plant communities are, and further that soil acidification–induced changes in plants are mediated by changes in below-ground communities and soil nutrients. These findings improve our understanding of the links between below- and above-ground communities in the Inner Mongolia grassland, especially in the context of anthropogenic acid enrichment.
Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies
Templer, P.H.; Mack, M.C.; Chapin, F. S.; Christenson, L.M.; Compton, J.E.; Crook, H.D.; Currie, W.S.; Curtis, C.J.; Dail, D.B.; D'Antonio, C. M.; Emmett, B.A.; Epstein, H.E.; Goodale, C.L.; Gundersen, P.; Hobbie, S.E.; Holland, K.; Hooper, D.U.; Hungate, B.A.; Lamontagne, S.; Nadelhoffer, K.J.; Osenberg, C.W.; Perakis, S.S.; Schleppi, P.; Schimel, J.; Schmidt, I.K.; Sommerkorn, M.; Spoelstra, J.; Tietema, A.; Wessel, W.W.; Zak, D.R.
2012-01-01
Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3–18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C: N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N·ha-1·yr-1 above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.
Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies.
Templer, P H; Mack, M C; Chapin, F S; Christenson, L M; Compton, J E; Crook, H D; Currie, W S; Curtis, C J; Dail, D B; D'Antonio, C M; Emmett, B A; Epstein, H E; Goodale, C L; Gundersen, P; Hobbie, S E; Holland, K; Hooper, D U; Hungate, B A; Lamontagne, S; Nadelhoffer, K J; Osenberg, C W; Perakis, S S; Schleppi, P; Schimel, J; Schmidt, I K; Sommerkorn, M; Spoelstra, J; Tietema, A; Wessel, W W; Zak, D R
2012-08-01
Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (< 1 week after 15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3-18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C:N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N x ha(-1) x yr(-1) above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.
NASA Astrophysics Data System (ADS)
Klos, P. Z.; Goulden, M.; Riebe, C. S.; Tague, C.; O'Geen, A. T.; Flinchum, B. A.; Safeeq, M.; Conklin, M. H.; Hart, S. C.; Asefaw Berhe, A.; Hartsough, P. C.; Holbrook, S.; Bales, R. C.
2017-12-01
Enhanced understanding of subsurface water storage, and the below-ground architecture and processes that create it, will advance our ability to predict how the impacts of climate change - including drought, forest mortality, wildland fire, and strained water security - will take form in the decades to come. Previous research has examined the importance of plant-accessible water in soil, but in upland landscapes within Mediterranean climates the soil is often only the upper extent of subsurface water storage. We draw insights from both this previous research and a case study of the Southern Sierra Critical Zone Observatory to: define attributes of subsurface storage, review observed patterns in its distribution, highlight nested methods for its estimation across scales, and showcase the fundamental processes controlling its formation. We observe that forest ecosystems at our sites subsist on lasting plant-accessible stores of subsurface water during the summer dry period and during multi-year droughts. This indicates that trees in these forest ecosystems are rooted deeply in the weathered, highly porous saprolite, which reaches up to 10-20 m beneath the surface. This confirms the importance of large volumes of subsurface water in supporting ecosystem resistance to climate and landscape change across a range of spatiotemporal scales. This research enhances the ability to predict the extent of deep subsurface storage across landscapes; aiding in the advancement of both critical zone science and the management of natural resources emanating from similar mountain ecosystems worldwide.
NASA Astrophysics Data System (ADS)
Hidayat, Dony; Istiyanto, Jos; Agus Sumarsono, Danardono
2018-04-01
Loads at main landing gear while touchdown impact is function of aircraft weight and ground reaction load factor. In regulation states ground reaction load factor at Vsink = 3.05 m/s is below 3. Contact/impact force from simulation using MSC ADAMS is 94680 N, while using Solidworks Motion Analysis is 97691 N. The difference between MSC ADAMS and Solidworks Motion Analysis is 3.08%. The ground reaction load factor in MSC ADAMS is 2.78 while in Solidworks Motion Analysis is 2.87.
Transforming Ecosystems: When, Where, and How to Restore Contaminated Sites
Rohr, Jason R; Farag, Aïda M; Cadotte, Marc W; Clements, William H; Smith, James R; Ulrich, Cheryl P; Woods, Richard
2016-01-01
Chemical contamination has impaired ecosystems, reducing biodiversity and the provisioning of functions and services. This has spurred a movement to restore contaminated ecosystems and develop and implement national and international regulations that require it. Nevertheless, ecological restoration remains a young and rapidly growing discipline and its intersection with toxicology is even more nascent and underdeveloped. Consequently, we provide guidance to scientists and practitioners on when, where, and how to restore contaminated ecosystems. Although restoration has many benefits, it also can be expensive, and in many cases systems can recover without human intervention. Hence, the first question we address is: “When should we restore contaminated ecosystems?” Second, we provide suggestions on what to restore—biodiversity, functions, services, all 3, or something else—and where to restore given expected changes to habitats driven by global climate change. Finally, we provide guidance on how to restore contaminated ecosystems. To do this, we analyze critical aspects of the literature dealing with the ecology of restoring contaminated ecosystems. Additionally, we review approaches for translating the science of restoration to on-the-ground actions, which includes discussions of market incentives and the finances of restoration, stakeholder outreach and governance models for ecosystem restoration, and working with contractors to implement restoration plans. By explicitly considering the mechanisms and strategies that maximize the success of the restoration of contaminated sites, we hope that our synthesis serves to increase and improve collaborations between restoration ecologists and ecotoxicologists and set a roadmap for the restoration of contaminated ecosystems. PMID:26033665
Transforming ecosystems: When, where, and how to restore contaminated sites
Rohr, Jason R.; Farag, Aïda M.; Cadotte, Marc W.; Clements, William H.; Smith, James R.; Ulrich, Cheryl P.; Woods, Richard
2016-01-01
Chemical contamination has impaired ecosystems, reducing biodiversity and the provisioning of functions and services. This has spurred a movement to restore contaminated ecosystems and develop and implement national and international regulations that require it. Nevertheless, ecological restoration remains a young and rapidly growing discipline and its intersection with toxicology is even more nascent and underdeveloped. Consequently, we provide guidance to scientists and practitioners on when, where, and how to restore contaminated ecosystems. Although restoration has many benefits, it also can be expensive, and in many cases systems can recover without human intervention. Hence, the first question we address is: “When should we restore contaminated ecosystems?” Second, we provide suggestions on what to restore—biodiversity, functions, services, all 3, or something else—and where to restore given expected changes to habitats driven by global climate change. Finally, we provide guidance on how to restore contaminated ecosystems. To do this, we analyze critical aspects of the literature dealing with the ecology of restoring contaminated ecosystems. Additionally, we review approaches for translating the science of restoration to on-the-ground actions, which includes discussions of market incentives and the finances of restoration, stakeholder outreach and governance models for ecosystem restoration, and working with contractors to implement restoration plans. By explicitly considering the mechanisms and strategies that maximize the success of the restoration of contaminated sites, we hope that our synthesis serves to increase and improve collaborations between restoration ecologists and ecotoxicologists and set a roadmap for the restoration of contaminated ecosystems.
Milcu, Alexandru; Eugster, Werner; Bachmann, Dörte; Guderle, Marcus; Roscher, Christiane; Gockele, Annette; Landais, Damien; Ravel, Olivier; Gessler, Arthur; Lange, Markus; Ebeling, Anne; Weisser, Wolfgang W; Roy, Jacques; Hildebrandt, Anke; Buchmann, Nina
2016-08-01
The impact of species richness and functional diversity of plants on ecosystem water vapor fluxes has been little investigated. To address this knowledge gap, we combined a lysimeter setup in a controlled environment facility (Ecotron) with large ecosystem samples/monoliths originating from a long-term biodiversity experiment (The Jena Experiment) and a modeling approach. Our goals were (1) quantifying the impact of plant species richness (four vs. 16 species) on day- and nighttime ecosystem water vapor fluxes; (2) partitioning ecosystem evapotranspiration into evaporation and plant transpiration using the Shuttleworth and Wallace (SW) energy partitioning model; and (3) identifying the most parsimonious predictors of water vapor fluxes using plant functional-trait-based metrics such as functional diversity and community weighted means. Daytime measured and modeled evapotranspiration were significantly higher in the higher plant diversity treatment, suggesting increased water acquisition. The SW model suggests that, at low plant species richness, a higher proportion of the available energy was diverted to evaporation (a non-productive flux), while, at higher species richness, the proportion of ecosystem transpiration (a productivity-related water flux) increased. While it is well established that LAI controls ecosystem transpiration, here we also identified that the diversity of leaf nitrogen concentration among species in a community is a consistent predictor of ecosystem water vapor fluxes during daytime. The results provide evidence that, at the peak of the growing season, higher leaf area index (LAI) and lower percentage of bare ground at high plant diversity diverts more of the available water to transpiration, a flux closely coupled with photosynthesis and productivity. Higher rates of transpiration presumably contribute to the positive effect of diversity on productivity. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Williams, C. J.; Pierson, F. B.; Kormos, P.; Al-Hamdan, O. Z.; Nouwakpo, S.; Weltz, M.; Vega, S.; Lindsay, K.
2017-12-01
Range expansion of pinyon (Pinus spp.) and juniper (Juniperus spp.) conifers into sagebrush steppe (Artemisia spp.) communities has imperiled a vast domain in the western US. Encroachment of sagebrush ecosystems by pinyon and juniper conifers has negative ramifications to ecosystem structure and function and delivery of goods and services. Scientists, land management agencies, and private land owners throughout the western US are challenged with selecting from a suite of options to reduce pinyon and juniper woody fuels and re-establish sagebrush steppe structure and function. This study evaluated the effectiveness of prescribed fire to re-establish sagebrush vegetation and ecohydrologic function over a 9 yr period. Nine years post-fire hydrologic and erosion responses reflect the combination of pre-fire site conditions, perennial grass recruitment, delayed litter cover, and inherent site characteristics. Burning initially increased bare ground, runoff, and erosion for well-vegetated areas underneath tree and shrub canopies, but had minimal impact on hydrology and erosion for degraded interspaces between plants. The degraded interspaces were primarily bare ground and exhibited high runoff and erosion rates prior to burning. Initial fire effects persisted for two years, but increased productivity of grasses improved hydrologic function of interspaces over the full 9 yr period. At the hillslope scale, grass recruitment in the intercanopy between trees reduced runoff from rainsplash, sheetflow, and concentrated overland flow at one site, but did not reduce the high levels of runoff and erosion from a more degraded site. In areas formerly occupied by trees (tree zones), burning increased invasive annual grass cover due to fire removal of limited native perennial plants and competition for resources. The invasive annual grass cover had no net effect on runoff and erosion from tree zones however. Runoff and erosion increased in tree zones at the more degraded site due to delayed litter recruitment and persistence of bare ground conditions. Overall, the 9 yr study illustrates the ecohydrologic complexities with predicting sagebrush ecosystem responses to woodland encroachment and tree removal.
NEON terrestrial field observations: designing continental scale, standardized sampling
R. H. Kao; C.M. Gibson; R. E. Gallery; C. L. Meier; D. T. Barnett; K. M. Docherty; K. K. Blevins; P. D. Travers; E. Azuaje; Y. P. Springer; K. M. Thibault; V. J. McKenzie; M. Keller; L. F. Alves; E. L. S. Hinckley; J. Parnell; D. Schimel
2012-01-01
Rapid changes in climate and land use and the resulting shifts in species distributions and ecosystem functions have motivated the development of the National Ecological Observatory Network (NEON). Integrating across spatial scales from ground sampling to remote sensing, NEON will provide data for users to address ecological responses to changes in climate, land use,...
Larsen, Peter E; Cseke, Leland J; Miller, R Michael; Collart, Frank R
2014-10-21
Rising atmospheric levels of carbon dioxide and ozone will impact productivity and carbon sequestration in forest ecosystems. The scale of this process and the potential economic consequences provide an incentive for the development of models to predict the types and rates of ecosystem responses and feedbacks that result from and influence of climate change. In this paper, we use phenotypic and molecular data derived from the Aspen Free Air CO2 Enrichment site (Aspen-FACE) to evaluate modeling approaches for ecosystem responses to changing conditions. At FACE, it was observed that different aspen clones exhibit clone-specific responses to elevated atmospheric levels of carbon dioxide and ozone. To identify the molecular basis for these observations, we used artificial neural networks (ANN) to examine above and below-ground community phenotype responses to elevated carbon dioxide, elevated ozone and gene expression profiles. The aspen community models generated using this approach identified specific genes and subnetworks of genes associated with variable sensitivities for aspen clones. The ANN model also predicts specific co-regulated gene clusters associated with differential sensitivity to elevated carbon dioxide and ozone in aspen species. The results suggest ANN is an effective approach to predict relevant gene expression changes resulting from environmental perturbation and provides useful information for the rational design of future biological experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hydrologic control on the root growth of Salix cuttings at the laboratory scale
NASA Astrophysics Data System (ADS)
Bau', Valentina; Calliari, Baptiste; Perona, Paolo
2017-04-01
Riparian plant roots contribute to the ecosystem functioning and, to a certain extent, also directly affect fluvial morphodynamics, e.g. by influencing sediment transport via mechanical stabilization and trapping. There is much both scientific and engineering interest in understanding the complex interactions among riparian vegetation and river processes. For example, to investigate plant resilience to uprooting by flow, one should quantify the probability that riparian plants may be uprooted during specific flooding event. Laboratory flume experiments are of some help to this regard, but are often limited to use grass (e.g., Avena and Medicago sativa) as vegetation replicate with a number of limitations due to fundamental scaling problems. Hence, the use of small-scale real plants grown undisturbed in the actual sediment and within a reasonable time frame would be particularly helpful to obtain more realistic flume experiments. The aim of this work is to develop and tune an experimental technique to control the growth of the root vertical density distribution of small-scale Salix cuttings of different sizes and lengths. This is obtained by controlling the position of the saturated water table in the sedimentary bed according to the sediment size distribution and the cutting length. Measurements in the rhizosphere are performed by scanning and analysing the whole below-ground biomass by means of the root analysis software WinRhizo, from which root morphology statistics and the empirical vertical density distribution are obtained. The model of Tron et al. (2015) for the vertical density distribution of the below-ground biomass is used to show that experimental conditions that allow to develop the desired root density distribution can be fairly well predicted. This augments enormously the flexibility and the applicability of the proposed methodology in view of using such plants for novel flow erosion experiments. Tron, S., Perona, P., Gorla, L., Schwarz, M., Laio, F., and L. Ridolfi (2015). The signature of randomness in riparian plant root distributions. Geophys. Res. Letts., 42, 7098-7106
Alternative states of a semiarid grassland ecosystem: implications for ecosystem services
Miller, Mark E.; Belote, R. Travis; Bowker, Matthew A.; Garman, Steven L.
2011-01-01
Ecosystems can shift between alternative states characterized by persistent differences in structure, function, and capacity to provide ecosystem services valued by society. We examined empirical evidence for alternative states in a semiarid grassland ecosystem where topographic complexity and contrasting management regimes have led to spatial variations in levels of livestock grazing. Using an inventory data set, we found that plots (n = 72) cluster into three groups corresponding to generalized alternative states identified in an a priori conceptual model. One cluster (biocrust) is notable for high coverage of a biological soil crust functional group in addition to vascular plants. Another (grass-bare) lacks biological crust but retains perennial grasses at levels similar to the biocrust cluster. A third (annualized-bare) is dominated by invasive annual plants. Occurrence of grass-bare and annualized-bare conditions in areas where livestock have been excluded for over 30 years demonstrates the persistence of these states. Significant differences among all three clusters were found for percent bare ground, percent total live cover, and functional group richness. Using data for vegetation structure and soil erodibility, we also found large among-cluster differences in average levels of dust emissions predicted by a wind-erosion model. Predicted emissions were highest for the annualized-bare cluster and lowest for the biocrust cluster, which was characterized by zero or minimal emissions even under conditions of extreme wind. Results illustrate potential trade-offs among ecosystem services including livestock production, soil retention, carbon storage, and biodiversity conservation. Improved understanding of these trade-offs may assist ecosystem managers when evaluating alternative management strategies.
How lichens impact on terrestrial community and ecosystem properties.
Asplund, Johan; Wardle, David A
2017-08-01
Lichens occur in most terrestrial ecosystems; they are often present as minor contributors, but in some forests, drylands and tundras they can make up most of the ground layer biomass. As such, lichens dominate approximately 8% of the Earth's land surface. Despite their potential importance in driving ecosystem biogeochemistry, the influence of lichens on community processes and ecosystem functioning have attracted relatively little attention. Here, we review the role of lichens in terrestrial ecosystems and draw attention to the important, but often overlooked role of lichens as determinants of ecological processes. We start by assessing characteristics that vary among lichens and that may be important in determining their ecological role; these include their growth form, the types of photobionts that they contain, their key functional traits, their water-holding capacity, their colour, and the levels of secondary compounds in their thalli. We then assess how these differences among lichens influence their impacts on ecosystem and community processes. As such, we consider the consequences of these differences for determining the impacts of lichens on ecosystem nutrient inputs and fluxes, on the loss of mass and nutrients during lichen thallus decomposition, and on the role of lichenivorous invertebrates in moderating decomposition. We then consider how differences among lichens impact on their interactions with consumer organisms that utilize lichen thalli, and that range in size from microfauna (for which the primary role of lichens is habitat provision) to large mammals (for which lichens are primarily a food source). We then address how differences among lichens impact on plants, through for example increasing nutrient inputs and availability during primary succession, and serving as a filter for plant seedling establishment. Finally we identify areas in need of further work for better understanding the role of lichens in terrestrial ecosystems. These include understanding how the high intraspecific trait variation that characterizes many lichens impacts on community assembly processes and ecosystem functioning, how multiple species mixtures of lichens affect the key community- and ecosystem-level processes that they drive, the extent to which lichens in early succession influence vascular plant succession and ecosystem development in the longer term, and how global change drivers may impact on ecosystem functioning through altering the functional composition of lichen communities. © 2016 Cambridge Philosophical Society.
Restoring the ground layer of longleaf pine ecosystems
Joan L. Walker; Andrea M. Silletti
2006-01-01
The longleaf pine ecosystem includes some of the most species-rich plant communities outside of the tropics, and most of that diversity resides in the ground layer vegetation. In addition to harboring many locally endemic and otherwise rare plant species (Peet this volume) and enhancing habitat for the resident fauna (Costa and DeLotelle this volume), the ground layer...
Koren, Klaus; Brodersen, Kasper E; Jakobsen, Sofie L; Kühl, Michael
2015-02-17
Seagrass communities provide important ecosystems services in coastal environments but are threatened by anthropogenic impacts. Especially the ability of seagrasses to aerate their below-ground tissue and immediate rhizosphere to prevent sulfide intrusion from the surrounding sediment is critical for their resilience to environmental disturbance. There is a need for chemical techniques that can map the O2 distribution and dynamics in the seagrass rhizosphere upon environmental changes and thereby identify critical stress thresholds of e.g. water flow, turbidity, and O2 conditions in the water phase. In a novel experimental approach, we incorporated optical O2 sensor nanoparticles into a transparent artificial sediment matrix consisting of pH-buffered deoxygenated sulfidic agar. Seagrass growth and photosynthesis was not inhibited in the experimental setup when the below-ground biomass was immobilized in the artificial sulfidic sediment with nanoparticles and showed root growth rates (∼ 5 mm day(-1)) and photosynthetic quantum yields (∼ 0.7) comparable to healthy seagrasses in their natural habitat. We mapped the real-time below ground O2 distribution and dynamics in the whole seagrass rhizosphere during experimental manipulation of light exposure and O2 content in the overlaying water. Those manipulations showed that oxygen release from the belowground tissue is much higher in light as compared to darkness and that water column hypoxia leads to diminished oxygen levels around the rhizome/roots. Oxygen release was visualized and analyzed on a whole rhizosphere level, which is a substantial improvement to existing methods relying on point measurements with O2 microsensors or partial mapping of the rhizosphere in close contact with a planar O2 optode. The combined use of optical nanoparticle-based sensors with artificial sediments enables imaging of chemical microenvironments in the rhizosphere of aquatic plants at high spatiotemporal resolution with a relatively simple experimental setup and thus represents a significant methodological advancement for studies of environmental impacts on aquatic plant ecophysiology.
Meehan, Timothy D.; Gratton, Claudio; Diehl, Erica; Hunt, Natalie D.; Mooney, Daniel F.; Ventura, Stephen J.; Barham, Bradford L.; Jackson, Randall D.
2013-01-01
Integration of energy crops into agricultural landscapes could promote sustainability if they are placed in ways that foster multiple ecosystem services and mitigate ecosystem disservices from existing crops. We conducted a modeling study to investigate how replacing annual energy crops with perennial energy crops along Wisconsin waterways could affect a variety of provisioning and regulating ecosystem services. We found that a switch from continuous corn production to perennial-grass production decreased annual income provisioning by 75%, although it increased annual energy provisioning by 33%, decreased annual phosphorous loading to surface water by 29%, increased below-ground carbon sequestration by 30%, decreased annual nitrous oxide emissions by 84%, increased an index of pollinator abundance by an average of 11%, and increased an index of biocontrol potential by an average of 6%. We expressed the tradeoffs between income provisioning and other ecosystem services as benefit-cost ratios. Benefit-cost ratios averaged 12.06 GJ of additional net energy, 0.84 kg of avoided phosphorus pollution, 18.97 Mg of sequestered carbon, and 1.99 kg of avoided nitrous oxide emissions for every $1,000 reduction in income. These ratios varied spatially, from 2- to 70-fold depending on the ecosystem service. Benefit-cost ratios for different ecosystem services were generally correlated within watersheds, suggesting the presence of hotspots – watersheds where increases in multiple ecosystem services would come at lower-than-average opportunity costs. When assessing the monetary value of ecosystem services relative to existing conservation programs and environmental markets, the overall value of enhanced services associated with adoption of perennial energy crops was far lower than the opportunity cost. However, when we monitized services using estimates for the social costs of pollution, the value of enhanced services far exceeded the opportunity cost. This disparity between recoverable costs and social value represents a fundamental challenge to expansion of perennial energy crops and sustainable agricultural landscapes. PMID:24223215
Meehan, Timothy D; Gratton, Claudio; Diehl, Erica; Hunt, Natalie D; Mooney, Daniel F; Ventura, Stephen J; Barham, Bradford L; Jackson, Randall D
2013-01-01
Integration of energy crops into agricultural landscapes could promote sustainability if they are placed in ways that foster multiple ecosystem services and mitigate ecosystem disservices from existing crops. We conducted a modeling study to investigate how replacing annual energy crops with perennial energy crops along Wisconsin waterways could affect a variety of provisioning and regulating ecosystem services. We found that a switch from continuous corn production to perennial-grass production decreased annual income provisioning by 75%, although it increased annual energy provisioning by 33%, decreased annual phosphorous loading to surface water by 29%, increased below-ground carbon sequestration by 30%, decreased annual nitrous oxide emissions by 84%, increased an index of pollinator abundance by an average of 11%, and increased an index of biocontrol potential by an average of 6%. We expressed the tradeoffs between income provisioning and other ecosystem services as benefit-cost ratios. Benefit-cost ratios averaged 12.06 GJ of additional net energy, 0.84 kg of avoided phosphorus pollution, 18.97 Mg of sequestered carbon, and 1.99 kg of avoided nitrous oxide emissions for every $1,000 reduction in income. These ratios varied spatially, from 2- to 70-fold depending on the ecosystem service. Benefit-cost ratios for different ecosystem services were generally correlated within watersheds, suggesting the presence of hotspots--watersheds where increases in multiple ecosystem services would come at lower-than-average opportunity costs. When assessing the monetary value of ecosystem services relative to existing conservation programs and environmental markets, the overall value of enhanced services associated with adoption of perennial energy crops was far lower than the opportunity cost. However, when we monitized services using estimates for the social costs of pollution, the value of enhanced services far exceeded the opportunity cost. This disparity between recoverable costs and social value represents a fundamental challenge to expansion of perennial energy crops and sustainable agricultural landscapes.
Benjamin O. Knapp; Joan L. Walker; G. Geoff Wang; Huifeng Hu; Robert N. Addington
2014-01-01
The desirable structure of longleaf pine forests, which generally includes a relatively open canopy of pines, very few woody stems in the mid-story, and a well-developed, herbaceous ground layer, provides critical habitat for flora and fauna and contributes to ecosystem function. Current efforts to restore longleaf pine to upland sites dominated by second-growth...
Declining plant nitrogen supply and carbon accumulation in ageing primary boreal forest ecosystems
NASA Astrophysics Data System (ADS)
Högberg, Mona N.; Yarwood, Stephanie A.; Trumbore, Susan; Högberg, Peter
2016-04-01
Boreal forest soils are commonly characterized by a low plant nitrogen (N) supply. A high tree below-ground allocation of carbon (C) to roots and soil microorganisms in response to the shortage of N may lead to high microbial immobilisation of N, thus aggravating the N limitation. We studied the N supply at a Swedish boreal forest ecosystem chronosequence created by new land rising out of the sea due to iso-static rebound. The youngest soils develop with meadows by the coast, followed by a zone of dinitrogen fixing alder trees, and primary boreal conifer forest on ground up to 560 years old. With increasing ecosystem age, the proportion of microbial C out of the total soil C pool from the youngest to the oldest coniferous ecosystem was constant (c. 1-1.5%), whereas immobilised N (microbial N out of total soil N) increased and approached the levels commonly observed in similar boreal coniferous forests (c. 6-7 %), whereas gross N mineralization declined. Simultaneously, plant foliar N % decreased and the natural abundance of N-15 in the soil increased. More specifically, the difference in N-15 between plant foliage and soil increased, which is related to greater retention of N-15 relative to N-14 by ectomycorrhizal fungi as N is taken up from the soil and some N is transferred to the plant host. In the conifer forest, where these changes were greatest, we found increased fungal biomass in the F- and H-horizons of the mor-layer, in which ectomycorrhizal fungi are known to dominate (the uppermost horizon with litter and moss is dominated by saprotrophic fungi). Hence, we propose that the decreasing N supply to the plants and the subsequent decline in plant production in ageing boreal forests is linked to high tree belowground C allocation to C limited ectomycorrhizal fungi (and other soil microorganisms), a strong sink for available soil N. Data on organic matter C-14 suggested that the largest input of recently fixed plant C occurred in the younger coniferous forest ecosystems, whereas the soil C accumulation rate declined as N supply to the plants declined.
Ziegler, Alan D; Phelps, Jacob; Yuen, Jia Qi; Webb, Edward L; Lawrence, Deborah; Fox, Jeff M; Bruun, Thilde B; Leisz, Stephen J; Ryan, Casey M; Dressler, Wolfram; Mertz, Ole; Pascual, Unai; Padoch, Christine; Koh, Lian Pin
2012-10-01
Policy makers across the tropics propose that carbon finance could provide incentives for forest frontier communities to transition away from swidden agriculture (slash-and-burn or shifting cultivation) to other systems that potentially reduce emissions and/or increase carbon sequestration. However, there is little certainty regarding the carbon outcomes of many key land-use transitions at the center of current policy debates. Our meta-analysis of over 250 studies reporting above- and below-ground carbon estimates for different land-use types indicates great uncertainty in the net total ecosystem carbon changes that can be expected from many transitions, including the replacement of various types of swidden agriculture with oil palm, rubber, or some other types of agroforestry systems. These transitions are underway throughout Southeast Asia, and are at the heart of REDD+ debates. Exceptions of unambiguous carbon outcomes are the abandonment of any type of agriculture to allow forest regeneration (a certain positive carbon outcome) and expansion of agriculture into mature forest (a certain negative carbon outcome). With respect to swiddening, our meta-analysis supports a reassessment of policies that encourage land-cover conversion away from these [especially long-fallow] systems to other more cash-crop-oriented systems producing ambiguous carbon stock changes - including oil palm and rubber. In some instances, lengthening fallow periods of an existing swidden system may produce substantial carbon benefits, as would conversion from intensely cultivated lands to high-biomass plantations and some other types of agroforestry. More field studies are needed to provide better data of above- and below-ground carbon stocks before informed recommendations or policy decisions can be made regarding which land-use regimes optimize or increase carbon sequestration. As some transitions may negatively impact other ecosystem services, food security, and local livelihoods, the entire carbon and noncarbon benefit stream should also be taken into account before prescribing transitions with ambiguous carbon benefits. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Wang, Shaoqiang
2014-05-01
Evidence is mounting that an increase in extreme climate events has begun to occur worldwide during the recent decades, which affect biosphere function and biodiversity. Ecosystems returned to its original structures and functions to maintain its sustainability, which was closely dependent on ecosystem resilience. Understanding the resilience and recovery capacity of ecosystem to extreme climate events is essential to predicting future ecosystem responses to climate change. Given the overwhelming importance of this region in the overall carbon cycle of forest ecosystems in China, south China suffered a destructive ice storm in 2008. In this study, we used the number of freezing day and a process-based model (Boreal Ecosystem Productivity Simulator, BEPS) to characterize the spatial distribution of ice storm region in southeastern China and explore the impacts on carbon cycle of forest ecosystem over the past decade. The ecosystem variables, i.e. Net primary productivity (NPP), Evapotranspiration (ET), and Water use efficiency (WUE, the ratio of NPP to ET) from the outputs of BEPS models were used to detect the resistance and resilience of forest ecosystem in southern China. The pattern of ice storm-induced forest productivity widespread decline was closely related to the number of freezing day during the ice storm period. The NPP of forest area suffered heavy ice storm returned to normal status after five months with high temperature and ample moisture, indicated a high resilience of subtropical forest in China. The long-term changes of forest WUE remain stable, behaving an inherent sensitivity of ecosystem to extreme climate events. In addition, ground visits suggested that the recovery of forest productivity was attributed to rapid growth of understory. Understanding the variability and recovery threshold of ecosystem following extreme climate events help us to better simulate and predict the variability of ecosystem structure and function under current and future climate change.
Desertification, salinization, and biotic homogenization in a dryland river ecosystem
Miyazono, S.; Patino, Reynaldo; Taylor, C.M.
2015-01-01
This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamfiow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was > 2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and salinization of the Rio Grande has in turn led to a region-wide homogenization of hydrological conditions and of taxonomic and functional attributes of fish assemblages.
Desertification, salinization, and biotic homogenization in a dryland river ecosystem.
Miyazono, Seiji; Patiño, Reynaldo; Taylor, Christopher M
2015-04-01
This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamflow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was>2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and salinization of the Rio Grande has in turn led to a region-wide homogenization of hydrological conditions and of taxonomic and functional attributes of fish assemblages. Copyright © 2015 Elsevier B.V. All rights reserved.
Common ground for biodiversity and ecosystem services: the “partial protection” challenge
Faith, Daniel P
2012-01-01
New global initiatives require clarity about similarities and differences between biodiversity and ecosystem services. One argument is that ecosystem services capture utilitarian values, while biodiversity captures intrinsic values. However, the concept of biodiversity equally emerges from anthropogenic use values. Measures of biodiversity indicate broad option values, and so provide different information about future uses and benefits. Such differences nevertheless can be the basis for “common ground” for biodiversity and ecosystem services. Systematic conservation planning and related frameworks acknowledge such differences through effective trade-offs and synergies among different values of society. The early work on regional biodiversity trade-offs includes a little-explored aspect that could enhance this common ground. Regional planning here takes into account the “partial protection” of biodiversity provided by some land uses. Common-ground will be promoted by better integrating the ecosystem services and biodiversity conservation offered by ecosystems at the “natural end of the spectrum” with the partial protection and other benefits/services provided by more intensively-transformed places. PMID:24358821
Inventory of File gfs.t06z.sfluxgrbf00.grib2
Volumetric Soil Moisture Content [Fraction] 007 0.1-0.4 m below ground SOILW analysis Volumetric Soil Volumetric Soil Moisture Content [Fraction] 068 1-2 m below ground SOILW analysis Volumetric Soil Moisture analysis Temperature [K] 071 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non
Inventory of File ndas.t12z.awip3d00.tm03.grib2
parameter in canopy conductance [Fraction] 529 surface RCSOL analysis Soil moisture parameter in canopy -0.1 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 532 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 533 0.1-0.4 m below ground TSOIL
Microbial Community Analysis of a Coastal Salt Marsh Affected by the Deepwater Horizon Oil Spill
Beazley, Melanie J.; Martinez, Robert J.; Rajan, Suja; Powell, Jessica; Piceno, Yvette M.; Tom, Lauren M.; Andersen, Gary L.; Hazen, Terry C.; Van Nostrand, Joy D.; Zhou, Jizhong; Mortazavi, Behzad; Sobecky, Patricia A.
2012-01-01
Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05) once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems. PMID:22815990
Transforming ecosystems: When, where, and how to restore contaminated sites.
Rohr, Jason R; Farag, Aïda M; Cadotte, Marc W; Clements, William H; Smith, James R; Ulrich, Cheryl P; Woods, Richard
2016-04-01
Chemical contamination has impaired ecosystems, reducing biodiversity and the provisioning of functions and services. This has spurred a movement to restore contaminated ecosystems and develop and implement national and international regulations that require it. Nevertheless, ecological restoration remains a young and rapidly growing discipline and its intersection with toxicology is even more nascent and underdeveloped. Consequently, we provide guidance to scientists and practitioners on when, where, and how to restore contaminated ecosystems. Although restoration has many benefits, it also can be expensive, and in many cases systems can recover without human intervention. Hence, the first question we address is: "When should we restore contaminated ecosystems?" Second, we provide suggestions on what to restore-biodiversity, functions, services, all 3, or something else--and where to restore given expected changes to habitats driven by global climate change. Finally, we provide guidance on how to restore contaminated ecosystems. To do this, we analyze critical aspects of the literature dealing with the ecology of restoring contaminated ecosystems. Additionally, we review approaches for translating the science of restoration to on-the-ground actions, which includes discussions of market incentives and the finances of restoration, stakeholder outreach and governance models for ecosystem restoration, and working with contractors to implement restoration plans. By explicitly considering the mechanisms and strategies that maximize the success of the restoration of contaminated sites, we hope that our synthesis serves to increase and improve collaborations between restoration ecologists and ecotoxicologists and set a roadmap for the restoration of contaminated ecosystems. © 2015 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC.
Changes in grassland plant composition explain 2011 drought-triggered legacy effects
NASA Astrophysics Data System (ADS)
Xu, X.; Polley, W.; Hofmockel, K. S.; Wilsey, B. J.
2016-12-01
There is widespread recognition that extreme droughts can have profound direct consequences for terrestrial ecosystems, but it is poorly known how common drought legacies are and what ecological factors are associated with them. Legacies are found when ecosystem functioning is below what is expected based on precipitation levels in the time period after a perturbation has ended. Here, we tested for legacies after an extreme drought in pure native and exotic experimental communities in central Texas in a long-term experiment. An extreme drought in 2011 decreased aboveground biomass (AGB) by 92 % and triggered species reorganization that led to a drought legacy in rain-use efficiency (RUE, biomass production per unit of rainfall) that lasted an average of 20 months and 48 months in exotic and native communities, respectively. Across plots within community types, reductions in RUE (DRUE) were smallest in native communities with a high proportion of C3 forb biomass and in exotic communities with a low proportion of short grass biomass. Our results indicate that the 2011 drought exerted differential impacts on plant functional groups and altered plant community composition to the extent that, RUE, an ecosystem function, shifted with possible long-term repercussions.
Introduction to a Virtual Issue on root traits
Norby, Richard J.; Iversen, Colleen M.
2017-05-31
Plant traits – ‘morphological, anatomical, physiological, biochem-ical and phenological characteristics of plants and their organs’(Kattge et al., 2011) – are increasingly being harnessed byempiricists and modelers as a framework to understand patternsin the structure and function of specie s across the globe. Trait-basedecology, which emphasizes functional traits over the taxonomicalrelationships among organisms (Laliberte, 2017), promises toimprove generality, synthesis, and predictive ability across ecolog-ical scales (Shipley et al., 2016). Indeed, plant trait studies areincreasingly prominent in the literature: a simple Web of Sciencesearch on the term indicates a surge in publications from 2576during the three-year period from 1999 to 2001 tomore » 13 234 in thethree-year period between 2014 and 2016. However, the mostcommon plant traits described in the literature relate to above -ground organs and their function, including leaf morphology,photosynthetic parameters, and above ground growth rate. Roottraits, particularly those of fine roots associated with criticalbelowground plant functions, are much less studied – they are, afterall, harder to measure and less likely to have a role in ecosystemmodels as they are encoded today. Although the TRY database ofplant traits (Kattge et al., 2011) has been a highly valuable resourcefor plant and ecosystem ecologists, < 1% of the data entries describefine-root functional traits. This glaring gap in our knowledge of thebelowground half of ecosystem function has led to a chorus of pleasin recent years for a stronger emphasis on the measurement andunderstanding of root traits (e.g . Bardgett et al., 2014).« less
Introduction to a Virtual Issue on root traits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norby, Richard J.; Iversen, Colleen M.
Plant traits – ‘morphological, anatomical, physiological, biochem-ical and phenological characteristics of plants and their organs’(Kattge et al., 2011) – are increasingly being harnessed byempiricists and modelers as a framework to understand patternsin the structure and function of specie s across the globe. Trait-basedecology, which emphasizes functional traits over the taxonomicalrelationships among organisms (Laliberte, 2017), promises toimprove generality, synthesis, and predictive ability across ecolog-ical scales (Shipley et al., 2016). Indeed, plant trait studies areincreasingly prominent in the literature: a simple Web of Sciencesearch on the term indicates a surge in publications from 2576during the three-year period from 1999 to 2001 tomore » 13 234 in thethree-year period between 2014 and 2016. However, the mostcommon plant traits described in the literature relate to above -ground organs and their function, including leaf morphology,photosynthetic parameters, and above ground growth rate. Roottraits, particularly those of fine roots associated with criticalbelowground plant functions, are much less studied – they are, afterall, harder to measure and less likely to have a role in ecosystemmodels as they are encoded today. Although the TRY database ofplant traits (Kattge et al., 2011) has been a highly valuable resourcefor plant and ecosystem ecologists, < 1% of the data entries describefine-root functional traits. This glaring gap in our knowledge of thebelowground half of ecosystem function has led to a chorus of pleasin recent years for a stronger emphasis on the measurement andunderstanding of root traits (e.g . Bardgett et al., 2014).« less
USDA-ARS?s Scientific Manuscript database
Soil moisture measurements are required to improve our understanding of hydrological processes, ecosystem functions, and linkages between the Earth’s water, energy, and carbon cycles. The efficient retrieval of soil moisture depends on various factors in which soil dielectric mixing models are consi...
Margaret W. Roberts; Anthony W. D' Amato; Christel C. Kern; Brian J. Palik; Lorenzo Marini
2016-01-01
Concerns about loss of biodiversity and structural complexity in managed forests have recently increased and led to the development of new management strategies focused on restoring or maintaining ecosystem functions while also providing wood outputs. Variable retention harvest (VRH) systems, in which mature overstorey trees are retained in various spatial arrangements...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuperman, R.G.
1995-12-31
Despite the expansion of environmental toxicology studies over the past decade, soil ecosystems have largely been ignored in ecotoxicological studies in the United States. The objective of this project was to develop and test the efficacy of a comprehensive methodology for assessing ecological impacts of soil contamination. A hierarchical approach that integrates biotic parameters and ecosystem processes was used to give insight into the mechanisms that lead to alterations in the structure and function of soil ecosystems in contaminated areas. This approach involved (1) a thorough survey of the soil biota to determine community structure, (2) laboratory and field testsmore » on critical ecosystem processes, (3) toxicity trials, and (4) the use of spatial analyses to provide input to the decision-making, process. This methodology appears to, offer an efficient and potentially cost-saving tool for remedial investigations of contaminated sites.« less
Dry matter and energy partitioning in plants under climatic stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolhar-Nordenkampf, H.R.; Postl, W.F.; Meister, M.H.
1996-12-31
During ontogenesis plants distribute assimilates quite differently among their organs depending on the environmental conditions. In case of high sink capacity energetically cheap storing compounds such as carbohydrates and/or organic acids are formed, whereas during periods with low demand proteins and lipids may be accumulated. Besides ontogenesis, drought and increased CO{sub 2} are able to modify sink capacity and by this transients in the partitioning pattern of carbon are induced. Plants, well adapted to several dry seasons during the year are able to allocate carbon predominantly to below ground organs. During this period many leaves become senescent. In any casemore » stems and remaining green leaves will loose dry matter and energy. With 80% of plants under investigation CO{sub 2} enrichment was shown to induce an enforced allocation of carbon to below ground organs. Roots and Rhizomes, beets and tubers act as a sink for the additionally fixed carbon. It was demonstrated that sink capacity is controlling photosynthetic activity. With respect to agricultural production, to ecosystems and to single plants, climatic change will modify productivity and plants distribution pattern as a consequence of quite different metabolic changes. These responses are depending on the effect of natural and anthropogenic stress factors on the use of enhanced CO{sub 2} and on the allocation of additionally formed assimilates.« less
Inventory of File nam.t00z.awip1206.tm00.grib2
TMP 6 hour fcst Temperature [K] 048 0-0.1 m below ground TSOIL 6 hour fcst Soil Temperature Validation to deprecate [K] 049 0-0.1 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content [Fraction] 050 0-0.1 m below ground SOILL 6 hour fcst Liquid Volumetric Soil Moisture (non Frozen
Inventory of File gdas1.t06z.sfluxgrbf00.grib2
analysis Volumetric Soil Moisture Content [Fraction] 007 0.1-0.4 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 008 0-0.1 m below ground TMP analysis Temperature [K] 009 0.1-0.4 m Volumetric Soil Moisture Content [Fraction] 068 1-2 m below ground SOILW analysis Volumetric Soil Moisture
Inventory of File nam.t00z.awip1200.tm00.grib2
analysis Temperature [K] 048 0-0.1 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 049 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 050 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 051 0.1-0.4 m
P.W. Rundel; C.I. Millar
2016-01-01
Alpine ecosystems are typically defined as those areas occurring above treeline, while recognizing that alpine ecosystems at a local scale may be found below this boundary for reasons including geology, geomorphology, and microclimate. The lower limit of the alpine ecosystems, the climatic treeline, varies with latitude across California, ranging from about 3500 m in...
Crespo, Daniel; Grilo, Tiago Fernandes; Baptista, Joana; Coelho, João Pedro; Lillebø, Ana Isabel; Cássio, Fernanda; Fernandes, Isabel; Pascoal, Cláudia; Pardal, Miguel Ângelo; Dolbeth, Marina
2017-06-20
The Paris Agreement signed by 195 countries in 2015 sets out a global action plan to avoid dangerous climate change by limiting global warming to remain below 2 °C. Under that premise, in situ experiments were run to test the effects of 2 °C temperature increase on the benthic communities in a seagrass bed and adjacent bare sediment, from a temperate European estuary. Temperature was artificially increased in situ and diversity and ecosystem functioning components measured after 10 and 30 days. Despite some warmness effects on the analysed components, significant impacts were not verified on macro and microfauna structure, bioturbation or in the fluxes of nutrients. The effect of site/habitat seemed more important than the effects of the warmness, with the seagrass habitat providing more homogenous results and being less impacted by warmness than the adjacent bare sediment. The results reinforce that most ecological responses to global changes are context dependent and that ecosystem stability depends not only on biological diversity but also on the availability of different habitats and niches, highlighting the role of coastal wetlands. In the context of the Paris Agreement it seems that estuarine benthic ecosystems will be able to cope if global warming remains below 2 °C.
Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach
NASA Astrophysics Data System (ADS)
Weißhuhn, Peter; Müller, Felix; Wiggering, Hubert
2018-06-01
To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of ScienceTM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.
Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach.
Weißhuhn, Peter; Müller, Felix; Wiggering, Hubert
2018-06-01
To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of Science TM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.
Walker D.A.; Romanovsky V.E.; Ping C.L.; Michaelson G.J.; Daanen R.P.; Shur Y.; Peterson R.A.; Krantz W.B.; Raynolds M.K.; William Gould; Grizelle Gonzalez; Nicolsky D.J.; Vonlanthen C.M.; Kade A.N.; Kuss P.; Kelley A.M.; Munger C.A.; Tarnocai C.T.; Matveyeva N.V.; Daniels F.J.A.
2008-01-01
Arctic landscapes have visually striking patterns of small polygons, circles, and hummocks. The linkages between the geophysical and biological components of these systems and their responses to climate changes are not well understood. The âBiocomplexity of Patterned Ground Ecosystemsâ project examined patterned-ground features (PGFs) in all five Arctic bioclimate...
NASA Astrophysics Data System (ADS)
Shinozuka, Y.; Johnson, R. R.; LeBlanc, S. E.; Chang, C. S.; Redemann, J.
2016-12-01
We report on our recent airborne measurements of multi-wavelength aerosol optical depth and cloud-transmitted radiances over the North Atlantic. We ran the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) in November 2015 and the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14) in May and June 2016, both aboard the NASA C-130 aircraft. These sunphotometers provide measurements of overlying cirrus and aerosol optical depths of up to about 0.5 and constrain ecosystem and aerosol retrievals from the accompanying nadir-viewing remote sensing instruments. In addition, 4STAR measures hyperspectral transmitted light, which enables the retrieval of cloud optical depth, effective radius, and thermodynamic phase from below cloud. Our measurements contribute to the science objectives of the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES), an interdisciplinary investigation resolving key processes controlling marine ecosystems and aerosols that are essential to our understanding of Earth system function and future change.
Li, Hui; Wang, Xugao; Liang, Chao; Hao, Zhanqing; Zhou, Lisha; Ma, Sam; Li, Xiaobin; Yang, Shan; Yao, Fei; Jiang, Yong
2015-01-01
Understanding ecological linkages between above- and below-ground biota is critical for deepening our knowledge on the maintenance and stability of ecosystem processes. Nevertheless, direct comparisons of plant-microbe diversity at the community level remain scarce due to the knowledge gap between microbial ecology and plant ecology. We compared the α- and β- diversities of plant and soil bacterial communities in two temperate forests that represented early and late successional stages. We documented different patterns of aboveground-belowground diversity relationships in these forests. We observed no linkage between plant and bacterial α-diversity in the early successional forest, and even a negative correlation in the late successional forest, indicating that high bacterial α-diversity is not always linked to high plant α-diversity. Beta-diversity coupling was only found at the late successional stage, while in the early successional forest, the bacterial β-diversity was closely correlated with soil property distances. Additionally, we showed that the dominant competitive tree species in the late successional forest may play key roles in driving forest succession by shaping the soil bacterial community in the early successional stage. This study sheds new light on the potential aboveground-belowground linkage in natural ecosystems, which may help us understand the mechanisms that drive ecosystem succession. PMID:26184121
Comparative Analyses of Cuticular Waxes on Various Organs of Potato (Solanum tuberosum L.).
Guo, Yanjun; Jetter, Reinhard
2017-05-17
Complex mixtures of cuticular waxes coat plant surfaces to seal them against environmental stresses, with compositions greatly varying between species and possibly organs. This paper reports comprehensive analyses of the waxes on both above- and below-ground organs of potato, where total wax coverages varied between petals (2.6 μg/cm 2 ), leaves, stems, and tubers (1.8-1.9 μg/cm 2 ), and rhizomes (1.1 μg/cm 2 ). The wax mixtures on above-ground organs were dominated by alkanes, occurring in homologous series of isomeric C 25 -C 35 n-alkanes, C 25 -C 35 2-methylalkanes, and C 26 -C 34 3-methylalkanes. In contrast, below-ground organs had waxes rich in monoacylglycerols (C 22 -C 28 acyls) and C 18 -C 30 alkyl ferulates, together with fatty acids (rhizomes) or primary alcohols (tubers). The organ-specific wax coverages, compound class distribution, and chain length profiles suggest highly regulated activities of wax biosynthesis enzymes, likely related to organ-specific ecophysiological functions.
Molina, Verónica; Eissler, Yoanna; Cornejo, Marcela; Galand, Pierre E; Dorador, Cristina; Hengst, Martha; Fernandez, Camila; Francois, Jean Pierre
2018-04-06
Northern Chile harbors different bioclimatic zones including hyper-arid and arid ecosystems and hotspots of microbial life, such as high altitude wetlands, which may contribute differentially to greenhouse gases (GHG) such as carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O). In this study, we explored ground level GHG distribution and the potential role of a wetland situated at 3800 m.a.s.l, and characterized by high solar radiation < 1600 W m -2 , extreme temperature ranges (-12 to 24 °C) and wind stress (< 17 m s -1 ). The water source of the wetland is mainly groundwater springs, which generates streams and ponds surrounded by peatlands. These sites support a rich microbial aquatic life including diverse bacteria and archaea communities, which transiently form more complex structures, such as microbial mats. In this study, GHG were measured in the water and above ground level air at the wetland site and along an elevation gradient in different bioclimatic areas from arid to hyper-arid zones. The microbiome from the water and sediments was described by high-throughput sequencing 16S rRNA and rDNA genes. The results indicate that GHG at ground level were variable along the elevation gradient potentially associated with different bioclimatic zones, reaching high values at the high Andean steppe and variable but lower values in the Atacama Desert and at the wetland. The water areas of the wetland presented high concentrations of CH 4 and CO 2 , particularly at the spring areas and in air bubbles below microbial mats. The microbial community was rich (> 40 phyla), including archaea and bacteria potentially active in the different matrices studied (water, sediments and mats). Functional microbial groups associated with GHG recycling were detected at low frequency, i.e., < 2.5% of total sequences. Our results indicate that hyper-arid and arid areas of northern Chile are sites of GHG exchange associated with various bioclimatic zones and particularly in aquatic areas of the wetland where this ecosystem could represent a net sink of N 2 O and a source for CH 4 and CO 2 .
Microbiome-on-a-Chip: New Frontiers in Plant-Microbiota Research.
Stanley, Claire E; van der Heijden, Marcel G A
2017-08-01
An enigmatic concoction of interactions between microbes and hosts takes place below ground, yet the function(s) of the individual components in this complex playground are far from understood. This Forum article highlights how microfluidic - or 'Microbiome-on-a-Chip' - technology could help to shed light on such relationships, opening new frontiers in plant-microbiota research. Copyright © 2017 Elsevier Ltd. All rights reserved.
How critical are wetlands for provisioning ecosystem services in East Africa?
NASA Astrophysics Data System (ADS)
Gettel, G. M.; van Dam, A. A.; Hes, E.; Irvine, K.
2017-12-01
East Africa is rapidly losing wetlands as the region intensifies agricultural development in rice, sugarcane, and aquaculture production. However, these wetlands are critically important to the livelihoods of region's most vulnerable smallholders, who depend on them for fisheries, water abstraction, and dry-season subsistence agriculture, including livestock grazing. At the same time, wetlands are used for their regulating services, including for water purification of waste-water in some of the region's largest capital cities (e.g. Kampala and Kigali). They also store an enormous, but poorly quantified amount of below-ground carbon and prevent excess nitrogen inputs to sensitive downstream ecosystems. Our research in papyrus wetlands in the Lake Victoria Basin aims to quantify trade-offs in provisioning and regulating services and link these services to socio-economic conditions of the smallholders. We present a framework for evaluating these trade-offs, which can ultimately be used for more informed management decisions for sustainable wetland management and for evaluating impacts on livelihoods. Specifically, we have found that papyrus wetlands can maintain many of their regulating functions, including high plant productivity and denitrification rates when native vegetation is allowed to grow back during wet-seasons, while during dry seasons they can be developed for economically important agricultural activities, including livestock grazing and crop production. This shows the possibility to include wetlands in management plans aimed to increase agricultural production without jeopardizing their ability to maintain other important regulating services. These patterns highlight the need to evaluate the regional importance of these wetlands for both food production and regulating services.
Wilhelm, Linda; Besemer, Katharina; Fragner, Lena; Peter, Hannes; Weckwerth, Wolfram; Battin, Tom J
2015-01-01
Resources structure ecological communities and potentially link biodiversity to energy flow. It is commonly believed that functional traits (generalists versus specialists) involved in the exploitation of resources depend on resource availability and environmental fluctuations. The longitudinal nature of stream ecosystems provides changing resources to stream biota with yet unknown effects on microbial functional traits and community structure. We investigated the impact of autochthonous (algal extract) and allochthonous (spruce extract) resources, as they change along alpine streams from above to below the treeline, on microbial diversity, community composition and functions of benthic biofilms. Combining bromodeoxyuridine labelling and 454 pyrosequencing, we showed that diversity was lower upstream than downstream of the treeline and that community composition changed along the altitudinal gradient. We also found that, especially for allochthonous resources, specialisation by biofilm bacteria increased along that same gradient. Our results suggest that in streams below the treeline biofilm diversity, specialisation and functioning are associated with increasing niche differentiation as potentially modulated by divers allochthonous and autochthonous constituents contributing to resources. These findings expand our current understanding on biofilm structure and function in alpine streams. PMID:25978543
Inventory of File sref_nmm.t03z.pgrb132.p1.f00.grib2
TSOIL analysis Soil Temperature Validation to deprecate [K] 403 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 404 0.1-0.4 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 405 0.1-0.4 m below ground SOILW analysis Volumetric Soil Moisture Content
Inventory of File nam.t00z.awip3d00.tm00.grib2
Specific Humidity [kg/kg] 432 0-0.1 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 433 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 434 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 435 0.1-0.4 m
Inventory of File nam.t00z.awp24206.tm00.grib2
TSOIL 6 hour fcst Soil Temperature Validation to deprecate [K] 034 0-0.1 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content [Fraction] 035 0-0.1 m below ground SOILL 6 hour fcst Liquid Volumetric Soil Moisture (non Frozen) [Proportion] 036 0.1-0.4 m below ground TSOIL 6 hour fcst Soil
Inventory of File sref_nmb.t03z.pgrb132.p1.f00.grib2
TSOIL analysis Soil Temperature Validation to deprecate [K] 403 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 404 0.1-0.4 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 405 0.1-0.4 m below ground SOILW analysis Volumetric Soil Moisture Content
Competition from below for light and nutrients shifts productivity among tropical species.
Ewel, John J; Mazzarino, María Julia
2008-12-02
Chance events such as seed dispersal determine the potential composition of plant communities, but the eventual assemblage is determined in large part by subsequent interactions among species. Postcolonization sorting also affects the ultimate composition of communities assembled by people for restoration, horticulture, or conservation. Thus, knowledge of the mechanisms controlling interspecific interactions in plant communities is important for explaining patterns observed in nature and predicting success or failure of utilitarian combinations. Relationships among species, especially those from studies of biological diversity and ecosystem functioning, are largely based on studies of short-lived, temperate-zone plants. Extrapolation to perennial plants in the humid tropics is risky because functional relationships among large-stature species change with time. Shifts in competitive relationships among 3 life forms--trees, palms, and perennial herbs--occurred during 13 yr in experimental tropical ecosystems. In 2 cases the novel competitive mechanism responsible for the shift was reduction in crown volume, and therefore light-capturing capability, of overtopping deciduous trees by intrusive growth from below a palm. In a third case, complementary resource use developed between 2 evergreen life forms (overstory tree and palm), probably because of differential nutrient acquisition. Species-level traits and adequate time for shifts in interspecific relationships to emerge are crucial for predicting community trajectories.
How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth?
Tang, Xuguang; Li, Hengpeng; Desai, Ankur R; Nagy, Zoltan; Luo, Juhua; Kolb, Thomas E; Olioso, Albert; Xu, Xibao; Yao, Li; Kutsch, Werner; Pilegaard, Kim; Köstner, Barbara; Ammann, Christof
2014-12-15
A better understanding of ecosystem water-use efficiency (WUE) will help us improve ecosystem management for mitigation as well as adaption to global hydrological change. Here, long-term flux tower observations of productivity and evapotranspiration allow us to detect a consistent latitudinal trend in WUE, rising from the subtropics to the northern high-latitudes. The trend peaks at approximately 51°N, and then declines toward higher latitudes. These ground-based observations are consistent with global-scale estimates of WUE. Global analysis of WUE reveals existence of strong regional variations that correspond to global climate patterns. The latitudinal trends of global WUE for Earth's major plant functional types reveal two peaks in the Northern Hemisphere not detected by ground-based measurements. One peak is located at 20° ~ 30°N and the other extends a little farther north than 51°N. Finally, long-term spatiotemporal trend analysis using satellite-based remote sensing data reveals that land-cover and land-use change in recent years has led to a decline in global WUE. Our study provides a new framework for global research on the interactions between carbon and water cycles as well as responses to natural and human impacts.
Ecosystem classification, Chapter 2
M.J. Robin-Abbott; L.H. Pardo
2011-01-01
The ecosystem classification in this report is based on the ecoregions developed through the Commission for Environmental Cooperation (CEC) for North America (CEC 1997). Only ecosystems that occur in the United States are included. CEC ecoregions are described, with slight modifications, below (CEC 1997) and shown in Figures 2.1 and 2.2. We chose this ecosystem...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sionit, N.
1992-12-31
Increased biomass production in terrestrial ecosystems with elevated atmospheric CO{sub 2}, may be constrained by nutrient limitations as a result of increased requirement or reduced availability caused by reduced turnover rates of nutrients. To determine the short-term impact of nitrogen (N) fertilization on plant biomass production under elevated CO{sub 2}, we compared the response of N-fertilized tallgrass prairie at ambient and twice-ambient CO{sub 2} levels. Native tall grass prairie plots were exposed continuously to ambient and twice-ambient CO{sub 2}. We compared our results to an unfertilized companion experiment on the same research site. Above- and below-ground biomass production and leafmore » area of fertilized plots were greater with elevated than ambient CO{sub 2}. Nitrogen concentration was lower in plants exposed to elevated CO{sub 2}, but total standing crop N was greater at high CO{sub 2} increased root biomass under elevated CO{sub 2} apparently increased N uptake. The biomass production response to elevated CO{sub 2} was much greater on N-fertilized than unfertilized prairie, particularly in the dry year. We conclude that biomass production response to elevated C{sub 2} was suppressed by N limitation in years with below-normal precipitation. Reduced N concentration in above- and below-ground biomass could slow microbial degradation of soil organic matter and surface litter. The reduced tissue N concentration higher acid detergent fiber under elevated CO{sub 2} compared to ambient for forage indicated that ruminant growth and reproduction could be reduced under elevated CO{sub 2}.« less
Agricultural management affects below ground carbon input estimations
NASA Astrophysics Data System (ADS)
Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Mayer, Jochen
2017-04-01
Root biomass and rhizodeposition carbon (C release by living roots) are among the most relevant root parameters for studies of plant response to environmental change, soil C modelling or estimations of soil C sequestration. Below ground C inputs of agricultural crops are typically estimated from above ground biomass or yield, thereby implying constant below to above ground C ratios. Agricultural management practices affect above ground biomass considerably; however, their effects on below ground C inputs are only poorly understood. Our aims were therefore to (i) quantify root biomass C and rhizodeposition C of maize and wheat grown in agricultural management systems with different fertilization intensities and (ii) determine management effects on below/above ground C ratios and vertical distribution of below ground C inputs into soil. We conducted a comprehensive field study on two Swiss long-term field trials, DOK (Basel) and ZOFE (Zurich), with silage (DOK) and grain (ZOFE) maize in 2013 and winter wheat in 2014 (ZOFE) and 2015 (DOK). Three treatments in DOK (2 bio-organic, 1 mixed conventional) and 4 treatments in ZOFE (1 without, 1 manure, 2 mineral fertilization) reflected increasing fertilization intensities. In each of 4 replicated field plots per treatment, one microplot (steel tube of 0.5m depth) was inserted into soil, covering an area of 0.1m2. The microplot plants were pulse-labelled with 13C-CO2 in weekly intervals throughout the respective growing season. After harvest, the microplot soil was sampled in three soil depths (0 - 0.25, 0.25 - 0.5, 0.5 - 0.75m), roots were separated from soil by picking and wet sieving, and root and soil samples were analysed for their δ13C values by IRMS. Carbon rhizodeposition was calculated from 13C-excess values in bulk soil and roots. (i) Average root biomasses of maize and wheat were 1.9 and 1.4 tha 1, respectively, in DOK and 0.9 and 1.1 tha 1, respectively, in ZOFE. Average amounts of C rhizodeposition of maize and wheat were 1.4 and 0.7 tha 1, respectively, in DOK and 0.5 and 0.6 tha 1, respectively, in ZOFE. Both root biomass and C rhizodeposition were similar among treatments on both sites but were significantly higher for silage maize (DOK) than for grain maize (ZOFE) and winter wheat (DOK and ZOFE). (ii) With increasing fertilization intensities, below/above ground C ratios of both maize and wheat significantly decreased from 0.43 to 0.16 for maize and 0.57 to 0.15 for wheat. Vertical distribution of below ground C inputs into soil was not affected by agricultural management but differed significantly between crops: In the subsoil (0.5 - 0.75m), below ground C inputs of wheat were twice as high as those of maize on both sites. Increasing fertilization intensity leads to a considerable increase in above ground biomass but does not affect below ground C inputs of maize and wheat on two Swiss agricultural sites. This finding shows that below ground C inputs cannot be estimated from above ground biomass in order to provide soil C models with input data. A differentiation according to the management system is strongly needed.
NASA Astrophysics Data System (ADS)
Pozsgai, Gabor; Baird, John; Littlewood, Nick A.; Pakeman, Robin J.; Young, Mark R.
2018-03-01
Despite the important roles ground beetles (Coleoptera: Carabidae) play in ecosystems, the highly valued ecosystem services they provide, and ample descriptive documentation of their phenology, the relative impact of various environmental factors on carabid phenology is not well studied. Using the long-term pitfall trap capture data from 12 terrestrial Environmental Change Network (ECN) sites from the UK, we examined how changing climate influenced the phenology of common carabids, and the role particular climate components had on phenological parameters. Of the 28 species included in the analyses, 19 showed earlier start of their activity. This advance was particularly pronounced in the spring, supporting the view that early phenophases have a greater tendency to change and these changes are more directly controlled by temperature than later ones. Autumn activity extended only a few cases, suggesting a photoperiod-driven start of hibernation. No association was found between life-history traits and the ability of species to change their phenology. Air temperatures between April and June were the most important factors determining the start of activity of each species, whilst late season precipitation hastened the cessation of activity. The balance between the advantages and disadvantages of changing phenology on various levels is likely to depend on the species and even on local environmental criteria. The substantially changing phenology of Carabidae may influence their function in ecosystems and the ecosystem services they provide.
Pozsgai, Gabor; Baird, John; Littlewood, Nick A; Pakeman, Robin J; Young, Mark R
2018-06-01
Despite the important roles ground beetles (Coleoptera: Carabidae) play in ecosystems, the highly valued ecosystem services they provide, and ample descriptive documentation of their phenology, the relative impact of various environmental factors on carabid phenology is not well studied. Using the long-term pitfall trap capture data from 12 terrestrial Environmental Change Network (ECN) sites from the UK, we examined how changing climate influenced the phenology of common carabids, and the role particular climate components had on phenological parameters. Of the 28 species included in the analyses, 19 showed earlier start of their activity. This advance was particularly pronounced in the spring, supporting the view that early phenophases have a greater tendency to change and these changes are more directly controlled by temperature than later ones. Autumn activity extended only a few cases, suggesting a photoperiod-driven start of hibernation. No association was found between life-history traits and the ability of species to change their phenology. Air temperatures between April and June were the most important factors determining the start of activity of each species, whilst late season precipitation hastened the cessation of activity. The balance between the advantages and disadvantages of changing phenology on various levels is likely to depend on the species and even on local environmental criteria. The substantially changing phenology of Carabidae may influence their function in ecosystems and the ecosystem services they provide.
NASA Astrophysics Data System (ADS)
Pozsgai, Gabor; Baird, John; Littlewood, Nick A.; Pakeman, Robin J.; Young, Mark R.
2018-06-01
Despite the important roles ground beetles (Coleoptera: Carabidae) play in ecosystems, the highly valued ecosystem services they provide, and ample descriptive documentation of their phenology, the relative impact of various environmental factors on carabid phenology is not well studied. Using the long-term pitfall trap capture data from 12 terrestrial Environmental Change Network (ECN) sites from the UK, we examined how changing climate influenced the phenology of common carabids, and the role particular climate components had on phenological parameters. Of the 28 species included in the analyses, 19 showed earlier start of their activity. This advance was particularly pronounced in the spring, supporting the view that early phenophases have a greater tendency to change and these changes are more directly controlled by temperature than later ones. Autumn activity extended only a few cases, suggesting a photoperiod-driven start of hibernation. No association was found between life-history traits and the ability of species to change their phenology. Air temperatures between April and June were the most important factors determining the start of activity of each species, whilst late season precipitation hastened the cessation of activity. The balance between the advantages and disadvantages of changing phenology on various levels is likely to depend on the species and even on local environmental criteria. The substantially changing phenology of Carabidae may influence their function in ecosystems and the ecosystem services they provide.
Chirino-Valle, Ivan; Kandula, Diwakar; Littlejohn, Chris; Hill, Robert; Walker, Mark; Shields, Morgan; Cummings, Nicholas; Hettiarachchi, Dilani; Wratten, Stephen
2016-01-01
The sterile hybrid grass Miscanthus x giganteus (Mxg) can produce more than 30 t dry matter/ha/year. This biomass has a range of uses, including animal bedding and a source of heating fuel. The grass provides a wide range of other ecosystem services (ES), including shelter for crops and livestock, a refuge for beneficial arthropods, reptiles and earthworms and is an ideal cellulosic feedstock for liquid biofuels such as renewable (drop-in) diesel. In this study, the effects of different strains of the beneficial fungus Trichoderma on above- and below-ground biomass of Mxg were evaluated in glasshouse and field experiments, the latter on a commercial dairy farm over two years. Other ES benefits of Trichoderma measured in this study included enhanced leaf chlorophyll content as well as increased digestibility of the dried material for livestock. This study shows, for the first time for a biofuel feedstock plant, how Trichoderma can enhance productivity of such plants and complements other recent work on the wide-ranging provision of ES by this plant species. PMID:27117716
Comprehensive description of the carbon cycle of an ancient temperate broadleaved woodland
NASA Astrophysics Data System (ADS)
Fenn, K.; Malhi, Y.; Morecroft, M.; Lloyd, C.; Thomas, M.
2010-05-01
There exist very few comprehensive descriptions of the productivity and carbon cycling of forest ecosystems. Here we present a description of the components of annual Net Primary Productivity (NPP), Gross Primary Productivity (GPP), autotrophic and heterotrophic respiration, and ecosystem respiration (RECO) for a temperate mixed deciduous woodland at Wytham Woods in southern Britain, calculated using "bottom-up" biometric and chamber measurements (leaf and wood production and soil and stem respiration). These are compared with estimates of these parameters from eddy-covariance measurements made at the same site. NPP was estimated as 7.0±0.8 Mg C ha-1 yr-1, and GPP as 20.3+1.0 Mg C ha-1 yr-1, a value which closely matched to eddy covariance-derived GPP value of 21.1 Mg C ha-1 yr-1. Annual RECO was calculated as 18.9±1.7 Mg C ha-1 yr-1, close to the eddy covariance value of 19.8 Mg C ha-1 yr-1; the seasonal cycle of biometric and eddy covariance RECO estimates also closely matched. The consistency between eddy covariance and biometric measurements substantially strengthens the confidence we attach to each as alternative indicators of site carbon dynamics, and permits an integrated perspective of the ecosystem carbon cycle. 37% of NPP was allocated below ground, and the ecosystem carbon use efficiency (CUE, = NPP/GPP) calculated to be 0.35±0.05, lower than reported for many temperate broadleaved sites.
NASA Astrophysics Data System (ADS)
Gholoum, M.; Bruce, D.; Hazeam, S. Al
2012-07-01
A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine the quality of the information derived from image classification. The research will be applied to the Kuwait's southern coral reefs: Kubbar and Um Al-Maradim.
A ground-based method of assessing urban forest structure and ecosystem services
David J. Nowak; Daniel E. Crane; Jack C. Stevens; Robert E. Hoehn; Jeffrey T. Walton; Jerry Bond
2008-01-01
To properly manage urban forests, it is essential to have data on this important resource. An efficient means to obtain this information is to randomly sample urban areas. To help assess the urban forest structure (e.g., number of trees, species composition, tree sizes, health) and several functions (e.g., air pollution removal, carbon storage and sequestration), the...
NASA Astrophysics Data System (ADS)
Reinsch, S.; Emmett, B.; Cosby, J.; Mercado, L. M.; Smart, S.; Glanville, H.; Alberola, M. B.; Clark, D.; Robinson, E.; Jones, D.
2015-12-01
The coupling of C, N and P cycles has rarely been studied through the air- land-water continuum. This is essential if we are to enhance land-atmosphere models to account for N and P limitations. It is also important for developing integrated catchment management solutions to deliver improved water quality combined with a wide range of other ecosystem functions and services.We present results from a project which is part of the interdisciplinary pan-UK NERC Macronutrient Cycles Programme (macronutrient-cycles.ouce.ox.ac.uk/). Our aim is to quantify how coupled C, N & P cycles change across a land use intensification gradient from arable to grass, woodland and bog ecosystems and identify the implications for land-atmosphere C exchange. We focus on three key processes; photosynthesis, annual net primary productivity (ANPP) and decomposition and explore their consequences for biodiversity. Other aspects of the project track delivery to, and transformations within, the freshwater and coastal systems. When we explore relationships between C, N and P, results indicate all habitat types fall on a single land use intensification gradient. Stoichiometry suggests plant productivity is primarily N limited. P limitation occurs rarely but at all levels of intensification. Soil priming shows our soils are primarily C limited and, surprisingly, soil acidity provides one of the most powerful single predictors of processes and ecosystem services perhaps as it is a good integrator of many soil properties. Incorporating this knowledge into the UK land-atmosphere model JULES will be used to improve ANPP projections. These will then be used as inputs into a plant species model called MULTIMOVE to enable future scenarios of climate change, land use and air pollution on habitat suitability for > 1400 plant species to be explored. The enhanced Jules model will ensure both N and P limitations on C fluxes from above and below-ground are incorporated into future UK scenario applications.
NASA Astrophysics Data System (ADS)
Reinsch, Sabine; Glanville, Helen; Smart, Simon; Jones, Davey; Mercado, Lina; Blanes-Alberola, Mamen; Cosby, Jack; Emmett, Bridget
2016-04-01
The coupling of C, N and P cycles has rarely been studied through the air- land-water continuum. This is essential if we are to enhance land-atmosphere models to account for N and P limitations. It is also important for developing integrated catchment management solutions to deliver improved water quality combined with a wide range of other ecosystem functions and services. We present results from a project which is part of the interdisciplinary pan-UK NERC Macronutrient Cycles Programme (macronutrient-cycles.ouce.ox.ac.uk/). Our aim is to quantify how coupled C, N & P cycles change across a land use intensification gradient from arable to grass, woodland and bog ecosystems and identify the implications for land-atmosphere C exchange. We focus on three key processes; photosynthesis, annual net primary productivity and decomposition and explore their consequences for biodiversity. Other aspects of the project track delivery to, and transformations within, the freshwater and coastal systems. When we explore relationships between C, N and P, results indicate all habitat types fall on a single land use intensification gradient. Stoichiometry suggests plant productivity is primarily N limited. P limitation occurs rarely but at all levels of intensification. Soil priming shows our soils are primarily C limited and, surprisingly, soil acidity provides one of the most powerful single predictors of processes and ecosystem services perhaps as it is a good integrator of many soil properties. Incorporating this knowledge into the UK land-atmosphere model JULES will improve aNPP projections. These are then being used as inputs into a plant species model called MULTIMOVE to enable future scenarios of climate change, land use and air pollution on habitat suitability for > 1400 plant species to be explored. The enhanced Jules model will ensure both N and P limitations on C fluxes from above and below-ground are incorporated into future UK scenario applications.
Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments.
Meunier, Cédric L; Gundale, Michael J; Sánchez, Irene S; Liess, Antonia
2016-01-01
Increased reactive nitrogen (Nr ) deposition has raised the amount of N available to organisms and has greatly altered the transfer of energy through food webs, with major consequences for trophic dynamics. The aim of this review was to: (i) clarify the direct and indirect effects of Nr deposition on forest and lake food webs in N-limited biomes, (ii) compare and contrast how aquatic and terrestrial systems respond to increased Nr deposition, and (iii) identify how the nutrient pathways within and between ecosystems change in response to Nr deposition. We present that Nr deposition releases primary producers from N limitation in both forest and lake ecosystems and raises plants' N content which in turn benefits herbivores with high N requirements. Such trophic effects are coupled with a general decrease in biodiversity caused by different N-use efficiencies; slow-growing species with low rates of N turnover are replaced by fast-growing species with high rates of N turnover. In contrast, Nr deposition diminishes below-ground production in forests, due to a range of mechanisms that reduce microbial biomass, and decreases lake benthic productivity by switching herbivore growth from N to phosphorus (P) limitation, and by intensifying P limitation of benthic fish. The flow of nutrients between ecosystems is expected to change with increasing Nr deposition. Due to higher litter production and more intense precipitation, more terrestrial matter will enter lakes. This will benefit bacteria and will in turn boost the microbial food web. Additionally, Nr deposition promotes emergent insects, which subsidize the terrestrial food web as prey for insectivores or by dying and decomposing on land. So far, most studies have examined Nr -deposition effects on the food web base, whereas our review highlights that changes at the base of food webs substantially impact higher trophic levels and therefore food web structure and functioning. © 2015 John Wiley & Sons Ltd.
Inventory of File sref_nmb.t03z.pgrb132.p1.f06.grib2
6 hour fcst Soil Temperature Validation to deprecate [K] 403 0-0.1 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content [Fraction] 404 0.1-0.4 m below ground TSOIL 6 hour fcst Soil Temperature Validation to deprecate [K] 405 0.1-0.4 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content
Inventory of File sref_em.t03z.pgrb132.p1.f06.grib2
6 hour fcst Soil Temperature Validation to deprecate [K] 402 0-0.1 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content [Fraction] 403 0.1-0.4 m below ground TSOIL 6 hour fcst Soil Temperature Validation to deprecate [K] 404 0.1-0.4 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content
Inventory of File sref_nmm.t03z.pgrb132.p1.f06.grib2
6 hour fcst Soil Temperature Validation to deprecate [K] 403 0-0.1 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content [Fraction] 404 0.1-0.4 m below ground TSOIL 6 hour fcst Soil Temperature Validation to deprecate [K] 405 0.1-0.4 m below ground SOILW 6 hour fcst Volumetric Soil Moisture Content
Tropical Andean ecosystems and the need to keep warming limits below a +1.5°C threshold
NASA Astrophysics Data System (ADS)
Ruiz-Carrascal, D.; Herzog, S. K.; Guitierrez Lagoueyte, M. E.; Gonzalez-Duque, D.; Cuevas-Moreno, J.; del Valle, J. I.; Andreu-Hayles, L.; Herrera, D. A.; Martínez, R.
2017-12-01
Long-term climate change and rapid land-use change are synergistically threatening the integrity and functioning of tropical Andean ecosystems. The main goal of our research was to integrate climate change projections, biodiversity data and anthropogenically driven ecosystem disruption assessments to quantify the vulnerability of Andean ecosystems and species to global change at a local scale. We merged discernible trends in local quality-controlled weather station data with reanalysis data, as well as with historical and prospective simulation outputs of five well-known GCMs to assess a long-term context for the analysis of climate change exposure (temperature severity intervals). Individual, medium-term, multi-member GCM simulations included: altitude-corrected 2046-2065 (IPCC-AR4) climate change scenarios for the A1B emission scenario; and spatially-downscaled 2040-2069 (IPCC-AR5) projections for the RCP4.5. Previous studies reported mean annual temperature anomaly intervals that resulted in exceedingly high thresholds: the lowest severity interval (< +2.06°C) and the highest (> +2.71°C). The least severe interval extended up to the threshold widely recognized as `dangerous' climate change, thereby leading to an underestimation of the true vulnerability of Andean species. Our analyses suggest that temperature anomalies for the full extent of the tropical Andes will likely range from low (< +1.60°C) to high (> +2.61°C), exceeding the threshold of 'natural' climate variability (+1.78°C). Our results suggest that most species that were used as proxies of ecosystem vulnerabilities will likely experience overall low-to-medium-to-high temperature increases. Since many of them have potentially high sensitivity to such long-term changes, Andean species will likely experience greatly increases in vulnerability. The already-disrupted Andean ecosystems will suffer a further climatic stress, which will worsen the well-known detrimental synergies between climate and land-use changes. There is an imperative need to prioritize high-risk areas for the implementation of conservation and adaptation actions. Equally important, there is an urgent need to keep warming limits well below 2.0°C, ideally below +1.5°C, if we expect to preserve the integrity of our unique Andean environments.
Feher, Laura C.; Osland, Michael J.; Griffith, Kereen T.; Grace, James B.; Howard, Rebecca J.; Stagg, Camille L.; Enwright, Nicholas M.; Krauss, Ken W.; Gabler, Christopher A.; Day, Richard H.; Rogers, Kerrylee
2017-01-01
Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate-sensitive ecological transition zones. Here, we used climate- and literature-derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above-ground productivity and strong positive nonlinear (sigmoidal) relationships between (1) temperature and above-ground biomass and canopy height and (2) precipitation and canopy height. Near temperature-controlled mangrove range limits, small changes in temperature are expected to trigger comparatively large changes in biomass and canopy height, as mangrove forests grow, expand, and, in some cases, replace salt marshes. However, within these same transition zones, temperature-induced changes in productivity are expected to be comparatively small. Interestingly, despite the significant above-ground height, biomass, and productivity relationships across the tropical–temperate mangrove–marsh transition zone, the relationships between temperature and soil carbon density or soil carbon accumulation were not significant. Our literature review identifies several ecosystem properties and many regions of the world for which there are insufficient data to fully evaluate the influence of climatic drivers, and the identified data gaps can be used by scientists to guide future research. Our analyses indicate that near precipitation-controlled transition zones, small changes in precipitation are expected to trigger comparatively large changes in canopy height. However, there are scant data to evaluate the influence of precipitation on other ecosystem properties. There is a need for more decomposition data across climatic gradients, and to advance understanding of the influence of changes in precipitation and freshwater availability, additional ecological data are needed from tidal saline wetlands in arid climates. Collectively, our results can help scientists and managers better anticipate the linear and nonlinear ecological consequences of climate change for coastal wetlands.
Below-ground chemical ecology and IPM
USDA-ARS?s Scientific Manuscript database
The phasing out of methyl bromide as a soil fumigant has led to a need for new technologies to manage below-ground plant pests and a sustainable approach would be to utilize semiochemicals comparable to above-ground IPM. Soil-dwelling beneficial entomopathogenic (EPNs) (Steinernema spp. and Heteror...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, S; Dunn, JB; Wang, M
2012-06-07
The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, miscanthus, and switchgrass. This document discusses the version of CCLUB released May 31, 2012 which includes corn, as did the previous CCLUB version, and three cellulosic feedstocks: corn stover, miscanthus, and switchgrass. CCLUB calculations are based upon two data sets: land change areas and above- and below-ground carbon content. Table 1 identifies where these data are stored and used within the CCLUB model, which ismore » built in MS Excel. Land change area data is from Purdue University's Global Trade Analysis Project (GTAP) model, a computable general equilibrium (CGE) economic model. Section 2 describes the GTAP data CCLUB uses and how these data were modified to reflect shrubland transitions. Feedstock- and spatially-explicit below-ground carbon content data for the United States were generated with a surrogate model for CENTURY's soil organic carbon sub-model (Kwon and Hudson 2010) as described in Section 3. CENTURY is a soil organic matter model developed by Parton et al. (1987). The previous CCLUB version used more coarse domestic carbon emission factors. Above-ground non-soil carbon content data for forest ecosystems was sourced from the USDA/NCIAS Carbon Online Estimator (COLE) as explained in Section 4. We discuss emission factors used for calculation of international greenhouse gas (GHG) emissions in Section 5. Temporal issues associated with modeling LUC emissions are the topic of Section 6. Finally, in Section 7 we provide a step-by-step guide to using CCLUB and obtaining results.« less
Research at the U.S. EPA’s Ground Water and Ecosystems Protection Division
The U.S. EPA’s Office of Research and Development (ORD) conducts leading-edge research and fosters the sound use of science and technology to fulfill the Agency's mission to protect human health and safeguard the natural environment. The mission of the Ground Water and Ecosystem...
Saraswathi, K; Chandrasekaran, S
2016-05-01
Fuel energy demand is of great concern in recent times due to the depletion of fossil fuel resources. Biomass serves as widely available primary renewable energy source. Hence, a study was performed to assess the above-ground biomass yielding capability of fuel wood tree Prosopis juliflora in three varied ecosystems viz., coastal, fallow land and riparian ecosystems in southern districts of Tamil Nadu. The results showed that the biomass production potential and above-ground net primary productivity of P. juliflora depend on the age of the tree stands and the nature of ecosystem. A higher biomass yield was observed for P. juliflora trees with 5 to 10 years old when compared to less than 5 years of their age. Among the three ecosystems, the maximum biomass production was recorded in riparian ecosystem. The stands with less than 5-year-old P. juliflora trees gave 1.40 t/ha, and 5- to 10-year-old tree stands produced 27.69 t/ha in riparian ecosystem. Above-ground net primary productivity of both the age groups was high in fallow land ecosystem. In riparian ecosystem, the wood showed high density and low sulphur content than the other two ecosystems. Hence, P. juliflora biomass can serve as an environmentally and economically feasible fuel as well as their utilization proffers an effective means to control its invasiveness.
Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar
Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V.; Kolka, Randall
2015-01-01
A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C. PMID:26426532
Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar.
Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V; Kolka, Randall
2015-01-01
A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C.
Effective Best Management Practices for Nitrogen Removal in Aquatic Ecosystems
Elevated nitrate levels in streams and groundwater are detrimental to human and ecosystem health. The Ground Water and Ecosystems Restoration Division (GWERD) of the USEPA investigates best management practices (BMP’s) that enhance nitrogen removal in aquatic ecosystems througho...
Sipos, J; Hodecek, J; Kuras, T; Dolny, A
2017-08-01
Although ecological succession is one of the principal focuses of recent restoration ecology research, it is still unclear which factors drive this process and positively influence species richness and functional diversity. In this study we sought to elucidate how species traits and functional diversity change during forest succession, and to identify important factors that determine the species in the observed assemblages. We analyzed species richness and functional diversity of ground beetle assemblages in relation to succession on post-industrial localities after habitat deterioration caused by spoil deposition. We selected ground beetles as they are known to be sensitive to landscape changes (with a large range of responses), and their taxonomy and ecology are generally well-known. Ground beetles were sampled on the spoil heaps during the last 30 years when spontaneous succession occurred. To calculate functional diversity, we used traits related to habitat and trophic niche, i.e. food specialization, wing morphology, trophic level, and bio-indication value. Ground beetle species were found to be distributed non-randomly in the assemblages in the late phase of succession. Ordination analyses revealed that the ground beetle assemblage was significantly associated with the proportion of forested area. Environmental heterogeneity generated assemblages that contained over-dispersed species traits. Our findings indicated that environmental conditions at late successional stages supported less mobile carnivorous species. Overall, we conclude that the decline in species richness and functional diversity in the middle of the studied succession gradient indicated that the assemblages of open habitats had been replaced by species typical of forest ecosystems.
Ecohydrology and tipping points in semiarid australian rangelands
NASA Astrophysics Data System (ADS)
Saco, P. M.; Azadi, S.; Moreno de las Heras, M.; Willgoose, G. R.
2017-12-01
Semiarid landscapes are often characterised by a spatially heterogeneous vegetation cover forming mosaics of patches with dense vegetation within bare soil. This patchy vegetation cover, which is linked to the healthy function of these ecosystems, is sensitive to human disturbances that can lead to degradation. Previous work suggests that vegetation loss below a critical value can lead to a sudden decrease in landscape functionality following threshold behaviour. The decrease in vegetation cover is linked to erosion and substantial water losses by increasing landscape hydrological connectivity. We study these interactions and the possible existence of tipping points in the Mulga land bioregion, by combining remote sensing observations and results from an eco-geomorphologic model to investigate changes in ecosystem connectivity and the existence of threshold behaviour. More than 30 sites were selected along a precipitation gradient spanning a range from approximately 250 to 500 mm annual rainfall. The analysis of vegetation patterns is derived from high resolution remote sensing images (IKONOS, QuickBird, Pleiades) and MODIS NDVI, which combined with local precipitation data is used to compute rainfall use efficiency to assess the ecosystem function. A critical tipping point associated to loss of vegetation cover appears in the sites with lower annual precipitation. We found that this tipping point behaviour decreases for sites with higher rainfall. We use the model to investigate the relation between structural and functional connectivity and the emergence of threshold behaviour for selected plots along this precipitation gradient. Both observations and modelling results suggest that sites with higher rainfall are more resilient to changes in surface connectivity. The implications for ecosystem resilience and land management are discussed
Field Ground Truthing Data Collector - a Mobile Toolkit for Image Analysis and Processing
NASA Astrophysics Data System (ADS)
Meng, X.
2012-07-01
Field Ground Truthing Data Collector is one of the four key components of the NASA funded ICCaRS project, being developed in Southeast Michigan. The ICCaRS ground truthing toolkit entertains comprehensive functions: 1) Field functions, including determining locations through GPS, gathering and geo-referencing visual data, laying out ground control points for AEROKAT flights, measuring the flight distance and height, and entering observations of land cover (and use) and health conditions of ecosystems and environments in the vicinity of the flight field; 2) Server synchronization functions, such as, downloading study-area maps, aerial photos and satellite images, uploading and synchronizing field-collected data with the distributed databases, calling the geospatial web services on the server side to conduct spatial querying, image analysis and processing, and receiving the processed results in field for near-real-time validation; and 3) Social network communication functions for direct technical assistance and pedagogical support, e.g., having video-conference calls in field with the supporting educators, scientists, and technologists, participating in Webinars, or engaging discussions with other-learning portals. This customized software package is being built on Apple iPhone/iPad and Google Maps/Earth. The technical infrastructures, data models, coupling methods between distributed geospatial data processing and field data collector tools, remote communication interfaces, coding schema, and functional flow charts will be illustrated and explained at the presentation. A pilot case study will be also demonstrated.
NASA Astrophysics Data System (ADS)
Pinho, P.; Theobald, M. R.; Dias, T.; Tang, Y. S.; Cruz, C.; Martins-Loução, M. A.; Máguas, C.; Sutton, M.; Branquinho, C.
2012-03-01
Nitrogen (N) has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds such as critical loads (deposition fluxes) and levels (concentrations) can be established. Few studies have assessed these thresholds for semi-natural Mediterranean ecosystems. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands. We have considered changes in epiphytic lichen communities, one of the most sensitive comunity indicators of excessive N in the atmosphere. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done for a Mediterranean climate in evergreen cork-oak woodlands, based on the relation between lichen functional diversity and modelled N deposition for critical loads and measured annual atmospheric ammonia concentrations for critical levels, evaluated downwind from a reduced N source (a cattle barn). Modelling the highly significant relationship between lichen functional groups and annual atmospheric ammonia concentration showed the critical level to be below 1.9 μg m-3, in agreement with recent studies for other ecosystems. Modelling the highly significant relationship between lichen functional groups and N deposition showed that the critical load was lower than 26 kg (N) ha-1 yr-1, which is within the upper range established for other semi-natural ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should aid development of policies to protect Mediterranean woodlands from the initial effects of excessive N.
Resuscitation of the rare biosphere contributes to pulses of ecosystem activity
Aanderud, Zachary T.; Jones, Stuart E.; Fierer, Noah; Lennon, Jay T.
2015-01-01
Dormancy is a life history trait that may have important implications for linking microbial communities to the functioning of natural and managed ecosystems. Rapid changes in environmental cues may resuscitate dormant bacteria and create pulses of ecosystem activity. In this study, we used heavy-water (H182O) stable isotope probing (SIP) to identify fast-growing bacteria that were associated with pulses of trace gasses (CO2, CH4, and N2O) from different ecosystems [agricultural site, grassland, deciduous forest, and coniferous forest (CF)] following a soil-rewetting event. Irrespective of ecosystem type, a large fraction (69–74%) of the bacteria that responded to rewetting were below detection limits in the dry soils. Based on the recovery of sequences, in just a few days, hundreds of rare taxa increased in abundance and in some cases became dominant members of the rewetted communities, especially bacteria belonging to the Sphingomonadaceae, Comamonadaceae, and Oxalobacteraceae. Resuscitation led to dynamic shifts in the rank abundance of taxa that caused previously rare bacteria to comprise nearly 60% of the sequences that were recovered in rewetted communities. This rapid turnover of the bacterial community corresponded with a 5–20-fold increase in the net production of CO2 and up to a 150% reduction in the net production of CH4 from rewetted soils. Results from our study demonstrate that the rare biosphere may account for a large and dynamic fraction of a community that is important for the maintenance of bacterial biodiversity. Moreover, our findings suggest that the resuscitation of rare taxa from seed banks contribute to ecosystem functioning. PMID:25688238
Charles C. Grier; Katherine J. Elliott; Deborah G. McCullough
1992-01-01
Above-ground biomass distribution, leaf area, above-ground net primary productivity and foliage characteristics were determined for 90- and 350-year-old Pinus edulis-Juniperus monosperma ecosystems on the Colorado Plateau of northern Arizona. These ecosystems have low biomass, leaf area and primary productivity compared with forests in wetter...
Ground Water Technical Support Center (GWTSC) Annual ...
The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Support Centersthat were established under the Technical Support Project (TSP). The GWTSC provides technical support on issues related to groundwater. Specifically, the GWTSC provides technical support to U.S. EPA and State regulators for issues and problems related to:1. subsurface contamination (contaminants in ground water, soils and sediments),2. cross-media transfer (movement of contaminants from the subsurface to other media such as surface water or air), and3. restoration of impacted ecosystems.The GWTSC works with Remedial Project Managers (RPMs) and other decision makers to solve specific problems at Superfund, RCRA (Resource Conservation and Recovery Act), Brownfields sites, and ecosystem restoration sites. The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Suppo
Overland transmission of Ceratocystis fagacearum: extending our understanding
Jennifer Juzwik
1999-01-01
Oak wilt is an important disease of oaks (Quercus spp.) in 22 states of the eastern United States. The causal fungus, Ceratocystis fagacearum J. Hunt, causes mortality of thousands of native oaks annually across the upper midwestern states. The pathogen is transmitted from diseased to healthy trees below ground via functional root...
USDA-ARS?s Scientific Manuscript database
Abstract. Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the mag...
Breshears, D.D.; Whicker, J.J.; Zou, C.B.; Field, J.P.; Allen, Craig D.
2009-01-01
Aeolian processes are of particular importance in dryland ecosystems where ground cover is inherently sparse because of limited precipitation. Dryland ecosystems include grassland, shrubland, savanna, woodland, and forest, and can be viewed collectively as a continuum of woody plant cover spanning from grasslands with no woody plant cover up to forests with nearly complete woody plant cover. Along this continuum, the spacing and shape of woody plants determine the spatial density of roughness elements, which directly affects aeolian sediment transport. Despite the extensiveness of dryland ecosystems, studies of aeolian sediment transport have generally focused on agricultural fields, deserts, or highly disturbed sites where rates of transport are likely to be greatest. Until recently, few measurements have been made of aeolian sediment transport over multiple wind events and across a variety of types of dryland ecosystems. To evaluate potential trends in aeolian sediment transport as a function of woody plant cover, estimates of aeolian sediment transport from recently published studies, in concert with rates from four additional locations (two grassland and two woodland sites), are reported here. The synthesis of these reports leads to the development of a new conceptual framework for aeolian sediment transport in dryland ecosystems along the grassland–forest continuum.The findings suggest that: (1) for relatively undisturbed ecosystems, shrublands have inherently greater aeolian sediment transport because of wake interference flow associated with intermediate levels of density and spacing of woody plants; and (2) for disturbed ecosystems, the upper bound for aeolian sediment transport decreases as a function of increasing amounts of woody plant cover because of the effects of the height and density of the canopy on airflow patterns and ground cover associated with woody plant cover. Consequently, aeolian sediment transport following disturbance spans the largest range of rates in grasslands and associated systems with no woody plants (e.g., agricultural fields), an intermediate range in shrublands, and a relatively small range in woodlands and forests. These trends are consistent with previous observations relating large rates of wind erosion to intermediate values for spatial density of roughness elements. The framework for aeolian sediment transport, which is also relevant to dust fluxes, wind erosion, and related aeolian processes, is applicable to a diverse suite of environmental challenges, including land degradation and desertification, dust storms, contaminant transport, and alterations of the hydrological cycle.
NASA Astrophysics Data System (ADS)
Breshears, David D.; Whicker, Jeffrey J.; Zou, Chris B.; Field, Jason P.; Allen, Craig D.
2009-04-01
Aeolian processes are of particular importance in dryland ecosystems where ground cover is inherently sparse because of limited precipitation. Dryland ecosystems include grassland, shrubland, savanna, woodland, and forest, and can be viewed collectively as a continuum of woody plant cover spanning from grasslands with no woody plant cover up to forests with nearly complete woody plant cover. Along this continuum, the spacing and shape of woody plants determine the spatial density of roughness elements, which directly affects aeolian sediment transport. Despite the extensiveness of dryland ecosystems, studies of aeolian sediment transport have generally focused on agricultural fields, deserts, or highly disturbed sites where rates of transport are likely to be greatest. Until recently, few measurements have been made of aeolian sediment transport over multiple wind events and across a variety of types of dryland ecosystems. To evaluate potential trends in aeolian sediment transport as a function of woody plant cover, estimates of aeolian sediment transport from recently published studies, in concert with rates from four additional locations (two grassland and two woodland sites), are reported here. The synthesis of these reports leads to the development of a new conceptual framework for aeolian sediment transport in dryland ecosystems along the grassland-forest continuum. The findings suggest that: (1) for relatively undisturbed ecosystems, shrublands have inherently greater aeolian sediment transport because of wake interference flow associated with intermediate levels of density and spacing of woody plants; and (2) for disturbed ecosystems, the upper bound for aeolian sediment transport decreases as a function of increasing amounts of woody plant cover because of the effects of the height and density of the canopy on airflow patterns and ground cover associated with woody plant cover. Consequently, aeolian sediment transport following disturbance spans the largest range of rates in grasslands and associated systems with no woody plants (e.g., agricultural fields), an intermediate range in shrublands, and a relatively small range in woodlands and forests. These trends are consistent with previous observations relating large rates of wind erosion to intermediate values for spatial density of roughness elements. The framework for aeolian sediment transport, which is also relevant to dust fluxes, wind erosion, and related aeolian processes, is applicable to a diverse suite of environmental challenges, including land degradation and desertification, dust storms, contaminant transport, and alterations of the hydrological cycle.
NASA Astrophysics Data System (ADS)
Chai, Linrong; Hou, Fujiang; Bowatte, Saman; Cheng, Yunxiang
2017-04-01
The Qinghai-Tibetan Plateau (QTP) is an important part of the global terrestrial ecosystem that provides many ecological roles such as biodiversity protection, upper watersheds for large rivers, circulation of materials, energy balance and provision of forage and habitat for livestock and wildlife. Approximately 40% of the QTP is alpine meadow grasslands and yak farming is one of the dominant land use activities. In recent years, the rapid increase in the number of yaks grazing on meadow grasslands has raised concerns about grassland degradation. In this study we examined the effects of yak grazing on the grassland community characteristics to evaluate the degradation potential of alpine meadow in the QTP. The experiment was carried out on three farms, in close proximity to each other, that were operating at different grazing intensities in Maqu county (N35°58', E101°53', altitude 3650m) of the QTP in the Gansu province in China. We tested 4 levels of yak grazing intensities; control (no grazing), light (2.6yak/ha), moderate (3.5yak/ha) and high (6.5yak/ha ). We hypothesized that greater intensity of grazing would significantly impact the plant community characteristics through trampling effects above and below ground. We found grazing significantly (P<0.05) impacted the above and below ground biomass. Above ground biomass was highest in the non grazed area and lowest in the high grazing farm. In contrast, below ground biomass was significantly greater (p<0.05) in the moderate grazing farm compared to the non grazed area. The plant community density and the proportion of edible grass biomass were not significantly affected by the grazing treatments. The species richness was significantly reduced (p<0.05) in the moderate and high intensity grazing farms compared to the non grazed area. The soil moisture at 0-10 cm depth was significantly lower at the high grazing intensity farm compared to the non grazed area and in contrast soil temperature was significantly higher. Our results indicate that increasing the yak grazing pressure affected the plant community characteristics in alpine meadow in the QTP, indicating a potential for grassland degradation to occur in future. Therefore, further comprehensive research is warranted. Key words: Qinghai-Tibetan Plateau; Yak grazing; Alpine meadow; Maqu county
Effects of declining oak vitality on ecosystem functions: Lessons from a Spanish oak woodland
NASA Astrophysics Data System (ADS)
López-Sánchez, Aida; Bareth, Georg; Bolten, Andreas; Linstädter, Anja
2017-04-01
Mediterranean oak woodlands have a great ecological and socio-economic importance. Today, these fragile ecosystems are facing unprecedented degradation threats from Novel Oak Diseases (NODs). Among NOD drivers, maladapted land management practices and climate change are most important. Although it is generally believed that NOD-related declines in tree vitality will have detrimental effects on ecosystem functions, little is known on the magnitude of change, and whether different functions are affected in a similar way. Here we analyzed effects of tree vitality on various ecosystem functions, comparing subcanopy and intercanopy habitats across two oak species (Quercus ilex and Q. suber) in a Spanish oak woodland. We asked how functions - including aboveground net primary productivity (ANPP), taxonomic diversity, and litter decomposition rates - were affected by oak trees' size and vitality. We also combined measurements in the ecosystem function habitat index (MEFHI), a proxy of ecosystem multifunctionality. Field research was carried out in 2016 on a dehesa in southern Spain. We used a stratified random sampling to contrast trees of different species affiliation, size and vitality. Tree vitality was estimated as crown density (assessed via hemispherical photography), and as tree vigor, which combines the grade of canopy defoliation with proxies for tree size (dbh, height, crown height and crown radius). For each tree (n = 34), two plots (50 x 50 cm) were located; one in the subcanopy habitat, and the other in the intercanopy area beyond the tree crown's influence. On all 68 plots, moveable cages were placed during the main growth period (March to May) to estimate ANPP under grazed conditions. Litter decomposition rates were assessed via the tea bag index. ANPP and the biomass of grasses, forbs and legumes were recorded via destructive sampling. To take plots' highly variable environmental conditions into account, we recorded a suite of abiotic and biotic characteristics such as the received radiation of the hydrological year, slope, aspect, soil depth, grazing offtake, as well as the cover of bare ground and litter. The geo-morphological data comes from a high resolution UAV generated digital elevation model. We used GLMMs and LMMs to assess effects of tree health on ecosystem functions, statistically controlling for plots' variable environmental conditions. We found ANPP to be higher in intercanopy habitats and beneath trees with a low vigor or crown density. In contrast, highly vigorous trees increased legume biomass and grass biomass. Responses of other ecosystem functions were mostly not significant, although a lower diversity was found under trees with intermediate vigor. In the case of MEFHI, we assume that positive and negative responses have partly masked each other. Our results underline that a NOD-related decline in tree vitality has complex effects on ecosystem functions. For example, it increases forage quantity but decreases forage quality. Ecosystem functions under trees with a low vigor were in most cases similar to those in adjacent open habitats, showing that the presence of vigorous (i.e. old and vital) trees is critical for maintaining ecosystem functions on a landscape level. Keywords: NODs, dehesa, ANNP, decomposition, herb diversity, habitat degradation
Thureborn, Petter; Franzetti, Andrea; Lundin, Daniel; Sjöling, Sara
2016-01-01
Baltic Sea deep water and sediments hold one of the largest anthropogenically induced hypoxic areas in the world. High nutrient input and low water exchange result in eutrophication and oxygen depletion below the halocline. As a consequence at Landsort Deep, the deepest point of the Baltic Sea, anoxia in the sediments has been a persistent condition over the past decades. Given that microbial communities are drivers of essential ecosystem functions we investigated the microbial community metabolisms and functions of oxygen depleted Landsort Deep sediments by metatranscriptomics. Results show substantial expression of genes involved in protein metabolism demonstrating that the Landsort Deep sediment microbial community is active. Identified expressed gene suites of metabolic pathways with importance for carbon transformation including fermentation, dissimilatory sulphate reduction and methanogenesis were identified. The presence of transcripts for these metabolic processes suggests a potential for heterotrophic-autotrophic community synergism and indicates active mineralisation of the organic matter deposited at the sediment as a consequence of the eutrophication process. Furthermore, cyanobacteria, probably deposited from the water column, are transcriptionally active in the anoxic sediment at this depth. Results also reveal high abundance of transcripts encoding integron integrases. These results provide insight into the activity of the microbial community of the anoxic sediment at the deepest point of the Baltic Sea and its possible role in ecosystem functioning.
Franzetti, Andrea; Lundin, Daniel; Sjöling, Sara
2016-01-01
Baltic Sea deep water and sediments hold one of the largest anthropogenically induced hypoxic areas in the world. High nutrient input and low water exchange result in eutrophication and oxygen depletion below the halocline. As a consequence at Landsort Deep, the deepest point of the Baltic Sea, anoxia in the sediments has been a persistent condition over the past decades. Given that microbial communities are drivers of essential ecosystem functions we investigated the microbial community metabolisms and functions of oxygen depleted Landsort Deep sediments by metatranscriptomics. Results show substantial expression of genes involved in protein metabolism demonstrating that the Landsort Deep sediment microbial community is active. Identified expressed gene suites of metabolic pathways with importance for carbon transformation including fermentation, dissimilatory sulphate reduction and methanogenesis were identified. The presence of transcripts for these metabolic processes suggests a potential for heterotrophic-autotrophic community synergism and indicates active mineralisation of the organic matter deposited at the sediment as a consequence of the eutrophication process. Furthermore, cyanobacteria, probably deposited from the water column, are transcriptionally active in the anoxic sediment at this depth. Results also reveal high abundance of transcripts encoding integron integrases. These results provide insight into the activity of the microbial community of the anoxic sediment at the deepest point of the Baltic Sea and its possible role in ecosystem functioning. PMID:26823996
From Top-Down to Grassroots: Chronicling the Search for Common Ground in Conservation in the West
Geoff Koch; Susan Charnley
2016-01-01
Sustainable working landscapes are critical to the conservation of biodiversity in the American West and its cultures of rural ranching and forestry. Given the West's patchwork of public, private, and tribal lands, perhaps the best way to conserve biodiversity and ecosystem function on a large scale is through a process of collaborative conservation. These are the...
NASA Astrophysics Data System (ADS)
van Oorschot, M.; Kleinhans, M. G.; Geerling, G. W.; Egger, G.; Leuven, R. S. E. W.; Middelkoop, H.
2017-08-01
Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding interactions of invasive and native species and their combined effects on river dynamics is essential for developing cost-effective management strategies. However, numerical models for simulating long-term effects of these processes are lacking. This paper investigates how an invasive alien plant species affects native riparian vegetation and hydro-morphodynamics. A morphodynamic model has been coupled to a dynamic vegetation model that predicts establishment, growth and mortality of riparian trees. We introduced an invasive alien species with life-history traits based on Japanese Knotweed (Fallopia japonica), and investigated effects of low- and high propagule pressure on invasion speed, native vegetation and hydro-morphodynamic processes. Results show that high propagule pressure leads to a decline in native species cover due to competition and the creation of unfavorable native colonization sites. With low propagule pressure the invader facilitates native seedling survival by creating favorable hydro-morphodynamic conditions at colonization sites. With high invader abundance, water levels are raised and sediment transport is reduced during the growing season. In winter, when the above-ground invader biomass is gone, results are reversed and the floodplain is more prone to erosion. Invasion effects thus depend on seasonal above- and below ground dynamic vegetation properties and persistence of the invader, on the characteristics of native species it replaces, and the combined interactions with hydro-morphodynamics.
Zachow, Christin; Berg, Christian; Müller, Henry; Monk, Jana; Berg, Gabriele
2016-10-10
Trichoderma strains exhibit enormous potential for applications in biotechnology, in particular as biocontrol agents against pathogens. However, little is known about the diversity of plant-associated Trichoderma communities at a global scale and their antagonistic spectrum. In order to gather information about structure and function, we compared Trichoderma biomes of endemic (Aeonium, Diospyros, Hebe, Rhododendron) and cosmopolitan plants (Zea mays) in a global study encompassing the area Northwest Africa to New Zealand via the European Alps and Madagascar. At the quantitative level we found no differences between cosmopolitan and endemic plants. Statistically significant differences were detected at the qualitative level: Trichoderma populations of endemic plants were highly specific and diverse with hot spots appearing in Madagascar and New Zealand. By contrast, maize plants from all sites shared the majority of Trichoderma species (65.5%). Interestingly, the high above ground biodiversity in ecosystems containing endemic plants was confirmed by a high below ground Trichoderma diversity. Despite the differences, we found a global Trichoderma core community shared by all analysed plants, which was dominated by T. koningii and T. koningiopsis. Amplicon-based network analyses revealed a high similarity between maize Trichoderma grown world-wide and distinct populations of endemic plants. Furthermore, Trichoderma strains from endemic plants showed a higher antagonistic activity against fungal pathogens compared to maize-associated strains. Our results showed that endemic plants are associated with a specific Trichoderma microbiome which possesses a high antagonistic activity indicating that it has potential to be used for biocontrol purposes. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Creamer, Courtney A.; Filley, Timothy R.; Boutton, Thomas W.; Rowe, Helen I.
2016-06-01
Woodland encroachment into grasslands is a globally pervasive phenomenon attributed to land use change, fire suppression, and climate change. This vegetation shift impacts ecosystem services such as ground water allocation, carbon (C) and nutrient status of soils, aboveground and belowground biodiversity, and soil structure. We hypothesized that woodland encroachment would alter microbial community structure and function and would be related to patterns in soil C accumulation. To address this hypothesis, we measured the composition and δ13C values of soil microbial phospholipids (PLFAs) along successional chronosequences from C4-dominated grasslands to C3-dominated woodlands (small discrete clusters and larger groves) spanning up to 134 years. Woodland development increased microbial biomass, soil C and nitrogen (N) concentrations, and altered microbial community composition. The relative abundance of gram-negative bacteria (cy19:0) increased linearly with stand age, consistent with decreases in soil pH and/or greater rhizosphere development and corresponding increases in C inputs. δ13C values of all PLFAs decreased with time following woody encroachment, indicating assimilation of woodland C sources. Among the microbial groups, fungi and actinobacteria in woodland soils selectively assimilated grassland C to a greater extent than its contribution to bulk soil. Between the two woodland types, microbes in the groves incorporated relatively more of the relict C4-C than those in the clusters, potentially due to differences in below ground plant C allocation and organo-mineral association. Changes in plant productivity and C accessibility (rather than C chemistry) dictated microbial C utilization in this system in response to shrub encroachment.
Analytical functions to predict cosmic-ray neutron spectra in the atmosphere.
Sato, Tatsuhiko; Niita, Koji
2006-09-01
Estimation of cosmic-ray neutron spectra in the atmosphere has been an essential issue in the evaluation of the aircrew doses and the soft-error rates of semiconductor devices. We therefore performed Monte Carlo simulations for estimating neutron spectra using the PHITS code in adopting the nuclear data library JENDL-High-Energy file. Excellent agreements were observed between the calculated and measured spectra for a wide altitude range even at the ground level. Based on a comprehensive analysis of the simulation results, we propose analytical functions that can predict the cosmic-ray neutron spectra for any location in the atmosphere at altitudes below 20 km, considering the influences of local geometries such as ground and aircraft on the spectra. The accuracy of the analytical functions was well verified by various experimental data.
Effect of water level drawdown on decomposition in boreal peatlands
NASA Astrophysics Data System (ADS)
Straková, Petra; Penttilä, Timo; Laiho, Raija
2010-05-01
Plant litter production and decomposition are key processes in element cycling in most ecosystems. In peatlands, there has been a long-term imbalance between litter production and decay caused by high water levels (WL) and consequent anoxia. This has resulted in peatlands being a significant sink of carbon (C) from the atmosphere. However, peatlands are experiencing both "natural" (global climate change) and anthropogenic (ditching) changes that threaten their ability to retain this ecosystem identity and function. Many of these alterations can be traced back to WL drawdown, which can cause increased aeration, higher acidity, falling temperatures, and a greater probability of drought. Such changes are also associated with an increasing decomposition rate, and therefore a greater amount of C released back to the atmosphere. Yet studies about how the overall C balance of peatlands will be affected have come up with conflicting conclusions, demonstrating that the C store could increase, decrease, or remain static. A factor that has been largely overlooked is the change in litter type composition following persistent WL drawdown. It is the aim of our study, then, to help to resolve this issue. We studied the effects of short-term (ca. 4 years) and long-term (ca. 40 years) persistent WL drawdown on the decomposition of numerous types of above-ground and below-ground plant litters at three boreal peatland sites: bog, oligotrophic fen and mesotrophic fen. We thus believe that enough permutations have been created to obtain a good assessment of how each factor, site nutrient level, WL regime, and litter type composition, influences decomposition. We used the litter bag method to measure the decomposition rates: placed measured amounts of plant litter, or cellulose strips as a control, into closed mesh bags, and installed the bags in the natural environment for decomposition for each litter type for varying amounts of time. Following litter bag recovery, the litter was cleaned of excess debris and analyzed for changes in mass, enzyme activity, mesofauna presence, and microbial community composition, among other things. The experiment has a run-time of ten years, the results from the first two years are presented in the poster.
Postfire management in forested public lands of the western USA
Beschta, R.L.; Rhodes, J.J.; Kauffman, J.B.; Gresswell, Robert E.; Minshall, G.W.; Frissell, C.A.; Perry, D.A.; Hauer, R.
2004-01-01
Forest ecosystems in the western United States evolved over many millennia in response to disturbances such as wildfires. Land use and management practices have altered these ecosystems, however, including fire regimes in some areas. Forest ecosystems are especially vulnerable to postfire management practices because such practices may influence forest dynamics and aquatic systems for decades to centuries. Thus, there is an increasing need to evaluate the effect of postfire treatments from the perspective of ecosystem recovery. We examined, via the published literature and our collective experience, the ecological effects of some common postfire treatments. Based on this examination, promising postfire restoration measures include retention of large trees, rehabilitation of firelines and roads, and, in some cases, planting of native species. The following practices are generally inconsistent with efforts to restore ecosystem functions after fire: seeding exotic species, livestock grazing, placement of physical structures in and near stream channels, ground-based postfire logging, removal of large trees, and road construction. Practices that adversely affect soil integrity, persistence or recovery of native species, riparian functions, or water quality generally impede ecological recovery after fire. Although research provides a basis for evaluating the efficacy of postfire treatments, there is a continuing need to increase our understanding of the effects of such treatments within the context of societal and ecological goals for forested public lands of the western United States.
Ecology of the seagrasses of south Florida: a community profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zieman, J.C.
1982-09-01
A detailed description is given of the community structure and ecosystem processes of the seagrass ecosystems of south Florida. This description is based upon a compilation of information from numerous published and unpublished sources. The material covered includes distribution, systematics, physiology, and growth of the plants, as well as succession and community development. The role of seagrass ecosystems in providing both food and shelter for juveniles as well as foraging grounds for larger organisms is treated in detail. Emphasis is given to the functional role of seagrass communities in the overall coastal marine system. The final section considers the impactsmore » of human development on seagrass ecosystems and their value to both man and the natural system. Because seagrass systems are fully submerged and less visually obvious, recognition of their value as a natural resource has been slower than that of the emergent coastal communities. They must, however, be treated as a valuable natural resource and preserved from further degradation.« less
Practical proxies for tidal marsh ecosystem services: application to injury and restoration.
Peterson, Charles H; Able, Kenneth W; Dejong, Christin Frieswyk; Piehler, Michael F; Simenstad, Charles A; Zedler, Joy B
2008-01-01
Tidal marshes are valued, protected and restored in recognition of their ecosystem services: (1) high productivity and habitat provision supporting the food web leading to fish and wildlife, (2) buffer against storm wave damage, (3) shoreline stabilization, (4) flood water storage, (5) water quality maintenance, (6) biodiversity preservation, (7) carbon storage and (8) socio-economic benefits. Under US law, federal and state governments have joint responsibility for facilitating restoration to compensate quantitatively for ecosystem services lost because of oil spills and other contaminant releases on tidal marshes. This responsibility is now met by choosing and employing metrics (proxies) for the suite of ecosystem services to quantify injury and scale restoration accordingly. Most injury assessments in tidal marshes are triggered by oil spills and are limited to: (1) documenting areas covered by heavy, moderate and light oiling; (2) estimating immediate above-ground production loss (based on stem density and height) of the dominant vascular plants within each oiling intensity category and (3) sampling sediments for chemical analyses and depth of contamination, followed by sediment toxicity assays if sediment contamination is high and likely to persist. The percentage of immediate loss of ecosystem services is then estimated along with the recovery trajectory. Here, we review potential metrics that might refine or replace present metrics for marsh injury assessment. Stratifying plant sampling by the more productive marsh edge versus the less accessible interior would improve resolution of injury and provide greater confidence that restoration is truly compensatory. Using microphytobenthos abundance, cotton-strip decomposition bioassays and other biogeochemical indicators, or sum of production across consumer trophic levels fails as a stand-alone substitute metric. Below-ground plant biomass holds promise as a potential proxy for resiliency but requires further testing. Under some conditions, like chronic contamination by organic pollutants that affect animals but not vascular plants, benthic infaunal density, toxicity testing, and tissue contamination, growth, reproduction and mortality of marsh vertebrates deserve inclusion in the assessment protocol. Additional metrics are sometimes justified to assay microphytobenthos, use by nekton, food and habitat for reptiles, birds and mammals, or support of plant diversity. Empirical research on recovery trajectories in previously injured marshes could reduce the largest source of uncertainty in quantifying cumulative service losses.
NASA Astrophysics Data System (ADS)
Li, Shanze; Cui, Baoshan; Bai, Junhong; Xie, Tian; Yan, Jiaguo; Wang, Qing; Zhang, Shuyan
2018-02-01
Plant morphology plays important role in studying biogeography in many ecosystems. Suadea salsa, as a native plant community of northern China and an important habitat for diversity of waterbirds and macrobenthos, has often been overlooked. Nowadays, S. salsa community is facing great loss due to coastal reclamation activities and natural disturbances. To maintain and restore S. salsa community, it's important to address the plant morphology across marsh zones, as well as its relationships with local soil abiotic conditions. In our studied intertidal salt marsh, we found that less flood disturbance frequency, softer soil conditions, rich soil organic matter, total carbon and total nitrogen, lower water depth and water content, less species competition will benefit S. salsa plant in the morphology of high coverage, above-ground biomass, shoot height and leaf length. Lower soil porewater salinity will benefit the below-ground biomass of S. salsa. Thus, we recommend managers help alleviate soil abiotic stresses in the intertidal salt marshes, making the soil conditions more suitable for S. salsa growth and succession.
NASA Astrophysics Data System (ADS)
Dannoura, M.; Kominami, Y.; Takanashi, S.; Takahashi, K.
2013-12-01
Studying carbon allocation in trees is a key to better understand belowground carbon cycle and its response to climate change. Tracing 13C in tree and soil compartments after pulse labeling is one of powerful tool to study the fate of carbon in forest ecosystems. This experiment was conducted in Yamashiro experimental forest, Kyoto, Japan. Annual mean temperature and precipitation from 1994 to 2009 are 15.5 ° C and 1,388 mm respectively. The branch pulse labeling were done 7 times in 2011 using same branch of Quercus serrata (H:11.7 m, DBH; 33.7 cm) to see seasonal variations of carbon velocity. Whole crown labeling of Quercus serrata (H:9 m, DBH; 13.7 cm) was done in 2012 to study carbon allocation and to especially focus on belowground carbon flux until to the hyphae respiration. Pure 13CO2 (99.9%) was injected to the labeling chamber which was set to branch or crown. Then, after one hour of branch labeling and 3.5 hour for crown labeling, the chamber was opened. Trunk respiration chambers, fine root chambers and hyphae chambers were set to the target tree to trace labeled carbon in the CO2 efflux. 41 μm mesh was used to exclude ingrowth of roots into hyphae chambers. The results show that the velocity of carbon through the tree varied seasonally, with higher velocity in summer than autumn, averaging 0.47 m h-1. Half-lives of labeled carbon in autotrophic respiration were similar above and below ground during the growing season, but they were twice longer in trunk than in root in autumn. From the whole crown labeling done end of growing season, the 13CO2 signal was observed 25 hours after labeling in trunk chamber and 34-37.7 hours after labeling in fine root and hyphae respiration almost simultaneously. Half-lives of 13 was longer in trunk than below ground. Trunk respiration was still using labelled carbon during winter suggesting that winter trunk respiration is partly fueled by carbon stored in the trunk at the end of the growing season.
NASA Astrophysics Data System (ADS)
Sheppard, James K.; Carter, Alex B.; McKenzie, Len J.; Pitcher, C. Roland; Coles, Robert G.
2008-09-01
The distribution and nutritional profiles of sub-tidal seagrasses from the Torres Strait were surveyed and mapped across an area of 31,000 km 2. Benthic sediment composition, water depth, seagrass species type and nutrients were sampled at 168 points selected in a stratified representative pattern. Eleven species of seagrass were present at 56 (33.3%) of the sample points. Halophila spinulosa, Halophila ovalis, Cymodocea serrulata and Syringodium isoetifolium were the most common species and these were nutrient profiled. Sub-tidal seagrass distribution (and associated seagrass nutrient concentrations) was generally confined to northern-central and south-western regions of the survey area (
Transhemispheric ecosystem disservices of pink salmon in a Pacific Ocean macrosystem.
Springer, Alan M; van Vliet, Gus B; Bool, Natalie; Crowley, Mike; Fullagar, Peter; Lea, Mary-Anne; Monash, Ross; Price, Cassandra; Vertigan, Caitlin; Woehler, Eric J
2018-05-29
Pink salmon ( Oncorhynchus gorbuscha ) in the North Pacific Ocean have flourished since the 1970s, with growth in wild populations augmented by rising hatchery production. As their abundance has grown, so too has evidence that they are having important effects on other species and on ocean ecosystems. In alternating years of high abundance, they can initiate pelagic trophic cascades in the northern North Pacific Ocean and Bering Sea and depress the availability of common prey resources of other species of salmon, resident seabirds, and other pelagic species. We now propose that the geographic scale of ecosystem disservices of pink salmon is far greater due to a 15,000-kilometer transhemispheric teleconnection in a Pacific Ocean macrosystem maintained by short-tailed shearwaters ( Ardenna tenuirostris ), seabirds that migrate annually between their nesting grounds in the South Pacific Ocean and wintering grounds in the North Pacific Ocean. Over this century, the frequency and magnitude of mass mortalities of shearwaters as they arrive in Australia, and their abundance and productivity, have been related to the abundance of pink salmon. This has influenced human social, economic, and cultural traditions there, and has the potential to alter the role shearwaters play in insular terrestrial ecology. We can view the unique biennial pulses of pink salmon as a large, replicated, natural experiment that offers basin-scale opportunities to better learn how these ecosystems function. By exploring trophic interaction chains driven by pink salmon, we may achieve a deeper conservation conscientiousness for these northern open oceans.
Can landscape memory affect vegetation recovery in drylands?
NASA Astrophysics Data System (ADS)
Baartman, Jantiene; Garcia Mayor, Angeles; Temme, Arnaud; Rietkerk, Max
2016-04-01
Dryland ecosystems are water-limited and therefore vegetation typically forms banded or patchy patterns with high vegetation cover, interspersed with bare soil areas. In these systems, a runoff-runon system is often observed with bare areas acting as sources and vegetation patches acting as sinks of water, sediment and other transported substances. These fragile ecosystems are easily disturbed by overgrazing, removing above-ground vegetation. To avoid desertification, vegetation recovery after a disturbance is crucial. This poster discusses the potential of 'landscape memory' to affect the vegetation recovery potential. Landscape memory, originating in geomorphology, is the concept that a landscape is the result of its past history, which it 'remembers' through imprints left in the landscape. For example, a past heavy rainstorm may leave an erosion gully. These imprints affect the landscape's contemporary functioning, for example through faster removal of water from the landscape. In dryland ecosystems vegetation is known to affect the soil properties of the soil they grow in, e.g. increasing porosity, infiltration, organic matter content and soil structure. After a disturbance of the banded ecosystem, e.g. by overgrazing, this pattern of soil properties - favourable for regrowth, stays in the landscape. However, removal of the above-ground vegetation also leads to longer runoff pathways and increased rill and gully erosion, which may hamper vegetation regrowth. I hypothesize that vegetation recovery after a disturbance, depends on the balance between these two contrasting types of landscape memory (i.e. favourable soil properties and erosion rills/gullies).
NASA Astrophysics Data System (ADS)
Dronova, I.; Taddeo, S.; Foster, K.
2017-12-01
Projecting ecosystem responses to global change relies on the accurate understanding of properties governing their functions in different environments. An important variable in models of ecosystem function is canopy leaf area index (LAI; leaf area per unit ground area) declared as one of the Essential Climate Variables in the Global Climate Observing System and extensively measured in terrestrial landscapes. However, wetlands have been largely under-represented in these efforts, which globally limits understanding of their contribution to carbon sequestration, climate regulation and resilience to natural and anthropogenic disturbances. This study provides a global synthesis of >350 wetland-specific LAI observations from 182 studies and compares LAI among wetland ecosystem and vegetation types, biomes and measurement approaches. Results indicate that most wetland types and even individual locations show a substantial local dispersion of LAI values (average coefficient of variation 65%) due to heterogeneity of environmental properties and vegetation composition. Such variation indicates that mean LAI values may not sufficiently represent complex wetland environments, and the use of this index in ecosystem function models needs to incorporate within-site variation in canopy properties. Mean LAI did not significantly differ between direct and indirect measurement methods on a pooled global sample; however, within some of the specific biomes and wetland types significant contrasts between these approaches were detected. These contrasts highlight unique aspects of wetland vegetation physiology and canopy structure affecting measurement principles that need to be considered in generalizing canopy properties in ecosystem models. Finally, efforts to assess wetland LAI using remote sensing strongly indicate the promise of this technology for cost-effective regional-scale modeling of canopy properties similar to terrestrial systems. However, such efforts urgently require more rigorous corrections for three-dimensional contributions of non-canopy material and non-vegetated surfaces to wetland canopy reflectance.
Enhancing wind erosion monitoring and assessment for U.S. rangelands
Webb, Nicholas P.; Van Zee, Justin W.; Karl, Jason W.; Herrick, Jeffrey E.; Courtright, Ericha M.; Billings, Benjamin J.; Boyd, Robert C.; Chappell, Adrian; Duniway, Michael C.; Derner, Justin D.; Hand, Jenny L.; Kachergis, Emily; McCord, Sarah E.; Newingham, Beth A.; Pierson, Frederick B.; Steiner, Jean L.; Tatarko, John; Tedela, Negussie H.; Toledo, David; Van Pelt, R. Scott
2017-01-01
On the GroundWind erosion is a major resource concern for rangeland managers because it can impact soil health, ecosystem structure and function, hydrologic processes, agricultural production, and air quality.Despite its significance, little is known about which landscapes are eroding, by how much, and when.The National Wind Erosion Research Network was established in 2014 to develop tools for monitoring and assessing wind erosion and dust emissions across the United States.The Network, currently consisting of 13 sites, creates opportunities to enhance existing rangeland soil, vegetation, and air quality monitoring programs.Decision-support tools developed by the Network will improve the prediction and management of wind erosion across rangeland ecosystems.
NASA Astrophysics Data System (ADS)
Bell, C. W.; Calderon, F.; Pendall, E.; Wallenstein, M. D.
2012-12-01
Plant communities affect the activity and composition of soil microbial communities through alteration of the soil environment during root growth; substrate availability through root exudation; nutrient availability through plant uptake; and moisture regimes through transpiration. As a result, positive feedbacks in soil properties can result from alterations in microbial community composition and function in the rhizosphere zone. At the ecosystem-scale, many properties of soil microbial communities can vary between forest stands dominated by different species, including community composition and stoichiometry. However, the influence of smaller individual plants on grassland soils and microbial communities is less well documented. There is evidence to suggest that some plants can modify their soil environment in a manner that favors their persistence. For example, when Bromus tectorum plants invade, soil microbial communities tend to have higher N mineralization rates (in the rhizosphere zone) relative to native plants. If tight linkages between individual plant species and microbial communities inhabiting the rhizosphere exist, we hypothesized that any differences among plant species specific rhizosphere zones could be observed by shifts in: 1) soil -rhizosphere microbial community structure, 2) enzymatic C:N:P acquisition activities, 3) alterations in the soil C chemistry composition in the rhizosphere, and 4) plant - soil - microbial C:N:P elemental stoichiometry. We selected and grew 4 different C3 grasses species including three species native to the Shortgrass Steppe region (Pascopyrum smithii, Koeleria macrantha, and Vulpia octoflora) and one exotic invasive plant species (B. tectorum) in root-boxes that are designed to allow for easy access to the rhizosphere. The field soil was homogenized using a 4mm sieve and mixed 1:1 with sterile sand and seeded as monocultures (24 replicate root - boxes for each species). Plant and soil samples (along with no - plant control soil samples) were collected on day 28, 78, and 148 (N = 4 /sample period/species). Microbial community structure was quantified using the barcoded pyrosequencing protocols. We measured the potential activity of seven hydrolytic soil enzymes to represent the degradation of C, N, and P-rich substrates. Soil microbial C:N biomass responses to specific plant rhizospheres (MBC and MBN) were measured using the chloroform fumigation extraction method followed by DOC & N analysis. Fourier Transform Infrared Spectroscopy was used to assess differences in plant and soil C chemistry. We found that species specific rhizospheres are characteristic of very different soil chemical, edaphic, and microbial properties. These plant species act as gateways that introduce variability into soil C, N, and P ecosystem functional dynamics directly facilitated by rhizosphere - microbe associations. Our results suggest that nutrient stoichiometry within plant species' rhizospheres is a useful tool for identifying intra-ecosystem functional patterns. By identifying what and how specific species rhizospheres differ among the overall plant community, we can better predict how below-ground microbial community function and subsequent ecosystem processes can be influenced by alterations in plant community shifts based on the rhizosphere effects.
NASA Astrophysics Data System (ADS)
Curreli, Matteo; Corona, Roberto; Montaldo, Nicola; Albertson, John D.; Oren, Ram
2014-05-01
Mediterranean ecosystems are characterized by a strong heterogeneity, and often by water-limited conditions. In these conditions contrasting plant functional types (PFT, e.g. grass and woody vegetation) compete for the water use. Both the vegetation cover spatial distribution and the soil properties impact the soil moisture (SM) spatial distribution. Indeed, vegetation cover density and type affects evapotranspiration (ET), which is the main lack of the soil water balance in these ecosystems. With the objective to carefully estimate SM and ET spatial distribution in a Mediterranean water-limited ecosystem and understanding SM and ET relationships, an extended field campaign is carried out. The study was performed in a heterogeneous ecosystem in Orroli, Sardinia (Italy). The experimental site is a typical Mediterranean ecosystem where the vegetation is distributed in patches of woody vegetation (wild olives mainly) and grass. Soil depth is low and spatially varies between 10 cm and 40 cm, without any correlation with the vegetation spatial distribution. ET, land-surface fluxes and CO2 fluxes are estimated by an eddy covariance technique based micrometeorological tower. But in heterogeneous ecosystems a key assumption of the eddy covariance theory, the homogeneity of the surface, is not preserved and the ET estimate may be not correct. Hence, we estimate ET of the woody vegetation using the thermal dissipation method (i.e. sap flow technique) for comparing the two methodologies. Due the high heterogeneity of the vegetation and soil properties of the field a total of 54 sap flux sensors were installed. 14 clumps of wild olives within the eddy covariance footprint were identified as the most representative source of flux and they were instrumented with the thermal dissipation probes. Measurements of diameter at the height of sensor installation (height of 0.4 m above ground) were recorded in all the clumps. Bark thickness and sapwood depth were measured on several trees to obtain a generalized estimates of sapwood depth. The known of allometric relationships between sapwood area, diameter and canopy cover area within the eddy covariance footprint helped for the application of a reliable scaling procedure of the local sap flow estimates which are in a good agreement with the estimates of ET eddy covariance based. Soil moisture were also extensively monitored through 25 probes installed in the eddy covariance footprint. Results show that comparing eddy covariance and sap flow ET estimates eddy covariance technique is still accurate in this heterogeneous field, whereas the key assumption, surface homogeneity, is not preserved. Furthermore, interestingly wild olives still transpire at higher rates for the driest soil moisture conditions, confirming the hydraulic redistribution from soil below the roots, and from roots penetrating deep cracks in the underlying basalt parent rock.
Linking soil DOC production rates and transport processes from landscapes to sub-basin scales
NASA Astrophysics Data System (ADS)
Tian, Y. Q.; Yu, Q.; Li, J.; Ye, C.
2014-12-01
Recent research rejects the traditional perspective that dissolved organic carbon (DOC) component in global carbon cycle are simply trivial, and in fact evidence demonstrates that lakes likely mediate carbon dynamics on a global scale. Riverine and estuarine carbon fluxes play a critical role in transporting and recycling carbon and nutrients, not only within watersheds but in their receiving waters. However, the underlying mechanisms that drive carbon fluxes, from land to rivers, lake and oceans, remain poorly understood. This presentation will report a research result of the scale-dependent DOC production rate in coastal watersheds and DOC transport processes in estuarine regions. We conducted a series of controlled experiments and field measurements for examining biogeochemical, biological, and geospatial variables that regulate downstream processing on global-relevant carbon fluxes. Results showed that increased temperatures and raised soil moistures accelerate decomposition rates of organic matter with significant variations between vegetation types. The measurements at meso-scale ecosystem demonstrated a good correlation to bulk concentration of DOC monitored in receiving waters at the outlets of sub-basins (R2 > 0.65). These field and experimental measurements improved the model of daily carbon exports through below-ground processes as a function of the organic matter content of surface soils, forest litter supply, and temperature. The study demonstrated a potential improvement in modeling the co-variance of CDOM and DOC with the unique terrestrial sources. This improvement indicated a significant promise for monitoring riverine and estuarine carbon flux from satellite images. The technical innovations include deployments of 1) mini-ecosystem (mesocosms) with soil as replicate controlled experiments for DOC production and leaching rates, and 2) aquatic mesocosms for co-variances of DOC and CDOM endmembers, and an instrumented incubation experiment for determining degradation rates.
Fertilization Increases Below-Ground Carbon Sequestration of Loblolly Pine Plantations
K.H. Johnsen; J.R. Butnor; C. Maier; R. Oren; R. Pangle; L. Samuelson; J. Seiler; S.E. McKeand; H.L. Allen
2001-01-01
The extent of fertilization of southern pine forests is increasing rapidly; industrial fertilization increased from 16,200 ha per year in 1988, to 344,250 ha in 1998. Fertilization increases stand productivity and can increase carbon (C) sequestration by: 1) increasing above-ground standing C; 2) increasing C stored in forest products; and 3) increasing below-ground...
Mind the Roots: Phenotyping Below-Ground Crop Diversity and Its Influence on Final Yield
NASA Astrophysics Data System (ADS)
Nieters, C.; Guadagno, C. R.; Lemli, S.; Hosseini, A.; Ewers, B. E.
2017-12-01
Changes in global climate patterns and water regimes are having profound impacts on worldwide crop production. An ever-growing population paired with increasing temperatures and unpredictable periods of severe drought call for accurate modeling of future crop yield. Although novel approaches are being developed in high-throughput, above-ground image phenotyping, the below-ground plant system is still poorly phenotyped. Collection of plant root morphology and hydraulics are needed to inform mathematical models to reliably estimate yields of crops grown in sub-optimal conditions. We used Brassica rapa to inform our model as it is a globally cultivated crop with several functionally diverse cultivars. Specifically, we use 7 different accessions from oilseed (R500 and Yellow Sarson), leafy type (Pac choi and Chinese cabbage), a vegetable turnip, and two Wisconsin Fast Plants (Imb211 and Fast Plant self-compatible), which have shorter life cycles and potentially large differences in allocation to roots. Bi-weekly, we harvested above and below-ground biomass to compare the varieties in terms of carbon allocation throughout their life cycle. Using WinRhizo software, we analyzed root system length and surface area to compare and contrast root morphology among cultivars. Our results confirm that root structural characteristics are crucial to explain plant water use and carbon allocation. The root:shoot ratio reveals a significant (p < 0.01) difference among crop accession. To validate the procedure across different varieties and life stages we also compared surface area results from the image-based technology to dry biomass finding a strong linear relationship (R2= 0.85). To assess the influence of a diverse above-ground morphology on the root system we also measured above-ground anatomical and physiological traits such as gas exchange, chlorophyll content, and chlorophyll a fluorescence. A thorough analysis of the root system will clarify carbon dynamics and hydraulics at the whole-plant level, improving final yield predictions.
Impact of cattle grazing on soil and vegetation - a case study in a mountainous region of Austria
NASA Astrophysics Data System (ADS)
Bohner, Andreas; Foldal, Cecilie; Jandl, Robert
2015-04-01
In mountainous regions of Austria and of many other European countries, climate change may cause a further intensification of grassland management. Therefore, the effects of intensive cattle grazing on selected soil chemical and physical properties, above- and below-ground phytomass, forage quality, plant species composition and plant species richness at the scale of a representative paddock in a mountainous region of Austria were investigated. At the study site (Styrian Enns valley; 675 m a.s.l.), climate is relatively cool and humid, with a mean annual air temperature of 6.7°C and a mean annual precipitation of 970 mm, of which 66% falls during the vegetation period (April-October). The soil is a deep, base-rich Cambisol with a loamy sand texture. The paddock investigated has a total area of about 2 ha and had been grazed by dairy cows (Brown Swiss) five times per grazing season. The stocking density was 4 cows ha-1 during 180 days from early May to the end of October with a grazing time of about 8 hours per day. The strip grazed permanent pasture was manured annually for a long time, mostly with cattle slurry. Vegetation surveys were carried out using the method of Braun-Blanquet. Above- and below-ground phytomass, forage quality and mineral element concentration in the harvestable above-ground plant biomass were determined by using standard methods. During the grazing season surface soil samples (0-10 cm depth) for chemical analyses were collected before each grazing period (5 analyses of composite samples per site). At the beginning and the end of the grazing season also soil samples for physical analyses were taken from the topsoil (0-15 cm depth). Heavy cattle treading led to a substantial soil compaction especially in the 5-10 cm layer and to a deterioration of topsoil structure. The porous crumb structure was replaced by a compact platy structure. The topsoil was enriched with nutrients (mainly nitrogen, potassium, phosphorus and boron). The degree of phosphorus saturation was very high. Consequently, the risk of elevated nutrient losses via leaching and surface runoff is increased. This, in turn, may pose a threat to ground water, surface water and adjacent ecosystems. In the intensively grazed cattle pasture we observed considerable changes in plant species composition and species cover. Vegetation cover, plant species richness, pasture yield, forage quality and below-ground phytomass declined due to overgrazing. In contrast, the untrampled and unmanured habitat below the fence of the paddock can be regarded as a retreat area for many plant species which do not tolerate heavy trampling and manuring. Thus, in assessing biodiversity, this corridor should be taken into consideration. Within the paddock, we found a permanent transfer of soil nutrients and organic matter by grazing cattle, leading to a high spatial heterogeneity in some soil properties. Consequently, within intensively grazed paddocks differential manure-application rates and variations in grazing intensity are necessary.
NASA Astrophysics Data System (ADS)
Kulawardhana, Ranjani W.; Feagin, Rusty A.; Popescu, Sorin C.; Boutton, Thomas W.; Yeager, Kevin M.; Bianchi, Thomas S.
2015-03-01
Spartina alterniflora salt marshes are among the most productive ecosystems on earth, and represent a substantial global carbon sink. Understanding the spatial heterogeneity in the distribution of both above- and below-ground carbon in these wetland ecosystems is especially important considering their potential in carbon sequestration projects, as well as for conservation efforts in the context of a changing climate and rising sea-level. Through the use of extensive field sampling and remote sensing data (Light Detection and Ranging - LiDAR, and aerial images), we sought to map and explain how vegetation biomass and soil carbon are related to elevation and relative sea-level change in a S. alterniflora dominated salt marsh on Galveston Island, Texas. The specific objectives of this study were to: 1) understand the relationship between elevation and the distribution of salt marsh vegetation percent cover, plant height, plant density, above-and below-ground biomass, and carbon, and 2) evaluate the temporal changes in relative sea-level history, vegetation transitions, and resulting changes in the patterns of soil carbon distribution. Our results indicated a clear zonation of terrain and vegetation characteristics (i.e., height, cover and biomass). In the soil profile, carbon concentrations and bulk densities showed significant and abrupt change at a depth of ∼10-15 cm. This apparent transition in the soil characteristics coincided temporally with a transformation of the land cover, as driven by a rapid increase in relative sea-level around this time at the sample locations. The amounts of soil carbon stored in recently established S. alterniflora intertidal marshes were significantly lower than those that have remained in situ for a longer period of time. Thus, in order to quantify and predict carbon in coastal wetlands, and also to understand the heterogeneity in the spatial distribution of carbon stocks, it is essential to understand not only the elevation, the relative sea-level rise rate, and the vertical accretion rate - but also the history of land cover change and vegetation transition.
Davenport, David W.; Breshears, D.D.; Wilcox, B.P.; Allen, Craig D.
1998-01-01
Many pinon-juniper ecosystem in the western U.S. are subject to accelerated erosion while others are undergoing little or no erosion. Controversy has developed over whether invading or encroaching pinon and juniper species are inherently harmful to rangeland ecosystems. We developed a conceptual model of soil erosion in pinon-jumper ecosystems that is consistent with both sides of the controversy and suggests that the diverse perspectives on this issue arise from threshold effects operating under very different site conditions. Soil erosion rate can be viewed as a function of (1) site erosion potential (SEP), determined by climate, geomorphology and soil erodibility; and (2) ground cover. Site erosion potential and cove act synergistically to determine soil erosion rates, as evident even from simple USLE predictions of erosion. In pinon-juniper ecosystem with high SEP, the erosion rate is highly sensitive to ground cover and can cross a threshold so that erosion increases dramatically in response to a small decrease in cover. The sensitivity of erosion rate to SEP and cover can be visualized as a cusp catastrophe surface on which changes may occur rapidly and irreversibly. The mechanisms associated with a rapid shift from low to high erosion rate can be illustrated using percolation theory to incorporate spatial, temporal, and scale-dependent patterns of water storage capacity on a hillslope. Percolation theory demonstrates how hillslope runoff can undergo a threshold response to a minor change in storage capacity. Our conceptual model suggests that pinion and juniper contribute to accelerated erosion only under a limited range of site conditions which, however, may exist over large areas.
Reiner, Steven R.
2007-01-01
Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000-2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven R. Reiner
2007-08-07
Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000–2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.
Jogeir N. Stokland; Christopher W. Woodall; Jonas Fridman; Göran Ståhl
2016-01-01
Deadwood can represent a substantial portion of forest ecosystem carbon stocks and is often reported following good practice guidance associated with national greenhouse gas inventories. In high-latitude forest ecosystems, a substantial proportion of downed deadwood is overgrown by ground vegetation and buried in the humus layer. Such burial obfuscates the important...
Measuring soil frost depth in forest ecosystems with ground penetrating radar
John R. Butnor; John L. Campbell; James B. Shanley; Stanley Zarnoch
2014-01-01
Soil frost depth in forest ecosystems can be variable and depends largely on early winter air temperatures and the amount and timing of snowfall. A thorough evaluation of ecological responses to seasonally frozen ground is hampered by our inability to adequately characterize the frequency, depth, duration and intensity of soil frost events. We evaluated the use of...
From actors to agents in socio-ecological systems models
Rounsevell, M. D. A.; Robinson, D. T.; Murray-Rust, D.
2012-01-01
The ecosystem service concept has emphasized the role of people within socio-ecological systems (SESs). In this paper, we review and discuss alternative ways of representing people, their behaviour and decision-making processes in SES models using an agent-based modelling (ABM) approach. We also explore how ABM can be empirically grounded using information from social survey. The capacity for ABM to be generalized beyond case studies represents a crucial next step in modelling SESs, although this comes with considerable intellectual challenges. We propose the notion of human functional types, as an analogy of plant functional types, to support the expansion (scaling) of ABM to larger areas. The expansion of scope also implies the need to represent institutional agents in SES models in order to account for alternative governance structures and policy feedbacks. Further development in the coupling of human-environment systems would contribute considerably to better application and use of the ecosystem service concept. PMID:22144388
From actors to agents in socio-ecological systems models.
Rounsevell, M D A; Robinson, D T; Murray-Rust, D
2012-01-19
The ecosystem service concept has emphasized the role of people within socio-ecological systems (SESs). In this paper, we review and discuss alternative ways of representing people, their behaviour and decision-making processes in SES models using an agent-based modelling (ABM) approach. We also explore how ABM can be empirically grounded using information from social survey. The capacity for ABM to be generalized beyond case studies represents a crucial next step in modelling SESs, although this comes with considerable intellectual challenges. We propose the notion of human functional types, as an analogy of plant functional types, to support the expansion (scaling) of ABM to larger areas. The expansion of scope also implies the need to represent institutional agents in SES models in order to account for alternative governance structures and policy feedbacks. Further development in the coupling of human-environment systems would contribute considerably to better application and use of the ecosystem service concept.
Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests.
Samuelson, Lisa J; Stokes, Thomas A; Butnor, John R; Johnsen, Kurt H; Gonzalez-Benecke, Carlos A; Martin, Timothy A; Cropper, Wendell P; Anderson, Pete H; Ramirez, Michael R; Lewis, John C
2017-01-01
Forests can partially offset greenhouse gas emissions and contribute to climate change mitigation, mainly through increases in live biomass. We quantified carbon (C) density in 20 managed longleaf pine (Pinus palustris Mill.) forests ranging in age from 5 to 118 years located across the southeastern United States and estimated above- and belowground C trajectories. Ecosystem C stock (all pools including soil C) and aboveground live tree C increased nonlinearly with stand age and the modeled asymptotic maxima were 168 Mg C/ha and 80 Mg C/ha, respectively. Accumulation of ecosystem C with stand age was driven mainly by increases in aboveground live tree C, which ranged from <1 Mg C/ha to 74 Mg C/ha and comprised <1% to 39% of ecosystem C. Live root C (sum of below-stump C, ground penetrating radar measurement of lateral root C, and live fine root C) increased with stand age and represented 4-22% of ecosystem C. Soil C was related to site index, but not to stand age, and made up 39-92% of ecosystem C. Live understory C, forest floor C, downed dead wood C, and standing dead wood C were small fractions of ecosystem C in these frequently burned stands. Stand age and site index accounted for 76% of the variation in ecosystem C among stands. The mean root-to-shoot ratio calculated as the average across all stands (excluding the grass-stage stand) was 0.54 (standard deviation of 0.19) and higher than reports for other conifers. Long-term accumulation of live tree C, combined with the larger role of belowground accumulation of lateral root C than in other forest types, indicates a role of longleaf pine forests in providing disturbance-resistant C storage that can balance the more rapid C accumulation and C removal associated with more intensively managed forests. Although other managed southern pine systems sequester more C over the short-term, we suggest that longleaf pine forests can play a meaningful role in regional forest C management. © 2016 by the Ecological Society of America.
Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa
2017-06-01
Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Prescribed fire and its impacts on ecosystem services in the UK.
Harper, Ashleigh R; Doerr, Stefan H; Santin, Cristina; Froyd, Cynthia A; Sinnadurai, Paul
2018-05-15
The impacts of vegetation fires on ecosystems are complex and varied affecting a range of important ecosystem services. Fire has the potential to affect the physicochemical and ecological status of water systems, alter several aspects of the carbon cycle (e.g. above- and below-ground carbon storage) and trigger changes in vegetation type and structure. Globally, fire is an essential part of land management in fire-prone regions in, e.g. Australia, the USA and some Mediterranean countries to mitigate the likelihood of catastrophic wildfires and sustain healthy ecosystems. In the less-fire prone UK, fire has a long history of usage in management for enhancing the productivity of heather, red grouse and sheep. This distinctly different socioeconomic tradition of burning underlies some of the controversy in recent decades in the UK around the use of fire. Negative public opinion and opposition from popular media have highlighted concerns around the detrimental impacts burning can have on the health and diversity of upland habitats. It is evident there are many gaps in the current knowledge around the environmental impacts of prescribed burning in less fire-prone regions (e.g. UK). Land owners and managers require a greater level of certainty on the advantages and disadvantages of prescribed burning in comparison to other techniques to better inform management practices. This paper addresses this gap by providing a critical review of published work and future research directions related to the impacts of prescribed fire on three key aspects of ecosystem services: (i) water quality, (ii) carbon dynamics and (iii) habitat composition and structure (biodiversity). Its overall aims are to provide guidance based on the current state-of-the-art for researchers, land owners, managers and policy makers on the potential effects of the use of burning and to inform the wider debate about the place of fire in modern conservation and land management in humid temperate ecosystems. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Forest harvesting reduces the soil metagenomic potential for biomass decomposition.
Cardenas, Erick; Kranabetter, J M; Hope, Graeme; Maas, Kendra R; Hallam, Steven; Mohn, William W
2015-11-01
Soil is the key resource that must be managed to ensure sustainable forest productivity. Soil microbial communities mediate numerous essential ecosystem functions, and recent studies show that forest harvesting alters soil community composition. From a long-term soil productivity study site in a temperate coniferous forest in British Columbia, 21 forest soil shotgun metagenomes were generated, totaling 187 Gb. A method to analyze unassembled metagenome reads from the complex community was optimized and validated. The subsequent metagenome analysis revealed that, 12 years after forest harvesting, there were 16% and 8% reductions in relative abundances of biomass decomposition genes in the organic and mineral soil layers, respectively. Organic and mineral soil layers differed markedly in genetic potential for biomass degradation, with the organic layer having greater potential and being more strongly affected by harvesting. Gene families were disproportionately affected, and we identified 41 gene families consistently affected by harvesting, including families involved in lignin, cellulose, hemicellulose and pectin degradation. The results strongly suggest that harvesting profoundly altered below-ground cycling of carbon and other nutrients at this site, with potentially important consequences for forest regeneration. Thus, it is important to determine whether these changes foreshadow long-term changes in forest productivity or resilience and whether these changes are broadly characteristic of harvested forests.
Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity.
Mommer, Liesje; Cotton, T E Anne; Raaijmakers, Jos M; Termorshuizen, Aad J; van Ruijven, Jasper; Hendriks, Marloes; van Rijssel, Sophia Q; van de Mortel, Judith E; van der Paauw, Jan Willem; Schijlen, Elio G W M; Smit-Tiekstra, Annemiek E; Berendse, Frank; de Kroon, Hans; Dumbrell, Alex J
2018-04-01
There is consensus that plant species richness enhances plant productivity within natural grasslands, but the underlying drivers remain debated. Recently, differential accumulation of soil-borne fungal pathogens across the plant diversity gradient has been proposed as a cause of this pattern. However, the below-ground environment has generally been treated as a 'black box' in biodiversity experiments, leaving these fungi unidentified. Using next generation sequencing and pathogenicity assays, we analysed the community composition of root-associated fungi from a biodiversity experiment to examine if evidence exists for host specificity and negative density dependence in the interplay between soil-borne fungi, plant diversity and productivity. Plant species were colonised by distinct (pathogenic) fungal communities and isolated fungal species showed negative, species-specific effects on plant growth. Moreover, 57% of the pathogenic fungal operational taxonomic units (OTUs) recorded in plant monocultures were not detected in eight plant species plots, suggesting a loss of pathogenic OTUs with plant diversity. Our work provides strong evidence for host specificity and negative density-dependent effects of root-associated fungi on plant species in grasslands. Our work substantiates the hypothesis that fungal root pathogens are an important driver of biodiversity-ecosystem functioning relationships. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
How much older are Appalachian oaks below-ground than above-ground?
Daniel J. Heggenstaller; Eric K. Zenner; Patrick H. Brose; Jerilynn E. Peck
2012-01-01
Young oaks (Quercus spp.) are known to invest more in early root growth than shoot growth, enabling seedlings to tolerate stem die-back and resprouting. The resulting disparity in age between above- and below-ground tissues has been previously demonstrated for seedling-sized stems, but not for successful canopy-ascending trees. We compared the age of stem cross...
Hodges, Arthur L.
1982-01-01
Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)
NASA Astrophysics Data System (ADS)
Ojanen, Paavo; Minkkinen, Kari; Heikkinen, Tiina; Penttilä, Timo
2016-04-01
Five million hectares of peatland has been drained for forestry in Finland. About 20% of that, i.e. one million hectares, has been estimated to be so low-productive that the profitability of keeping them in forestry is questionable. At the same time, drainage has introduced changes in the ecosystem functions of these peatlands, including fluxes of greenhouse gases. Options to manage such peatlands include for example 1) no measures, i.e. leaving the drained peatlands as they are 2) increasing intensity by e.g. repetitive fertilisations and 3) restoration back to functional peatlands. Here we estimate the greenhouse gas impacts of these three management options. We collected GHG and organic carbon flux data from 50 low-productive peatlands under these management options over two years 2014-2015. Gas fluxes (CO2, CH4, N2O) were measured with closed chambers. Litter production rates of different plants above and below ground were estimated using litter traps (trees), biomass sampling (roots), through-grow nets (mosses), allometric biomass models (other vasculars) and published turnover rates (roots, other vasculars). Characteristics for estimating tree stand biomass increment were measured at each site from circular sample plots. In this presentation we will estimate the GHG impacts for the different management options, and aim to find the most climate-friendly options for the management of low-productive peatlands in the short and long term. This work was funded by Life+ LIFE12/ENV/FI/150.
NASA Astrophysics Data System (ADS)
Hatala, J.; Sonnentag, O.; Detto, M.; Runkle, B.; Vargas, R.; Kelly, M.; Baldocchi, D. D.
2009-12-01
Ground-based, visible light imagery has been used for different purposes in agricultural and ecological research. A series of recent studies explored the utilization of networked digital cameras to continuously monitor vegetation by taking oblique canopy images at fixed view angles and time intervals. In our contribution we combine high temporal resolution digital camera imagery, eddy-covariance, and meteorological measurements with weekly field-based hyperspectral and LAI measurements to gain new insights on temporal changes in canopy structure and functioning of two managed ecosystems in California’s Sacramento-San Joaquin River Delta: a pasture infested by the invasive perennial pepperweed (Lepidium latifolium) and a rice plantation (Oryza sativa). Specific questions we address are: a) how does year-round grazing affect pepperweed canopy development, b) is it possible to identify phenological key events of managed ecosystems (pepperweed: flowering; rice: heading) from the limited spectral information of digital camera imagery, c) is a simple greenness index derived from digital camera imagery sufficient to track leaf area index and canopy development of managed ecosystems, and d) what are the scales of temporal correlation between digital camera signals and carbon and water fluxes of managed ecosystems? Preliminary results for the pasture-pepperweed ecosystem show that year-round grazing inhibits the accumulation of dead stalks causing earlier green-up and that digital camera imagery is well suited to capture the onset of flowering and the associated decrease in photosynthetic CO2 uptake. Results from our analyses are of great relevance from both a global environmental change and land management perspective.
NASA Technical Reports Server (NTRS)
Crane, R. K.
1975-01-01
An experiment was conducted to study the relations between the empirical distribution functions of reflectivity at specified locations above the surface and the corresponding functions at the surface. A bistatic radar system was used to measure continuously the scattering cross section per unit volume at heights of 3 and 6 km. A frequency of 3.7 GHz was used in the tests. It was found that the distribution functions for reflectivity may significantly change with height at heights below the level of the melting layer.
Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas.
Christianen, Marjolijn J A; Herman, Peter M J; Bouma, Tjeerd J; Lamers, Leon P M; van Katwijk, Marieke M; van der Heide, Tjisse; Mumby, Peter J; Silliman, Brian R; Engelhard, Sarah L; van de Kerk, Madelon; Kiswara, Wawan; van de Koppel, Johan
2014-02-22
Marine protected areas (MPAs) are key tools for combatting the global overexploitation of endangered species. The prevailing paradigm is that MPAs are beneficial in helping to restore ecosystems to more 'natural' conditions. However, MPAs may have unintended negative effects when increasing densities of protected species exert destructive effects on their habitat. Here, we report on severe seagrass degradation in a decade-old MPA where hyper-abundant green turtles adopted a previously undescribed below-ground foraging strategy. By digging for and consuming rhizomes and roots, turtles create abundant bare gaps, thereby enhancing erosion and reducing seagrass regrowth. A fully parametrized model reveals that the ecosystem is approaching a tipping point, where consumption overwhelms regrowth, which could potentially lead to complete collapse of the seagrass habitat. Seagrass recovery will not ensue unless turtle density is reduced to nearly zero, eliminating the MPA's value as a turtle reserve. Our results reveal an unrecognized, yet imminent threat to MPAs, as sea turtle densities are increasing at major nesting sites and the decline of seagrass habitat forces turtles to concentrate on the remaining meadows inside reserves. This emphasizes the need for policy and management approaches that consider the interactions of protected species with their habitat.
Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas
Christianen, Marjolijn J. A.; Herman, Peter M. J.; Bouma, Tjeerd J.; Lamers, Leon P. M.; van Katwijk, Marieke M.; van der Heide, Tjisse; Mumby, Peter J.; Silliman, Brian R.; Engelhard, Sarah L.; van de Kerk, Madelon; Kiswara, Wawan; van de Koppel, Johan
2014-01-01
Marine protected areas (MPAs) are key tools for combatting the global overexploitation of endangered species. The prevailing paradigm is that MPAs are beneficial in helping to restore ecosystems to more ‘natural’ conditions. However, MPAs may have unintended negative effects when increasing densities of protected species exert destructive effects on their habitat. Here, we report on severe seagrass degradation in a decade-old MPA where hyper-abundant green turtles adopted a previously undescribed below-ground foraging strategy. By digging for and consuming rhizomes and roots, turtles create abundant bare gaps, thereby enhancing erosion and reducing seagrass regrowth. A fully parametrized model reveals that the ecosystem is approaching a tipping point, where consumption overwhelms regrowth, which could potentially lead to complete collapse of the seagrass habitat. Seagrass recovery will not ensue unless turtle density is reduced to nearly zero, eliminating the MPA's value as a turtle reserve. Our results reveal an unrecognized, yet imminent threat to MPAs, as sea turtle densities are increasing at major nesting sites and the decline of seagrass habitat forces turtles to concentrate on the remaining meadows inside reserves. This emphasizes the need for policy and management approaches that consider the interactions of protected species with their habitat. PMID:24403341
Agricultural peatlands: towards a greenhouse gas sink - a synthesis of a Dutch landscape study
NASA Astrophysics Data System (ADS)
Schrier-Uijl, A. P.; Kroon, P. S.; Hendriks, D. M. D.; Hensen, A.; Van Huissteden, J.; Berendse, F.; Veenendaal, E. M.
2014-08-01
It is generally known that managed, drained peatlands act as carbon (C) sources. In this study we examined how mitigation through the reduction of the intensity of land management and through rewetting may affect the greenhouse gas (GHG) emission and the C balance of intensively managed, drained, agricultural peatlands. Carbon and GHG balances were determined for three peatlands in the western part of the Netherlands from 2005 to 2008 by considering spatial and temporal variability of emissions (CO2, CH4 and N2O). One area (Oukoop) is an intensively managed grass-on-peatland area, including a dairy farm, with the ground water level at an average annual depth of 0.55 (±0.37) m below the soil surface. The second area (Stein) is an extensively managed grass-on-peatland area, formerly intensively managed, with a dynamic ground water level at an average annual depth of 0.45 (±0.35) m below the soil surface. The third area is a (since 1998) rewetted former agricultural peatland (Horstermeer), close to Oukoop and Stein, with the average annual ground water level at a depth of 0.2 (±0.20) m below the soil surface. During the measurement campaigns we found that both agriculturally managed sites acted as C and GHG sources and the rewetted former agricultural peatland acted as a C and GHG sink. The ecosystem (fields and ditches) total GHG balance, including CO2, CH4 and N2O, amounted to 3.9 (±0.4), 1.3 (±0.5) and -1.7 (±1.8) g CO2-eq m-2 d-1 for Oukoop, Stein and Horstermeer, respectively. Adding the farm-based emissions to Oukoop and Stein resulted in a total GHG emission of 8.3 (±1.0) and 6.6 (±1.3) g CO2-eq m-2 d-1, respectively. For Horstermeer the GHG balance remained the same since no farm-based emissions exist. Considering the C balance (uncertainty range 40-60%), the total C release in Oukoop and Stein is 5270 and 6258 kg C ha-1 yr-1, respectively (including ecosystem and management fluxes), and the total C uptake in Horstermeer is 3538 kg C ha-1 yr-1. Water bodies contributed significantly to the terrestrial GHG balance because of a high release of CH4. Overall, this study suggests that managed peatlands are large sources of GHGs and C, but, if appropriate measures are taken, they can be turned back into GHG and C sinks within 15 years of abandonment and rewetting. The shift from an intensively managed grass-on-peat area (Oukoop) to an extensively managed one (Stein) reduced the GHG emissions mainly because N2O emission and farm-based CH4 emissions decreased.
Soil microbial community profiles and functional diversity in limestone cedar glades
Cartwright, Jennifer M.; Dzantor, E. Kudjo; Momen, Bahram
2016-01-01
Rock outcrop ecosystems, such as limestone cedar glades (LCGs), are known for their rare and endemic plant species adapted to high levels of abiotic stress. Soils in LCGs are thin (< 25 cm), soil-moisture conditions fluctuate seasonally between xeric and saturated, and summer soil temperatures commonly exceed 48 °C. The effects of these stressors on soil microbial communities (SMC) remain largely unstudied, despite the importance of SMC-plant interactions in regulating the structure and function of terrestrial ecosystems. SMC profiles and functional diversity were characterized in LCGs using community level physiological profiling (CLPP) and plate-dilution frequency assays (PDFA). Most-probable number (MPN) estimates and microbial substrate-utilization diversity (H) were positively related to soil thickness, soil organic matter (OM), soil water content, and vegetation density, and were diminished in alkaline soil relative to circumneutral soil. Soil nitrate showed no relationship to SMCs, suggesting lack of N-limitation. Canonical correlation analysis indicated strong correlations between microbial CLPP patterns and several physical and chemical properties of soil, primarily temperature at the ground surface and at 4-cm depth, and secondarily soil-water content, enabling differentiation by season. Thus, it was demonstrated that several well-described abiotic determinants of plant community structure in this ecosystem are also reflected in SMC profiles.
NASA Astrophysics Data System (ADS)
Nikitina, Oxana I.; Bazarov, Kirill Y.; Egidarev, Evgeny G.
2018-06-01
The large Zeya hydropower dam is located on the Zeya River, the largest left-bank tributary of the Amur-Heilong River in Russia. The dam had been constructed by 1980 and its operation has significantly transformed the flow regime of the Zeya River. The flow regulation has reduced the magnitude of periodic flooding of the floodplain areas located downstream from the Zeya dam and disrupted habitats of flora and fauna. An estimation of the transformation of the freshwater ecosystems is required to develop measures necessary either to maintain or restore disrupted ecosystems. Application of remote sensing methods allows measuring characteristics of the ecosystem's components. Two sections of a floodplain below the Zeya dam were considered for analysis in order to detect changes in objects at each site during the comparison of remote data from 1969/1971 and 2016.
Evaluation of Thermal Protection Tile Transmissibility for Ground Vibration Test
NASA Technical Reports Server (NTRS)
Chung, Y. T.; Fowler, Samuel B.; Lo, Wenso; Towner, Robert
2005-01-01
Transmissibility analyses and tests were conducted on a composite panel with thermal protection system foams to evaluate the quality of the measured frequency response functions. Both the analysis and the test results indicate that the vehicle dynamic responses are fully transmitted to the accelerometers mounted on the thermal protection system in the normal direction below a certain frequency. In addition, the in-plane motions of the accelerometer mounted on the top surface of the thermal protection system behave more actively than those on the composite panel due to the geometric offset of the accelerometer from the panel in the test set-up. The transmissibility tests and analyses show that the frequency response functions measured from the accelerometers mounted on the TPS will provide accurate vehicle responses below 120 Hz for frequency and mode shape identification. By confirming that accurate dynamic responses below a given frequency can be obtained, this study increases the confidence needed for conducting the modal testing, model correlation, and model updating for a vehicle installed with TPS. '
Grizelle González; D. Lodge
2017-01-01
Progress in understanding changes in soil biology in response to latitude, elevation and disturbance gradients has generally lagged behind studies of above-ground plants and animals owing to methodological constraints and high diversity and complexity of interactions in below-ground food webs. New methods have opened research opportunities in below-ground systems,...
Attributes of an alluvial river and their relation to water policy and management
Trush, William J.; McBain, Scott M.; Leopold, Luna B.
2000-01-01
Rivers around the world are being regulated by dams to accommodate the needs of a rapidly growing global population. These regulatory efforts usually oppose the natural tendency of rivers to flood, move sediment, and migrate. Although an economic benefit, river regulation has come at unforeseen and unevaluated cumulative ecological costs. Historic and contemporary approaches to remedy environmental losses have largely ignored hydrologic, geomorphic, and biotic processes that form and maintain healthy alluvial river ecosystems. Several commonly known concepts that govern how alluvial channels work have been compiled into a set of “attributes” for alluvial river integrity. These attributes provide a minimum checklist of critical geomorphic and ecological processes derived from field observation and experimentation, a set of hypotheses to chart and evaluate strategies for restoring and preserving alluvial river ecosystems. They can guide how to (i) restore alluvial processes below an existing dam without necessarily resorting to extreme measures such as demolishing one, and (ii) preserve alluvial river integrity below proposed dams. Once altered by dam construction, a regulated alluvial river will never function as before. But a scaled-down morphology could retain much of a river's original integrity if key processes addressed in the attributes are explicitly provided. Although such a restoration strategy is an experiment, it may be the most practical solution for recovering regulated alluvial river ecosystems and the species that inhabit them. Preservation or restoration of the alluvial river attributes is a logical policy direction for river management in the future. PMID:11050220
Redox potential: An indicator of site productivity in forest management
NASA Astrophysics Data System (ADS)
Sajedi, Toktam; Prescott, Cindy; Lavkulich, Les
2010-05-01
Redox potential (Eh) is an integrated soil measurement that reflects several environmental conditions in the soil associated with aeration, moisture and carbon (organic matter) dynamics. Its measurement can be related to water table fluctuations, precipitation and landscape gradients, organic matter decomposition rates, nutrient dynamics, biological diversity and plant species distribution. Redox is an excellent indicator of soil biological processes, as it is largely a reflection of microbial activities which to a large extent govern carbon dynamics and nutrient cycling. Redox thus serves as an ecological indicator of site productivity at the ecosystem scale and may be used for management purposes as its magnitude can be altered by activities such as harvesting and drainage. A threshold value of 300 mv has been documented as the critical value below which anaerobic conditions in the soil develop. However, redox measurements and its impacts on ecosystem processes such as nutrient cycling and productivity, especially in forest ecosystems, have not received the attention that this "master" variable deserves, On northern Vancouver Island, Canada, regenerating stands of western redcedar-western hemlock (CH) sites exhibit symptoms of nutrient deficiencies and slow growth, but this phenomenon does not occur on adjacent western hemlock- amabalis fir (HA) sites. We tested the hypothesis that differences in nutrient supply and distribution of plant species was caused by differences in moisture regime and redox potential. Redox potential, pH, soil aeration depth (steel rods), organic matter thickness, bulk density, soil carbon store, plant species distribution and richness were measured at five old-growth and five 10-year-old cutover blocks. Results of investigations confirmed that CH forests were wetter, had redox values lower than the critical 300mv and a shallower aerated zone, compared with adjacent regenerating HA sites. Fifty percent of the CH plots had redox values less than +300 mv in the forest floor; whereas only 15 percent of the HA plots had such low values. Composition of the forest understory species was related to soil moisture/aeration. Soil aeration was the most important soil variable influencing plant species composition, explaining 25% of the plant community variability. Eh was always greater than +300 mv in the mineral soil of old growth HA forests but below +300 mv in HA clearcuts, suggesting paludification; however it was below or at this threshold in both CH forests and clearcuts. The reduction in measured redox without a noticeable change in the watertable in HA sites suggests that harvesting HA forests shifts the ecosystem towards more anaerobic conditions more similar to CH sites. In a complimentary study, the significance of redox was assessed in a cedar swamp cutover by exploring the relationships between soil redox potential and tree growth, and mineralization of C and soil C store along a gradient of moisture caused by drainage. Drainage improved aeration in the rooting zone, expressed as redox, and above- and below ground C storage; however C mineralization measured as CO2 evolution was not affected. Tree growth was positively correlated with redox potential. Our results indicate that drainage could be a useful silvicultural practice for improving the productivity of these ecosystems and that it may be possible to improve tree growth without stimulating loss of soil C. This requires that drainage improve aeration in the rooting zone while maintaining redox levels of less than +300 mV in the bulk soil, indicating that redox measurements should be incorporated into silviculture interventions to improve productivity of these forests.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
... marine ecosystem of the coast of South Africa and Namibia. The Benguela ecosystem, encompassing one of... (Fennel 1999, p. 177). The Benguela ecosystem is an important center of marine biodiversity and marine... feeding grounds for a variety of marine and avian species. The Benguela ecosystem historically supports a...
2011-09-01
movement of the groundwater that sustains Headwater Slope wetlands are not regulated and continue to affect their distribution, character, and functions...permeability and soil porosity, thereby affecting the subsurface movement and storage of water in the soil. Soil permeability will affect the rate at...discharge time to the adjacent stream occurs over a longer period. Soil porosity will affect the volume of space available below the ground surface
NASA Astrophysics Data System (ADS)
Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David
2018-04-01
Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.
Lara, Mark J; Nitze, Ingmar; Grosse, Guido; McGuire, A David
2018-04-10
Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km 2 ) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.
NASA Astrophysics Data System (ADS)
Street, L. E.; Burns, N. R.; Woodin, S. J.
2012-04-01
We re-visit a unique field manipulation study in Svalbard to assess the long-term recovery of plant species composition, leaf tissue chemistry and total ecosystem carbon storage from nutrient enrichment. The experiment was established in 1991. The original aim was to quantify the 'critical load' of nitrogen (N) for tundra; that is, the minimum rate of N deposition affecting ecosystem structure and function. Dissolved N was applied to heath vegetation, both alone and in combination with phosphorous (P), during the growing season over three years. The rates of N addition were lower than in most other nutrient manipulation studies, and were designed to represent typical rates of deposition in the Scottish highlands (50 kg N ha-1 yr-1) and maximum deposition rates experienced in the Arctic (10 kg N ha-1 yr-1). Significant changes in shrub cover, the greenness and N content of the moss layer, and the extent of ecosystem N saturation had occurred by the end of the treatment period. After 18 years of recovery without further treatment, we assessed primary productivity using CO2 flux measurements, and the 'greenness' of vegetation using the Normalised Difference Vegetation Index. We made destructive measurements of above- and below-ground carbon and nutrient stocks, quantified species composition and sampled leaf tissue for chemical analysis. Total carbon storage in organic soils and vegetation was c. 40 % lower in the plots treated with 50 kg N ha-1 yr-1 compared to controls. Species composition in N treated plots also differed significantly, but there was no clear treatment effect on primary productivity. Where 50 kg N ha-1 yr-1 was applied in combination with P (at 5 kg P ha-1 yr-1 ), organic carbon storage was c. 70 % greater than controls, the vegetation was greener, and primary productivity higher. Effects of the treatments were also still clearly apparent in moss tissue nutrient status, even at the lower nitrogen application rate. Our results imply that the effects of nutrient enrichment on High Arctic ecosystems are not readily reversible, and that short-term addition of N can result in long-term carbon losses. We show that mosses perform an important role in retaining deposited N aboveground. Our results also highlight the importance of P in mediating carbon cycle responses to increased N availability.
Summary of hydrologic data collected during 1975 in Dade County, Florida
Hull, John E.; Beaven, T.R.
1977-01-01
During the 1975 calendar year rainfall in Dade County, Fla., was 14.89 inches below the long-term average (57.17 in.). Ground-water levels ranged from 0.1 foot above to 1.1 feet below average. The highest and lowest ground-water levels for the year were both 1 foot below their long-term averages. In the Hialeah-Miami Springs area, ground-water levels in wells near the centers of the heaviest pumping ranged from 9.8 to 11.2 feet below mean sea level and in the Southwest well field area, ground-water levels near the centers of pumping ranged from 3.5 feet above to 3.4 feet below mean sea level. The combined average daily discharge from eight major streams and canals that flow into Biscayne Bay was 1,014 cubic feet per second (cfs), 124 cfs above the combined average daily flow for the 1974 water year. The combined average daily flow through the Tamiami Canal outlets was 568 cfs, 202 cfs below that of the 1974 water year. The position of the salt front in 1975 in the coastal part of the Biscayne aquifer was about the same as in 1974 except at Miami International Airport and Homestead Air Force Base where the salt front had encroached farther inland. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Barron-Gafford, G.; Minor, R. L.; Heard, M. M.; Sutter, L. F.; Yang, J.; Potts, D. L.
2015-12-01
The southwestern U.S. is predicted to experience increasing temperatures and longer periods of inter-storm drought. High temperature and water deficit restrict plant productivity and ecosystem functioning, but the influence of future climate is predicted to be highly heterogeneous because of the complex terrain characteristic of much of the Critical Zone (CZ). Within our Critical Zone Observatory (CZO) in the Southwestern US, we monitor ecosystem-scale carbon and water fluxes using eddy covariance. This whole-ecosystem metric is a powerful integrating measure of ecosystem function over time, but details on spatial heterogeneity resulting from topographic features of the landscape are not captured, nor are interactions among below- and aboveground processes. We supplement eddy covariance monitoring with distributed measures of carbon flux from soil and vegetation across different aspects to quantify the causes and consequences of spatial heterogeneity through time. Given that (i) aspect influences how incoming energy drives evaporative water loss and (ii) seasonality drives temporal patterns of soil moisture recharge, we were able to examine the influence of these processes on CO2 efflux by investigating variation across aspect. We found that aspect was a significant source of spatial heterogeneity in soil CO2 efflux, but the influence varied across seasonal periods. Snow on South-facing aspects melted earlier and yielded higher efflux rates in the spring. However, during summer, North- and South-facing aspects had similar amounts of soil moisture, but soil temperatures were warmer on the North-facing aspect, yielding greater rates of CO2 efflux. Interestingly, aspect did not influence photosynthetic rates. Taken together, we found that physical features of the landscape yielded predictable patterns of levels and phenologies of soil moisture and temperature, but these drivers differentially influenced below- and aboveground sources of carbon exchange. Conducting these spatially distributed measurements are time consuming. Looking forward, we have begun using unmanned aerial vehicles outfitted with thermal and multi-spectral cameras to quantify patterns of water flux, NDVI, needle browning due to moisture stress, and overall phenology in the CZ.
Li, Guixiang; Xu, Guorui; Shen, Congcong; Tang, Yong; Zhang, Yuxin; Ma, Keming
2016-11-01
Above- and below-ground organisms are closely linked, but how elevational distribution pattern of soil microbes shifting across the treeline still remains unknown. Sampling of 140 plots with transect, we herein investigated soil bacterial distribution pattern from a temperate forest up to a subalpine meadow along an elevational gradient using Illumina sequencing. Our results revealed distinct elevational patterns of bacterial diversity above and below the treeline in responding to changes in soil conditions: a hollow elevational pattern in the forest (correlated with soil temperature, pH, and C:N ratio) and a significantly decreasing pattern in the meadow (correlated with soil pH, and available phosphorus). The bacterial community structure was also distinct between the forest and meadow, relating to soil pH in the forest and soil temperature in the meadow. Soil bacteria did not follow the distribution pattern of herb diversity, but bacterial community structure could be predicted by herb community composition. These results suggest that plant communities have an important influence on soil characteristics, and thus change the elevational distribution of soil bacteria. Our findings are useful for future assessments of climate change impacts on microbial community.
Use of inexpensive pressure transducers for measuring water levels in wells
Keeland, B.D.; Dowd, J.F.; Hardegree, W.S.
1997-01-01
Frequent measurement of below ground water levels at multiple locations is an important component of many wetland ecosystem studies. These measurements, however, are usually time consuming, labor intensive, and expensive. This paper describes a water-level sensor that is inexpensive and easy to construct. The sensor is placed below the expected low water level in a shallow well and, when connected to a datalogger, uses a pressure transducer to detect groundwater or surface water elevations. Details of pressure transducer theory, sensor construction, calibration, and examples of field installations are presented. Although the transducers must be individually calibrated, the sensors have a linear response to changing water levels (r2 ??? .999). Measurement errors resulting from temperature fluctuations are shown to be about 4 cm over a 35??C temperature range, but are minimal when the sensors are installed in groundwater wells where temperatures are less variable. Greater accuracy may be obtained by incorporating water temperature data into the initial calibration (0.14 cm error over a 35??C temperature range). Examples of the utility of these sensors in studies of groundwater/surface water interactions and the effects of water level fluctuations on tree growth are provided. ?? 1997 Kluwer Academic Publishers.
Immigration Visa Issuances and Grounds for Exclusion: Policy and Trends
2010-03-10
Protection (CBP) is tasked with inspecting all people who enter the United States. The Attorney General and DOJ’s Executive Office for Immigration Review...Department of Health and Human Services (HHS) sets policy on the health -related grounds for inadmissibility, as discussed below. Immigration Visa...inadmissibility of the INA, which include criminal, terrorist, and public health grounds for exclusion, discussed below.10 Trends The number of immigrant visas
Wind Wave Behavior in Fetch and Depth Limited Estuaries
NASA Astrophysics Data System (ADS)
Karimpour, Arash; Chen, Qin; Twilley, Robert R.
2017-01-01
Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design.
Wind Wave Behavior in Fetch and Depth Limited Estuaries
Karimpour, Arash; Chen, Qin; Twilley, Robert R.
2017-01-01
Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design. PMID:28098236
Wind Wave Behavior in Fetch and Depth Limited Estuaries.
Karimpour, Arash; Chen, Qin; Twilley, Robert R
2017-01-18
Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design.
GROUND WATER/SURFACE WATER INTERACTIONS IN A GREAT BASIN WET MEADOW ECOSYSTEM
Riparian corridors within upland watersheds of the Great Basin locally contain wet meadow ecosystems that support much of the region's biodiversity. Plant communities in these riparian and wet meadow ecosystems can be highly dependent on the depth to and fluctuations in the water...
Long-term resilience of above- and below ground ecosystem components among contrasting ecosystems.
Wardle, David A; Jonsson, Micael
2014-07-01
While several studies have explored how short-term ecological responses to disturbance vary among ecosystems, experimental studies of how contrasting ecosystems recover from disturbance in the longer term are few. We performed a simple long-term experiment on each of 30 contrasting forested islands in northern Sweden that vary in size; as size decreases, time since fire increases, soil fertility and ecosystem productivity declines, and plant species diversity increases. We predicted that resilience of understory plant community properties would be greatest on the larger, more productive islands, and that this would be paralleled by greater resilience of soil biotic and abiotic properties. For each island, we applied three disturbance treatments of increasing intensity to the forest understory once in 1998, i.e., light trimming, heavy trimming, and burning; a fourth treatment was an undisturbed control. We measured recovery of the understory vascular plant community annually over the following 14 years, and at that time also assessed recovery of mosses and several belowground variables. Consistent with our predictions, vascular plant whole-community variables (total cover, species richness, diversity [Shannon's H'], and community composition) recovered significantly more slowly on the smaller (least fertile) than the larger islands, but this difference was not substantial, and only noticeable in the most severely disturbed treatment. When an index of resilience was used, we were unable to detect effects of island size on the recovery of any property. We found that mosses and one shrub species (Empetrum hermaphroditum) recovered particularly slowly, and the higher abundance of this shrub on small islands was sufficient to explain any slower recovery of whole-ecosystem variables on those islands. Further, several belowground variables had not fully recovered from the most intense disturbance after 14 yr, and counter to our predictions, the degree of their recovery was never influenced by island size. While several studies have shown large variation among plant communities in their short-term response (notably resistance) to environmental perturbations, our results reveal that when perturbations are applied equally to highly contrasting ecosystems, differences in resilience among them in the longer term can be relatively minor, regardless of the severity of disturbance.
Thermal inertia mapping of below ground objects and voids
NASA Astrophysics Data System (ADS)
Del Grande, Nancy K.; Ascough, Brian M.; Rumpf, Richard L.
2013-05-01
Thermal inertia (effusivity) contrast marks the borders of naturally heated below ground object and void sites. The Dual Infrared Effusivity Computed Tomography (DIRECT) method, patent pending, detects and locates the presence of enhanced heat flows from below ground object and void sites at a given area. DIRECT maps view contrasting surface temperature differences between sites with normal soil and sites with soil disturbed by subsurface, hollow or semi-empty object voids (or air gaps) at varying depths. DIRECT utilizes an empirical database created to optimize the scheduling of daily airborne thermal surveys to view and characterize unseen object and void types, depths and volumes in "blind" areas.
Wang, Dianjie; Shen, Youxin; Li, Yuhui; Huang, Jin
2016-01-01
Emergent rock outcrops are common in terrestrial ecosystems. However, little research has been conducted regarding their surface function in redistributing organic carbon and nutrient fluxes to soils nearby. Water that fell on and ran off 10 individual rock outcrops was collected in three 100 × 100 m plots within a rock desertification ecosystem, an anthropogenic forest ecosystem, and a secondary forest ecosystem between June 2013 and June 2014 in Shilin, SW China. The concentrations of total organic carbon (TOC), total nitrogen (N), total phosphorus (P), and potassium (K) in the water samples were determined during three seasons, and the total amounts received by and flowing out from the outcrops were calculated. In all three ecosystems, TOC and N, P, and K were found throughout the year in both the water received by and delivered to nearby soil patches. Their concentrations and amounts were generally greater in forested ecosystems than in the rock desertification ecosystem. When rock outcrops constituted a high percentage (≥ 30%) of the ground surface, the annual export of rock outcrop runoff contributed a large amount of organic carbon and N, P, and K nutrients to soil patches nearby by comparison to the amount soil patches received via atmospheric deposition. These contributions may increase the spatial heterogeneity of soil fertility within patches, as rock outcrops of different sizes, morphologies, and emergence ratios may surround each soil patch. PMID:27509199
Partitioning autotrophic and heterotrophic respiration at Howland Forest
NASA Astrophysics Data System (ADS)
Carbone, Mariah; Hollinger, Dave; Davidson, Eric; Savage, Kathleen; Hughes, Holly
2015-04-01
Terrestrial ecosystem respiration is the combined flux of CO2 to the atmosphere from above- and below-ground, plant (autotrophic) and microbial (heterotrophic) sources. Flux measurements alone (e.g., from eddy covariance towers or soil chambers) cannot distinguish the contributions from these sources, which may change seasonally and respond differently to temperature and moisture. The development of improved process-based models that can predict how plants and microbes respond to changing environmental conditions (on seasonal, interannual, or decadal timescales) requires data from field observations and experiments to distinguish among these respiration sources. We tested the viability of partitioning of soil and ecosystem respiration into autotrophic and heterotrophic components with different approaches at the Howland Forest in central Maine, USA. These include an experimental manipulation using the classic root trenching approach and targeted ∆14CO2 measurements. For the isotopic measurements, we used a two-end member mass balance approach to determine the fraction of soil respiration from autotrophic and heterotrophic sources. When summed over the course of the growing season, the trenched chamber flux (heterotrophic) accounted for 53 ± 2% of the total control chamber flux. Over the four different 14C sampling periods, the heterotrophic component ranged from 35-55% and the autotrophic component ranges 45-65% of the total flux. Next steps will include assessing the value of the flux partitioning for constraining a simple ecosystem model using a model-data fusion approach to reduce uncertainties in estimates of NPP and simulation of future soil C stocks and fluxes.
Zaehle, Sönke; Medlyn, Belinda E; De Kauwe, Martin G; Walker, Anthony P; Dietze, Michael C; Hickler, Thomas; Luo, Yiqi; Wang, Ying-Ping; El-Masri, Bassil; Thornton, Peter; Jain, Atul; Wang, Shusen; Warlind, David; Weng, Ensheng; Parton, William; Iversen, Colleen M; Gallet-Budynek, Anne; McCarthy, Heather; Finzi, Adrien; Hanson, Paul J; Prentice, I Colin; Oren, Ram; Norby, Richard J
2014-01-01
We analysed the responses of 11 ecosystem models to elevated atmospheric [CO2] (eCO2) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)–nitrogen (N) cycle processes. We decomposed the model responses into component processes affecting the response to eCO2 and confronted these with observations from the FACE experiments. Most of the models reproduced the observed initial enhancement of net primary production (NPP) at both sites, but none was able to simulate both the sustained 10-yr enhancement at Duke and the declining response at ORNL: models generally showed signs of progressive N limitation as a result of lower than observed plant N uptake. Nonetheless, many models showed qualitative agreement with observed component processes. The results suggest that improved representation of above-ground–below-ground interactions and better constraints on plant stoichiometry are important for a predictive understanding of eCO2 effects. Improved accuracy of soil organic matter inventories is pivotal to reduce uncertainty in the observed C–N budgets. The two FACE experiments are insufficient to fully constrain terrestrial responses to eCO2, given the complexity of factors leading to the observed diverging trends, and the consequential inability of the models to explain these trends. Nevertheless, the ecosystem models were able to capture important features of the experiments, lending some support to their projections. PMID:24467623
Hessen, Dag O; Tombre, Ingunn M; van Geest, Gerben; Alfsnes, Kristian
2017-02-01
Migratory connectivity by birds may mutually affect different ecosystems over large distances. Populations of geese overwintering in southern areas while breeding in high-latitude ecosystems have increased strongly over the past decades. The increase is likely due to positive feedbacks caused by climate change at both wintering, stopover sites and breeding grounds, land-use practices at the overwintering grounds and protection from hunting. Here we show how increasing goose populations in temperate regions, and increased breeding success in the Arctic, entail a positive feedback with strong impacts on Arctic freshwater ecosystems in the form of eutrophication. This may again strongly affect community composition and productivity of the ponds, due to increased nutrient loadings or birds serving as vectors for new species.
Seasonal below-ground metabolism in switchgrass
USDA-ARS?s Scientific Manuscript database
Switchgrass (Panicum virgatum) a perennial, polyploid, C4 warm-season grass is one of the foremost herbaceous species being advanced as a source of biomass for biofuel end uses. At the end of every growing season, the aerial tissues senesce, and the below-ground rhizomes become dormant. Future growt...
Lindroth, Richard L
2010-01-01
Prominent among the many factors now affecting the sustainability of forest ecosystems are anthropogenically-generated carbon dioxide (CO2) and ozone (O3). CO2 is the substrate for photosynthesis and thus can accelerate tree growth, whereas O3 is a highly reactive oxygen species and interferes with basic physiological functions. This review summarizes the impacts of CO2 and O3 on tree chemical composition and highlights the consequences thereof for trophic interactions and ecosystem dynamics. CO2 and O3 influence phytochemical composition by altering substrate availability and biochemical/physiological processes such as photosynthesis and defense signaling pathways. Growth of trees under enriched CO2 generally leads to an increase in the C/N ratio, due to a decline in foliar nitrogen and concomitant increases in carbohydrates and phenolics. Terpenoid levels generally are not affected by atmospheric CO2 concentration. O3 triggers up-regulation of antioxidant defense pathways, leading to the production of simple phenolics and flavonoids (more so in angiosperms than gymnosperms). Tannins levels generally are unaffected, while terpenoids exhibit variable responses. In combination, CO2 and O3 exert both additive and interactive effects on tree chemical composition. CO2-and O3-mediated changes in plant chemistry influence host selection, individual performance (development, growth, reproduction), and population densities of herbivores (primarily phytophagous insects) and soil invertebrates. These changes can effect shifts in the amount and temporal pattern of forest canopy damage and organic substrate deposition. Decomposition rates of leaf litter produced under elevated CO2 and O3 may or may not be altered, and can respond to both the independent and interactive effects of the pollutants. Overall, however, CO2 and O3 effects on decomposition will be influenced more by their impacts on the quantity, rather than quality, of litter produced. A prominent theme to emerge from this and related reviews is that the effects of elevated CO2 and O3 on plant chemistry and ecological interactions are highly context- and species-specific, thus frustrating attempts to identify general, global patterns. Many of the interactions that govern above- and below-ground community and ecosystem processes are chemically mediated, ultimately influencing terrestrial carbon sequestration and feeding back to influence atmospheric composition. Thus, the discipline of chemical ecology is fundamentally important for elucidating the impacts of humans on the health and sustainability of forest ecosystems. Future research should seek to increase the diversity of natural products, species, and biomes studied; incorporate long-term, multi-factor experiments; and employ a comprehensive “genes to ecosystems” perspective that couples genetic/genomic tools with the approaches of evolutionary and ecosystem ecology.
Glade, Francisco E; Miranda, Marcelo D; Meza, Francisco J; van Leeuwen, Willem J D
2016-12-01
Time series of vegetation indices and remotely sensed phenological data offer insights about the patterns in vegetation dynamics. Both are useful sources of information for analyzing and monitoring ecosystem responses to environmental variations caused by natural and anthropogenic drivers. In the semi-arid region of Chile, climate variability and recent severe droughts in addition to land-use changes pose threats to the stability of local ecosystems. Normalized difference vegetation index time series (2000-2013) data from the moderate resolution imaging spectroradiometer (MODIS) was processed to monitor the trends and patterns of vegetation productivity and phenology observed over the last decade. An analysis of the relationship between (i) vegetation productivity and (ii) precipitation and temperature data for representative natural land-use cover classes was made. Using these data and ground measurements, productivity estimates were projected for two climate change scenarios (RCP2.6 and RCP8.5) at two altitudinal levels. Results showed negative trends of vegetation productivity below 2000 m a.s.l. and positive trends for higher elevations. Phenology analysis suggested that mountainous ecosystems were starting their growing period earlier in the season, coinciding with a decreased productivity peak during the growing season. The coastal shrubland/grassland land cover class had a significant positive relation with rainfall and a significant negative relation with temperature, suggesting that these ecosystems are vulnerable to climate change. Future productivity projections indicate that under an RCP8.5 climate change scenario, productivity could decline by 12% in the period of 2060-2100, leading to a severe vegetation degradation at lower altitudes and in drier areas.
Discerning Thermodynamic Basis of Self-Organization in Critical Zone Structure and Function
NASA Astrophysics Data System (ADS)
Richardson, M.; Kumar, P.
2017-12-01
Self-organization characterizes the spontaneous emergence of order. Self-organization in the Critical Zone, the region of Earth's skin from below the groundwater table to the top of the vegetation canopy, involves the interaction of biotic and abiotic processes occurring through a hierarchy of temporal and spatial scales. The self-organization is sustained through input of energy and material in an open system framework, and the resulting formations are called dissipative structures. Why do these local states of organization form and how are they thermodynamically favorable? We hypothesize that structure formation is linked to energy conversion and matter throughput rates across driving gradients. Furthermore, we predict that structures in the Critical Zone evolve based on local availability of nutrients, water, and energy. By considering ecosystems as open thermodynamic systems, we model and study the throughput signatures on short times scales to determine origins and characteristics of ecosystem structure. This diagnostic approach allows us to use fluxes of matter and energy to understand the thermodynamic drivers of the system. By classifying the fluxes and dynamics in a system, we can identify patterns to determine the thermodynamic drivers for organized states. Additionally, studying the partitioning of nutrients, water, and energy throughout ecosystems through dissipative structures will help identify reasons for structure shapes and how these shapes impact major Critical Zone functions.
NASA Astrophysics Data System (ADS)
Pouyat, R. V.; Chen, Y.; Yesilonis, I.; Day, S.
2014-12-01
Land use change (LUC) has a significant impact on both above- and below-ground carbon (C) stocks; however, little is known about the net effects of urban LUC on the C cycle and climate system. Moreover, as climate change becomes an increasingly pressing concern, there is growing evidence that urban policy and management decisions can have significant regional impacts on C dynamics. Soil organic carbon (SOC) varies significantly across ecoregions at global and continental scales due to differential sensitivity of primary production, substrate quality, and organic matter decay to changes in temperature and soil moisture. These factors are highly modified by urban LUC due to vegetation removal, soil relocation and disruption, pollution, urban heat island effects, and increased atmospheric CO2 concentrations. As a result, on a global scale urban LUC differentially affects the C cycle from ecoregion to ecoregion. For urban ecosystems, the data collected thus far suggests urbanization can lead to both an increase and decrease in soil C pools and fluxes, depending on the native ecosystem being impacted by urban development. For example, in drier climates, urban landscapes accumulate higher C densities than the native ecosystems they replaced. Results suggest also that soil C storage in urban ecosystems is highly variable with very high (> 20.0) and low (< 2.0) C densities (kg m-2 to a 1 m depth) present in the landscape at any one time. Moreover, similar to non-urban soils, total SOC densities are consistently 2-fold greater than aboveground stocks. For those soils with low SOC densities, there is potential to increase C sequestration through management, but specific urban related management practices need to be evaluated. In addition, urban LUC is a human-driven process and thus can be modified or adjusted to reduce its impacts on the C cycle. For example, policies that influence development patterns, population density, management practices, and other human factors can greatly ameliorate the impact of urban LUC on the C cycle. However, even with the recent and rapid expansion of newly acquired data, the net effects of urban LUC on C stocks and fluxes have not been comprehensively addressed. Furthermore, how sensitive these changes are to urban planning, policy decisions, and site management needs to be explored.
NASA Astrophysics Data System (ADS)
Dafflon, B.; Leger, E.; Peterson, J.; Falco, N.; Wainwright, H. M.; Wu, Y.; Tran, A. P.; Brodie, E.; Williams, K. H.; Versteeg, R.; Hubbard, S. S.
2017-12-01
Improving understanding and modelling of terrestrial systems requires advances in measuring and quantifying interactions among subsurface, land surface and vegetation processes over relevant spatiotemporal scales. Such advances are important to quantify natural and managed ecosystem behaviors, as well as to predict how watershed systems respond to increasingly frequent hydrological perturbations, such as droughts, floods and early snowmelt. Our study focuses on the joint use of UAV-based multi-spectral aerial imaging, ground-based geophysical tomographic monitoring (incl., electrical and electromagnetic imaging) and point-scale sensing (soil moisture sensors and soil sampling) to quantify interactions between above and below ground compartments of the East River Watershed in the Upper Colorado River Basin. We evaluate linkages between physical properties (incl. soil composition, soil electrical conductivity, soil water content), metrics extracted from digital surface and terrain elevation models (incl., slope, wetness index) and vegetation properties (incl., greenness, plant type) in a 500 x 500 m hillslope-floodplain subsystem of the watershed. Data integration and analysis is supported by numerical approaches that simulate the control of soil and geomorphic characteristic on hydrological processes. Results provide an unprecedented window into critical zone interactions, revealing significant below- and above-ground co-dynamics. Baseline geophysical datasets provide lithological structure along the hillslope, which includes a surface soil horizon, underlain by a saprolite layer and the fractured Mancos shale. Time-lapse geophysical data show very different moisture dynamics in various compartments and locations during the winter and growing season. Integration with aerial imaging reveals a significant linkage between plant growth and the subsurface wetness, soil characteristics and the topographic gradient. The obtained information about the organization and connectivity of the landscape is being transferred to larger regions using aerial imaging and will be used to constrain multi-scale, multi-physics hydro-biogeochemical simulations of the East River watershed response to hydrological perturbations.
Yu, Mei; Gao, Qiong
2011-01-01
Background and Aims The ability to simulate plant competition accurately is essential for plant functional type (PFT)-based models used in climate-change studies, yet gaps and uncertainties remain in our understanding of the details of the competition mechanisms and in ecosystem responses at a landscape level. This study examines secondary succession in a temperate deciduous forest in eastern China with the aim of determining if competition between tree types can be explained by differences in leaf ecophysiological traits and growth allometry, and whether ecophysiological traits and habitat spatial configurations among PFTs differentiate their responses to climate change. Methods A temperate deciduous broadleaved forest in eastern China was studied, containing two major vegetation types dominated by Quercus liaotungensis (OAK) and by birch/poplar (Betula platyphylla and Populus davidiana; BIP), respectively. The Terrestrial Ecosystem Simulator (TESim) suite of models was used to examine carbon and water dynamics using parameters measured at the site, and the model was evaluated against long-term data collected at the site. Key Results Simulations indicated that a higher assimilation rate for the BIP vegetation than OAK led to the former's dominance during early successional stages with relatively low competition. In middle/late succession with intensive competition for below-ground resources, BIP, with its lower drought tolerance/resistance and smaller allocation to leaves/roots, gave way to OAK. At landscape scale, predictions with increased temperature extrapolated from existing weather records resulted in increased average net primary productivity (NPP; +19 %), heterotrophic respiration (+23 %) and net ecosystem carbon balance (+17 %). The BIP vegetation in higher and cooler habitats showed 14 % greater sensitivity to increased temperature than the OAK at lower and warmer locations. Conclusions Drought tolerance/resistance and morphology-related allocation strategy (i.e. more allocation to leaves/roots) played key roles in the competition between the vegetation types. The overall site-average impacts of increased temperature on NPP and carbon stored in plants were found to be positive, despite negative effects of increased respiration and soil water stress, with such impacts being more significant for BIP located in higher and cooler habitats. PMID:21835816
STREAMS TO RIVERS: THE NEXT GENERATION OF ECOSYSTEM MONITORING
The historical focus in aquatic ecosystems has been on sampling methods oriented toward surveys of wadeable streams or smaller rivers. However, to fully assess the condition of the nations waters, methods are needed for systems above and below this scale. Biological communities...
Scientific Foundations for an IUCN Red List of Ecosystems
Keith, David A.; Rodríguez, Jon Paul; Rodríguez-Clark, Kathryn M.; Nicholson, Emily; Aapala, Kaisu; Alonso, Alfonso; Asmussen, Marianne; Bachman, Steven; Basset, Alberto; Barrow, Edmund G.; Benson, John S.; Bishop, Melanie J.; Bonifacio, Ronald; Brooks, Thomas M.; Burgman, Mark A.; Comer, Patrick; Comín, Francisco A.; Essl, Franz; Faber-Langendoen, Don; Fairweather, Peter G.; Holdaway, Robert J.; Jennings, Michael; Kingsford, Richard T.; Lester, Rebecca E.; Nally, Ralph Mac; McCarthy, Michael A.; Moat, Justin; Oliveira-Miranda, María A.; Pisanu, Phil; Poulin, Brigitte; Regan, Tracey J.; Riecken, Uwe; Spalding, Mark D.; Zambrano-Martínez, Sergio
2013-01-01
An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world’s ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of biodiversity PMID:23667454
Scientific foundations for an IUCN Red List of ecosystems.
Keith, David A; Rodríguez, Jon Paul; Rodríguez-Clark, Kathryn M; Nicholson, Emily; Aapala, Kaisu; Alonso, Alfonso; Asmussen, Marianne; Bachman, Steven; Basset, Alberto; Barrow, Edmund G; Benson, John S; Bishop, Melanie J; Bonifacio, Ronald; Brooks, Thomas M; Burgman, Mark A; Comer, Patrick; Comín, Francisco A; Essl, Franz; Faber-Langendoen, Don; Fairweather, Peter G; Holdaway, Robert J; Jennings, Michael; Kingsford, Richard T; Lester, Rebecca E; Mac Nally, Ralph; McCarthy, Michael A; Moat, Justin; Oliveira-Miranda, María A; Pisanu, Phil; Poulin, Brigitte; Regan, Tracey J; Riecken, Uwe; Spalding, Mark D; Zambrano-Martínez, Sergio
2013-01-01
An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world's ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of biodiversity.
NASA Astrophysics Data System (ADS)
Viers, J. H.; Kelsey, R.
2014-12-01
Reconciling the needs of nature and people in California's Sacramento - San Joaquin River Delta represents one of the most critical ecosystem management imperatives in western North America. Over 150 years the Delta has been managed for near-term human benefits and in the process 95% of riverine and deltaic wetlands have been lost throughout the region. Despite extensive land conversion and alteration of hydrological and physical processes, the Delta remains important habitat for migratory birds and is home to over 60% of California's native fish species. It is also the waterwheel for the state's vast water distribution network and is maintained by a system of constructed levees that are at risk from catastrophic failure due to sea level rise, floods, and/or seismic activity. Such a collapse would have dire consequences for > 25M humans and world's 10th largest economy that depend on its freshwater. Thus, the ultimate cost of this ecosystem alteration and simplification is a riverscape that is no longer reliable for nature or people. For 30 years, attempts to 'restore' Delta ecosystems and improve reliability have met with mixed results. For example, reconnection of floodplains to floodwaters has resulted in improved ecological health for native fishes and recharge to localized aquifers. Uncoordinated releases of discharges below dams, however, have resulted in diminished water quality and populations of indicator species. Attempts to create wildlife friendly farms have been countered by an increase in perennial agriculture and commensurate increases in irrigation water demand. From these lessons learned, we demonstrate three key components of a reconciled Delta that will be necessary in the future: 1) full restoration of critical habitats, reconnecting land and water to rebuild ecosystem function; 2) landscape redesign, incorporating natural and engineered infrastructure to create a biologically diverse, resilient landscape to support both agriculture and natural ecosystems, while reducing the impacts of climate change; and 3) recognition that some ecosystem components, including less resilient species, may be lost and other novel components may emerge. These findings serve to reconcile conflicting demands and restoring ecosystem functions in highly altered wetland landscapes worldwide.
THE EFFECT OF OZONE ON BELOW-GROUND CARBON ALLOCATION IN WHEAT
Short term 14CO2 pulse and chase experiments were conducted in order to investigate the effect ozone on below-ground carbon allocation in spring wheat seedlings (Triticum aestivumL. ?ANZA'). Wheat seedlings were grown in a sand-hydroponic system and exposed to either high ozone ...
Hartzell, S.; Harmsen, S.; Frankel, A.; Larsen, S.
1999-01-01
This article compares techniques for calculating broadband time histories of ground motion in the near field of a finite fault by comparing synthetics with the strong-motion data set for the 1994 Northridge earthquake. Based on this comparison, a preferred methodology is presented. Ground-motion-simulation techniques are divided into two general methods: kinematic- and composite-fault models. Green's functions of three types are evaluated: stochastic, empirical, and theoretical. A hybrid scheme is found to give the best fit to the Northridge data. Low frequencies ( 1 Hz) are calculated using a composite-fault model with a fractal subevent size distribution and stochastic, bandlimited, white-noise Green's functions. At frequencies below 1 Hz, theoretical elastic-wave-propagation synthetics introduce proper seismic-phase arrivals of body waves and surface waves. The 3D velocity structure more accurately reproduces record durations for the deep sedimentary basin structures found in the Los Angeles region. At frequencies above 1 Hz, scattering effects become important and wave propagation is more accurately represented by stochastic Green's functions. A fractal subevent size distribution for the composite fault model ensures an ??-2 spectral shape over the entire frequency band considered (0.1-20 Hz).
Measurement of Subsidence Across the Sacramento Delta: Applying InSAR to a Coherence-challenged Area
NASA Astrophysics Data System (ADS)
Jones, C. E.; Sharma, P.
2014-12-01
InSAR-based measurement of ground subsidence rates are notoriously challenging in agricultural areas because of rapid temporal decorrelation introduced by physical disturbance of the ground and water content changes. This can be mitigated by the use of longer wavelength instruments and time series techniques, but measurement remains a challenge particularly in areas where the deformation rates are low. Here we discuss techniques developed to work with low coherence data in a project to measure sub-island scale subsidence rates across the Sacramento-San Joaquin Delta using SBAS processing of L-band UAVSAR data collected between July 2009 and February 2014. Determination of rates in this area is particularly valuable because of the Delta's critical importance as a water resource for the State of California and as an enormously productive estuarine ecosystem. Subsidence across the region has left most of the man-made islands below mean sea level and the levees maintaining their integrity are subject to a wide range of threats, including failure during earthquakes on the nearby Hayward and San Andreas fault. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Rowland, S M; Prescott, C E; Grayston, S J; Quideau, S A; Bradfield, G E
2009-01-01
During oil-sands mining all vegetation, soil, overburden, and oil sand is removed, leaving pits several kilometers wide and up to 100 m deep. These pits are reclaimed through a variety of treatments using subsoil or a mixed peat-mineral soil cap. Using nonmetric multidimensional scaling and cluster analysis of measurements of ecosystem function, reclamation treatments of several age classes were compared with a range of natural forest ecotypes to discover which treatments had created ecosystems similar to natural forest ecotypes and at what age this occurred. Ecosystem function was estimated from bioavailable nutrients, plant community composition, litter decomposition rate, and development of a surface organic layer. On the reclamation treatments, availability of nitrate, calcium, magnesium, and sulfur were generally higher than in the natural forest ecotypes, while ammonium, P, K, and Mn were generally lower. Reclamation treatments tended to have more bare ground, grasses, and forbs but less moss, lichen, shrubs, trees, or woody debris than natural forests. Rates of litter decomposition were lower on all reclamation treatments. Development of an organic layer appeared to be facilitated by the presence of shrubs. With repeated applications of fertilizers, measured variables for the peat-mineral amendments fell within the range of natural variability at about 20 yr. An intermediate subsoil layer reduced the need for fertilizer and conditions resembling natural forests were reached about 15 yr after a single fertilizer application. Treatments over tailings sand receiving only one application of fertilizer appeared to be on a different trajectory to a novel ecosystem.
Molecular study of worldwide distribution and diversity of soil animals
Wu, Tiehang; Ayres, Edward; Bardgett, Richard D.; Wall, Diana H.; Garey, James R.
2011-01-01
The global distribution of soil animals and the relationship of below-ground biodiversity to above-ground biodiversity are not well understood. We examined 17,516 environmental 18S rRNA gene sequences representing 20 phyla of soil animals sampled from 11 locations covering a range of biomes and latitudes around the world. No globally cosmopolitan taxa were found and only 14 of 2,259 operational taxonomic units (OTUs) found were common to four or more locations. Half of those were circumpolar and may reflect higher connectivity among circumpolar locations compared with other locations in the study. Even when OTU assembly criteria were relaxed to approximate the family taxonomic level, only 34 OTUs were common to four or more locations. A comparison of our diversity and community structure data to environmental factors suggests that below-ground animal diversity may be inversely related to above-ground biodiversity. Our data suggest that greater soil inorganic N and lower pH could explain the low below-ground biodiversity found at locations of high above-ground biodiversity. Our locations could also be characterized as being dominated by microarthropods or dominated by nematodes. Locations dominated by arthropods were primarily forests with lower soil pH, root biomass, mean annual temperature, low soil inorganic N and higher C:N, litter and moisture compared with nematode-dominated locations, which were mostly grasslands. Overall, our data indicate that small soil animals have distinct biogeographical distributions and provide unique evidence of the link between above-ground and below-ground biodiversity at a global scale. PMID:22006309
Critical acid load limits in a changing climate: implications and solutions
Steven G. McNulty
2010-01-01
The federal agencies of the United States are currently developing guidelines for critical nitrogen load limits for U.S. forest ecosystems. These guidelines will be used to develop regulations designed to maintain pollutant inputs below the level shown to damage specified ecosystems.
A simple graphical approach to quantitative monitoring of rangelands
Riginos, C.; Herrick, J.E.; Sundaresan, S.R.; Farley, C.; Belnap, J.
2011-01-01
The article reviews graphical interpretation of the four monitoring methods that can be used to generate a variety of indicators of rangeland ecosystem function. Data for all four of the monitoring methods can be recorded on a single data sheet that is designed to be usable by somebody with minimal literacy. Indicators of plant and ground cover are central to most long-term monitoring systems. Plant and ground-cover data inform managers about forage availability, plant community composition and structure, and risk of runoff and erosion. The spatial arrangement of plants at a site in addition to the percent of the ground that is covered by plants is an important determinant of erosion potential. Vertical vegetation structure can be monitored by capturing data on maximum plant height at each stick location. Plant density method can provide an early indicator of future changes in plant cover, forage, quality, and habitat structure.
Pelland, Noel A; Sterling, Jeremy T; Lea, Mary-Anne; Bond, Nicholas A; Ream, Rolf R; Lee, Craig M; Eriksen, Charles C
2014-01-01
Behavioral responses by top marine predators to oceanographic features such as eddies, river plumes, storms, and coastal topography suggest that biophysical interactions in these zones affect predators' prey, foraging behaviors, and potentially fitness. However, examining these pathways is challenged by the obstacles inherent in obtaining simultaneous observations of surface and subsurface environmental fields and predator behavior. In this study, migratory movements and, in some cases, diving behavior of 40 adult female northern fur seals (NFS; Callorhinus ursinus) were quantified across their range and compared to remotely-sensed environmental data in the Gulf of Alaska and California Current ecosystems, with a particular focus off the coast of Washington State (USA)--a known foraging ground for adult female NFS and where autonomous glider sampling allowed opportunistic comparison of seal behavior to subsurface biophysical measurements. The results show that in these ecosystems, adult female habitat utilization was concentrated near prominent coastal topographic, riverine, or inlet features and within 200 km of the continental shelf break. Seal dive depths, in most ecosystems, were moderated by surface light level (solar or lunar), mirroring known behaviors of diel vertically-migrating prey. However, seal dives differed in the California Current ecosystem due to a shift to more daytime diving concentrated at or below the surface mixed layer base. Seal movement models indicate behavioral responses to season, ecosystem, and surface wind speeds; individuals also responded to mesoscale eddies, jets, and the Columbia River plume. Foraging within small scale surface features is consistent with utilization of the inner coastal transition zone and habitats near coastal capes, which are known eddy and filament generation sites. These results contribute to our knowledge of NFS migratory patterns by demonstrating surface and subsurface behavioral responses to a spatially and temporally dynamic ocean environment, thus reflecting its influence on associated NFS prey species.
Pelland, Noel A.; Sterling, Jeremy T.; Lea, Mary-Anne; Bond, Nicholas A.; Ream, Rolf R.; Lee, Craig M.; Eriksen, Charles C.
2014-01-01
Behavioral responses by top marine predators to oceanographic features such as eddies, river plumes, storms, and coastal topography suggest that biophysical interactions in these zones affect predators' prey, foraging behaviors, and potentially fitness. However, examining these pathways is challenged by the obstacles inherent in obtaining simultaneous observations of surface and subsurface environmental fields and predator behavior. In this study, migratory movements and, in some cases, diving behavior of 40 adult female northern fur seals (NFS; Callorhinus ursinus) were quantified across their range and compared to remotely-sensed environmental data in the Gulf of Alaska and California Current ecosystems, with a particular focus off the coast of Washington State (USA) – a known foraging ground for adult female NFS and where autonomous glider sampling allowed opportunistic comparison of seal behavior to subsurface biophysical measurements. The results show that in these ecosystems, adult female habitat utilization was concentrated near prominent coastal topographic, riverine, or inlet features and within 200 km of the continental shelf break. Seal dive depths, in most ecosystems, were moderated by surface light level (solar or lunar), mirroring known behaviors of diel vertically-migrating prey. However, seal dives differed in the California Current ecosystem due to a shift to more daytime diving concentrated at or below the surface mixed layer base. Seal movement models indicate behavioral responses to season, ecosystem, and surface wind speeds; individuals also responded to mesoscale eddies, jets, and the Columbia River plume. Foraging within small scale surface features is consistent with utilization of the inner coastal transition zone and habitats near coastal capes, which are known eddy and filament generation sites. These results contribute to our knowledge of NFS migratory patterns by demonstrating surface and subsurface behavioral responses to a spatially and temporally dynamic ocean environment, thus reflecting its influence on associated NFS prey species. PMID:25153524
Burgio, G; Marchesini, E; Reggiani, N; Montepaone, G; Schiatti, P; Sommaggio, D
2016-12-01
The effect of cover plants on arthropod functional biodiversity was investigated in a vineyard in Northern Italy, through a 3-year field experiment. The following six ground cover plants were tested: Sweet Alyssum; Phacelia; Buckwheat; Faba Bean; Vetch and Oat; control. Arthropods were sampled using different techniques, including collection of leaves, vacuum sampling and sweeping net. Ground cover plant management significantly affected arthropod fauna, including beneficial groups providing ecosystem services like biological control against pests. Many beneficial groups were attracted by ground cover treatments in comparison with control, showing an aggregative numerical response in the plots managed with some of the selected plant species. Alyssum, Buckwheat and 'Vetch and Oat' mixture showed attractiveness on some Hymenoptera parasitoid families, which represented 72.3% of the insects collected by sweeping net and 45.7 by vacuum sampling. Phytoseiidae mites showed a significant increase on leaves of the vineyard plots managed with ground covers, in comparison with control, although they did not show any difference among the treatments. In general, the tested ground cover treatments did not increase dangerous Homoptera populations in comparison with control, with the exception of Alyssum. The potential of ground cover plant management in Italian vineyards is discussed: the overall lack of potential negative effects of the plants tested, combined with an aggregative numerical response for many beneficials, seems to show a potential for their use in Northern Italy vineyards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagley, C.M.
2001-07-03
Research to determine the separate effects of above-ground and below-ground competition and needlefall of over-story pines on under-story plant performance. Periodic monitoring of over-story crown closure, soil water content, temperature, and nutrients were conducted. Results indicate competition for light had a more determental effect on performance of herbaceous species in longleaf pine plantations than that resulting from competition for below-ground resources.
Dawes, Melissa A; Hagedorn, Frank; Handa, Ira Tanya; Streit, Kathrin; Ekblad, Alf; Rixen, Christian; Körner, Christian; Hättenschwiler, Stephan
2013-03-01
We evaluated the impacts of elevated CO2 in a treeline ecosystem in the Swiss Alps in a 9-year free-air CO2 enrichment (FACE) study. We present new data and synthesize plant and soil results from the entire experimental period. Light-saturated photosynthesis (A max) of ca. 35-year-old Larix decidua and Pinus uncinata was stimulated by elevated CO2 throughout the experiment. Slight down-regulation of photosynthesis in Pinus was consistent with starch accumulation in needle tissue. Above-ground growth responses differed between tree species, with a 33 % mean annual stimulation in Larix but no response in Pinus. Species-specific CO2 responses also occurred for abundant dwarf shrub species in the understorey, where Vaccinium myrtillus showed a sustained shoot growth enhancement (+11 %) that was not apparent for Vaccinium gaultherioides or Empetrum hermaphroditum. Below ground, CO2 enrichment did not stimulate fine root or mycorrhizal mycelium growth, but increased CO2 effluxes from the soil (+24 %) indicated that enhanced C assimilation was partially offset by greater respiratory losses. The dissolved organic C (DOC) concentration in soil solutions was consistently higher under elevated CO2 (+14 %), suggesting accelerated soil organic matter turnover. CO2 enrichment hardly affected the C-N balance in plants and soil, with unaltered soil total or mineral N concentrations and little impact on plant leaf N concentration or the stable N isotope ratio. Sustained differences in plant species growth responses suggest future shifts in species composition with atmospheric change. Consistently increased C fixation, soil respiration and DOC production over 9 years of CO2 enrichment provide clear evidence for accelerated C cycling with no apparent consequences on the N cycle in this treeline ecosystem.
NASA Technical Reports Server (NTRS)
Davidson, Eric A.; Nepstad, Daniel C.; Trumbore, Susan E.
1995-01-01
This progress report covers the following efforts initiated for the year: year-round monthly soil CO2 flux measurements were started in both primary and secondary forests and in managed and degraded pastures; root sorting and weighing has begun and all four ecosystems at Paragominas have been analyzed through samples; regional modeling of soil water dynamics and minimum rooting depth has been done and the RADAMBRASIL soils database has been digitized and a 20 year record of the precipitation for the region has been produced, along with a hydrological ('bucket-tipping') model that will run within a GIS framework; prototype tension lysimeters have been designed and installed in soil pits to begin assessing the importance of DOC as a source of organic matter in deep soils; and many publications, listed in this document, have resulted from this year's research. Two of the papers published are included with this annual report document.
Habitat characteristics of the Silver Lake mule deer range.
J. Edward Dealy
1971-01-01
Twenty-one ecosystems of the Silver Lake mule deer range in northern Lake County, Oregon, are described by site, vegetation, and soil. Discussions are included on ecosystem interrelationships, habitat value for game, and habitat manipulation. A field key to ecosystems has been developed using vegetation characteristics easily identifiable on the ground.
Knowledge Management in Preserving Ecosystems: The Case of Seoul
ERIC Educational Resources Information Center
Lee, Jeongseok
2009-01-01
This study explores the utility of employing knowledge management as a framework for understanding how public managers perform ecosystem management. It applies the grounded theory method to build a model. The model is generated by applying the concept of knowledge process to an investigation of how the urban ecosystem is publicly managed by civil…
NASA Astrophysics Data System (ADS)
Din, Abdullah Muhaimin Mohammad; Yaakop, Salmah; Hazmi, Izfa Riza
2015-09-01
Dung beetles has known for its bioindicator characteristic. Sensitive towards forest disturbance, dung beetles population and diversity will be less in disturbed and modified area. The objective of this study is to evaluate the diversity and distribution of dung beetles in different type of ecosystems in Peninsular Malaysia. Fifteen baited pitfall traps aligned in three transects were used in this study. Samples were collected after 24 h and repeated three time collections and identified afterwards. Two ecosystem types were selected, which are forested and agricultural ecosystem (livestock and plantation). A total of 4249 individuals, 47 species, in 11 genera was successfully collected from all localities. The H' index for Fraser Hill, Langkawi, Bangi Reserve Forest, Selangor (HSB), Sungkai Reserve Forest, Perak (SRF), Chini Lake, Bera Lake, chicken farm, goat farm, Longan plantation, and palm oil plantation were 1.58, 1.74, 2.17, 2.63, 1.80, 1.52, 1.63, 0.46, 0.00 and 1.98 respectively.Forest ecosystem, SRF shows the highest abundance (1486 individuals) and diversity, while for agricultural ecosystem,palm oil plantation shows the highest with 273 individuals and 16 species. Based onDetrended Correspondence Analysis (DCA) shows two groups that separate forest ecosystem with the agricultural ecosystem, with palm oil is the nearest to the forest. Palm oil ecosystem can sustain a dung beetles population due to the area can provide the requirements for the dung beetles to survive, such as food which comes from local domestic cows, shade from sunlight provide by the palm oil trees, and ground cover from small plants and shrubs.Even though modified ecosystem should have lower diversity of dung beetles, but some factors must be measured as well in order to have a better point of view.
NASA Astrophysics Data System (ADS)
Dolan, K. A.
2015-12-01
Disturbance plays a critical role in shaping the structure and function of forested ecosystems as well as the ecosystem services they provide, including but not limited to: carbon storage, biodiversity habitat, water quality and flow, and land atmosphere exchanges of energy and water. In addition, recent studies suggest that disturbance rates may increase in the future under altered climate and land use scenarios. Thus understanding how vulnerable forested ecosystems are to potential changes in disturbance rates is of high importance. This study calculated the theoretical threshold rate of disturbance for which forest ecosystems could no longer be sustained (λ*) across the Coterminous U.S. using an advanced process based ecosystem model (ED). Published rates of disturbance (λ) in 50 study sites were obtained from the North American Forest Disturbance (NAFD) program. Disturbance distance (λ* - λ) was calculated for each site by differencing the model based threshold under current climate conditions and average observed rates of disturbance over the last quarter century. Preliminary results confirm all sample forest sites have current average rates of disturbance below λ*, but there were interesting patterns in the recorded disturbance distances. In general western sites had much smaller disturbance distances, suggesting higher vulnerability to change, while eastern sites showed larger buffers. Ongoing work is being conducted to assess the vulnerability of these sites in the context of potential future changes by propagating scenarios of future climate and land-use change through the analysis.
NASA Astrophysics Data System (ADS)
Goswami, S.; Gamon, J. A.; Tweedie, C. E.
2012-12-01
Understanding the future state of the earth system requires improved knowledge of ecosystem dynamics and long term observations of how ecosystem structures and functions are being impacted by global change. Improving remote sensing methods is essential for such advancement because satellite remote sensing is the only means by which landscape to continental-scale change can be observed. The Arctic appears to be impacted by climate change more than any other region on Earth. Arctic terrestrial ecosystems comprise only 6% of the land surface area on Earth yet contain an estimated 25% of global soil organic carbon, most of which is stored in permafrost. If projected increases in plant productivity do not offset forecast losses of soil carbon to the atmosphere as greenhouse gases, regional to global greenhouse warming could be enhanced. Soil moisture is an important control of land-atmosphere carbon exchange in arctic terrestrial ecosystems. However, few studies to date have examined using remote sensing, or developed remote sensing methods for observing the complex interplay between soil moisture and plant phenology and productivity in arctic landscapes. This study was motivated by this knowledge gap and addressed the following questions as a contribution to a large scale, multi investigator flooding and draining experiment funded by the National Science Foundation near Barrow, Alaska from 2005 - 2009. 1. How can optical remote sensing be used to monitor the surface hydrology of arctic landscapes? 2. What are the spatio-temporal dynamics of land-surface phenology (NDVI) in the study area and do hydrological treatment has any effect on inter-annual patterns? A new spectral index, the normalized difference surface water index (NDSWI) was developed and tested at multiple spatial and temporal scales. NDSWI uses the 460nm (blue) and 1000nm (IR) bands and was developed to capture surface hydrological dynamics in the study area using the robotic tram system. When applied to high spatial resolution satellite imagery, NDSWI was also able to capture changes in surface hydrology at the landscape scale. Interannual patterns of landsurface phenology (measured with the normalized difference vegetation index - NDVI) unexpectedly lacked marked differences under experimental conditions. Measurement of NDVI was, however, compromised when WTD was above ground level. NDVI and NDSWI were negatively correlated when WTD was above ground level, which held when scaled to MODIS imagery collected from satellite, suggesting that published findings showing a 'greening of the Arctic' may be related to a 'drying of the Arctic' in landscapes dominated by vegetated landscapes where WTD is close to ground level.
Mäenpää, Kimmo; Leppänen, Matti T; Figueiredo, Kaisa; Mayer, Philipp; Gilbert, Dorothea; Jahnke, Annika; Gil-Allué, Carmen; Akkanen, Jarkko; Nybom, Inna; Herve, Sirpa
2015-11-01
Equilibrium sampling devices can be applied to study and monitor the exposure and fate of hydrophobic organic chemicals on a thermodynamic basis. They can be used to determine freely dissolved concentrations and chemical activity ratios and to predict equilibrium partitioning concentrations of hydrophobic organic chemicals in biota lipids. The authors' aim was to assess the equilibrium status of polychlorinated biphenyls (PCBs) in a contaminated lake ecosystem and along its discharge course using equilibrium sampling devices for measurements in sediment and water and by also analyzing biota. The authors used equilibrium sampling devices (silicone rubber and polyethylene [PE]) to determine freely dissolved concentrations and chemical activities of PCBs in the water column and sediment porewater and calculated for both phases the corresponding equilibrium concentrations and chemical activities in model lipids. Overall, the studied ecosystem appeared to be in disequilibrium for the studied phases: sediment, water, and biota. Chemical activities of PCBs were higher in sediment than in water, which implies that the sediment functioned as a partitioning source of PCBs and that net diffusion occurred from the sediment to the water column. Measured lipid-normalized PCB concentrations in biota were generally below equilibrium lipid concentrations relative to the sediment (CLip ⇌Sed ) or water (CLip ⇌W ), indicating that PCB levels in the organisms were below the maximum partitioning levels. The present study shows the application versatility of equilibrium sampling devices in the field and facilitates a thermodynamic understanding of exposure and fate of PCBs in a contaminated lake and its discharge course. © 2015 SETAC.
Seasonal carbon fluxes for an old-growth temperate forest inferred from carbonyl sulphide
NASA Astrophysics Data System (ADS)
Rastogi, Bharat; Jiang, Yueyang; Berkelhammer, Maxwell; Wharton, Sonia; Noone, David; Still, Christopher
2017-04-01
Characterizing and quantifying the processes that control terrestrial ecosystem exchanges of carbon and water are critical for understanding how forested ecosystems respond to a changing climate. A small but increasing number of studies has identified carbonyl sulfide (OCS) as a potential tracer of canopy photosynthesis and stomatal function. Here we present seasonal fluxes of OCS from a 60m tall old-growth temperate forest. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W) in 2014 and 2015. GPP (Gross Primary Production) is inferred from OCS fluxes and compared with estimates derived from measurements of NEE (Net Ecosystem Exchange) from eddy flux data as well as GPP predictions using a process based model. Our findings seek to resolve scientific questions regarding ecosystem carbon exchange from tall old growth forests, which have a complicated vertical leaf area structure, high above ground biomass and amount and aerial cover of epiphytic vegetation. Estimates of canopy conductance calculated using tower flux data are also combined with measurements of stable isotopologues of CO2 to infer emergent ecosystem properties such as canopy ci/ca and water use efficiency.
Dilution refrigeration for space applications
NASA Technical Reports Server (NTRS)
Israelsson, U. E.; Petrac, D.
1990-01-01
Dilution refrigerators are presently used routinely in ground based applications where temperatures below 0.3 K are required. The operation of a conventional dilution refrigerator depends critically on the presence of gravity. To operate a dilution refrigerator in space many technical difficulties must be overcome. Some of the anticipated difficulties are identified in this paper and possible solutions are described. A single cycle refrigerator is described conceptually that uses forces other than gravity to function and the stringent constraints imposed on the design by requiring the refrigerator to function on the earth without using gravity are elaborated upon.
Klimešová, Jitka; Janecek, Štepán; Bartušková, Alena; Bartoš, Michael; Altman, Jan; Doležal, Jirí; Lanta, Vojtech; Latzel, Vít
2017-11-28
Below-ground carbohydrate storage is considered an adaptation of plants aimed at regeneration after disturbance. A theoretical model by Iwasa and Kubo was empirically tested which predicted (1) that storage of carbohydrates scales allometrically with leaf biomass and (2) when the disturbance regime is relaxed, the ratio of storage to leaf biomass increases, as carbohydrates are not depleted by disturbance. These ideas were tested on nine herbaceous species from a temperate meadow and the disturbance regime was manipulated to create recently abandoned and mown plots. Just before mowing in June and at the end of the season in October, plants with below-ground organs were sampled. The material was used to assess the pool of total non-structural carbohydrates and leaf biomass. In half of the cases, a mostly isometric relationship between below-ground carbohydrate storage and leaf biomass in meadow plants was found. The ratio of below-ground carbohydrate storage to leaf biomass did not change when the disturbance regime was less intensive than that for which the plants were adapted. These findings (isometric scaling relationship between below-ground carbohydrate storage and leaf biomass; no effect of a relaxed disturbance regime) imply that storage in herbs is probably governed by factors other than just the disturbance regime applied once in a growing season. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A conceptual framework: redefining forest soil's critical acid loads under a changing climate.
McNulty, Steven G; Boggs, Johnny L
2010-06-01
Federal agencies of several nations have or are currently developing guidelines for critical forest soil acid loads. These guidelines are used to establish regulations designed to maintain atmospheric acid inputs below levels shown to damage forests and streams. Traditionally, when the critical soil acid load exceeds the amount of acid that the ecosystem can absorb, it is believed to potentially impair forest health. The excess over the critical soil acid load is termed the exceedance, and the larger the exceedance, the greater the risk of ecosystem damage. This definition of critical soil acid load applies to exposure of the soil to a single, long-term pollutant (i.e., acidic deposition). However, ecosystems can be simultaneously under multiple ecosystem stresses and a single critical soil acid load level may not accurately reflect ecosystem health risk when subjected to multiple, episodic environmental stress. For example, the Appalachian Mountains of western North Carolina receive some of the highest rates of acidic deposition in the eastern United States, but these levels are considered to be below the critical acid load (CAL) that would cause forest damage. However, the area experienced a moderate three-year drought from 1999 to 2002, and in 2001 red spruce (Picea rubens Sarg.) trees in the area began to die in large numbers. The initial survey indicated that the affected trees were killed by the southern pine beetle (Dendroctonus frontalis Zimm.). This insect is not normally successful at colonizing these tree species because the trees produce large amounts of oleoresin that exclude the boring beetles. Subsequent investigations revealed that long-term acid deposition may have altered red spruce forest structure and function. There is some evidence that elevated acid deposition (particularly nitrogen) reduced tree water uptake potential, oleoresin production, and caused the trees to become more susceptible to insect colonization during the drought period. While the ecosystem was not in exceedance of the CAL, long-term nitrogen deposition pre-disposed the forest to other ecological stress. In combination, insects, drought, and nitrogen ultimately combined to cause the observed forest mortality. If any one of these factors were not present, the trees would likely not have died. This paper presents a conceptual framework of the ecosystem consequences of these interactions as well as limited plot level data to support this concept. Future assessments of the use of CAL studies need to account for multiple stress impacts to better understand ecosystem response. Published by Elsevier Ltd.
Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes
NASA Astrophysics Data System (ADS)
Arp, C. D.; Whitman, M. S.; Jones, B. M.; Grosse, G.; Gaglioti, B. V.; Heim, K. C.
2015-01-01
Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a circum-Arctic survey of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium to high ground-ice content permafrost in moderately sloping terrain. In one Arctic coastal plain watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. The comparisons of one beaded channel using repeat photography between 1948 and 2013 indicate a relatively stable landform, and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in riparian zones, effectively insulate channel ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2 °C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features that range from 0.7 to 1.6 m. In the summer, some pools thermally stratify, which reduces permafrost thaw and maintains cold-water habitats. Snowmelt-generated peak flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.01 to 0.1 m s-1, yet channel runs still move water rapidly between pools. The repeating spatial pattern associated with beaded stream morphology and hydrological dynamics may provide abundant and optimal foraging habitat for fish. Beaded streams may create important ecosystem functions and habitat in many permafrost landscapes and their distribution and dynamics are only beginning to be recognized in Arctic research.
Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes
Arp, Christopher D.; Whitman, Matthew S.; Jones, Benjamin M.; Grosse, Guido; Gaglioti, Benjamin V.; Heim, Kurt C.
2015-01-01
Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic survey of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high- ground ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate a relatively stable landform and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in riparian zones effectively insulates channel ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2°C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools thermally stratify, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m/s, yet channel runs still move water rapidly between pools. The repeating spatial pattern associated with beaded stream morphology and hydrological dynamics may provide abundant and optimal foraging habitat for fish. Thus, beaded streams may create important ecosystem functions and habitat in many permafrost landscapes and their distribution and dynamics are only beginning to be recognized in Arctic research.
Soil carbon dynamics in pastures and forests of the eastern Amazon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, E.A.; Nepstad, D.C.; Trumbore, S.E.
1993-06-01
There is a dearth of information on below-ground C budgets of tropical forests and the ecosystems that are replacing them. Mean flux of CO[sub 2] from the soil surface was 0.29 and 0.14 g C m[sup [minus]2] h[sup [minus]1] in primary forests and degraded pastures, respectively, near Paragominas, Brazil. Litterfall and fine root inputs were about two times greater in forests than pastures. The [sup 14]C and [sup 13]C contents of SOM and CO[sub 2] in a pasture cleared in 1975 show that much of the labile forest SOM has been lost and little new C has been added bymore » pasture vegetation. A preliminary estimate of the cumulative net C loss from the pasture soil is 2.7 kg C m[sup [minus]2] (about 10% of the forest soil C inventory), and it is still losing about 0.09 kg C m[sup [minus]2] yr[sup [minus]1]. Most of the soil C turnover occurs near the surface, but most of the long-term C storage occurs below 1 m in these oxisols. About 10% of the soil C at depth has a mean residence time of years to decades and is input by the deep roots of trees in this seasonally droughty region. Grasses have fewer deep roots, and about 1/3 of the total C lost from pasture soil was from below 1 m depth.« less
EPA Research Evaluating CAFO Impacts on Ground Water Quality
An overview of several projects will be presented on a research program currently underway at ORD’s Ground Water and Ecosystems Restoration Division (GWERD) to evaluate CAFO impacts on ground water quality. The overall research objectives are to characterize the potential for gro...
C.C. Pinchot; D.J. Lodge; R. Minocha; T.W. Noon; V. D’Amico; C. Flower; K.M. Knight; J. Slavicek
2017-01-01
We recently established a study to evaluate the effects of several riparian restoration treatments on degraded streambanks located on the Finger Lakes National Forest (FLNF) in western New York. A legacy of cattle grazing has led to soil compaction, invasion by non-native invasive plant species (NNIP), as well as heavy nitrogen loading and increased bacterial levels in...
Functional Objectives for Stream Restoration
2006-09-01
Gorman, O. T ., and Karr, J. R . (1978) “Habitat structure and stream fish communities,” Ecology, 59-3, 507-515. Increasing community and habitat...frequency and density. Comparison of above- and below- ground biomass R /S ratio. Biomass production of stream- dependant species. Biomass profile...M., Hauer, F. R ., Lee, L. C., Nutter, W. L., Rheinhardt, R . D., Smith, R . D., and Whigham, D. (1995) “A guidebook for application of
NASA Technical Reports Server (NTRS)
Wessman, Carol A.; Archer, Steven R.; Asner, Gregory P.; Bateson, C. Ann
2004-01-01
Replacement of grasslands and savannas by shrublands and woodlands has been widely reported in tropical, temperate and high-latitude rangelands worldwide (Archer 1994). These changes in vegetation structure may reflect historical shifts in climate and land use; and are likely to influence biodiversity, productivity, above- and below ground carbon and nitrogen sequestration and biophysical aspects of land surface-atmosphere interactions. The goal of our proposed research is to investigate how changes in the relative abundance of herbaceous and woody vegetation affect carbon and nitrogen dynamics across heterogeneous savannas and shrub/woodlands. By linking actual land-cover composition (derived through spectral mixture analysis of AVIRIS, TM, and AVHRR imagery) with a process-based ecosystem model, we will generate explicit predictions of the C and N storage in plants and soils resulting from changes in vegetation structure. Our specific objectives will be to (1) continue development and test applications of spectral mixture analysis across grassland-to-woodland transitions; (2) quantify temporal changes in plant and soil C and N storage and turnover for remote sensing and process model parameterization and verification; and (3) couple landscape fraction maps to an ecosystem simulation model to observe biogeochemical dynamics under changing landscape structure and climatological forcings.
NASA Astrophysics Data System (ADS)
Becker, J.; Pabst, H.; Mnyonga, J.; Kuzyakov, Y.
2015-10-01
Litterfall is one of the major pathways connecting above- and below-ground processes. The effects of climate and land-use change on carbon (C) and nutrient inputs by litterfall are poorly known. We quantified and analyzed annual patterns of C and nutrient deposition via litterfall in natural forests and agroforestry systems along the unique elevation gradient of Mt. Kilimanjaro. Tree litter in three natural (lower montane, Ocotea and Podocarpus forests), two sustainably used (homegardens) and one intensively managed (shaded coffee plantation) ecosystems was collected on a biweekly basis from May 2012 to July 2013. Leaves, branches and remaining residues were separated and analyzed for C and nutrient contents. The annual pattern of litterfall was closely related to rainfall seasonality, exhibiting a large peak towards the end of the dry season (August-October). This peak decreased at higher elevations with decreasing rainfall seasonality. Macronutrients (N, P, K) in leaf litter increased at mid elevation (2100 m a.s.l.) and with land-use intensity. Carbon content and micronutrients (Al, Fe, Mn, Na) however, were unaffected or decreased with land-use intensity. While leaf litterfall decreased with elevation, total annual input was independent of climate. Compared to natural forests, the nutrient cycles in agroforestry ecosystems were accelerated by fertilization and the associated changes in dominant tree species.
Methane in Sediments From Three Tropical, Coastal Lagoons on the Yucatan Peninsula, Mexico
NASA Astrophysics Data System (ADS)
Young, B.; Paytan, A.; Miller, L.; Herrera-Silveira, J.
2002-12-01
Tropical wetlands are significant sources of methane (CH4) to the atmosphere, and the majority of research on methane flux and cycling in the tropics has been conducted in fresh-water wetlands and lakes. However, several previous studies have shown that tropical coastal ecosystems can produce significant methane flux to the atmosphere despite the presence of moderate to marine salinities. Information regarding methane cycling within the sediments is crucial to understanding how natural and anthropogenic changes may influence these systems. We measured methane concentrations in sediments from two tropical coastal lagoons during different seasons, as well as in a third, heavily polluted, lagoon (Terminos) during the rainy season. These three lagoons, Celestun, Chelem, and Terminos, have similar vegetation, seasonal temperature and rainfall patterns, and substrate geology, but very different levels of ground water discharge and pollution. Methane concentrations in Celestun and Terminos lagoon showed high spatial variability(> 0.001 to 5 mmol kg-1 wet sediment), while sediments in Chelem Lagoon, which has near marine salinities and little sewage discharge, showed much lower variability of methane concentrations. Methane concentrations in Celestun sediments displayed two predominant patterns: some profiles contained a peak in methane concentration (1 to 2 mmole methane kg-1 wet sediment) between 5 and 15 cm below the surface while the other sediment profiles instead displayed a steady or monotonic increase in methane concentration with depth to approximately 0.025-0.080 mmol kg-1 at 10-15cm below surface followed by stable methane concentrations to the bottom of the cores (20-45 cm below the surface). A subsurface peak in methane concentrations was also found in some locations in Chelem, however, the concentrations were much lower than those measured in Celestun. Previous studies have shown that sewage pollution may drastically increase methane production in tropical coastal ecosystems. Laboratory experiments using sediment from the upper 20 cm in Celestun lagoon resulted in high rates of biogenic production of methane from the addition of trimethylamine, hydrogen, and, while additions of formate and acetate stimulated methane production to a lesser extent. This indicates that methane production in these sediments may be highly responsive to natural or anthropogenic changes in substrate availability. By synthesizing laboratory data and extensive field measurements from the lagoons, we hope to shed light on the factors controlling methane cycling in these sediments, and to better estimate methane flux to the atmosphere from these ecosystems.
Aircraft remote sensing of freshwater ecosystems offers federal and state monitoring agencies an ability to meet their assessment requirements by rapidly acquiring information on ecosystem responses to environmental change for water bodies that are below the resolution of space...
Aircraft remote sensing of freshwater ecosystems offers federal and state monitoring agencies an ability to meet their assessment requirements by rapidly acquiring information on ecosystem responses to environmental change for water bodies that are below the resolution of space...
Kuebbing, Sara E; Classen, Aimée T; Sanders, Nathan J; Simberloff, Daniel
2015-11-01
Although many plant communities are invaded by multiple nonnative species, we have limited information on how a species' origin affects ecosystem function. We tested how differences in species richness and origin affect productivity and seedling establishment. We created phylogenetically paired native and nonnative plant communities in a glasshouse experiment to test diversity-productivity relationships and responsible mechanisms (i.e. selection or complementarity effects). Additionally, we tested how productivity and associated mechanisms influenced seedling establishment. We used diversity-interaction models to describe how species' interactions influenced diversity-productivity relationships. Communities with more species had higher total biomass than did monoculture communities, but native and nonnative communities diverged in root : shoot ratios and the mechanism responsible for increased productivity: positive selection effect in nonnative communities and positive complementarity effect in native communities. Seedling establishment was 46% lower in nonnative than in native communities and was correlated with the average selection effect. Interspecific interactions contributed to productivity patterns, but the specific types of interactions differed between native and nonnative communities. These results reinforce findings that the diversity-productivity mechanisms in native and nonnative communities differ and are the first to show that these mechanisms can influence seedling establishment and that different types of interactions influence diversity-productivity relationships. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
A morphometric analysis of vegetation patterns in dryland ecosystems
Dekker, Stefan C.; Li, Mao; Mio, Washington; Punyasena, Surangi W.; Lenton, Timothy M.
2017-01-01
Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems. PMID:28386414
A morphometric analysis of vegetation patterns in dryland ecosystems.
Mander, Luke; Dekker, Stefan C; Li, Mao; Mio, Washington; Punyasena, Surangi W; Lenton, Timothy M
2017-02-01
Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems.
A morphometric analysis of vegetation patterns in dryland ecosystems
NASA Astrophysics Data System (ADS)
Mander, Luke; Dekker, Stefan C.; Li, Mao; Mio, Washington; Punyasena, Surangi W.; Lenton, Timothy M.
2017-02-01
Vegetation in dryland ecosystems often forms remarkable spatial patterns. These range from regular bands of vegetation alternating with bare ground, to vegetated spots and labyrinths, to regular gaps of bare ground within an otherwise continuous expanse of vegetation. It has been suggested that spotted vegetation patterns could indicate that collapse into a bare ground state is imminent, and the morphology of spatial vegetation patterns, therefore, represents a potentially valuable source of information on the proximity of regime shifts in dryland ecosystems. In this paper, we have developed quantitative methods to characterize the morphology of spatial patterns in dryland vegetation. Our approach is based on algorithmic techniques that have been used to classify pollen grains on the basis of textural patterning, and involves constructing feature vectors to quantify the shapes formed by vegetation patterns. We have analysed images of patterned vegetation produced by a computational model and a small set of satellite images from South Kordofan (South Sudan), which illustrates that our methods are applicable to both simulated and real-world data. Our approach provides a means of quantifying patterns that are frequently described using qualitative terminology, and could be used to classify vegetation patterns in large-scale satellite surveys of dryland ecosystems.
Plue, Jan; Vandepitte, Katrien; Honnay, Olivier; Cousins, Sara A O
2017-09-01
Habitat fragmentation threatens global biodiversity. Many plant species persist in habitat fragments via persistent life cycle stages such as seed banks, generating a species extinction debt. Here, seed banks are hypothesized to cause a temporal delay in the expected loss of genetic variation, which can be referred to as a genetic extinction debt, as a possible mechanism behind species extinction debts. Fragmented grassland populations of Campanula rotundifolia were examined for evidence of a genetic extinction debt, investigating if the seed bank contributed to the extinction debt build-up. The genetic make-up of 15 above- and below-ground populations was analysed in relation to historical and current levels of habitat fragmentation, both separately and combined. Genetic diversity was highest in above-ground populations, though below-ground populations contained 8 % of unique alleles that were absent above-ground. Above-ground genetic diversity and composition were related to historical patch size and connectivity, but not current patch characteristics, suggesting the presence of a genetic extinction debt in the above-ground populations. No such relationships were found for the below-ground populations. Genetic diversity measures still showed a response to historical but not present landscape characteristics when combining genetic diversity of the above- and below-ground populations. The fragmented C. rotundifolia populations exhibited a genetic extinction debt. However, the role of the seed banks in the build-up of this extinction debt is probably small, since the limited, unique genetic diversity of the seed bank alone seems unable to counter the detrimental effects of habitat fragmentation on the population genetic structure of C. rotundifolia. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Falk, Julie M.; Schmidt, Niels Martin; Christensen, Torben R.; Forchhammer, Mads C.; Jackowicz-Korczynski, Marcin; Ström, Lena
2014-05-01
Herbivory is an important part of many ecosystems and their presence effects the ecosystems carbon balance with both direct and indirect effects. Little is known about what will happen to an arctic ecosystem that is influenced by herbivory, if the animals disappear. We hypothesized that trampling and grazing by large herbivores influence the vegetation density and composition and hereby the carbon balance. Method: In 2010 an in-situ field experiment in Zackenberg, NE Greenland, were initiated to study the effects of herbivory on the vegetation and carbon balance. Exclosures were established to exclude the muskoxen (Ovibos moschatus), which are a natural part of these ecosystems. The experiment consists of five block replicates with three treatments within each block, i.e., control, exclosure and a snow fence (the treatment area is 10x10 m and the fences are 1 m high). During the growing season we have since 2011 performed weekly measurements of CO2 and CH4fluxes, the concentration of labile substrate for CH4 formation (organic acid concentration) in pore-water and additional ecosystem properties, i.e., water table depth, active layer depth and soil temperature. In 2013 a detailed analysis of the vascular plant species composition and density within each measurement plot were performed. Furthermore biomass (including mosses) samples 20x20 cm were harvested within all treatments. Results: The third year after the initiation of the experiment we observed a clear effect of excluding muskoxen grazing from the ecosystem. The exclosures had lower uptake of CO2 and lower CH4 emission. The vegetation analysis inside the plots showed a decrease in total number of vascular tillers and of Eriophorum scheuchzeri (ES) tillers. Correspondingly, the biomass samples from the exclosures had lower number of total plant tillers, ES tillers, total green leaves and green ES leaves and the height of all vascular plants and of ES plants were higher. Finally, the dry weight of the biomass showed that there were more mosses and old biomass inside exclosures. Conclusions: Removing muskoxen grazing and physical presence has dramatic effects on the ecosystem. As there is no trampling inside the exclosures the mosses become more dominating and starts to grow upwards, due to less compaction. As there is no consumption of the vascular plants, all the old biomass remains on the ground surface, most likely leading to light limitation of the vascular plants and they therefore decrease in number of tillers and in green leaves. The thicker moss layer forces the vascular plants to grow taller, as seen inside the exclosures. The decrease of CO2 uptake can partly by explained by the lower number of vascular plants, while the decrease in CH4 emission most likely is connected to lower CO2 uptake, less vascular plants and lower overall carbon allocation below ground and hereby less root exudation. The future of the muskoxen in a changing arctic environment are uncertain, this experiment is pointing towards the potentially large effect that herbivory has on the carbon balance of natural ecosystems in the Arctic.
Ecosystem management decision support for federal forests in the United States: a review
H. Michael Rauscher
1999-01-01
Ecosystem management has been adopted as the philosophical paradigm guiding management on many Federal forests in the United States. The strategic goal of ecosystem management is to find a sensible middle ground between ensuring long-term protection of the environment while allowing an increasing population to use its natural resources for maintaining and improving...
NASA Astrophysics Data System (ADS)
Jung, C. G.; Jiang, L.; Luo, Y.
2017-12-01
Understanding net primary production (NPP) response to the key climatic variables, temperature and precipitation, is essential since the response could be represented by one of future consequences from ecosystem responses. Under future climatic warming, fluctuating precipitation is expected. In addition, NPP solely could not explain whole ecosystem response; therefore, not only NPP, but also above- and below-ground NPP (ANPP and BNPP, respectively) need to be examined. This examination needs to include how the plant productions response along temperature and precipitation gradients. Several studies have examined the response of NPP against each of single climatic variable, but understanding the response of ANPP and BNPP to the multiple variables is notably poor. In this study, we used the plant productions data (NPP, ANPP, and BNPP) with climatic variables, i.e., air temperature and precipitation, from 1999 to 2015 under warming and clipping treatments (mimicking hay-harvesting) in C4-grass dominant ecosystem located in central Oklahoma, United States. Firstly, we examined the nonlinear relationships with the climatic variables for NPP, ANPP and BNPP; and then predicted possible responses in the temperature - precipitation space by using a linear mixed effect model. Nonlinearities of NPP, ANPP and BNPP to the climatic variables have been found to show unimodal curves, and nonlinear models have better goodness of fit as shown lower Akaike information criterion (AIC) than linear models. Optimum condition for NPP is represented at high temperature and precipitation level whereas BNPP is maximized at moderate precipitation levels while ANPP has same range of NPP's optimum condition. Clipping significantly reduced ANPP while there was no clipping effect on NPP and BNPP. Furthermore, inclining NPP and ANPP have shown in a range from moderate to high precipitation level with increasing temperature while inclining pattern for BNPP was observed in moderate precipitation level. Overall, the C4-grass dominant ecosystem has a potential for considerable increases in NPP in hotter and wetter conditions as shown a range from moderate to high temperature and precipitation levels; ANPP has peaked at the high temperature and precipitation level, but maximum BNPP needs moderate precipitation level and high temperature.
The science and practice of environmental flows and the role of hydrogeologists
Sophocleous, M.
2007-01-01
Conflicts between ecosystems and human needs for fresh water are increasing. The purpose of this paper is to raise awareness in the hydrogeologic community of environmental flows (EFs) and to address the major challenges involved in their protection. Ground water is a key component of EFs, and therefore hydrogeologists are called upon to get involved in the ongoing debates about maintaining healthy riverine ecosystems. Promising opportunities for achieving EFs in both underallocated and overallocated basins as well as new methods for protecting fresh water ecosystems developed in different countries are outlined. EF protection measures include private water trusts, "upside-down instream flow water rights," the "public trust" doctrine, and water markets, among other measures. A number of knowledge gaps are identified, to which hydrogeologists could contribute, such as our rudimentary knowledge about ground water-dependent ecosystems, aspects of stream-aquifer interactions, and the impacts of land-use changes. The values that society places on the different uses of water ultimately determine where the water is allocated. EF requirements can be legitimately recognized and addressed by basing the environmental needs of hydrologic systems on robust science, focusing on increasing the productivity of water use, engaging society in understanding the benefits and costs of decisions that affect ecosystems, and taking advantage of various opportunities for achieving EF goals. ?? 2007 National Ground Water Association.
Wilson, John T.; Baker, Nancy T.; Moran, Michael J.; Crawford, Charles G.; Nowell, Lisa H.; Toccalino, Patricia L.; Wilber, William G.
2008-01-01
The U.S. Geological Survey (USGS) was one of numerous governmental, private, and academic entities that provided input to the report The State of the Nation?s Ecosystems published periodically by the Heinz Center. This report describes the sources of data and methods used by the USGS to develop selected water?quality indicators for the 2007 edition of the Heinz Center report and documents modifications in the data sources and interpretations between the 2002 and 2007 editions of the Heinz Center report. Stream and ground?water quality data collected nationally as part of the USGS National Water-Quality Assessment Program were used to develop the ecosystem indicators for the Heinz Center report, including Core National indicators for the Movement of Nitrogen and Chemical Contamination and for selected ecosystems classified as Farmlands, Forest, Grasslands and Shrublands, Freshwater, and Urban and Suburban. In addition, the USGS provided water?quality and streamflow data collected as part of the National Stream Water Quality Accounting Network and the Federal?State Cooperative Program. The documentation provided herein serves not only as a reference for current and future editions of The State of the Nation?s Ecosystems but also provides critical information for future assessments of changes in contaminant occurrence in streams and ground water of the United States.
David R. Coyle; Mark D. Coleman
2005-01-01
Production increases in intensively managed forests have been obtained by improving resource availability through water and nutrient amendments. Increased stem production has been attributed to shifts in growth from roots to shoot, and such shifts would have important implications for below ground carbon sequestration. We examined above and below ground growth and...
CAT scan imaging is currently being used to examine below-ground peat and root structure in cores collected from salt marshes of Jamaica Bay, part of the Gateway National Recreation Area (NY). CAT scans or Computer-Aided Tomography scans use X-ray equipment to produce multiple i...
Above- and below-ground characteristics associated with wind toppling in a young Populus plantation.
Constance A. Harrington; Dean S. DeBell
1996-01-01
Damage from a dormant-season windstorm in a 3-year-old Populus research trial differed among four clones and three spacings and between monoclonal and polyclonal plots. Clonal differences in susceptibility to toppling (or leaning) were associated with both above and below-ground characteristics. Susceptible clones had less taper in the lower stem...
Above- and below-ground effects of aspen clonal regeneration and succession to conifers
Wayne D. Shepperd; Dale L. Bartos; Stephen A. Mata
2001-01-01
Above- and below-ground characteristics were measured and compared for six sets of paired trembling aspen (Populus tremuloides Michx.) clones on the Fishlake National Forest in central Utah. Three self-regenerating clones were compared with three non-regenerating clones and three pure aspen stands were compared with three mixed aspen-conifer stands. Regenerating clones...
Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David
2018-01-01
Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling. PMID:29633984
Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David
2018-01-01
Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.
GWERD CAFO Research Program – CAFO Impacts on Ground Water Quality
An overview of several projects will be presented on a research program currently underway at ORD’s Ground Water and Ecosystems Restoration Division (GWERD) to evaluate CAFO impacts on ground water quality. The overall research objectives are to characterize the potential for gro...
NASA Astrophysics Data System (ADS)
Nakahata, R.; Osawa, A.; Naramoto, M.; Mizunaga, H.; Sato, M.
2017-12-01
The masting phenomenon that seed production has large annual variation with spatial synchrony appears generally in beeches. Therefore, net primary production and carbon allocation mechanism in beech forests may differ among several years in relation to annual variation of seed production. On the other hand, fine roots play key roles in carbon dynamics and nutrient and water acquisition of an ecosystem. Evaluation of fine root dynamics is essential to understand long-term dynamics of production in forest ecosystems. Moreover, the influence of mast seeding on resource allocation should be clarified in such beech forests. The aim of this study is to clarify possible relationships between the patterns of above- and below-ground production in relation to the masting events using observation data of litter fall and fine root dynamics. We applied the litter trap method and a minirhizotron method in a cool-temperate natural forest dominated by beech (Fagus crenata Blume). Ten litter traps were set from 2008 to 2016, then annual leaf and seed production were estimated. Four minirhizotron tubes were buried in Aug. 2008 and soil profiles were scanned monthly until Nov. 2016 during the periods of no snow covering. The scanned soil profiles were analyzed for calculating fine root production using the WinRHIZO Tron software. In the present study site, rich production of mast seeding occurred biennially and fine root production showed various seasonal patterns. There was no significant correlation between seed production and annual fine root production in the same year. However, seed production had a positive correlation with fine root production in autumn in the previous year and indicated a negative correlation with that in autumn in the current year. These results indicate that higher fine root production has led to increased nutrient acquisition, which resulted in rich seed production in the next year. It is also suppressed after the masting events due to shortage in resources. This interpretation of the mechanism may be reasonable because the number of flowers and seeds in the current year may have been determined in summer of the previous year. The patterns of fine root production are reasonably changed to occur the masting phenomenon of beeches.
NASA Astrophysics Data System (ADS)
Hoffman, F. M.; Kumar, J.; Maddalena, D. M.; Langford, Z.; Hargrove, W. W.
2014-12-01
Disparate in situ and remote sensing time series data are being collected to understand the structure and function of ecosystems and how they may be affected by climate change. However, resource and logistical constraints limit the frequency and extent of observations, particularly in the harsh environments of the arctic and the tropics, necessitating the development of a systematic sampling strategy to maximize coverage and objectively represent variability at desired scales. These regions host large areas of potentially vulnerable ecosystems that are poorly represented in Earth system models (ESMs), motivating two new field campaigns, called Next Generation Ecosystem Experiments (NGEE) for the Arctic and Tropics, funded by the U.S. Department of Energy. Multivariate Spatio-Temporal Clustering (MSTC) provides a quantitative methodology for stratifying sampling domains, informing site selection, and determining the representativeness of measurement sites and networks. We applied MSTC to down-scaled general circulation model results and data for the State of Alaska at a 4 km2 resolution to define maps of ecoregions for the present (2000-2009) and future (2090-2099), showing how combinations of 37 bioclimatic characteristics are distributed and how they may shift in the future. Optimal representative sampling locations were identified on present and future ecoregion maps, and representativeness maps for candidate sampling locations were produced. We also applied MSTC to remotely sensed LiDAR measurements and multi-spectral imagery from the WorldView-2 satellite at a resolution of about 5 m2 within the Barrow Environmental Observatory (BEO) in Alaska. At this resolution, polygonal ground features—such as centers, edges, rims, and troughs—can be distinguished. Using these remote sensing data, we up-scaled vegetation distribution data collected on these polygonal ground features to a large area of the BEO to provide distributions of plant functional types that can be used to parameterize ESMs. In addition, we applied MSTC to 4 km2 global bioclimate data to define global ecoregions and understand the representativeness of CTFS-ForestGEO, Fluxnet, and RAINFOR sampling networks. These maps identify tropical forests underrepresented in existing observations of individual and combined networks.
Richard A. Werner
2002-01-01
Fire and timber harvest are the two major disturbances that alter forest ecosystems in interior Alaska. Both types of disturbance provide habitats that attract wood borers and bark beetles the first year after the disturbance, but populations then decrease to levels below those in undisturbed sites. Populations of scolytids, buprestids, and cerambycids are compared 1,...
O'Reilly, Andrew M.
2004-01-01
A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if the moisture content, and consequently the unsaturated hydraulic conductivity, below the root zone does not vary substantially with time. Results of the WBTF model were compared to those of the U.S. Geological Survey variably saturated flow model, VS2DT, and to field-based estimates of recharge to demonstrate the applicability of the WBTF model for a range of conditions relevant to deep water-table settings in central Florida. The WBTF model reproduced independently obtained estimates of recharge reasonably well for different soil types and water-table depths.
Blecker, Steve W.; Stillings, Lisa L.; Amacher, Michael C.; Ippolito, James A.; DeCrappeo, Nicole M.
2010-01-01
The myriad definitions of soil/ecosystem quality or health are often driven by ecosystem and management concerns, and they typically focus on the ability of the soil to provide functions relating to biological productivity and/or environmental quality. A variety of attempts have been made to create indices that quantify the complexities of soil quality and provide a means of evaluating the impact of various natural and anthropogenic disturbances. Though not without their limitations, indices can improve our understanding of the controls behind ecosystem processes and allow for the distillation of information to help link scientific and management communities. In terrestrial systems, indices were initially developed and modified for agroecosystems; however, the number of studies implementing such indices in nonagricultural systems is growing. Soil quality indices (SQIs) are typically composed of biological (and sometimes physical and chemical) parameters that attempt to reduce the complexity of a system into a metric of a soil’s ability to carry out one or more functions.The indicators utilized in SQIs can be as varied as the studies themselves, reflecting the complexity of the soil and ecosystems in which they function. Regardless, effective soil quality indicators should correlate well with soil or ecosystem processes, integrate those properties and processes, and be relevant to management practices. Commonly applied biological indicators include measures associated with soil microbial activity or function (for example, carbon and nitrogen mineralization, respiration, microbial biomass, enzyme activity. Cost, accessibility, ease of interpretation, and presence of existing data often dictate indicator selection given the number of available measures. We employed a large number of soil biological, chemical, and physical measures, along with measures of vegetation cover, density, and productivity, in order to test the utility and sensitivity of these measures within various mineralized terranes. We were also interested in examining these relations in the context of determining appropriate reference conditions with which to compare reclamation efforts.The purpose of this report is to present the data used to develop indices of soil and ecosystem quality associated with mineralized terranes (areas enriched in metal-bearing minerals), specifically podiform chromite, quartz alunite, and Mo/Cu porphyry systems. Within each of these mineralized terranes, a nearby unmineralized counterpart was chosen for comparison. The data consist of soil biological, chemical, and physical parameters, along with vegetation measurements for each of the sites described below. Synthesis of these data and index development will be the subject of future publications.
NASA Astrophysics Data System (ADS)
Asrar, G.; Wolf, J.; Rafique, R.; West, T. O.; Ogle, S. M.
2016-12-01
Rangelands play an important role in providing ecosystem services such as food, forage, and fuels in many parts of the world. The net primary productivity (NPP), a difference between CO2 fixed by plants and CO2 lost to autotrophic respiration, is a good indicator of the productivity of rangeland ecosystems, and their contribution to the cycling of carbon in the Earth system. In this study, we estimated the NPP of global rangelands, the consumption thereof by grazing livestock, and associated uncertainties, to better understand and quantify the contribution of rangelands to land-based carbon storage. We estimated rangeland NPP using mean annual precipitation data from Climate Research Unit (CRU), and a regression model based on global observations (Del Grosso et al., 2008). Spatial distributions of annual livestock consumption of rangeland NPP (Wolf et al., 2015) were combined with gridded annual rangeland NPP for the years 2000 - 2011. The uncertainty analysis of these estimates was conducted using a Monte Carlo approach. The rangeland NPP estimates with associated uncertainties were also compared with the total modeled GPP estimates obtained from vegetation dynamic model simulations. Our results showed that mean above-ground NPP of rangelands is 1017.5 MgC/km2, while mean below-ground NPP is 847.6 MgC/km2. The total rangeland NPP represents a significant portion of the total NPP of the terrestrial ecosystem. The livestock area requirements used to geographically distribute livestock spatially are based on optimal pasturage and are low relative to area requirements on less productive land. Even so, ca. 90% of annual livestock consumption of rangeland NPP were met with no adjustment of livestock distributions. Moreover, the results of this study allowed us to explicitly quantify the temporal and spatial variations of rangeland NPP under different climatic conditions. Uncertainty analysis was helpful in identifying the strength and weakness of the methods used to estimate rangeland NPP. Overall, the results from this study are useful in quantifying the contribution of rangelands to the carbon cycle and for providing geospatially distributed carbon fluxes associated with the production and consumption of rangeland biomass.
Ground Water Technical Support Center (GWTSC) Annual Report Fiscal Year 2014 (FY14)
The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA's National Risk Management...
Ground Water Technical Support Center (GWTSC) Annual Report Fiscal Year 2015
The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management ...
Nizami, Syed Moazzam; Yiping, Zhang; Liqing, Sha; Zhao, Wei; Zhang, Xiang
2014-01-01
Extension of the rotation length in forest management has been highlighted in Article 3.4 of the Kyoto Protocol to help the countries in their commitments for reduction in greenhouse gas emissions. CO2FIX Model Ver.3.2 was used to examine the dynamics of carbon stocks (C stocks) in a rubber plantation in South Western China with the changing rotation lengths. To estimate the efficiency of increasing the rotation length as an Article 3.4 activity, study predicted that the rubber production and C stocks of the ecosystem increased with the increasing rotation (25, 30, 35, 40 and 45 years). While comparing the pace of growth both in economical (rubber production) and ecological (C stocks) terms in each rotation, 40 years rotation length showed maximum production and C stocks. After elongation of 40 year rotation to four consecutive cycles, it was concluded that the total C stocks of the ecosystem were 186.65 Mg ha(-1). The longer rotation lengths showed comparatively increased C stocks in below ground C stock after consecutive four rotations. The pace of C input (Mg C ha(-1) yr(-1)) and rubber production indicated that 40 years rotation is best suited for rubber plantation. The study has developed carbon mitigation based on four rotation scenarios. The possible stimulated increase in C stocks of the entire ecosystem after consecutive long rotations indicated that the emphasis must be paid on deciding the rotation of rubber plantation in SW China for reporting under article 3.4 of the Kyoto Protocol.
Nizami, Syed Moazzam; Yiping, Zhang; Liqing, Sha; Zhao, Wei; Zhang, Xiang
2014-01-01
Extension of the rotation length in forest management has been highlighted in Article 3.4 of the Kyoto Protocol to help the countries in their commitments for reduction in greenhouse gas emissions. CO2FIX Model Ver.3.2 was used to examine the dynamics of carbon stocks (C stocks) in a rubber plantation in South Western China with the changing rotation lengths. To estimate the efficiency of increasing the rotation length as an Article 3.4 activity, study predicted that the rubber production and C stocks of the ecosystem increased with the increasing rotation (25, 30, 35, 40 and 45 years). While comparing the pace of growth both in economical (rubber production) and ecological (C stocks) terms in each rotation, 40 years rotation length showed maximum production and C stocks. After elongation of 40 year rotation to four consecutive cycles, it was concluded that the total C stocks of the ecosystem were 186.65 Mg ha-1. The longer rotation lengths showed comparatively increased C stocks in below ground C stock after consecutive four rotations. The pace of C input (Mg C ha-1yr-1) and rubber production indicated that 40years rotation is best suited for rubber plantation. The study has developed carbon mitigation based on four rotation scenarios. The possible stimulated increase in C stocks of the entire ecosystem after consecutive long rotations indicated that the emphasis must be paid on deciding the rotation of rubber plantation in SW China for reporting under article 3.4 of the Kyoto Protocol. PMID:25536041
NASA Astrophysics Data System (ADS)
McIntire, C.; Vadeboncoeur, M. A.; Coble, A.; Jennings, K.; Asbjornsen, H.
2016-12-01
Climate change is likely to affect the Northern Forest region through the increased frequency and severity of drought events. However, our understanding of how the Northern Forest, which is adapted to humid temperate conditions, will respond to moderate to extreme droughts is limited. Given the important role that these forests play in protecting ecosystem services and in supplying forest products, enhancing our knowledge about impacts of drought is critical to ensuring effective forest management and adaptation to climate change. The Northern Forest DroughtNet project aims to simulate a four-year severe drought by removing 55% of the incoming throughfall; thus representing the 99th percentile of annual precipitation based on historic precipitation data in Durham, NH. This is accomplished using two replicated 900 m2 throughfall removal structures consisting of a network of gutters that capture and divert incoming precipitation away from the established treatment area. Data presented here will address the ecosystem response to the drought treatment over the course of the first year of the experiment as well as validate the effectiveness and artifacts of the throughfall removal structure. Response variables of interest include soil moisture content, above and below ground biomass production, litterfall, decomposition rates, leaf water potential, foliar gas exchange, and whole tree transpiration rates. Preliminary findings provide insight into the effectiveness of using throughfall manipulation experiments in a temperate forest ecosystem to simulate an extreme drought event, as well as initial tree physiological and growth responses in relation to soil moisture availability and the implications for future climate change impacts.
Trevathan-Tackett, Stacey M.; Macreadie, Peter I.; Sanderman, Jonathan; Baldock, Jeff; Howes, Johanna M.; Ralph, Peter J.
2017-01-01
Seagrass ecosystems have recently been identified for their role in climate change mitigation due to their globally-significant carbon sinks; yet, the capacity of seagrasses to sequester carbon has been shown to vary greatly among seagrass ecosystems. The recalcitrant nature of seagrass tissues, or the resistance to degradation back into carbon dioxide, is one aspect thought to influence sediment carbon stocks. In this study, a global survey investigated how the macromolecular chemistry of seagrass leaves, sheaths/stems, rhizomes and roots varied across 23 species from 16 countries. The goal was to understand how this seagrass chemistry might influence the capacity of seagrasses to contribute to sediment carbon stocks. Three non-destructive analytical chemical analyses were used to investigate seagrass chemistry: thermogravimetric analysis (TGA) and solid state 13C-NMR and infrared spectroscopy. A strong latitudinal influence on carbon quality was found, whereby temperate seagrasses contained 5% relatively more labile carbon, and tropical seagrasses contained 3% relatively more refractory carbon. Sheath/stem tissues significantly varied across taxa, with larger morphologies typically containing more refractory carbon than smaller morphologies. Rhizomes were characterized by a higher proportion of labile carbon (16% of total organic matter compared to 8–10% in other tissues); however, high rhizome biomass production and slower remineralization in anoxic sediments will likely enhance these below-ground tissues' contributions to long-term carbon stocks. Our study provides a standardized and global dataset on seagrass carbon quality across tissue types, taxa and geography that can be incorporated in carbon sequestration and storage models as well as ecosystem valuation and management strategies. PMID:28659936
Regulation causes nitrogen cycling discontinuities in Mediterranean rivers.
von Schiller, Daniel; Aristi, Ibon; Ponsatí, Lídia; Arroita, Maite; Acuña, Vicenç; Elosegi, Arturo; Sabater, Sergi
2016-01-01
River regulation has fundamentally altered large sections of the world's river networks. The effects of dams on the structural properties of downstream reaches are well documented, but less is known about their effect on river ecosystem processes. We investigated the effect of dams on river nutrient cycling by comparing net uptake of total dissolved nitrogen (TDN), phosphorus (TDP) and organic carbon (DOC) in river reaches located upstream and downstream from three reservoir systems in the Ebro River basin (NE Iberian Peninsula). Increased hydromorphological stability, organic matter standing stocks and ecosystem metabolism below dams enhanced the whole-reach net uptake of TDN, but not that of TDP or DOC. Upstream from dams, river reaches tended to be at biogeochemical equilibrium (uptake≈release) for all nutrients, whereas river reaches below dams acted as net sinks of TDN. Overall, our results suggest that flow regulation by dams may cause relevant N cycling discontinuities in rivers. Higher net N uptake capacity below dams could lead to reduced N export to downstream ecosystems. Incorporating these discontinuities could significantly improve predictive models of N cycling and transport in complex river networks. Copyright © 2015. Published by Elsevier B.V.
Genetic Control of Water and Nitrate Capture and Their Use Efficiency in Lettuce (Lactuca sativa L.)
Kerbiriou, Pauline J.; Maliepaard, Chris A.; Stomph, Tjeerd Jan; Koper, Martin; Froissart, Dorothee; Roobeek, Ilja; Lammerts Van Bueren, Edith T.; Struik, Paul C.
2016-01-01
Robustness in lettuce, defined as the ability to produce stable yields across a wide range of environments, may be associated with below-ground traits such as water and nitrate capture. In lettuce, research on the role of root traits in resource acquisition has been rather limited. Exploring genetic variation for such traits and shoot performance in lettuce across environments can contribute to breeding for robustness. A population of 142 lettuce cultivars was evaluated during two seasons (spring and summer) in two different locations under organic cropping conditions, and water and nitrate capture below-ground and accumulation in the shoots were assessed at two sampling dates. Resource capture in each soil layer was measured using a volumetric method based on fresh and dry weight difference in the soil for soil moisture, and using an ion-specific electrode for nitrate. We used these results to carry out an association mapping study based on 1170 single nucleotide polymorphism markers. We demonstrated that our indirect, high-throughput phenotyping methodology was reliable and capable of quantifying genetic variation in resource capture. QTLs for below-ground traits were not detected at early sampling. Significant marker-trait associations were detected across trials for below-ground and shoot traits, in number and position varying with trial, highlighting the importance of the growing environment on the expression of the traits measured. The difficulty of identifying general patterns in the expression of the QTLs for below-ground traits across different environments calls for a more in-depth analysis of the physiological mechanisms at root level allowing sustained shoot growth. PMID:27064203
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stafford, E.A.; Simmers, J.W.; Rhett, R.G.
1991-06-01
This interim report, collates all data gathered for the Times Beach confined disposal facility (CDF), Buffalo, New York. This purpose of the studies at the CDF was to determine the mobility and potential hazard of contaminants known to be in the dredged material placed at Times Beach by sampling and analyzing various components of the developing ecosystems. Upland, wetland, and aquatic areas are represented within the CDF and, for each area, inventories of colonizing biota were made and samples collected for measurement of heavy metals and organic compound contaminants. Samples of dredged material, vegetation, and soil-dwelling invertebrates, and vertebrates havemore » been collected and heavy metal concentrations measured. Results suggest that the persistent contaminants, particularly cadmium, are concentrating in the leaf litter zone and moving into the detritivorous invertebrates. Highest concentrations of heavy metals were noted in earthworms. Earth worms, millipedes, woodlice, and spiders appeared to be target organisms for accumulation of heavy metals, and these groups contained higher concentrations of copper and cadmium than the other groups. Polychlorinated biphenyl (PCB) and polynuclear aromatic hydrocarbon contaminants in the dredged material were below machine detection limits in the vertebrate top-predators. Contaminant concentrations in water from ground water wells were below guidance limits.« less
Physiological girdling of pine trees via phloem chilling: proof of concept
Kurt Johnsen; Chris Maier; Felipe Sanchez; Peter Anderson; John Butnor; Richard Waring; Sune Linder
2007-01-01
Quantifying below-ground carbon (C) allocation is particularly difficult as methods usually disturb the rootâ mycorrhizalâsoil continuum. We reduced C allocation below ground of loblolly pine trees by: (1) physically girdling trees and (2) physiologically girdling pine trees by chilling the phloem. Chilling reduced cambium temperatures by approximately 18 °C. Both...
USDA-ARS?s Scientific Manuscript database
In sutu decomposition of above and below ground plant biomass of the native grass species Andropogon glmoeratus (Walt.) B.S.P and exotic Imperata cylindrica (L.) Beauv. (cogongrass) was investigated using litter bags over the course of a 12 month period. The above and below ground biomass of the inv...
Below- and above-ground effects of deadwood and termites in plantation forests
Michael D. Ulyshen; Richard Shefferson; Scott Horn; Melanie K. Taylor; Bryana Bush; Cavell Brownie; Sebastian Seibold; Michael S. Strickland
2017-01-01
Deadwood is an important legacy structure in managed forests, providing continuity in shelter and resource availability for many organisms and acting as a vehicle by which nutrients can be passed from one stand to the next following a harvest. Despite existing at the interface between below- and above-ground systems, however, much remains unknown about the role woody...
Jason Vogel; Edward A.G. Schuur; Christian Trucco; Hanna Lee
2009-01-01
Climate change in high latitudes can lead to permafrost thaw, which in ice-rich soils can result in ground subsidence, or thermokarst. In interior Alaska, we examined seasonal and annual ecosystem CO2 exchange using static and automatic chamber measurements in three areas of a moist acidic tundra ecosystem undergoing varying degrees of permafrost...
Schreffler, Curtis L.
2001-01-01
Ground-water flow in the Potomac-Raritan- Magothy aquifer system (PRM) in south Philadelphia and adjacent southwestern New Jersey was simulated by use of a three-dimensional, seven-layer finite-difference numerical flow model. The simulation was run from 1900, which was prior to groundwater development, through 1995 with 21 stress periods. The focus of the modeling was on a smaller area of concern in south Philadelphia in the vicinity of the Defense Supply Center Philadelphia (DSCP) and the Point Breeze Refinery (PBR). In order to adequately simulate the ground-water flow system in the area of concern, a much larger area was modeled that included parts of New Jersey where significant ground-water withdrawals, which affect water levels in southern Philadelphia, had occurred in the past. At issue in the area of concern is a hydrocarbon plume of unknown origin and time of release.The ground-water-flow system was simulated to estimate past water-level altitudes in and near the area of concern and to determine the effect of the Packer Avenue sewer, which lies south of the DSCP, on the ground-water-flow system. Simulated water-level altitudes for the lower sand unit of the PRM on the DSCP prior to 1945 ranged from pre-development, unstressed altitudes to 3 feet below sea level. Simulated water-level altitudes for the lower sand unit ranged from 3 to 7 feet below sea level from 1946 to 1954, from 6 to 10 feet below sea level from 1955 to 1968, and from 9 to 11 feet below sea level from 1969 to 1978. The lowest simulated water-level altitude on the DSCP was 10.69 feet below sea level near the end of 1974. Model simulations indicate ground water was infiltrating the Packer Avenue sewer prior to approximately 1947 or 1948. Subsequent to that time, simulated ground-water-level altitudes were lower than the bottom of the sewer.
Southwestern Avian Community Organization in Exotic Tamarix: Current Patterns and Future Needs
H. A. Walker
2006-01-01
Tamarisk (saltcedar: Tamarix), an invasive exotic tree native to the Eastern Hemisphere, is currently the dominant plant species in most southwestern riparian ecosystems at elevations below 1500 m. Tamarisk alters abiotic conditions and the floral composition of native southwestern riparian ecosystems and, in turn, affects native southwestern animal communities....
NASA Technical Reports Server (NTRS)
Gnanalingam, S.; Kane, J. A.
1975-01-01
The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km.
Meeting ecological and societal needs for freshwater
Baron, Jill S.; Poff, N.L.; Angermeier, P.L.; Dahm, Clifford N.; Gleick, P.H.; Hairston, N.G.; Jackson, R.B.; Johnston, C.A.; Richter, B.D.; Steinman, A.D.
2002-01-01
Human society has used freshwater from rivers, lakes, groundwater, and wetlands for many different urban, agricultural, and industrial activities, but in doing so has overlooked its value in supporting ecosystems. Freshwater is vital to human life and societal well-being, and thus its utilization for consumption, irrigation, and transport has long taken precedence over other commodities and services provided by freshwater ecosystems. However, there is growing recognition that functionally intact and biologically complex aquatic ecosystems provide many economically valuable services and long-term benefits to society. The short-term benefits include ecosystem goods and services, such as food supply, flood control, purification of human and industrial wastes, and habitat for plant and animal life—and these are costly, if not impossible, to replace. Long-term benefits include the sustained provision of those goods and services, as well as the adaptive capacity of aquatic ecosystems to respond to future environmental alterations, such as climate change. Thus, maintenance of the processes and properties that support freshwater ecosystem integrity should be included in debates over sustainable water resource allocation.The purpose of this report is to explain how the integrity of freshwater ecosystems depends upon adequate quantity, quality, timing, and temporal variability of water flow. Defining these requirements in a comprehensive but general manner provides a better foundation for their inclusion in current and future debates about allocation of water resources. In this way the needs of freshwater ecosystems can be legitimately recognized and addressed. We also recommend ways in which freshwater ecosystems can be protected, maintained, and restored.Freshwater ecosystem structure and function are tightly linked to the watershed or catchment of which they are a part. Because riverine networks, lakes, wetlands, and their connecting groundwaters, are literally the “sinks” into which landscapes drain, they are greatly influenced by terrestrial processes, including many human uses or modifications of land and water. Freshwater ecosystems, whether lakes, wetlands, or rivers, have specific requirements in terms of quantity, quality, and seasonality of their water supplies. Sustainability normally requires these systems to fluctuate within a natural range of variation. Flow regime, sediment and organic matter inputs, thermal and light characteristics, chemical and nutrient characteristics, and biotic assemblages are fundamental defining attributes of freshwater ecosystems. These attributes impart relatively unique characteristics of productivity and biodiversity to each ecosystem. The natural range of variation in each of these attributes is critical to maintaining the integrity and dynamic potential of aquatic ecosystems; therefore, management should allow for dynamic change. Piecemeal approaches cannot solve the problems confronting freshwater ecosystems.Scientific definitions of the requirements to protect and maintain aquatic ecosystems are necessary but insufficient for establishing the appropriate distribution between societal and ecosystem water needs. For scientific knowledge to be implemented science must be connected to a political agenda for sustainable development. We offer these recommendations as a beginning to redress how water is viewed and managed in the United States: (1) Frame national and regional water management policies to explicitly incorporate freshwater ecosystem needs, particularly those related to naturally variable flow regimes and to the linking of water quality with water quantity; (2) Define water resources to include watersheds, so that freshwaters are viewed within a landscape, or systems context; (3) Increase communication and education across disciplines, especially among engineers, hydrologists, economists, and ecologists to facilitate an integrated view of freshwater resources; (4) Increase restoration efforts, using well-grounded ecological principles as guidelines; (5) Maintain and protect the remaining freshwater ecosystems that have high integrity; and (6) Recognize the dependence of human society on naturally functioning ecosystems.
Loss of functional diversity of ant assemblages in secondary tropical forests.
Bihn, Jochen H; Gebauer, Gerhard; Brandl, Roland
2010-03-01
Secondary forests and plantations increasingly dominate the tropical wooded landscape in place of primary forests. The expected reduction of biodiversity and its impact on ecological functions provided by these secondary forests are of major concern to society and ecologists. The potential effect of biodiversity loss on ecosystem functioning depends largely on the associated loss in the functional diversity of animal and plant assemblages, i.e., the degree of functional redundancy among species. However, the relationship between species and functional diversity is still poorly documented for most ecosystems. Here, we analyze how changes in the species diversity of ground-foraging ant assemblages translate into changes of functional diversity along a successional gradient of secondary forests in the Atlantic Forest of Brazil. Our analysis uses continuous measures of functional diversity and is based on four functional traits related to resource use of ants: body size, relative eye size, relative leg length, and trophic position. We find a strong relationship between species and functional diversity, independent of the functional traits used, with no evidence for saturation in this relationship. Recovery of species richness and diversity of ant assemblages in tropical secondary forests was accompanied by a proportional increase of functional richness and diversity of assemblages. Moreover, our results indicate that the increase in functional diversity along the successional gradient of secondary forests is primarily driven by rare species, which are functionally unique. The observed loss of both species and functional diversity in secondary forests offers no reason to believe that the ecological functions provided by secondary forests are buffered against species loss through functional redundancy.
Functional response of wolves preying on barren-ground caribou in a multiple-prey ecosystem
Dale, B.W.; Adams, Layne G.; Bowyer, R.T.
1994-01-01
1. We investigated the functional response of wolves (Canis lupus) to varying abundance of ungulate prey to test the hypothesis that switching from alternate prey to preferred prey results in regulation of a caribou (Rangifer tarandus) population at low densities. 2. We determined prey selection, kill rates, and prey abundance for four wolf packs during three 30-day periods in March 1989, March 1990, November 1990, and created a simple discrete model to evaluate the potential for the expected numerical and observed functional responses of wolves to regulate caribou populations. 3. We observed a quickly decelerating type II functional response that, in the absence of numerical response, implicates an anti-regulatory effect of wolf predation on barren-ground caribou dynamics. 4. There was little potential for regulation caused by the multiplicative effect of increasing functional and numerical responses because of presence of alternative prey. This resulted in high wolf:caribou ratios at low prey densities which precluded the effects of an increasing functional response. 5. Inversely density-dependent predation by other predators, such as bears, reduces the potential for predators to regulate caribou populations at low densities, and small reductions in predation by one predator may have disproportionately large effects on the total predation rate.
Vertical variation of mixing within porous sediment beds below turbulent flows
Chandler, I. D.; Pearson, J. M.; van Egmond, R.
2016-01-01
Abstract River ecosystems are influenced by contaminants in the water column, in the pore water and adsorbed to sediment particles. When exchange across the sediment‐water interface (hyporheic exchange) is included in modeling, the mixing coefficient is often assumed to be constant with depth below the interface. Novel fiber‐optic fluorometers have been developed and combined with a modified EROSIMESS system to quantify the vertical variation in mixing coefficient with depth below the sediment‐water interface. The study considered a range of particle diameters and bed shear velocities, with the permeability Péclet number, PeK between 1000 and 77,000 and the shear Reynolds number, Re*, between 5 and 600. Different parameterization of both an interface exchange coefficient and a spatially variable in‐sediment mixing coefficient are explored. The variation of in‐sediment mixing is described by an exponential function applicable over the full range of parameter combinations tested. The empirical relationship enables estimates of the depth to which concentrations of pollutants will penetrate into the bed sediment, allowing the region where exchange will occur faster than molecular diffusion to be determined. PMID:27635104
NASA Technical Reports Server (NTRS)
Flood, D. J.
1974-01-01
A measurement technique was devised which permits direct observation of the magnetic entropy of solids as a function of applied magnetic field. Measurements were made of the magnetic entropy, in the temperature range 2 to 20 K, of polycrystalline samples of dysprosium titanium oxide (Dy2Ti2O7) to determine its suitability for use as the working substance of a magnetic refrigerator. Magnetization measurements were also made at 4.2 K and below to provide additional information on the nature of the compound. The measurements indicated that crystalline electric fields perturbed the ground state of the dysprosium ions, removed the 16-fold degeneracy predicted by Hund's rules, and left only a twofold degeneracy in its place. A positive, temperature independent contribution to the magnetization was observed in the saturation region, which indicated that the doublet ground-state wave function was perturbed by a nearby unpopulated upper energy level.
The Response of Ice Sheets to Climate Variability
NASA Astrophysics Data System (ADS)
Snow, K.; Goldberg, D. N.; Holland, P. R.; Jordan, J. R.; Arthern, R. J.; Jenkins, A.
2017-12-01
West Antarctic Ice Sheet loss is a significant contributor to sea level rise. While the ice loss is thought to be triggered by fluctuations in oceanic heat at the ice shelf bases, ice sheet response to ocean variability remains poorly understood. Using a synchronously coupled ice-ocean model permitting grounding line migration, this study evaluates the response of an ice sheet to periodic variations in ocean forcing. Resulting oscillations in grounded ice volume amplitude is shown to grow as a nonlinear function of ocean forcing period. This implies that slower oscillations in climatic forcing are disproportionately important to ice sheets. The ice shelf residence time offers a critical time scale, above which the ice response amplitude is a linear function of ocean forcing period and below which it is quadratic. These results highlight the sensitivity of West Antarctic ice streams to perturbations in heat fluxes occurring at decadal time scales.
Microbial functional diversity alters the structure and sensitivity of oxygen deficient zones
NASA Astrophysics Data System (ADS)
Penn, Justin; Weber, Thomas; Deutsch, Curtis
2016-09-01
Oxygen deficient zones (ODZs) below the ocean surface regulate marine productivity by removing bioavailable nitrogen (N). A complex microbial community mediates N loss, but the interplay of its diverse metabolisms is poorly understood. We present an ecosystem model of the North Pacific ODZ that reproduces observed chemical distributions yet predicts different ODZ structure, rates, and climatic sensitivity compared to traditional geochemical models. An emergent lower O2 limit for aerobic nitrification lies below the upper O2 threshold for anaerobic denitrification, creating a zone of microbial coexistence that causes a larger ODZ but slower total rates of N loss. The O2-dependent competition for the intermediate nitrite produces gradients in its oxidation versus reduction, anammox versus heterotrophic denitrification, and the net ecological stoichiometry of N loss. The latter effect implies that an externally driven ODZ expansion should favor communities that more efficiently remove N, increasing the sensitivity of the N cycle to climate change.
Abstract - The presentation will summarize the arsenic research program at the Ground Water & Ecosystems Restoration Division of the National Risk Management Research Laboratory of USEPA. Topics include use of permeable reactive barriers for in situ arsenic remediation in ground...
Nitrogen and groundwater at Green Island restoration site
The Ground Water and Ecosystem Restoration Division (GWERD) of the USEPA investigates best management practices (BMP’s) and restoration techniques in aquatic ecosystems throughout the United States. Research on a) river restoration b) riparian buffer zones c) macrophytes, and d) ...
Illustrating the Interaction of Nature and People in Ecosystem Services: The Case of Terroir in Wine
NASA Astrophysics Data System (ADS)
Nicholas, K. A.
2014-12-01
The ecosystem services (ES) approach is increasingly used in research and policy, with the Common International Framework on Ecosystem Services (CICES) "cascade" gaining traction as a framework for conceptualizing the production of ecosystem services by the natural environment, and then people consuming these services and obtaining benefits depending on their values. However, uptake of the ES concept on the ground by ecosystem managers, and understanding by everyday citizens, is still limited. One barrier is the challenge of providing tangible, examples of everyday benefits and values that people can readily connect with the biophysical structures and functions that underlie their provision. Winegrowing offers one promising case to illustrate the linkages all along the chain of production and consumption of ecosystem services. The sensitive winegrape has long been known for its properties of terroir, where the taste of wine reflects the environmental conditions of the place where it is grown, a feature valued by consumers. Here the CICES framework is illustrated with the case of winegrowing, demonstrating that the current linear model of natural production and human consumption of ES needs to be modified for this case because people influence each of the five stages by shaping and responding to their environment, producing a two-way interaction between people and the environment throughout. For example, while natural drivers such as climate and soils are key to the provision of the service of winegrape yields, landowners modify the biophysical environment through site selection and growers modify plant ecophysiological function through farming practices such as pruning and irrigation in order to influence the final service. Similarly, winemakers' expertise is needed to transform the service of winegrape yields into the product of wine that can be enjoyed and valued by consumers, whose preferences shape wine styles as well. This case illustrates how incorporating both natural and human factors all along the chain of production and consumption of ecosystem services can better represent the potential services provided, and highlights the need to identify relevant decisionmakers at each stage to better understand and manage ecosystem services under environmental change.
Implications of introducing realistic fire response traits in a Dynamic Global Vegetation Model
NASA Astrophysics Data System (ADS)
Kelley, D.; Harrison, S. P.; Prentice, I. C.
2013-12-01
Bark thickness is a key trait protecting woody plants against fire damage, while the ability to resprout is a trait that confers competitive advantage over non-resprouting individuals in fire-prone landscapes. Neither trait is well represented in fire-enabled dynamic global vegetation models (DGVMs). Here we describe a version of the Land Processes and eXchanges (LPX-Mv1) DGVM that incorporates both of these traits in a realistic way. From a synthesis of a large number of field studies, we show there is considerable innate variability in bark thickness between species within a plant-functional type (PFT). Furthermore, bark thickness is an adaptive trait at ecosystem level, increasing with fire frequency. We use the data to specify the range of bark thicknesses characteristic of each model PFT. We allow this distribution to change dynamically: thinner-barked trees are killed preferentially by fire, shifting the distribution of bark thicknesses represented in a model grid cell. We use the PFT-specific bark-thickness probability range for saplings during re-establishment. Since it is rare to destroy all trees in a grid cell, this treatment results in average bark thickness increasing with fire frequency and intensity. Resprouting is a prominent adaptation of temperate and tropical trees in fire-prone areas. The ability to resprout from above-ground tissue (apical or epicormic resprouting) results in the fastest recovery of total biomass after disturbance; resprouting from basal or below-ground meristems results in slower recovery, while non-resprouting species must regenerate from seed and therefore take the longest time to recover. Our analyses show that resprouting species have thicker bark than non-resprouting species. Investment in resprouting is accompanied by reduced efficacy of regeneration from seed. We introduce resprouting PFTs in LPX-Mv1 by specifying an appropriate range of bark thickness, allowing resprouters to survive fire and regenerate vegetatively in the next growing season, while regenerating from seed at 10% the rate of non-resprouters. Tests of LPX-Mv1 for Australia - a continent with a wide range of fire-adapted ecosystems - show that it produces a 33% improvement in the simulation of vegetation composition compared to the previous version of the model, with more realistic vegetation transitions from forests to woodland/savanna. It also produces a 19% improvement in the simulation of burnt area compared to the original model. Resprouting PFTs dominate tropical and temperate areas where the climate is semi-humid but are not common in very dry or very wet areas. Comparison with site-based observations of the abundance of resprouters indicate this is realistic. Ecosystems dominated by resprouters in the simulations recover to pre-fire levels of biomass within 5-7 years, much faster than ecosystems dominated by non-resprouters; again this is confirmed by our analyses of the observations. Simulations of the response to projected future climate change show that the incorporation of adaptive bark thickness and of resprouting has a significant effect on terrestrial carbon stocks in fire-affected areas.
NASA Astrophysics Data System (ADS)
Karyakin, Alexey; Vasenev, Ivan; Karyakina, Svetlana
2015-04-01
Regional environmental bodies' ability to understand, model and predict their soil cover environmental functions are especially important in case of landfill reclamation. The special attention has to be done to landfills with industrial wastes created earlier in frame of big city - comparatively closed to their residential areas. Dominated in Ryazan region sandy loam gray forest soils with not so high soil organic matter content and soil exchange capacity determine additional problems with landfill biological reclamation and continuous sustainable vegetation cover development. The modern environmental monitoring system has been developed in the big landfill with tanning industrial wastes from the biggest in Europe tannery to develop recommendation on the environmentally friendly reclamation technologies adapted to concrete landscape conditions and functional features of 2 m fresh soil-ground coating the landfill surface. More detailed monitoring system has to be developed to assess the regulatory environmental functions of the regenerated soil cover to minimize the reclamated landfill' negative impacts on the urban ecosystem air, surface and ground water quality. Obtained result will be useful for similar landfills with tanning industrial wastes environmental impact assessment and smart design.
Bruelheide, Helge; Härdtle, Werner; Kröber, Wenzel; Li, Ying; von Oheimb, Goddert
2015-01-01
Soil erosion is a key threat to many ecosystems, especially in subtropical China where high erosion rates occur. While the mechanisms that induce soil erosion on agricultural land are well understood, soil erosion processes in forests have rarely been studied. Throughfall kinetic energy (TKE) is influenced in manifold ways and often determined by the tree’s leaf and architectural traits. We investigated the role of species identity in mono-specific stands on TKE by asking to what extent TKE is species-specific and which leaf and architectural traits account for variation in TKE. We measured TKE of 11 different tree species planted in monocultures in a biodiversity-ecosystem-functioning experiment in subtropical China, using sand-filled splash cups during five natural rainfall events in summer 2013. In addition, 14 leaf and tree architectural traits were measured and linked to TKE. Our results showed that TKE was highly species-specific. Highest TKE was found below Choerospondias axillaris and Sapindus saponaria, while Schima superba showed lowest TKE. These species-specific effects were mediated by leaf habit, leaf area (LA), leaf pinnation, leaf margin, stem diameter at ground level (GD), crown base height (CBH), tree height, number of branches and leaf area index (LAI) as biotic factors and throughfall as abiotic factor. Among these, leaf habit, tree height and LA showed the highest effect sizes on TKE and can be considered as major drivers of TKE. TKE was positively influenced by LA, GD, CBH, tree height, LAI, and throughfall amount while it was negatively influenced by the number of branches. TKE was lower in evergreen, simple leaved and dentate leaved than in deciduous, pinnated or entire leaved species. Our results clearly showed that soil erosion in forest plantations can be mitigated by the appropriate choice of tree species. PMID:26079260
Goebes, Philipp; Bruelheide, Helge; Härdtle, Werner; Kröber, Wenzel; Kühn, Peter; Li, Ying; Seitz, Steffen; von Oheimb, Goddert; Scholten, Thomas
2015-01-01
Soil erosion is a key threat to many ecosystems, especially in subtropical China where high erosion rates occur. While the mechanisms that induce soil erosion on agricultural land are well understood, soil erosion processes in forests have rarely been studied. Throughfall kinetic energy (TKE) is influenced in manifold ways and often determined by the tree's leaf and architectural traits. We investigated the role of species identity in mono-specific stands on TKE by asking to what extent TKE is species-specific and which leaf and architectural traits account for variation in TKE. We measured TKE of 11 different tree species planted in monocultures in a biodiversity-ecosystem-functioning experiment in subtropical China, using sand-filled splash cups during five natural rainfall events in summer 2013. In addition, 14 leaf and tree architectural traits were measured and linked to TKE. Our results showed that TKE was highly species-specific. Highest TKE was found below Choerospondias axillaris and Sapindus saponaria, while Schima superba showed lowest TKE. These species-specific effects were mediated by leaf habit, leaf area (LA), leaf pinnation, leaf margin, stem diameter at ground level (GD), crown base height (CBH), tree height, number of branches and leaf area index (LAI) as biotic factors and throughfall as abiotic factor. Among these, leaf habit, tree height and LA showed the highest effect sizes on TKE and can be considered as major drivers of TKE. TKE was positively influenced by LA, GD, CBH, tree height, LAI, and throughfall amount while it was negatively influenced by the number of branches. TKE was lower in evergreen, simple leaved and dentate leaved than in deciduous, pinnated or entire leaved species. Our results clearly showed that soil erosion in forest plantations can be mitigated by the appropriate choice of tree species.
Stagg, Camille L.; Baustian, Melissa M.; Perry, Carey L.; Carruthers, Tim J.B.; Hall, Courtney T.
2018-01-01
Coastal wetlands store more carbon than most ecosystems globally. As sea level rises, changes in flooding and salinity will potentially impact ecological functions, such as organic matter decomposition, that influence carbon storage. However, little is known about the mechanisms that control organic matter loss in coastal wetlands at the landscape scale. As sea level rises, how will the shift from fresh to salt-tolerant plant communities impact organic matter decomposition? Do long-term, plant-mediated, effects of sea-level rise differ from direct effects of elevated salinity and flooding?We identified internal and external factors that regulated indirect and direct pathways of sea-level rise impacts, respectively, along a landscape-scale salinity gradient that incorporated changes in wetland type (fresh, oligohaline, mesohaline and polyhaline marshes). We found that indirect and direct impacts of sea-level rise had opposing effects on organic matter decomposition.Salinity had an indirect effect on litter decomposition that was mediated through litter quality. Despite significant variation in environmental conditions along the landscape gradient, the best predictors of above- and below-ground litter decomposition were internal drivers, initial litter nitrogen content and initial litter lignin content respectively. Litter decay constants were greatest in the oligohaline marsh and declined with increasing salinity, and the fraction of litter remaining (asymptote) was greatest in the mesohaline marsh. In contrast, direct effects of salinity and flooding were positive. External drivers, salinity and flooding, stimulated cellulytic activity, which was highest in the polyhaline marsh.Synthesis. Our results indicate that as sea level rises, initial direct effects of salinity will stimulate decay of labile carbon, but over time as plant communities shift from fresh to polyhaline marsh, litter decay will decline, yielding greater potential for long-term carbon storage. These findings highlight the importance of quantifying carbon loss at multiple temporal scales, not only in coastal wetlands but also in other ecosystems where plant-mediated responses to climate change will have significant impacts on carbon cycling.
Is Obsidian Hydration Dating Affected by Relative Humidity?
Friedman, I.; Trembour, F.W.; Smith, G.I.; Smith, F.L.
1994-01-01
Experiments carried out under temperatures and relative humidities that approximate ambient conditions show that the rate of hydration of obsidian is a function of the relative humidity, as well as of previously established variables of temperature and obsidian chemical composition. Measurements of the relative humidity of soil at 25 sites and at depths of between 0.01 and 2 m below ground show that in most soil environments, at depths below about 0.25 m, the relative humidity is constant at 100%. We have found that the thickness of the hydrated layer developed on obsidian outcrops exposed to the sun and to relative humidities of 30-90% is similar to that formed on other portions of the outcrop that were shielded from the sun and exposed to a relative humidity of approximately 100%. Surface samples of obsidian exposed to solar heating should hydrate more rapidly than samples buried in the ground. However, the effect of the lower mean relative humidity experiences by surface samples tends to compensate for the elevated temperature, which may explain why obsidian hydration ages of surface samples usually approximate those derived from buried samples.
Gu, Yingxin; Wylie, B.K.
2010-01-01
This study identifies areas with ecosystem performance anomalies (EPA) within the Upper Colorado River Basin (UCRB) during 2005-2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions) at the 90% level of confidence. The EPA maps were validated using "percentage of bare soil" ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming) tended to have a higher (lower) percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005-2007) persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM) identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions. ?? 2010 by the authors.
Gu, Yingxin; Wylie, Bruce K.
2010-01-01
This study identifies areas with ecosystem performance anomalies (EPA) within the Upper Colorado River Basin (UCRB) during 2005–2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions) at the 90% level of confidence. The EPA maps were validated using “percentage of bare soil” ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming) tended to have a higher (lower) percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005–2007) persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM) identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions.
Model parameters for representative wetland plant functional groups
Williams, Amber S.; Kiniry, James R.; Mushet, David M.; Smith, Loren M.; McMurry, Scott T.; Attebury, Kelly; Lang, Megan; McCarty, Gregory W.; Shaffer, Jill A.; Effland, William R.; Johnson, Mari-Vaughn V.
2017-01-01
Wetlands provide a wide variety of ecosystem services including water quality remediation, biodiversity refugia, groundwater recharge, and floodwater storage. Realistic estimation of ecosystem service benefits associated with wetlands requires reasonable simulation of the hydrology of each site and realistic simulation of the upland and wetland plant growth cycles. Objectives of this study were to quantify leaf area index (LAI), light extinction coefficient (k), and plant nitrogen (N), phosphorus (P), and potassium (K) concentrations in natural stands of representative plant species for some major plant functional groups in the United States. Functional groups in this study were based on these parameters and plant growth types to enable process-based modeling. We collected data at four locations representing some of the main wetland regions of the United States. At each site, we collected on-the-ground measurements of fraction of light intercepted, LAI, and dry matter within the 2013–2015 growing seasons. Maximum LAI and k variables showed noticeable variations among sites and years, while overall averages and functional group averages give useful estimates for multisite simulation modeling. Variation within each species gives an indication of what can be expected in such natural ecosystems. For P and K, the concentrations from highest to lowest were spikerush (Eleocharis macrostachya), reed canary grass (Phalaris arundinacea), smartweed (Polygonum spp.), cattail (Typha spp.), and hardstem bulrush (Schoenoplectus acutus). Spikerush had the highest N concentration, followed by smartweed, bulrush, reed canary grass, and then cattail. These parameters will be useful for the actual wetland species measured and for the wetland plant functional groups they represent. These parameters and the associated process-based models offer promise as valuable tools for evaluating environmental benefits of wetlands and for evaluating impacts of various agronomic practices in adjacent areas as they affect wetlands.
Wirth, C; Schulze, E-D; Schulze, W; von Stünzner-Karbe, D; Ziegler, W; Miljukova, I M; Sogatchev, A; Varlagin, A B; Panvyorov, M; Grigoriev, S; Kusnetzova, W; Siry, M; Hardes, G; Zimmermann, R; Vygodskaya, N N
1999-10-01
The study presents a data set of above-ground biomass (AGB), structure, spacing and fire regime, for 24 stands of pristine Siberian Scots pine (Pinus sylvestris) forests with lichens (n = 20) or Vaccinium/mosses (n = 4) as ground cover, along four chronosequences. The stands of the "lichen" site type (LT) were stratified into three chronosequences according to stand density and fire history. Allometric equations were established from 90 sample trees for stem, coarse branch, fine branch, twig and needle biomass. The LT stands exhibited a low but sustained biomass accumulation until a stand age of 383 years. AGB reached only 6-10 kg dw m -2 after 200 years depending on stand density and fire history compared to 20 kg dw m -2 in the "Vaccinium" type (VT) stands. Leaf area index (LAI) in the LT stands remained at 0.5-1.5 and crown cover was 30-60%, whereas LAI reached 2.5 and crown cover was >100% in the VT stands. Although nearest-neighbour analyses suggested the existence of density-dependent mortality, fire impact turned out to have a much stronger effect on density dynamics. Fire scar dating and calculation of mean and initial fire return intervals revealed that within the LT stands differences in structure and biomass were related to the severity of fire regimes, which in turn was related to the degree of landscape fragmentation by wetlands. Self-thinning analysis was used to define the local carrying capacity for biomass. A series of undisturbed LT stands was used to characterise the upper self-thinning boundary. Stands that had experienced a moderate fire regime were positioned well below the self-thinning boundary in a distinct fire-thinning band of reduced major axis regression slope -0.26. We discuss how this downward shift resulted from alternating phases of density reduction by fire and subsequent regrowth. We conclude that biomass in Siberian Scots pine forests is strongly influenced by fire and that climate change will affect ecosystem functions predominantly via changes in fire regimes.